]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - fs/dax.c
Bluetooth: btusb: request wake pin with NOAUTOEN
[thirdparty/kernel/stable.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
289c6aed 28#include <linux/sched.h>
f361bf4a 29#include <linux/sched/signal.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
4b4bb46d 34#include <linux/mmu_notifier.h>
a254e568
CH
35#include <linux/iomap.h>
36#include "internal.h"
d475c634 37
282a8e03
RZ
38#define CREATE_TRACE_POINTS
39#include <trace/events/fs_dax.h>
40
cfc93c6c
MW
41static inline unsigned int pe_order(enum page_entry_size pe_size)
42{
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
50}
51
ac401cc7
JK
52/* We choose 4096 entries - same as per-zone page wait tables */
53#define DAX_WAIT_TABLE_BITS 12
54#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
917f3452
RZ
56/* The 'colour' (ie low bits) within a PMD of a page offset. */
57#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
977fbdcd 58#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
917f3452 59
cfc93c6c
MW
60/* The order of a PMD entry */
61#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
62
ce95ab0f 63static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
64
65static int __init init_dax_wait_table(void)
66{
67 int i;
68
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
72}
73fs_initcall(init_dax_wait_table);
74
527b19d0 75/*
3159f943
MW
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
527b19d0
RZ
80 *
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
84 */
3159f943
MW
85#define DAX_SHIFT (4)
86#define DAX_LOCKED (1UL << 0)
87#define DAX_PMD (1UL << 1)
88#define DAX_ZERO_PAGE (1UL << 2)
89#define DAX_EMPTY (1UL << 3)
527b19d0 90
a77d19f4 91static unsigned long dax_to_pfn(void *entry)
527b19d0 92{
3159f943 93 return xa_to_value(entry) >> DAX_SHIFT;
527b19d0
RZ
94}
95
9f32d221
MW
96static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97{
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99}
100
cfc93c6c
MW
101static bool dax_is_locked(void *entry)
102{
103 return xa_to_value(entry) & DAX_LOCKED;
104}
105
a77d19f4 106static unsigned int dax_entry_order(void *entry)
527b19d0 107{
3159f943 108 if (xa_to_value(entry) & DAX_PMD)
cfc93c6c 109 return PMD_ORDER;
527b19d0
RZ
110 return 0;
111}
112
fda490d3 113static unsigned long dax_is_pmd_entry(void *entry)
d1a5f2b4 114{
3159f943 115 return xa_to_value(entry) & DAX_PMD;
d1a5f2b4
DW
116}
117
fda490d3 118static bool dax_is_pte_entry(void *entry)
d475c634 119{
3159f943 120 return !(xa_to_value(entry) & DAX_PMD);
d475c634
MW
121}
122
642261ac 123static int dax_is_zero_entry(void *entry)
d475c634 124{
3159f943 125 return xa_to_value(entry) & DAX_ZERO_PAGE;
d475c634
MW
126}
127
642261ac 128static int dax_is_empty_entry(void *entry)
b2e0d162 129{
3159f943 130 return xa_to_value(entry) & DAX_EMPTY;
b2e0d162
DW
131}
132
ac401cc7 133/*
a77d19f4 134 * DAX page cache entry locking
ac401cc7
JK
135 */
136struct exceptional_entry_key {
ec4907ff 137 struct xarray *xa;
63e95b5c 138 pgoff_t entry_start;
ac401cc7
JK
139};
140
141struct wait_exceptional_entry_queue {
ac6424b9 142 wait_queue_entry_t wait;
ac401cc7
JK
143 struct exceptional_entry_key key;
144};
145
b15cd800
MW
146static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147 void *entry, struct exceptional_entry_key *key)
63e95b5c
RZ
148{
149 unsigned long hash;
b15cd800 150 unsigned long index = xas->xa_index;
63e95b5c
RZ
151
152 /*
153 * If 'entry' is a PMD, align the 'index' that we use for the wait
154 * queue to the start of that PMD. This ensures that all offsets in
155 * the range covered by the PMD map to the same bit lock.
156 */
642261ac 157 if (dax_is_pmd_entry(entry))
917f3452 158 index &= ~PG_PMD_COLOUR;
b15cd800 159 key->xa = xas->xa;
63e95b5c
RZ
160 key->entry_start = index;
161
b15cd800 162 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
63e95b5c
RZ
163 return wait_table + hash;
164}
165
ec4907ff
MW
166static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167 unsigned int mode, int sync, void *keyp)
ac401cc7
JK
168{
169 struct exceptional_entry_key *key = keyp;
170 struct wait_exceptional_entry_queue *ewait =
171 container_of(wait, struct wait_exceptional_entry_queue, wait);
172
ec4907ff 173 if (key->xa != ewait->key.xa ||
63e95b5c 174 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
175 return 0;
176 return autoremove_wake_function(wait, mode, sync, NULL);
177}
178
e30331ff 179/*
b93b0163
MW
180 * @entry may no longer be the entry at the index in the mapping.
181 * The important information it's conveying is whether the entry at
182 * this index used to be a PMD entry.
e30331ff 183 */
b15cd800 184static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
e30331ff
RZ
185{
186 struct exceptional_entry_key key;
187 wait_queue_head_t *wq;
188
b15cd800 189 wq = dax_entry_waitqueue(xas, entry, &key);
e30331ff
RZ
190
191 /*
192 * Checking for locked entry and prepare_to_wait_exclusive() happens
b93b0163 193 * under the i_pages lock, ditto for entry handling in our callers.
e30331ff
RZ
194 * So at this point all tasks that could have seen our entry locked
195 * must be in the waitqueue and the following check will see them.
196 */
197 if (waitqueue_active(wq))
198 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199}
200
cfc93c6c
MW
201/*
202 * Look up entry in page cache, wait for it to become unlocked if it
203 * is a DAX entry and return it. The caller must subsequently call
204 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205 * if it did.
206 *
207 * Must be called with the i_pages lock held.
208 */
209static void *get_unlocked_entry(struct xa_state *xas)
210{
211 void *entry;
212 struct wait_exceptional_entry_queue ewait;
213 wait_queue_head_t *wq;
214
215 init_wait(&ewait.wait);
216 ewait.wait.func = wake_exceptional_entry_func;
217
218 for (;;) {
0e40de03
MW
219 entry = xas_find_conflict(xas);
220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
cfc93c6c
MW
221 !dax_is_locked(entry))
222 return entry;
223
b15cd800 224 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
cfc93c6c
MW
225 prepare_to_wait_exclusive(wq, &ewait.wait,
226 TASK_UNINTERRUPTIBLE);
227 xas_unlock_irq(xas);
228 xas_reset(xas);
229 schedule();
230 finish_wait(wq, &ewait.wait);
231 xas_lock_irq(xas);
232 }
233}
234
55e56f06
MW
235/*
236 * The only thing keeping the address space around is the i_pages lock
237 * (it's cycled in clear_inode() after removing the entries from i_pages)
238 * After we call xas_unlock_irq(), we cannot touch xas->xa.
239 */
240static void wait_entry_unlocked(struct xa_state *xas, void *entry)
241{
242 struct wait_exceptional_entry_queue ewait;
243 wait_queue_head_t *wq;
244
245 init_wait(&ewait.wait);
246 ewait.wait.func = wake_exceptional_entry_func;
247
248 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
d8a70641
DW
249 /*
250 * Unlike get_unlocked_entry() there is no guarantee that this
251 * path ever successfully retrieves an unlocked entry before an
252 * inode dies. Perform a non-exclusive wait in case this path
253 * never successfully performs its own wake up.
254 */
255 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
55e56f06
MW
256 xas_unlock_irq(xas);
257 schedule();
258 finish_wait(wq, &ewait.wait);
55e56f06
MW
259}
260
cfc93c6c
MW
261static void put_unlocked_entry(struct xa_state *xas, void *entry)
262{
263 /* If we were the only waiter woken, wake the next one */
264 if (entry)
265 dax_wake_entry(xas, entry, false);
266}
267
268/*
269 * We used the xa_state to get the entry, but then we locked the entry and
270 * dropped the xa_lock, so we know the xa_state is stale and must be reset
271 * before use.
272 */
273static void dax_unlock_entry(struct xa_state *xas, void *entry)
274{
275 void *old;
276
7ae2ea7d 277 BUG_ON(dax_is_locked(entry));
cfc93c6c
MW
278 xas_reset(xas);
279 xas_lock_irq(xas);
280 old = xas_store(xas, entry);
281 xas_unlock_irq(xas);
282 BUG_ON(!dax_is_locked(old));
283 dax_wake_entry(xas, entry, false);
284}
285
286/*
287 * Return: The entry stored at this location before it was locked.
288 */
289static void *dax_lock_entry(struct xa_state *xas, void *entry)
290{
291 unsigned long v = xa_to_value(entry);
292 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
293}
294
d2c997c0
DW
295static unsigned long dax_entry_size(void *entry)
296{
297 if (dax_is_zero_entry(entry))
298 return 0;
299 else if (dax_is_empty_entry(entry))
300 return 0;
301 else if (dax_is_pmd_entry(entry))
302 return PMD_SIZE;
303 else
304 return PAGE_SIZE;
305}
306
a77d19f4 307static unsigned long dax_end_pfn(void *entry)
d2c997c0 308{
a77d19f4 309 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
d2c997c0
DW
310}
311
312/*
313 * Iterate through all mapped pfns represented by an entry, i.e. skip
314 * 'empty' and 'zero' entries.
315 */
316#define for_each_mapped_pfn(entry, pfn) \
a77d19f4
MW
317 for (pfn = dax_to_pfn(entry); \
318 pfn < dax_end_pfn(entry); pfn++)
d2c997c0 319
73449daf
DW
320/*
321 * TODO: for reflink+dax we need a way to associate a single page with
322 * multiple address_space instances at different linear_page_index()
323 * offsets.
324 */
325static void dax_associate_entry(void *entry, struct address_space *mapping,
326 struct vm_area_struct *vma, unsigned long address)
d2c997c0 327{
73449daf
DW
328 unsigned long size = dax_entry_size(entry), pfn, index;
329 int i = 0;
d2c997c0
DW
330
331 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
332 return;
333
73449daf 334 index = linear_page_index(vma, address & ~(size - 1));
d2c997c0
DW
335 for_each_mapped_pfn(entry, pfn) {
336 struct page *page = pfn_to_page(pfn);
337
338 WARN_ON_ONCE(page->mapping);
339 page->mapping = mapping;
73449daf 340 page->index = index + i++;
d2c997c0
DW
341 }
342}
343
344static void dax_disassociate_entry(void *entry, struct address_space *mapping,
345 bool trunc)
346{
347 unsigned long pfn;
348
349 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
350 return;
351
352 for_each_mapped_pfn(entry, pfn) {
353 struct page *page = pfn_to_page(pfn);
354
355 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
356 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
357 page->mapping = NULL;
73449daf 358 page->index = 0;
d2c997c0
DW
359 }
360}
361
5fac7408
DW
362static struct page *dax_busy_page(void *entry)
363{
364 unsigned long pfn;
365
366 for_each_mapped_pfn(entry, pfn) {
367 struct page *page = pfn_to_page(pfn);
368
369 if (page_ref_count(page) > 1)
370 return page;
371 }
372 return NULL;
373}
374
c5bbd451
MW
375/*
376 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
377 * @page: The page whose entry we want to lock
378 *
379 * Context: Process context.
27359fd6
MW
380 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
381 * not be locked.
c5bbd451 382 */
27359fd6 383dax_entry_t dax_lock_page(struct page *page)
c2a7d2a1 384{
9f32d221
MW
385 XA_STATE(xas, NULL, 0);
386 void *entry;
c2a7d2a1 387
c5bbd451
MW
388 /* Ensure page->mapping isn't freed while we look at it */
389 rcu_read_lock();
c2a7d2a1 390 for (;;) {
9f32d221 391 struct address_space *mapping = READ_ONCE(page->mapping);
c2a7d2a1 392
27359fd6 393 entry = NULL;
c93db7bb 394 if (!mapping || !dax_mapping(mapping))
c5bbd451 395 break;
c2a7d2a1
DW
396
397 /*
398 * In the device-dax case there's no need to lock, a
399 * struct dev_pagemap pin is sufficient to keep the
400 * inode alive, and we assume we have dev_pagemap pin
401 * otherwise we would not have a valid pfn_to_page()
402 * translation.
403 */
27359fd6 404 entry = (void *)~0UL;
9f32d221 405 if (S_ISCHR(mapping->host->i_mode))
c5bbd451 406 break;
c2a7d2a1 407
9f32d221
MW
408 xas.xa = &mapping->i_pages;
409 xas_lock_irq(&xas);
c2a7d2a1 410 if (mapping != page->mapping) {
9f32d221 411 xas_unlock_irq(&xas);
c2a7d2a1
DW
412 continue;
413 }
9f32d221
MW
414 xas_set(&xas, page->index);
415 entry = xas_load(&xas);
416 if (dax_is_locked(entry)) {
c5bbd451 417 rcu_read_unlock();
55e56f06 418 wait_entry_unlocked(&xas, entry);
c5bbd451 419 rcu_read_lock();
6d7cd8c1 420 continue;
c2a7d2a1 421 }
9f32d221
MW
422 dax_lock_entry(&xas, entry);
423 xas_unlock_irq(&xas);
c5bbd451 424 break;
c2a7d2a1 425 }
c5bbd451 426 rcu_read_unlock();
27359fd6 427 return (dax_entry_t)entry;
c2a7d2a1
DW
428}
429
27359fd6 430void dax_unlock_page(struct page *page, dax_entry_t cookie)
c2a7d2a1
DW
431{
432 struct address_space *mapping = page->mapping;
9f32d221 433 XA_STATE(xas, &mapping->i_pages, page->index);
c2a7d2a1 434
9f32d221 435 if (S_ISCHR(mapping->host->i_mode))
c2a7d2a1
DW
436 return;
437
27359fd6 438 dax_unlock_entry(&xas, (void *)cookie);
c2a7d2a1
DW
439}
440
ac401cc7 441/*
a77d19f4
MW
442 * Find page cache entry at given index. If it is a DAX entry, return it
443 * with the entry locked. If the page cache doesn't contain an entry at
444 * that index, add a locked empty entry.
ac401cc7 445 *
3159f943 446 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
b15cd800
MW
447 * either return that locked entry or will return VM_FAULT_FALLBACK.
448 * This will happen if there are any PTE entries within the PMD range
449 * that we are requesting.
642261ac 450 *
b15cd800
MW
451 * We always favor PTE entries over PMD entries. There isn't a flow where we
452 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
453 * insertion will fail if it finds any PTE entries already in the tree, and a
454 * PTE insertion will cause an existing PMD entry to be unmapped and
455 * downgraded to PTE entries. This happens for both PMD zero pages as
456 * well as PMD empty entries.
642261ac 457 *
b15cd800
MW
458 * The exception to this downgrade path is for PMD entries that have
459 * real storage backing them. We will leave these real PMD entries in
460 * the tree, and PTE writes will simply dirty the entire PMD entry.
642261ac 461 *
ac401cc7
JK
462 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
463 * persistent memory the benefit is doubtful. We can add that later if we can
464 * show it helps.
b15cd800
MW
465 *
466 * On error, this function does not return an ERR_PTR. Instead it returns
467 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
468 * overlap with xarray value entries.
ac401cc7 469 */
b15cd800
MW
470static void *grab_mapping_entry(struct xa_state *xas,
471 struct address_space *mapping, unsigned long size_flag)
ac401cc7 472{
b15cd800
MW
473 unsigned long index = xas->xa_index;
474 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
475 void *entry;
642261ac 476
b15cd800
MW
477retry:
478 xas_lock_irq(xas);
479 entry = get_unlocked_entry(xas);
91d25ba8 480
642261ac 481 if (entry) {
0e40de03 482 if (!xa_is_value(entry)) {
b15cd800
MW
483 xas_set_err(xas, EIO);
484 goto out_unlock;
485 }
486
3159f943 487 if (size_flag & DAX_PMD) {
91d25ba8 488 if (dax_is_pte_entry(entry)) {
b15cd800
MW
489 put_unlocked_entry(xas, entry);
490 goto fallback;
642261ac
RZ
491 }
492 } else { /* trying to grab a PTE entry */
91d25ba8 493 if (dax_is_pmd_entry(entry) &&
642261ac
RZ
494 (dax_is_zero_entry(entry) ||
495 dax_is_empty_entry(entry))) {
496 pmd_downgrade = true;
497 }
498 }
499 }
500
b15cd800
MW
501 if (pmd_downgrade) {
502 /*
503 * Make sure 'entry' remains valid while we drop
504 * the i_pages lock.
505 */
506 dax_lock_entry(xas, entry);
642261ac 507
642261ac
RZ
508 /*
509 * Besides huge zero pages the only other thing that gets
510 * downgraded are empty entries which don't need to be
511 * unmapped.
512 */
b15cd800
MW
513 if (dax_is_zero_entry(entry)) {
514 xas_unlock_irq(xas);
515 unmap_mapping_pages(mapping,
516 xas->xa_index & ~PG_PMD_COLOUR,
517 PG_PMD_NR, false);
518 xas_reset(xas);
519 xas_lock_irq(xas);
e11f8b7b
RZ
520 }
521
b15cd800
MW
522 dax_disassociate_entry(entry, mapping, false);
523 xas_store(xas, NULL); /* undo the PMD join */
524 dax_wake_entry(xas, entry, true);
525 mapping->nrexceptional--;
526 entry = NULL;
527 xas_set(xas, index);
528 }
642261ac 529
b15cd800
MW
530 if (entry) {
531 dax_lock_entry(xas, entry);
532 } else {
533 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
534 dax_lock_entry(xas, entry);
535 if (xas_error(xas))
536 goto out_unlock;
ac401cc7 537 mapping->nrexceptional++;
ac401cc7 538 }
b15cd800
MW
539
540out_unlock:
541 xas_unlock_irq(xas);
542 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
543 goto retry;
544 if (xas->xa_node == XA_ERROR(-ENOMEM))
545 return xa_mk_internal(VM_FAULT_OOM);
546 if (xas_error(xas))
547 return xa_mk_internal(VM_FAULT_SIGBUS);
e3ad61c6 548 return entry;
b15cd800
MW
549fallback:
550 xas_unlock_irq(xas);
551 return xa_mk_internal(VM_FAULT_FALLBACK);
ac401cc7
JK
552}
553
5fac7408
DW
554/**
555 * dax_layout_busy_page - find first pinned page in @mapping
556 * @mapping: address space to scan for a page with ref count > 1
557 *
558 * DAX requires ZONE_DEVICE mapped pages. These pages are never
559 * 'onlined' to the page allocator so they are considered idle when
560 * page->count == 1. A filesystem uses this interface to determine if
561 * any page in the mapping is busy, i.e. for DMA, or other
562 * get_user_pages() usages.
563 *
564 * It is expected that the filesystem is holding locks to block the
565 * establishment of new mappings in this address_space. I.e. it expects
566 * to be able to run unmap_mapping_range() and subsequently not race
567 * mapping_mapped() becoming true.
568 */
569struct page *dax_layout_busy_page(struct address_space *mapping)
570{
084a8990
MW
571 XA_STATE(xas, &mapping->i_pages, 0);
572 void *entry;
573 unsigned int scanned = 0;
5fac7408 574 struct page *page = NULL;
5fac7408
DW
575
576 /*
577 * In the 'limited' case get_user_pages() for dax is disabled.
578 */
579 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
580 return NULL;
581
582 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
583 return NULL;
584
5fac7408
DW
585 /*
586 * If we race get_user_pages_fast() here either we'll see the
084a8990 587 * elevated page count in the iteration and wait, or
5fac7408
DW
588 * get_user_pages_fast() will see that the page it took a reference
589 * against is no longer mapped in the page tables and bail to the
590 * get_user_pages() slow path. The slow path is protected by
591 * pte_lock() and pmd_lock(). New references are not taken without
592 * holding those locks, and unmap_mapping_range() will not zero the
593 * pte or pmd without holding the respective lock, so we are
594 * guaranteed to either see new references or prevent new
595 * references from being established.
596 */
597 unmap_mapping_range(mapping, 0, 0, 1);
598
084a8990
MW
599 xas_lock_irq(&xas);
600 xas_for_each(&xas, entry, ULONG_MAX) {
601 if (WARN_ON_ONCE(!xa_is_value(entry)))
602 continue;
603 if (unlikely(dax_is_locked(entry)))
604 entry = get_unlocked_entry(&xas);
605 if (entry)
606 page = dax_busy_page(entry);
607 put_unlocked_entry(&xas, entry);
5fac7408
DW
608 if (page)
609 break;
084a8990
MW
610 if (++scanned % XA_CHECK_SCHED)
611 continue;
612
613 xas_pause(&xas);
614 xas_unlock_irq(&xas);
615 cond_resched();
616 xas_lock_irq(&xas);
5fac7408 617 }
084a8990 618 xas_unlock_irq(&xas);
5fac7408
DW
619 return page;
620}
621EXPORT_SYMBOL_GPL(dax_layout_busy_page);
622
a77d19f4 623static int __dax_invalidate_entry(struct address_space *mapping,
c6dcf52c
JK
624 pgoff_t index, bool trunc)
625{
07f2d89c 626 XA_STATE(xas, &mapping->i_pages, index);
c6dcf52c
JK
627 int ret = 0;
628 void *entry;
c6dcf52c 629
07f2d89c
MW
630 xas_lock_irq(&xas);
631 entry = get_unlocked_entry(&xas);
3159f943 632 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
c6dcf52c
JK
633 goto out;
634 if (!trunc &&
07f2d89c
MW
635 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
636 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
c6dcf52c 637 goto out;
d2c997c0 638 dax_disassociate_entry(entry, mapping, trunc);
07f2d89c 639 xas_store(&xas, NULL);
c6dcf52c
JK
640 mapping->nrexceptional--;
641 ret = 1;
642out:
07f2d89c
MW
643 put_unlocked_entry(&xas, entry);
644 xas_unlock_irq(&xas);
c6dcf52c
JK
645 return ret;
646}
07f2d89c 647
ac401cc7 648/*
3159f943
MW
649 * Delete DAX entry at @index from @mapping. Wait for it
650 * to be unlocked before deleting it.
ac401cc7
JK
651 */
652int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
653{
a77d19f4 654 int ret = __dax_invalidate_entry(mapping, index, true);
ac401cc7 655
ac401cc7
JK
656 /*
657 * This gets called from truncate / punch_hole path. As such, the caller
658 * must hold locks protecting against concurrent modifications of the
a77d19f4 659 * page cache (usually fs-private i_mmap_sem for writing). Since the
3159f943 660 * caller has seen a DAX entry for this index, we better find it
ac401cc7
JK
661 * at that index as well...
662 */
c6dcf52c
JK
663 WARN_ON_ONCE(!ret);
664 return ret;
665}
666
c6dcf52c 667/*
3159f943 668 * Invalidate DAX entry if it is clean.
c6dcf52c
JK
669 */
670int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
671 pgoff_t index)
672{
a77d19f4 673 return __dax_invalidate_entry(mapping, index, false);
ac401cc7
JK
674}
675
cccbce67
DW
676static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
677 sector_t sector, size_t size, struct page *to,
678 unsigned long vaddr)
f7ca90b1 679{
cccbce67
DW
680 void *vto, *kaddr;
681 pgoff_t pgoff;
cccbce67
DW
682 long rc;
683 int id;
684
685 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
686 if (rc)
687 return rc;
688
689 id = dax_read_lock();
86ed913b 690 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
cccbce67
DW
691 if (rc < 0) {
692 dax_read_unlock(id);
693 return rc;
694 }
f7ca90b1 695 vto = kmap_atomic(to);
cccbce67 696 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
f7ca90b1 697 kunmap_atomic(vto);
cccbce67 698 dax_read_unlock(id);
f7ca90b1
MW
699 return 0;
700}
701
642261ac
RZ
702/*
703 * By this point grab_mapping_entry() has ensured that we have a locked entry
704 * of the appropriate size so we don't have to worry about downgrading PMDs to
705 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
706 * already in the tree, we will skip the insertion and just dirty the PMD as
707 * appropriate.
708 */
b15cd800
MW
709static void *dax_insert_entry(struct xa_state *xas,
710 struct address_space *mapping, struct vm_fault *vmf,
711 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
9973c98e 712{
b15cd800 713 void *new_entry = dax_make_entry(pfn, flags);
9973c98e 714
f5b7b748 715 if (dirty)
d2b2a28e 716 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 717
3159f943 718 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
b15cd800 719 unsigned long index = xas->xa_index;
91d25ba8
RZ
720 /* we are replacing a zero page with block mapping */
721 if (dax_is_pmd_entry(entry))
977fbdcd 722 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
b15cd800 723 PG_PMD_NR, false);
91d25ba8 724 else /* pte entry */
b15cd800 725 unmap_mapping_pages(mapping, index, 1, false);
9973c98e
RZ
726 }
727
b15cd800
MW
728 xas_reset(xas);
729 xas_lock_irq(xas);
d2c997c0
DW
730 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
731 dax_disassociate_entry(entry, mapping, false);
73449daf 732 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
d2c997c0 733 }
642261ac 734
91d25ba8 735 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
642261ac 736 /*
a77d19f4 737 * Only swap our new entry into the page cache if the current
642261ac 738 * entry is a zero page or an empty entry. If a normal PTE or
a77d19f4 739 * PMD entry is already in the cache, we leave it alone. This
642261ac
RZ
740 * means that if we are trying to insert a PTE and the
741 * existing entry is a PMD, we will just leave the PMD in the
742 * tree and dirty it if necessary.
743 */
b15cd800
MW
744 void *old = dax_lock_entry(xas, new_entry);
745 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
746 DAX_LOCKED));
91d25ba8 747 entry = new_entry;
b15cd800
MW
748 } else {
749 xas_load(xas); /* Walk the xa_state */
9973c98e 750 }
91d25ba8 751
f5b7b748 752 if (dirty)
b15cd800 753 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
91d25ba8 754
b15cd800 755 xas_unlock_irq(xas);
91d25ba8 756 return entry;
9973c98e
RZ
757}
758
a77d19f4
MW
759static inline
760unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
4b4bb46d
JK
761{
762 unsigned long address;
763
764 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
765 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
766 return address;
767}
768
769/* Walk all mappings of a given index of a file and writeprotect them */
a77d19f4
MW
770static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
771 unsigned long pfn)
4b4bb46d
JK
772{
773 struct vm_area_struct *vma;
f729c8c9
RZ
774 pte_t pte, *ptep = NULL;
775 pmd_t *pmdp = NULL;
4b4bb46d 776 spinlock_t *ptl;
4b4bb46d
JK
777
778 i_mmap_lock_read(mapping);
779 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
ac46d4f3
JG
780 struct mmu_notifier_range range;
781 unsigned long address;
4b4bb46d
JK
782
783 cond_resched();
784
785 if (!(vma->vm_flags & VM_SHARED))
786 continue;
787
788 address = pgoff_address(index, vma);
a4d1a885
JG
789
790 /*
0cefc36b 791 * Note because we provide range to follow_pte_pmd it will
a4d1a885
JG
792 * call mmu_notifier_invalidate_range_start() on our behalf
793 * before taking any lock.
794 */
ac46d4f3
JG
795 if (follow_pte_pmd(vma->vm_mm, address, &range,
796 &ptep, &pmdp, &ptl))
4b4bb46d 797 continue;
4b4bb46d 798
0f10851e
JG
799 /*
800 * No need to call mmu_notifier_invalidate_range() as we are
801 * downgrading page table protection not changing it to point
802 * to a new page.
803 *
ad56b738 804 * See Documentation/vm/mmu_notifier.rst
0f10851e 805 */
f729c8c9
RZ
806 if (pmdp) {
807#ifdef CONFIG_FS_DAX_PMD
808 pmd_t pmd;
809
810 if (pfn != pmd_pfn(*pmdp))
811 goto unlock_pmd;
f6f37321 812 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
f729c8c9
RZ
813 goto unlock_pmd;
814
815 flush_cache_page(vma, address, pfn);
816 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
817 pmd = pmd_wrprotect(pmd);
818 pmd = pmd_mkclean(pmd);
819 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
f729c8c9 820unlock_pmd:
f729c8c9 821#endif
ee190ca6 822 spin_unlock(ptl);
f729c8c9
RZ
823 } else {
824 if (pfn != pte_pfn(*ptep))
825 goto unlock_pte;
826 if (!pte_dirty(*ptep) && !pte_write(*ptep))
827 goto unlock_pte;
828
829 flush_cache_page(vma, address, pfn);
830 pte = ptep_clear_flush(vma, address, ptep);
831 pte = pte_wrprotect(pte);
832 pte = pte_mkclean(pte);
833 set_pte_at(vma->vm_mm, address, ptep, pte);
f729c8c9
RZ
834unlock_pte:
835 pte_unmap_unlock(ptep, ptl);
836 }
4b4bb46d 837
ac46d4f3 838 mmu_notifier_invalidate_range_end(&range);
4b4bb46d
JK
839 }
840 i_mmap_unlock_read(mapping);
841}
842
9fc747f6
MW
843static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
844 struct address_space *mapping, void *entry)
9973c98e 845{
e4b3448b 846 unsigned long pfn, index, count;
3fe0791c 847 long ret = 0;
9973c98e 848
9973c98e 849 /*
a6abc2c0
JK
850 * A page got tagged dirty in DAX mapping? Something is seriously
851 * wrong.
9973c98e 852 */
3159f943 853 if (WARN_ON(!xa_is_value(entry)))
a6abc2c0 854 return -EIO;
9973c98e 855
9fc747f6
MW
856 if (unlikely(dax_is_locked(entry))) {
857 void *old_entry = entry;
858
859 entry = get_unlocked_entry(xas);
860
861 /* Entry got punched out / reallocated? */
862 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
863 goto put_unlocked;
864 /*
865 * Entry got reallocated elsewhere? No need to writeback.
866 * We have to compare pfns as we must not bail out due to
867 * difference in lockbit or entry type.
868 */
869 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
870 goto put_unlocked;
871 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
872 dax_is_zero_entry(entry))) {
873 ret = -EIO;
874 goto put_unlocked;
875 }
876
877 /* Another fsync thread may have already done this entry */
878 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
879 goto put_unlocked;
9973c98e
RZ
880 }
881
a6abc2c0 882 /* Lock the entry to serialize with page faults */
9fc747f6
MW
883 dax_lock_entry(xas, entry);
884
a6abc2c0
JK
885 /*
886 * We can clear the tag now but we have to be careful so that concurrent
887 * dax_writeback_one() calls for the same index cannot finish before we
888 * actually flush the caches. This is achieved as the calls will look
b93b0163
MW
889 * at the entry only under the i_pages lock and once they do that
890 * they will see the entry locked and wait for it to unlock.
a6abc2c0 891 */
9fc747f6
MW
892 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
893 xas_unlock_irq(xas);
a6abc2c0 894
642261ac 895 /*
e4b3448b
MW
896 * If dax_writeback_mapping_range() was given a wbc->range_start
897 * in the middle of a PMD, the 'index' we use needs to be
898 * aligned to the start of the PMD.
3fe0791c
DW
899 * This allows us to flush for PMD_SIZE and not have to worry about
900 * partial PMD writebacks.
642261ac 901 */
a77d19f4 902 pfn = dax_to_pfn(entry);
e4b3448b
MW
903 count = 1UL << dax_entry_order(entry);
904 index = xas->xa_index & ~(count - 1);
cccbce67 905
e4b3448b
MW
906 dax_entry_mkclean(mapping, index, pfn);
907 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
4b4bb46d
JK
908 /*
909 * After we have flushed the cache, we can clear the dirty tag. There
910 * cannot be new dirty data in the pfn after the flush has completed as
911 * the pfn mappings are writeprotected and fault waits for mapping
912 * entry lock.
913 */
9fc747f6
MW
914 xas_reset(xas);
915 xas_lock_irq(xas);
916 xas_store(xas, entry);
917 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
918 dax_wake_entry(xas, entry, false);
919
e4b3448b 920 trace_dax_writeback_one(mapping->host, index, count);
9973c98e
RZ
921 return ret;
922
a6abc2c0 923 put_unlocked:
9fc747f6 924 put_unlocked_entry(xas, entry);
9973c98e
RZ
925 return ret;
926}
927
928/*
929 * Flush the mapping to the persistent domain within the byte range of [start,
930 * end]. This is required by data integrity operations to ensure file data is
931 * on persistent storage prior to completion of the operation.
932 */
7f6d5b52
RZ
933int dax_writeback_mapping_range(struct address_space *mapping,
934 struct block_device *bdev, struct writeback_control *wbc)
9973c98e 935{
9fc747f6 936 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
9973c98e 937 struct inode *inode = mapping->host;
9fc747f6 938 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
cccbce67 939 struct dax_device *dax_dev;
9fc747f6
MW
940 void *entry;
941 int ret = 0;
942 unsigned int scanned = 0;
9973c98e
RZ
943
944 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
945 return -EIO;
946
7f6d5b52
RZ
947 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
948 return 0;
949
cccbce67
DW
950 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
951 if (!dax_dev)
952 return -EIO;
953
9fc747f6 954 trace_dax_writeback_range(inode, xas.xa_index, end_index);
9973c98e 955
9fc747f6 956 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
9973c98e 957
9fc747f6
MW
958 xas_lock_irq(&xas);
959 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
960 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
961 if (ret < 0) {
962 mapping_set_error(mapping, ret);
9973c98e 963 break;
9973c98e 964 }
9fc747f6
MW
965 if (++scanned % XA_CHECK_SCHED)
966 continue;
967
968 xas_pause(&xas);
969 xas_unlock_irq(&xas);
970 cond_resched();
971 xas_lock_irq(&xas);
9973c98e 972 }
9fc747f6 973 xas_unlock_irq(&xas);
cccbce67 974 put_dax(dax_dev);
9fc747f6
MW
975 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
976 return ret;
9973c98e
RZ
977}
978EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
979
31a6f1a6 980static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
f7ca90b1 981{
a3841f94 982 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
31a6f1a6
JK
983}
984
5e161e40
JK
985static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
986 pfn_t *pfnp)
f7ca90b1 987{
31a6f1a6 988 const sector_t sector = dax_iomap_sector(iomap, pos);
cccbce67
DW
989 pgoff_t pgoff;
990 int id, rc;
5e161e40 991 long length;
f7ca90b1 992
5e161e40 993 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
cccbce67
DW
994 if (rc)
995 return rc;
cccbce67 996 id = dax_read_lock();
5e161e40 997 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
86ed913b 998 NULL, pfnp);
5e161e40
JK
999 if (length < 0) {
1000 rc = length;
1001 goto out;
cccbce67 1002 }
5e161e40
JK
1003 rc = -EINVAL;
1004 if (PFN_PHYS(length) < size)
1005 goto out;
1006 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1007 goto out;
1008 /* For larger pages we need devmap */
1009 if (length > 1 && !pfn_t_devmap(*pfnp))
1010 goto out;
1011 rc = 0;
1012out:
cccbce67 1013 dax_read_unlock(id);
5e161e40 1014 return rc;
0e3b210c 1015}
0e3b210c 1016
e30331ff 1017/*
91d25ba8
RZ
1018 * The user has performed a load from a hole in the file. Allocating a new
1019 * page in the file would cause excessive storage usage for workloads with
1020 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1021 * If this page is ever written to we will re-fault and change the mapping to
1022 * point to real DAX storage instead.
e30331ff 1023 */
b15cd800
MW
1024static vm_fault_t dax_load_hole(struct xa_state *xas,
1025 struct address_space *mapping, void **entry,
1026 struct vm_fault *vmf)
e30331ff
RZ
1027{
1028 struct inode *inode = mapping->host;
91d25ba8 1029 unsigned long vaddr = vmf->address;
b90ca5cc
MW
1030 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1031 vm_fault_t ret;
e30331ff 1032
b15cd800 1033 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943
MW
1034 DAX_ZERO_PAGE, false);
1035
ab77dab4 1036 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
e30331ff
RZ
1037 trace_dax_load_hole(inode, vmf, ret);
1038 return ret;
1039}
1040
4b0228fa
VV
1041static bool dax_range_is_aligned(struct block_device *bdev,
1042 unsigned int offset, unsigned int length)
1043{
1044 unsigned short sector_size = bdev_logical_block_size(bdev);
1045
1046 if (!IS_ALIGNED(offset, sector_size))
1047 return false;
1048 if (!IS_ALIGNED(length, sector_size))
1049 return false;
1050
1051 return true;
1052}
1053
cccbce67
DW
1054int __dax_zero_page_range(struct block_device *bdev,
1055 struct dax_device *dax_dev, sector_t sector,
1056 unsigned int offset, unsigned int size)
679c8bd3 1057{
cccbce67
DW
1058 if (dax_range_is_aligned(bdev, offset, size)) {
1059 sector_t start_sector = sector + (offset >> 9);
4b0228fa
VV
1060
1061 return blkdev_issue_zeroout(bdev, start_sector,
53ef7d0e 1062 size >> 9, GFP_NOFS, 0);
4b0228fa 1063 } else {
cccbce67
DW
1064 pgoff_t pgoff;
1065 long rc, id;
1066 void *kaddr;
cccbce67 1067
e84b83b9 1068 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
cccbce67
DW
1069 if (rc)
1070 return rc;
1071
1072 id = dax_read_lock();
86ed913b 1073 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
cccbce67
DW
1074 if (rc < 0) {
1075 dax_read_unlock(id);
1076 return rc;
1077 }
81f55870 1078 memset(kaddr + offset, 0, size);
c3ca015f 1079 dax_flush(dax_dev, kaddr + offset, size);
cccbce67 1080 dax_read_unlock(id);
4b0228fa 1081 }
679c8bd3
CH
1082 return 0;
1083}
1084EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1085
a254e568 1086static loff_t
11c59c92 1087dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1088 struct iomap *iomap)
1089{
cccbce67
DW
1090 struct block_device *bdev = iomap->bdev;
1091 struct dax_device *dax_dev = iomap->dax_dev;
a254e568
CH
1092 struct iov_iter *iter = data;
1093 loff_t end = pos + length, done = 0;
1094 ssize_t ret = 0;
a77d4786 1095 size_t xfer;
cccbce67 1096 int id;
a254e568
CH
1097
1098 if (iov_iter_rw(iter) == READ) {
1099 end = min(end, i_size_read(inode));
1100 if (pos >= end)
1101 return 0;
1102
1103 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1104 return iov_iter_zero(min(length, end - pos), iter);
1105 }
1106
1107 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1108 return -EIO;
1109
e3fce68c
JK
1110 /*
1111 * Write can allocate block for an area which has a hole page mapped
1112 * into page tables. We have to tear down these mappings so that data
1113 * written by write(2) is visible in mmap.
1114 */
cd656375 1115 if (iomap->flags & IOMAP_F_NEW) {
e3fce68c
JK
1116 invalidate_inode_pages2_range(inode->i_mapping,
1117 pos >> PAGE_SHIFT,
1118 (end - 1) >> PAGE_SHIFT);
1119 }
1120
cccbce67 1121 id = dax_read_lock();
a254e568
CH
1122 while (pos < end) {
1123 unsigned offset = pos & (PAGE_SIZE - 1);
cccbce67
DW
1124 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1125 const sector_t sector = dax_iomap_sector(iomap, pos);
a254e568 1126 ssize_t map_len;
cccbce67
DW
1127 pgoff_t pgoff;
1128 void *kaddr;
a254e568 1129
d1908f52
MH
1130 if (fatal_signal_pending(current)) {
1131 ret = -EINTR;
1132 break;
1133 }
1134
cccbce67
DW
1135 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1136 if (ret)
1137 break;
1138
1139 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
86ed913b 1140 &kaddr, NULL);
a254e568
CH
1141 if (map_len < 0) {
1142 ret = map_len;
1143 break;
1144 }
1145
cccbce67
DW
1146 map_len = PFN_PHYS(map_len);
1147 kaddr += offset;
a254e568
CH
1148 map_len -= offset;
1149 if (map_len > end - pos)
1150 map_len = end - pos;
1151
a2e050f5
RZ
1152 /*
1153 * The userspace address for the memory copy has already been
1154 * validated via access_ok() in either vfs_read() or
1155 * vfs_write(), depending on which operation we are doing.
1156 */
a254e568 1157 if (iov_iter_rw(iter) == WRITE)
a77d4786 1158 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
fec53774 1159 map_len, iter);
a254e568 1160 else
a77d4786 1161 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
b3a9a0c3 1162 map_len, iter);
a254e568 1163
a77d4786
DW
1164 pos += xfer;
1165 length -= xfer;
1166 done += xfer;
1167
1168 if (xfer == 0)
1169 ret = -EFAULT;
1170 if (xfer < map_len)
1171 break;
a254e568 1172 }
cccbce67 1173 dax_read_unlock(id);
a254e568
CH
1174
1175 return done ? done : ret;
1176}
1177
1178/**
11c59c92 1179 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1180 * @iocb: The control block for this I/O
1181 * @iter: The addresses to do I/O from or to
1182 * @ops: iomap ops passed from the file system
1183 *
1184 * This function performs read and write operations to directly mapped
1185 * persistent memory. The callers needs to take care of read/write exclusion
1186 * and evicting any page cache pages in the region under I/O.
1187 */
1188ssize_t
11c59c92 1189dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
8ff6daa1 1190 const struct iomap_ops *ops)
a254e568
CH
1191{
1192 struct address_space *mapping = iocb->ki_filp->f_mapping;
1193 struct inode *inode = mapping->host;
1194 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1195 unsigned flags = 0;
1196
168316db
CH
1197 if (iov_iter_rw(iter) == WRITE) {
1198 lockdep_assert_held_exclusive(&inode->i_rwsem);
a254e568 1199 flags |= IOMAP_WRITE;
168316db
CH
1200 } else {
1201 lockdep_assert_held(&inode->i_rwsem);
1202 }
a254e568 1203
a254e568
CH
1204 while (iov_iter_count(iter)) {
1205 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1206 iter, dax_iomap_actor);
a254e568
CH
1207 if (ret <= 0)
1208 break;
1209 pos += ret;
1210 done += ret;
1211 }
1212
1213 iocb->ki_pos += done;
1214 return done ? done : ret;
1215}
11c59c92 1216EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6 1217
ab77dab4 1218static vm_fault_t dax_fault_return(int error)
9f141d6e
JK
1219{
1220 if (error == 0)
1221 return VM_FAULT_NOPAGE;
c9aed74e 1222 return vmf_error(error);
9f141d6e
JK
1223}
1224
aaa422c4
DW
1225/*
1226 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1227 * flushed on write-faults (non-cow), but not read-faults.
1228 */
1229static bool dax_fault_is_synchronous(unsigned long flags,
1230 struct vm_area_struct *vma, struct iomap *iomap)
1231{
1232 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1233 && (iomap->flags & IOMAP_F_DIRTY);
1234}
1235
ab77dab4 1236static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
c0b24625 1237 int *iomap_errp, const struct iomap_ops *ops)
a7d73fe6 1238{
a0987ad5
JK
1239 struct vm_area_struct *vma = vmf->vma;
1240 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1241 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
a7d73fe6 1242 struct inode *inode = mapping->host;
1a29d85e 1243 unsigned long vaddr = vmf->address;
a7d73fe6 1244 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
a7d73fe6 1245 struct iomap iomap = { 0 };
9484ab1b 1246 unsigned flags = IOMAP_FAULT;
a7d73fe6 1247 int error, major = 0;
d2c43ef1 1248 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1249 bool sync;
ab77dab4 1250 vm_fault_t ret = 0;
a7d73fe6 1251 void *entry;
1b5a1cb2 1252 pfn_t pfn;
a7d73fe6 1253
ab77dab4 1254 trace_dax_pte_fault(inode, vmf, ret);
a7d73fe6
CH
1255 /*
1256 * Check whether offset isn't beyond end of file now. Caller is supposed
1257 * to hold locks serializing us with truncate / punch hole so this is
1258 * a reliable test.
1259 */
a9c42b33 1260 if (pos >= i_size_read(inode)) {
ab77dab4 1261 ret = VM_FAULT_SIGBUS;
a9c42b33
RZ
1262 goto out;
1263 }
a7d73fe6 1264
d2c43ef1 1265 if (write && !vmf->cow_page)
a7d73fe6
CH
1266 flags |= IOMAP_WRITE;
1267
b15cd800
MW
1268 entry = grab_mapping_entry(&xas, mapping, 0);
1269 if (xa_is_internal(entry)) {
1270 ret = xa_to_internal(entry);
13e451fd
JK
1271 goto out;
1272 }
1273
e2093926
RZ
1274 /*
1275 * It is possible, particularly with mixed reads & writes to private
1276 * mappings, that we have raced with a PMD fault that overlaps with
1277 * the PTE we need to set up. If so just return and the fault will be
1278 * retried.
1279 */
1280 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
ab77dab4 1281 ret = VM_FAULT_NOPAGE;
e2093926
RZ
1282 goto unlock_entry;
1283 }
1284
a7d73fe6
CH
1285 /*
1286 * Note that we don't bother to use iomap_apply here: DAX required
1287 * the file system block size to be equal the page size, which means
1288 * that we never have to deal with more than a single extent here.
1289 */
1290 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
c0b24625
JK
1291 if (iomap_errp)
1292 *iomap_errp = error;
a9c42b33 1293 if (error) {
ab77dab4 1294 ret = dax_fault_return(error);
13e451fd 1295 goto unlock_entry;
a9c42b33 1296 }
a7d73fe6 1297 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
13e451fd
JK
1298 error = -EIO; /* fs corruption? */
1299 goto error_finish_iomap;
a7d73fe6
CH
1300 }
1301
a7d73fe6 1302 if (vmf->cow_page) {
31a6f1a6
JK
1303 sector_t sector = dax_iomap_sector(&iomap, pos);
1304
a7d73fe6
CH
1305 switch (iomap.type) {
1306 case IOMAP_HOLE:
1307 case IOMAP_UNWRITTEN:
1308 clear_user_highpage(vmf->cow_page, vaddr);
1309 break;
1310 case IOMAP_MAPPED:
cccbce67
DW
1311 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1312 sector, PAGE_SIZE, vmf->cow_page, vaddr);
a7d73fe6
CH
1313 break;
1314 default:
1315 WARN_ON_ONCE(1);
1316 error = -EIO;
1317 break;
1318 }
1319
1320 if (error)
13e451fd 1321 goto error_finish_iomap;
b1aa812b
JK
1322
1323 __SetPageUptodate(vmf->cow_page);
ab77dab4
SJ
1324 ret = finish_fault(vmf);
1325 if (!ret)
1326 ret = VM_FAULT_DONE_COW;
13e451fd 1327 goto finish_iomap;
a7d73fe6
CH
1328 }
1329
aaa422c4 1330 sync = dax_fault_is_synchronous(flags, vma, &iomap);
caa51d26 1331
a7d73fe6
CH
1332 switch (iomap.type) {
1333 case IOMAP_MAPPED:
1334 if (iomap.flags & IOMAP_F_NEW) {
1335 count_vm_event(PGMAJFAULT);
a0987ad5 1336 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
a7d73fe6
CH
1337 major = VM_FAULT_MAJOR;
1338 }
1b5a1cb2
JK
1339 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1340 if (error < 0)
1341 goto error_finish_iomap;
1342
b15cd800 1343 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
caa51d26 1344 0, write && !sync);
1b5a1cb2 1345
caa51d26
JK
1346 /*
1347 * If we are doing synchronous page fault and inode needs fsync,
1348 * we can insert PTE into page tables only after that happens.
1349 * Skip insertion for now and return the pfn so that caller can
1350 * insert it after fsync is done.
1351 */
1352 if (sync) {
1353 if (WARN_ON_ONCE(!pfnp)) {
1354 error = -EIO;
1355 goto error_finish_iomap;
1356 }
1357 *pfnp = pfn;
ab77dab4 1358 ret = VM_FAULT_NEEDDSYNC | major;
caa51d26
JK
1359 goto finish_iomap;
1360 }
1b5a1cb2
JK
1361 trace_dax_insert_mapping(inode, vmf, entry);
1362 if (write)
ab77dab4 1363 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1b5a1cb2 1364 else
ab77dab4 1365 ret = vmf_insert_mixed(vma, vaddr, pfn);
1b5a1cb2 1366
ab77dab4 1367 goto finish_iomap;
a7d73fe6
CH
1368 case IOMAP_UNWRITTEN:
1369 case IOMAP_HOLE:
d2c43ef1 1370 if (!write) {
b15cd800 1371 ret = dax_load_hole(&xas, mapping, &entry, vmf);
13e451fd 1372 goto finish_iomap;
1550290b 1373 }
a7d73fe6
CH
1374 /*FALLTHRU*/
1375 default:
1376 WARN_ON_ONCE(1);
1377 error = -EIO;
1378 break;
1379 }
1380
13e451fd 1381 error_finish_iomap:
ab77dab4 1382 ret = dax_fault_return(error);
9f141d6e
JK
1383 finish_iomap:
1384 if (ops->iomap_end) {
1385 int copied = PAGE_SIZE;
1386
ab77dab4 1387 if (ret & VM_FAULT_ERROR)
9f141d6e
JK
1388 copied = 0;
1389 /*
1390 * The fault is done by now and there's no way back (other
1391 * thread may be already happily using PTE we have installed).
1392 * Just ignore error from ->iomap_end since we cannot do much
1393 * with it.
1394 */
1395 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1550290b 1396 }
13e451fd 1397 unlock_entry:
b15cd800 1398 dax_unlock_entry(&xas, entry);
13e451fd 1399 out:
ab77dab4
SJ
1400 trace_dax_pte_fault_done(inode, vmf, ret);
1401 return ret | major;
a7d73fe6 1402}
642261ac
RZ
1403
1404#ifdef CONFIG_FS_DAX_PMD
b15cd800
MW
1405static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1406 struct iomap *iomap, void **entry)
642261ac 1407{
f4200391
DJ
1408 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1409 unsigned long pmd_addr = vmf->address & PMD_MASK;
653b2ea3 1410 struct inode *inode = mapping->host;
642261ac
RZ
1411 struct page *zero_page;
1412 spinlock_t *ptl;
1413 pmd_t pmd_entry;
3fe0791c 1414 pfn_t pfn;
642261ac 1415
f4200391 1416 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
642261ac
RZ
1417
1418 if (unlikely(!zero_page))
653b2ea3 1419 goto fallback;
642261ac 1420
3fe0791c 1421 pfn = page_to_pfn_t(zero_page);
b15cd800 1422 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
3159f943 1423 DAX_PMD | DAX_ZERO_PAGE, false);
642261ac 1424
f4200391
DJ
1425 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1426 if (!pmd_none(*(vmf->pmd))) {
642261ac 1427 spin_unlock(ptl);
653b2ea3 1428 goto fallback;
642261ac
RZ
1429 }
1430
f4200391 1431 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
642261ac 1432 pmd_entry = pmd_mkhuge(pmd_entry);
f4200391 1433 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
642261ac 1434 spin_unlock(ptl);
b15cd800 1435 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
642261ac 1436 return VM_FAULT_NOPAGE;
653b2ea3
RZ
1437
1438fallback:
b15cd800 1439 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
653b2ea3 1440 return VM_FAULT_FALLBACK;
642261ac
RZ
1441}
1442
ab77dab4 1443static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
a2d58167 1444 const struct iomap_ops *ops)
642261ac 1445{
f4200391 1446 struct vm_area_struct *vma = vmf->vma;
642261ac 1447 struct address_space *mapping = vma->vm_file->f_mapping;
b15cd800 1448 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
d8a849e1
DJ
1449 unsigned long pmd_addr = vmf->address & PMD_MASK;
1450 bool write = vmf->flags & FAULT_FLAG_WRITE;
caa51d26 1451 bool sync;
9484ab1b 1452 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac 1453 struct inode *inode = mapping->host;
ab77dab4 1454 vm_fault_t result = VM_FAULT_FALLBACK;
642261ac 1455 struct iomap iomap = { 0 };
b15cd800 1456 pgoff_t max_pgoff;
642261ac
RZ
1457 void *entry;
1458 loff_t pos;
1459 int error;
302a5e31 1460 pfn_t pfn;
642261ac 1461
282a8e03
RZ
1462 /*
1463 * Check whether offset isn't beyond end of file now. Caller is
1464 * supposed to hold locks serializing us with truncate / punch hole so
1465 * this is a reliable test.
1466 */
957ac8c4 1467 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282a8e03 1468
f4200391 1469 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
282a8e03 1470
fffa281b
RZ
1471 /*
1472 * Make sure that the faulting address's PMD offset (color) matches
1473 * the PMD offset from the start of the file. This is necessary so
1474 * that a PMD range in the page table overlaps exactly with a PMD
a77d19f4 1475 * range in the page cache.
fffa281b
RZ
1476 */
1477 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1478 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1479 goto fallback;
1480
642261ac
RZ
1481 /* Fall back to PTEs if we're going to COW */
1482 if (write && !(vma->vm_flags & VM_SHARED))
1483 goto fallback;
1484
1485 /* If the PMD would extend outside the VMA */
1486 if (pmd_addr < vma->vm_start)
1487 goto fallback;
1488 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1489 goto fallback;
1490
b15cd800 1491 if (xas.xa_index >= max_pgoff) {
282a8e03
RZ
1492 result = VM_FAULT_SIGBUS;
1493 goto out;
1494 }
642261ac
RZ
1495
1496 /* If the PMD would extend beyond the file size */
b15cd800 1497 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
642261ac
RZ
1498 goto fallback;
1499
876f2946 1500 /*
b15cd800
MW
1501 * grab_mapping_entry() will make sure we get an empty PMD entry,
1502 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1503 * entry is already in the array, for instance), it will return
1504 * VM_FAULT_FALLBACK.
876f2946 1505 */
b15cd800
MW
1506 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1507 if (xa_is_internal(entry)) {
1508 result = xa_to_internal(entry);
876f2946 1509 goto fallback;
b15cd800 1510 }
876f2946 1511
e2093926
RZ
1512 /*
1513 * It is possible, particularly with mixed reads & writes to private
1514 * mappings, that we have raced with a PTE fault that overlaps with
1515 * the PMD we need to set up. If so just return and the fault will be
1516 * retried.
1517 */
1518 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1519 !pmd_devmap(*vmf->pmd)) {
1520 result = 0;
1521 goto unlock_entry;
1522 }
1523
642261ac
RZ
1524 /*
1525 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1526 * setting up a mapping, so really we're using iomap_begin() as a way
1527 * to look up our filesystem block.
1528 */
b15cd800 1529 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
642261ac
RZ
1530 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1531 if (error)
876f2946 1532 goto unlock_entry;
9f141d6e 1533
642261ac
RZ
1534 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1535 goto finish_iomap;
1536
aaa422c4 1537 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
caa51d26 1538
642261ac
RZ
1539 switch (iomap.type) {
1540 case IOMAP_MAPPED:
302a5e31
JK
1541 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1542 if (error < 0)
1543 goto finish_iomap;
1544
b15cd800 1545 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
3159f943 1546 DAX_PMD, write && !sync);
302a5e31 1547
caa51d26
JK
1548 /*
1549 * If we are doing synchronous page fault and inode needs fsync,
1550 * we can insert PMD into page tables only after that happens.
1551 * Skip insertion for now and return the pfn so that caller can
1552 * insert it after fsync is done.
1553 */
1554 if (sync) {
1555 if (WARN_ON_ONCE(!pfnp))
1556 goto finish_iomap;
1557 *pfnp = pfn;
1558 result = VM_FAULT_NEEDDSYNC;
1559 goto finish_iomap;
1560 }
1561
302a5e31
JK
1562 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1563 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1564 write);
642261ac
RZ
1565 break;
1566 case IOMAP_UNWRITTEN:
1567 case IOMAP_HOLE:
1568 if (WARN_ON_ONCE(write))
876f2946 1569 break;
b15cd800 1570 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
642261ac
RZ
1571 break;
1572 default:
1573 WARN_ON_ONCE(1);
1574 break;
1575 }
1576
1577 finish_iomap:
1578 if (ops->iomap_end) {
9f141d6e
JK
1579 int copied = PMD_SIZE;
1580
1581 if (result == VM_FAULT_FALLBACK)
1582 copied = 0;
1583 /*
1584 * The fault is done by now and there's no way back (other
1585 * thread may be already happily using PMD we have installed).
1586 * Just ignore error from ->iomap_end since we cannot do much
1587 * with it.
1588 */
1589 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1590 &iomap);
642261ac 1591 }
876f2946 1592 unlock_entry:
b15cd800 1593 dax_unlock_entry(&xas, entry);
642261ac
RZ
1594 fallback:
1595 if (result == VM_FAULT_FALLBACK) {
d8a849e1 1596 split_huge_pmd(vma, vmf->pmd, vmf->address);
642261ac
RZ
1597 count_vm_event(THP_FAULT_FALLBACK);
1598 }
282a8e03 1599out:
f4200391 1600 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
642261ac
RZ
1601 return result;
1602}
a2d58167 1603#else
ab77dab4 1604static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
01cddfe9 1605 const struct iomap_ops *ops)
a2d58167
DJ
1606{
1607 return VM_FAULT_FALLBACK;
1608}
642261ac 1609#endif /* CONFIG_FS_DAX_PMD */
a2d58167
DJ
1610
1611/**
1612 * dax_iomap_fault - handle a page fault on a DAX file
1613 * @vmf: The description of the fault
cec04e8c 1614 * @pe_size: Size of the page to fault in
9a0dd422 1615 * @pfnp: PFN to insert for synchronous faults if fsync is required
c0b24625 1616 * @iomap_errp: Storage for detailed error code in case of error
cec04e8c 1617 * @ops: Iomap ops passed from the file system
a2d58167
DJ
1618 *
1619 * When a page fault occurs, filesystems may call this helper in
1620 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1621 * has done all the necessary locking for page fault to proceed
1622 * successfully.
1623 */
ab77dab4 1624vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
c0b24625 1625 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
a2d58167 1626{
c791ace1
DJ
1627 switch (pe_size) {
1628 case PE_SIZE_PTE:
c0b24625 1629 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
c791ace1 1630 case PE_SIZE_PMD:
9a0dd422 1631 return dax_iomap_pmd_fault(vmf, pfnp, ops);
a2d58167
DJ
1632 default:
1633 return VM_FAULT_FALLBACK;
1634 }
1635}
1636EXPORT_SYMBOL_GPL(dax_iomap_fault);
71eab6df 1637
a77d19f4 1638/*
71eab6df
JK
1639 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1640 * @vmf: The description of the fault
71eab6df 1641 * @pfn: PFN to insert
cfc93c6c 1642 * @order: Order of entry to insert.
71eab6df 1643 *
a77d19f4
MW
1644 * This function inserts a writeable PTE or PMD entry into the page tables
1645 * for an mmaped DAX file. It also marks the page cache entry as dirty.
71eab6df 1646 */
cfc93c6c
MW
1647static vm_fault_t
1648dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
71eab6df
JK
1649{
1650 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
cfc93c6c
MW
1651 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1652 void *entry;
ab77dab4 1653 vm_fault_t ret;
71eab6df 1654
cfc93c6c
MW
1655 xas_lock_irq(&xas);
1656 entry = get_unlocked_entry(&xas);
71eab6df
JK
1657 /* Did we race with someone splitting entry or so? */
1658 if (!entry ||
cfc93c6c 1659 (order == 0 && !dax_is_pte_entry(entry)) ||
0e40de03 1660 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
cfc93c6c
MW
1661 put_unlocked_entry(&xas, entry);
1662 xas_unlock_irq(&xas);
71eab6df
JK
1663 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1664 VM_FAULT_NOPAGE);
1665 return VM_FAULT_NOPAGE;
1666 }
cfc93c6c
MW
1667 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1668 dax_lock_entry(&xas, entry);
1669 xas_unlock_irq(&xas);
1670 if (order == 0)
ab77dab4 1671 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
71eab6df 1672#ifdef CONFIG_FS_DAX_PMD
cfc93c6c 1673 else if (order == PMD_ORDER)
ab77dab4 1674 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
71eab6df 1675 pfn, true);
71eab6df 1676#endif
cfc93c6c 1677 else
ab77dab4 1678 ret = VM_FAULT_FALLBACK;
cfc93c6c 1679 dax_unlock_entry(&xas, entry);
ab77dab4
SJ
1680 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1681 return ret;
71eab6df
JK
1682}
1683
1684/**
1685 * dax_finish_sync_fault - finish synchronous page fault
1686 * @vmf: The description of the fault
1687 * @pe_size: Size of entry to be inserted
1688 * @pfn: PFN to insert
1689 *
1690 * This function ensures that the file range touched by the page fault is
1691 * stored persistently on the media and handles inserting of appropriate page
1692 * table entry.
1693 */
ab77dab4
SJ
1694vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1695 enum page_entry_size pe_size, pfn_t pfn)
71eab6df
JK
1696{
1697 int err;
1698 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
cfc93c6c
MW
1699 unsigned int order = pe_order(pe_size);
1700 size_t len = PAGE_SIZE << order;
71eab6df 1701
71eab6df
JK
1702 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1703 if (err)
1704 return VM_FAULT_SIGBUS;
cfc93c6c 1705 return dax_insert_pfn_mkwrite(vmf, pfn, order);
71eab6df
JK
1706}
1707EXPORT_SYMBOL_GPL(dax_finish_sync_fault);