]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - ipc/sem.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 464
[thirdparty/kernel/stable.git] / ipc / sem.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
1da177e4
LT
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
624dffcb 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 11 * Enforced range limit on SEM_UNDO
046c6884 12 * (c) 2001 Red Hat Inc
1da177e4
LT
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 58 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
71 */
72
b0d17578 73#include <linux/compat.h>
1da177e4
LT
74#include <linux/slab.h>
75#include <linux/spinlock.h>
76#include <linux/init.h>
77#include <linux/proc_fs.h>
78#include <linux/time.h>
1da177e4
LT
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/audit.h>
c59ede7b 82#include <linux/capability.h>
19b4946c 83#include <linux/seq_file.h>
3e148c79 84#include <linux/rwsem.h>
e3893534 85#include <linux/nsproxy.h>
ae5e1b22 86#include <linux/ipc_namespace.h>
84f001e1 87#include <linux/sched/wake_q.h>
ec67aaa4 88#include <linux/nospec.h>
0eb71a9d 89#include <linux/rhashtable.h>
5f921ae9 90
7153e402 91#include <linux/uaccess.h>
1da177e4
LT
92#include "util.h"
93
1a5c1349
EB
94/* One semaphore structure for each semaphore in the system. */
95struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
51d6f263 104 struct pid *sempid;
1a5c1349
EB
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
2a70b787 110 time64_t sem_otime; /* candidate for sem_otime */
1a5c1349
EB
111} ____cacheline_aligned_in_smp;
112
113/* One sem_array data structure for each set of semaphores in the system. */
114struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127} __randomize_layout;
e57940d7
MS
128
129/* One queue for each sleeping process in the system. */
130struct sem_queue {
e57940d7
MS
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
51d6f263 134 struct pid *pid; /* process id of requesting process */
e57940d7
MS
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
ed247b7c 137 struct sembuf *blocking; /* the operation that blocked */
e57940d7 138 int nsops; /* number of operations */
4ce33ec2
DB
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
141};
142
143/* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157};
158
159/* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162struct sem_undo_list {
f74370b8 163 refcount_t refcnt;
e57940d7
MS
164 spinlock_t lock;
165 struct list_head list_proc;
166};
167
168
ed2ddbf8 169#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 170
7748dbfa 171static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 173#ifdef CONFIG_PROC_FS
19b4946c 174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
175#endif
176
177#define SEMMSL_FAST 256 /* 512 bytes on stack */
178#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
9de5ab8a
MS
180/*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185#define USE_GLOBAL_LOCK_HYSTERESIS 10
186
1da177e4 187/*
758a6ba3 188 * Locking:
5864a2fd 189 * a) global sem_lock() for read/write
1da177e4 190 * sem_undo.id_next,
758a6ba3 191 * sem_array.complex_count,
5864a2fd
MS
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
46c0a8ca 194 *
5864a2fd 195 * b) global or semaphore sem_lock() for read/write:
1a233956 196 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
9de5ab8a
MS
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 * The special case is use_global_lock:
209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210 * using smp_store_release().
211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212 * smp_load_acquire().
213 * Setting it from 0 to non-zero must be ordered with regards to
214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215 * is inside a spin_lock() and after a write from 0 to non-zero a
216 * spin_lock()+spin_unlock() is done.
1da177e4
LT
217 */
218
e3893534
KK
219#define sc_semmsl sem_ctls[0]
220#define sc_semmns sem_ctls[1]
221#define sc_semopm sem_ctls[2]
222#define sc_semmni sem_ctls[3]
223
eae04d25 224void sem_init_ns(struct ipc_namespace *ns)
e3893534 225{
e3893534
KK
226 ns->sc_semmsl = SEMMSL;
227 ns->sc_semmns = SEMMNS;
228 ns->sc_semopm = SEMOPM;
229 ns->sc_semmni = SEMMNI;
230 ns->used_sems = 0;
eae04d25 231 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
232}
233
ae5e1b22 234#ifdef CONFIG_IPC_NS
e3893534
KK
235void sem_exit_ns(struct ipc_namespace *ns)
236{
01b8b07a 237 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 238 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0cfb6aee 239 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
e3893534 240}
ae5e1b22 241#endif
1da177e4 242
eae04d25 243void __init sem_init(void)
1da177e4 244{
eae04d25 245 sem_init_ns(&init_ipc_ns);
19b4946c
MW
246 ipc_init_proc_interface("sysvipc/sem",
247 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 248 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
249}
250
f269f40a
MS
251/**
252 * unmerge_queues - unmerge queues, if possible.
253 * @sma: semaphore array
254 *
255 * The function unmerges the wait queues if complex_count is 0.
256 * It must be called prior to dropping the global semaphore array lock.
257 */
258static void unmerge_queues(struct sem_array *sma)
259{
260 struct sem_queue *q, *tq;
261
262 /* complex operations still around? */
263 if (sma->complex_count)
264 return;
265 /*
266 * We will switch back to simple mode.
267 * Move all pending operation back into the per-semaphore
268 * queues.
269 */
270 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
271 struct sem *curr;
1a233956 272 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
273
274 list_add_tail(&q->list, &curr->pending_alter);
275 }
276 INIT_LIST_HEAD(&sma->pending_alter);
277}
278
279/**
8001c858 280 * merge_queues - merge single semop queues into global queue
f269f40a
MS
281 * @sma: semaphore array
282 *
283 * This function merges all per-semaphore queues into the global queue.
284 * It is necessary to achieve FIFO ordering for the pending single-sop
285 * operations when a multi-semop operation must sleep.
286 * Only the alter operations must be moved, the const operations can stay.
287 */
288static void merge_queues(struct sem_array *sma)
289{
290 int i;
291 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 292 struct sem *sem = &sma->sems[i];
f269f40a
MS
293
294 list_splice_init(&sem->pending_alter, &sma->pending_alter);
295 }
296}
297
53dad6d3
DB
298static void sem_rcu_free(struct rcu_head *head)
299{
dba4cdd3
MS
300 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
301 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3 302
aefad959 303 security_sem_free(&sma->sem_perm);
e2029dfe 304 kvfree(sma);
53dad6d3
DB
305}
306
5e9d5275 307/*
5864a2fd 308 * Enter the mode suitable for non-simple operations:
5e9d5275 309 * Caller must own sem_perm.lock.
5e9d5275 310 */
5864a2fd 311static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
312{
313 int i;
314 struct sem *sem;
315
9de5ab8a
MS
316 if (sma->use_global_lock > 0) {
317 /*
318 * We are already in global lock mode.
319 * Nothing to do, just reset the
320 * counter until we return to simple mode.
321 */
322 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
323 return;
324 }
9de5ab8a 325 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 326
5e9d5275 327 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 328 sem = &sma->sems[i];
27d7be18
MS
329 spin_lock(&sem->lock);
330 spin_unlock(&sem->lock);
5e9d5275 331 }
5864a2fd
MS
332}
333
334/*
335 * Try to leave the mode that disallows simple operations:
336 * Caller must own sem_perm.lock.
337 */
338static void complexmode_tryleave(struct sem_array *sma)
339{
340 if (sma->complex_count) {
341 /* Complex ops are sleeping.
342 * We must stay in complex mode
343 */
344 return;
345 }
9de5ab8a
MS
346 if (sma->use_global_lock == 1) {
347 /*
348 * Immediately after setting use_global_lock to 0,
349 * a simple op can start. Thus: all memory writes
350 * performed by the current operation must be visible
351 * before we set use_global_lock to 0.
352 */
353 smp_store_release(&sma->use_global_lock, 0);
354 } else {
355 sma->use_global_lock--;
356 }
5e9d5275
MS
357}
358
5864a2fd 359#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
360/*
361 * If the request contains only one semaphore operation, and there are
362 * no complex transactions pending, lock only the semaphore involved.
363 * Otherwise, lock the entire semaphore array, since we either have
364 * multiple semaphores in our own semops, or we need to look at
365 * semaphores from other pending complex operations.
6062a8dc
RR
366 */
367static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
368 int nsops)
369{
5e9d5275 370 struct sem *sem;
ec67aaa4 371 int idx;
6062a8dc 372
5e9d5275
MS
373 if (nsops != 1) {
374 /* Complex operation - acquire a full lock */
375 ipc_lock_object(&sma->sem_perm);
6062a8dc 376
5864a2fd
MS
377 /* Prevent parallel simple ops */
378 complexmode_enter(sma);
379 return SEM_GLOBAL_LOCK;
5e9d5275
MS
380 }
381
382 /*
383 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
384 * Optimized locking is possible if no complex operation
385 * is either enqueued or processed right now.
386 *
9de5ab8a 387 * Both facts are tracked by use_global_mode.
5e9d5275 388 */
ec67aaa4
DB
389 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
390 sem = &sma->sems[idx];
6062a8dc 391
5864a2fd 392 /*
9de5ab8a 393 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
394 * no locking, no memory barrier.
395 */
9de5ab8a 396 if (!sma->use_global_lock) {
6062a8dc 397 /*
5e9d5275
MS
398 * It appears that no complex operation is around.
399 * Acquire the per-semaphore lock.
6062a8dc 400 */
5e9d5275
MS
401 spin_lock(&sem->lock);
402
9de5ab8a
MS
403 /* pairs with smp_store_release() */
404 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
405 /* fast path successful! */
406 return sops->sem_num;
6062a8dc 407 }
5e9d5275
MS
408 spin_unlock(&sem->lock);
409 }
410
411 /* slow path: acquire the full lock */
412 ipc_lock_object(&sma->sem_perm);
6062a8dc 413
9de5ab8a
MS
414 if (sma->use_global_lock == 0) {
415 /*
416 * The use_global_lock mode ended while we waited for
417 * sma->sem_perm.lock. Thus we must switch to locking
418 * with sem->lock.
419 * Unlike in the fast path, there is no need to recheck
420 * sma->use_global_lock after we have acquired sem->lock:
421 * We own sma->sem_perm.lock, thus use_global_lock cannot
422 * change.
5e9d5275
MS
423 */
424 spin_lock(&sem->lock);
9de5ab8a 425
5e9d5275
MS
426 ipc_unlock_object(&sma->sem_perm);
427 return sops->sem_num;
6062a8dc 428 } else {
9de5ab8a
MS
429 /*
430 * Not a false alarm, thus continue to use the global lock
431 * mode. No need for complexmode_enter(), this was done by
432 * the caller that has set use_global_mode to non-zero.
6062a8dc 433 */
5864a2fd 434 return SEM_GLOBAL_LOCK;
6062a8dc 435 }
6062a8dc
RR
436}
437
438static inline void sem_unlock(struct sem_array *sma, int locknum)
439{
5864a2fd 440 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 441 unmerge_queues(sma);
5864a2fd 442 complexmode_tryleave(sma);
cf9d5d78 443 ipc_unlock_object(&sma->sem_perm);
6062a8dc 444 } else {
1a233956 445 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
446 spin_unlock(&sem->lock);
447 }
6062a8dc
RR
448}
449
3e148c79 450/*
d9a605e4 451 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 452 * is not held.
321310ce
LT
453 *
454 * The caller holds the RCU read lock.
3e148c79 455 */
16df3674
DB
456static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
457{
55b7ae50 458 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
459
460 if (IS_ERR(ipcp))
461 return ERR_CAST(ipcp);
462
463 return container_of(ipcp, struct sem_array, sem_perm);
464}
465
16df3674
DB
466static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
467 int id)
468{
469 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
470
471 if (IS_ERR(ipcp))
472 return ERR_CAST(ipcp);
b1ed88b4 473
03f02c76 474 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
475}
476
6ff37972
PP
477static inline void sem_lock_and_putref(struct sem_array *sma)
478{
6062a8dc 479 sem_lock(sma, NULL, -1);
dba4cdd3 480 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
481}
482
7ca7e564
ND
483static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
484{
485 ipc_rmid(&sem_ids(ns), &s->sem_perm);
486}
487
101ede01
KC
488static struct sem_array *sem_alloc(size_t nsems)
489{
490 struct sem_array *sma;
101ede01
KC
491
492 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
493 return NULL;
494
4a2ae929 495 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
101ede01
KC
496 if (unlikely(!sma))
497 return NULL;
498
101ede01
KC
499 return sma;
500}
501
f4566f04
ND
502/**
503 * newary - Create a new semaphore set
504 * @ns: namespace
505 * @params: ptr to the structure that contains key, semflg and nsems
506 *
d9a605e4 507 * Called with sem_ids.rwsem held (as a writer)
f4566f04 508 */
7748dbfa 509static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 510{
1da177e4
LT
511 int retval;
512 struct sem_array *sma;
7748dbfa
ND
513 key_t key = params->key;
514 int nsems = params->u.nsems;
515 int semflg = params->flg;
b97e820f 516 int i;
1da177e4
LT
517
518 if (!nsems)
519 return -EINVAL;
e3893534 520 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
521 return -ENOSPC;
522
101ede01 523 sma = sem_alloc(nsems);
3ab08fe2 524 if (!sma)
1da177e4 525 return -ENOMEM;
3ab08fe2 526
1da177e4
LT
527 sma->sem_perm.mode = (semflg & S_IRWXUGO);
528 sma->sem_perm.key = key;
529
530 sma->sem_perm.security = NULL;
aefad959 531 retval = security_sem_alloc(&sma->sem_perm);
1da177e4 532 if (retval) {
e2029dfe 533 kvfree(sma);
1da177e4
LT
534 return retval;
535 }
536
6062a8dc 537 for (i = 0; i < nsems; i++) {
1a233956
MS
538 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
539 INIT_LIST_HEAD(&sma->sems[i].pending_const);
540 spin_lock_init(&sma->sems[i].lock);
6062a8dc 541 }
b97e820f
MS
542
543 sma->complex_count = 0;
9de5ab8a 544 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
545 INIT_LIST_HEAD(&sma->pending_alter);
546 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 547 INIT_LIST_HEAD(&sma->list_id);
1da177e4 548 sma->sem_nsems = nsems;
e54d02b2 549 sma->sem_ctime = ktime_get_real_seconds();
e8577d1f 550
39c96a1b 551 /* ipc_addid() locks sma upon success. */
2ec55f80
MS
552 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
553 if (retval < 0) {
39cfffd7 554 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
2ec55f80 555 return retval;
e8577d1f
MS
556 }
557 ns->used_sems += nsems;
558
6062a8dc 559 sem_unlock(sma, -1);
6d49dab8 560 rcu_read_unlock();
1da177e4 561
7ca7e564 562 return sma->sem_perm.id;
1da177e4
LT
563}
564
7748dbfa 565
f4566f04 566/*
d9a605e4 567 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 568 */
03f02c76
ND
569static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
570 struct ipc_params *params)
7748dbfa 571{
03f02c76
ND
572 struct sem_array *sma;
573
574 sma = container_of(ipcp, struct sem_array, sem_perm);
575 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
576 return -EINVAL;
577
578 return 0;
579}
580
69894718 581long ksys_semget(key_t key, int nsems, int semflg)
1da177e4 582{
e3893534 583 struct ipc_namespace *ns;
eb66ec44
MK
584 static const struct ipc_ops sem_ops = {
585 .getnew = newary,
50ab44b1 586 .associate = security_sem_associate,
eb66ec44
MK
587 .more_checks = sem_more_checks,
588 };
7748dbfa 589 struct ipc_params sem_params;
e3893534
KK
590
591 ns = current->nsproxy->ipc_ns;
1da177e4 592
e3893534 593 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 594 return -EINVAL;
7ca7e564 595
7748dbfa
ND
596 sem_params.key = key;
597 sem_params.flg = semflg;
598 sem_params.u.nsems = nsems;
1da177e4 599
7748dbfa 600 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
601}
602
69894718
DB
603SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
604{
605 return ksys_semget(key, nsems, semflg);
606}
607
78f5009c 608/**
4ce33ec2
DB
609 * perform_atomic_semop[_slow] - Attempt to perform semaphore
610 * operations on a given array.
758a6ba3 611 * @sma: semaphore array
d198cd6d 612 * @q: struct sem_queue that describes the operation
758a6ba3 613 *
4ce33ec2
DB
614 * Caller blocking are as follows, based the value
615 * indicated by the semaphore operation (sem_op):
616 *
617 * (1) >0 never blocks.
618 * (2) 0 (wait-for-zero operation): semval is non-zero.
619 * (3) <0 attempting to decrement semval to a value smaller than zero.
620 *
758a6ba3
MS
621 * Returns 0 if the operation was possible.
622 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 623 * Returns <0 for error codes.
1da177e4 624 */
4ce33ec2 625static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 626{
51d6f263
EB
627 int result, sem_op, nsops;
628 struct pid *pid;
1da177e4 629 struct sembuf *sop;
239521f3 630 struct sem *curr;
d198cd6d
MS
631 struct sembuf *sops;
632 struct sem_undo *un;
633
634 sops = q->sops;
635 nsops = q->nsops;
636 un = q->undo;
1da177e4
LT
637
638 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
639 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
640 curr = &sma->sems[idx];
1da177e4
LT
641 sem_op = sop->sem_op;
642 result = curr->semval;
78f5009c 643
1da177e4
LT
644 if (!sem_op && result)
645 goto would_block;
646
647 result += sem_op;
648 if (result < 0)
649 goto would_block;
650 if (result > SEMVMX)
651 goto out_of_range;
78f5009c 652
1da177e4
LT
653 if (sop->sem_flg & SEM_UNDO) {
654 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 655 /* Exceeding the undo range is an error. */
1da177e4
LT
656 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
657 goto out_of_range;
78f5009c 658 un->semadj[sop->sem_num] = undo;
1da177e4 659 }
78f5009c 660
1da177e4
LT
661 curr->semval = result;
662 }
663
664 sop--;
d198cd6d 665 pid = q->pid;
1da177e4 666 while (sop >= sops) {
51d6f263 667 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
1da177e4
LT
668 sop--;
669 }
78f5009c 670
1da177e4
LT
671 return 0;
672
673out_of_range:
674 result = -ERANGE;
675 goto undo;
676
677would_block:
ed247b7c
MS
678 q->blocking = sop;
679
1da177e4
LT
680 if (sop->sem_flg & IPC_NOWAIT)
681 result = -EAGAIN;
682 else
683 result = 1;
684
685undo:
686 sop--;
687 while (sop >= sops) {
78f5009c 688 sem_op = sop->sem_op;
1a233956 689 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
690 if (sop->sem_flg & SEM_UNDO)
691 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
692 sop--;
693 }
694
695 return result;
696}
697
4ce33ec2
DB
698static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
699{
700 int result, sem_op, nsops;
701 struct sembuf *sop;
702 struct sem *curr;
703 struct sembuf *sops;
704 struct sem_undo *un;
705
706 sops = q->sops;
707 nsops = q->nsops;
708 un = q->undo;
709
710 if (unlikely(q->dupsop))
711 return perform_atomic_semop_slow(sma, q);
712
713 /*
714 * We scan the semaphore set twice, first to ensure that the entire
715 * operation can succeed, therefore avoiding any pointless writes
716 * to shared memory and having to undo such changes in order to block
717 * until the operations can go through.
718 */
719 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
720 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
721
722 curr = &sma->sems[idx];
4ce33ec2
DB
723 sem_op = sop->sem_op;
724 result = curr->semval;
725
726 if (!sem_op && result)
727 goto would_block; /* wait-for-zero */
728
729 result += sem_op;
730 if (result < 0)
731 goto would_block;
732
733 if (result > SEMVMX)
734 return -ERANGE;
735
736 if (sop->sem_flg & SEM_UNDO) {
737 int undo = un->semadj[sop->sem_num] - sem_op;
738
739 /* Exceeding the undo range is an error. */
740 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
741 return -ERANGE;
742 }
743 }
744
745 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 746 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
747 sem_op = sop->sem_op;
748 result = curr->semval;
749
750 if (sop->sem_flg & SEM_UNDO) {
751 int undo = un->semadj[sop->sem_num] - sem_op;
752
753 un->semadj[sop->sem_num] = undo;
754 }
755 curr->semval += sem_op;
51d6f263 756 ipc_update_pid(&curr->sempid, q->pid);
4ce33ec2
DB
757 }
758
759 return 0;
760
761would_block:
762 q->blocking = sop;
763 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
764}
765
9ae949fa
DB
766static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
767 struct wake_q_head *wake_q)
0a2b9d4c 768{
9ae949fa
DB
769 wake_q_add(wake_q, q->sleeper);
770 /*
771 * Rely on the above implicit barrier, such that we can
772 * ensure that we hold reference to the task before setting
773 * q->status. Otherwise we could race with do_exit if the
774 * task is awoken by an external event before calling
775 * wake_up_process().
776 */
777 WRITE_ONCE(q->status, error);
d4212093
NP
778}
779
b97e820f
MS
780static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
781{
782 list_del(&q->list);
9f1bc2c9 783 if (q->nsops > 1)
b97e820f
MS
784 sma->complex_count--;
785}
786
fd5db422
MS
787/** check_restart(sma, q)
788 * @sma: semaphore array
789 * @q: the operation that just completed
790 *
791 * update_queue is O(N^2) when it restarts scanning the whole queue of
792 * waiting operations. Therefore this function checks if the restart is
793 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
794 * modified the array.
795 * Note that wait-for-zero operations are handled without restart.
fd5db422 796 */
4663d3e8 797static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 798{
1a82e9e1
MS
799 /* pending complex alter operations are too difficult to analyse */
800 if (!list_empty(&sma->pending_alter))
fd5db422
MS
801 return 1;
802
803 /* we were a sleeping complex operation. Too difficult */
804 if (q->nsops > 1)
805 return 1;
806
1a82e9e1
MS
807 /* It is impossible that someone waits for the new value:
808 * - complex operations always restart.
809 * - wait-for-zero are handled seperately.
810 * - q is a previously sleeping simple operation that
811 * altered the array. It must be a decrement, because
812 * simple increments never sleep.
813 * - If there are older (higher priority) decrements
814 * in the queue, then they have observed the original
815 * semval value and couldn't proceed. The operation
816 * decremented to value - thus they won't proceed either.
817 */
818 return 0;
819}
fd5db422 820
1a82e9e1 821/**
8001c858 822 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
823 * @sma: semaphore array.
824 * @semnum: semaphore that was modified.
9ae949fa 825 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
826 *
827 * wake_const_ops must be called after a semaphore in a semaphore array
828 * was set to 0. If complex const operations are pending, wake_const_ops must
829 * be called with semnum = -1, as well as with the number of each modified
830 * semaphore.
9ae949fa 831 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
832 * is stored in q->pid.
833 * The function returns 1 if at least one operation was completed successfully.
834 */
835static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 836 struct wake_q_head *wake_q)
1a82e9e1 837{
f150f02c 838 struct sem_queue *q, *tmp;
1a82e9e1
MS
839 struct list_head *pending_list;
840 int semop_completed = 0;
841
842 if (semnum == -1)
843 pending_list = &sma->pending_const;
844 else
1a233956 845 pending_list = &sma->sems[semnum].pending_const;
fd5db422 846
f150f02c
DB
847 list_for_each_entry_safe(q, tmp, pending_list, list) {
848 int error = perform_atomic_semop(sma, q);
1a82e9e1 849
f150f02c
DB
850 if (error > 0)
851 continue;
852 /* operation completed, remove from queue & wakeup */
853 unlink_queue(sma, q);
1a82e9e1 854
f150f02c
DB
855 wake_up_sem_queue_prepare(q, error, wake_q);
856 if (error == 0)
857 semop_completed = 1;
1a82e9e1 858 }
f150f02c 859
1a82e9e1
MS
860 return semop_completed;
861}
862
863/**
8001c858 864 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
865 * @sma: semaphore array
866 * @sops: operations that were performed
867 * @nsops: number of operations
9ae949fa 868 * @wake_q: lockless wake-queue head
1a82e9e1 869 *
8001c858
DB
870 * Checks all required queue for wait-for-zero operations, based
871 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
872 * The function returns 1 if at least one operation was completed successfully.
873 */
874static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 875 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
876{
877 int i;
878 int semop_completed = 0;
879 int got_zero = 0;
880
881 /* first: the per-semaphore queues, if known */
882 if (sops) {
883 for (i = 0; i < nsops; i++) {
884 int num = sops[i].sem_num;
885
1a233956 886 if (sma->sems[num].semval == 0) {
1a82e9e1 887 got_zero = 1;
9ae949fa 888 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
889 }
890 }
891 } else {
892 /*
893 * No sops means modified semaphores not known.
894 * Assume all were changed.
fd5db422 895 */
1a82e9e1 896 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 897 if (sma->sems[i].semval == 0) {
1a82e9e1 898 got_zero = 1;
9ae949fa 899 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
900 }
901 }
fd5db422
MS
902 }
903 /*
1a82e9e1
MS
904 * If one of the modified semaphores got 0,
905 * then check the global queue, too.
fd5db422 906 */
1a82e9e1 907 if (got_zero)
9ae949fa 908 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 909
1a82e9e1 910 return semop_completed;
fd5db422
MS
911}
912
636c6be8
MS
913
914/**
8001c858 915 * update_queue - look for tasks that can be completed.
636c6be8
MS
916 * @sma: semaphore array.
917 * @semnum: semaphore that was modified.
9ae949fa 918 * @wake_q: lockless wake-queue head.
636c6be8
MS
919 *
920 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
921 * was modified. If multiple semaphores were modified, update_queue must
922 * be called with semnum = -1, as well as with the number of each modified
923 * semaphore.
9ae949fa 924 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 925 * is stored in q->pid.
1a82e9e1
MS
926 * The function internally checks if const operations can now succeed.
927 *
0a2b9d4c 928 * The function return 1 if at least one semop was completed successfully.
1da177e4 929 */
9ae949fa 930static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 931{
f150f02c 932 struct sem_queue *q, *tmp;
636c6be8 933 struct list_head *pending_list;
0a2b9d4c 934 int semop_completed = 0;
636c6be8 935
9f1bc2c9 936 if (semnum == -1)
1a82e9e1 937 pending_list = &sma->pending_alter;
9f1bc2c9 938 else
1a233956 939 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
940
941again:
f150f02c 942 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 943 int error, restart;
636c6be8 944
d987f8b2
MS
945 /* If we are scanning the single sop, per-semaphore list of
946 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 947 * necessary to scan further: simple increments
d987f8b2
MS
948 * that affect only one entry succeed immediately and cannot
949 * be in the per semaphore pending queue, and decrements
950 * cannot be successful if the value is already 0.
951 */
1a233956 952 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
953 break;
954
d198cd6d 955 error = perform_atomic_semop(sma, q);
1da177e4
LT
956
957 /* Does q->sleeper still need to sleep? */
9cad200c
NP
958 if (error > 0)
959 continue;
960
b97e820f 961 unlink_queue(sma, q);
9cad200c 962
0a2b9d4c 963 if (error) {
fd5db422 964 restart = 0;
0a2b9d4c
MS
965 } else {
966 semop_completed = 1;
9ae949fa 967 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 968 restart = check_restart(sma, q);
0a2b9d4c 969 }
fd5db422 970
9ae949fa 971 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 972 if (restart)
9cad200c 973 goto again;
1da177e4 974 }
0a2b9d4c 975 return semop_completed;
1da177e4
LT
976}
977
0e8c6656 978/**
8001c858 979 * set_semotime - set sem_otime
0e8c6656
MS
980 * @sma: semaphore array
981 * @sops: operations that modified the array, may be NULL
982 *
983 * sem_otime is replicated to avoid cache line trashing.
984 * This function sets one instance to the current time.
985 */
986static void set_semotime(struct sem_array *sma, struct sembuf *sops)
987{
988 if (sops == NULL) {
2a70b787 989 sma->sems[0].sem_otime = ktime_get_real_seconds();
0e8c6656 990 } else {
1a233956 991 sma->sems[sops[0].sem_num].sem_otime =
2a70b787 992 ktime_get_real_seconds();
0e8c6656
MS
993 }
994}
995
0a2b9d4c 996/**
8001c858 997 * do_smart_update - optimized update_queue
fd5db422
MS
998 * @sma: semaphore array
999 * @sops: operations that were performed
1000 * @nsops: number of operations
0a2b9d4c 1001 * @otime: force setting otime
9ae949fa 1002 * @wake_q: lockless wake-queue head
fd5db422 1003 *
1a82e9e1
MS
1004 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1005 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 1006 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 1007 * responsible for calling wake_up_q().
0a2b9d4c 1008 * It is safe to perform this call after dropping all locks.
fd5db422 1009 */
0a2b9d4c 1010static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 1011 int otime, struct wake_q_head *wake_q)
fd5db422
MS
1012{
1013 int i;
1014
9ae949fa 1015 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 1016
f269f40a
MS
1017 if (!list_empty(&sma->pending_alter)) {
1018 /* semaphore array uses the global queue - just process it. */
9ae949fa 1019 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
1020 } else {
1021 if (!sops) {
1022 /*
1023 * No sops, thus the modified semaphores are not
1024 * known. Check all.
1025 */
1026 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 1027 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1028 } else {
1029 /*
1030 * Check the semaphores that were increased:
1031 * - No complex ops, thus all sleeping ops are
1032 * decrease.
1033 * - if we decreased the value, then any sleeping
1034 * semaphore ops wont be able to run: If the
1035 * previous value was too small, then the new
1036 * value will be too small, too.
1037 */
1038 for (i = 0; i < nsops; i++) {
1039 if (sops[i].sem_op > 0) {
1040 otime |= update_queue(sma,
9ae949fa 1041 sops[i].sem_num, wake_q);
f269f40a 1042 }
ab465df9 1043 }
9f1bc2c9 1044 }
fd5db422 1045 }
0e8c6656
MS
1046 if (otime)
1047 set_semotime(sma, sops);
fd5db422
MS
1048}
1049
2f2ed41d 1050/*
b220c57a 1051 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1052 */
1053static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1054 bool count_zero)
1055{
b220c57a 1056 struct sembuf *sop = q->blocking;
2f2ed41d 1057
9b44ee2e
MS
1058 /*
1059 * Linux always (since 0.99.10) reported a task as sleeping on all
1060 * semaphores. This violates SUS, therefore it was changed to the
1061 * standard compliant behavior.
1062 * Give the administrators a chance to notice that an application
1063 * might misbehave because it relies on the Linux behavior.
1064 */
1065 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1066 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1067 current->comm, task_pid_nr(current));
1068
b220c57a
MS
1069 if (sop->sem_num != semnum)
1070 return 0;
2f2ed41d 1071
b220c57a
MS
1072 if (count_zero && sop->sem_op == 0)
1073 return 1;
1074 if (!count_zero && sop->sem_op < 0)
1075 return 1;
1076
1077 return 0;
2f2ed41d
MS
1078}
1079
1da177e4
LT
1080/* The following counts are associated to each semaphore:
1081 * semncnt number of tasks waiting on semval being nonzero
1082 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1083 *
1084 * Per definition, a task waits only on the semaphore of the first semop
1085 * that cannot proceed, even if additional operation would block, too.
1da177e4 1086 */
2f2ed41d
MS
1087static int count_semcnt(struct sem_array *sma, ushort semnum,
1088 bool count_zero)
1da177e4 1089{
2f2ed41d 1090 struct list_head *l;
239521f3 1091 struct sem_queue *q;
2f2ed41d 1092 int semcnt;
1da177e4 1093
2f2ed41d
MS
1094 semcnt = 0;
1095 /* First: check the simple operations. They are easy to evaluate */
1096 if (count_zero)
1a233956 1097 l = &sma->sems[semnum].pending_const;
2f2ed41d 1098 else
1a233956 1099 l = &sma->sems[semnum].pending_alter;
1da177e4 1100
2f2ed41d
MS
1101 list_for_each_entry(q, l, list) {
1102 /* all task on a per-semaphore list sleep on exactly
1103 * that semaphore
1104 */
1105 semcnt++;
ebc2e5e6
RR
1106 }
1107
2f2ed41d 1108 /* Then: check the complex operations. */
1994862d 1109 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1110 semcnt += check_qop(sma, semnum, q, count_zero);
1111 }
1112 if (count_zero) {
1113 list_for_each_entry(q, &sma->pending_const, list) {
1114 semcnt += check_qop(sma, semnum, q, count_zero);
1115 }
1994862d 1116 }
2f2ed41d 1117 return semcnt;
1da177e4
LT
1118}
1119
d9a605e4
DB
1120/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1121 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1122 * remains locked on exit.
1da177e4 1123 */
01b8b07a 1124static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1125{
380af1b3
MS
1126 struct sem_undo *un, *tu;
1127 struct sem_queue *q, *tq;
01b8b07a 1128 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1129 int i;
9ae949fa 1130 DEFINE_WAKE_Q(wake_q);
1da177e4 1131
380af1b3 1132 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1133 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1134 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1135 list_del(&un->list_id);
1136 spin_lock(&un->ulp->lock);
1da177e4 1137 un->semid = -1;
380af1b3
MS
1138 list_del_rcu(&un->list_proc);
1139 spin_unlock(&un->ulp->lock);
693a8b6e 1140 kfree_rcu(un, rcu);
380af1b3 1141 }
1da177e4
LT
1142
1143 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1144 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1145 unlink_queue(sma, q);
9ae949fa 1146 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1147 }
1148
1149 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1150 unlink_queue(sma, q);
9ae949fa 1151 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1152 }
9f1bc2c9 1153 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1154 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1155 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1156 unlink_queue(sma, q);
9ae949fa 1157 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1158 }
1159 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1160 unlink_queue(sma, q);
9ae949fa 1161 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9 1162 }
51d6f263 1163 ipc_update_pid(&sem->sempid, NULL);
9f1bc2c9 1164 }
1da177e4 1165
7ca7e564
ND
1166 /* Remove the semaphore set from the IDR */
1167 sem_rmid(ns, sma);
6062a8dc 1168 sem_unlock(sma, -1);
6d49dab8 1169 rcu_read_unlock();
1da177e4 1170
9ae949fa 1171 wake_up_q(&wake_q);
e3893534 1172 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1173 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1174}
1175
1176static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1177{
239521f3 1178 switch (version) {
1da177e4
LT
1179 case IPC_64:
1180 return copy_to_user(buf, in, sizeof(*in));
1181 case IPC_OLD:
1182 {
1183 struct semid_ds out;
1184
982f7c2b
DR
1185 memset(&out, 0, sizeof(out));
1186
1da177e4
LT
1187 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1188
1189 out.sem_otime = in->sem_otime;
1190 out.sem_ctime = in->sem_ctime;
1191 out.sem_nsems = in->sem_nsems;
1192
1193 return copy_to_user(buf, &out, sizeof(out));
1194 }
1195 default:
1196 return -EINVAL;
1197 }
1198}
1199
e54d02b2 1200static time64_t get_semotime(struct sem_array *sma)
d12e1e50
MS
1201{
1202 int i;
e54d02b2 1203 time64_t res;
d12e1e50 1204
1a233956 1205 res = sma->sems[0].sem_otime;
d12e1e50 1206 for (i = 1; i < sma->sem_nsems; i++) {
e54d02b2 1207 time64_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1208
1209 if (to > res)
1210 res = to;
1211 }
1212 return res;
1213}
1214
45a4a64a
AV
1215static int semctl_stat(struct ipc_namespace *ns, int semid,
1216 int cmd, struct semid64_ds *semid64)
1da177e4 1217{
1da177e4 1218 struct sem_array *sma;
c2ab975c 1219 time64_t semotime;
45a4a64a 1220 int err;
1da177e4 1221
45a4a64a 1222 memset(semid64, 0, sizeof(*semid64));
46c0a8ca 1223
45a4a64a 1224 rcu_read_lock();
a280d6dc 1225 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
45a4a64a
AV
1226 sma = sem_obtain_object(ns, semid);
1227 if (IS_ERR(sma)) {
1228 err = PTR_ERR(sma);
1229 goto out_unlock;
1230 }
a280d6dc 1231 } else { /* IPC_STAT */
45a4a64a
AV
1232 sma = sem_obtain_object_check(ns, semid);
1233 if (IS_ERR(sma)) {
1234 err = PTR_ERR(sma);
1235 goto out_unlock;
1da177e4 1236 }
1da177e4 1237 }
1da177e4 1238
a280d6dc
DB
1239 /* see comment for SHM_STAT_ANY */
1240 if (cmd == SEM_STAT_ANY)
1241 audit_ipc_obj(&sma->sem_perm);
1242 else {
1243 err = -EACCES;
1244 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1245 goto out_unlock;
1246 }
1da177e4 1247
aefad959 1248 err = security_sem_semctl(&sma->sem_perm, cmd);
45a4a64a
AV
1249 if (err)
1250 goto out_unlock;
1da177e4 1251
87ad4b0d
PM
1252 ipc_lock_object(&sma->sem_perm);
1253
1254 if (!ipc_valid_object(&sma->sem_perm)) {
1255 ipc_unlock_object(&sma->sem_perm);
1256 err = -EIDRM;
1257 goto out_unlock;
1258 }
1259
45a4a64a 1260 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
c2ab975c
AB
1261 semotime = get_semotime(sma);
1262 semid64->sem_otime = semotime;
45a4a64a 1263 semid64->sem_ctime = sma->sem_ctime;
c2ab975c
AB
1264#ifndef CONFIG_64BIT
1265 semid64->sem_otime_high = semotime >> 32;
1266 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1267#endif
45a4a64a 1268 semid64->sem_nsems = sma->sem_nsems;
87ad4b0d 1269
615c999c
MS
1270 if (cmd == IPC_STAT) {
1271 /*
1272 * As defined in SUS:
1273 * Return 0 on success
1274 */
1275 err = 0;
1276 } else {
1277 /*
1278 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1279 * Return the full id, including the sequence number
1280 */
1281 err = sma->sem_perm.id;
1282 }
87ad4b0d 1283 ipc_unlock_object(&sma->sem_perm);
1da177e4 1284out_unlock:
16df3674 1285 rcu_read_unlock();
1da177e4
LT
1286 return err;
1287}
1288
45a4a64a
AV
1289static int semctl_info(struct ipc_namespace *ns, int semid,
1290 int cmd, void __user *p)
1291{
1292 struct seminfo seminfo;
27c331a1 1293 int max_idx;
45a4a64a
AV
1294 int err;
1295
1296 err = security_sem_semctl(NULL, cmd);
1297 if (err)
1298 return err;
1299
1300 memset(&seminfo, 0, sizeof(seminfo));
1301 seminfo.semmni = ns->sc_semmni;
1302 seminfo.semmns = ns->sc_semmns;
1303 seminfo.semmsl = ns->sc_semmsl;
1304 seminfo.semopm = ns->sc_semopm;
1305 seminfo.semvmx = SEMVMX;
1306 seminfo.semmnu = SEMMNU;
1307 seminfo.semmap = SEMMAP;
1308 seminfo.semume = SEMUME;
1309 down_read(&sem_ids(ns).rwsem);
1310 if (cmd == SEM_INFO) {
1311 seminfo.semusz = sem_ids(ns).in_use;
1312 seminfo.semaem = ns->used_sems;
1313 } else {
1314 seminfo.semusz = SEMUSZ;
1315 seminfo.semaem = SEMAEM;
1316 }
27c331a1 1317 max_idx = ipc_get_maxidx(&sem_ids(ns));
45a4a64a
AV
1318 up_read(&sem_ids(ns).rwsem);
1319 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1320 return -EFAULT;
27c331a1 1321 return (max_idx < 0) ? 0 : max_idx;
45a4a64a
AV
1322}
1323
e1fd1f49 1324static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
45a4a64a 1325 int val)
e1fd1f49
AV
1326{
1327 struct sem_undo *un;
1328 struct sem_array *sma;
239521f3 1329 struct sem *curr;
45a4a64a 1330 int err;
9ae949fa
DB
1331 DEFINE_WAKE_Q(wake_q);
1332
6062a8dc
RR
1333 if (val > SEMVMX || val < 0)
1334 return -ERANGE;
e1fd1f49 1335
6062a8dc
RR
1336 rcu_read_lock();
1337 sma = sem_obtain_object_check(ns, semid);
1338 if (IS_ERR(sma)) {
1339 rcu_read_unlock();
1340 return PTR_ERR(sma);
1341 }
1342
1343 if (semnum < 0 || semnum >= sma->sem_nsems) {
1344 rcu_read_unlock();
1345 return -EINVAL;
1346 }
1347
1348
1349 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1350 rcu_read_unlock();
1351 return -EACCES;
1352 }
e1fd1f49 1353
aefad959 1354 err = security_sem_semctl(&sma->sem_perm, SETVAL);
6062a8dc
RR
1355 if (err) {
1356 rcu_read_unlock();
1357 return -EACCES;
1358 }
e1fd1f49 1359
6062a8dc 1360 sem_lock(sma, NULL, -1);
e1fd1f49 1361
0f3d2b01 1362 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1363 sem_unlock(sma, -1);
1364 rcu_read_unlock();
1365 return -EIDRM;
1366 }
1367
ec67aaa4 1368 semnum = array_index_nospec(semnum, sma->sem_nsems);
1a233956 1369 curr = &sma->sems[semnum];
e1fd1f49 1370
cf9d5d78 1371 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1372 list_for_each_entry(un, &sma->list_id, list_id)
1373 un->semadj[semnum] = 0;
1374
1375 curr->semval = val;
51d6f263 1376 ipc_update_pid(&curr->sempid, task_tgid(current));
e54d02b2 1377 sma->sem_ctime = ktime_get_real_seconds();
e1fd1f49 1378 /* maybe some queued-up processes were waiting for this */
9ae949fa 1379 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1380 sem_unlock(sma, -1);
6d49dab8 1381 rcu_read_unlock();
9ae949fa 1382 wake_up_q(&wake_q);
6062a8dc 1383 return 0;
e1fd1f49
AV
1384}
1385
e3893534 1386static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1387 int cmd, void __user *p)
1da177e4
LT
1388{
1389 struct sem_array *sma;
239521f3 1390 struct sem *curr;
16df3674 1391 int err, nsems;
1da177e4 1392 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1393 ushort *sem_io = fast_sem_io;
9ae949fa 1394 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1395
1396 rcu_read_lock();
1397 sma = sem_obtain_object_check(ns, semid);
1398 if (IS_ERR(sma)) {
1399 rcu_read_unlock();
023a5355 1400 return PTR_ERR(sma);
16df3674 1401 }
1da177e4
LT
1402
1403 nsems = sma->sem_nsems;
1404
1da177e4 1405 err = -EACCES;
c728b9c8
LT
1406 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1407 goto out_rcu_wakeup;
1da177e4 1408
aefad959 1409 err = security_sem_semctl(&sma->sem_perm, cmd);
c728b9c8
LT
1410 if (err)
1411 goto out_rcu_wakeup;
1da177e4
LT
1412
1413 err = -EACCES;
1414 switch (cmd) {
1415 case GETALL:
1416 {
e1fd1f49 1417 ushort __user *array = p;
1da177e4
LT
1418 int i;
1419
ce857229 1420 sem_lock(sma, NULL, -1);
0f3d2b01 1421 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1422 err = -EIDRM;
1423 goto out_unlock;
1424 }
239521f3 1425 if (nsems > SEMMSL_FAST) {
dba4cdd3 1426 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1427 err = -EIDRM;
6e224f94 1428 goto out_unlock;
ce857229
AV
1429 }
1430 sem_unlock(sma, -1);
6d49dab8 1431 rcu_read_unlock();
f8dbe8d2
KC
1432 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1433 GFP_KERNEL);
239521f3 1434 if (sem_io == NULL) {
dba4cdd3 1435 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1436 return -ENOMEM;
1437 }
1438
4091fd94 1439 rcu_read_lock();
6ff37972 1440 sem_lock_and_putref(sma);
0f3d2b01 1441 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1442 err = -EIDRM;
6e224f94 1443 goto out_unlock;
1da177e4 1444 }
ce857229 1445 }
1da177e4 1446 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1447 sem_io[i] = sma->sems[i].semval;
6062a8dc 1448 sem_unlock(sma, -1);
6d49dab8 1449 rcu_read_unlock();
1da177e4 1450 err = 0;
239521f3 1451 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1452 err = -EFAULT;
1453 goto out_free;
1454 }
1455 case SETALL:
1456 {
1457 int i;
1458 struct sem_undo *un;
1459
dba4cdd3 1460 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1461 err = -EIDRM;
1462 goto out_rcu_wakeup;
6062a8dc 1463 }
16df3674 1464 rcu_read_unlock();
1da177e4 1465
239521f3 1466 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1467 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1468 GFP_KERNEL);
239521f3 1469 if (sem_io == NULL) {
dba4cdd3 1470 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1471 return -ENOMEM;
1472 }
1473 }
1474
239521f3 1475 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1476 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1477 err = -EFAULT;
1478 goto out_free;
1479 }
1480
1481 for (i = 0; i < nsems; i++) {
1482 if (sem_io[i] > SEMVMX) {
dba4cdd3 1483 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1484 err = -ERANGE;
1485 goto out_free;
1486 }
1487 }
4091fd94 1488 rcu_read_lock();
6ff37972 1489 sem_lock_and_putref(sma);
0f3d2b01 1490 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1491 err = -EIDRM;
6e224f94 1492 goto out_unlock;
1da177e4
LT
1493 }
1494
a5f4db87 1495 for (i = 0; i < nsems; i++) {
1a233956 1496 sma->sems[i].semval = sem_io[i];
51d6f263 1497 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
a5f4db87 1498 }
4daa28f6 1499
cf9d5d78 1500 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1501 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1502 for (i = 0; i < nsems; i++)
1503 un->semadj[i] = 0;
4daa28f6 1504 }
e54d02b2 1505 sma->sem_ctime = ktime_get_real_seconds();
1da177e4 1506 /* maybe some queued-up processes were waiting for this */
9ae949fa 1507 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1508 err = 0;
1509 goto out_unlock;
1510 }
e1fd1f49 1511 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1512 }
1513 err = -EINVAL;
c728b9c8
LT
1514 if (semnum < 0 || semnum >= nsems)
1515 goto out_rcu_wakeup;
1da177e4 1516
6062a8dc 1517 sem_lock(sma, NULL, -1);
0f3d2b01 1518 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1519 err = -EIDRM;
1520 goto out_unlock;
1521 }
ec67aaa4
DB
1522
1523 semnum = array_index_nospec(semnum, nsems);
1a233956 1524 curr = &sma->sems[semnum];
1da177e4
LT
1525
1526 switch (cmd) {
1527 case GETVAL:
1528 err = curr->semval;
1529 goto out_unlock;
1530 case GETPID:
51d6f263 1531 err = pid_vnr(curr->sempid);
1da177e4
LT
1532 goto out_unlock;
1533 case GETNCNT:
2f2ed41d 1534 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1535 goto out_unlock;
1536 case GETZCNT:
2f2ed41d 1537 err = count_semcnt(sma, semnum, 1);
1da177e4 1538 goto out_unlock;
1da177e4 1539 }
16df3674 1540
1da177e4 1541out_unlock:
6062a8dc 1542 sem_unlock(sma, -1);
c728b9c8 1543out_rcu_wakeup:
6d49dab8 1544 rcu_read_unlock();
9ae949fa 1545 wake_up_q(&wake_q);
1da177e4 1546out_free:
239521f3 1547 if (sem_io != fast_sem_io)
f8dbe8d2 1548 kvfree(sem_io);
1da177e4
LT
1549 return err;
1550}
1551
016d7132
PP
1552static inline unsigned long
1553copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1554{
239521f3 1555 switch (version) {
1da177e4 1556 case IPC_64:
016d7132 1557 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1558 return -EFAULT;
1da177e4 1559 return 0;
1da177e4
LT
1560 case IPC_OLD:
1561 {
1562 struct semid_ds tbuf_old;
1563
239521f3 1564 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1565 return -EFAULT;
1566
016d7132
PP
1567 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1568 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1569 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1570
1571 return 0;
1572 }
1573 default:
1574 return -EINVAL;
1575 }
1576}
1577
522bb2a2 1578/*
d9a605e4 1579 * This function handles some semctl commands which require the rwsem
522bb2a2 1580 * to be held in write mode.
d9a605e4 1581 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1582 */
21a4826a 1583static int semctl_down(struct ipc_namespace *ns, int semid,
45a4a64a 1584 int cmd, struct semid64_ds *semid64)
1da177e4
LT
1585{
1586 struct sem_array *sma;
1587 int err;
1da177e4
LT
1588 struct kern_ipc_perm *ipcp;
1589
d9a605e4 1590 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1591 rcu_read_lock();
1592
4241c1a3 1593 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
45a4a64a 1594 &semid64->sem_perm, 0);
7b4cc5d8
DB
1595 if (IS_ERR(ipcp)) {
1596 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1597 goto out_unlock1;
1598 }
073115d6 1599
a5f75e7f 1600 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4 1601
aefad959 1602 err = security_sem_semctl(&sma->sem_perm, cmd);
7b4cc5d8
DB
1603 if (err)
1604 goto out_unlock1;
1da177e4 1605
7b4cc5d8 1606 switch (cmd) {
1da177e4 1607 case IPC_RMID:
6062a8dc 1608 sem_lock(sma, NULL, -1);
7b4cc5d8 1609 /* freeary unlocks the ipc object and rcu */
01b8b07a 1610 freeary(ns, ipcp);
522bb2a2 1611 goto out_up;
1da177e4 1612 case IPC_SET:
6062a8dc 1613 sem_lock(sma, NULL, -1);
45a4a64a 1614 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1efdb69b 1615 if (err)
7b4cc5d8 1616 goto out_unlock0;
e54d02b2 1617 sma->sem_ctime = ktime_get_real_seconds();
1da177e4
LT
1618 break;
1619 default:
1da177e4 1620 err = -EINVAL;
7b4cc5d8 1621 goto out_unlock1;
1da177e4 1622 }
1da177e4 1623
7b4cc5d8 1624out_unlock0:
6062a8dc 1625 sem_unlock(sma, -1);
7b4cc5d8 1626out_unlock1:
6d49dab8 1627 rcu_read_unlock();
522bb2a2 1628out_up:
d9a605e4 1629 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1630 return err;
1631}
1632
275f2214 1633static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1da177e4 1634{
e3893534 1635 struct ipc_namespace *ns;
e1fd1f49 1636 void __user *p = (void __user *)arg;
45a4a64a
AV
1637 struct semid64_ds semid64;
1638 int err;
1da177e4
LT
1639
1640 if (semid < 0)
1641 return -EINVAL;
1642
e3893534 1643 ns = current->nsproxy->ipc_ns;
1da177e4 1644
239521f3 1645 switch (cmd) {
1da177e4
LT
1646 case IPC_INFO:
1647 case SEM_INFO:
45a4a64a 1648 return semctl_info(ns, semid, cmd, p);
4b9fcb0e 1649 case IPC_STAT:
1da177e4 1650 case SEM_STAT:
a280d6dc 1651 case SEM_STAT_ANY:
45a4a64a
AV
1652 err = semctl_stat(ns, semid, cmd, &semid64);
1653 if (err < 0)
1654 return err;
1655 if (copy_semid_to_user(p, &semid64, version))
1656 err = -EFAULT;
1657 return err;
1da177e4
LT
1658 case GETALL:
1659 case GETVAL:
1660 case GETPID:
1661 case GETNCNT:
1662 case GETZCNT:
1da177e4 1663 case SETALL:
e1fd1f49 1664 return semctl_main(ns, semid, semnum, cmd, p);
45a4a64a
AV
1665 case SETVAL: {
1666 int val;
1667#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1668 /* big-endian 64bit */
1669 val = arg >> 32;
1670#else
1671 /* 32bit or little-endian 64bit */
1672 val = arg;
1673#endif
1674 return semctl_setval(ns, semid, semnum, val);
1675 }
1da177e4 1676 case IPC_SET:
45a4a64a
AV
1677 if (copy_semid_from_user(&semid64, p, version))
1678 return -EFAULT;
667da6a2 1679 /* fall through */
45a4a64a
AV
1680 case IPC_RMID:
1681 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1682 default:
1683 return -EINVAL;
1684 }
1685}
1686
d969c6fa
DB
1687SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1688{
275f2214 1689 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa
DB
1690}
1691
275f2214
AB
1692#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1693long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1694{
1695 int version = ipc_parse_version(&cmd);
1696
1697 return ksys_semctl(semid, semnum, cmd, arg, version);
1698}
1699
1700SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1701{
1702 return ksys_old_semctl(semid, semnum, cmd, arg);
1703}
1704#endif
1705
c0ebccb6
AV
1706#ifdef CONFIG_COMPAT
1707
1708struct compat_semid_ds {
1709 struct compat_ipc_perm sem_perm;
9afc5eee
AB
1710 old_time32_t sem_otime;
1711 old_time32_t sem_ctime;
c0ebccb6
AV
1712 compat_uptr_t sem_base;
1713 compat_uptr_t sem_pending;
1714 compat_uptr_t sem_pending_last;
1715 compat_uptr_t undo;
1716 unsigned short sem_nsems;
1717};
1718
1719static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1720 int version)
1721{
1722 memset(out, 0, sizeof(*out));
1723 if (version == IPC_64) {
6aa211e8 1724 struct compat_semid64_ds __user *p = buf;
c0ebccb6
AV
1725 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1726 } else {
6aa211e8 1727 struct compat_semid_ds __user *p = buf;
c0ebccb6
AV
1728 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1729 }
1730}
1731
1732static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1733 int version)
1734{
1735 if (version == IPC_64) {
1736 struct compat_semid64_ds v;
1737 memset(&v, 0, sizeof(v));
1738 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
c2ab975c
AB
1739 v.sem_otime = lower_32_bits(in->sem_otime);
1740 v.sem_otime_high = upper_32_bits(in->sem_otime);
1741 v.sem_ctime = lower_32_bits(in->sem_ctime);
1742 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
c0ebccb6
AV
1743 v.sem_nsems = in->sem_nsems;
1744 return copy_to_user(buf, &v, sizeof(v));
1745 } else {
1746 struct compat_semid_ds v;
1747 memset(&v, 0, sizeof(v));
1748 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1749 v.sem_otime = in->sem_otime;
1750 v.sem_ctime = in->sem_ctime;
1751 v.sem_nsems = in->sem_nsems;
1752 return copy_to_user(buf, &v, sizeof(v));
1753 }
1754}
1755
275f2214 1756static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
c0ebccb6
AV
1757{
1758 void __user *p = compat_ptr(arg);
1759 struct ipc_namespace *ns;
1760 struct semid64_ds semid64;
c0ebccb6
AV
1761 int err;
1762
1763 ns = current->nsproxy->ipc_ns;
1764
1765 if (semid < 0)
1766 return -EINVAL;
1767
1768 switch (cmd & (~IPC_64)) {
1769 case IPC_INFO:
1770 case SEM_INFO:
1771 return semctl_info(ns, semid, cmd, p);
1772 case IPC_STAT:
1773 case SEM_STAT:
a280d6dc 1774 case SEM_STAT_ANY:
c0ebccb6
AV
1775 err = semctl_stat(ns, semid, cmd, &semid64);
1776 if (err < 0)
1777 return err;
1778 if (copy_compat_semid_to_user(p, &semid64, version))
1779 err = -EFAULT;
1780 return err;
1781 case GETVAL:
1782 case GETPID:
1783 case GETNCNT:
1784 case GETZCNT:
1785 case GETALL:
1da177e4 1786 case SETALL:
e1fd1f49
AV
1787 return semctl_main(ns, semid, semnum, cmd, p);
1788 case SETVAL:
1789 return semctl_setval(ns, semid, semnum, arg);
1da177e4 1790 case IPC_SET:
c0ebccb6
AV
1791 if (copy_compat_semid_from_user(&semid64, p, version))
1792 return -EFAULT;
1793 /* fallthru */
1794 case IPC_RMID:
1795 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1796 default:
1797 return -EINVAL;
1798 }
1799}
d969c6fa
DB
1800
1801COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1802{
275f2214 1803 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa 1804}
275f2214
AB
1805
1806#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1807long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1808{
1809 int version = compat_ipc_parse_version(&cmd);
1810
1811 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1812}
1813
1814COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1815{
1816 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1817}
1818#endif
c0ebccb6 1819#endif
1da177e4 1820
1da177e4
LT
1821/* If the task doesn't already have a undo_list, then allocate one
1822 * here. We guarantee there is only one thread using this undo list,
1823 * and current is THE ONE
1824 *
1825 * If this allocation and assignment succeeds, but later
1826 * portions of this code fail, there is no need to free the sem_undo_list.
1827 * Just let it stay associated with the task, and it'll be freed later
1828 * at exit time.
1829 *
1830 * This can block, so callers must hold no locks.
1831 */
1832static inline int get_undo_list(struct sem_undo_list **undo_listp)
1833{
1834 struct sem_undo_list *undo_list;
1da177e4
LT
1835
1836 undo_list = current->sysvsem.undo_list;
1837 if (!undo_list) {
2453a306 1838 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1839 if (undo_list == NULL)
1840 return -ENOMEM;
00a5dfdb 1841 spin_lock_init(&undo_list->lock);
f74370b8 1842 refcount_set(&undo_list->refcnt, 1);
4daa28f6
MS
1843 INIT_LIST_HEAD(&undo_list->list_proc);
1844
1da177e4
LT
1845 current->sysvsem.undo_list = undo_list;
1846 }
1847 *undo_listp = undo_list;
1848 return 0;
1849}
1850
bf17bb71 1851static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1852{
bf17bb71 1853 struct sem_undo *un;
4daa28f6 1854
bf17bb71
NP
1855 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1856 if (un->semid == semid)
1857 return un;
1da177e4 1858 }
4daa28f6 1859 return NULL;
1da177e4
LT
1860}
1861
bf17bb71
NP
1862static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1863{
1864 struct sem_undo *un;
1865
239521f3 1866 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1867
1868 un = __lookup_undo(ulp, semid);
1869 if (un) {
1870 list_del_rcu(&un->list_proc);
1871 list_add_rcu(&un->list_proc, &ulp->list_proc);
1872 }
1873 return un;
1874}
1875
4daa28f6 1876/**
8001c858 1877 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1878 * @ns: namespace
1879 * @semid: semaphore array id
1880 *
1881 * The function looks up (and if not present creates) the undo structure.
1882 * The size of the undo structure depends on the size of the semaphore
1883 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1884 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1885 * performs a rcu_read_lock().
4daa28f6
MS
1886 */
1887static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1888{
1889 struct sem_array *sma;
1890 struct sem_undo_list *ulp;
1891 struct sem_undo *un, *new;
6062a8dc 1892 int nsems, error;
1da177e4
LT
1893
1894 error = get_undo_list(&ulp);
1895 if (error)
1896 return ERR_PTR(error);
1897
380af1b3 1898 rcu_read_lock();
c530c6ac 1899 spin_lock(&ulp->lock);
1da177e4 1900 un = lookup_undo(ulp, semid);
c530c6ac 1901 spin_unlock(&ulp->lock);
239521f3 1902 if (likely(un != NULL))
1da177e4
LT
1903 goto out;
1904
1905 /* no undo structure around - allocate one. */
4daa28f6 1906 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1907 sma = sem_obtain_object_check(ns, semid);
1908 if (IS_ERR(sma)) {
1909 rcu_read_unlock();
4de85cd6 1910 return ERR_CAST(sma);
16df3674 1911 }
023a5355 1912
1da177e4 1913 nsems = sma->sem_nsems;
dba4cdd3 1914 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1915 rcu_read_unlock();
1916 un = ERR_PTR(-EIDRM);
1917 goto out;
1918 }
16df3674 1919 rcu_read_unlock();
1da177e4 1920
4daa28f6 1921 /* step 2: allocate new undo structure */
4668edc3 1922 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1923 if (!new) {
dba4cdd3 1924 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1925 return ERR_PTR(-ENOMEM);
1926 }
1da177e4 1927
380af1b3 1928 /* step 3: Acquire the lock on semaphore array */
4091fd94 1929 rcu_read_lock();
6ff37972 1930 sem_lock_and_putref(sma);
0f3d2b01 1931 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1932 sem_unlock(sma, -1);
6d49dab8 1933 rcu_read_unlock();
1da177e4
LT
1934 kfree(new);
1935 un = ERR_PTR(-EIDRM);
1936 goto out;
1937 }
380af1b3
MS
1938 spin_lock(&ulp->lock);
1939
1940 /*
1941 * step 4: check for races: did someone else allocate the undo struct?
1942 */
1943 un = lookup_undo(ulp, semid);
1944 if (un) {
1945 kfree(new);
1946 goto success;
1947 }
4daa28f6
MS
1948 /* step 5: initialize & link new undo structure */
1949 new->semadj = (short *) &new[1];
380af1b3 1950 new->ulp = ulp;
4daa28f6
MS
1951 new->semid = semid;
1952 assert_spin_locked(&ulp->lock);
380af1b3 1953 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1954 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1955 list_add(&new->list_id, &sma->list_id);
380af1b3 1956 un = new;
4daa28f6 1957
380af1b3 1958success:
c530c6ac 1959 spin_unlock(&ulp->lock);
6062a8dc 1960 sem_unlock(sma, -1);
1da177e4
LT
1961out:
1962 return un;
1963}
1964
44ee4546 1965static long do_semtimedop(int semid, struct sembuf __user *tsops,
3ef56dc2 1966 unsigned nsops, const struct timespec64 *timeout)
1da177e4
LT
1967{
1968 int error = -EINVAL;
1969 struct sem_array *sma;
1970 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1971 struct sembuf *sops = fast_sops, *sop;
1da177e4 1972 struct sem_undo *un;
4ce33ec2
DB
1973 int max, locknum;
1974 bool undos = false, alter = false, dupsop = false;
1da177e4 1975 struct sem_queue queue;
4ce33ec2 1976 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1977 struct ipc_namespace *ns;
1978
1979 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1980
1981 if (nsops < 1 || semid < 0)
1982 return -EINVAL;
e3893534 1983 if (nsops > ns->sc_semopm)
1da177e4 1984 return -E2BIG;
239521f3 1985 if (nsops > SEMOPM_FAST) {
344476e1 1986 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
239521f3 1987 if (sops == NULL)
1da177e4
LT
1988 return -ENOMEM;
1989 }
4ce33ec2 1990
239521f3
MS
1991 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1992 error = -EFAULT;
1da177e4
LT
1993 goto out_free;
1994 }
4ce33ec2 1995
1da177e4 1996 if (timeout) {
44ee4546
AV
1997 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1998 timeout->tv_nsec >= 1000000000L) {
1da177e4
LT
1999 error = -EINVAL;
2000 goto out_free;
2001 }
3ef56dc2 2002 jiffies_left = timespec64_to_jiffies(timeout);
1da177e4 2003 }
4ce33ec2 2004
1da177e4
LT
2005 max = 0;
2006 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
2007 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2008
1da177e4
LT
2009 if (sop->sem_num >= max)
2010 max = sop->sem_num;
2011 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
2012 undos = true;
2013 if (dup & mask) {
2014 /*
2015 * There was a previous alter access that appears
2016 * to have accessed the same semaphore, thus use
2017 * the dupsop logic. "appears", because the detection
2018 * can only check % BITS_PER_LONG.
2019 */
2020 dupsop = true;
2021 }
2022 if (sop->sem_op != 0) {
2023 alter = true;
2024 dup |= mask;
2025 }
1da177e4 2026 }
1da177e4 2027
1da177e4 2028 if (undos) {
6062a8dc 2029 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 2030 un = find_alloc_undo(ns, semid);
1da177e4
LT
2031 if (IS_ERR(un)) {
2032 error = PTR_ERR(un);
2033 goto out_free;
2034 }
6062a8dc 2035 } else {
1da177e4 2036 un = NULL;
6062a8dc
RR
2037 rcu_read_lock();
2038 }
1da177e4 2039
16df3674 2040 sma = sem_obtain_object_check(ns, semid);
023a5355 2041 if (IS_ERR(sma)) {
6062a8dc 2042 rcu_read_unlock();
023a5355 2043 error = PTR_ERR(sma);
1da177e4 2044 goto out_free;
023a5355
ND
2045 }
2046
16df3674 2047 error = -EFBIG;
248e7357
DB
2048 if (max >= sma->sem_nsems) {
2049 rcu_read_unlock();
2050 goto out_free;
2051 }
16df3674
DB
2052
2053 error = -EACCES;
248e7357
DB
2054 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2055 rcu_read_unlock();
2056 goto out_free;
2057 }
16df3674 2058
aefad959 2059 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
248e7357
DB
2060 if (error) {
2061 rcu_read_unlock();
2062 goto out_free;
2063 }
16df3674 2064
6e224f94
MS
2065 error = -EIDRM;
2066 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
2067 /*
2068 * We eventually might perform the following check in a lockless
2069 * fashion, considering ipc_valid_object() locking constraints.
2070 * If nsops == 1 and there is no contention for sem_perm.lock, then
2071 * only a per-semaphore lock is held and it's OK to proceed with the
2072 * check below. More details on the fine grained locking scheme
2073 * entangled here and why it's RMID race safe on comments at sem_lock()
2074 */
2075 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 2076 goto out_unlock_free;
1da177e4 2077 /*
4daa28f6 2078 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 2079 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 2080 * and now a new array with received the same id. Check and fail.
25985edc 2081 * This case can be detected checking un->semid. The existence of
380af1b3 2082 * "un" itself is guaranteed by rcu.
1da177e4 2083 */
6062a8dc
RR
2084 if (un && un->semid == -1)
2085 goto out_unlock_free;
4daa28f6 2086
d198cd6d
MS
2087 queue.sops = sops;
2088 queue.nsops = nsops;
2089 queue.undo = un;
51d6f263 2090 queue.pid = task_tgid(current);
d198cd6d 2091 queue.alter = alter;
4ce33ec2 2092 queue.dupsop = dupsop;
d198cd6d
MS
2093
2094 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
2095 if (error == 0) { /* non-blocking succesfull path */
2096 DEFINE_WAKE_Q(wake_q);
2097
2098 /*
2099 * If the operation was successful, then do
0e8c6656
MS
2100 * the required updates.
2101 */
2102 if (alter)
9ae949fa 2103 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
2104 else
2105 set_semotime(sma, sops);
9ae949fa
DB
2106
2107 sem_unlock(sma, locknum);
2108 rcu_read_unlock();
2109 wake_up_q(&wake_q);
2110
2111 goto out_free;
1da177e4 2112 }
9ae949fa 2113 if (error < 0) /* non-blocking error path */
0e8c6656 2114 goto out_unlock_free;
1da177e4 2115
9ae949fa
DB
2116 /*
2117 * We need to sleep on this operation, so we put the current
1da177e4
LT
2118 * task into the pending queue and go to sleep.
2119 */
b97e820f
MS
2120 if (nsops == 1) {
2121 struct sem *curr;
ec67aaa4
DB
2122 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2123 curr = &sma->sems[idx];
b97e820f 2124
f269f40a
MS
2125 if (alter) {
2126 if (sma->complex_count) {
2127 list_add_tail(&queue.list,
2128 &sma->pending_alter);
2129 } else {
2130
2131 list_add_tail(&queue.list,
2132 &curr->pending_alter);
2133 }
2134 } else {
1a82e9e1 2135 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 2136 }
b97e820f 2137 } else {
f269f40a
MS
2138 if (!sma->complex_count)
2139 merge_queues(sma);
2140
9f1bc2c9 2141 if (alter)
1a82e9e1 2142 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 2143 else
1a82e9e1
MS
2144 list_add_tail(&queue.list, &sma->pending_const);
2145
b97e820f
MS
2146 sma->complex_count++;
2147 }
2148
b5fa01a2 2149 do {
f075faa3 2150 WRITE_ONCE(queue.status, -EINTR);
b5fa01a2 2151 queue.sleeper = current;
0b0577f6 2152
b5fa01a2
DB
2153 __set_current_state(TASK_INTERRUPTIBLE);
2154 sem_unlock(sma, locknum);
2155 rcu_read_unlock();
1da177e4 2156
b5fa01a2
DB
2157 if (timeout)
2158 jiffies_left = schedule_timeout(jiffies_left);
2159 else
2160 schedule();
1da177e4 2161
9ae949fa 2162 /*
b5fa01a2
DB
2163 * fastpath: the semop has completed, either successfully or
2164 * not, from the syscall pov, is quite irrelevant to us at this
2165 * point; we're done.
2166 *
2167 * We _do_ care, nonetheless, about being awoken by a signal or
2168 * spuriously. The queue.status is checked again in the
2169 * slowpath (aka after taking sem_lock), such that we can detect
2170 * scenarios where we were awakened externally, during the
2171 * window between wake_q_add() and wake_up_q().
c61284e9 2172 */
b5fa01a2
DB
2173 error = READ_ONCE(queue.status);
2174 if (error != -EINTR) {
2175 /*
2176 * User space could assume that semop() is a memory
2177 * barrier: Without the mb(), the cpu could
2178 * speculatively read in userspace stale data that was
2179 * overwritten by the previous owner of the semaphore.
2180 */
2181 smp_mb();
2182 goto out_free;
2183 }
d694ad62 2184
b5fa01a2 2185 rcu_read_lock();
c626bc46 2186 locknum = sem_lock(sma, sops, nsops);
1da177e4 2187
370b262c
DB
2188 if (!ipc_valid_object(&sma->sem_perm))
2189 goto out_unlock_free;
2190
2191 error = READ_ONCE(queue.status);
1da177e4 2192
b5fa01a2
DB
2193 /*
2194 * If queue.status != -EINTR we are woken up by another process.
2195 * Leave without unlink_queue(), but with sem_unlock().
2196 */
2197 if (error != -EINTR)
2198 goto out_unlock_free;
0b0577f6 2199
b5fa01a2
DB
2200 /*
2201 * If an interrupt occurred we have to clean up the queue.
2202 */
2203 if (timeout && jiffies_left == 0)
2204 error = -EAGAIN;
2205 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2206
b97e820f 2207 unlink_queue(sma, &queue);
1da177e4
LT
2208
2209out_unlock_free:
6062a8dc 2210 sem_unlock(sma, locknum);
6d49dab8 2211 rcu_read_unlock();
1da177e4 2212out_free:
239521f3 2213 if (sops != fast_sops)
e4243b80 2214 kvfree(sops);
1da177e4
LT
2215 return error;
2216}
2217
41f4f0e2 2218long ksys_semtimedop(int semid, struct sembuf __user *tsops,
21fc538d 2219 unsigned int nsops, const struct __kernel_timespec __user *timeout)
44ee4546
AV
2220{
2221 if (timeout) {
3ef56dc2
DD
2222 struct timespec64 ts;
2223 if (get_timespec64(&ts, timeout))
44ee4546
AV
2224 return -EFAULT;
2225 return do_semtimedop(semid, tsops, nsops, &ts);
2226 }
2227 return do_semtimedop(semid, tsops, nsops, NULL);
2228}
2229
41f4f0e2 2230SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
21fc538d 2231 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
41f4f0e2
DB
2232{
2233 return ksys_semtimedop(semid, tsops, nsops, timeout);
2234}
2235
b0d17578 2236#ifdef CONFIG_COMPAT_32BIT_TIME
41f4f0e2
DB
2237long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2238 unsigned int nsops,
9afc5eee 2239 const struct old_timespec32 __user *timeout)
44ee4546
AV
2240{
2241 if (timeout) {
3ef56dc2 2242 struct timespec64 ts;
9afc5eee 2243 if (get_old_timespec32(&ts, timeout))
44ee4546
AV
2244 return -EFAULT;
2245 return do_semtimedop(semid, tsems, nsops, &ts);
2246 }
2247 return do_semtimedop(semid, tsems, nsops, NULL);
2248}
41f4f0e2 2249
8dabe724 2250SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
41f4f0e2 2251 unsigned int, nsops,
9afc5eee 2252 const struct old_timespec32 __user *, timeout)
41f4f0e2
DB
2253{
2254 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2255}
44ee4546
AV
2256#endif
2257
d5460c99
HC
2258SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2259 unsigned, nsops)
1da177e4 2260{
44ee4546 2261 return do_semtimedop(semid, tsops, nsops, NULL);
1da177e4
LT
2262}
2263
2264/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2265 * parent and child tasks.
1da177e4
LT
2266 */
2267
2268int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2269{
2270 struct sem_undo_list *undo_list;
2271 int error;
2272
2273 if (clone_flags & CLONE_SYSVSEM) {
2274 error = get_undo_list(&undo_list);
2275 if (error)
2276 return error;
f74370b8 2277 refcount_inc(&undo_list->refcnt);
1da177e4 2278 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2279 } else
1da177e4
LT
2280 tsk->sysvsem.undo_list = NULL;
2281
2282 return 0;
2283}
2284
2285/*
2286 * add semadj values to semaphores, free undo structures.
2287 * undo structures are not freed when semaphore arrays are destroyed
2288 * so some of them may be out of date.
2289 * IMPLEMENTATION NOTE: There is some confusion over whether the
2290 * set of adjustments that needs to be done should be done in an atomic
2291 * manner or not. That is, if we are attempting to decrement the semval
2292 * should we queue up and wait until we can do so legally?
2293 * The original implementation attempted to do this (queue and wait).
2294 * The current implementation does not do so. The POSIX standard
2295 * and SVID should be consulted to determine what behavior is mandated.
2296 */
2297void exit_sem(struct task_struct *tsk)
2298{
4daa28f6 2299 struct sem_undo_list *ulp;
1da177e4 2300
4daa28f6
MS
2301 ulp = tsk->sysvsem.undo_list;
2302 if (!ulp)
1da177e4 2303 return;
9edff4ab 2304 tsk->sysvsem.undo_list = NULL;
1da177e4 2305
f74370b8 2306 if (!refcount_dec_and_test(&ulp->refcnt))
1da177e4
LT
2307 return;
2308
380af1b3 2309 for (;;) {
1da177e4 2310 struct sem_array *sma;
380af1b3 2311 struct sem_undo *un;
6062a8dc 2312 int semid, i;
9ae949fa 2313 DEFINE_WAKE_Q(wake_q);
4daa28f6 2314
2a1613a5
NB
2315 cond_resched();
2316
380af1b3 2317 rcu_read_lock();
05725f7e
JP
2318 un = list_entry_rcu(ulp->list_proc.next,
2319 struct sem_undo, list_proc);
602b8593
HK
2320 if (&un->list_proc == &ulp->list_proc) {
2321 /*
2322 * We must wait for freeary() before freeing this ulp,
2323 * in case we raced with last sem_undo. There is a small
2324 * possibility where we exit while freeary() didn't
2325 * finish unlocking sem_undo_list.
2326 */
e0892e08
PM
2327 spin_lock(&ulp->lock);
2328 spin_unlock(&ulp->lock);
602b8593
HK
2329 rcu_read_unlock();
2330 break;
2331 }
2332 spin_lock(&ulp->lock);
2333 semid = un->semid;
2334 spin_unlock(&ulp->lock);
4daa28f6 2335
602b8593 2336 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2337 if (semid == -1) {
2338 rcu_read_unlock();
602b8593 2339 continue;
6062a8dc 2340 }
1da177e4 2341
602b8593 2342 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2343 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2344 if (IS_ERR(sma)) {
2345 rcu_read_unlock();
380af1b3 2346 continue;
6062a8dc 2347 }
1da177e4 2348
6062a8dc 2349 sem_lock(sma, NULL, -1);
6e224f94 2350 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2351 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2352 sem_unlock(sma, -1);
2353 rcu_read_unlock();
2354 continue;
2355 }
bf17bb71 2356 un = __lookup_undo(ulp, semid);
380af1b3
MS
2357 if (un == NULL) {
2358 /* exit_sem raced with IPC_RMID+semget() that created
2359 * exactly the same semid. Nothing to do.
2360 */
6062a8dc 2361 sem_unlock(sma, -1);
6d49dab8 2362 rcu_read_unlock();
380af1b3
MS
2363 continue;
2364 }
2365
2366 /* remove un from the linked lists */
cf9d5d78 2367 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2368 list_del(&un->list_id);
2369
a9795584
HK
2370 /* we are the last process using this ulp, acquiring ulp->lock
2371 * isn't required. Besides that, we are also protected against
2372 * IPC_RMID as we hold sma->sem_perm lock now
2373 */
380af1b3 2374 list_del_rcu(&un->list_proc);
380af1b3 2375
4daa28f6
MS
2376 /* perform adjustments registered in un */
2377 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2378 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2379 if (un->semadj[i]) {
2380 semaphore->semval += un->semadj[i];
1da177e4
LT
2381 /*
2382 * Range checks of the new semaphore value,
2383 * not defined by sus:
2384 * - Some unices ignore the undo entirely
2385 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2386 * - some cap the value (e.g. FreeBSD caps
2387 * at 0, but doesn't enforce SEMVMX)
2388 *
2389 * Linux caps the semaphore value, both at 0
2390 * and at SEMVMX.
2391 *
239521f3 2392 * Manfred <manfred@colorfullife.com>
1da177e4 2393 */
5f921ae9
IM
2394 if (semaphore->semval < 0)
2395 semaphore->semval = 0;
2396 if (semaphore->semval > SEMVMX)
2397 semaphore->semval = SEMVMX;
51d6f263 2398 ipc_update_pid(&semaphore->sempid, task_tgid(current));
1da177e4
LT
2399 }
2400 }
1da177e4 2401 /* maybe some queued-up processes were waiting for this */
9ae949fa 2402 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2403 sem_unlock(sma, -1);
6d49dab8 2404 rcu_read_unlock();
9ae949fa 2405 wake_up_q(&wake_q);
380af1b3 2406
693a8b6e 2407 kfree_rcu(un, rcu);
1da177e4 2408 }
4daa28f6 2409 kfree(ulp);
1da177e4
LT
2410}
2411
2412#ifdef CONFIG_PROC_FS
19b4946c 2413static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2414{
1efdb69b 2415 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2416 struct kern_ipc_perm *ipcp = it;
2417 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
e54d02b2 2418 time64_t sem_otime;
d12e1e50 2419
d8c63376
MS
2420 /*
2421 * The proc interface isn't aware of sem_lock(), it calls
2422 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2423 * In order to stay compatible with sem_lock(), we must
2424 * enter / leave complex_mode.
d8c63376 2425 */
5864a2fd 2426 complexmode_enter(sma);
d8c63376 2427
d12e1e50 2428 sem_otime = get_semotime(sma);
19b4946c 2429
7f032d6e 2430 seq_printf(s,
e54d02b2 2431 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
7f032d6e
JP
2432 sma->sem_perm.key,
2433 sma->sem_perm.id,
2434 sma->sem_perm.mode,
2435 sma->sem_nsems,
2436 from_kuid_munged(user_ns, sma->sem_perm.uid),
2437 from_kgid_munged(user_ns, sma->sem_perm.gid),
2438 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2439 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2440 sem_otime,
2441 sma->sem_ctime);
2442
5864a2fd
MS
2443 complexmode_tryleave(sma);
2444
7f032d6e 2445 return 0;
1da177e4
LT
2446}
2447#endif