]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/huge_memory.c
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[thirdparty/kernel/stable.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
97ae1749 15#include <linux/shrinker.h>
ba76149f
AA
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
878aee7d 19#include <linux/freezer.h>
a664b2d8 20#include <linux/mman.h>
325adeb5 21#include <linux/pagemap.h>
4daae3b4 22#include <linux/migrate.h>
43b5fbbd 23#include <linux/hashtable.h>
97ae1749 24
71e3aac0
AA
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28
ba76149f 29/*
8bfa3f9a
JW
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
ba76149f 36 */
71e3aac0 37unsigned long transparent_hugepage_flags __read_mostly =
13ece886 38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
40#endif
41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43#endif
d39d33c3 44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
47
48/* default scan 8*512 pte (or vmas) every 30 second */
49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50static unsigned int khugepaged_pages_collapsed;
51static unsigned int khugepaged_full_scans;
52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53/* during fragmentation poll the hugepage allocator once every minute */
54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55static struct task_struct *khugepaged_thread __read_mostly;
56static DEFINE_MUTEX(khugepaged_mutex);
57static DEFINE_SPINLOCK(khugepaged_mm_lock);
58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59/*
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
63 */
64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66static int khugepaged(void *none);
ba76149f 67static int khugepaged_slab_init(void);
ba76149f 68
43b5fbbd
SL
69#define MM_SLOTS_HASH_BITS 10
70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
ba76149f
AA
72static struct kmem_cache *mm_slot_cache __read_mostly;
73
74/**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
79 */
80struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
84};
85
86/**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
91 *
92 * There is only the one khugepaged_scan instance of this cursor structure.
93 */
94struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
2f1da642
HS
98};
99static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101};
102
f000565a
AA
103
104static int set_recommended_min_free_kbytes(void)
105{
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
f000565a 109
17c230af 110 if (!khugepaged_enabled())
f000565a
AA
111 return 0;
112
113 for_each_populated_zone(zone)
114 nr_zones++;
115
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119 /*
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
124 */
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
132
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
137}
138late_initcall(set_recommended_min_free_kbytes);
139
ba76149f
AA
140static int start_khugepaged(void)
141{
142 int err = 0;
143 if (khugepaged_enabled()) {
ba76149f
AA
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
152 }
911891af
XG
153
154 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 155 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
156
157 set_recommended_min_free_kbytes();
911891af 158 } else if (khugepaged_thread) {
911891af
XG
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
161 }
637e3a27 162
ba76149f
AA
163 return err;
164}
71e3aac0 165
97ae1749 166static atomic_t huge_zero_refcount;
5918d10a 167static struct page *huge_zero_page __read_mostly;
97ae1749 168
5918d10a 169static inline bool is_huge_zero_page(struct page *page)
4a6c1297 170{
5918d10a 171 return ACCESS_ONCE(huge_zero_page) == page;
97ae1749 172}
4a6c1297 173
97ae1749
KS
174static inline bool is_huge_zero_pmd(pmd_t pmd)
175{
5918d10a 176 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
177}
178
5918d10a 179static struct page *get_huge_zero_page(void)
97ae1749
KS
180{
181 struct page *zero_page;
182retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 184 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
185
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 187 HPAGE_PMD_ORDER);
d8a8e1f0
KS
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 190 return NULL;
d8a8e1f0
KS
191 }
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 193 preempt_disable();
5918d10a 194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749
KS
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
198 }
199
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
5918d10a 203 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
204}
205
97ae1749 206static void put_huge_zero_page(void)
4a6c1297 207{
97ae1749
KS
208 /*
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
211 */
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
213}
214
48896466
GC
215static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
4a6c1297 217{
48896466
GC
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220}
97ae1749 221
48896466
GC
222static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
224{
97ae1749 225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
48896466 229 return HPAGE_PMD_NR;
97ae1749
KS
230 }
231
232 return 0;
4a6c1297
KS
233}
234
97ae1749 235static struct shrinker huge_zero_page_shrinker = {
48896466
GC
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
238 .seeks = DEFAULT_SEEKS,
239};
240
71e3aac0 241#ifdef CONFIG_SYSFS
ba76149f 242
71e3aac0
AA
243static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
247{
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
253 else
254 return sprintf(buf, "always madvise [never]\n");
255}
256static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
261{
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
274 } else
275 return -EINVAL;
276
277 return count;
278}
279
280static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
282{
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286}
287static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
290{
ba76149f
AA
291 ssize_t ret;
292
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296
297 if (ret > 0) {
911891af
XG
298 int err;
299
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
303
ba76149f
AA
304 if (err)
305 ret = err;
306 }
307
308 return ret;
71e3aac0
AA
309}
310static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
312
313static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
316{
e27e6151
BH
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 319}
e27e6151 320
71e3aac0
AA
321static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
325{
e27e6151
BH
326 unsigned long value;
327 int ret;
328
329 ret = kstrtoul(buf, 10, &value);
330 if (ret < 0)
331 return ret;
332 if (value > 1)
333 return -EINVAL;
334
335 if (value)
71e3aac0 336 set_bit(flag, &transparent_hugepage_flags);
e27e6151 337 else
71e3aac0 338 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
339
340 return count;
341}
342
343/*
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
347 */
348static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
350{
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354}
355static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
358{
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362}
363static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
365
79da5407
KS
366static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
368{
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371}
372static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
374{
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377}
378static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
380#ifdef CONFIG_DEBUG_VM
381static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383{
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386}
387static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393}
394static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396#endif /* CONFIG_DEBUG_VM */
397
398static struct attribute *hugepage_attr[] = {
399 &enabled_attr.attr,
400 &defrag_attr.attr,
79da5407 401 &use_zero_page_attr.attr,
71e3aac0
AA
402#ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
404#endif
405 NULL,
406};
407
408static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
ba76149f
AA
410};
411
412static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 char *buf)
415{
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417}
418
419static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
422{
423 unsigned long msecs;
424 int err;
425
3dbb95f7 426 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
427 if (err || msecs > UINT_MAX)
428 return -EINVAL;
429
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
432
433 return count;
434}
435static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
438
439static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442{
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444}
445
446static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
449{
450 unsigned long msecs;
451 int err;
452
3dbb95f7 453 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
454 if (err || msecs > UINT_MAX)
455 return -EINVAL;
456
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
459
460 return count;
461}
462static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
465
466static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
469{
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471}
472static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
475{
476 int err;
477 unsigned long pages;
478
3dbb95f7 479 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
480 if (err || !pages || pages > UINT_MAX)
481 return -EINVAL;
482
483 khugepaged_pages_to_scan = pages;
484
485 return count;
486}
487static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
490
491static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494{
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496}
497static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
499
500static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
502 char *buf)
503{
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
505}
506static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
508
509static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
511{
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514}
515static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
518{
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521}
522static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
525
526/*
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
533 */
534static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf)
537{
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539}
540static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543{
544 int err;
545 unsigned long max_ptes_none;
546
3dbb95f7 547 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 return -EINVAL;
550
551 khugepaged_max_ptes_none = max_ptes_none;
552
553 return count;
554}
555static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
558
559static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
567 NULL,
568};
569
570static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
71e3aac0 573};
71e3aac0 574
569e5590 575static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 576{
71e3aac0
AA
577 int err;
578
569e5590
SL
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
2c79737a 581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
569e5590 582 return -ENOMEM;
ba76149f
AA
583 }
584
569e5590 585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 586 if (err) {
2c79737a 587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 588 goto delete_obj;
ba76149f
AA
589 }
590
569e5590 591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 592 if (err) {
2c79737a 593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 594 goto remove_hp_group;
ba76149f 595 }
569e5590
SL
596
597 return 0;
598
599remove_hp_group:
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601delete_obj:
602 kobject_put(*hugepage_kobj);
603 return err;
604}
605
606static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607{
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
611}
612#else
613static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614{
615 return 0;
616}
617
618static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619{
620}
621#endif /* CONFIG_SYSFS */
622
623static int __init hugepage_init(void)
624{
625 int err;
626 struct kobject *hugepage_kobj;
627
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
630 return -EINVAL;
631 }
632
633 err = hugepage_init_sysfs(&hugepage_kobj);
634 if (err)
635 return err;
ba76149f
AA
636
637 err = khugepaged_slab_init();
638 if (err)
639 goto out;
640
97ae1749
KS
641 register_shrinker(&huge_zero_page_shrinker);
642
97562cd2
RR
643 /*
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
647 */
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
650
ba76149f
AA
651 start_khugepaged();
652
569e5590 653 return 0;
ba76149f 654out:
569e5590 655 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 656 return err;
71e3aac0
AA
657}
658module_init(hugepage_init)
659
660static int __init setup_transparent_hugepage(char *str)
661{
662 int ret = 0;
663 if (!str)
664 goto out;
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 }
684out:
685 if (!ret)
686 printk(KERN_WARNING
687 "transparent_hugepage= cannot parse, ignored\n");
688 return ret;
689}
690__setup("transparent_hugepage=", setup_transparent_hugepage);
691
b32967ff 692pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
693{
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
696 return pmd;
697}
698
3122359a 699static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
700{
701 pmd_t entry;
3122359a 702 entry = mk_pmd(page, prot);
b3092b3b
BL
703 entry = pmd_mkhuge(entry);
704 return entry;
705}
706
71e3aac0
AA
707static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
711{
71e3aac0 712 pgtable_t pgtable;
c4088ebd 713 spinlock_t *ptl;
71e3aac0
AA
714
715 VM_BUG_ON(!PageCompound(page));
716 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 717 if (unlikely(!pgtable))
71e3aac0 718 return VM_FAULT_OOM;
71e3aac0
AA
719
720 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
721 /*
722 * The memory barrier inside __SetPageUptodate makes sure that
723 * clear_huge_page writes become visible before the set_pmd_at()
724 * write.
725 */
71e3aac0
AA
726 __SetPageUptodate(page);
727
c4088ebd 728 ptl = pmd_lock(mm, pmd);
71e3aac0 729 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 730 spin_unlock(ptl);
b9bbfbe3 731 mem_cgroup_uncharge_page(page);
71e3aac0
AA
732 put_page(page);
733 pte_free(mm, pgtable);
734 } else {
735 pmd_t entry;
3122359a
KS
736 entry = mk_huge_pmd(page, vma->vm_page_prot);
737 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 738 page_add_new_anon_rmap(page, vma, haddr);
6b0b50b0 739 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 740 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 741 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 742 atomic_long_inc(&mm->nr_ptes);
c4088ebd 743 spin_unlock(ptl);
71e3aac0
AA
744 }
745
aa2e878e 746 return 0;
71e3aac0
AA
747}
748
cc5d462f 749static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 750{
cc5d462f 751 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
752}
753
754static inline struct page *alloc_hugepage_vma(int defrag,
755 struct vm_area_struct *vma,
cc5d462f
AK
756 unsigned long haddr, int nd,
757 gfp_t extra_gfp)
0bbbc0b3 758{
cc5d462f 759 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 760 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
761}
762
c4088ebd 763/* Caller must hold page table lock. */
3ea41e62 764static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 766 struct page *zero_page)
fc9fe822
KS
767{
768 pmd_t entry;
3ea41e62
KS
769 if (!pmd_none(*pmd))
770 return false;
5918d10a 771 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822
KS
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
6b0b50b0 774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 775 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 776 atomic_long_inc(&mm->nr_ptes);
3ea41e62 777 return true;
fc9fe822
KS
778}
779
71e3aac0
AA
780int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783{
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 786
128ec037 787 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 788 return VM_FAULT_FALLBACK;
128ec037
KS
789 if (unlikely(anon_vma_prepare(vma)))
790 return VM_FAULT_OOM;
791 if (unlikely(khugepaged_enter(vma)))
792 return VM_FAULT_OOM;
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
c4088ebd 795 spinlock_t *ptl;
128ec037
KS
796 pgtable_t pgtable;
797 struct page *zero_page;
798 bool set;
799 pgtable = pte_alloc_one(mm, haddr);
800 if (unlikely(!pgtable))
ba76149f 801 return VM_FAULT_OOM;
128ec037
KS
802 zero_page = get_huge_zero_page();
803 if (unlikely(!zero_page)) {
804 pte_free(mm, pgtable);
81ab4201 805 count_vm_event(THP_FAULT_FALLBACK);
c0292554 806 return VM_FAULT_FALLBACK;
b9bbfbe3 807 }
c4088ebd 808 ptl = pmd_lock(mm, pmd);
128ec037
KS
809 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810 zero_page);
c4088ebd 811 spin_unlock(ptl);
128ec037
KS
812 if (!set) {
813 pte_free(mm, pgtable);
814 put_huge_zero_page();
edad9d2c 815 }
edad9d2c 816 return 0;
71e3aac0 817 }
128ec037
KS
818 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 vma, haddr, numa_node_id(), 0);
820 if (unlikely(!page)) {
821 count_vm_event(THP_FAULT_FALLBACK);
c0292554 822 return VM_FAULT_FALLBACK;
128ec037 823 }
128ec037
KS
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
17766dde 826 count_vm_event(THP_FAULT_FALLBACK);
c0292554 827 return VM_FAULT_FALLBACK;
128ec037
KS
828 }
829 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
17766dde 832 count_vm_event(THP_FAULT_FALLBACK);
c0292554 833 return VM_FAULT_FALLBACK;
128ec037
KS
834 }
835
17766dde 836 count_vm_event(THP_FAULT_ALLOC);
128ec037 837 return 0;
71e3aac0
AA
838}
839
840int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842 struct vm_area_struct *vma)
843{
c4088ebd 844 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
845 struct page *src_page;
846 pmd_t pmd;
847 pgtable_t pgtable;
848 int ret;
849
850 ret = -ENOMEM;
851 pgtable = pte_alloc_one(dst_mm, addr);
852 if (unlikely(!pgtable))
853 goto out;
854
c4088ebd
KS
855 dst_ptl = pmd_lock(dst_mm, dst_pmd);
856 src_ptl = pmd_lockptr(src_mm, src_pmd);
857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
858
859 ret = -EAGAIN;
860 pmd = *src_pmd;
861 if (unlikely(!pmd_trans_huge(pmd))) {
862 pte_free(dst_mm, pgtable);
863 goto out_unlock;
864 }
fc9fe822 865 /*
c4088ebd 866 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
867 * under splitting since we don't split the page itself, only pmd to
868 * a page table.
869 */
870 if (is_huge_zero_pmd(pmd)) {
5918d10a 871 struct page *zero_page;
3ea41e62 872 bool set;
97ae1749
KS
873 /*
874 * get_huge_zero_page() will never allocate a new page here,
875 * since we already have a zero page to copy. It just takes a
876 * reference.
877 */
5918d10a 878 zero_page = get_huge_zero_page();
3ea41e62 879 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 880 zero_page);
3ea41e62 881 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
882 ret = 0;
883 goto out_unlock;
884 }
de466bd6 885
71e3aac0
AA
886 if (unlikely(pmd_trans_splitting(pmd))) {
887 /* split huge page running from under us */
c4088ebd
KS
888 spin_unlock(src_ptl);
889 spin_unlock(dst_ptl);
71e3aac0
AA
890 pte_free(dst_mm, pgtable);
891
892 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
893 goto out;
894 }
895 src_page = pmd_page(pmd);
896 VM_BUG_ON(!PageHead(src_page));
897 get_page(src_page);
898 page_dup_rmap(src_page);
899 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
900
901 pmdp_set_wrprotect(src_mm, addr, src_pmd);
902 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 903 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 904 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 905 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
906
907 ret = 0;
908out_unlock:
c4088ebd
KS
909 spin_unlock(src_ptl);
910 spin_unlock(dst_ptl);
71e3aac0
AA
911out:
912 return ret;
913}
914
a1dd450b
WD
915void huge_pmd_set_accessed(struct mm_struct *mm,
916 struct vm_area_struct *vma,
917 unsigned long address,
918 pmd_t *pmd, pmd_t orig_pmd,
919 int dirty)
920{
c4088ebd 921 spinlock_t *ptl;
a1dd450b
WD
922 pmd_t entry;
923 unsigned long haddr;
924
c4088ebd 925 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 goto unlock;
928
929 entry = pmd_mkyoung(orig_pmd);
930 haddr = address & HPAGE_PMD_MASK;
931 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932 update_mmu_cache_pmd(vma, address, pmd);
933
934unlock:
c4088ebd 935 spin_unlock(ptl);
a1dd450b
WD
936}
937
93b4796d
KS
938static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939 struct vm_area_struct *vma, unsigned long address,
3ea41e62 940 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
93b4796d 941{
c4088ebd 942 spinlock_t *ptl;
93b4796d
KS
943 pgtable_t pgtable;
944 pmd_t _pmd;
945 struct page *page;
946 int i, ret = 0;
947 unsigned long mmun_start; /* For mmu_notifiers */
948 unsigned long mmun_end; /* For mmu_notifiers */
949
950 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
951 if (!page) {
952 ret |= VM_FAULT_OOM;
953 goto out;
954 }
955
956 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
957 put_page(page);
958 ret |= VM_FAULT_OOM;
959 goto out;
960 }
961
962 clear_user_highpage(page, address);
963 __SetPageUptodate(page);
964
965 mmun_start = haddr;
966 mmun_end = haddr + HPAGE_PMD_SIZE;
967 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
968
c4088ebd 969 ptl = pmd_lock(mm, pmd);
3ea41e62
KS
970 if (unlikely(!pmd_same(*pmd, orig_pmd)))
971 goto out_free_page;
972
93b4796d
KS
973 pmdp_clear_flush(vma, haddr, pmd);
974 /* leave pmd empty until pte is filled */
975
6b0b50b0 976 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
93b4796d
KS
977 pmd_populate(mm, &_pmd, pgtable);
978
979 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
980 pte_t *pte, entry;
981 if (haddr == (address & PAGE_MASK)) {
982 entry = mk_pte(page, vma->vm_page_prot);
983 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
984 page_add_new_anon_rmap(page, vma, haddr);
985 } else {
986 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
987 entry = pte_mkspecial(entry);
988 }
989 pte = pte_offset_map(&_pmd, haddr);
990 VM_BUG_ON(!pte_none(*pte));
991 set_pte_at(mm, haddr, pte, entry);
992 pte_unmap(pte);
993 }
994 smp_wmb(); /* make pte visible before pmd */
995 pmd_populate(mm, pmd, pgtable);
c4088ebd 996 spin_unlock(ptl);
97ae1749 997 put_huge_zero_page();
93b4796d
KS
998 inc_mm_counter(mm, MM_ANONPAGES);
999
1000 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1001
1002 ret |= VM_FAULT_WRITE;
1003out:
1004 return ret;
3ea41e62 1005out_free_page:
c4088ebd 1006 spin_unlock(ptl);
3ea41e62
KS
1007 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1008 mem_cgroup_uncharge_page(page);
1009 put_page(page);
1010 goto out;
93b4796d
KS
1011}
1012
71e3aac0
AA
1013static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1014 struct vm_area_struct *vma,
1015 unsigned long address,
1016 pmd_t *pmd, pmd_t orig_pmd,
1017 struct page *page,
1018 unsigned long haddr)
1019{
c4088ebd 1020 spinlock_t *ptl;
71e3aac0
AA
1021 pgtable_t pgtable;
1022 pmd_t _pmd;
1023 int ret = 0, i;
1024 struct page **pages;
2ec74c3e
SG
1025 unsigned long mmun_start; /* For mmu_notifiers */
1026 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1027
1028 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1029 GFP_KERNEL);
1030 if (unlikely(!pages)) {
1031 ret |= VM_FAULT_OOM;
1032 goto out;
1033 }
1034
1035 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1036 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1037 __GFP_OTHER_NODE,
19ee151e 1038 vma, address, page_to_nid(page));
b9bbfbe3
AA
1039 if (unlikely(!pages[i] ||
1040 mem_cgroup_newpage_charge(pages[i], mm,
1041 GFP_KERNEL))) {
1042 if (pages[i])
71e3aac0 1043 put_page(pages[i]);
b9bbfbe3
AA
1044 mem_cgroup_uncharge_start();
1045 while (--i >= 0) {
1046 mem_cgroup_uncharge_page(pages[i]);
1047 put_page(pages[i]);
1048 }
1049 mem_cgroup_uncharge_end();
71e3aac0
AA
1050 kfree(pages);
1051 ret |= VM_FAULT_OOM;
1052 goto out;
1053 }
1054 }
1055
1056 for (i = 0; i < HPAGE_PMD_NR; i++) {
1057 copy_user_highpage(pages[i], page + i,
0089e485 1058 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1059 __SetPageUptodate(pages[i]);
1060 cond_resched();
1061 }
1062
2ec74c3e
SG
1063 mmun_start = haddr;
1064 mmun_end = haddr + HPAGE_PMD_SIZE;
1065 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1066
c4088ebd 1067 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1068 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1069 goto out_free_pages;
1070 VM_BUG_ON(!PageHead(page));
1071
2ec74c3e 1072 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1073 /* leave pmd empty until pte is filled */
1074
6b0b50b0 1075 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1076 pmd_populate(mm, &_pmd, pgtable);
1077
1078 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1079 pte_t *pte, entry;
1080 entry = mk_pte(pages[i], vma->vm_page_prot);
1081 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1082 page_add_new_anon_rmap(pages[i], vma, haddr);
1083 pte = pte_offset_map(&_pmd, haddr);
1084 VM_BUG_ON(!pte_none(*pte));
1085 set_pte_at(mm, haddr, pte, entry);
1086 pte_unmap(pte);
1087 }
1088 kfree(pages);
1089
71e3aac0
AA
1090 smp_wmb(); /* make pte visible before pmd */
1091 pmd_populate(mm, pmd, pgtable);
1092 page_remove_rmap(page);
c4088ebd 1093 spin_unlock(ptl);
71e3aac0 1094
2ec74c3e
SG
1095 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1096
71e3aac0
AA
1097 ret |= VM_FAULT_WRITE;
1098 put_page(page);
1099
1100out:
1101 return ret;
1102
1103out_free_pages:
c4088ebd 1104 spin_unlock(ptl);
2ec74c3e 1105 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1106 mem_cgroup_uncharge_start();
1107 for (i = 0; i < HPAGE_PMD_NR; i++) {
1108 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1109 put_page(pages[i]);
b9bbfbe3
AA
1110 }
1111 mem_cgroup_uncharge_end();
71e3aac0
AA
1112 kfree(pages);
1113 goto out;
1114}
1115
1116int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1117 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1118{
c4088ebd 1119 spinlock_t *ptl;
71e3aac0 1120 int ret = 0;
93b4796d 1121 struct page *page = NULL, *new_page;
71e3aac0 1122 unsigned long haddr;
2ec74c3e
SG
1123 unsigned long mmun_start; /* For mmu_notifiers */
1124 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1125
c4088ebd 1126 ptl = pmd_lockptr(mm, pmd);
71e3aac0 1127 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1128 haddr = address & HPAGE_PMD_MASK;
1129 if (is_huge_zero_pmd(orig_pmd))
1130 goto alloc;
c4088ebd 1131 spin_lock(ptl);
71e3aac0
AA
1132 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1133 goto out_unlock;
1134
1135 page = pmd_page(orig_pmd);
1136 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1137 if (page_mapcount(page) == 1) {
1138 pmd_t entry;
1139 entry = pmd_mkyoung(orig_pmd);
1140 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1141 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1142 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1143 ret |= VM_FAULT_WRITE;
1144 goto out_unlock;
1145 }
1146 get_page(page);
c4088ebd 1147 spin_unlock(ptl);
93b4796d 1148alloc:
71e3aac0
AA
1149 if (transparent_hugepage_enabled(vma) &&
1150 !transparent_hugepage_debug_cow())
0bbbc0b3 1151 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1152 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1153 else
1154 new_page = NULL;
1155
1156 if (unlikely(!new_page)) {
eecc1e42 1157 if (!page) {
93b4796d 1158 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
3ea41e62 1159 address, pmd, orig_pmd, haddr);
93b4796d
KS
1160 } else {
1161 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1162 pmd, orig_pmd, page, haddr);
1163 if (ret & VM_FAULT_OOM)
1164 split_huge_page(page);
1165 put_page(page);
1166 }
17766dde 1167 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1168 goto out;
1169 }
1170
b9bbfbe3
AA
1171 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1172 put_page(new_page);
93b4796d
KS
1173 if (page) {
1174 split_huge_page(page);
1175 put_page(page);
1176 }
17766dde 1177 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1178 ret |= VM_FAULT_OOM;
1179 goto out;
1180 }
1181
17766dde
DR
1182 count_vm_event(THP_FAULT_ALLOC);
1183
eecc1e42 1184 if (!page)
93b4796d
KS
1185 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1186 else
1187 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1188 __SetPageUptodate(new_page);
1189
2ec74c3e
SG
1190 mmun_start = haddr;
1191 mmun_end = haddr + HPAGE_PMD_SIZE;
1192 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1193
c4088ebd 1194 spin_lock(ptl);
93b4796d
KS
1195 if (page)
1196 put_page(page);
b9bbfbe3 1197 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1198 spin_unlock(ptl);
b9bbfbe3 1199 mem_cgroup_uncharge_page(new_page);
71e3aac0 1200 put_page(new_page);
2ec74c3e 1201 goto out_mn;
b9bbfbe3 1202 } else {
71e3aac0 1203 pmd_t entry;
3122359a
KS
1204 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1205 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2ec74c3e 1206 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1207 page_add_new_anon_rmap(new_page, vma, haddr);
1208 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1209 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1210 if (!page) {
93b4796d 1211 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1212 put_huge_zero_page();
1213 } else {
93b4796d
KS
1214 VM_BUG_ON(!PageHead(page));
1215 page_remove_rmap(page);
1216 put_page(page);
1217 }
71e3aac0
AA
1218 ret |= VM_FAULT_WRITE;
1219 }
c4088ebd 1220 spin_unlock(ptl);
2ec74c3e
SG
1221out_mn:
1222 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1223out:
1224 return ret;
2ec74c3e 1225out_unlock:
c4088ebd 1226 spin_unlock(ptl);
2ec74c3e 1227 return ret;
71e3aac0
AA
1228}
1229
b676b293 1230struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1231 unsigned long addr,
1232 pmd_t *pmd,
1233 unsigned int flags)
1234{
b676b293 1235 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1236 struct page *page = NULL;
1237
c4088ebd 1238 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1239
1240 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1241 goto out;
1242
85facf25
KS
1243 /* Avoid dumping huge zero page */
1244 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1245 return ERR_PTR(-EFAULT);
1246
2b4847e7
MG
1247 /* Full NUMA hinting faults to serialise migration in fault paths */
1248 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1249 goto out;
1250
71e3aac0
AA
1251 page = pmd_page(*pmd);
1252 VM_BUG_ON(!PageHead(page));
1253 if (flags & FOLL_TOUCH) {
1254 pmd_t _pmd;
1255 /*
1256 * We should set the dirty bit only for FOLL_WRITE but
1257 * for now the dirty bit in the pmd is meaningless.
1258 * And if the dirty bit will become meaningful and
1259 * we'll only set it with FOLL_WRITE, an atomic
1260 * set_bit will be required on the pmd to set the
1261 * young bit, instead of the current set_pmd_at.
1262 */
1263 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1264 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1265 pmd, _pmd, 1))
1266 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1267 }
b676b293
DR
1268 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1269 if (page->mapping && trylock_page(page)) {
1270 lru_add_drain();
1271 if (page->mapping)
1272 mlock_vma_page(page);
1273 unlock_page(page);
1274 }
1275 }
71e3aac0
AA
1276 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1277 VM_BUG_ON(!PageCompound(page));
1278 if (flags & FOLL_GET)
70b50f94 1279 get_page_foll(page);
71e3aac0
AA
1280
1281out:
1282 return page;
1283}
1284
d10e63f2 1285/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1286int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1287 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1288{
c4088ebd 1289 spinlock_t *ptl;
b8916634 1290 struct anon_vma *anon_vma = NULL;
b32967ff 1291 struct page *page;
d10e63f2 1292 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1293 int page_nid = -1, this_nid = numa_node_id();
90572890 1294 int target_nid, last_cpupid = -1;
8191acbd
MG
1295 bool page_locked;
1296 bool migrated = false;
6688cc05 1297 int flags = 0;
d10e63f2 1298
c4088ebd 1299 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1300 if (unlikely(!pmd_same(pmd, *pmdp)))
1301 goto out_unlock;
1302
de466bd6
MG
1303 /*
1304 * If there are potential migrations, wait for completion and retry
1305 * without disrupting NUMA hinting information. Do not relock and
1306 * check_same as the page may no longer be mapped.
1307 */
1308 if (unlikely(pmd_trans_migrating(*pmdp))) {
1309 spin_unlock(ptl);
1310 wait_migrate_huge_page(vma->anon_vma, pmdp);
1311 goto out;
1312 }
1313
d10e63f2 1314 page = pmd_page(pmd);
a1a46184 1315 BUG_ON(is_huge_zero_page(page));
8191acbd 1316 page_nid = page_to_nid(page);
90572890 1317 last_cpupid = page_cpupid_last(page);
03c5a6e1 1318 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1319 if (page_nid == this_nid) {
03c5a6e1 1320 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1321 flags |= TNF_FAULT_LOCAL;
1322 }
4daae3b4 1323
6688cc05
PZ
1324 /*
1325 * Avoid grouping on DSO/COW pages in specific and RO pages
1326 * in general, RO pages shouldn't hurt as much anyway since
1327 * they can be in shared cache state.
1328 */
1329 if (!pmd_write(pmd))
1330 flags |= TNF_NO_GROUP;
1331
ff9042b1
MG
1332 /*
1333 * Acquire the page lock to serialise THP migrations but avoid dropping
1334 * page_table_lock if at all possible
1335 */
b8916634
MG
1336 page_locked = trylock_page(page);
1337 target_nid = mpol_misplaced(page, vma, haddr);
1338 if (target_nid == -1) {
1339 /* If the page was locked, there are no parallel migrations */
a54a407f 1340 if (page_locked)
b8916634 1341 goto clear_pmdnuma;
2b4847e7 1342 }
4daae3b4 1343
de466bd6 1344 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1345 if (!page_locked) {
c4088ebd 1346 spin_unlock(ptl);
b8916634 1347 wait_on_page_locked(page);
a54a407f 1348 page_nid = -1;
b8916634
MG
1349 goto out;
1350 }
1351
2b4847e7
MG
1352 /*
1353 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1354 * to serialises splits
1355 */
b8916634 1356 get_page(page);
c4088ebd 1357 spin_unlock(ptl);
b8916634 1358 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1359
c69307d5 1360 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1361 spin_lock(ptl);
b32967ff
MG
1362 if (unlikely(!pmd_same(pmd, *pmdp))) {
1363 unlock_page(page);
1364 put_page(page);
a54a407f 1365 page_nid = -1;
4daae3b4 1366 goto out_unlock;
b32967ff 1367 }
ff9042b1 1368
c3a489ca
MG
1369 /* Bail if we fail to protect against THP splits for any reason */
1370 if (unlikely(!anon_vma)) {
1371 put_page(page);
1372 page_nid = -1;
1373 goto clear_pmdnuma;
1374 }
1375
a54a407f
MG
1376 /*
1377 * Migrate the THP to the requested node, returns with page unlocked
1378 * and pmd_numa cleared.
1379 */
c4088ebd 1380 spin_unlock(ptl);
b32967ff 1381 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1382 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1383 if (migrated) {
1384 flags |= TNF_MIGRATED;
8191acbd 1385 page_nid = target_nid;
6688cc05 1386 }
b32967ff 1387
8191acbd 1388 goto out;
b32967ff 1389clear_pmdnuma:
a54a407f 1390 BUG_ON(!PageLocked(page));
d10e63f2
MG
1391 pmd = pmd_mknonnuma(pmd);
1392 set_pmd_at(mm, haddr, pmdp, pmd);
1393 VM_BUG_ON(pmd_numa(*pmdp));
1394 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1395 unlock_page(page);
d10e63f2 1396out_unlock:
c4088ebd 1397 spin_unlock(ptl);
b8916634
MG
1398
1399out:
1400 if (anon_vma)
1401 page_unlock_anon_vma_read(anon_vma);
1402
8191acbd 1403 if (page_nid != -1)
6688cc05 1404 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1405
d10e63f2
MG
1406 return 0;
1407}
1408
71e3aac0 1409int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1410 pmd_t *pmd, unsigned long addr)
71e3aac0 1411{
bf929152 1412 spinlock_t *ptl;
71e3aac0
AA
1413 int ret = 0;
1414
bf929152 1415 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1416 struct page *page;
1417 pgtable_t pgtable;
f5c8ad47 1418 pmd_t orig_pmd;
a6bf2bb0
AK
1419 /*
1420 * For architectures like ppc64 we look at deposited pgtable
1421 * when calling pmdp_get_and_clear. So do the
1422 * pgtable_trans_huge_withdraw after finishing pmdp related
1423 * operations.
1424 */
f5c8ad47 1425 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1426 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1427 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1428 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1429 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1430 spin_unlock(ptl);
97ae1749 1431 put_huge_zero_page();
479f0abb
KS
1432 } else {
1433 page = pmd_page(orig_pmd);
1434 page_remove_rmap(page);
1435 VM_BUG_ON(page_mapcount(page) < 0);
1436 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1437 VM_BUG_ON(!PageHead(page));
e1f56c89 1438 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1439 spin_unlock(ptl);
479f0abb
KS
1440 tlb_remove_page(tlb, page);
1441 }
025c5b24
NH
1442 pte_free(tlb->mm, pgtable);
1443 ret = 1;
1444 }
71e3aac0
AA
1445 return ret;
1446}
1447
0ca1634d
JW
1448int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1449 unsigned long addr, unsigned long end,
1450 unsigned char *vec)
1451{
bf929152 1452 spinlock_t *ptl;
0ca1634d
JW
1453 int ret = 0;
1454
bf929152 1455 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1456 /*
1457 * All logical pages in the range are present
1458 * if backed by a huge page.
1459 */
bf929152 1460 spin_unlock(ptl);
025c5b24
NH
1461 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1462 ret = 1;
1463 }
0ca1634d
JW
1464
1465 return ret;
1466}
1467
37a1c49a
AA
1468int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1469 unsigned long old_addr,
1470 unsigned long new_addr, unsigned long old_end,
1471 pmd_t *old_pmd, pmd_t *new_pmd)
1472{
bf929152 1473 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1474 int ret = 0;
1475 pmd_t pmd;
1476
1477 struct mm_struct *mm = vma->vm_mm;
1478
1479 if ((old_addr & ~HPAGE_PMD_MASK) ||
1480 (new_addr & ~HPAGE_PMD_MASK) ||
1481 old_end - old_addr < HPAGE_PMD_SIZE ||
1482 (new_vma->vm_flags & VM_NOHUGEPAGE))
1483 goto out;
1484
1485 /*
1486 * The destination pmd shouldn't be established, free_pgtables()
1487 * should have release it.
1488 */
1489 if (WARN_ON(!pmd_none(*new_pmd))) {
1490 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1491 goto out;
1492 }
1493
bf929152
KS
1494 /*
1495 * We don't have to worry about the ordering of src and dst
1496 * ptlocks because exclusive mmap_sem prevents deadlock.
1497 */
1498 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1499 if (ret == 1) {
bf929152
KS
1500 new_ptl = pmd_lockptr(mm, new_pmd);
1501 if (new_ptl != old_ptl)
1502 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
025c5b24
NH
1503 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1504 VM_BUG_ON(!pmd_none(*new_pmd));
0f8975ec 1505 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
3592806c
KS
1506 if (new_ptl != old_ptl) {
1507 pgtable_t pgtable;
1508
1509 /*
1510 * Move preallocated PTE page table if new_pmd is on
1511 * different PMD page table.
1512 */
1513 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1514 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1515
bf929152 1516 spin_unlock(new_ptl);
3592806c 1517 }
bf929152 1518 spin_unlock(old_ptl);
37a1c49a
AA
1519 }
1520out:
1521 return ret;
1522}
1523
f123d74a
MG
1524/*
1525 * Returns
1526 * - 0 if PMD could not be locked
1527 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1528 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1529 */
cd7548ab 1530int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1531 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1532{
1533 struct mm_struct *mm = vma->vm_mm;
bf929152 1534 spinlock_t *ptl;
cd7548ab
JW
1535 int ret = 0;
1536
bf929152 1537 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1538 pmd_t entry;
f123d74a 1539 ret = 1;
a4f1de17 1540 if (!prot_numa) {
f123d74a 1541 entry = pmdp_get_and_clear(mm, addr, pmd);
1667918b
MG
1542 if (pmd_numa(entry))
1543 entry = pmd_mknonnuma(entry);
4b10e7d5 1544 entry = pmd_modify(entry, newprot);
f123d74a 1545 ret = HPAGE_PMD_NR;
a4f1de17
HD
1546 BUG_ON(pmd_write(entry));
1547 } else {
4b10e7d5
MG
1548 struct page *page = pmd_page(*pmd);
1549
a1a46184 1550 /*
1bc115d8
MG
1551 * Do not trap faults against the zero page. The
1552 * read-only data is likely to be read-cached on the
1553 * local CPU cache and it is less useful to know about
1554 * local vs remote hits on the zero page.
a1a46184 1555 */
1bc115d8 1556 if (!is_huge_zero_page(page) &&
4b10e7d5 1557 !pmd_numa(*pmd)) {
5a6dac3e 1558 entry = *pmd;
4b10e7d5 1559 entry = pmd_mknuma(entry);
f123d74a 1560 ret = HPAGE_PMD_NR;
4b10e7d5
MG
1561 }
1562 }
f123d74a
MG
1563
1564 /* Set PMD if cleared earlier */
1565 if (ret == HPAGE_PMD_NR)
1566 set_pmd_at(mm, addr, pmd, entry);
1567
bf929152 1568 spin_unlock(ptl);
025c5b24
NH
1569 }
1570
1571 return ret;
1572}
1573
1574/*
1575 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1576 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1577 *
1578 * Note that if it returns 1, this routine returns without unlocking page
1579 * table locks. So callers must unlock them.
1580 */
bf929152
KS
1581int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1582 spinlock_t **ptl)
025c5b24 1583{
bf929152 1584 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1585 if (likely(pmd_trans_huge(*pmd))) {
1586 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1587 spin_unlock(*ptl);
cd7548ab 1588 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1589 return -1;
cd7548ab 1590 } else {
025c5b24
NH
1591 /* Thp mapped by 'pmd' is stable, so we can
1592 * handle it as it is. */
1593 return 1;
cd7548ab 1594 }
025c5b24 1595 }
bf929152 1596 spin_unlock(*ptl);
025c5b24 1597 return 0;
cd7548ab
JW
1598}
1599
117b0791
KS
1600/*
1601 * This function returns whether a given @page is mapped onto the @address
1602 * in the virtual space of @mm.
1603 *
1604 * When it's true, this function returns *pmd with holding the page table lock
1605 * and passing it back to the caller via @ptl.
1606 * If it's false, returns NULL without holding the page table lock.
1607 */
71e3aac0
AA
1608pmd_t *page_check_address_pmd(struct page *page,
1609 struct mm_struct *mm,
1610 unsigned long address,
117b0791
KS
1611 enum page_check_address_pmd_flag flag,
1612 spinlock_t **ptl)
71e3aac0 1613{
117b0791 1614 pmd_t *pmd;
71e3aac0
AA
1615
1616 if (address & ~HPAGE_PMD_MASK)
117b0791 1617 return NULL;
71e3aac0 1618
6219049a
BL
1619 pmd = mm_find_pmd(mm, address);
1620 if (!pmd)
117b0791
KS
1621 return NULL;
1622 *ptl = pmd_lock(mm, pmd);
71e3aac0 1623 if (pmd_none(*pmd))
117b0791 1624 goto unlock;
71e3aac0 1625 if (pmd_page(*pmd) != page)
117b0791 1626 goto unlock;
94fcc585
AA
1627 /*
1628 * split_vma() may create temporary aliased mappings. There is
1629 * no risk as long as all huge pmd are found and have their
1630 * splitting bit set before __split_huge_page_refcount
1631 * runs. Finding the same huge pmd more than once during the
1632 * same rmap walk is not a problem.
1633 */
1634 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1635 pmd_trans_splitting(*pmd))
117b0791 1636 goto unlock;
71e3aac0
AA
1637 if (pmd_trans_huge(*pmd)) {
1638 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1639 !pmd_trans_splitting(*pmd));
117b0791 1640 return pmd;
71e3aac0 1641 }
117b0791
KS
1642unlock:
1643 spin_unlock(*ptl);
1644 return NULL;
71e3aac0
AA
1645}
1646
1647static int __split_huge_page_splitting(struct page *page,
1648 struct vm_area_struct *vma,
1649 unsigned long address)
1650{
1651 struct mm_struct *mm = vma->vm_mm;
117b0791 1652 spinlock_t *ptl;
71e3aac0
AA
1653 pmd_t *pmd;
1654 int ret = 0;
2ec74c3e
SG
1655 /* For mmu_notifiers */
1656 const unsigned long mmun_start = address;
1657 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1658
2ec74c3e 1659 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1660 pmd = page_check_address_pmd(page, mm, address,
117b0791 1661 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1662 if (pmd) {
1663 /*
1664 * We can't temporarily set the pmd to null in order
1665 * to split it, the pmd must remain marked huge at all
1666 * times or the VM won't take the pmd_trans_huge paths
5a505085 1667 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1668 * serialize against split_huge_page*.
1669 */
2ec74c3e 1670 pmdp_splitting_flush(vma, address, pmd);
71e3aac0 1671 ret = 1;
117b0791 1672 spin_unlock(ptl);
71e3aac0 1673 }
2ec74c3e 1674 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1675
1676 return ret;
1677}
1678
5bc7b8ac
SL
1679static void __split_huge_page_refcount(struct page *page,
1680 struct list_head *list)
71e3aac0
AA
1681{
1682 int i;
71e3aac0 1683 struct zone *zone = page_zone(page);
fa9add64 1684 struct lruvec *lruvec;
70b50f94 1685 int tail_count = 0;
71e3aac0
AA
1686
1687 /* prevent PageLRU to go away from under us, and freeze lru stats */
1688 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1689 lruvec = mem_cgroup_page_lruvec(page, zone);
1690
71e3aac0 1691 compound_lock(page);
e94c8a9c
KH
1692 /* complete memcg works before add pages to LRU */
1693 mem_cgroup_split_huge_fixup(page);
71e3aac0 1694
45676885 1695 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1696 struct page *page_tail = page + i;
1697
70b50f94
AA
1698 /* tail_page->_mapcount cannot change */
1699 BUG_ON(page_mapcount(page_tail) < 0);
1700 tail_count += page_mapcount(page_tail);
1701 /* check for overflow */
1702 BUG_ON(tail_count < 0);
1703 BUG_ON(atomic_read(&page_tail->_count) != 0);
1704 /*
1705 * tail_page->_count is zero and not changing from
1706 * under us. But get_page_unless_zero() may be running
1707 * from under us on the tail_page. If we used
1708 * atomic_set() below instead of atomic_add(), we
1709 * would then run atomic_set() concurrently with
1710 * get_page_unless_zero(), and atomic_set() is
1711 * implemented in C not using locked ops. spin_unlock
1712 * on x86 sometime uses locked ops because of PPro
1713 * errata 66, 92, so unless somebody can guarantee
1714 * atomic_set() here would be safe on all archs (and
1715 * not only on x86), it's safer to use atomic_add().
1716 */
1717 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1718 &page_tail->_count);
71e3aac0
AA
1719
1720 /* after clearing PageTail the gup refcount can be released */
1721 smp_mb();
1722
a6d30ddd
JD
1723 /*
1724 * retain hwpoison flag of the poisoned tail page:
1725 * fix for the unsuitable process killed on Guest Machine(KVM)
1726 * by the memory-failure.
1727 */
1728 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1729 page_tail->flags |= (page->flags &
1730 ((1L << PG_referenced) |
1731 (1L << PG_swapbacked) |
1732 (1L << PG_mlocked) |
e180cf80
KS
1733 (1L << PG_uptodate) |
1734 (1L << PG_active) |
1735 (1L << PG_unevictable)));
71e3aac0
AA
1736 page_tail->flags |= (1L << PG_dirty);
1737
70b50f94 1738 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1739 smp_wmb();
1740
1741 /*
1742 * __split_huge_page_splitting() already set the
1743 * splitting bit in all pmd that could map this
1744 * hugepage, that will ensure no CPU can alter the
1745 * mapcount on the head page. The mapcount is only
1746 * accounted in the head page and it has to be
1747 * transferred to all tail pages in the below code. So
1748 * for this code to be safe, the split the mapcount
1749 * can't change. But that doesn't mean userland can't
1750 * keep changing and reading the page contents while
1751 * we transfer the mapcount, so the pmd splitting
1752 * status is achieved setting a reserved bit in the
1753 * pmd, not by clearing the present bit.
1754 */
71e3aac0
AA
1755 page_tail->_mapcount = page->_mapcount;
1756
1757 BUG_ON(page_tail->mapping);
1758 page_tail->mapping = page->mapping;
1759
45676885 1760 page_tail->index = page->index + i;
90572890 1761 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1762
1763 BUG_ON(!PageAnon(page_tail));
1764 BUG_ON(!PageUptodate(page_tail));
1765 BUG_ON(!PageDirty(page_tail));
1766 BUG_ON(!PageSwapBacked(page_tail));
1767
5bc7b8ac 1768 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1769 }
70b50f94
AA
1770 atomic_sub(tail_count, &page->_count);
1771 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1772
fa9add64 1773 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1774
71e3aac0
AA
1775 ClearPageCompound(page);
1776 compound_unlock(page);
1777 spin_unlock_irq(&zone->lru_lock);
1778
1779 for (i = 1; i < HPAGE_PMD_NR; i++) {
1780 struct page *page_tail = page + i;
1781 BUG_ON(page_count(page_tail) <= 0);
1782 /*
1783 * Tail pages may be freed if there wasn't any mapping
1784 * like if add_to_swap() is running on a lru page that
1785 * had its mapping zapped. And freeing these pages
1786 * requires taking the lru_lock so we do the put_page
1787 * of the tail pages after the split is complete.
1788 */
1789 put_page(page_tail);
1790 }
1791
1792 /*
1793 * Only the head page (now become a regular page) is required
1794 * to be pinned by the caller.
1795 */
1796 BUG_ON(page_count(page) <= 0);
1797}
1798
1799static int __split_huge_page_map(struct page *page,
1800 struct vm_area_struct *vma,
1801 unsigned long address)
1802{
1803 struct mm_struct *mm = vma->vm_mm;
117b0791 1804 spinlock_t *ptl;
71e3aac0
AA
1805 pmd_t *pmd, _pmd;
1806 int ret = 0, i;
1807 pgtable_t pgtable;
1808 unsigned long haddr;
1809
71e3aac0 1810 pmd = page_check_address_pmd(page, mm, address,
117b0791 1811 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1812 if (pmd) {
6b0b50b0 1813 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1814 pmd_populate(mm, &_pmd, pgtable);
1815
e3ebcf64
GS
1816 haddr = address;
1817 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1818 pte_t *pte, entry;
1819 BUG_ON(PageCompound(page+i));
1820 entry = mk_pte(page + i, vma->vm_page_prot);
1821 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1822 if (!pmd_write(*pmd))
1823 entry = pte_wrprotect(entry);
1824 else
1825 BUG_ON(page_mapcount(page) != 1);
1826 if (!pmd_young(*pmd))
1827 entry = pte_mkold(entry);
1ba6e0b5
AA
1828 if (pmd_numa(*pmd))
1829 entry = pte_mknuma(entry);
71e3aac0
AA
1830 pte = pte_offset_map(&_pmd, haddr);
1831 BUG_ON(!pte_none(*pte));
1832 set_pte_at(mm, haddr, pte, entry);
1833 pte_unmap(pte);
1834 }
1835
71e3aac0
AA
1836 smp_wmb(); /* make pte visible before pmd */
1837 /*
1838 * Up to this point the pmd is present and huge and
1839 * userland has the whole access to the hugepage
1840 * during the split (which happens in place). If we
1841 * overwrite the pmd with the not-huge version
1842 * pointing to the pte here (which of course we could
1843 * if all CPUs were bug free), userland could trigger
1844 * a small page size TLB miss on the small sized TLB
1845 * while the hugepage TLB entry is still established
1846 * in the huge TLB. Some CPU doesn't like that. See
1847 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1848 * Erratum 383 on page 93. Intel should be safe but is
1849 * also warns that it's only safe if the permission
1850 * and cache attributes of the two entries loaded in
1851 * the two TLB is identical (which should be the case
1852 * here). But it is generally safer to never allow
1853 * small and huge TLB entries for the same virtual
1854 * address to be loaded simultaneously. So instead of
1855 * doing "pmd_populate(); flush_tlb_range();" we first
1856 * mark the current pmd notpresent (atomically because
1857 * here the pmd_trans_huge and pmd_trans_splitting
1858 * must remain set at all times on the pmd until the
1859 * split is complete for this pmd), then we flush the
1860 * SMP TLB and finally we write the non-huge version
1861 * of the pmd entry with pmd_populate.
1862 */
46dcde73 1863 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1864 pmd_populate(mm, pmd, pgtable);
1865 ret = 1;
117b0791 1866 spin_unlock(ptl);
71e3aac0 1867 }
71e3aac0
AA
1868
1869 return ret;
1870}
1871
5a505085 1872/* must be called with anon_vma->root->rwsem held */
71e3aac0 1873static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1874 struct anon_vma *anon_vma,
1875 struct list_head *list)
71e3aac0
AA
1876{
1877 int mapcount, mapcount2;
bf181b9f 1878 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1879 struct anon_vma_chain *avc;
1880
1881 BUG_ON(!PageHead(page));
1882 BUG_ON(PageTail(page));
1883
1884 mapcount = 0;
bf181b9f 1885 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1886 struct vm_area_struct *vma = avc->vma;
1887 unsigned long addr = vma_address(page, vma);
1888 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1889 mapcount += __split_huge_page_splitting(page, vma, addr);
1890 }
05759d38
AA
1891 /*
1892 * It is critical that new vmas are added to the tail of the
1893 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1894 * and establishes a child pmd before
1895 * __split_huge_page_splitting() freezes the parent pmd (so if
1896 * we fail to prevent copy_huge_pmd() from running until the
1897 * whole __split_huge_page() is complete), we will still see
1898 * the newly established pmd of the child later during the
1899 * walk, to be able to set it as pmd_trans_splitting too.
1900 */
1901 if (mapcount != page_mapcount(page))
1902 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1903 mapcount, page_mapcount(page));
71e3aac0
AA
1904 BUG_ON(mapcount != page_mapcount(page));
1905
5bc7b8ac 1906 __split_huge_page_refcount(page, list);
71e3aac0
AA
1907
1908 mapcount2 = 0;
bf181b9f 1909 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1910 struct vm_area_struct *vma = avc->vma;
1911 unsigned long addr = vma_address(page, vma);
1912 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1913 mapcount2 += __split_huge_page_map(page, vma, addr);
1914 }
05759d38
AA
1915 if (mapcount != mapcount2)
1916 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1917 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1918 BUG_ON(mapcount != mapcount2);
1919}
1920
5bc7b8ac
SL
1921/*
1922 * Split a hugepage into normal pages. This doesn't change the position of head
1923 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1924 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1925 * from the hugepage.
1926 * Return 0 if the hugepage is split successfully otherwise return 1.
1927 */
1928int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1929{
1930 struct anon_vma *anon_vma;
1931 int ret = 1;
1932
5918d10a 1933 BUG_ON(is_huge_zero_page(page));
71e3aac0 1934 BUG_ON(!PageAnon(page));
062f1af2
MG
1935
1936 /*
1937 * The caller does not necessarily hold an mmap_sem that would prevent
1938 * the anon_vma disappearing so we first we take a reference to it
1939 * and then lock the anon_vma for write. This is similar to
1940 * page_lock_anon_vma_read except the write lock is taken to serialise
1941 * against parallel split or collapse operations.
1942 */
1943 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1944 if (!anon_vma)
1945 goto out;
062f1af2
MG
1946 anon_vma_lock_write(anon_vma);
1947
71e3aac0
AA
1948 ret = 0;
1949 if (!PageCompound(page))
1950 goto out_unlock;
1951
1952 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1953 __split_huge_page(page, anon_vma, list);
81ab4201 1954 count_vm_event(THP_SPLIT);
71e3aac0
AA
1955
1956 BUG_ON(PageCompound(page));
1957out_unlock:
08b52706 1958 anon_vma_unlock_write(anon_vma);
062f1af2 1959 put_anon_vma(anon_vma);
71e3aac0
AA
1960out:
1961 return ret;
1962}
1963
4b6e1e37 1964#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1965
60ab3244
AA
1966int hugepage_madvise(struct vm_area_struct *vma,
1967 unsigned long *vm_flags, int advice)
0af4e98b 1968{
8e72033f
GS
1969 struct mm_struct *mm = vma->vm_mm;
1970
a664b2d8
AA
1971 switch (advice) {
1972 case MADV_HUGEPAGE:
1973 /*
1974 * Be somewhat over-protective like KSM for now!
1975 */
78f11a25 1976 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1977 return -EINVAL;
8e72033f
GS
1978 if (mm->def_flags & VM_NOHUGEPAGE)
1979 return -EINVAL;
a664b2d8
AA
1980 *vm_flags &= ~VM_NOHUGEPAGE;
1981 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1982 /*
1983 * If the vma become good for khugepaged to scan,
1984 * register it here without waiting a page fault that
1985 * may not happen any time soon.
1986 */
1987 if (unlikely(khugepaged_enter_vma_merge(vma)))
1988 return -ENOMEM;
a664b2d8
AA
1989 break;
1990 case MADV_NOHUGEPAGE:
1991 /*
1992 * Be somewhat over-protective like KSM for now!
1993 */
78f11a25 1994 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1995 return -EINVAL;
1996 *vm_flags &= ~VM_HUGEPAGE;
1997 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1998 /*
1999 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2000 * this vma even if we leave the mm registered in khugepaged if
2001 * it got registered before VM_NOHUGEPAGE was set.
2002 */
a664b2d8
AA
2003 break;
2004 }
0af4e98b
AA
2005
2006 return 0;
2007}
2008
ba76149f
AA
2009static int __init khugepaged_slab_init(void)
2010{
2011 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2012 sizeof(struct mm_slot),
2013 __alignof__(struct mm_slot), 0, NULL);
2014 if (!mm_slot_cache)
2015 return -ENOMEM;
2016
2017 return 0;
2018}
2019
ba76149f
AA
2020static inline struct mm_slot *alloc_mm_slot(void)
2021{
2022 if (!mm_slot_cache) /* initialization failed */
2023 return NULL;
2024 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2025}
2026
2027static inline void free_mm_slot(struct mm_slot *mm_slot)
2028{
2029 kmem_cache_free(mm_slot_cache, mm_slot);
2030}
2031
ba76149f
AA
2032static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2033{
2034 struct mm_slot *mm_slot;
ba76149f 2035
b67bfe0d 2036 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2037 if (mm == mm_slot->mm)
2038 return mm_slot;
43b5fbbd 2039
ba76149f
AA
2040 return NULL;
2041}
2042
2043static void insert_to_mm_slots_hash(struct mm_struct *mm,
2044 struct mm_slot *mm_slot)
2045{
ba76149f 2046 mm_slot->mm = mm;
43b5fbbd 2047 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2048}
2049
2050static inline int khugepaged_test_exit(struct mm_struct *mm)
2051{
2052 return atomic_read(&mm->mm_users) == 0;
2053}
2054
2055int __khugepaged_enter(struct mm_struct *mm)
2056{
2057 struct mm_slot *mm_slot;
2058 int wakeup;
2059
2060 mm_slot = alloc_mm_slot();
2061 if (!mm_slot)
2062 return -ENOMEM;
2063
2064 /* __khugepaged_exit() must not run from under us */
2065 VM_BUG_ON(khugepaged_test_exit(mm));
2066 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2067 free_mm_slot(mm_slot);
2068 return 0;
2069 }
2070
2071 spin_lock(&khugepaged_mm_lock);
2072 insert_to_mm_slots_hash(mm, mm_slot);
2073 /*
2074 * Insert just behind the scanning cursor, to let the area settle
2075 * down a little.
2076 */
2077 wakeup = list_empty(&khugepaged_scan.mm_head);
2078 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2079 spin_unlock(&khugepaged_mm_lock);
2080
2081 atomic_inc(&mm->mm_count);
2082 if (wakeup)
2083 wake_up_interruptible(&khugepaged_wait);
2084
2085 return 0;
2086}
2087
2088int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2089{
2090 unsigned long hstart, hend;
2091 if (!vma->anon_vma)
2092 /*
2093 * Not yet faulted in so we will register later in the
2094 * page fault if needed.
2095 */
2096 return 0;
78f11a25 2097 if (vma->vm_ops)
ba76149f
AA
2098 /* khugepaged not yet working on file or special mappings */
2099 return 0;
b3b9c293 2100 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2101 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2102 hend = vma->vm_end & HPAGE_PMD_MASK;
2103 if (hstart < hend)
2104 return khugepaged_enter(vma);
2105 return 0;
2106}
2107
2108void __khugepaged_exit(struct mm_struct *mm)
2109{
2110 struct mm_slot *mm_slot;
2111 int free = 0;
2112
2113 spin_lock(&khugepaged_mm_lock);
2114 mm_slot = get_mm_slot(mm);
2115 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2116 hash_del(&mm_slot->hash);
ba76149f
AA
2117 list_del(&mm_slot->mm_node);
2118 free = 1;
2119 }
d788e80a 2120 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2121
2122 if (free) {
ba76149f
AA
2123 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2124 free_mm_slot(mm_slot);
2125 mmdrop(mm);
2126 } else if (mm_slot) {
ba76149f
AA
2127 /*
2128 * This is required to serialize against
2129 * khugepaged_test_exit() (which is guaranteed to run
2130 * under mmap sem read mode). Stop here (after we
2131 * return all pagetables will be destroyed) until
2132 * khugepaged has finished working on the pagetables
2133 * under the mmap_sem.
2134 */
2135 down_write(&mm->mmap_sem);
2136 up_write(&mm->mmap_sem);
d788e80a 2137 }
ba76149f
AA
2138}
2139
2140static void release_pte_page(struct page *page)
2141{
2142 /* 0 stands for page_is_file_cache(page) == false */
2143 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2144 unlock_page(page);
2145 putback_lru_page(page);
2146}
2147
2148static void release_pte_pages(pte_t *pte, pte_t *_pte)
2149{
2150 while (--_pte >= pte) {
2151 pte_t pteval = *_pte;
2152 if (!pte_none(pteval))
2153 release_pte_page(pte_page(pteval));
2154 }
2155}
2156
ba76149f
AA
2157static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2158 unsigned long address,
2159 pte_t *pte)
2160{
2161 struct page *page;
2162 pte_t *_pte;
344aa35c 2163 int referenced = 0, none = 0;
ba76149f
AA
2164 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2165 _pte++, address += PAGE_SIZE) {
2166 pte_t pteval = *_pte;
2167 if (pte_none(pteval)) {
2168 if (++none <= khugepaged_max_ptes_none)
2169 continue;
344aa35c 2170 else
ba76149f 2171 goto out;
ba76149f 2172 }
344aa35c 2173 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2174 goto out;
ba76149f 2175 page = vm_normal_page(vma, address, pteval);
344aa35c 2176 if (unlikely(!page))
ba76149f 2177 goto out;
344aa35c 2178
ba76149f
AA
2179 VM_BUG_ON(PageCompound(page));
2180 BUG_ON(!PageAnon(page));
2181 VM_BUG_ON(!PageSwapBacked(page));
2182
2183 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2184 if (page_count(page) != 1)
ba76149f 2185 goto out;
ba76149f
AA
2186 /*
2187 * We can do it before isolate_lru_page because the
2188 * page can't be freed from under us. NOTE: PG_lock
2189 * is needed to serialize against split_huge_page
2190 * when invoked from the VM.
2191 */
344aa35c 2192 if (!trylock_page(page))
ba76149f 2193 goto out;
ba76149f
AA
2194 /*
2195 * Isolate the page to avoid collapsing an hugepage
2196 * currently in use by the VM.
2197 */
2198 if (isolate_lru_page(page)) {
2199 unlock_page(page);
ba76149f
AA
2200 goto out;
2201 }
2202 /* 0 stands for page_is_file_cache(page) == false */
2203 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2204 VM_BUG_ON(!PageLocked(page));
2205 VM_BUG_ON(PageLRU(page));
2206
2207 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2208 if (pte_young(pteval) || PageReferenced(page) ||
2209 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2210 referenced = 1;
2211 }
344aa35c
BL
2212 if (likely(referenced))
2213 return 1;
ba76149f 2214out:
344aa35c
BL
2215 release_pte_pages(pte, _pte);
2216 return 0;
ba76149f
AA
2217}
2218
2219static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2220 struct vm_area_struct *vma,
2221 unsigned long address,
2222 spinlock_t *ptl)
2223{
2224 pte_t *_pte;
2225 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2226 pte_t pteval = *_pte;
2227 struct page *src_page;
2228
2229 if (pte_none(pteval)) {
2230 clear_user_highpage(page, address);
2231 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2232 } else {
2233 src_page = pte_page(pteval);
2234 copy_user_highpage(page, src_page, address, vma);
2235 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
2236 release_pte_page(src_page);
2237 /*
2238 * ptl mostly unnecessary, but preempt has to
2239 * be disabled to update the per-cpu stats
2240 * inside page_remove_rmap().
2241 */
2242 spin_lock(ptl);
2243 /*
2244 * paravirt calls inside pte_clear here are
2245 * superfluous.
2246 */
2247 pte_clear(vma->vm_mm, address, _pte);
2248 page_remove_rmap(src_page);
2249 spin_unlock(ptl);
2250 free_page_and_swap_cache(src_page);
2251 }
2252
2253 address += PAGE_SIZE;
2254 page++;
2255 }
2256}
2257
26234f36 2258static void khugepaged_alloc_sleep(void)
ba76149f 2259{
26234f36
XG
2260 wait_event_freezable_timeout(khugepaged_wait, false,
2261 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2262}
ba76149f 2263
9f1b868a
BL
2264static int khugepaged_node_load[MAX_NUMNODES];
2265
26234f36 2266#ifdef CONFIG_NUMA
9f1b868a
BL
2267static int khugepaged_find_target_node(void)
2268{
2269 static int last_khugepaged_target_node = NUMA_NO_NODE;
2270 int nid, target_node = 0, max_value = 0;
2271
2272 /* find first node with max normal pages hit */
2273 for (nid = 0; nid < MAX_NUMNODES; nid++)
2274 if (khugepaged_node_load[nid] > max_value) {
2275 max_value = khugepaged_node_load[nid];
2276 target_node = nid;
2277 }
2278
2279 /* do some balance if several nodes have the same hit record */
2280 if (target_node <= last_khugepaged_target_node)
2281 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2282 nid++)
2283 if (max_value == khugepaged_node_load[nid]) {
2284 target_node = nid;
2285 break;
2286 }
2287
2288 last_khugepaged_target_node = target_node;
2289 return target_node;
2290}
2291
26234f36
XG
2292static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2293{
2294 if (IS_ERR(*hpage)) {
2295 if (!*wait)
2296 return false;
2297
2298 *wait = false;
e3b4126c 2299 *hpage = NULL;
26234f36
XG
2300 khugepaged_alloc_sleep();
2301 } else if (*hpage) {
2302 put_page(*hpage);
2303 *hpage = NULL;
2304 }
2305
2306 return true;
2307}
2308
2309static struct page
2310*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2311 struct vm_area_struct *vma, unsigned long address,
2312 int node)
2313{
0bbbc0b3 2314 VM_BUG_ON(*hpage);
ce83d217
AA
2315 /*
2316 * Allocate the page while the vma is still valid and under
2317 * the mmap_sem read mode so there is no memory allocation
2318 * later when we take the mmap_sem in write mode. This is more
2319 * friendly behavior (OTOH it may actually hide bugs) to
2320 * filesystems in userland with daemons allocating memory in
2321 * the userland I/O paths. Allocating memory with the
2322 * mmap_sem in read mode is good idea also to allow greater
2323 * scalability.
2324 */
9f1b868a
BL
2325 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2326 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
692e0b35
AA
2327 /*
2328 * After allocating the hugepage, release the mmap_sem read lock in
2329 * preparation for taking it in write mode.
2330 */
2331 up_read(&mm->mmap_sem);
26234f36 2332 if (unlikely(!*hpage)) {
81ab4201 2333 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2334 *hpage = ERR_PTR(-ENOMEM);
26234f36 2335 return NULL;
ce83d217 2336 }
26234f36 2337
65b3c07b 2338 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2339 return *hpage;
2340}
2341#else
9f1b868a
BL
2342static int khugepaged_find_target_node(void)
2343{
2344 return 0;
2345}
2346
10dc4155
BL
2347static inline struct page *alloc_hugepage(int defrag)
2348{
2349 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2350 HPAGE_PMD_ORDER);
2351}
2352
26234f36
XG
2353static struct page *khugepaged_alloc_hugepage(bool *wait)
2354{
2355 struct page *hpage;
2356
2357 do {
2358 hpage = alloc_hugepage(khugepaged_defrag());
2359 if (!hpage) {
2360 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2361 if (!*wait)
2362 return NULL;
2363
2364 *wait = false;
2365 khugepaged_alloc_sleep();
2366 } else
2367 count_vm_event(THP_COLLAPSE_ALLOC);
2368 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2369
2370 return hpage;
2371}
2372
2373static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2374{
2375 if (!*hpage)
2376 *hpage = khugepaged_alloc_hugepage(wait);
2377
2378 if (unlikely(!*hpage))
2379 return false;
2380
2381 return true;
2382}
2383
2384static struct page
2385*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2386 struct vm_area_struct *vma, unsigned long address,
2387 int node)
2388{
2389 up_read(&mm->mmap_sem);
2390 VM_BUG_ON(!*hpage);
2391 return *hpage;
2392}
692e0b35
AA
2393#endif
2394
fa475e51
BL
2395static bool hugepage_vma_check(struct vm_area_struct *vma)
2396{
2397 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2398 (vma->vm_flags & VM_NOHUGEPAGE))
2399 return false;
2400
2401 if (!vma->anon_vma || vma->vm_ops)
2402 return false;
2403 if (is_vma_temporary_stack(vma))
2404 return false;
2405 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2406 return true;
2407}
2408
26234f36
XG
2409static void collapse_huge_page(struct mm_struct *mm,
2410 unsigned long address,
2411 struct page **hpage,
2412 struct vm_area_struct *vma,
2413 int node)
2414{
26234f36
XG
2415 pmd_t *pmd, _pmd;
2416 pte_t *pte;
2417 pgtable_t pgtable;
2418 struct page *new_page;
c4088ebd 2419 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2420 int isolated;
2421 unsigned long hstart, hend;
2ec74c3e
SG
2422 unsigned long mmun_start; /* For mmu_notifiers */
2423 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2424
2425 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2426
2427 /* release the mmap_sem read lock. */
2428 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2429 if (!new_page)
2430 return;
2431
420256ef 2432 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2433 return;
ba76149f
AA
2434
2435 /*
2436 * Prevent all access to pagetables with the exception of
2437 * gup_fast later hanlded by the ptep_clear_flush and the VM
2438 * handled by the anon_vma lock + PG_lock.
2439 */
2440 down_write(&mm->mmap_sem);
2441 if (unlikely(khugepaged_test_exit(mm)))
2442 goto out;
2443
2444 vma = find_vma(mm, address);
a8f531eb
L
2445 if (!vma)
2446 goto out;
ba76149f
AA
2447 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2448 hend = vma->vm_end & HPAGE_PMD_MASK;
2449 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2450 goto out;
fa475e51 2451 if (!hugepage_vma_check(vma))
a7d6e4ec 2452 goto out;
6219049a
BL
2453 pmd = mm_find_pmd(mm, address);
2454 if (!pmd)
ba76149f 2455 goto out;
6219049a 2456 if (pmd_trans_huge(*pmd))
ba76149f
AA
2457 goto out;
2458
4fc3f1d6 2459 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2460
2461 pte = pte_offset_map(pmd, address);
c4088ebd 2462 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2463
2ec74c3e
SG
2464 mmun_start = address;
2465 mmun_end = address + HPAGE_PMD_SIZE;
2466 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2467 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2468 /*
2469 * After this gup_fast can't run anymore. This also removes
2470 * any huge TLB entry from the CPU so we won't allow
2471 * huge and small TLB entries for the same virtual address
2472 * to avoid the risk of CPU bugs in that area.
2473 */
2ec74c3e 2474 _pmd = pmdp_clear_flush(vma, address, pmd);
c4088ebd 2475 spin_unlock(pmd_ptl);
2ec74c3e 2476 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2477
c4088ebd 2478 spin_lock(pte_ptl);
ba76149f 2479 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2480 spin_unlock(pte_ptl);
ba76149f
AA
2481
2482 if (unlikely(!isolated)) {
453c7192 2483 pte_unmap(pte);
c4088ebd 2484 spin_lock(pmd_ptl);
ba76149f 2485 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2486 /*
2487 * We can only use set_pmd_at when establishing
2488 * hugepmds and never for establishing regular pmds that
2489 * points to regular pagetables. Use pmd_populate for that
2490 */
2491 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2492 spin_unlock(pmd_ptl);
08b52706 2493 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2494 goto out;
ba76149f
AA
2495 }
2496
2497 /*
2498 * All pages are isolated and locked so anon_vma rmap
2499 * can't run anymore.
2500 */
08b52706 2501 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2502
c4088ebd 2503 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2504 pte_unmap(pte);
ba76149f
AA
2505 __SetPageUptodate(new_page);
2506 pgtable = pmd_pgtable(_pmd);
ba76149f 2507
3122359a
KS
2508 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2509 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2510
2511 /*
2512 * spin_lock() below is not the equivalent of smp_wmb(), so
2513 * this is needed to avoid the copy_huge_page writes to become
2514 * visible after the set_pmd_at() write.
2515 */
2516 smp_wmb();
2517
c4088ebd 2518 spin_lock(pmd_ptl);
ba76149f
AA
2519 BUG_ON(!pmd_none(*pmd));
2520 page_add_new_anon_rmap(new_page, vma, address);
fce144b4 2521 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2522 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2523 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2524 spin_unlock(pmd_ptl);
ba76149f
AA
2525
2526 *hpage = NULL;
420256ef 2527
ba76149f 2528 khugepaged_pages_collapsed++;
ce83d217 2529out_up_write:
ba76149f 2530 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2531 return;
2532
ce83d217 2533out:
678ff896 2534 mem_cgroup_uncharge_page(new_page);
ce83d217 2535 goto out_up_write;
ba76149f
AA
2536}
2537
2538static int khugepaged_scan_pmd(struct mm_struct *mm,
2539 struct vm_area_struct *vma,
2540 unsigned long address,
2541 struct page **hpage)
2542{
ba76149f
AA
2543 pmd_t *pmd;
2544 pte_t *pte, *_pte;
2545 int ret = 0, referenced = 0, none = 0;
2546 struct page *page;
2547 unsigned long _address;
2548 spinlock_t *ptl;
00ef2d2f 2549 int node = NUMA_NO_NODE;
ba76149f
AA
2550
2551 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2552
6219049a
BL
2553 pmd = mm_find_pmd(mm, address);
2554 if (!pmd)
ba76149f 2555 goto out;
6219049a 2556 if (pmd_trans_huge(*pmd))
ba76149f
AA
2557 goto out;
2558
9f1b868a 2559 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2560 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2561 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2562 _pte++, _address += PAGE_SIZE) {
2563 pte_t pteval = *_pte;
2564 if (pte_none(pteval)) {
2565 if (++none <= khugepaged_max_ptes_none)
2566 continue;
2567 else
2568 goto out_unmap;
2569 }
2570 if (!pte_present(pteval) || !pte_write(pteval))
2571 goto out_unmap;
2572 page = vm_normal_page(vma, _address, pteval);
2573 if (unlikely(!page))
2574 goto out_unmap;
5c4b4be3 2575 /*
9f1b868a
BL
2576 * Record which node the original page is from and save this
2577 * information to khugepaged_node_load[].
2578 * Khupaged will allocate hugepage from the node has the max
2579 * hit record.
5c4b4be3 2580 */
9f1b868a
BL
2581 node = page_to_nid(page);
2582 khugepaged_node_load[node]++;
ba76149f
AA
2583 VM_BUG_ON(PageCompound(page));
2584 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2585 goto out_unmap;
2586 /* cannot use mapcount: can't collapse if there's a gup pin */
2587 if (page_count(page) != 1)
2588 goto out_unmap;
8ee53820
AA
2589 if (pte_young(pteval) || PageReferenced(page) ||
2590 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2591 referenced = 1;
2592 }
2593 if (referenced)
2594 ret = 1;
2595out_unmap:
2596 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2597 if (ret) {
2598 node = khugepaged_find_target_node();
ce83d217 2599 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2600 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2601 }
ba76149f
AA
2602out:
2603 return ret;
2604}
2605
2606static void collect_mm_slot(struct mm_slot *mm_slot)
2607{
2608 struct mm_struct *mm = mm_slot->mm;
2609
b9980cdc 2610 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2611
2612 if (khugepaged_test_exit(mm)) {
2613 /* free mm_slot */
43b5fbbd 2614 hash_del(&mm_slot->hash);
ba76149f
AA
2615 list_del(&mm_slot->mm_node);
2616
2617 /*
2618 * Not strictly needed because the mm exited already.
2619 *
2620 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2621 */
2622
2623 /* khugepaged_mm_lock actually not necessary for the below */
2624 free_mm_slot(mm_slot);
2625 mmdrop(mm);
2626 }
2627}
2628
2629static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2630 struct page **hpage)
2f1da642
HS
2631 __releases(&khugepaged_mm_lock)
2632 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2633{
2634 struct mm_slot *mm_slot;
2635 struct mm_struct *mm;
2636 struct vm_area_struct *vma;
2637 int progress = 0;
2638
2639 VM_BUG_ON(!pages);
b9980cdc 2640 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2641
2642 if (khugepaged_scan.mm_slot)
2643 mm_slot = khugepaged_scan.mm_slot;
2644 else {
2645 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2646 struct mm_slot, mm_node);
2647 khugepaged_scan.address = 0;
2648 khugepaged_scan.mm_slot = mm_slot;
2649 }
2650 spin_unlock(&khugepaged_mm_lock);
2651
2652 mm = mm_slot->mm;
2653 down_read(&mm->mmap_sem);
2654 if (unlikely(khugepaged_test_exit(mm)))
2655 vma = NULL;
2656 else
2657 vma = find_vma(mm, khugepaged_scan.address);
2658
2659 progress++;
2660 for (; vma; vma = vma->vm_next) {
2661 unsigned long hstart, hend;
2662
2663 cond_resched();
2664 if (unlikely(khugepaged_test_exit(mm))) {
2665 progress++;
2666 break;
2667 }
fa475e51
BL
2668 if (!hugepage_vma_check(vma)) {
2669skip:
ba76149f
AA
2670 progress++;
2671 continue;
2672 }
ba76149f
AA
2673 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2674 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2675 if (hstart >= hend)
2676 goto skip;
2677 if (khugepaged_scan.address > hend)
2678 goto skip;
ba76149f
AA
2679 if (khugepaged_scan.address < hstart)
2680 khugepaged_scan.address = hstart;
a7d6e4ec 2681 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2682
2683 while (khugepaged_scan.address < hend) {
2684 int ret;
2685 cond_resched();
2686 if (unlikely(khugepaged_test_exit(mm)))
2687 goto breakouterloop;
2688
2689 VM_BUG_ON(khugepaged_scan.address < hstart ||
2690 khugepaged_scan.address + HPAGE_PMD_SIZE >
2691 hend);
2692 ret = khugepaged_scan_pmd(mm, vma,
2693 khugepaged_scan.address,
2694 hpage);
2695 /* move to next address */
2696 khugepaged_scan.address += HPAGE_PMD_SIZE;
2697 progress += HPAGE_PMD_NR;
2698 if (ret)
2699 /* we released mmap_sem so break loop */
2700 goto breakouterloop_mmap_sem;
2701 if (progress >= pages)
2702 goto breakouterloop;
2703 }
2704 }
2705breakouterloop:
2706 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2707breakouterloop_mmap_sem:
2708
2709 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2710 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2711 /*
2712 * Release the current mm_slot if this mm is about to die, or
2713 * if we scanned all vmas of this mm.
2714 */
2715 if (khugepaged_test_exit(mm) || !vma) {
2716 /*
2717 * Make sure that if mm_users is reaching zero while
2718 * khugepaged runs here, khugepaged_exit will find
2719 * mm_slot not pointing to the exiting mm.
2720 */
2721 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2722 khugepaged_scan.mm_slot = list_entry(
2723 mm_slot->mm_node.next,
2724 struct mm_slot, mm_node);
2725 khugepaged_scan.address = 0;
2726 } else {
2727 khugepaged_scan.mm_slot = NULL;
2728 khugepaged_full_scans++;
2729 }
2730
2731 collect_mm_slot(mm_slot);
2732 }
2733
2734 return progress;
2735}
2736
2737static int khugepaged_has_work(void)
2738{
2739 return !list_empty(&khugepaged_scan.mm_head) &&
2740 khugepaged_enabled();
2741}
2742
2743static int khugepaged_wait_event(void)
2744{
2745 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2746 kthread_should_stop();
ba76149f
AA
2747}
2748
d516904b 2749static void khugepaged_do_scan(void)
ba76149f 2750{
d516904b 2751 struct page *hpage = NULL;
ba76149f
AA
2752 unsigned int progress = 0, pass_through_head = 0;
2753 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2754 bool wait = true;
ba76149f
AA
2755
2756 barrier(); /* write khugepaged_pages_to_scan to local stack */
2757
2758 while (progress < pages) {
26234f36 2759 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2760 break;
26234f36 2761
420256ef 2762 cond_resched();
ba76149f 2763
878aee7d
AA
2764 if (unlikely(kthread_should_stop() || freezing(current)))
2765 break;
2766
ba76149f
AA
2767 spin_lock(&khugepaged_mm_lock);
2768 if (!khugepaged_scan.mm_slot)
2769 pass_through_head++;
2770 if (khugepaged_has_work() &&
2771 pass_through_head < 2)
2772 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2773 &hpage);
ba76149f
AA
2774 else
2775 progress = pages;
2776 spin_unlock(&khugepaged_mm_lock);
2777 }
ba76149f 2778
d516904b
XG
2779 if (!IS_ERR_OR_NULL(hpage))
2780 put_page(hpage);
0bbbc0b3
AA
2781}
2782
2017c0bf
XG
2783static void khugepaged_wait_work(void)
2784{
2785 try_to_freeze();
2786
2787 if (khugepaged_has_work()) {
2788 if (!khugepaged_scan_sleep_millisecs)
2789 return;
2790
2791 wait_event_freezable_timeout(khugepaged_wait,
2792 kthread_should_stop(),
2793 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2794 return;
2795 }
2796
2797 if (khugepaged_enabled())
2798 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2799}
2800
ba76149f
AA
2801static int khugepaged(void *none)
2802{
2803 struct mm_slot *mm_slot;
2804
878aee7d 2805 set_freezable();
ba76149f
AA
2806 set_user_nice(current, 19);
2807
b7231789
XG
2808 while (!kthread_should_stop()) {
2809 khugepaged_do_scan();
2810 khugepaged_wait_work();
2811 }
ba76149f
AA
2812
2813 spin_lock(&khugepaged_mm_lock);
2814 mm_slot = khugepaged_scan.mm_slot;
2815 khugepaged_scan.mm_slot = NULL;
2816 if (mm_slot)
2817 collect_mm_slot(mm_slot);
2818 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2819 return 0;
2820}
2821
c5a647d0
KS
2822static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2823 unsigned long haddr, pmd_t *pmd)
2824{
2825 struct mm_struct *mm = vma->vm_mm;
2826 pgtable_t pgtable;
2827 pmd_t _pmd;
2828 int i;
2829
2830 pmdp_clear_flush(vma, haddr, pmd);
2831 /* leave pmd empty until pte is filled */
2832
6b0b50b0 2833 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2834 pmd_populate(mm, &_pmd, pgtable);
2835
2836 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2837 pte_t *pte, entry;
2838 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2839 entry = pte_mkspecial(entry);
2840 pte = pte_offset_map(&_pmd, haddr);
2841 VM_BUG_ON(!pte_none(*pte));
2842 set_pte_at(mm, haddr, pte, entry);
2843 pte_unmap(pte);
2844 }
2845 smp_wmb(); /* make pte visible before pmd */
2846 pmd_populate(mm, pmd, pgtable);
97ae1749 2847 put_huge_zero_page();
c5a647d0
KS
2848}
2849
e180377f
KS
2850void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2851 pmd_t *pmd)
71e3aac0 2852{
c4088ebd 2853 spinlock_t *ptl;
71e3aac0 2854 struct page *page;
e180377f 2855 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2856 unsigned long haddr = address & HPAGE_PMD_MASK;
2857 unsigned long mmun_start; /* For mmu_notifiers */
2858 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2859
2860 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2861
c5a647d0
KS
2862 mmun_start = haddr;
2863 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2864again:
c5a647d0 2865 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2866 ptl = pmd_lock(mm, pmd);
71e3aac0 2867 if (unlikely(!pmd_trans_huge(*pmd))) {
c4088ebd 2868 spin_unlock(ptl);
c5a647d0
KS
2869 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2870 return;
2871 }
2872 if (is_huge_zero_pmd(*pmd)) {
2873 __split_huge_zero_page_pmd(vma, haddr, pmd);
c4088ebd 2874 spin_unlock(ptl);
c5a647d0 2875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2876 return;
2877 }
2878 page = pmd_page(*pmd);
2879 VM_BUG_ON(!page_count(page));
2880 get_page(page);
c4088ebd 2881 spin_unlock(ptl);
c5a647d0 2882 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2883
2884 split_huge_page(page);
2885
2886 put_page(page);
750e8165
HD
2887
2888 /*
2889 * We don't always have down_write of mmap_sem here: a racing
2890 * do_huge_pmd_wp_page() might have copied-on-write to another
2891 * huge page before our split_huge_page() got the anon_vma lock.
2892 */
2893 if (unlikely(pmd_trans_huge(*pmd)))
2894 goto again;
71e3aac0 2895}
94fcc585 2896
e180377f
KS
2897void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2898 pmd_t *pmd)
2899{
2900 struct vm_area_struct *vma;
2901
2902 vma = find_vma(mm, address);
2903 BUG_ON(vma == NULL);
2904 split_huge_page_pmd(vma, address, pmd);
2905}
2906
94fcc585
AA
2907static void split_huge_page_address(struct mm_struct *mm,
2908 unsigned long address)
2909{
94fcc585
AA
2910 pmd_t *pmd;
2911
2912 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2913
6219049a
BL
2914 pmd = mm_find_pmd(mm, address);
2915 if (!pmd)
94fcc585
AA
2916 return;
2917 /*
2918 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2919 * materialize from under us.
2920 */
e180377f 2921 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2922}
2923
2924void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2925 unsigned long start,
2926 unsigned long end,
2927 long adjust_next)
2928{
2929 /*
2930 * If the new start address isn't hpage aligned and it could
2931 * previously contain an hugepage: check if we need to split
2932 * an huge pmd.
2933 */
2934 if (start & ~HPAGE_PMD_MASK &&
2935 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2936 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2937 split_huge_page_address(vma->vm_mm, start);
2938
2939 /*
2940 * If the new end address isn't hpage aligned and it could
2941 * previously contain an hugepage: check if we need to split
2942 * an huge pmd.
2943 */
2944 if (end & ~HPAGE_PMD_MASK &&
2945 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2946 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2947 split_huge_page_address(vma->vm_mm, end);
2948
2949 /*
2950 * If we're also updating the vma->vm_next->vm_start, if the new
2951 * vm_next->vm_start isn't page aligned and it could previously
2952 * contain an hugepage: check if we need to split an huge pmd.
2953 */
2954 if (adjust_next > 0) {
2955 struct vm_area_struct *next = vma->vm_next;
2956 unsigned long nstart = next->vm_start;
2957 nstart += adjust_next << PAGE_SHIFT;
2958 if (nstart & ~HPAGE_PMD_MASK &&
2959 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2960 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2961 split_huge_page_address(next->vm_mm, nstart);
2962 }
2963}