]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/hugetlb.c
advansys: fix section mismatch warning
[thirdparty/kernel/stable.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
7893d1d5 26static unsigned long surplus_huge_pages;
1da177e4
LT
27unsigned long max_huge_pages;
28static struct list_head hugepage_freelists[MAX_NUMNODES];
29static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30static unsigned int free_huge_pages_node[MAX_NUMNODES];
7893d1d5 31static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
396faf03
MG
32static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33unsigned long hugepages_treat_as_movable;
d1c3fb1f 34unsigned long nr_overcommit_huge_pages;
63b4613c 35static int hugetlb_next_nid;
396faf03 36
3935baa9
DG
37/*
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39 */
40static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 41
79ac6ba4
DG
42static void clear_huge_page(struct page *page, unsigned long addr)
43{
44 int i;
45
46 might_sleep();
47 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48 cond_resched();
281e0e3b 49 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
50 }
51}
52
53static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 54 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
55{
56 int i;
57
58 might_sleep();
59 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60 cond_resched();
9de455b2 61 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
62 }
63}
64
1da177e4
LT
65static void enqueue_huge_page(struct page *page)
66{
67 int nid = page_to_nid(page);
68 list_add(&page->lru, &hugepage_freelists[nid]);
69 free_huge_pages++;
70 free_huge_pages_node[nid]++;
71}
72
5da7ca86
CL
73static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74 unsigned long address)
1da177e4 75{
31a5c6e4 76 int nid;
1da177e4 77 struct page *page = NULL;
480eccf9 78 struct mempolicy *mpol;
396faf03 79 struct zonelist *zonelist = huge_zonelist(vma, address,
480eccf9 80 htlb_alloc_mask, &mpol);
96df9333 81 struct zone **z;
1da177e4 82
96df9333 83 for (z = zonelist->zones; *z; z++) {
89fa3024 84 nid = zone_to_nid(*z);
396faf03 85 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
3abf7afd
AM
86 !list_empty(&hugepage_freelists[nid])) {
87 page = list_entry(hugepage_freelists[nid].next,
88 struct page, lru);
89 list_del(&page->lru);
90 free_huge_pages--;
91 free_huge_pages_node[nid]--;
e4e574b7
AL
92 if (vma && vma->vm_flags & VM_MAYSHARE)
93 resv_huge_pages--;
5ab3ee7b 94 break;
3abf7afd 95 }
1da177e4 96 }
480eccf9 97 mpol_free(mpol); /* unref if mpol !NULL */
1da177e4
LT
98 return page;
99}
100
6af2acb6
AL
101static void update_and_free_page(struct page *page)
102{
103 int i;
104 nr_huge_pages--;
105 nr_huge_pages_node[page_to_nid(page)]--;
106 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109 1 << PG_private | 1<< PG_writeback);
110 }
111 set_compound_page_dtor(page, NULL);
112 set_page_refcounted(page);
113 __free_pages(page, HUGETLB_PAGE_ORDER);
114}
115
27a85ef1
DG
116static void free_huge_page(struct page *page)
117{
7893d1d5 118 int nid = page_to_nid(page);
c79fb75e 119 struct address_space *mapping;
27a85ef1 120
c79fb75e 121 mapping = (struct address_space *) page_private(page);
7893d1d5 122 BUG_ON(page_count(page));
27a85ef1
DG
123 INIT_LIST_HEAD(&page->lru);
124
125 spin_lock(&hugetlb_lock);
7893d1d5
AL
126 if (surplus_huge_pages_node[nid]) {
127 update_and_free_page(page);
128 surplus_huge_pages--;
129 surplus_huge_pages_node[nid]--;
130 } else {
131 enqueue_huge_page(page);
132 }
27a85ef1 133 spin_unlock(&hugetlb_lock);
c79fb75e 134 if (mapping)
9a119c05 135 hugetlb_put_quota(mapping, 1);
c79fb75e 136 set_page_private(page, 0);
27a85ef1
DG
137}
138
7893d1d5
AL
139/*
140 * Increment or decrement surplus_huge_pages. Keep node-specific counters
141 * balanced by operating on them in a round-robin fashion.
142 * Returns 1 if an adjustment was made.
143 */
144static int adjust_pool_surplus(int delta)
145{
146 static int prev_nid;
147 int nid = prev_nid;
148 int ret = 0;
149
150 VM_BUG_ON(delta != -1 && delta != 1);
151 do {
152 nid = next_node(nid, node_online_map);
153 if (nid == MAX_NUMNODES)
154 nid = first_node(node_online_map);
155
156 /* To shrink on this node, there must be a surplus page */
157 if (delta < 0 && !surplus_huge_pages_node[nid])
158 continue;
159 /* Surplus cannot exceed the total number of pages */
160 if (delta > 0 && surplus_huge_pages_node[nid] >=
161 nr_huge_pages_node[nid])
162 continue;
163
164 surplus_huge_pages += delta;
165 surplus_huge_pages_node[nid] += delta;
166 ret = 1;
167 break;
168 } while (nid != prev_nid);
169
170 prev_nid = nid;
171 return ret;
172}
173
63b4613c 174static struct page *alloc_fresh_huge_page_node(int nid)
1da177e4 175{
1da177e4 176 struct page *page;
f96efd58 177
63b4613c
NA
178 page = alloc_pages_node(nid,
179 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
180 HUGETLB_PAGE_ORDER);
1da177e4 181 if (page) {
33f2ef89 182 set_compound_page_dtor(page, free_huge_page);
0bd0f9fb 183 spin_lock(&hugetlb_lock);
1da177e4 184 nr_huge_pages++;
63b4613c 185 nr_huge_pages_node[nid]++;
0bd0f9fb 186 spin_unlock(&hugetlb_lock);
a482289d 187 put_page(page); /* free it into the hugepage allocator */
1da177e4 188 }
63b4613c
NA
189
190 return page;
191}
192
193static int alloc_fresh_huge_page(void)
194{
195 struct page *page;
196 int start_nid;
197 int next_nid;
198 int ret = 0;
199
200 start_nid = hugetlb_next_nid;
201
202 do {
203 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
204 if (page)
205 ret = 1;
206 /*
207 * Use a helper variable to find the next node and then
208 * copy it back to hugetlb_next_nid afterwards:
209 * otherwise there's a window in which a racer might
210 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
211 * But we don't need to use a spin_lock here: it really
212 * doesn't matter if occasionally a racer chooses the
213 * same nid as we do. Move nid forward in the mask even
214 * if we just successfully allocated a hugepage so that
215 * the next caller gets hugepages on the next node.
216 */
217 next_nid = next_node(hugetlb_next_nid, node_online_map);
218 if (next_nid == MAX_NUMNODES)
219 next_nid = first_node(node_online_map);
220 hugetlb_next_nid = next_nid;
221 } while (!page && hugetlb_next_nid != start_nid);
222
223 return ret;
1da177e4
LT
224}
225
7893d1d5
AL
226static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
227 unsigned long address)
228{
229 struct page *page;
d1c3fb1f 230 unsigned int nid;
7893d1d5 231
d1c3fb1f
NA
232 /*
233 * Assume we will successfully allocate the surplus page to
234 * prevent racing processes from causing the surplus to exceed
235 * overcommit
236 *
237 * This however introduces a different race, where a process B
238 * tries to grow the static hugepage pool while alloc_pages() is
239 * called by process A. B will only examine the per-node
240 * counters in determining if surplus huge pages can be
241 * converted to normal huge pages in adjust_pool_surplus(). A
242 * won't be able to increment the per-node counter, until the
243 * lock is dropped by B, but B doesn't drop hugetlb_lock until
244 * no more huge pages can be converted from surplus to normal
245 * state (and doesn't try to convert again). Thus, we have a
246 * case where a surplus huge page exists, the pool is grown, and
247 * the surplus huge page still exists after, even though it
248 * should just have been converted to a normal huge page. This
249 * does not leak memory, though, as the hugepage will be freed
250 * once it is out of use. It also does not allow the counters to
251 * go out of whack in adjust_pool_surplus() as we don't modify
252 * the node values until we've gotten the hugepage and only the
253 * per-node value is checked there.
254 */
255 spin_lock(&hugetlb_lock);
256 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
257 spin_unlock(&hugetlb_lock);
258 return NULL;
259 } else {
260 nr_huge_pages++;
261 surplus_huge_pages++;
262 }
263 spin_unlock(&hugetlb_lock);
264
7893d1d5
AL
265 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
266 HUGETLB_PAGE_ORDER);
d1c3fb1f
NA
267
268 spin_lock(&hugetlb_lock);
7893d1d5 269 if (page) {
d1c3fb1f 270 nid = page_to_nid(page);
7893d1d5 271 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
272 /*
273 * We incremented the global counters already
274 */
275 nr_huge_pages_node[nid]++;
276 surplus_huge_pages_node[nid]++;
277 } else {
278 nr_huge_pages--;
279 surplus_huge_pages--;
7893d1d5 280 }
d1c3fb1f 281 spin_unlock(&hugetlb_lock);
7893d1d5
AL
282
283 return page;
284}
285
e4e574b7
AL
286/*
287 * Increase the hugetlb pool such that it can accomodate a reservation
288 * of size 'delta'.
289 */
290static int gather_surplus_pages(int delta)
291{
292 struct list_head surplus_list;
293 struct page *page, *tmp;
294 int ret, i;
295 int needed, allocated;
296
297 needed = (resv_huge_pages + delta) - free_huge_pages;
298 if (needed <= 0)
299 return 0;
300
301 allocated = 0;
302 INIT_LIST_HEAD(&surplus_list);
303
304 ret = -ENOMEM;
305retry:
306 spin_unlock(&hugetlb_lock);
307 for (i = 0; i < needed; i++) {
308 page = alloc_buddy_huge_page(NULL, 0);
309 if (!page) {
310 /*
311 * We were not able to allocate enough pages to
312 * satisfy the entire reservation so we free what
313 * we've allocated so far.
314 */
315 spin_lock(&hugetlb_lock);
316 needed = 0;
317 goto free;
318 }
319
320 list_add(&page->lru, &surplus_list);
321 }
322 allocated += needed;
323
324 /*
325 * After retaking hugetlb_lock, we need to recalculate 'needed'
326 * because either resv_huge_pages or free_huge_pages may have changed.
327 */
328 spin_lock(&hugetlb_lock);
329 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
330 if (needed > 0)
331 goto retry;
332
333 /*
334 * The surplus_list now contains _at_least_ the number of extra pages
335 * needed to accomodate the reservation. Add the appropriate number
336 * of pages to the hugetlb pool and free the extras back to the buddy
337 * allocator.
338 */
339 needed += allocated;
340 ret = 0;
341free:
342 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
343 list_del(&page->lru);
344 if ((--needed) >= 0)
345 enqueue_huge_page(page);
af767cbd
AL
346 else {
347 /*
348 * Decrement the refcount and free the page using its
349 * destructor. This must be done with hugetlb_lock
350 * unlocked which is safe because free_huge_page takes
351 * hugetlb_lock before deciding how to free the page.
352 */
353 spin_unlock(&hugetlb_lock);
354 put_page(page);
355 spin_lock(&hugetlb_lock);
356 }
e4e574b7
AL
357 }
358
359 return ret;
360}
361
362/*
363 * When releasing a hugetlb pool reservation, any surplus pages that were
364 * allocated to satisfy the reservation must be explicitly freed if they were
365 * never used.
366 */
8cde045c 367static void return_unused_surplus_pages(unsigned long unused_resv_pages)
e4e574b7
AL
368{
369 static int nid = -1;
370 struct page *page;
371 unsigned long nr_pages;
372
373 nr_pages = min(unused_resv_pages, surplus_huge_pages);
374
375 while (nr_pages) {
376 nid = next_node(nid, node_online_map);
377 if (nid == MAX_NUMNODES)
378 nid = first_node(node_online_map);
379
380 if (!surplus_huge_pages_node[nid])
381 continue;
382
383 if (!list_empty(&hugepage_freelists[nid])) {
384 page = list_entry(hugepage_freelists[nid].next,
385 struct page, lru);
386 list_del(&page->lru);
387 update_and_free_page(page);
388 free_huge_pages--;
389 free_huge_pages_node[nid]--;
390 surplus_huge_pages--;
391 surplus_huge_pages_node[nid]--;
392 nr_pages--;
393 }
394 }
395}
396
348ea204
AL
397
398static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
399 unsigned long addr)
1da177e4 400{
348ea204 401 struct page *page;
1da177e4
LT
402
403 spin_lock(&hugetlb_lock);
b45b5bd6 404 page = dequeue_huge_page(vma, addr);
1da177e4 405 spin_unlock(&hugetlb_lock);
90d8b7e6 406 return page ? page : ERR_PTR(-VM_FAULT_OOM);
348ea204 407}
b45b5bd6 408
348ea204
AL
409static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
410 unsigned long addr)
411{
412 struct page *page = NULL;
7893d1d5 413
90d8b7e6
AL
414 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
415 return ERR_PTR(-VM_FAULT_SIGBUS);
416
348ea204
AL
417 spin_lock(&hugetlb_lock);
418 if (free_huge_pages > resv_huge_pages)
419 page = dequeue_huge_page(vma, addr);
420 spin_unlock(&hugetlb_lock);
421 if (!page)
7893d1d5 422 page = alloc_buddy_huge_page(vma, addr);
90d8b7e6 423 return page ? page : ERR_PTR(-VM_FAULT_OOM);
348ea204
AL
424}
425
426static struct page *alloc_huge_page(struct vm_area_struct *vma,
427 unsigned long addr)
428{
429 struct page *page;
2fc39cec
AL
430 struct address_space *mapping = vma->vm_file->f_mapping;
431
348ea204
AL
432 if (vma->vm_flags & VM_MAYSHARE)
433 page = alloc_huge_page_shared(vma, addr);
434 else
435 page = alloc_huge_page_private(vma, addr);
90d8b7e6
AL
436
437 if (!IS_ERR(page)) {
348ea204 438 set_page_refcounted(page);
2fc39cec 439 set_page_private(page, (unsigned long) mapping);
90d8b7e6
AL
440 }
441 return page;
b45b5bd6
DG
442}
443
1da177e4
LT
444static int __init hugetlb_init(void)
445{
446 unsigned long i;
1da177e4 447
3c726f8d
BH
448 if (HPAGE_SHIFT == 0)
449 return 0;
450
1da177e4
LT
451 for (i = 0; i < MAX_NUMNODES; ++i)
452 INIT_LIST_HEAD(&hugepage_freelists[i]);
453
63b4613c
NA
454 hugetlb_next_nid = first_node(node_online_map);
455
1da177e4 456 for (i = 0; i < max_huge_pages; ++i) {
a482289d 457 if (!alloc_fresh_huge_page())
1da177e4 458 break;
1da177e4
LT
459 }
460 max_huge_pages = free_huge_pages = nr_huge_pages = i;
461 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
462 return 0;
463}
464module_init(hugetlb_init);
465
466static int __init hugetlb_setup(char *s)
467{
468 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
469 max_huge_pages = 0;
470 return 1;
471}
472__setup("hugepages=", hugetlb_setup);
473
8a630112
KC
474static unsigned int cpuset_mems_nr(unsigned int *array)
475{
476 int node;
477 unsigned int nr = 0;
478
479 for_each_node_mask(node, cpuset_current_mems_allowed)
480 nr += array[node];
481
482 return nr;
483}
484
1da177e4 485#ifdef CONFIG_SYSCTL
1da177e4
LT
486#ifdef CONFIG_HIGHMEM
487static void try_to_free_low(unsigned long count)
488{
4415cc8d
CL
489 int i;
490
1da177e4
LT
491 for (i = 0; i < MAX_NUMNODES; ++i) {
492 struct page *page, *next;
493 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
6b0c880d
AL
494 if (count >= nr_huge_pages)
495 return;
1da177e4
LT
496 if (PageHighMem(page))
497 continue;
498 list_del(&page->lru);
499 update_and_free_page(page);
1da177e4 500 free_huge_pages--;
4415cc8d 501 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
502 }
503 }
504}
505#else
506static inline void try_to_free_low(unsigned long count)
507{
508}
509#endif
510
7893d1d5 511#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
1da177e4
LT
512static unsigned long set_max_huge_pages(unsigned long count)
513{
7893d1d5 514 unsigned long min_count, ret;
1da177e4 515
7893d1d5
AL
516 /*
517 * Increase the pool size
518 * First take pages out of surplus state. Then make up the
519 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
520 *
521 * We might race with alloc_buddy_huge_page() here and be unable
522 * to convert a surplus huge page to a normal huge page. That is
523 * not critical, though, it just means the overall size of the
524 * pool might be one hugepage larger than it needs to be, but
525 * within all the constraints specified by the sysctls.
7893d1d5 526 */
1da177e4 527 spin_lock(&hugetlb_lock);
7893d1d5
AL
528 while (surplus_huge_pages && count > persistent_huge_pages) {
529 if (!adjust_pool_surplus(-1))
530 break;
531 }
532
533 while (count > persistent_huge_pages) {
534 int ret;
535 /*
536 * If this allocation races such that we no longer need the
537 * page, free_huge_page will handle it by freeing the page
538 * and reducing the surplus.
539 */
540 spin_unlock(&hugetlb_lock);
541 ret = alloc_fresh_huge_page();
542 spin_lock(&hugetlb_lock);
543 if (!ret)
544 goto out;
545
546 }
7893d1d5
AL
547
548 /*
549 * Decrease the pool size
550 * First return free pages to the buddy allocator (being careful
551 * to keep enough around to satisfy reservations). Then place
552 * pages into surplus state as needed so the pool will shrink
553 * to the desired size as pages become free.
d1c3fb1f
NA
554 *
555 * By placing pages into the surplus state independent of the
556 * overcommit value, we are allowing the surplus pool size to
557 * exceed overcommit. There are few sane options here. Since
558 * alloc_buddy_huge_page() is checking the global counter,
559 * though, we'll note that we're not allowed to exceed surplus
560 * and won't grow the pool anywhere else. Not until one of the
561 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 562 */
6b0c880d
AL
563 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
564 min_count = max(count, min_count);
7893d1d5
AL
565 try_to_free_low(min_count);
566 while (min_count < persistent_huge_pages) {
5da7ca86 567 struct page *page = dequeue_huge_page(NULL, 0);
1da177e4
LT
568 if (!page)
569 break;
570 update_and_free_page(page);
571 }
7893d1d5
AL
572 while (count < persistent_huge_pages) {
573 if (!adjust_pool_surplus(1))
574 break;
575 }
576out:
577 ret = persistent_huge_pages;
1da177e4 578 spin_unlock(&hugetlb_lock);
7893d1d5 579 return ret;
1da177e4
LT
580}
581
582int hugetlb_sysctl_handler(struct ctl_table *table, int write,
583 struct file *file, void __user *buffer,
584 size_t *length, loff_t *ppos)
585{
586 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
587 max_huge_pages = set_max_huge_pages(max_huge_pages);
588 return 0;
589}
396faf03
MG
590
591int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
592 struct file *file, void __user *buffer,
593 size_t *length, loff_t *ppos)
594{
595 proc_dointvec(table, write, file, buffer, length, ppos);
596 if (hugepages_treat_as_movable)
597 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
598 else
599 htlb_alloc_mask = GFP_HIGHUSER;
600 return 0;
601}
602
1da177e4
LT
603#endif /* CONFIG_SYSCTL */
604
605int hugetlb_report_meminfo(char *buf)
606{
607 return sprintf(buf,
608 "HugePages_Total: %5lu\n"
609 "HugePages_Free: %5lu\n"
a43a8c39 610 "HugePages_Rsvd: %5lu\n"
7893d1d5 611 "HugePages_Surp: %5lu\n"
1da177e4
LT
612 "Hugepagesize: %5lu kB\n",
613 nr_huge_pages,
614 free_huge_pages,
a43a8c39 615 resv_huge_pages,
7893d1d5 616 surplus_huge_pages,
1da177e4
LT
617 HPAGE_SIZE/1024);
618}
619
620int hugetlb_report_node_meminfo(int nid, char *buf)
621{
622 return sprintf(buf,
623 "Node %d HugePages_Total: %5u\n"
624 "Node %d HugePages_Free: %5u\n",
625 nid, nr_huge_pages_node[nid],
626 nid, free_huge_pages_node[nid]);
627}
628
1da177e4
LT
629/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
630unsigned long hugetlb_total_pages(void)
631{
632 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
633}
1da177e4
LT
634
635/*
636 * We cannot handle pagefaults against hugetlb pages at all. They cause
637 * handle_mm_fault() to try to instantiate regular-sized pages in the
638 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
639 * this far.
640 */
d0217ac0 641static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
642{
643 BUG();
d0217ac0 644 return 0;
1da177e4
LT
645}
646
647struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 648 .fault = hugetlb_vm_op_fault,
1da177e4
LT
649};
650
1e8f889b
DG
651static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
652 int writable)
63551ae0
DG
653{
654 pte_t entry;
655
1e8f889b 656 if (writable) {
63551ae0
DG
657 entry =
658 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
659 } else {
660 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
661 }
662 entry = pte_mkyoung(entry);
663 entry = pte_mkhuge(entry);
664
665 return entry;
666}
667
1e8f889b
DG
668static void set_huge_ptep_writable(struct vm_area_struct *vma,
669 unsigned long address, pte_t *ptep)
670{
671 pte_t entry;
672
673 entry = pte_mkwrite(pte_mkdirty(*ptep));
8dab5241
BH
674 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
675 update_mmu_cache(vma, address, entry);
8dab5241 676 }
1e8f889b
DG
677}
678
679
63551ae0
DG
680int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
681 struct vm_area_struct *vma)
682{
683 pte_t *src_pte, *dst_pte, entry;
684 struct page *ptepage;
1c59827d 685 unsigned long addr;
1e8f889b
DG
686 int cow;
687
688 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 689
1c59827d 690 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
691 src_pte = huge_pte_offset(src, addr);
692 if (!src_pte)
693 continue;
63551ae0
DG
694 dst_pte = huge_pte_alloc(dst, addr);
695 if (!dst_pte)
696 goto nomem;
c74df32c 697 spin_lock(&dst->page_table_lock);
1c59827d 698 spin_lock(&src->page_table_lock);
c74df32c 699 if (!pte_none(*src_pte)) {
1e8f889b
DG
700 if (cow)
701 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
702 entry = *src_pte;
703 ptepage = pte_page(entry);
704 get_page(ptepage);
1c59827d
HD
705 set_huge_pte_at(dst, addr, dst_pte, entry);
706 }
707 spin_unlock(&src->page_table_lock);
c74df32c 708 spin_unlock(&dst->page_table_lock);
63551ae0
DG
709 }
710 return 0;
711
712nomem:
713 return -ENOMEM;
714}
715
502717f4
KC
716void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
717 unsigned long end)
63551ae0
DG
718{
719 struct mm_struct *mm = vma->vm_mm;
720 unsigned long address;
c7546f8f 721 pte_t *ptep;
63551ae0
DG
722 pte_t pte;
723 struct page *page;
fe1668ae 724 struct page *tmp;
c0a499c2
KC
725 /*
726 * A page gathering list, protected by per file i_mmap_lock. The
727 * lock is used to avoid list corruption from multiple unmapping
728 * of the same page since we are using page->lru.
729 */
fe1668ae 730 LIST_HEAD(page_list);
63551ae0
DG
731
732 WARN_ON(!is_vm_hugetlb_page(vma));
733 BUG_ON(start & ~HPAGE_MASK);
734 BUG_ON(end & ~HPAGE_MASK);
735
508034a3 736 spin_lock(&mm->page_table_lock);
63551ae0 737 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 738 ptep = huge_pte_offset(mm, address);
4c887265 739 if (!ptep)
c7546f8f
DG
740 continue;
741
39dde65c
KC
742 if (huge_pmd_unshare(mm, &address, ptep))
743 continue;
744
c7546f8f 745 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
746 if (pte_none(pte))
747 continue;
c7546f8f 748
63551ae0 749 page = pte_page(pte);
6649a386
KC
750 if (pte_dirty(pte))
751 set_page_dirty(page);
fe1668ae 752 list_add(&page->lru, &page_list);
63551ae0 753 }
1da177e4 754 spin_unlock(&mm->page_table_lock);
508034a3 755 flush_tlb_range(vma, start, end);
fe1668ae
KC
756 list_for_each_entry_safe(page, tmp, &page_list, lru) {
757 list_del(&page->lru);
758 put_page(page);
759 }
1da177e4 760}
63551ae0 761
502717f4
KC
762void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
763 unsigned long end)
764{
765 /*
766 * It is undesirable to test vma->vm_file as it should be non-null
767 * for valid hugetlb area. However, vm_file will be NULL in the error
768 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
769 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
770 * to clean up. Since no pte has actually been setup, it is safe to
771 * do nothing in this case.
772 */
773 if (vma->vm_file) {
774 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
775 __unmap_hugepage_range(vma, start, end);
776 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
777 }
778}
779
1e8f889b
DG
780static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pte_t *ptep, pte_t pte)
782{
783 struct page *old_page, *new_page;
79ac6ba4 784 int avoidcopy;
1e8f889b
DG
785
786 old_page = pte_page(pte);
787
788 /* If no-one else is actually using this page, avoid the copy
789 * and just make the page writable */
790 avoidcopy = (page_count(old_page) == 1);
791 if (avoidcopy) {
792 set_huge_ptep_writable(vma, address, ptep);
83c54070 793 return 0;
1e8f889b
DG
794 }
795
796 page_cache_get(old_page);
5da7ca86 797 new_page = alloc_huge_page(vma, address);
1e8f889b 798
2fc39cec 799 if (IS_ERR(new_page)) {
1e8f889b 800 page_cache_release(old_page);
2fc39cec 801 return -PTR_ERR(new_page);
1e8f889b
DG
802 }
803
804 spin_unlock(&mm->page_table_lock);
9de455b2 805 copy_huge_page(new_page, old_page, address, vma);
1e8f889b
DG
806 spin_lock(&mm->page_table_lock);
807
808 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
809 if (likely(pte_same(*ptep, pte))) {
810 /* Break COW */
811 set_huge_pte_at(mm, address, ptep,
812 make_huge_pte(vma, new_page, 1));
813 /* Make the old page be freed below */
814 new_page = old_page;
815 }
816 page_cache_release(new_page);
817 page_cache_release(old_page);
83c54070 818 return 0;
1e8f889b
DG
819}
820
a1ed3dda 821static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 822 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
823{
824 int ret = VM_FAULT_SIGBUS;
4c887265
AL
825 unsigned long idx;
826 unsigned long size;
4c887265
AL
827 struct page *page;
828 struct address_space *mapping;
1e8f889b 829 pte_t new_pte;
4c887265 830
4c887265
AL
831 mapping = vma->vm_file->f_mapping;
832 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
833 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
834
835 /*
836 * Use page lock to guard against racing truncation
837 * before we get page_table_lock.
838 */
6bda666a
CL
839retry:
840 page = find_lock_page(mapping, idx);
841 if (!page) {
ebed4bfc
HD
842 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
843 if (idx >= size)
844 goto out;
6bda666a 845 page = alloc_huge_page(vma, address);
2fc39cec
AL
846 if (IS_ERR(page)) {
847 ret = -PTR_ERR(page);
6bda666a
CL
848 goto out;
849 }
79ac6ba4 850 clear_huge_page(page, address);
ac9b9c66 851
6bda666a
CL
852 if (vma->vm_flags & VM_SHARED) {
853 int err;
45c682a6 854 struct inode *inode = mapping->host;
6bda666a
CL
855
856 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
857 if (err) {
858 put_page(page);
6bda666a
CL
859 if (err == -EEXIST)
860 goto retry;
861 goto out;
862 }
45c682a6
KC
863
864 spin_lock(&inode->i_lock);
865 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
866 spin_unlock(&inode->i_lock);
6bda666a
CL
867 } else
868 lock_page(page);
869 }
1e8f889b 870
ac9b9c66 871 spin_lock(&mm->page_table_lock);
4c887265
AL
872 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
873 if (idx >= size)
874 goto backout;
875
83c54070 876 ret = 0;
86e5216f 877 if (!pte_none(*ptep))
4c887265
AL
878 goto backout;
879
1e8f889b
DG
880 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
881 && (vma->vm_flags & VM_SHARED)));
882 set_huge_pte_at(mm, address, ptep, new_pte);
883
884 if (write_access && !(vma->vm_flags & VM_SHARED)) {
885 /* Optimization, do the COW without a second fault */
886 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
887 }
888
ac9b9c66 889 spin_unlock(&mm->page_table_lock);
4c887265
AL
890 unlock_page(page);
891out:
ac9b9c66 892 return ret;
4c887265
AL
893
894backout:
895 spin_unlock(&mm->page_table_lock);
4c887265
AL
896 unlock_page(page);
897 put_page(page);
898 goto out;
ac9b9c66
HD
899}
900
86e5216f
AL
901int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
902 unsigned long address, int write_access)
903{
904 pte_t *ptep;
905 pte_t entry;
1e8f889b 906 int ret;
3935baa9 907 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
908
909 ptep = huge_pte_alloc(mm, address);
910 if (!ptep)
911 return VM_FAULT_OOM;
912
3935baa9
DG
913 /*
914 * Serialize hugepage allocation and instantiation, so that we don't
915 * get spurious allocation failures if two CPUs race to instantiate
916 * the same page in the page cache.
917 */
918 mutex_lock(&hugetlb_instantiation_mutex);
86e5216f 919 entry = *ptep;
3935baa9
DG
920 if (pte_none(entry)) {
921 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
922 mutex_unlock(&hugetlb_instantiation_mutex);
923 return ret;
924 }
86e5216f 925
83c54070 926 ret = 0;
1e8f889b
DG
927
928 spin_lock(&mm->page_table_lock);
929 /* Check for a racing update before calling hugetlb_cow */
930 if (likely(pte_same(entry, *ptep)))
931 if (write_access && !pte_write(entry))
932 ret = hugetlb_cow(mm, vma, address, ptep, entry);
933 spin_unlock(&mm->page_table_lock);
3935baa9 934 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
935
936 return ret;
86e5216f
AL
937}
938
63551ae0
DG
939int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
940 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
941 unsigned long *position, int *length, int i,
942 int write)
63551ae0 943{
d5d4b0aa
KC
944 unsigned long pfn_offset;
945 unsigned long vaddr = *position;
63551ae0
DG
946 int remainder = *length;
947
1c59827d 948 spin_lock(&mm->page_table_lock);
63551ae0 949 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
950 pte_t *pte;
951 struct page *page;
63551ae0 952
4c887265
AL
953 /*
954 * Some archs (sparc64, sh*) have multiple pte_ts to
955 * each hugepage. We have to make * sure we get the
956 * first, for the page indexing below to work.
957 */
958 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 959
72fad713 960 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
4c887265 961 int ret;
63551ae0 962
4c887265 963 spin_unlock(&mm->page_table_lock);
5b23dbe8 964 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 965 spin_lock(&mm->page_table_lock);
a89182c7 966 if (!(ret & VM_FAULT_ERROR))
4c887265 967 continue;
63551ae0 968
4c887265
AL
969 remainder = 0;
970 if (!i)
971 i = -EFAULT;
972 break;
973 }
974
d5d4b0aa
KC
975 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
976 page = pte_page(*pte);
977same_page:
d6692183
KC
978 if (pages) {
979 get_page(page);
d5d4b0aa 980 pages[i] = page + pfn_offset;
d6692183 981 }
63551ae0
DG
982
983 if (vmas)
984 vmas[i] = vma;
985
986 vaddr += PAGE_SIZE;
d5d4b0aa 987 ++pfn_offset;
63551ae0
DG
988 --remainder;
989 ++i;
d5d4b0aa
KC
990 if (vaddr < vma->vm_end && remainder &&
991 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
992 /*
993 * We use pfn_offset to avoid touching the pageframes
994 * of this compound page.
995 */
996 goto same_page;
997 }
63551ae0 998 }
1c59827d 999 spin_unlock(&mm->page_table_lock);
63551ae0
DG
1000 *length = remainder;
1001 *position = vaddr;
1002
1003 return i;
1004}
8f860591
ZY
1005
1006void hugetlb_change_protection(struct vm_area_struct *vma,
1007 unsigned long address, unsigned long end, pgprot_t newprot)
1008{
1009 struct mm_struct *mm = vma->vm_mm;
1010 unsigned long start = address;
1011 pte_t *ptep;
1012 pte_t pte;
1013
1014 BUG_ON(address >= end);
1015 flush_cache_range(vma, address, end);
1016
39dde65c 1017 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1018 spin_lock(&mm->page_table_lock);
1019 for (; address < end; address += HPAGE_SIZE) {
1020 ptep = huge_pte_offset(mm, address);
1021 if (!ptep)
1022 continue;
39dde65c
KC
1023 if (huge_pmd_unshare(mm, &address, ptep))
1024 continue;
8f860591
ZY
1025 if (!pte_none(*ptep)) {
1026 pte = huge_ptep_get_and_clear(mm, address, ptep);
1027 pte = pte_mkhuge(pte_modify(pte, newprot));
1028 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
1029 }
1030 }
1031 spin_unlock(&mm->page_table_lock);
39dde65c 1032 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1033
1034 flush_tlb_range(vma, start, end);
1035}
1036
a43a8c39
KC
1037struct file_region {
1038 struct list_head link;
1039 long from;
1040 long to;
1041};
1042
1043static long region_add(struct list_head *head, long f, long t)
1044{
1045 struct file_region *rg, *nrg, *trg;
1046
1047 /* Locate the region we are either in or before. */
1048 list_for_each_entry(rg, head, link)
1049 if (f <= rg->to)
1050 break;
1051
1052 /* Round our left edge to the current segment if it encloses us. */
1053 if (f > rg->from)
1054 f = rg->from;
1055
1056 /* Check for and consume any regions we now overlap with. */
1057 nrg = rg;
1058 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1059 if (&rg->link == head)
1060 break;
1061 if (rg->from > t)
1062 break;
1063
1064 /* If this area reaches higher then extend our area to
1065 * include it completely. If this is not the first area
1066 * which we intend to reuse, free it. */
1067 if (rg->to > t)
1068 t = rg->to;
1069 if (rg != nrg) {
1070 list_del(&rg->link);
1071 kfree(rg);
1072 }
1073 }
1074 nrg->from = f;
1075 nrg->to = t;
1076 return 0;
1077}
1078
1079static long region_chg(struct list_head *head, long f, long t)
1080{
1081 struct file_region *rg, *nrg;
1082 long chg = 0;
1083
1084 /* Locate the region we are before or in. */
1085 list_for_each_entry(rg, head, link)
1086 if (f <= rg->to)
1087 break;
1088
1089 /* If we are below the current region then a new region is required.
1090 * Subtle, allocate a new region at the position but make it zero
183ff22b 1091 * size such that we can guarantee to record the reservation. */
a43a8c39
KC
1092 if (&rg->link == head || t < rg->from) {
1093 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
c80544dc 1094 if (!nrg)
a43a8c39
KC
1095 return -ENOMEM;
1096 nrg->from = f;
1097 nrg->to = f;
1098 INIT_LIST_HEAD(&nrg->link);
1099 list_add(&nrg->link, rg->link.prev);
1100
1101 return t - f;
1102 }
1103
1104 /* Round our left edge to the current segment if it encloses us. */
1105 if (f > rg->from)
1106 f = rg->from;
1107 chg = t - f;
1108
1109 /* Check for and consume any regions we now overlap with. */
1110 list_for_each_entry(rg, rg->link.prev, link) {
1111 if (&rg->link == head)
1112 break;
1113 if (rg->from > t)
1114 return chg;
1115
1116 /* We overlap with this area, if it extends futher than
1117 * us then we must extend ourselves. Account for its
1118 * existing reservation. */
1119 if (rg->to > t) {
1120 chg += rg->to - t;
1121 t = rg->to;
1122 }
1123 chg -= rg->to - rg->from;
1124 }
1125 return chg;
1126}
1127
1128static long region_truncate(struct list_head *head, long end)
1129{
1130 struct file_region *rg, *trg;
1131 long chg = 0;
1132
1133 /* Locate the region we are either in or before. */
1134 list_for_each_entry(rg, head, link)
1135 if (end <= rg->to)
1136 break;
1137 if (&rg->link == head)
1138 return 0;
1139
1140 /* If we are in the middle of a region then adjust it. */
1141 if (end > rg->from) {
1142 chg = rg->to - end;
1143 rg->to = end;
1144 rg = list_entry(rg->link.next, typeof(*rg), link);
1145 }
1146
1147 /* Drop any remaining regions. */
1148 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1149 if (&rg->link == head)
1150 break;
1151 chg += rg->to - rg->from;
1152 list_del(&rg->link);
1153 kfree(rg);
1154 }
1155 return chg;
1156}
1157
1158static int hugetlb_acct_memory(long delta)
1159{
1160 int ret = -ENOMEM;
1161
1162 spin_lock(&hugetlb_lock);
8a630112
KC
1163 /*
1164 * When cpuset is configured, it breaks the strict hugetlb page
1165 * reservation as the accounting is done on a global variable. Such
1166 * reservation is completely rubbish in the presence of cpuset because
1167 * the reservation is not checked against page availability for the
1168 * current cpuset. Application can still potentially OOM'ed by kernel
1169 * with lack of free htlb page in cpuset that the task is in.
1170 * Attempt to enforce strict accounting with cpuset is almost
1171 * impossible (or too ugly) because cpuset is too fluid that
1172 * task or memory node can be dynamically moved between cpusets.
1173 *
1174 * The change of semantics for shared hugetlb mapping with cpuset is
1175 * undesirable. However, in order to preserve some of the semantics,
1176 * we fall back to check against current free page availability as
1177 * a best attempt and hopefully to minimize the impact of changing
1178 * semantics that cpuset has.
1179 */
e4e574b7
AL
1180 if (delta > 0) {
1181 if (gather_surplus_pages(delta) < 0)
1182 goto out;
1183
1184 if (delta > cpuset_mems_nr(free_huge_pages_node))
1185 goto out;
1186 }
1187
1188 ret = 0;
1189 resv_huge_pages += delta;
1190 if (delta < 0)
1191 return_unused_surplus_pages((unsigned long) -delta);
1192
1193out:
1194 spin_unlock(&hugetlb_lock);
1195 return ret;
1196}
1197
1198int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1199{
1200 long ret, chg;
1201
1202 chg = region_chg(&inode->i_mapping->private_list, from, to);
1203 if (chg < 0)
1204 return chg;
8a630112 1205
90d8b7e6
AL
1206 if (hugetlb_get_quota(inode->i_mapping, chg))
1207 return -ENOSPC;
a43a8c39
KC
1208 ret = hugetlb_acct_memory(chg);
1209 if (ret < 0)
1210 return ret;
1211 region_add(&inode->i_mapping->private_list, from, to);
1212 return 0;
1213}
1214
1215void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1216{
1217 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
1218
1219 spin_lock(&inode->i_lock);
1220 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1221 spin_unlock(&inode->i_lock);
1222
90d8b7e6
AL
1223 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1224 hugetlb_acct_memory(-(chg - freed));
a43a8c39 1225}