]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/kmemleak.c
Merge tag 'drm/tegra/for-5.1-rc5' of git://anongit.freedesktop.org/tegra/linux into...
[thirdparty/kernel/stable.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22901c6c 22 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
85d3a316 32 * blocks. The object_tree_root is a red black tree used to look-up
3c7b4e6b
CM
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b 55 *
93ada579 56 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 57 *
93ada579
CM
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
9d5a4c73 62 *
3c7b4e6b
CM
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
ae281064
JP
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
3c7b4e6b
CM
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
3f07c014 76#include <linux/sched/signal.h>
29930025 77#include <linux/sched/task.h>
68db0cf1 78#include <linux/sched/task_stack.h>
3c7b4e6b
CM
79#include <linux/jiffies.h>
80#include <linux/delay.h>
b95f1b31 81#include <linux/export.h>
3c7b4e6b 82#include <linux/kthread.h>
85d3a316 83#include <linux/rbtree.h>
3c7b4e6b
CM
84#include <linux/fs.h>
85#include <linux/debugfs.h>
86#include <linux/seq_file.h>
87#include <linux/cpumask.h>
88#include <linux/spinlock.h>
154221c3 89#include <linux/module.h>
3c7b4e6b
CM
90#include <linux/mutex.h>
91#include <linux/rcupdate.h>
92#include <linux/stacktrace.h>
93#include <linux/cache.h>
94#include <linux/percpu.h>
57c8a661 95#include <linux/memblock.h>
9099daed 96#include <linux/pfn.h>
3c7b4e6b
CM
97#include <linux/mmzone.h>
98#include <linux/slab.h>
99#include <linux/thread_info.h>
100#include <linux/err.h>
101#include <linux/uaccess.h>
102#include <linux/string.h>
103#include <linux/nodemask.h>
104#include <linux/mm.h>
179a8100 105#include <linux/workqueue.h>
04609ccc 106#include <linux/crc32.h>
3c7b4e6b
CM
107
108#include <asm/sections.h>
109#include <asm/processor.h>
60063497 110#include <linux/atomic.h>
3c7b4e6b 111
e79ed2f1 112#include <linux/kasan.h>
3c7b4e6b 113#include <linux/kmemleak.h>
029aeff5 114#include <linux/memory_hotplug.h>
3c7b4e6b
CM
115
116/*
117 * Kmemleak configuration and common defines.
118 */
119#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 120#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
121#define SECS_FIRST_SCAN 60 /* delay before the first scan */
122#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 123#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
124
125#define BYTES_PER_POINTER sizeof(void *)
126
216c04b0 127/* GFP bitmask for kmemleak internal allocations */
20b5c303 128#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
6ae4bd1f 129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
d9570ee3 130 __GFP_NOWARN | __GFP_NOFAIL)
216c04b0 131
3c7b4e6b
CM
132/* scanning area inside a memory block */
133struct kmemleak_scan_area {
134 struct hlist_node node;
c017b4be
CM
135 unsigned long start;
136 size_t size;
3c7b4e6b
CM
137};
138
a1084c87
LR
139#define KMEMLEAK_GREY 0
140#define KMEMLEAK_BLACK -1
141
3c7b4e6b
CM
142/*
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 146 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
149 */
150struct kmemleak_object {
151 spinlock_t lock;
f66abf09 152 unsigned int flags; /* object status flags */
3c7b4e6b
CM
153 struct list_head object_list;
154 struct list_head gray_list;
85d3a316 155 struct rb_node rb_node;
3c7b4e6b
CM
156 struct rcu_head rcu; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
158 atomic_t use_count;
159 unsigned long pointer;
160 size_t size;
94f4a161
CM
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref;
3c7b4e6b
CM
163 /* minimum number of a pointers found before it is considered leak */
164 int min_count;
165 /* the total number of pointers found pointing to this object */
166 int count;
04609ccc
CM
167 /* checksum for detecting modified objects */
168 u32 checksum;
3c7b4e6b
CM
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list;
171 unsigned long trace[MAX_TRACE];
172 unsigned int trace_len;
173 unsigned long jiffies; /* creation timestamp */
174 pid_t pid; /* pid of the current task */
175 char comm[TASK_COMM_LEN]; /* executable name */
176};
177
178/* flag representing the memory block allocation status */
179#define OBJECT_ALLOCATED (1 << 0)
180/* flag set after the first reporting of an unreference object */
181#define OBJECT_REPORTED (1 << 1)
182/* flag set to not scan the object */
183#define OBJECT_NO_SCAN (1 << 2)
184
154221c3 185#define HEX_PREFIX " "
0494e082
SS
186/* number of bytes to print per line; must be 16 or 32 */
187#define HEX_ROW_SIZE 16
188/* number of bytes to print at a time (1, 2, 4, 8) */
189#define HEX_GROUP_SIZE 1
190/* include ASCII after the hex output */
191#define HEX_ASCII 1
192/* max number of lines to be printed */
193#define HEX_MAX_LINES 2
194
3c7b4e6b
CM
195/* the list of all allocated objects */
196static LIST_HEAD(object_list);
197/* the list of gray-colored objects (see color_gray comment below) */
198static LIST_HEAD(gray_list);
85d3a316
ML
199/* search tree for object boundaries */
200static struct rb_root object_tree_root = RB_ROOT;
201/* rw_lock protecting the access to object_list and object_tree_root */
3c7b4e6b
CM
202static DEFINE_RWLOCK(kmemleak_lock);
203
204/* allocation caches for kmemleak internal data */
205static struct kmem_cache *object_cache;
206static struct kmem_cache *scan_area_cache;
207
208/* set if tracing memory operations is enabled */
8910ae89 209static int kmemleak_enabled;
c5f3b1a5
CM
210/* same as above but only for the kmemleak_free() callback */
211static int kmemleak_free_enabled;
3c7b4e6b 212/* set in the late_initcall if there were no errors */
8910ae89 213static int kmemleak_initialized;
3c7b4e6b 214/* enables or disables early logging of the memory operations */
8910ae89 215static int kmemleak_early_log = 1;
5f79020c 216/* set if a kmemleak warning was issued */
8910ae89 217static int kmemleak_warning;
5f79020c 218/* set if a fatal kmemleak error has occurred */
8910ae89 219static int kmemleak_error;
3c7b4e6b
CM
220
221/* minimum and maximum address that may be valid pointers */
222static unsigned long min_addr = ULONG_MAX;
223static unsigned long max_addr;
224
3c7b4e6b 225static struct task_struct *scan_thread;
acf4968e 226/* used to avoid reporting of recently allocated objects */
3c7b4e6b 227static unsigned long jiffies_min_age;
acf4968e 228static unsigned long jiffies_last_scan;
3c7b4e6b
CM
229/* delay between automatic memory scannings */
230static signed long jiffies_scan_wait;
231/* enables or disables the task stacks scanning */
e0a2a160 232static int kmemleak_stack_scan = 1;
4698c1f2 233/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 234static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
235/* setting kmemleak=on, will set this var, skipping the disable */
236static int kmemleak_skip_disable;
dc9b3f42
LZ
237/* If there are leaks that can be reported */
238static bool kmemleak_found_leaks;
3c7b4e6b 239
154221c3
VW
240static bool kmemleak_verbose;
241module_param_named(verbose, kmemleak_verbose, bool, 0600);
242
3c7b4e6b 243/*
2030117d 244 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 245 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 246 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
247 * arbitrary buffer to hold the allocation/freeing information before it is
248 * fully initialized.
249 */
250
251/* kmemleak operation type for early logging */
252enum {
253 KMEMLEAK_ALLOC,
f528f0b8 254 KMEMLEAK_ALLOC_PERCPU,
3c7b4e6b 255 KMEMLEAK_FREE,
53238a60 256 KMEMLEAK_FREE_PART,
f528f0b8 257 KMEMLEAK_FREE_PERCPU,
3c7b4e6b
CM
258 KMEMLEAK_NOT_LEAK,
259 KMEMLEAK_IGNORE,
260 KMEMLEAK_SCAN_AREA,
94f4a161
CM
261 KMEMLEAK_NO_SCAN,
262 KMEMLEAK_SET_EXCESS_REF
3c7b4e6b
CM
263};
264
265/*
266 * Structure holding the information passed to kmemleak callbacks during the
267 * early logging.
268 */
269struct early_log {
270 int op_type; /* kmemleak operation type */
f66abf09 271 int min_count; /* minimum reference count */
3c7b4e6b 272 const void *ptr; /* allocated/freed memory block */
94f4a161
CM
273 union {
274 size_t size; /* memory block size */
275 unsigned long excess_ref; /* surplus reference passing */
276 };
fd678967
CM
277 unsigned long trace[MAX_TRACE]; /* stack trace */
278 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
279};
280
281/* early logging buffer and current position */
a6186d89
CM
282static struct early_log
283 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284static int crt_early_log __initdata;
3c7b4e6b
CM
285
286static void kmemleak_disable(void);
287
288/*
289 * Print a warning and dump the stack trace.
290 */
5f79020c 291#define kmemleak_warn(x...) do { \
598d8091 292 pr_warn(x); \
5f79020c 293 dump_stack(); \
8910ae89 294 kmemleak_warning = 1; \
3c7b4e6b
CM
295} while (0)
296
297/*
25985edc 298 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 299 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
300 * tracing no longer available.
301 */
000814f4 302#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
303 kmemleak_warn(x); \
304 kmemleak_disable(); \
305} while (0)
306
154221c3
VW
307#define warn_or_seq_printf(seq, fmt, ...) do { \
308 if (seq) \
309 seq_printf(seq, fmt, ##__VA_ARGS__); \
310 else \
311 pr_warn(fmt, ##__VA_ARGS__); \
312} while (0)
313
314static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315 int rowsize, int groupsize, const void *buf,
316 size_t len, bool ascii)
317{
318 if (seq)
319 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320 buf, len, ascii);
321 else
322 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323 rowsize, groupsize, buf, len, ascii);
324}
325
0494e082
SS
326/*
327 * Printing of the objects hex dump to the seq file. The number of lines to be
328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330 * with the object->lock held.
331 */
332static void hex_dump_object(struct seq_file *seq,
333 struct kmemleak_object *object)
334{
335 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 336 size_t len;
0494e082
SS
337
338 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 339 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 340
154221c3 341 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 342 kasan_disable_current();
154221c3
VW
343 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
5c335fe0 345 kasan_enable_current();
0494e082
SS
346}
347
3c7b4e6b
CM
348/*
349 * Object colors, encoded with count and min_count:
350 * - white - orphan object, not enough references to it (count < min_count)
351 * - gray - not orphan, not marked as false positive (min_count == 0) or
352 * sufficient references to it (count >= min_count)
353 * - black - ignore, it doesn't contain references (e.g. text section)
354 * (min_count == -1). No function defined for this color.
355 * Newly created objects don't have any color assigned (object->count == -1)
356 * before the next memory scan when they become white.
357 */
4a558dd6 358static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 359{
a1084c87
LR
360 return object->count != KMEMLEAK_BLACK &&
361 object->count < object->min_count;
3c7b4e6b
CM
362}
363
4a558dd6 364static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 365{
a1084c87
LR
366 return object->min_count != KMEMLEAK_BLACK &&
367 object->count >= object->min_count;
3c7b4e6b
CM
368}
369
3c7b4e6b
CM
370/*
371 * Objects are considered unreferenced only if their color is white, they have
372 * not be deleted and have a minimum age to avoid false positives caused by
373 * pointers temporarily stored in CPU registers.
374 */
4a558dd6 375static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 376{
04609ccc 377 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
378 time_before_eq(object->jiffies + jiffies_min_age,
379 jiffies_last_scan);
3c7b4e6b
CM
380}
381
382/*
bab4a34a
CM
383 * Printing of the unreferenced objects information to the seq file. The
384 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 385 */
3c7b4e6b
CM
386static void print_unreferenced(struct seq_file *seq,
387 struct kmemleak_object *object)
388{
389 int i;
fefdd336 390 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 391
154221c3 392 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
bab4a34a 393 object->pointer, object->size);
154221c3 394 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
fefdd336
CM
395 object->comm, object->pid, object->jiffies,
396 msecs_age / 1000, msecs_age % 1000);
0494e082 397 hex_dump_object(seq, object);
154221c3 398 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
399
400 for (i = 0; i < object->trace_len; i++) {
401 void *ptr = (void *)object->trace[i];
154221c3 402 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
403 }
404}
405
406/*
407 * Print the kmemleak_object information. This function is used mainly for
408 * debugging special cases when kmemleak operations. It must be called with
409 * the object->lock held.
410 */
411static void dump_object_info(struct kmemleak_object *object)
412{
413 struct stack_trace trace;
414
415 trace.nr_entries = object->trace_len;
416 trace.entries = object->trace;
417
ae281064 418 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 419 object->pointer, object->size);
3c7b4e6b
CM
420 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
421 object->comm, object->pid, object->jiffies);
422 pr_notice(" min_count = %d\n", object->min_count);
423 pr_notice(" count = %d\n", object->count);
f66abf09 424 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 425 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b
CM
426 pr_notice(" backtrace:\n");
427 print_stack_trace(&trace, 4);
428}
429
430/*
85d3a316 431 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
432 * tree based on a pointer value. If alias is 0, only values pointing to the
433 * beginning of the memory block are allowed. The kmemleak_lock must be held
434 * when calling this function.
435 */
436static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
437{
85d3a316
ML
438 struct rb_node *rb = object_tree_root.rb_node;
439
440 while (rb) {
441 struct kmemleak_object *object =
442 rb_entry(rb, struct kmemleak_object, rb_node);
443 if (ptr < object->pointer)
444 rb = object->rb_node.rb_left;
445 else if (object->pointer + object->size <= ptr)
446 rb = object->rb_node.rb_right;
447 else if (object->pointer == ptr || alias)
448 return object;
449 else {
5f79020c
CM
450 kmemleak_warn("Found object by alias at 0x%08lx\n",
451 ptr);
a7686a45 452 dump_object_info(object);
85d3a316 453 break;
3c7b4e6b 454 }
85d3a316
ML
455 }
456 return NULL;
3c7b4e6b
CM
457}
458
459/*
460 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
461 * that once an object's use_count reached 0, the RCU freeing was already
462 * registered and the object should no longer be used. This function must be
463 * called under the protection of rcu_read_lock().
464 */
465static int get_object(struct kmemleak_object *object)
466{
467 return atomic_inc_not_zero(&object->use_count);
468}
469
470/*
471 * RCU callback to free a kmemleak_object.
472 */
473static void free_object_rcu(struct rcu_head *rcu)
474{
b67bfe0d 475 struct hlist_node *tmp;
3c7b4e6b
CM
476 struct kmemleak_scan_area *area;
477 struct kmemleak_object *object =
478 container_of(rcu, struct kmemleak_object, rcu);
479
480 /*
481 * Once use_count is 0 (guaranteed by put_object), there is no other
482 * code accessing this object, hence no need for locking.
483 */
b67bfe0d
SL
484 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
485 hlist_del(&area->node);
3c7b4e6b
CM
486 kmem_cache_free(scan_area_cache, area);
487 }
488 kmem_cache_free(object_cache, object);
489}
490
491/*
492 * Decrement the object use_count. Once the count is 0, free the object using
493 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
494 * delete_object() path, the delayed RCU freeing ensures that there is no
495 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
496 * is also possible.
497 */
498static void put_object(struct kmemleak_object *object)
499{
500 if (!atomic_dec_and_test(&object->use_count))
501 return;
502
503 /* should only get here after delete_object was called */
504 WARN_ON(object->flags & OBJECT_ALLOCATED);
505
506 call_rcu(&object->rcu, free_object_rcu);
507}
508
509/*
85d3a316 510 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b
CM
511 */
512static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513{
514 unsigned long flags;
9fbed254 515 struct kmemleak_object *object;
3c7b4e6b
CM
516
517 rcu_read_lock();
518 read_lock_irqsave(&kmemleak_lock, flags);
93ada579 519 object = lookup_object(ptr, alias);
3c7b4e6b
CM
520 read_unlock_irqrestore(&kmemleak_lock, flags);
521
522 /* check whether the object is still available */
523 if (object && !get_object(object))
524 object = NULL;
525 rcu_read_unlock();
526
527 return object;
528}
529
e781a9ab
CM
530/*
531 * Look up an object in the object search tree and remove it from both
532 * object_tree_root and object_list. The returned object's use_count should be
533 * at least 1, as initially set by create_object().
534 */
535static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
536{
537 unsigned long flags;
538 struct kmemleak_object *object;
539
540 write_lock_irqsave(&kmemleak_lock, flags);
541 object = lookup_object(ptr, alias);
542 if (object) {
543 rb_erase(&object->rb_node, &object_tree_root);
544 list_del_rcu(&object->object_list);
545 }
546 write_unlock_irqrestore(&kmemleak_lock, flags);
547
548 return object;
549}
550
fd678967
CM
551/*
552 * Save stack trace to the given array of MAX_TRACE size.
553 */
554static int __save_stack_trace(unsigned long *trace)
555{
556 struct stack_trace stack_trace;
557
558 stack_trace.max_entries = MAX_TRACE;
559 stack_trace.nr_entries = 0;
560 stack_trace.entries = trace;
561 stack_trace.skip = 2;
562 save_stack_trace(&stack_trace);
563
564 return stack_trace.nr_entries;
565}
566
3c7b4e6b
CM
567/*
568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
569 * memory block and add it to the object_list and object_tree_root.
570 */
fd678967
CM
571static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572 int min_count, gfp_t gfp)
3c7b4e6b
CM
573{
574 unsigned long flags;
85d3a316
ML
575 struct kmemleak_object *object, *parent;
576 struct rb_node **link, *rb_parent;
a2f77575 577 unsigned long untagged_ptr;
3c7b4e6b 578
6ae4bd1f 579 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 580 if (!object) {
598d8091 581 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 582 kmemleak_disable();
fd678967 583 return NULL;
3c7b4e6b
CM
584 }
585
586 INIT_LIST_HEAD(&object->object_list);
587 INIT_LIST_HEAD(&object->gray_list);
588 INIT_HLIST_HEAD(&object->area_list);
589 spin_lock_init(&object->lock);
590 atomic_set(&object->use_count, 1);
04609ccc 591 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
592 object->pointer = ptr;
593 object->size = size;
94f4a161 594 object->excess_ref = 0;
3c7b4e6b 595 object->min_count = min_count;
04609ccc 596 object->count = 0; /* white color initially */
3c7b4e6b 597 object->jiffies = jiffies;
04609ccc 598 object->checksum = 0;
3c7b4e6b
CM
599
600 /* task information */
601 if (in_irq()) {
602 object->pid = 0;
603 strncpy(object->comm, "hardirq", sizeof(object->comm));
604 } else if (in_softirq()) {
605 object->pid = 0;
606 strncpy(object->comm, "softirq", sizeof(object->comm));
607 } else {
608 object->pid = current->pid;
609 /*
610 * There is a small chance of a race with set_task_comm(),
611 * however using get_task_comm() here may cause locking
612 * dependency issues with current->alloc_lock. In the worst
613 * case, the command line is not correct.
614 */
615 strncpy(object->comm, current->comm, sizeof(object->comm));
616 }
617
618 /* kernel backtrace */
fd678967 619 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 620
3c7b4e6b 621 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 622
a2f77575
AK
623 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
624 min_addr = min(min_addr, untagged_ptr);
625 max_addr = max(max_addr, untagged_ptr + size);
85d3a316
ML
626 link = &object_tree_root.rb_node;
627 rb_parent = NULL;
628 while (*link) {
629 rb_parent = *link;
630 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
631 if (ptr + size <= parent->pointer)
632 link = &parent->rb_node.rb_left;
633 else if (parent->pointer + parent->size <= ptr)
634 link = &parent->rb_node.rb_right;
635 else {
756a025f 636 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 637 ptr);
9d5a4c73
CM
638 /*
639 * No need for parent->lock here since "parent" cannot
640 * be freed while the kmemleak_lock is held.
641 */
642 dump_object_info(parent);
85d3a316 643 kmem_cache_free(object_cache, object);
9d5a4c73 644 object = NULL;
85d3a316
ML
645 goto out;
646 }
3c7b4e6b 647 }
85d3a316
ML
648 rb_link_node(&object->rb_node, rb_parent, link);
649 rb_insert_color(&object->rb_node, &object_tree_root);
650
3c7b4e6b
CM
651 list_add_tail_rcu(&object->object_list, &object_list);
652out:
653 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 654 return object;
3c7b4e6b
CM
655}
656
657/*
e781a9ab 658 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 659 */
53238a60 660static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
661{
662 unsigned long flags;
3c7b4e6b 663
3c7b4e6b 664 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 665 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
666
667 /*
668 * Locking here also ensures that the corresponding memory block
669 * cannot be freed when it is being scanned.
670 */
671 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
672 object->flags &= ~OBJECT_ALLOCATED;
673 spin_unlock_irqrestore(&object->lock, flags);
674 put_object(object);
675}
676
53238a60
CM
677/*
678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
679 * delete it.
680 */
681static void delete_object_full(unsigned long ptr)
682{
683 struct kmemleak_object *object;
684
e781a9ab 685 object = find_and_remove_object(ptr, 0);
53238a60
CM
686 if (!object) {
687#ifdef DEBUG
688 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
689 ptr);
690#endif
691 return;
692 }
693 __delete_object(object);
53238a60
CM
694}
695
696/*
697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
698 * delete it. If the memory block is partially freed, the function may create
699 * additional metadata for the remaining parts of the block.
700 */
701static void delete_object_part(unsigned long ptr, size_t size)
702{
703 struct kmemleak_object *object;
704 unsigned long start, end;
705
e781a9ab 706 object = find_and_remove_object(ptr, 1);
53238a60
CM
707 if (!object) {
708#ifdef DEBUG
756a025f
JP
709 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
710 ptr, size);
53238a60
CM
711#endif
712 return;
713 }
53238a60
CM
714
715 /*
716 * Create one or two objects that may result from the memory block
717 * split. Note that partial freeing is only done by free_bootmem() and
718 * this happens before kmemleak_init() is called. The path below is
719 * only executed during early log recording in kmemleak_init(), so
720 * GFP_KERNEL is enough.
721 */
722 start = object->pointer;
723 end = object->pointer + object->size;
724 if (ptr > start)
725 create_object(start, ptr - start, object->min_count,
726 GFP_KERNEL);
727 if (ptr + size < end)
728 create_object(ptr + size, end - ptr - size, object->min_count,
729 GFP_KERNEL);
730
e781a9ab 731 __delete_object(object);
53238a60 732}
a1084c87
LR
733
734static void __paint_it(struct kmemleak_object *object, int color)
735{
736 object->min_count = color;
737 if (color == KMEMLEAK_BLACK)
738 object->flags |= OBJECT_NO_SCAN;
739}
740
741static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
742{
743 unsigned long flags;
a1084c87
LR
744
745 spin_lock_irqsave(&object->lock, flags);
746 __paint_it(object, color);
747 spin_unlock_irqrestore(&object->lock, flags);
748}
749
750static void paint_ptr(unsigned long ptr, int color)
751{
3c7b4e6b
CM
752 struct kmemleak_object *object;
753
754 object = find_and_get_object(ptr, 0);
755 if (!object) {
756a025f
JP
756 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
757 ptr,
a1084c87
LR
758 (color == KMEMLEAK_GREY) ? "Grey" :
759 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
760 return;
761 }
a1084c87 762 paint_it(object, color);
3c7b4e6b
CM
763 put_object(object);
764}
765
a1084c87 766/*
145b64b9 767 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
768 * reported as a leak. This is used in general to mark a false positive.
769 */
770static void make_gray_object(unsigned long ptr)
771{
772 paint_ptr(ptr, KMEMLEAK_GREY);
773}
774
3c7b4e6b
CM
775/*
776 * Mark the object as black-colored so that it is ignored from scans and
777 * reporting.
778 */
779static void make_black_object(unsigned long ptr)
780{
a1084c87 781 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
782}
783
784/*
785 * Add a scanning area to the object. If at least one such area is added,
786 * kmemleak will only scan these ranges rather than the whole memory block.
787 */
c017b4be 788static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
789{
790 unsigned long flags;
791 struct kmemleak_object *object;
792 struct kmemleak_scan_area *area;
793
c017b4be 794 object = find_and_get_object(ptr, 1);
3c7b4e6b 795 if (!object) {
ae281064
JP
796 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
797 ptr);
3c7b4e6b
CM
798 return;
799 }
800
6ae4bd1f 801 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 802 if (!area) {
598d8091 803 pr_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
804 goto out;
805 }
806
807 spin_lock_irqsave(&object->lock, flags);
7f88f88f
CM
808 if (size == SIZE_MAX) {
809 size = object->pointer + object->size - ptr;
810 } else if (ptr + size > object->pointer + object->size) {
ae281064 811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
812 dump_object_info(object);
813 kmem_cache_free(scan_area_cache, area);
814 goto out_unlock;
815 }
816
817 INIT_HLIST_NODE(&area->node);
c017b4be
CM
818 area->start = ptr;
819 area->size = size;
3c7b4e6b
CM
820
821 hlist_add_head(&area->node, &object->area_list);
822out_unlock:
823 spin_unlock_irqrestore(&object->lock, flags);
824out:
825 put_object(object);
826}
827
94f4a161
CM
828/*
829 * Any surplus references (object already gray) to 'ptr' are passed to
830 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
831 * vm_struct may be used as an alternative reference to the vmalloc'ed object
832 * (see free_thread_stack()).
833 */
834static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
835{
836 unsigned long flags;
837 struct kmemleak_object *object;
838
839 object = find_and_get_object(ptr, 0);
840 if (!object) {
841 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
842 ptr);
843 return;
844 }
845
846 spin_lock_irqsave(&object->lock, flags);
847 object->excess_ref = excess_ref;
848 spin_unlock_irqrestore(&object->lock, flags);
849 put_object(object);
850}
851
3c7b4e6b
CM
852/*
853 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
854 * pointer. Such object will not be scanned by kmemleak but references to it
855 * are searched.
856 */
857static void object_no_scan(unsigned long ptr)
858{
859 unsigned long flags;
860 struct kmemleak_object *object;
861
862 object = find_and_get_object(ptr, 0);
863 if (!object) {
ae281064 864 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
865 return;
866 }
867
868 spin_lock_irqsave(&object->lock, flags);
869 object->flags |= OBJECT_NO_SCAN;
870 spin_unlock_irqrestore(&object->lock, flags);
871 put_object(object);
872}
873
874/*
875 * Log an early kmemleak_* call to the early_log buffer. These calls will be
876 * processed later once kmemleak is fully initialized.
877 */
a6186d89 878static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 879 int min_count)
3c7b4e6b
CM
880{
881 unsigned long flags;
882 struct early_log *log;
883
8910ae89 884 if (kmemleak_error) {
b6693005
CM
885 /* kmemleak stopped recording, just count the requests */
886 crt_early_log++;
887 return;
888 }
889
3c7b4e6b 890 if (crt_early_log >= ARRAY_SIZE(early_log)) {
21cd3a60 891 crt_early_log++;
a9d9058a 892 kmemleak_disable();
3c7b4e6b
CM
893 return;
894 }
895
896 /*
897 * There is no need for locking since the kernel is still in UP mode
898 * at this stage. Disabling the IRQs is enough.
899 */
900 local_irq_save(flags);
901 log = &early_log[crt_early_log];
902 log->op_type = op_type;
903 log->ptr = ptr;
904 log->size = size;
905 log->min_count = min_count;
5f79020c 906 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
907 crt_early_log++;
908 local_irq_restore(flags);
909}
910
fd678967
CM
911/*
912 * Log an early allocated block and populate the stack trace.
913 */
914static void early_alloc(struct early_log *log)
915{
916 struct kmemleak_object *object;
917 unsigned long flags;
918 int i;
919
8910ae89 920 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
fd678967
CM
921 return;
922
923 /*
924 * RCU locking needed to ensure object is not freed via put_object().
925 */
926 rcu_read_lock();
927 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 928 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
929 if (!object)
930 goto out;
fd678967
CM
931 spin_lock_irqsave(&object->lock, flags);
932 for (i = 0; i < log->trace_len; i++)
933 object->trace[i] = log->trace[i];
934 object->trace_len = log->trace_len;
935 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 936out:
fd678967
CM
937 rcu_read_unlock();
938}
939
f528f0b8
CM
940/*
941 * Log an early allocated block and populate the stack trace.
942 */
943static void early_alloc_percpu(struct early_log *log)
944{
945 unsigned int cpu;
946 const void __percpu *ptr = log->ptr;
947
948 for_each_possible_cpu(cpu) {
949 log->ptr = per_cpu_ptr(ptr, cpu);
950 early_alloc(log);
951 }
952}
953
a2b6bf63
CM
954/**
955 * kmemleak_alloc - register a newly allocated object
956 * @ptr: pointer to beginning of the object
957 * @size: size of the object
958 * @min_count: minimum number of references to this object. If during memory
959 * scanning a number of references less than @min_count is found,
960 * the object is reported as a memory leak. If @min_count is 0,
961 * the object is never reported as a leak. If @min_count is -1,
962 * the object is ignored (not scanned and not reported as a leak)
963 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
964 *
965 * This function is called from the kernel allocators when a new object
94f4a161 966 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 967 */
a6186d89
CM
968void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
969 gfp_t gfp)
3c7b4e6b
CM
970{
971 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
972
8910ae89 973 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 974 create_object((unsigned long)ptr, size, min_count, gfp);
8910ae89 975 else if (kmemleak_early_log)
c017b4be 976 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
977}
978EXPORT_SYMBOL_GPL(kmemleak_alloc);
979
f528f0b8
CM
980/**
981 * kmemleak_alloc_percpu - register a newly allocated __percpu object
982 * @ptr: __percpu pointer to beginning of the object
983 * @size: size of the object
8a8c35fa 984 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
985 *
986 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 987 * (memory block) is allocated (alloc_percpu).
f528f0b8 988 */
8a8c35fa
LF
989void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
990 gfp_t gfp)
f528f0b8
CM
991{
992 unsigned int cpu;
993
994 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
995
996 /*
997 * Percpu allocations are only scanned and not reported as leaks
998 * (min_count is set to 0).
999 */
8910ae89 1000 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1001 for_each_possible_cpu(cpu)
1002 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 1003 size, 0, gfp);
8910ae89 1004 else if (kmemleak_early_log)
f528f0b8
CM
1005 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1006}
1007EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1008
94f4a161
CM
1009/**
1010 * kmemleak_vmalloc - register a newly vmalloc'ed object
1011 * @area: pointer to vm_struct
1012 * @size: size of the object
1013 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1014 *
1015 * This function is called from the vmalloc() kernel allocator when a new
1016 * object (memory block) is allocated.
1017 */
1018void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1019{
1020 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1021
1022 /*
1023 * A min_count = 2 is needed because vm_struct contains a reference to
1024 * the virtual address of the vmalloc'ed block.
1025 */
1026 if (kmemleak_enabled) {
1027 create_object((unsigned long)area->addr, size, 2, gfp);
1028 object_set_excess_ref((unsigned long)area,
1029 (unsigned long)area->addr);
1030 } else if (kmemleak_early_log) {
1031 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1032 /* reusing early_log.size for storing area->addr */
1033 log_early(KMEMLEAK_SET_EXCESS_REF,
1034 area, (unsigned long)area->addr, 0);
1035 }
1036}
1037EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1038
a2b6bf63
CM
1039/**
1040 * kmemleak_free - unregister a previously registered object
1041 * @ptr: pointer to beginning of the object
1042 *
1043 * This function is called from the kernel allocators when an object (memory
1044 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1045 */
a6186d89 1046void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1047{
1048 pr_debug("%s(0x%p)\n", __func__, ptr);
1049
c5f3b1a5 1050 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1051 delete_object_full((unsigned long)ptr);
8910ae89 1052 else if (kmemleak_early_log)
c017b4be 1053 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
1054}
1055EXPORT_SYMBOL_GPL(kmemleak_free);
1056
a2b6bf63
CM
1057/**
1058 * kmemleak_free_part - partially unregister a previously registered object
1059 * @ptr: pointer to the beginning or inside the object. This also
1060 * represents the start of the range to be freed
1061 * @size: size to be unregistered
1062 *
1063 * This function is called when only a part of a memory block is freed
1064 * (usually from the bootmem allocator).
53238a60 1065 */
a6186d89 1066void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1067{
1068 pr_debug("%s(0x%p)\n", __func__, ptr);
1069
8910ae89 1070 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
53238a60 1071 delete_object_part((unsigned long)ptr, size);
8910ae89 1072 else if (kmemleak_early_log)
c017b4be 1073 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
1074}
1075EXPORT_SYMBOL_GPL(kmemleak_free_part);
1076
f528f0b8
CM
1077/**
1078 * kmemleak_free_percpu - unregister a previously registered __percpu object
1079 * @ptr: __percpu pointer to beginning of the object
1080 *
1081 * This function is called from the kernel percpu allocator when an object
1082 * (memory block) is freed (free_percpu).
1083 */
1084void __ref kmemleak_free_percpu(const void __percpu *ptr)
1085{
1086 unsigned int cpu;
1087
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1089
c5f3b1a5 1090 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1091 for_each_possible_cpu(cpu)
1092 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1093 cpu));
8910ae89 1094 else if (kmemleak_early_log)
f528f0b8
CM
1095 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1096}
1097EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1098
ffe2c748
CM
1099/**
1100 * kmemleak_update_trace - update object allocation stack trace
1101 * @ptr: pointer to beginning of the object
1102 *
1103 * Override the object allocation stack trace for cases where the actual
1104 * allocation place is not always useful.
1105 */
1106void __ref kmemleak_update_trace(const void *ptr)
1107{
1108 struct kmemleak_object *object;
1109 unsigned long flags;
1110
1111 pr_debug("%s(0x%p)\n", __func__, ptr);
1112
1113 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1114 return;
1115
1116 object = find_and_get_object((unsigned long)ptr, 1);
1117 if (!object) {
1118#ifdef DEBUG
1119 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1120 ptr);
1121#endif
1122 return;
1123 }
1124
1125 spin_lock_irqsave(&object->lock, flags);
1126 object->trace_len = __save_stack_trace(object->trace);
1127 spin_unlock_irqrestore(&object->lock, flags);
1128
1129 put_object(object);
1130}
1131EXPORT_SYMBOL(kmemleak_update_trace);
1132
a2b6bf63
CM
1133/**
1134 * kmemleak_not_leak - mark an allocated object as false positive
1135 * @ptr: pointer to beginning of the object
1136 *
1137 * Calling this function on an object will cause the memory block to no longer
1138 * be reported as leak and always be scanned.
3c7b4e6b 1139 */
a6186d89 1140void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1141{
1142 pr_debug("%s(0x%p)\n", __func__, ptr);
1143
8910ae89 1144 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1145 make_gray_object((unsigned long)ptr);
8910ae89 1146 else if (kmemleak_early_log)
c017b4be 1147 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
1148}
1149EXPORT_SYMBOL(kmemleak_not_leak);
1150
a2b6bf63
CM
1151/**
1152 * kmemleak_ignore - ignore an allocated object
1153 * @ptr: pointer to beginning of the object
1154 *
1155 * Calling this function on an object will cause the memory block to be
1156 * ignored (not scanned and not reported as a leak). This is usually done when
1157 * it is known that the corresponding block is not a leak and does not contain
1158 * any references to other allocated memory blocks.
3c7b4e6b 1159 */
a6186d89 1160void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1161{
1162 pr_debug("%s(0x%p)\n", __func__, ptr);
1163
8910ae89 1164 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1165 make_black_object((unsigned long)ptr);
8910ae89 1166 else if (kmemleak_early_log)
c017b4be 1167 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
1168}
1169EXPORT_SYMBOL(kmemleak_ignore);
1170
a2b6bf63
CM
1171/**
1172 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1173 * @ptr: pointer to beginning or inside the object. This also
1174 * represents the start of the scan area
1175 * @size: size of the scan area
1176 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1177 *
1178 * This function is used when it is known that only certain parts of an object
1179 * contain references to other objects. Kmemleak will only scan these areas
1180 * reducing the number false negatives.
3c7b4e6b 1181 */
c017b4be 1182void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1183{
1184 pr_debug("%s(0x%p)\n", __func__, ptr);
1185
8910ae89 1186 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1187 add_scan_area((unsigned long)ptr, size, gfp);
8910ae89 1188 else if (kmemleak_early_log)
c017b4be 1189 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
1190}
1191EXPORT_SYMBOL(kmemleak_scan_area);
1192
a2b6bf63
CM
1193/**
1194 * kmemleak_no_scan - do not scan an allocated object
1195 * @ptr: pointer to beginning of the object
1196 *
1197 * This function notifies kmemleak not to scan the given memory block. Useful
1198 * in situations where it is known that the given object does not contain any
1199 * references to other objects. Kmemleak will not scan such objects reducing
1200 * the number of false negatives.
3c7b4e6b 1201 */
a6186d89 1202void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1203{
1204 pr_debug("%s(0x%p)\n", __func__, ptr);
1205
8910ae89 1206 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1207 object_no_scan((unsigned long)ptr);
8910ae89 1208 else if (kmemleak_early_log)
c017b4be 1209 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
1210}
1211EXPORT_SYMBOL(kmemleak_no_scan);
1212
9099daed
CM
1213/**
1214 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1215 * address argument
e8b098fc
MR
1216 * @phys: physical address of the object
1217 * @size: size of the object
1218 * @min_count: minimum number of references to this object.
1219 * See kmemleak_alloc()
1220 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed
CM
1221 */
1222void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1223 gfp_t gfp)
1224{
1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226 kmemleak_alloc(__va(phys), size, min_count, gfp);
1227}
1228EXPORT_SYMBOL(kmemleak_alloc_phys);
1229
1230/**
1231 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1232 * physical address argument
e8b098fc
MR
1233 * @phys: physical address if the beginning or inside an object. This
1234 * also represents the start of the range to be freed
1235 * @size: size to be unregistered
9099daed
CM
1236 */
1237void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1238{
1239 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1240 kmemleak_free_part(__va(phys), size);
1241}
1242EXPORT_SYMBOL(kmemleak_free_part_phys);
1243
1244/**
1245 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1246 * address argument
e8b098fc 1247 * @phys: physical address of the object
9099daed
CM
1248 */
1249void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1250{
1251 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1252 kmemleak_not_leak(__va(phys));
1253}
1254EXPORT_SYMBOL(kmemleak_not_leak_phys);
1255
1256/**
1257 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1258 * address argument
e8b098fc 1259 * @phys: physical address of the object
9099daed
CM
1260 */
1261void __ref kmemleak_ignore_phys(phys_addr_t phys)
1262{
1263 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1264 kmemleak_ignore(__va(phys));
1265}
1266EXPORT_SYMBOL(kmemleak_ignore_phys);
1267
04609ccc
CM
1268/*
1269 * Update an object's checksum and return true if it was modified.
1270 */
1271static bool update_checksum(struct kmemleak_object *object)
1272{
1273 u32 old_csum = object->checksum;
1274
e79ed2f1 1275 kasan_disable_current();
04609ccc 1276 object->checksum = crc32(0, (void *)object->pointer, object->size);
e79ed2f1
AR
1277 kasan_enable_current();
1278
04609ccc
CM
1279 return object->checksum != old_csum;
1280}
1281
04f70d13
CM
1282/*
1283 * Update an object's references. object->lock must be held by the caller.
1284 */
1285static void update_refs(struct kmemleak_object *object)
1286{
1287 if (!color_white(object)) {
1288 /* non-orphan, ignored or new */
1289 return;
1290 }
1291
1292 /*
1293 * Increase the object's reference count (number of pointers to the
1294 * memory block). If this count reaches the required minimum, the
1295 * object's color will become gray and it will be added to the
1296 * gray_list.
1297 */
1298 object->count++;
1299 if (color_gray(object)) {
1300 /* put_object() called when removing from gray_list */
1301 WARN_ON(!get_object(object));
1302 list_add_tail(&object->gray_list, &gray_list);
1303 }
1304}
1305
3c7b4e6b
CM
1306/*
1307 * Memory scanning is a long process and it needs to be interruptable. This
25985edc 1308 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1309 */
1310static int scan_should_stop(void)
1311{
8910ae89 1312 if (!kmemleak_enabled)
3c7b4e6b
CM
1313 return 1;
1314
1315 /*
1316 * This function may be called from either process or kthread context,
1317 * hence the need to check for both stop conditions.
1318 */
1319 if (current->mm)
1320 return signal_pending(current);
1321 else
1322 return kthread_should_stop();
1323
1324 return 0;
1325}
1326
1327/*
1328 * Scan a memory block (exclusive range) for valid pointers and add those
1329 * found to the gray list.
1330 */
1331static void scan_block(void *_start, void *_end,
93ada579 1332 struct kmemleak_object *scanned)
3c7b4e6b
CM
1333{
1334 unsigned long *ptr;
1335 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1336 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1337 unsigned long flags;
a2f77575 1338 unsigned long untagged_ptr;
3c7b4e6b 1339
93ada579 1340 read_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1341 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1342 struct kmemleak_object *object;
8e019366 1343 unsigned long pointer;
94f4a161 1344 unsigned long excess_ref;
3c7b4e6b
CM
1345
1346 if (scan_should_stop())
1347 break;
1348
e79ed2f1 1349 kasan_disable_current();
8e019366 1350 pointer = *ptr;
e79ed2f1 1351 kasan_enable_current();
8e019366 1352
a2f77575
AK
1353 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1354 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1355 continue;
1356
1357 /*
1358 * No need for get_object() here since we hold kmemleak_lock.
1359 * object->use_count cannot be dropped to 0 while the object
1360 * is still present in object_tree_root and object_list
1361 * (with updates protected by kmemleak_lock).
1362 */
1363 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1364 if (!object)
1365 continue;
93ada579 1366 if (object == scanned)
3c7b4e6b 1367 /* self referenced, ignore */
3c7b4e6b 1368 continue;
3c7b4e6b
CM
1369
1370 /*
1371 * Avoid the lockdep recursive warning on object->lock being
1372 * previously acquired in scan_object(). These locks are
1373 * enclosed by scan_mutex.
1374 */
93ada579 1375 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1376 /* only pass surplus references (object already gray) */
1377 if (color_gray(object)) {
1378 excess_ref = object->excess_ref;
1379 /* no need for update_refs() if object already gray */
1380 } else {
1381 excess_ref = 0;
1382 update_refs(object);
1383 }
93ada579 1384 spin_unlock(&object->lock);
94f4a161
CM
1385
1386 if (excess_ref) {
1387 object = lookup_object(excess_ref, 0);
1388 if (!object)
1389 continue;
1390 if (object == scanned)
1391 /* circular reference, ignore */
1392 continue;
1393 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1394 update_refs(object);
1395 spin_unlock(&object->lock);
1396 }
93ada579
CM
1397 }
1398 read_unlock_irqrestore(&kmemleak_lock, flags);
1399}
0587da40 1400
93ada579
CM
1401/*
1402 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1403 */
1404static void scan_large_block(void *start, void *end)
1405{
1406 void *next;
1407
1408 while (start < end) {
1409 next = min(start + MAX_SCAN_SIZE, end);
1410 scan_block(start, next, NULL);
1411 start = next;
1412 cond_resched();
3c7b4e6b
CM
1413 }
1414}
1415
1416/*
1417 * Scan a memory block corresponding to a kmemleak_object. A condition is
1418 * that object->use_count >= 1.
1419 */
1420static void scan_object(struct kmemleak_object *object)
1421{
1422 struct kmemleak_scan_area *area;
3c7b4e6b
CM
1423 unsigned long flags;
1424
1425 /*
21ae2956
UKK
1426 * Once the object->lock is acquired, the corresponding memory block
1427 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1428 */
1429 spin_lock_irqsave(&object->lock, flags);
1430 if (object->flags & OBJECT_NO_SCAN)
1431 goto out;
1432 if (!(object->flags & OBJECT_ALLOCATED))
1433 /* already freed object */
1434 goto out;
af98603d
CM
1435 if (hlist_empty(&object->area_list)) {
1436 void *start = (void *)object->pointer;
1437 void *end = (void *)(object->pointer + object->size);
93ada579
CM
1438 void *next;
1439
1440 do {
1441 next = min(start + MAX_SCAN_SIZE, end);
1442 scan_block(start, next, object);
af98603d 1443
93ada579
CM
1444 start = next;
1445 if (start >= end)
1446 break;
af98603d
CM
1447
1448 spin_unlock_irqrestore(&object->lock, flags);
1449 cond_resched();
1450 spin_lock_irqsave(&object->lock, flags);
93ada579 1451 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1452 } else
b67bfe0d 1453 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1454 scan_block((void *)area->start,
1455 (void *)(area->start + area->size),
93ada579 1456 object);
3c7b4e6b
CM
1457out:
1458 spin_unlock_irqrestore(&object->lock, flags);
1459}
1460
04609ccc
CM
1461/*
1462 * Scan the objects already referenced (gray objects). More objects will be
1463 * referenced and, if there are no memory leaks, all the objects are scanned.
1464 */
1465static void scan_gray_list(void)
1466{
1467 struct kmemleak_object *object, *tmp;
1468
1469 /*
1470 * The list traversal is safe for both tail additions and removals
1471 * from inside the loop. The kmemleak objects cannot be freed from
1472 * outside the loop because their use_count was incremented.
1473 */
1474 object = list_entry(gray_list.next, typeof(*object), gray_list);
1475 while (&object->gray_list != &gray_list) {
1476 cond_resched();
1477
1478 /* may add new objects to the list */
1479 if (!scan_should_stop())
1480 scan_object(object);
1481
1482 tmp = list_entry(object->gray_list.next, typeof(*object),
1483 gray_list);
1484
1485 /* remove the object from the list and release it */
1486 list_del(&object->gray_list);
1487 put_object(object);
1488
1489 object = tmp;
1490 }
1491 WARN_ON(!list_empty(&gray_list));
1492}
1493
3c7b4e6b
CM
1494/*
1495 * Scan data sections and all the referenced memory blocks allocated via the
1496 * kernel's standard allocators. This function must be called with the
1497 * scan_mutex held.
1498 */
1499static void kmemleak_scan(void)
1500{
1501 unsigned long flags;
04609ccc 1502 struct kmemleak_object *object;
3c7b4e6b 1503 int i;
4698c1f2 1504 int new_leaks = 0;
3c7b4e6b 1505
acf4968e
CM
1506 jiffies_last_scan = jiffies;
1507
3c7b4e6b
CM
1508 /* prepare the kmemleak_object's */
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
1511 spin_lock_irqsave(&object->lock, flags);
1512#ifdef DEBUG
1513 /*
1514 * With a few exceptions there should be a maximum of
1515 * 1 reference to any object at this point.
1516 */
1517 if (atomic_read(&object->use_count) > 1) {
ae281064 1518 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1519 atomic_read(&object->use_count));
1520 dump_object_info(object);
1521 }
1522#endif
1523 /* reset the reference count (whiten the object) */
1524 object->count = 0;
1525 if (color_gray(object) && get_object(object))
1526 list_add_tail(&object->gray_list, &gray_list);
1527
1528 spin_unlock_irqrestore(&object->lock, flags);
1529 }
1530 rcu_read_unlock();
1531
3c7b4e6b
CM
1532#ifdef CONFIG_SMP
1533 /* per-cpu sections scanning */
1534 for_each_possible_cpu(i)
93ada579
CM
1535 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1536 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1537#endif
1538
1539 /*
029aeff5 1540 * Struct page scanning for each node.
3c7b4e6b 1541 */
bfc8c901 1542 get_online_mems();
3c7b4e6b 1543 for_each_online_node(i) {
108bcc96
CS
1544 unsigned long start_pfn = node_start_pfn(i);
1545 unsigned long end_pfn = node_end_pfn(i);
3c7b4e6b
CM
1546 unsigned long pfn;
1547
1548 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1549 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1550
9f1eb38e
OS
1551 if (!page)
1552 continue;
1553
1554 /* only scan pages belonging to this node */
1555 if (page_to_nid(page) != i)
3c7b4e6b 1556 continue;
3c7b4e6b
CM
1557 /* only scan if page is in use */
1558 if (page_count(page) == 0)
1559 continue;
93ada579 1560 scan_block(page, page + 1, NULL);
13ab183d 1561 if (!(pfn & 63))
bde5f6bc 1562 cond_resched();
3c7b4e6b
CM
1563 }
1564 }
bfc8c901 1565 put_online_mems();
3c7b4e6b
CM
1566
1567 /*
43ed5d6e 1568 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1569 */
1570 if (kmemleak_stack_scan) {
43ed5d6e
CM
1571 struct task_struct *p, *g;
1572
3c7b4e6b 1573 read_lock(&tasklist_lock);
43ed5d6e 1574 do_each_thread(g, p) {
37df49f4
CM
1575 void *stack = try_get_task_stack(p);
1576 if (stack) {
1577 scan_block(stack, stack + THREAD_SIZE, NULL);
1578 put_task_stack(p);
1579 }
43ed5d6e 1580 } while_each_thread(g, p);
3c7b4e6b
CM
1581 read_unlock(&tasklist_lock);
1582 }
1583
1584 /*
1585 * Scan the objects already referenced from the sections scanned
04609ccc 1586 * above.
3c7b4e6b 1587 */
04609ccc 1588 scan_gray_list();
2587362e
CM
1589
1590 /*
04609ccc
CM
1591 * Check for new or unreferenced objects modified since the previous
1592 * scan and color them gray until the next scan.
2587362e
CM
1593 */
1594 rcu_read_lock();
1595 list_for_each_entry_rcu(object, &object_list, object_list) {
1596 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1597 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1598 && update_checksum(object) && get_object(object)) {
1599 /* color it gray temporarily */
1600 object->count = object->min_count;
2587362e
CM
1601 list_add_tail(&object->gray_list, &gray_list);
1602 }
1603 spin_unlock_irqrestore(&object->lock, flags);
1604 }
1605 rcu_read_unlock();
1606
04609ccc
CM
1607 /*
1608 * Re-scan the gray list for modified unreferenced objects.
1609 */
1610 scan_gray_list();
4698c1f2 1611
17bb9e0d 1612 /*
04609ccc 1613 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1614 */
04609ccc 1615 if (scan_should_stop())
17bb9e0d
CM
1616 return;
1617
4698c1f2
CM
1618 /*
1619 * Scanning result reporting.
1620 */
1621 rcu_read_lock();
1622 list_for_each_entry_rcu(object, &object_list, object_list) {
1623 spin_lock_irqsave(&object->lock, flags);
1624 if (unreferenced_object(object) &&
1625 !(object->flags & OBJECT_REPORTED)) {
1626 object->flags |= OBJECT_REPORTED;
154221c3
VW
1627
1628 if (kmemleak_verbose)
1629 print_unreferenced(NULL, object);
1630
4698c1f2
CM
1631 new_leaks++;
1632 }
1633 spin_unlock_irqrestore(&object->lock, flags);
1634 }
1635 rcu_read_unlock();
1636
dc9b3f42
LZ
1637 if (new_leaks) {
1638 kmemleak_found_leaks = true;
1639
756a025f
JP
1640 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1641 new_leaks);
dc9b3f42 1642 }
4698c1f2 1643
3c7b4e6b
CM
1644}
1645
1646/*
1647 * Thread function performing automatic memory scanning. Unreferenced objects
1648 * at the end of a memory scan are reported but only the first time.
1649 */
1650static int kmemleak_scan_thread(void *arg)
1651{
d53ce042 1652 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1653
ae281064 1654 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1655 set_user_nice(current, 10);
3c7b4e6b
CM
1656
1657 /*
1658 * Wait before the first scan to allow the system to fully initialize.
1659 */
1660 if (first_run) {
98c42d94 1661 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1662 first_run = 0;
98c42d94
VN
1663 while (timeout && !kthread_should_stop())
1664 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1665 }
1666
1667 while (!kthread_should_stop()) {
3c7b4e6b
CM
1668 signed long timeout = jiffies_scan_wait;
1669
1670 mutex_lock(&scan_mutex);
3c7b4e6b 1671 kmemleak_scan();
3c7b4e6b 1672 mutex_unlock(&scan_mutex);
4698c1f2 1673
3c7b4e6b
CM
1674 /* wait before the next scan */
1675 while (timeout && !kthread_should_stop())
1676 timeout = schedule_timeout_interruptible(timeout);
1677 }
1678
ae281064 1679 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1680
1681 return 0;
1682}
1683
1684/*
1685 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1686 * with the scan_mutex held.
3c7b4e6b 1687 */
7eb0d5e5 1688static void start_scan_thread(void)
3c7b4e6b
CM
1689{
1690 if (scan_thread)
1691 return;
1692 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1693 if (IS_ERR(scan_thread)) {
598d8091 1694 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1695 scan_thread = NULL;
1696 }
1697}
1698
1699/*
914b6dff 1700 * Stop the automatic memory scanning thread.
3c7b4e6b 1701 */
7eb0d5e5 1702static void stop_scan_thread(void)
3c7b4e6b
CM
1703{
1704 if (scan_thread) {
1705 kthread_stop(scan_thread);
1706 scan_thread = NULL;
1707 }
1708}
1709
1710/*
1711 * Iterate over the object_list and return the first valid object at or after
1712 * the required position with its use_count incremented. The function triggers
1713 * a memory scanning when the pos argument points to the first position.
1714 */
1715static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1716{
1717 struct kmemleak_object *object;
1718 loff_t n = *pos;
b87324d0
CM
1719 int err;
1720
1721 err = mutex_lock_interruptible(&scan_mutex);
1722 if (err < 0)
1723 return ERR_PTR(err);
3c7b4e6b 1724
3c7b4e6b
CM
1725 rcu_read_lock();
1726 list_for_each_entry_rcu(object, &object_list, object_list) {
1727 if (n-- > 0)
1728 continue;
1729 if (get_object(object))
1730 goto out;
1731 }
1732 object = NULL;
1733out:
3c7b4e6b
CM
1734 return object;
1735}
1736
1737/*
1738 * Return the next object in the object_list. The function decrements the
1739 * use_count of the previous object and increases that of the next one.
1740 */
1741static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1742{
1743 struct kmemleak_object *prev_obj = v;
1744 struct kmemleak_object *next_obj = NULL;
58fac095 1745 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1746
1747 ++(*pos);
3c7b4e6b 1748
58fac095 1749 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1750 if (get_object(obj)) {
1751 next_obj = obj;
3c7b4e6b 1752 break;
52c3ce4e 1753 }
3c7b4e6b 1754 }
288c857d 1755
3c7b4e6b
CM
1756 put_object(prev_obj);
1757 return next_obj;
1758}
1759
1760/*
1761 * Decrement the use_count of the last object required, if any.
1762 */
1763static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1764{
b87324d0
CM
1765 if (!IS_ERR(v)) {
1766 /*
1767 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1768 * waiting was interrupted, so only release it if !IS_ERR.
1769 */
f5886c7f 1770 rcu_read_unlock();
b87324d0
CM
1771 mutex_unlock(&scan_mutex);
1772 if (v)
1773 put_object(v);
1774 }
3c7b4e6b
CM
1775}
1776
1777/*
1778 * Print the information for an unreferenced object to the seq file.
1779 */
1780static int kmemleak_seq_show(struct seq_file *seq, void *v)
1781{
1782 struct kmemleak_object *object = v;
1783 unsigned long flags;
1784
1785 spin_lock_irqsave(&object->lock, flags);
288c857d 1786 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1787 print_unreferenced(seq, object);
3c7b4e6b
CM
1788 spin_unlock_irqrestore(&object->lock, flags);
1789 return 0;
1790}
1791
1792static const struct seq_operations kmemleak_seq_ops = {
1793 .start = kmemleak_seq_start,
1794 .next = kmemleak_seq_next,
1795 .stop = kmemleak_seq_stop,
1796 .show = kmemleak_seq_show,
1797};
1798
1799static int kmemleak_open(struct inode *inode, struct file *file)
1800{
b87324d0 1801 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1802}
1803
189d84ed
CM
1804static int dump_str_object_info(const char *str)
1805{
1806 unsigned long flags;
1807 struct kmemleak_object *object;
1808 unsigned long addr;
1809
dc053733
AP
1810 if (kstrtoul(str, 0, &addr))
1811 return -EINVAL;
189d84ed
CM
1812 object = find_and_get_object(addr, 0);
1813 if (!object) {
1814 pr_info("Unknown object at 0x%08lx\n", addr);
1815 return -EINVAL;
1816 }
1817
1818 spin_lock_irqsave(&object->lock, flags);
1819 dump_object_info(object);
1820 spin_unlock_irqrestore(&object->lock, flags);
1821
1822 put_object(object);
1823 return 0;
1824}
1825
30b37101
LR
1826/*
1827 * We use grey instead of black to ensure we can do future scans on the same
1828 * objects. If we did not do future scans these black objects could
1829 * potentially contain references to newly allocated objects in the future and
1830 * we'd end up with false positives.
1831 */
1832static void kmemleak_clear(void)
1833{
1834 struct kmemleak_object *object;
1835 unsigned long flags;
1836
1837 rcu_read_lock();
1838 list_for_each_entry_rcu(object, &object_list, object_list) {
1839 spin_lock_irqsave(&object->lock, flags);
1840 if ((object->flags & OBJECT_REPORTED) &&
1841 unreferenced_object(object))
a1084c87 1842 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1843 spin_unlock_irqrestore(&object->lock, flags);
1844 }
1845 rcu_read_unlock();
dc9b3f42
LZ
1846
1847 kmemleak_found_leaks = false;
30b37101
LR
1848}
1849
c89da70c
LZ
1850static void __kmemleak_do_cleanup(void);
1851
3c7b4e6b
CM
1852/*
1853 * File write operation to configure kmemleak at run-time. The following
1854 * commands can be written to the /sys/kernel/debug/kmemleak file:
1855 * off - disable kmemleak (irreversible)
1856 * stack=on - enable the task stacks scanning
1857 * stack=off - disable the tasks stacks scanning
1858 * scan=on - start the automatic memory scanning thread
1859 * scan=off - stop the automatic memory scanning thread
1860 * scan=... - set the automatic memory scanning period in seconds (0 to
1861 * disable it)
4698c1f2 1862 * scan - trigger a memory scan
30b37101 1863 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1864 * grey to ignore printing them, or free all kmemleak objects
1865 * if kmemleak has been disabled.
189d84ed 1866 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1867 */
1868static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1869 size_t size, loff_t *ppos)
1870{
1871 char buf[64];
1872 int buf_size;
b87324d0 1873 int ret;
3c7b4e6b
CM
1874
1875 buf_size = min(size, (sizeof(buf) - 1));
1876 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1877 return -EFAULT;
1878 buf[buf_size] = 0;
1879
b87324d0
CM
1880 ret = mutex_lock_interruptible(&scan_mutex);
1881 if (ret < 0)
1882 return ret;
1883
c89da70c 1884 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1885 if (kmemleak_enabled)
c89da70c
LZ
1886 kmemleak_clear();
1887 else
1888 __kmemleak_do_cleanup();
1889 goto out;
1890 }
1891
8910ae89 1892 if (!kmemleak_enabled) {
c89da70c
LZ
1893 ret = -EBUSY;
1894 goto out;
1895 }
1896
3c7b4e6b
CM
1897 if (strncmp(buf, "off", 3) == 0)
1898 kmemleak_disable();
1899 else if (strncmp(buf, "stack=on", 8) == 0)
1900 kmemleak_stack_scan = 1;
1901 else if (strncmp(buf, "stack=off", 9) == 0)
1902 kmemleak_stack_scan = 0;
1903 else if (strncmp(buf, "scan=on", 7) == 0)
1904 start_scan_thread();
1905 else if (strncmp(buf, "scan=off", 8) == 0)
1906 stop_scan_thread();
1907 else if (strncmp(buf, "scan=", 5) == 0) {
1908 unsigned long secs;
3c7b4e6b 1909
3dbb95f7 1910 ret = kstrtoul(buf + 5, 0, &secs);
b87324d0
CM
1911 if (ret < 0)
1912 goto out;
3c7b4e6b
CM
1913 stop_scan_thread();
1914 if (secs) {
1915 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1916 start_scan_thread();
1917 }
4698c1f2
CM
1918 } else if (strncmp(buf, "scan", 4) == 0)
1919 kmemleak_scan();
189d84ed
CM
1920 else if (strncmp(buf, "dump=", 5) == 0)
1921 ret = dump_str_object_info(buf + 5);
4698c1f2 1922 else
b87324d0
CM
1923 ret = -EINVAL;
1924
1925out:
1926 mutex_unlock(&scan_mutex);
1927 if (ret < 0)
1928 return ret;
3c7b4e6b
CM
1929
1930 /* ignore the rest of the buffer, only one command at a time */
1931 *ppos += size;
1932 return size;
1933}
1934
1935static const struct file_operations kmemleak_fops = {
1936 .owner = THIS_MODULE,
1937 .open = kmemleak_open,
1938 .read = seq_read,
1939 .write = kmemleak_write,
1940 .llseek = seq_lseek,
5f3bf19a 1941 .release = seq_release,
3c7b4e6b
CM
1942};
1943
c89da70c
LZ
1944static void __kmemleak_do_cleanup(void)
1945{
1946 struct kmemleak_object *object;
1947
1948 rcu_read_lock();
1949 list_for_each_entry_rcu(object, &object_list, object_list)
1950 delete_object_full(object->pointer);
1951 rcu_read_unlock();
1952}
1953
3c7b4e6b 1954/*
74341703
CM
1955 * Stop the memory scanning thread and free the kmemleak internal objects if
1956 * no previous scan thread (otherwise, kmemleak may still have some useful
1957 * information on memory leaks).
3c7b4e6b 1958 */
179a8100 1959static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1960{
3c7b4e6b 1961 stop_scan_thread();
3c7b4e6b 1962
914b6dff 1963 mutex_lock(&scan_mutex);
c5f3b1a5 1964 /*
914b6dff
VM
1965 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1966 * longer track object freeing. Ordering of the scan thread stopping and
1967 * the memory accesses below is guaranteed by the kthread_stop()
1968 * function.
c5f3b1a5
CM
1969 */
1970 kmemleak_free_enabled = 0;
914b6dff 1971 mutex_unlock(&scan_mutex);
c5f3b1a5 1972
c89da70c
LZ
1973 if (!kmemleak_found_leaks)
1974 __kmemleak_do_cleanup();
1975 else
756a025f 1976 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
1977}
1978
179a8100 1979static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1980
1981/*
1982 * Disable kmemleak. No memory allocation/freeing will be traced once this
1983 * function is called. Disabling kmemleak is an irreversible operation.
1984 */
1985static void kmemleak_disable(void)
1986{
1987 /* atomically check whether it was already invoked */
8910ae89 1988 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
1989 return;
1990
1991 /* stop any memory operation tracing */
8910ae89 1992 kmemleak_enabled = 0;
3c7b4e6b
CM
1993
1994 /* check whether it is too early for a kernel thread */
8910ae89 1995 if (kmemleak_initialized)
179a8100 1996 schedule_work(&cleanup_work);
c5f3b1a5
CM
1997 else
1998 kmemleak_free_enabled = 0;
3c7b4e6b
CM
1999
2000 pr_info("Kernel memory leak detector disabled\n");
2001}
2002
2003/*
2004 * Allow boot-time kmemleak disabling (enabled by default).
2005 */
8bd30c10 2006static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2007{
2008 if (!str)
2009 return -EINVAL;
2010 if (strcmp(str, "off") == 0)
2011 kmemleak_disable();
ab0155a2
JB
2012 else if (strcmp(str, "on") == 0)
2013 kmemleak_skip_disable = 1;
2014 else
3c7b4e6b
CM
2015 return -EINVAL;
2016 return 0;
2017}
2018early_param("kmemleak", kmemleak_boot_config);
2019
5f79020c
CM
2020static void __init print_log_trace(struct early_log *log)
2021{
2022 struct stack_trace trace;
2023
2024 trace.nr_entries = log->trace_len;
2025 trace.entries = log->trace;
2026
2027 pr_notice("Early log backtrace:\n");
2028 print_stack_trace(&trace, 2);
2029}
2030
3c7b4e6b 2031/*
2030117d 2032 * Kmemleak initialization.
3c7b4e6b
CM
2033 */
2034void __init kmemleak_init(void)
2035{
2036 int i;
2037 unsigned long flags;
2038
ab0155a2
JB
2039#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2040 if (!kmemleak_skip_disable) {
3551a928 2041 kmemleak_early_log = 0;
ab0155a2
JB
2042 kmemleak_disable();
2043 return;
2044 }
2045#endif
2046
3c7b4e6b
CM
2047 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2048 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2049
2050 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2051 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2052
21cd3a60 2053 if (crt_early_log > ARRAY_SIZE(early_log))
598d8091
JP
2054 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2055 crt_early_log);
b6693005 2056
3c7b4e6b
CM
2057 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2058 local_irq_save(flags);
3551a928 2059 kmemleak_early_log = 0;
8910ae89 2060 if (kmemleak_error) {
b6693005
CM
2061 local_irq_restore(flags);
2062 return;
c5f3b1a5 2063 } else {
8910ae89 2064 kmemleak_enabled = 1;
c5f3b1a5
CM
2065 kmemleak_free_enabled = 1;
2066 }
3c7b4e6b
CM
2067 local_irq_restore(flags);
2068
298a32b1
CM
2069 /* register the data/bss sections */
2070 create_object((unsigned long)_sdata, _edata - _sdata,
2071 KMEMLEAK_GREY, GFP_ATOMIC);
2072 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2073 KMEMLEAK_GREY, GFP_ATOMIC);
2074 /* only register .data..ro_after_init if not within .data */
2075 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2076 create_object((unsigned long)__start_ro_after_init,
2077 __end_ro_after_init - __start_ro_after_init,
2078 KMEMLEAK_GREY, GFP_ATOMIC);
2079
3c7b4e6b
CM
2080 /*
2081 * This is the point where tracking allocations is safe. Automatic
2082 * scanning is started during the late initcall. Add the early logged
2083 * callbacks to the kmemleak infrastructure.
2084 */
2085 for (i = 0; i < crt_early_log; i++) {
2086 struct early_log *log = &early_log[i];
2087
2088 switch (log->op_type) {
2089 case KMEMLEAK_ALLOC:
fd678967 2090 early_alloc(log);
3c7b4e6b 2091 break;
f528f0b8
CM
2092 case KMEMLEAK_ALLOC_PERCPU:
2093 early_alloc_percpu(log);
2094 break;
3c7b4e6b
CM
2095 case KMEMLEAK_FREE:
2096 kmemleak_free(log->ptr);
2097 break;
53238a60
CM
2098 case KMEMLEAK_FREE_PART:
2099 kmemleak_free_part(log->ptr, log->size);
2100 break;
f528f0b8
CM
2101 case KMEMLEAK_FREE_PERCPU:
2102 kmemleak_free_percpu(log->ptr);
2103 break;
3c7b4e6b
CM
2104 case KMEMLEAK_NOT_LEAK:
2105 kmemleak_not_leak(log->ptr);
2106 break;
2107 case KMEMLEAK_IGNORE:
2108 kmemleak_ignore(log->ptr);
2109 break;
2110 case KMEMLEAK_SCAN_AREA:
c017b4be 2111 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
2112 break;
2113 case KMEMLEAK_NO_SCAN:
2114 kmemleak_no_scan(log->ptr);
2115 break;
94f4a161
CM
2116 case KMEMLEAK_SET_EXCESS_REF:
2117 object_set_excess_ref((unsigned long)log->ptr,
2118 log->excess_ref);
2119 break;
3c7b4e6b 2120 default:
5f79020c
CM
2121 kmemleak_warn("Unknown early log operation: %d\n",
2122 log->op_type);
2123 }
2124
8910ae89 2125 if (kmemleak_warning) {
5f79020c 2126 print_log_trace(log);
8910ae89 2127 kmemleak_warning = 0;
3c7b4e6b
CM
2128 }
2129 }
2130}
2131
2132/*
2133 * Late initialization function.
2134 */
2135static int __init kmemleak_late_init(void)
2136{
2137 struct dentry *dentry;
2138
8910ae89 2139 kmemleak_initialized = 1;
3c7b4e6b 2140
b353756b
VW
2141 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2142 &kmemleak_fops);
2143 if (!dentry)
2144 pr_warn("Failed to create the debugfs kmemleak file\n");
2145
8910ae89 2146 if (kmemleak_error) {
3c7b4e6b 2147 /*
25985edc 2148 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2149 * small chance that kmemleak_disable() was called immediately
2150 * after setting kmemleak_initialized and we may end up with
2151 * two clean-up threads but serialized by scan_mutex.
2152 */
179a8100 2153 schedule_work(&cleanup_work);
3c7b4e6b
CM
2154 return -ENOMEM;
2155 }
2156
d53ce042
SK
2157 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2158 mutex_lock(&scan_mutex);
2159 start_scan_thread();
2160 mutex_unlock(&scan_mutex);
2161 }
3c7b4e6b
CM
2162
2163 pr_info("Kernel memory leak detector initialized\n");
2164
2165 return 0;
2166}
2167late_initcall(kmemleak_late_init);