]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260{
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262}
263
84c07d11 264#ifdef CONFIG_MEMCG_KMEM
55007d84 265/*
f7ce3190 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
55007d84 272 *
dbcf73e2
VD
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
55007d84 275 */
dbcf73e2
VD
276static DEFINE_IDA(memcg_cache_ida);
277int memcg_nr_cache_ids;
749c5415 278
05257a1a
VD
279/* Protects memcg_nr_cache_ids */
280static DECLARE_RWSEM(memcg_cache_ids_sem);
281
282void memcg_get_cache_ids(void)
283{
284 down_read(&memcg_cache_ids_sem);
285}
286
287void memcg_put_cache_ids(void)
288{
289 up_read(&memcg_cache_ids_sem);
290}
291
55007d84
GC
292/*
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
297 *
b8627835 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
302 * increase ours as well if it increases.
303 */
304#define MEMCG_CACHES_MIN_SIZE 4
b8627835 305#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 306
d7f25f8a
GC
307/*
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
312 */
ef12947c 313DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 314EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 315
17cc4dfe
TH
316struct workqueue_struct *memcg_kmem_cache_wq;
317
0a4465d3
KT
318static int memcg_shrinker_map_size;
319static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320
321static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322{
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324}
325
326static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
328{
329 struct memcg_shrinker_map *new, *old;
330 int nid;
331
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
333
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
340
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
344
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
348
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 }
352
353 return 0;
354}
355
356static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357{
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
361
362 if (mem_cgroup_is_root(memcg))
363 return;
364
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
371 }
372}
373
374static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375{
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
378
379 if (mem_cgroup_is_root(memcg))
380 return 0;
381
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
390 }
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 }
393 mutex_unlock(&memcg_shrinker_map_mutex);
394
395 return ret;
396}
397
398int memcg_expand_shrinker_maps(int new_id)
399{
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
402
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
407
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
411
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
418 }
419unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
424}
fae91d6d
KT
425
426void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427{
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
430
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
fae91d6d
KT
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
437 }
438}
439
0a4465d3
KT
440#else /* CONFIG_MEMCG_KMEM */
441static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442{
443 return 0;
444}
445static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 446#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 447
ad7fa852
TH
448/**
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
451 *
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
455 *
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
ad7fa852
TH
458 */
459struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460{
461 struct mem_cgroup *memcg;
462
ad7fa852
TH
463 memcg = page->mem_cgroup;
464
9e10a130 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
466 memcg = root_mem_cgroup;
467
ad7fa852
TH
468 return &memcg->css;
469}
470
2fc04524
VD
471/**
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
474 *
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
478 *
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
483 */
484ino_t page_cgroup_ino(struct page *page)
485{
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
488
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
ccda7f43 683static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 684 int event)
e9f8974f 685{
a983b5eb 686 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
687}
688
c0ff4b85 689static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 690 struct page *page,
f627c2f5 691 bool compound, int nr_pages)
d52aa412 692{
b2402857
KH
693 /*
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
696 */
0a31bc97 697 if (PageAnon(page))
c9019e9b 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 699 else {
c9019e9b 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 701 if (PageSwapBacked(page))
c9019e9b 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 703 }
55e462b0 704
f627c2f5
KS
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 708 }
b070e65c 709
e401f176
KH
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
c9019e9b 712 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 713 else {
c9019e9b 714 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
715 nr_pages = -nr_pages; /* for event */
716 }
e401f176 717
a983b5eb 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
719}
720
0a6b76dd
VD
721unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
bb2a0de9 723{
b4536f0c 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 725 unsigned long nr = 0;
ef8f2327 726 enum lru_list lru;
889976db 727
e231875b 728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 729
ef8f2327
MG
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
b4536f0c 733 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
734 }
735 return nr;
889976db 736}
bb2a0de9 737
c0ff4b85 738static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 739 unsigned int lru_mask)
6d12e2d8 740{
e231875b 741 unsigned long nr = 0;
889976db 742 int nid;
6d12e2d8 743
31aaea4a 744 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
d52aa412
KH
747}
748
f53d7ce3
JW
749static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
7a159cc9
JW
751{
752 unsigned long val, next;
753
a983b5eb
JW
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 756 /* from time_after() in jiffies.h */
6a1a8b80 757 if ((long)(next - val) < 0) {
f53d7ce3
JW
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
bb4cc1a8
AM
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
f53d7ce3
JW
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
770 }
a983b5eb 771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 772 return true;
7a159cc9 773 }
f53d7ce3 774 return false;
d2265e6f
KH
775}
776
777/*
778 * Check events in order.
779 *
780 */
c0ff4b85 781static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
782{
783 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 786 bool do_softlimit;
82b3f2a7 787 bool do_numainfo __maybe_unused;
f53d7ce3 788
bb4cc1a8
AM
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
791#if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794#endif
c0ff4b85 795 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
453a9bf3 798#if MAX_NUMNODES > 1
f53d7ce3 799 if (unlikely(do_numainfo))
c0ff4b85 800 atomic_inc(&memcg->numainfo_events);
453a9bf3 801#endif
0a31bc97 802 }
d2265e6f
KH
803}
804
cf475ad2 805struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 806{
31a78f23
BS
807 /*
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
811 */
812 if (unlikely(!p))
813 return NULL;
814
073219e9 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 816}
33398cf2 817EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 818
d46eb14b
SB
819/**
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
822 *
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
826 */
827struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 828{
d46eb14b
SB
829 struct mem_cgroup *memcg;
830
831 if (mem_cgroup_disabled())
832 return NULL;
0b7f569e 833
54595fe2
KH
834 rcu_read_lock();
835 do {
6f6acb00
MH
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
df381975 842 memcg = root_mem_cgroup;
6f6acb00
MH
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
ec903c0c 848 } while (!css_tryget_online(&memcg->css));
54595fe2 849 rcu_read_unlock();
c0ff4b85 850 return memcg;
54595fe2 851}
d46eb14b
SB
852EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853
f745c6f5
SB
854/**
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
857 *
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
860 */
861struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862{
863 struct mem_cgroup *memcg = page->mem_cgroup;
864
865 if (mem_cgroup_disabled())
866 return NULL;
867
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
873}
874EXPORT_SYMBOL(get_mem_cgroup_from_page);
875
d46eb14b
SB
876/**
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878 */
879static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880{
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
883
884 rcu_read_lock();
885 if (css_tryget_online(&current->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
889 }
890 return get_mem_cgroup_from_mm(current->mm);
891}
54595fe2 892
5660048c
JW
893/**
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
898 *
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
901 *
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
905 *
b213b54f 906 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 907 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 908 * reclaimers operating on the same node and priority.
5660048c 909 */
694fbc0f 910struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 911 struct mem_cgroup *prev,
694fbc0f 912 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 913{
33398cf2 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 915 struct cgroup_subsys_state *css = NULL;
9f3a0d09 916 struct mem_cgroup *memcg = NULL;
5ac8fb31 917 struct mem_cgroup *pos = NULL;
711d3d2c 918
694fbc0f
AM
919 if (mem_cgroup_disabled())
920 return NULL;
5660048c 921
9f3a0d09
JW
922 if (!root)
923 root = root_mem_cgroup;
7d74b06f 924
9f3a0d09 925 if (prev && !reclaim)
5ac8fb31 926 pos = prev;
14067bb3 927
9f3a0d09
JW
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
5ac8fb31 930 goto out;
694fbc0f 931 return root;
9f3a0d09 932 }
14067bb3 933
542f85f9 934 rcu_read_lock();
5f578161 935
5ac8fb31 936 if (reclaim) {
ef8f2327 937 struct mem_cgroup_per_node *mz;
5ac8fb31 938
ef8f2327 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
940 iter = &mz->iter[reclaim->priority];
941
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
944
6df38689 945 while (1) {
4db0c3c2 946 pos = READ_ONCE(iter->position);
6df38689
VD
947 if (!pos || css_tryget(&pos->css))
948 break;
5ac8fb31 949 /*
6df38689
VD
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
5ac8fb31 956 */
6df38689
VD
957 (void)cmpxchg(&iter->position, pos, NULL);
958 }
5ac8fb31
JW
959 }
960
961 if (pos)
962 css = &pos->css;
963
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
967 /*
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
972 */
973 if (!prev)
974 continue;
975 break;
527a5ec9 976 }
7d74b06f 977
5ac8fb31
JW
978 /*
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
982 */
983 memcg = mem_cgroup_from_css(css);
14067bb3 984
5ac8fb31
JW
985 if (css == &root->css)
986 break;
14067bb3 987
0b8f73e1
JW
988 if (css_tryget(css))
989 break;
9f3a0d09 990
5ac8fb31 991 memcg = NULL;
9f3a0d09 992 }
5ac8fb31
JW
993
994 if (reclaim) {
5ac8fb31 995 /*
6df38689
VD
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 999 */
6df38689
VD
1000 (void)cmpxchg(&iter->position, pos, memcg);
1001
5ac8fb31
JW
1002 if (pos)
1003 css_put(&pos->css);
1004
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
9f3a0d09 1009 }
5ac8fb31 1010
542f85f9
MH
1011out_unlock:
1012 rcu_read_unlock();
5ac8fb31 1013out:
c40046f3
MH
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1016
9f3a0d09 1017 return memcg;
14067bb3 1018}
7d74b06f 1019
5660048c
JW
1020/**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
1025void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
9f3a0d09
JW
1027{
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1032}
7d74b06f 1033
6df38689
VD
1034static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035{
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
6df38689
VD
1040 int i;
1041
9f15bde6 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1043 for_each_node(nid) {
ef8f2327
MG
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
6df38689
VD
1049 }
1050 }
1051 }
1052}
1053
7c5f64f8
VD
1054/**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
1067int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1069{
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1072
1073 BUG_ON(memcg == root_mem_cgroup);
1074
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1078
bc2fb7ed 1079 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1086 }
1087 }
1088 return ret;
1089}
1090
925b7673 1091/**
dfe0e773 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1093 * @page: the page
f144c390 1094 * @pgdat: pgdat of the page
dfe0e773
JW
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1099 */
599d0c95 1100struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1101{
ef8f2327 1102 struct mem_cgroup_per_node *mz;
925b7673 1103 struct mem_cgroup *memcg;
bea8c150 1104 struct lruvec *lruvec;
6d12e2d8 1105
bea8c150 1106 if (mem_cgroup_disabled()) {
599d0c95 1107 lruvec = &pgdat->lruvec;
bea8c150
HD
1108 goto out;
1109 }
925b7673 1110
1306a85a 1111 memcg = page->mem_cgroup;
7512102c 1112 /*
dfe0e773 1113 * Swapcache readahead pages are added to the LRU - and
29833315 1114 * possibly migrated - before they are charged.
7512102c 1115 */
29833315
JW
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
7512102c 1118
ef8f2327 1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1120 lruvec = &mz->lruvec;
1121out:
1122 /*
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1126 */
599d0c95
MG
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
bea8c150 1129 return lruvec;
08e552c6 1130}
b69408e8 1131
925b7673 1132/**
fa9add64
HD
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
b4536f0c 1136 * @zid: zone id of the accounted pages
fa9add64 1137 * @nr_pages: positive when adding or negative when removing
925b7673 1138 *
ca707239
HD
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1142 */
fa9add64 1143void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1144 int zid, int nr_pages)
3f58a829 1145{
ef8f2327 1146 struct mem_cgroup_per_node *mz;
fa9add64 1147 unsigned long *lru_size;
ca707239 1148 long size;
3f58a829
MK
1149
1150 if (mem_cgroup_disabled())
1151 return;
1152
ef8f2327 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1154 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1155
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1158
1159 size = *lru_size;
b4536f0c
MH
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1165 }
1166
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
08e552c6 1169}
544122e5 1170
2314b42d 1171bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1172{
2314b42d 1173 struct mem_cgroup *task_memcg;
158e0a2d 1174 struct task_struct *p;
ffbdccf5 1175 bool ret;
4c4a2214 1176
158e0a2d 1177 p = find_lock_task_mm(task);
de077d22 1178 if (p) {
2314b42d 1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1180 task_unlock(p);
1181 } else {
1182 /*
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1186 */
ffbdccf5 1187 rcu_read_lock();
2314b42d
JW
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
ffbdccf5 1190 rcu_read_unlock();
de077d22 1191 }
2314b42d
JW
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
4c4a2214
DR
1194 return ret;
1195}
1196
19942822 1197/**
9d11ea9f 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1199 * @memcg: the memory cgroup
19942822 1200 *
9d11ea9f 1201 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1202 * pages.
19942822 1203 */
c0ff4b85 1204static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1205{
3e32cb2e
JW
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
9d11ea9f 1209
3e32cb2e 1210 count = page_counter_read(&memcg->memory);
bbec2e15 1211 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1212 if (count < limit)
1213 margin = limit - count;
1214
7941d214 1215 if (do_memsw_account()) {
3e32cb2e 1216 count = page_counter_read(&memcg->memsw);
bbec2e15 1217 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
cbedbac3
LR
1220 else
1221 margin = 0;
3e32cb2e
JW
1222 }
1223
1224 return margin;
19942822
JW
1225}
1226
32047e2a 1227/*
bdcbb659 1228 * A routine for checking "mem" is under move_account() or not.
32047e2a 1229 *
bdcbb659
QH
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
32047e2a 1233 */
c0ff4b85 1234static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1235{
2bd9bb20
KH
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
4b534334 1238 bool ret = false;
2bd9bb20
KH
1239 /*
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 */
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
3e92041d 1248
2314b42d
JW
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1251unlock:
1252 spin_unlock(&mc.lock);
4b534334
KH
1253 return ret;
1254}
1255
c0ff4b85 1256static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1257{
1258 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1259 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1267 }
1268 }
1269 return false;
1270}
1271
8ad6e404 1272static const unsigned int memcg1_stats[] = {
71cd3113
JW
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1281};
1282
1283static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1292};
1293
58cf188e 1294#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1295/**
58cf188e 1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1299 *
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1302 */
1303void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304{
58cf188e
SZ
1305 struct mem_cgroup *iter;
1306 unsigned int i;
e222432b 1307
e222432b
BS
1308 rcu_read_lock();
1309
2415b9f5
BV
1310 if (p) {
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1314 } else {
1315 pr_info("Memory limit reached of cgroup ");
1316 }
1317
e61734c5 1318 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1319 pr_cont("\n");
e222432b 1320
e222432b
BS
1321 rcu_read_unlock();
1322
3e32cb2e
JW
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1332
1333 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1336 pr_cont(":");
1337
71cd3113
JW
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1340 continue;
71cd3113 1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1342 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1343 }
1344
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348
1349 pr_cont("\n");
1350 }
e222432b
BS
1351}
1352
a63d83f4
DR
1353/*
1354 * Return the memory (and swap, if configured) limit for a memcg.
1355 */
bbec2e15 1356unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1357{
bbec2e15 1358 unsigned long max;
f3e8eb70 1359
bbec2e15 1360 max = memcg->memory.max;
9a5a8f19 1361 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
9a5a8f19 1364
bbec2e15
RG
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
9a5a8f19 1369 }
bbec2e15 1370 return max;
a63d83f4
DR
1371}
1372
b6e6edcf 1373static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1374 int order)
9cbb78bb 1375{
6e0fc46d
DR
1376 struct oom_control oc = {
1377 .zonelist = NULL,
1378 .nodemask = NULL,
2a966b77 1379 .memcg = memcg,
6e0fc46d
DR
1380 .gfp_mask = gfp_mask,
1381 .order = order,
6e0fc46d 1382 };
7c5f64f8 1383 bool ret;
9cbb78bb 1384
dc56401f 1385 mutex_lock(&oom_lock);
7c5f64f8 1386 ret = out_of_memory(&oc);
dc56401f 1387 mutex_unlock(&oom_lock);
7c5f64f8 1388 return ret;
9cbb78bb
DR
1389}
1390
ae6e71d3
MC
1391#if MAX_NUMNODES > 1
1392
4d0c066d
KH
1393/**
1394 * test_mem_cgroup_node_reclaimable
dad7557e 1395 * @memcg: the target memcg
4d0c066d
KH
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
c0ff4b85 1403static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1404 int nid, bool noswap)
1405{
c0ff4b85 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
c0ff4b85 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1411 return true;
1412 return false;
1413
1414}
889976db
YH
1415
1416/*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
c0ff4b85 1422static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1423{
1424 int nid;
453a9bf3
KH
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
c0ff4b85 1429 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1430 return;
c0ff4b85 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1432 return;
1433
889976db 1434 /* make a nodemask where this memcg uses memory from */
31aaea4a 1435 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1436
31aaea4a 1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1438
c0ff4b85
R
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
889976db 1441 }
453a9bf3 1442
c0ff4b85
R
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1445}
1446
1447/*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
c0ff4b85 1459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1460{
1461 int node;
1462
c0ff4b85
R
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
889976db 1465
0edaf86c 1466 node = next_node_in(node, memcg->scan_nodes);
889976db 1467 /*
fda3d69b
MH
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
889976db
YH
1471 */
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1474
c0ff4b85 1475 memcg->last_scanned_node = node;
889976db
YH
1476 return node;
1477}
889976db 1478#else
c0ff4b85 1479int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1480{
1481 return 0;
1482}
1483#endif
1484
0608f43d 1485static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1486 pg_data_t *pgdat,
0608f43d
AM
1487 gfp_t gfp_mask,
1488 unsigned long *total_scanned)
1489{
1490 struct mem_cgroup *victim = NULL;
1491 int total = 0;
1492 int loop = 0;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1496 .pgdat = pgdat,
0608f43d
AM
1497 .priority = 0,
1498 };
1499
3e32cb2e 1500 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1501
1502 while (1) {
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 if (!victim) {
1505 loop++;
1506 if (loop >= 2) {
1507 /*
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1511 */
1512 if (!total)
1513 break;
1514 /*
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1519 */
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 break;
1523 }
1524 continue;
1525 }
a9dd0a83 1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1527 pgdat, &nr_scanned);
0608f43d 1528 *total_scanned += nr_scanned;
3e32cb2e 1529 if (!soft_limit_excess(root_memcg))
0608f43d 1530 break;
6d61ef40 1531 }
0608f43d
AM
1532 mem_cgroup_iter_break(root_memcg, victim);
1533 return total;
6d61ef40
BS
1534}
1535
0056f4e6
JW
1536#ifdef CONFIG_LOCKDEP
1537static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1539};
1540#endif
1541
fb2a6fc5
JW
1542static DEFINE_SPINLOCK(memcg_oom_lock);
1543
867578cb
KH
1544/*
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1547 */
fb2a6fc5 1548static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1549{
79dfdacc 1550 struct mem_cgroup *iter, *failed = NULL;
a636b327 1551
fb2a6fc5
JW
1552 spin_lock(&memcg_oom_lock);
1553
9f3a0d09 1554 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1555 if (iter->oom_lock) {
79dfdacc
MH
1556 /*
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1559 */
79dfdacc 1560 failed = iter;
9f3a0d09
JW
1561 mem_cgroup_iter_break(memcg, iter);
1562 break;
23751be0
JW
1563 } else
1564 iter->oom_lock = true;
7d74b06f 1565 }
867578cb 1566
fb2a6fc5
JW
1567 if (failed) {
1568 /*
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1571 */
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1575 break;
1576 }
1577 iter->oom_lock = false;
79dfdacc 1578 }
0056f4e6
JW
1579 } else
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1581
1582 spin_unlock(&memcg_oom_lock);
1583
1584 return !failed;
a636b327 1585}
0b7f569e 1586
fb2a6fc5 1587static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1588{
7d74b06f
KH
1589 struct mem_cgroup *iter;
1590
fb2a6fc5 1591 spin_lock(&memcg_oom_lock);
0056f4e6 1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1593 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1594 iter->oom_lock = false;
fb2a6fc5 1595 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1596}
1597
c0ff4b85 1598static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1599{
1600 struct mem_cgroup *iter;
1601
c2b42d3c 1602 spin_lock(&memcg_oom_lock);
c0ff4b85 1603 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1604 iter->under_oom++;
1605 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1606}
1607
c0ff4b85 1608static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1609{
1610 struct mem_cgroup *iter;
1611
867578cb
KH
1612 /*
1613 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1615 */
c2b42d3c 1616 spin_lock(&memcg_oom_lock);
c0ff4b85 1617 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1618 if (iter->under_oom > 0)
1619 iter->under_oom--;
1620 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1621}
1622
867578cb
KH
1623static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624
dc98df5a 1625struct oom_wait_info {
d79154bb 1626 struct mem_cgroup *memcg;
ac6424b9 1627 wait_queue_entry_t wait;
dc98df5a
KH
1628};
1629
ac6424b9 1630static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1631 unsigned mode, int sync, void *arg)
1632{
d79154bb
HD
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1635 struct oom_wait_info *oom_wait_info;
1636
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1638 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1639
2314b42d
JW
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1642 return 0;
dc98df5a
KH
1643 return autoremove_wake_function(wait, mode, sync, arg);
1644}
1645
c0ff4b85 1646static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1647{
c2b42d3c
TH
1648 /*
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1655 */
1656 if (memcg && memcg->under_oom)
f4b90b70 1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1658}
1659
29ef680a
MH
1660enum oom_status {
1661 OOM_SUCCESS,
1662 OOM_FAILED,
1663 OOM_ASYNC,
1664 OOM_SKIPPED
1665};
1666
1667static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1668{
6081e10f
MH
1669 enum oom_status ret;
1670 bool locked;
1671
29ef680a
MH
1672 if (order > PAGE_ALLOC_COSTLY_ORDER)
1673 return OOM_SKIPPED;
1674
7a1adfdd
RG
1675 memcg_memory_event(memcg, MEMCG_OOM);
1676
867578cb 1677 /*
49426420
JW
1678 * We are in the middle of the charge context here, so we
1679 * don't want to block when potentially sitting on a callstack
1680 * that holds all kinds of filesystem and mm locks.
1681 *
29ef680a
MH
1682 * cgroup1 allows disabling the OOM killer and waiting for outside
1683 * handling until the charge can succeed; remember the context and put
1684 * the task to sleep at the end of the page fault when all locks are
1685 * released.
49426420 1686 *
29ef680a
MH
1687 * On the other hand, in-kernel OOM killer allows for an async victim
1688 * memory reclaim (oom_reaper) and that means that we are not solely
1689 * relying on the oom victim to make a forward progress and we can
1690 * invoke the oom killer here.
1691 *
1692 * Please note that mem_cgroup_out_of_memory might fail to find a
1693 * victim and then we have to bail out from the charge path.
867578cb 1694 */
29ef680a
MH
1695 if (memcg->oom_kill_disable) {
1696 if (!current->in_user_fault)
1697 return OOM_SKIPPED;
1698 css_get(&memcg->css);
1699 current->memcg_in_oom = memcg;
1700 current->memcg_oom_gfp_mask = mask;
1701 current->memcg_oom_order = order;
1702
1703 return OOM_ASYNC;
1704 }
1705
6081e10f
MH
1706 mem_cgroup_mark_under_oom(memcg);
1707
1708 locked = mem_cgroup_oom_trylock(memcg);
1709
1710 if (locked)
1711 mem_cgroup_oom_notify(memcg);
1712
1713 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1714 if (mem_cgroup_out_of_memory(memcg, mask, order))
6081e10f
MH
1715 ret = OOM_SUCCESS;
1716 else
1717 ret = OOM_FAILED;
1718
1719 if (locked)
1720 mem_cgroup_oom_unlock(memcg);
29ef680a 1721
6081e10f 1722 return ret;
3812c8c8
JW
1723}
1724
1725/**
1726 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1727 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1728 *
49426420
JW
1729 * This has to be called at the end of a page fault if the memcg OOM
1730 * handler was enabled.
3812c8c8 1731 *
49426420 1732 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1733 * sleep on a waitqueue until the userspace task resolves the
1734 * situation. Sleeping directly in the charge context with all kinds
1735 * of locks held is not a good idea, instead we remember an OOM state
1736 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1737 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1738 *
1739 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1740 * completed, %false otherwise.
3812c8c8 1741 */
49426420 1742bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1743{
626ebc41 1744 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1745 struct oom_wait_info owait;
49426420 1746 bool locked;
3812c8c8
JW
1747
1748 /* OOM is global, do not handle */
3812c8c8 1749 if (!memcg)
49426420 1750 return false;
3812c8c8 1751
7c5f64f8 1752 if (!handle)
49426420 1753 goto cleanup;
3812c8c8
JW
1754
1755 owait.memcg = memcg;
1756 owait.wait.flags = 0;
1757 owait.wait.func = memcg_oom_wake_function;
1758 owait.wait.private = current;
2055da97 1759 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1760
3812c8c8 1761 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1762 mem_cgroup_mark_under_oom(memcg);
1763
1764 locked = mem_cgroup_oom_trylock(memcg);
1765
1766 if (locked)
1767 mem_cgroup_oom_notify(memcg);
1768
1769 if (locked && !memcg->oom_kill_disable) {
1770 mem_cgroup_unmark_under_oom(memcg);
1771 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1772 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1773 current->memcg_oom_order);
49426420 1774 } else {
3812c8c8 1775 schedule();
49426420
JW
1776 mem_cgroup_unmark_under_oom(memcg);
1777 finish_wait(&memcg_oom_waitq, &owait.wait);
1778 }
1779
1780 if (locked) {
fb2a6fc5
JW
1781 mem_cgroup_oom_unlock(memcg);
1782 /*
1783 * There is no guarantee that an OOM-lock contender
1784 * sees the wakeups triggered by the OOM kill
1785 * uncharges. Wake any sleepers explicitely.
1786 */
1787 memcg_oom_recover(memcg);
1788 }
49426420 1789cleanup:
626ebc41 1790 current->memcg_in_oom = NULL;
3812c8c8 1791 css_put(&memcg->css);
867578cb 1792 return true;
0b7f569e
KH
1793}
1794
3d8b38eb
RG
1795/**
1796 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1797 * @victim: task to be killed by the OOM killer
1798 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1799 *
1800 * Returns a pointer to a memory cgroup, which has to be cleaned up
1801 * by killing all belonging OOM-killable tasks.
1802 *
1803 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1804 */
1805struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1806 struct mem_cgroup *oom_domain)
1807{
1808 struct mem_cgroup *oom_group = NULL;
1809 struct mem_cgroup *memcg;
1810
1811 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1812 return NULL;
1813
1814 if (!oom_domain)
1815 oom_domain = root_mem_cgroup;
1816
1817 rcu_read_lock();
1818
1819 memcg = mem_cgroup_from_task(victim);
1820 if (memcg == root_mem_cgroup)
1821 goto out;
1822
1823 /*
1824 * Traverse the memory cgroup hierarchy from the victim task's
1825 * cgroup up to the OOMing cgroup (or root) to find the
1826 * highest-level memory cgroup with oom.group set.
1827 */
1828 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1829 if (memcg->oom_group)
1830 oom_group = memcg;
1831
1832 if (memcg == oom_domain)
1833 break;
1834 }
1835
1836 if (oom_group)
1837 css_get(&oom_group->css);
1838out:
1839 rcu_read_unlock();
1840
1841 return oom_group;
1842}
1843
1844void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1845{
1846 pr_info("Tasks in ");
1847 pr_cont_cgroup_path(memcg->css.cgroup);
1848 pr_cont(" are going to be killed due to memory.oom.group set\n");
1849}
1850
d7365e78 1851/**
81f8c3a4
JW
1852 * lock_page_memcg - lock a page->mem_cgroup binding
1853 * @page: the page
32047e2a 1854 *
81f8c3a4 1855 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1856 * another cgroup.
1857 *
1858 * It ensures lifetime of the returned memcg. Caller is responsible
1859 * for the lifetime of the page; __unlock_page_memcg() is available
1860 * when @page might get freed inside the locked section.
d69b042f 1861 */
739f79fc 1862struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1863{
1864 struct mem_cgroup *memcg;
6de22619 1865 unsigned long flags;
89c06bd5 1866
6de22619
JW
1867 /*
1868 * The RCU lock is held throughout the transaction. The fast
1869 * path can get away without acquiring the memcg->move_lock
1870 * because page moving starts with an RCU grace period.
739f79fc
JW
1871 *
1872 * The RCU lock also protects the memcg from being freed when
1873 * the page state that is going to change is the only thing
1874 * preventing the page itself from being freed. E.g. writeback
1875 * doesn't hold a page reference and relies on PG_writeback to
1876 * keep off truncation, migration and so forth.
1877 */
d7365e78
JW
1878 rcu_read_lock();
1879
1880 if (mem_cgroup_disabled())
739f79fc 1881 return NULL;
89c06bd5 1882again:
1306a85a 1883 memcg = page->mem_cgroup;
29833315 1884 if (unlikely(!memcg))
739f79fc 1885 return NULL;
d7365e78 1886
bdcbb659 1887 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1888 return memcg;
89c06bd5 1889
6de22619 1890 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1891 if (memcg != page->mem_cgroup) {
6de22619 1892 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1893 goto again;
1894 }
6de22619
JW
1895
1896 /*
1897 * When charge migration first begins, we can have locked and
1898 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1899 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1900 */
1901 memcg->move_lock_task = current;
1902 memcg->move_lock_flags = flags;
d7365e78 1903
739f79fc 1904 return memcg;
89c06bd5 1905}
81f8c3a4 1906EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1907
d7365e78 1908/**
739f79fc
JW
1909 * __unlock_page_memcg - unlock and unpin a memcg
1910 * @memcg: the memcg
1911 *
1912 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1913 */
739f79fc 1914void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1915{
6de22619
JW
1916 if (memcg && memcg->move_lock_task == current) {
1917 unsigned long flags = memcg->move_lock_flags;
1918
1919 memcg->move_lock_task = NULL;
1920 memcg->move_lock_flags = 0;
1921
1922 spin_unlock_irqrestore(&memcg->move_lock, flags);
1923 }
89c06bd5 1924
d7365e78 1925 rcu_read_unlock();
89c06bd5 1926}
739f79fc
JW
1927
1928/**
1929 * unlock_page_memcg - unlock a page->mem_cgroup binding
1930 * @page: the page
1931 */
1932void unlock_page_memcg(struct page *page)
1933{
1934 __unlock_page_memcg(page->mem_cgroup);
1935}
81f8c3a4 1936EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1937
cdec2e42
KH
1938struct memcg_stock_pcp {
1939 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1940 unsigned int nr_pages;
cdec2e42 1941 struct work_struct work;
26fe6168 1942 unsigned long flags;
a0db00fc 1943#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1944};
1945static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1946static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1947
a0956d54
SS
1948/**
1949 * consume_stock: Try to consume stocked charge on this cpu.
1950 * @memcg: memcg to consume from.
1951 * @nr_pages: how many pages to charge.
1952 *
1953 * The charges will only happen if @memcg matches the current cpu's memcg
1954 * stock, and at least @nr_pages are available in that stock. Failure to
1955 * service an allocation will refill the stock.
1956 *
1957 * returns true if successful, false otherwise.
cdec2e42 1958 */
a0956d54 1959static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1960{
1961 struct memcg_stock_pcp *stock;
db2ba40c 1962 unsigned long flags;
3e32cb2e 1963 bool ret = false;
cdec2e42 1964
a983b5eb 1965 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1966 return ret;
a0956d54 1967
db2ba40c
JW
1968 local_irq_save(flags);
1969
1970 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1971 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1972 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1973 ret = true;
1974 }
db2ba40c
JW
1975
1976 local_irq_restore(flags);
1977
cdec2e42
KH
1978 return ret;
1979}
1980
1981/*
3e32cb2e 1982 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1983 */
1984static void drain_stock(struct memcg_stock_pcp *stock)
1985{
1986 struct mem_cgroup *old = stock->cached;
1987
11c9ea4e 1988 if (stock->nr_pages) {
3e32cb2e 1989 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1990 if (do_memsw_account())
3e32cb2e 1991 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1992 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1993 stock->nr_pages = 0;
cdec2e42
KH
1994 }
1995 stock->cached = NULL;
cdec2e42
KH
1996}
1997
cdec2e42
KH
1998static void drain_local_stock(struct work_struct *dummy)
1999{
db2ba40c
JW
2000 struct memcg_stock_pcp *stock;
2001 unsigned long flags;
2002
72f0184c
MH
2003 /*
2004 * The only protection from memory hotplug vs. drain_stock races is
2005 * that we always operate on local CPU stock here with IRQ disabled
2006 */
db2ba40c
JW
2007 local_irq_save(flags);
2008
2009 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2010 drain_stock(stock);
26fe6168 2011 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2012
2013 local_irq_restore(flags);
cdec2e42
KH
2014}
2015
2016/*
3e32cb2e 2017 * Cache charges(val) to local per_cpu area.
320cc51d 2018 * This will be consumed by consume_stock() function, later.
cdec2e42 2019 */
c0ff4b85 2020static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2021{
db2ba40c
JW
2022 struct memcg_stock_pcp *stock;
2023 unsigned long flags;
2024
2025 local_irq_save(flags);
cdec2e42 2026
db2ba40c 2027 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2028 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2029 drain_stock(stock);
c0ff4b85 2030 stock->cached = memcg;
cdec2e42 2031 }
11c9ea4e 2032 stock->nr_pages += nr_pages;
db2ba40c 2033
a983b5eb 2034 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2035 drain_stock(stock);
2036
db2ba40c 2037 local_irq_restore(flags);
cdec2e42
KH
2038}
2039
2040/*
c0ff4b85 2041 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2042 * of the hierarchy under it.
cdec2e42 2043 */
6d3d6aa2 2044static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2045{
26fe6168 2046 int cpu, curcpu;
d38144b7 2047
6d3d6aa2
JW
2048 /* If someone's already draining, avoid adding running more workers. */
2049 if (!mutex_trylock(&percpu_charge_mutex))
2050 return;
72f0184c
MH
2051 /*
2052 * Notify other cpus that system-wide "drain" is running
2053 * We do not care about races with the cpu hotplug because cpu down
2054 * as well as workers from this path always operate on the local
2055 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2056 */
5af12d0e 2057 curcpu = get_cpu();
cdec2e42
KH
2058 for_each_online_cpu(cpu) {
2059 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2060 struct mem_cgroup *memcg;
26fe6168 2061
c0ff4b85 2062 memcg = stock->cached;
72f0184c 2063 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2064 continue;
72f0184c
MH
2065 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2066 css_put(&memcg->css);
3e92041d 2067 continue;
72f0184c 2068 }
d1a05b69
MH
2069 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2070 if (cpu == curcpu)
2071 drain_local_stock(&stock->work);
2072 else
2073 schedule_work_on(cpu, &stock->work);
2074 }
72f0184c 2075 css_put(&memcg->css);
cdec2e42 2076 }
5af12d0e 2077 put_cpu();
9f50fad6 2078 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2079}
2080
308167fc 2081static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2082{
cdec2e42 2083 struct memcg_stock_pcp *stock;
a983b5eb 2084 struct mem_cgroup *memcg;
cdec2e42 2085
cdec2e42
KH
2086 stock = &per_cpu(memcg_stock, cpu);
2087 drain_stock(stock);
a983b5eb
JW
2088
2089 for_each_mem_cgroup(memcg) {
2090 int i;
2091
2092 for (i = 0; i < MEMCG_NR_STAT; i++) {
2093 int nid;
2094 long x;
2095
2096 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2097 if (x)
2098 atomic_long_add(x, &memcg->stat[i]);
2099
2100 if (i >= NR_VM_NODE_STAT_ITEMS)
2101 continue;
2102
2103 for_each_node(nid) {
2104 struct mem_cgroup_per_node *pn;
2105
2106 pn = mem_cgroup_nodeinfo(memcg, nid);
2107 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2108 if (x)
2109 atomic_long_add(x, &pn->lruvec_stat[i]);
2110 }
2111 }
2112
e27be240 2113 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2114 long x;
2115
2116 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2117 if (x)
2118 atomic_long_add(x, &memcg->events[i]);
2119 }
2120 }
2121
308167fc 2122 return 0;
cdec2e42
KH
2123}
2124
f7e1cb6e
JW
2125static void reclaim_high(struct mem_cgroup *memcg,
2126 unsigned int nr_pages,
2127 gfp_t gfp_mask)
2128{
2129 do {
2130 if (page_counter_read(&memcg->memory) <= memcg->high)
2131 continue;
e27be240 2132 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2133 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2134 } while ((memcg = parent_mem_cgroup(memcg)));
2135}
2136
2137static void high_work_func(struct work_struct *work)
2138{
2139 struct mem_cgroup *memcg;
2140
2141 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2142 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2143}
2144
b23afb93
TH
2145/*
2146 * Scheduled by try_charge() to be executed from the userland return path
2147 * and reclaims memory over the high limit.
2148 */
2149void mem_cgroup_handle_over_high(void)
2150{
2151 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2152 struct mem_cgroup *memcg;
b23afb93
TH
2153
2154 if (likely(!nr_pages))
2155 return;
2156
f7e1cb6e
JW
2157 memcg = get_mem_cgroup_from_mm(current->mm);
2158 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2159 css_put(&memcg->css);
2160 current->memcg_nr_pages_over_high = 0;
2161}
2162
00501b53
JW
2163static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2164 unsigned int nr_pages)
8a9f3ccd 2165{
a983b5eb 2166 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2167 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2168 struct mem_cgroup *mem_over_limit;
3e32cb2e 2169 struct page_counter *counter;
6539cc05 2170 unsigned long nr_reclaimed;
b70a2a21
JW
2171 bool may_swap = true;
2172 bool drained = false;
29ef680a
MH
2173 bool oomed = false;
2174 enum oom_status oom_status;
a636b327 2175
ce00a967 2176 if (mem_cgroup_is_root(memcg))
10d53c74 2177 return 0;
6539cc05 2178retry:
b6b6cc72 2179 if (consume_stock(memcg, nr_pages))
10d53c74 2180 return 0;
8a9f3ccd 2181
7941d214 2182 if (!do_memsw_account() ||
6071ca52
JW
2183 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2184 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2185 goto done_restock;
7941d214 2186 if (do_memsw_account())
3e32cb2e
JW
2187 page_counter_uncharge(&memcg->memsw, batch);
2188 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2189 } else {
3e32cb2e 2190 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2191 may_swap = false;
3fbe7244 2192 }
7a81b88c 2193
6539cc05
JW
2194 if (batch > nr_pages) {
2195 batch = nr_pages;
2196 goto retry;
2197 }
6d61ef40 2198
06b078fc
JW
2199 /*
2200 * Unlike in global OOM situations, memcg is not in a physical
2201 * memory shortage. Allow dying and OOM-killed tasks to
2202 * bypass the last charges so that they can exit quickly and
2203 * free their memory.
2204 */
da99ecf1 2205 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
2206 fatal_signal_pending(current) ||
2207 current->flags & PF_EXITING))
10d53c74 2208 goto force;
06b078fc 2209
89a28483
JW
2210 /*
2211 * Prevent unbounded recursion when reclaim operations need to
2212 * allocate memory. This might exceed the limits temporarily,
2213 * but we prefer facilitating memory reclaim and getting back
2214 * under the limit over triggering OOM kills in these cases.
2215 */
2216 if (unlikely(current->flags & PF_MEMALLOC))
2217 goto force;
2218
06b078fc
JW
2219 if (unlikely(task_in_memcg_oom(current)))
2220 goto nomem;
2221
d0164adc 2222 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2223 goto nomem;
4b534334 2224
e27be240 2225 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2226
b70a2a21
JW
2227 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2228 gfp_mask, may_swap);
6539cc05 2229
61e02c74 2230 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2231 goto retry;
28c34c29 2232
b70a2a21 2233 if (!drained) {
6d3d6aa2 2234 drain_all_stock(mem_over_limit);
b70a2a21
JW
2235 drained = true;
2236 goto retry;
2237 }
2238
28c34c29
JW
2239 if (gfp_mask & __GFP_NORETRY)
2240 goto nomem;
6539cc05
JW
2241 /*
2242 * Even though the limit is exceeded at this point, reclaim
2243 * may have been able to free some pages. Retry the charge
2244 * before killing the task.
2245 *
2246 * Only for regular pages, though: huge pages are rather
2247 * unlikely to succeed so close to the limit, and we fall back
2248 * to regular pages anyway in case of failure.
2249 */
61e02c74 2250 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2251 goto retry;
2252 /*
2253 * At task move, charge accounts can be doubly counted. So, it's
2254 * better to wait until the end of task_move if something is going on.
2255 */
2256 if (mem_cgroup_wait_acct_move(mem_over_limit))
2257 goto retry;
2258
9b130619
JW
2259 if (nr_retries--)
2260 goto retry;
2261
29ef680a
MH
2262 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2263 goto nomem;
2264
06b078fc 2265 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2266 goto force;
06b078fc 2267
6539cc05 2268 if (fatal_signal_pending(current))
10d53c74 2269 goto force;
6539cc05 2270
29ef680a
MH
2271 /*
2272 * keep retrying as long as the memcg oom killer is able to make
2273 * a forward progress or bypass the charge if the oom killer
2274 * couldn't make any progress.
2275 */
2276 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2277 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2278 switch (oom_status) {
2279 case OOM_SUCCESS:
2280 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2281 oomed = true;
2282 goto retry;
2283 case OOM_FAILED:
2284 goto force;
2285 default:
2286 goto nomem;
2287 }
7a81b88c 2288nomem:
6d1fdc48 2289 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2290 return -ENOMEM;
10d53c74
TH
2291force:
2292 /*
2293 * The allocation either can't fail or will lead to more memory
2294 * being freed very soon. Allow memory usage go over the limit
2295 * temporarily by force charging it.
2296 */
2297 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2298 if (do_memsw_account())
10d53c74
TH
2299 page_counter_charge(&memcg->memsw, nr_pages);
2300 css_get_many(&memcg->css, nr_pages);
2301
2302 return 0;
6539cc05
JW
2303
2304done_restock:
e8ea14cc 2305 css_get_many(&memcg->css, batch);
6539cc05
JW
2306 if (batch > nr_pages)
2307 refill_stock(memcg, batch - nr_pages);
b23afb93 2308
241994ed 2309 /*
b23afb93
TH
2310 * If the hierarchy is above the normal consumption range, schedule
2311 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2312 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2313 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2314 * not recorded as it most likely matches current's and won't
2315 * change in the meantime. As high limit is checked again before
2316 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2317 */
2318 do {
b23afb93 2319 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2320 /* Don't bother a random interrupted task */
2321 if (in_interrupt()) {
2322 schedule_work(&memcg->high_work);
2323 break;
2324 }
9516a18a 2325 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2326 set_notify_resume(current);
2327 break;
2328 }
241994ed 2329 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2330
2331 return 0;
7a81b88c 2332}
8a9f3ccd 2333
00501b53 2334static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2335{
ce00a967
JW
2336 if (mem_cgroup_is_root(memcg))
2337 return;
2338
3e32cb2e 2339 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2340 if (do_memsw_account())
3e32cb2e 2341 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2342
e8ea14cc 2343 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2344}
2345
0a31bc97
JW
2346static void lock_page_lru(struct page *page, int *isolated)
2347{
2348 struct zone *zone = page_zone(page);
2349
a52633d8 2350 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2351 if (PageLRU(page)) {
2352 struct lruvec *lruvec;
2353
599d0c95 2354 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2355 ClearPageLRU(page);
2356 del_page_from_lru_list(page, lruvec, page_lru(page));
2357 *isolated = 1;
2358 } else
2359 *isolated = 0;
2360}
2361
2362static void unlock_page_lru(struct page *page, int isolated)
2363{
2364 struct zone *zone = page_zone(page);
2365
2366 if (isolated) {
2367 struct lruvec *lruvec;
2368
599d0c95 2369 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2370 VM_BUG_ON_PAGE(PageLRU(page), page);
2371 SetPageLRU(page);
2372 add_page_to_lru_list(page, lruvec, page_lru(page));
2373 }
a52633d8 2374 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2375}
2376
00501b53 2377static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2378 bool lrucare)
7a81b88c 2379{
0a31bc97 2380 int isolated;
9ce70c02 2381
1306a85a 2382 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2383
2384 /*
2385 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2386 * may already be on some other mem_cgroup's LRU. Take care of it.
2387 */
0a31bc97
JW
2388 if (lrucare)
2389 lock_page_lru(page, &isolated);
9ce70c02 2390
0a31bc97
JW
2391 /*
2392 * Nobody should be changing or seriously looking at
1306a85a 2393 * page->mem_cgroup at this point:
0a31bc97
JW
2394 *
2395 * - the page is uncharged
2396 *
2397 * - the page is off-LRU
2398 *
2399 * - an anonymous fault has exclusive page access, except for
2400 * a locked page table
2401 *
2402 * - a page cache insertion, a swapin fault, or a migration
2403 * have the page locked
2404 */
1306a85a 2405 page->mem_cgroup = memcg;
9ce70c02 2406
0a31bc97
JW
2407 if (lrucare)
2408 unlock_page_lru(page, isolated);
7a81b88c 2409}
66e1707b 2410
84c07d11 2411#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2412static int memcg_alloc_cache_id(void)
55007d84 2413{
f3bb3043
VD
2414 int id, size;
2415 int err;
2416
dbcf73e2 2417 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2418 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2419 if (id < 0)
2420 return id;
55007d84 2421
dbcf73e2 2422 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2423 return id;
2424
2425 /*
2426 * There's no space for the new id in memcg_caches arrays,
2427 * so we have to grow them.
2428 */
05257a1a 2429 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2430
2431 size = 2 * (id + 1);
55007d84
GC
2432 if (size < MEMCG_CACHES_MIN_SIZE)
2433 size = MEMCG_CACHES_MIN_SIZE;
2434 else if (size > MEMCG_CACHES_MAX_SIZE)
2435 size = MEMCG_CACHES_MAX_SIZE;
2436
f3bb3043 2437 err = memcg_update_all_caches(size);
60d3fd32
VD
2438 if (!err)
2439 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2440 if (!err)
2441 memcg_nr_cache_ids = size;
2442
2443 up_write(&memcg_cache_ids_sem);
2444
f3bb3043 2445 if (err) {
dbcf73e2 2446 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2447 return err;
2448 }
2449 return id;
2450}
2451
2452static void memcg_free_cache_id(int id)
2453{
dbcf73e2 2454 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2455}
2456
d5b3cf71 2457struct memcg_kmem_cache_create_work {
5722d094
VD
2458 struct mem_cgroup *memcg;
2459 struct kmem_cache *cachep;
2460 struct work_struct work;
2461};
2462
d5b3cf71 2463static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2464{
d5b3cf71
VD
2465 struct memcg_kmem_cache_create_work *cw =
2466 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2467 struct mem_cgroup *memcg = cw->memcg;
2468 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2469
d5b3cf71 2470 memcg_create_kmem_cache(memcg, cachep);
bd673145 2471
5722d094 2472 css_put(&memcg->css);
d7f25f8a
GC
2473 kfree(cw);
2474}
2475
2476/*
2477 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2478 */
85cfb245 2479static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2480 struct kmem_cache *cachep)
d7f25f8a 2481{
d5b3cf71 2482 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2483
c892fd82 2484 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2485 if (!cw)
d7f25f8a 2486 return;
8135be5a
VD
2487
2488 css_get(&memcg->css);
d7f25f8a
GC
2489
2490 cw->memcg = memcg;
2491 cw->cachep = cachep;
d5b3cf71 2492 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2493
17cc4dfe 2494 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2495}
2496
45264778
VD
2497static inline bool memcg_kmem_bypass(void)
2498{
2499 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2500 return true;
2501 return false;
2502}
2503
2504/**
2505 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2506 * @cachep: the original global kmem cache
2507 *
d7f25f8a
GC
2508 * Return the kmem_cache we're supposed to use for a slab allocation.
2509 * We try to use the current memcg's version of the cache.
2510 *
45264778
VD
2511 * If the cache does not exist yet, if we are the first user of it, we
2512 * create it asynchronously in a workqueue and let the current allocation
2513 * go through with the original cache.
d7f25f8a 2514 *
45264778
VD
2515 * This function takes a reference to the cache it returns to assure it
2516 * won't get destroyed while we are working with it. Once the caller is
2517 * done with it, memcg_kmem_put_cache() must be called to release the
2518 * reference.
d7f25f8a 2519 */
45264778 2520struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2521{
2522 struct mem_cgroup *memcg;
959c8963 2523 struct kmem_cache *memcg_cachep;
2a4db7eb 2524 int kmemcg_id;
d7f25f8a 2525
f7ce3190 2526 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2527
45264778 2528 if (memcg_kmem_bypass())
230e9fc2
VD
2529 return cachep;
2530
d46eb14b 2531 memcg = get_mem_cgroup_from_current();
4db0c3c2 2532 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2533 if (kmemcg_id < 0)
ca0dde97 2534 goto out;
d7f25f8a 2535
2a4db7eb 2536 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2537 if (likely(memcg_cachep))
2538 return memcg_cachep;
ca0dde97
LZ
2539
2540 /*
2541 * If we are in a safe context (can wait, and not in interrupt
2542 * context), we could be be predictable and return right away.
2543 * This would guarantee that the allocation being performed
2544 * already belongs in the new cache.
2545 *
2546 * However, there are some clashes that can arrive from locking.
2547 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2548 * memcg_create_kmem_cache, this means no further allocation
2549 * could happen with the slab_mutex held. So it's better to
2550 * defer everything.
ca0dde97 2551 */
d5b3cf71 2552 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2553out:
8135be5a 2554 css_put(&memcg->css);
ca0dde97 2555 return cachep;
d7f25f8a 2556}
d7f25f8a 2557
45264778
VD
2558/**
2559 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2560 * @cachep: the cache returned by memcg_kmem_get_cache
2561 */
2562void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2563{
2564 if (!is_root_cache(cachep))
f7ce3190 2565 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2566}
2567
45264778 2568/**
b213b54f 2569 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2570 * @page: page to charge
2571 * @gfp: reclaim mode
2572 * @order: allocation order
2573 * @memcg: memory cgroup to charge
2574 *
2575 * Returns 0 on success, an error code on failure.
2576 */
2577int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2578 struct mem_cgroup *memcg)
7ae1e1d0 2579{
f3ccb2c4
VD
2580 unsigned int nr_pages = 1 << order;
2581 struct page_counter *counter;
7ae1e1d0
GC
2582 int ret;
2583
f3ccb2c4 2584 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2585 if (ret)
f3ccb2c4 2586 return ret;
52c29b04
JW
2587
2588 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2589 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2590 cancel_charge(memcg, nr_pages);
2591 return -ENOMEM;
7ae1e1d0
GC
2592 }
2593
f3ccb2c4 2594 page->mem_cgroup = memcg;
7ae1e1d0 2595
f3ccb2c4 2596 return 0;
7ae1e1d0
GC
2597}
2598
45264778
VD
2599/**
2600 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2601 * @page: page to charge
2602 * @gfp: reclaim mode
2603 * @order: allocation order
2604 *
2605 * Returns 0 on success, an error code on failure.
2606 */
2607int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2608{
f3ccb2c4 2609 struct mem_cgroup *memcg;
fcff7d7e 2610 int ret = 0;
7ae1e1d0 2611
e68599a3 2612 if (mem_cgroup_disabled() || memcg_kmem_bypass())
45264778
VD
2613 return 0;
2614
d46eb14b 2615 memcg = get_mem_cgroup_from_current();
c4159a75 2616 if (!mem_cgroup_is_root(memcg)) {
45264778 2617 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2618 if (!ret)
2619 __SetPageKmemcg(page);
2620 }
7ae1e1d0 2621 css_put(&memcg->css);
d05e83a6 2622 return ret;
7ae1e1d0 2623}
45264778
VD
2624/**
2625 * memcg_kmem_uncharge: uncharge a kmem page
2626 * @page: page to uncharge
2627 * @order: allocation order
2628 */
2629void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2630{
1306a85a 2631 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2632 unsigned int nr_pages = 1 << order;
7ae1e1d0 2633
7ae1e1d0
GC
2634 if (!memcg)
2635 return;
2636
309381fe 2637 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2638
52c29b04
JW
2639 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2640 page_counter_uncharge(&memcg->kmem, nr_pages);
2641
f3ccb2c4 2642 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2643 if (do_memsw_account())
f3ccb2c4 2644 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2645
1306a85a 2646 page->mem_cgroup = NULL;
c4159a75
VD
2647
2648 /* slab pages do not have PageKmemcg flag set */
2649 if (PageKmemcg(page))
2650 __ClearPageKmemcg(page);
2651
f3ccb2c4 2652 css_put_many(&memcg->css, nr_pages);
60d3fd32 2653}
84c07d11 2654#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2655
ca3e0214
KH
2656#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2657
ca3e0214
KH
2658/*
2659 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2660 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2661 */
e94c8a9c 2662void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2663{
e94c8a9c 2664 int i;
ca3e0214 2665
3d37c4a9
KH
2666 if (mem_cgroup_disabled())
2667 return;
b070e65c 2668
29833315 2669 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2670 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2671
c9019e9b 2672 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2673}
12d27107 2674#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2675
c255a458 2676#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2677/**
2678 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2679 * @entry: swap entry to be moved
2680 * @from: mem_cgroup which the entry is moved from
2681 * @to: mem_cgroup which the entry is moved to
2682 *
2683 * It succeeds only when the swap_cgroup's record for this entry is the same
2684 * as the mem_cgroup's id of @from.
2685 *
2686 * Returns 0 on success, -EINVAL on failure.
2687 *
3e32cb2e 2688 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2689 * both res and memsw, and called css_get().
2690 */
2691static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2692 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2693{
2694 unsigned short old_id, new_id;
2695
34c00c31
LZ
2696 old_id = mem_cgroup_id(from);
2697 new_id = mem_cgroup_id(to);
02491447
DN
2698
2699 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2700 mod_memcg_state(from, MEMCG_SWAP, -1);
2701 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2702 return 0;
2703 }
2704 return -EINVAL;
2705}
2706#else
2707static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2708 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2709{
2710 return -EINVAL;
2711}
8c7c6e34 2712#endif
d13d1443 2713
bbec2e15 2714static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2715
bbec2e15
RG
2716static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2717 unsigned long max, bool memsw)
628f4235 2718{
3e32cb2e 2719 bool enlarge = false;
bb4a7ea2 2720 bool drained = false;
3e32cb2e 2721 int ret;
c054a78c
YZ
2722 bool limits_invariant;
2723 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2724
3e32cb2e 2725 do {
628f4235
KH
2726 if (signal_pending(current)) {
2727 ret = -EINTR;
2728 break;
2729 }
3e32cb2e 2730
bbec2e15 2731 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2732 /*
2733 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2734 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2735 */
bbec2e15
RG
2736 limits_invariant = memsw ? max >= memcg->memory.max :
2737 max <= memcg->memsw.max;
c054a78c 2738 if (!limits_invariant) {
bbec2e15 2739 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2740 ret = -EINVAL;
8c7c6e34
KH
2741 break;
2742 }
bbec2e15 2743 if (max > counter->max)
3e32cb2e 2744 enlarge = true;
bbec2e15
RG
2745 ret = page_counter_set_max(counter, max);
2746 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2747
2748 if (!ret)
2749 break;
2750
bb4a7ea2
SB
2751 if (!drained) {
2752 drain_all_stock(memcg);
2753 drained = true;
2754 continue;
2755 }
2756
1ab5c056
AR
2757 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2758 GFP_KERNEL, !memsw)) {
2759 ret = -EBUSY;
2760 break;
2761 }
2762 } while (true);
3e32cb2e 2763
3c11ecf4
KH
2764 if (!ret && enlarge)
2765 memcg_oom_recover(memcg);
3e32cb2e 2766
628f4235
KH
2767 return ret;
2768}
2769
ef8f2327 2770unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2771 gfp_t gfp_mask,
2772 unsigned long *total_scanned)
2773{
2774 unsigned long nr_reclaimed = 0;
ef8f2327 2775 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2776 unsigned long reclaimed;
2777 int loop = 0;
ef8f2327 2778 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2779 unsigned long excess;
0608f43d
AM
2780 unsigned long nr_scanned;
2781
2782 if (order > 0)
2783 return 0;
2784
ef8f2327 2785 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2786
2787 /*
2788 * Do not even bother to check the largest node if the root
2789 * is empty. Do it lockless to prevent lock bouncing. Races
2790 * are acceptable as soft limit is best effort anyway.
2791 */
bfc7228b 2792 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2793 return 0;
2794
0608f43d
AM
2795 /*
2796 * This loop can run a while, specially if mem_cgroup's continuously
2797 * keep exceeding their soft limit and putting the system under
2798 * pressure
2799 */
2800 do {
2801 if (next_mz)
2802 mz = next_mz;
2803 else
2804 mz = mem_cgroup_largest_soft_limit_node(mctz);
2805 if (!mz)
2806 break;
2807
2808 nr_scanned = 0;
ef8f2327 2809 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2810 gfp_mask, &nr_scanned);
2811 nr_reclaimed += reclaimed;
2812 *total_scanned += nr_scanned;
0a31bc97 2813 spin_lock_irq(&mctz->lock);
bc2f2e7f 2814 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2815
2816 /*
2817 * If we failed to reclaim anything from this memory cgroup
2818 * it is time to move on to the next cgroup
2819 */
2820 next_mz = NULL;
bc2f2e7f
VD
2821 if (!reclaimed)
2822 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2823
3e32cb2e 2824 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2825 /*
2826 * One school of thought says that we should not add
2827 * back the node to the tree if reclaim returns 0.
2828 * But our reclaim could return 0, simply because due
2829 * to priority we are exposing a smaller subset of
2830 * memory to reclaim from. Consider this as a longer
2831 * term TODO.
2832 */
2833 /* If excess == 0, no tree ops */
cf2c8127 2834 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2835 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2836 css_put(&mz->memcg->css);
2837 loop++;
2838 /*
2839 * Could not reclaim anything and there are no more
2840 * mem cgroups to try or we seem to be looping without
2841 * reclaiming anything.
2842 */
2843 if (!nr_reclaimed &&
2844 (next_mz == NULL ||
2845 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2846 break;
2847 } while (!nr_reclaimed);
2848 if (next_mz)
2849 css_put(&next_mz->memcg->css);
2850 return nr_reclaimed;
2851}
2852
ea280e7b
TH
2853/*
2854 * Test whether @memcg has children, dead or alive. Note that this
2855 * function doesn't care whether @memcg has use_hierarchy enabled and
2856 * returns %true if there are child csses according to the cgroup
2857 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2858 */
b5f99b53
GC
2859static inline bool memcg_has_children(struct mem_cgroup *memcg)
2860{
ea280e7b
TH
2861 bool ret;
2862
ea280e7b
TH
2863 rcu_read_lock();
2864 ret = css_next_child(NULL, &memcg->css);
2865 rcu_read_unlock();
2866 return ret;
b5f99b53
GC
2867}
2868
c26251f9 2869/*
51038171 2870 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2871 *
2872 * Caller is responsible for holding css reference for memcg.
2873 */
2874static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2875{
2876 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2877
c1e862c1
KH
2878 /* we call try-to-free pages for make this cgroup empty */
2879 lru_add_drain_all();
d12c60f6
JS
2880
2881 drain_all_stock(memcg);
2882
f817ed48 2883 /* try to free all pages in this cgroup */
3e32cb2e 2884 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2885 int progress;
c1e862c1 2886
c26251f9
MH
2887 if (signal_pending(current))
2888 return -EINTR;
2889
b70a2a21
JW
2890 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2891 GFP_KERNEL, true);
c1e862c1 2892 if (!progress) {
f817ed48 2893 nr_retries--;
c1e862c1 2894 /* maybe some writeback is necessary */
8aa7e847 2895 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2896 }
f817ed48
KH
2897
2898 }
ab5196c2
MH
2899
2900 return 0;
cc847582
KH
2901}
2902
6770c64e
TH
2903static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2904 char *buf, size_t nbytes,
2905 loff_t off)
c1e862c1 2906{
6770c64e 2907 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2908
d8423011
MH
2909 if (mem_cgroup_is_root(memcg))
2910 return -EINVAL;
6770c64e 2911 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2912}
2913
182446d0
TH
2914static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2915 struct cftype *cft)
18f59ea7 2916{
182446d0 2917 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2918}
2919
182446d0
TH
2920static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2921 struct cftype *cft, u64 val)
18f59ea7
BS
2922{
2923 int retval = 0;
182446d0 2924 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2925 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2926
567fb435 2927 if (memcg->use_hierarchy == val)
0b8f73e1 2928 return 0;
567fb435 2929
18f59ea7 2930 /*
af901ca1 2931 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2932 * in the child subtrees. If it is unset, then the change can
2933 * occur, provided the current cgroup has no children.
2934 *
2935 * For the root cgroup, parent_mem is NULL, we allow value to be
2936 * set if there are no children.
2937 */
c0ff4b85 2938 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2939 (val == 1 || val == 0)) {
ea280e7b 2940 if (!memcg_has_children(memcg))
c0ff4b85 2941 memcg->use_hierarchy = val;
18f59ea7
BS
2942 else
2943 retval = -EBUSY;
2944 } else
2945 retval = -EINVAL;
567fb435 2946
18f59ea7
BS
2947 return retval;
2948}
2949
8de7ecc6
SB
2950struct accumulated_stats {
2951 unsigned long stat[MEMCG_NR_STAT];
2952 unsigned long events[NR_VM_EVENT_ITEMS];
2953 unsigned long lru_pages[NR_LRU_LISTS];
2954 const unsigned int *stats_array;
2955 const unsigned int *events_array;
2956 int stats_size;
2957 int events_size;
2958};
ce00a967 2959
8de7ecc6
SB
2960static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2961 struct accumulated_stats *acc)
587d9f72 2962{
8de7ecc6 2963 struct mem_cgroup *mi;
72b54e73 2964 int i;
587d9f72 2965
8de7ecc6
SB
2966 for_each_mem_cgroup_tree(mi, memcg) {
2967 for (i = 0; i < acc->stats_size; i++)
2968 acc->stat[i] += memcg_page_state(mi,
2969 acc->stats_array ? acc->stats_array[i] : i);
587d9f72 2970
8de7ecc6
SB
2971 for (i = 0; i < acc->events_size; i++)
2972 acc->events[i] += memcg_sum_events(mi,
2973 acc->events_array ? acc->events_array[i] : i);
2974
2975 for (i = 0; i < NR_LRU_LISTS; i++)
2976 acc->lru_pages[i] +=
2977 mem_cgroup_nr_lru_pages(mi, BIT(i));
72b54e73 2978 }
587d9f72
JW
2979}
2980
6f646156 2981static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2982{
72b54e73 2983 unsigned long val = 0;
ce00a967 2984
3e32cb2e 2985 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2986 struct mem_cgroup *iter;
2987
2988 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2989 val += memcg_page_state(iter, MEMCG_CACHE);
2990 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2991 if (swap)
ccda7f43 2992 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2993 }
3e32cb2e 2994 } else {
ce00a967 2995 if (!swap)
3e32cb2e 2996 val = page_counter_read(&memcg->memory);
ce00a967 2997 else
3e32cb2e 2998 val = page_counter_read(&memcg->memsw);
ce00a967 2999 }
c12176d3 3000 return val;
ce00a967
JW
3001}
3002
3e32cb2e
JW
3003enum {
3004 RES_USAGE,
3005 RES_LIMIT,
3006 RES_MAX_USAGE,
3007 RES_FAILCNT,
3008 RES_SOFT_LIMIT,
3009};
ce00a967 3010
791badbd 3011static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3012 struct cftype *cft)
8cdea7c0 3013{
182446d0 3014 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3015 struct page_counter *counter;
af36f906 3016
3e32cb2e 3017 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3018 case _MEM:
3e32cb2e
JW
3019 counter = &memcg->memory;
3020 break;
8c7c6e34 3021 case _MEMSWAP:
3e32cb2e
JW
3022 counter = &memcg->memsw;
3023 break;
510fc4e1 3024 case _KMEM:
3e32cb2e 3025 counter = &memcg->kmem;
510fc4e1 3026 break;
d55f90bf 3027 case _TCP:
0db15298 3028 counter = &memcg->tcpmem;
d55f90bf 3029 break;
8c7c6e34
KH
3030 default:
3031 BUG();
8c7c6e34 3032 }
3e32cb2e
JW
3033
3034 switch (MEMFILE_ATTR(cft->private)) {
3035 case RES_USAGE:
3036 if (counter == &memcg->memory)
c12176d3 3037 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3038 if (counter == &memcg->memsw)
c12176d3 3039 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3040 return (u64)page_counter_read(counter) * PAGE_SIZE;
3041 case RES_LIMIT:
bbec2e15 3042 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3043 case RES_MAX_USAGE:
3044 return (u64)counter->watermark * PAGE_SIZE;
3045 case RES_FAILCNT:
3046 return counter->failcnt;
3047 case RES_SOFT_LIMIT:
3048 return (u64)memcg->soft_limit * PAGE_SIZE;
3049 default:
3050 BUG();
3051 }
8cdea7c0 3052}
510fc4e1 3053
84c07d11 3054#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3055static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3056{
d6441637
VD
3057 int memcg_id;
3058
b313aeee
VD
3059 if (cgroup_memory_nokmem)
3060 return 0;
3061
2a4db7eb 3062 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3063 BUG_ON(memcg->kmem_state);
d6441637 3064
f3bb3043 3065 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3066 if (memcg_id < 0)
3067 return memcg_id;
d6441637 3068
ef12947c 3069 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3070 /*
567e9ab2 3071 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3072 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3073 * guarantee no one starts accounting before all call sites are
3074 * patched.
3075 */
900a38f0 3076 memcg->kmemcg_id = memcg_id;
567e9ab2 3077 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3078 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3079
3080 return 0;
d6441637
VD
3081}
3082
8e0a8912
JW
3083static void memcg_offline_kmem(struct mem_cgroup *memcg)
3084{
3085 struct cgroup_subsys_state *css;
3086 struct mem_cgroup *parent, *child;
3087 int kmemcg_id;
3088
3089 if (memcg->kmem_state != KMEM_ONLINE)
3090 return;
3091 /*
3092 * Clear the online state before clearing memcg_caches array
3093 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3094 * guarantees that no cache will be created for this cgroup
3095 * after we are done (see memcg_create_kmem_cache()).
3096 */
3097 memcg->kmem_state = KMEM_ALLOCATED;
3098
3099 memcg_deactivate_kmem_caches(memcg);
3100
3101 kmemcg_id = memcg->kmemcg_id;
3102 BUG_ON(kmemcg_id < 0);
3103
3104 parent = parent_mem_cgroup(memcg);
3105 if (!parent)
3106 parent = root_mem_cgroup;
3107
3108 /*
3109 * Change kmemcg_id of this cgroup and all its descendants to the
3110 * parent's id, and then move all entries from this cgroup's list_lrus
3111 * to ones of the parent. After we have finished, all list_lrus
3112 * corresponding to this cgroup are guaranteed to remain empty. The
3113 * ordering is imposed by list_lru_node->lock taken by
3114 * memcg_drain_all_list_lrus().
3115 */
3a06bb78 3116 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3117 css_for_each_descendant_pre(css, &memcg->css) {
3118 child = mem_cgroup_from_css(css);
3119 BUG_ON(child->kmemcg_id != kmemcg_id);
3120 child->kmemcg_id = parent->kmemcg_id;
3121 if (!memcg->use_hierarchy)
3122 break;
3123 }
3a06bb78
TH
3124 rcu_read_unlock();
3125
9bec5c35 3126 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3127
3128 memcg_free_cache_id(kmemcg_id);
3129}
3130
3131static void memcg_free_kmem(struct mem_cgroup *memcg)
3132{
0b8f73e1
JW
3133 /* css_alloc() failed, offlining didn't happen */
3134 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3135 memcg_offline_kmem(memcg);
3136
8e0a8912
JW
3137 if (memcg->kmem_state == KMEM_ALLOCATED) {
3138 memcg_destroy_kmem_caches(memcg);
3139 static_branch_dec(&memcg_kmem_enabled_key);
3140 WARN_ON(page_counter_read(&memcg->kmem));
3141 }
8e0a8912 3142}
d6441637 3143#else
0b8f73e1 3144static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3145{
3146 return 0;
3147}
3148static void memcg_offline_kmem(struct mem_cgroup *memcg)
3149{
3150}
3151static void memcg_free_kmem(struct mem_cgroup *memcg)
3152{
3153}
84c07d11 3154#endif /* CONFIG_MEMCG_KMEM */
127424c8 3155
bbec2e15
RG
3156static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3157 unsigned long max)
d6441637 3158{
b313aeee 3159 int ret;
127424c8 3160
bbec2e15
RG
3161 mutex_lock(&memcg_max_mutex);
3162 ret = page_counter_set_max(&memcg->kmem, max);
3163 mutex_unlock(&memcg_max_mutex);
127424c8 3164 return ret;
d6441637 3165}
510fc4e1 3166
bbec2e15 3167static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3168{
3169 int ret;
3170
bbec2e15 3171 mutex_lock(&memcg_max_mutex);
d55f90bf 3172
bbec2e15 3173 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3174 if (ret)
3175 goto out;
3176
0db15298 3177 if (!memcg->tcpmem_active) {
d55f90bf
VD
3178 /*
3179 * The active flag needs to be written after the static_key
3180 * update. This is what guarantees that the socket activation
2d758073
JW
3181 * function is the last one to run. See mem_cgroup_sk_alloc()
3182 * for details, and note that we don't mark any socket as
3183 * belonging to this memcg until that flag is up.
d55f90bf
VD
3184 *
3185 * We need to do this, because static_keys will span multiple
3186 * sites, but we can't control their order. If we mark a socket
3187 * as accounted, but the accounting functions are not patched in
3188 * yet, we'll lose accounting.
3189 *
2d758073 3190 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3191 * because when this value change, the code to process it is not
3192 * patched in yet.
3193 */
3194 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3195 memcg->tcpmem_active = true;
d55f90bf
VD
3196 }
3197out:
bbec2e15 3198 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3199 return ret;
3200}
d55f90bf 3201
628f4235
KH
3202/*
3203 * The user of this function is...
3204 * RES_LIMIT.
3205 */
451af504
TH
3206static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3207 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3208{
451af504 3209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3210 unsigned long nr_pages;
628f4235
KH
3211 int ret;
3212
451af504 3213 buf = strstrip(buf);
650c5e56 3214 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3215 if (ret)
3216 return ret;
af36f906 3217
3e32cb2e 3218 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3219 case RES_LIMIT:
4b3bde4c
BS
3220 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3221 ret = -EINVAL;
3222 break;
3223 }
3e32cb2e
JW
3224 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3225 case _MEM:
bbec2e15 3226 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3227 break;
3e32cb2e 3228 case _MEMSWAP:
bbec2e15 3229 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3230 break;
3e32cb2e 3231 case _KMEM:
bbec2e15 3232 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3233 break;
d55f90bf 3234 case _TCP:
bbec2e15 3235 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3236 break;
3e32cb2e 3237 }
296c81d8 3238 break;
3e32cb2e
JW
3239 case RES_SOFT_LIMIT:
3240 memcg->soft_limit = nr_pages;
3241 ret = 0;
628f4235
KH
3242 break;
3243 }
451af504 3244 return ret ?: nbytes;
8cdea7c0
BS
3245}
3246
6770c64e
TH
3247static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3248 size_t nbytes, loff_t off)
c84872e1 3249{
6770c64e 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3251 struct page_counter *counter;
c84872e1 3252
3e32cb2e
JW
3253 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3254 case _MEM:
3255 counter = &memcg->memory;
3256 break;
3257 case _MEMSWAP:
3258 counter = &memcg->memsw;
3259 break;
3260 case _KMEM:
3261 counter = &memcg->kmem;
3262 break;
d55f90bf 3263 case _TCP:
0db15298 3264 counter = &memcg->tcpmem;
d55f90bf 3265 break;
3e32cb2e
JW
3266 default:
3267 BUG();
3268 }
af36f906 3269
3e32cb2e 3270 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3271 case RES_MAX_USAGE:
3e32cb2e 3272 page_counter_reset_watermark(counter);
29f2a4da
PE
3273 break;
3274 case RES_FAILCNT:
3e32cb2e 3275 counter->failcnt = 0;
29f2a4da 3276 break;
3e32cb2e
JW
3277 default:
3278 BUG();
29f2a4da 3279 }
f64c3f54 3280
6770c64e 3281 return nbytes;
c84872e1
PE
3282}
3283
182446d0 3284static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3285 struct cftype *cft)
3286{
182446d0 3287 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3288}
3289
02491447 3290#ifdef CONFIG_MMU
182446d0 3291static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3292 struct cftype *cft, u64 val)
3293{
182446d0 3294 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3295
1dfab5ab 3296 if (val & ~MOVE_MASK)
7dc74be0 3297 return -EINVAL;
ee5e8472 3298
7dc74be0 3299 /*
ee5e8472
GC
3300 * No kind of locking is needed in here, because ->can_attach() will
3301 * check this value once in the beginning of the process, and then carry
3302 * on with stale data. This means that changes to this value will only
3303 * affect task migrations starting after the change.
7dc74be0 3304 */
c0ff4b85 3305 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3306 return 0;
3307}
02491447 3308#else
182446d0 3309static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3310 struct cftype *cft, u64 val)
3311{
3312 return -ENOSYS;
3313}
3314#endif
7dc74be0 3315
406eb0c9 3316#ifdef CONFIG_NUMA
2da8ca82 3317static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3318{
25485de6
GT
3319 struct numa_stat {
3320 const char *name;
3321 unsigned int lru_mask;
3322 };
3323
3324 static const struct numa_stat stats[] = {
3325 { "total", LRU_ALL },
3326 { "file", LRU_ALL_FILE },
3327 { "anon", LRU_ALL_ANON },
3328 { "unevictable", BIT(LRU_UNEVICTABLE) },
3329 };
3330 const struct numa_stat *stat;
406eb0c9 3331 int nid;
25485de6 3332 unsigned long nr;
2da8ca82 3333 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3334
25485de6
GT
3335 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3336 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3337 seq_printf(m, "%s=%lu", stat->name, nr);
3338 for_each_node_state(nid, N_MEMORY) {
3339 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3340 stat->lru_mask);
3341 seq_printf(m, " N%d=%lu", nid, nr);
3342 }
3343 seq_putc(m, '\n');
406eb0c9 3344 }
406eb0c9 3345
071aee13
YH
3346 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3347 struct mem_cgroup *iter;
3348
3349 nr = 0;
3350 for_each_mem_cgroup_tree(iter, memcg)
3351 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3352 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3353 for_each_node_state(nid, N_MEMORY) {
3354 nr = 0;
3355 for_each_mem_cgroup_tree(iter, memcg)
3356 nr += mem_cgroup_node_nr_lru_pages(
3357 iter, nid, stat->lru_mask);
3358 seq_printf(m, " N%d=%lu", nid, nr);
3359 }
3360 seq_putc(m, '\n');
406eb0c9 3361 }
406eb0c9 3362
406eb0c9
YH
3363 return 0;
3364}
3365#endif /* CONFIG_NUMA */
3366
df0e53d0 3367/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3368static const unsigned int memcg1_events[] = {
df0e53d0
JW
3369 PGPGIN,
3370 PGPGOUT,
3371 PGFAULT,
3372 PGMAJFAULT,
3373};
3374
3375static const char *const memcg1_event_names[] = {
3376 "pgpgin",
3377 "pgpgout",
3378 "pgfault",
3379 "pgmajfault",
3380};
3381
2da8ca82 3382static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3383{
2da8ca82 3384 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3385 unsigned long memory, memsw;
af7c4b0e
JW
3386 struct mem_cgroup *mi;
3387 unsigned int i;
8de7ecc6 3388 struct accumulated_stats acc;
406eb0c9 3389
71cd3113 3390 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3391 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3392
71cd3113
JW
3393 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3394 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3395 continue;
71cd3113 3396 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3397 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3398 PAGE_SIZE);
1dd3a273 3399 }
7b854121 3400
df0e53d0
JW
3401 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3402 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3403 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3404
3405 for (i = 0; i < NR_LRU_LISTS; i++)
3406 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3407 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3408
14067bb3 3409 /* Hierarchical information */
3e32cb2e
JW
3410 memory = memsw = PAGE_COUNTER_MAX;
3411 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3412 memory = min(memory, mi->memory.max);
3413 memsw = min(memsw, mi->memsw.max);
fee7b548 3414 }
3e32cb2e
JW
3415 seq_printf(m, "hierarchical_memory_limit %llu\n",
3416 (u64)memory * PAGE_SIZE);
7941d214 3417 if (do_memsw_account())
3e32cb2e
JW
3418 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3419 (u64)memsw * PAGE_SIZE);
7f016ee8 3420
8de7ecc6
SB
3421 memset(&acc, 0, sizeof(acc));
3422 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3423 acc.stats_array = memcg1_stats;
3424 acc.events_size = ARRAY_SIZE(memcg1_events);
3425 acc.events_array = memcg1_events;
3426 accumulate_memcg_tree(memcg, &acc);
af7c4b0e 3427
8de7ecc6 3428 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3429 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3430 continue;
8de7ecc6
SB
3431 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3432 (u64)acc.stat[i] * PAGE_SIZE);
af7c4b0e
JW
3433 }
3434
8de7ecc6
SB
3435 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3436 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3437 (u64)acc.events[i]);
af7c4b0e 3438
8de7ecc6
SB
3439 for (i = 0; i < NR_LRU_LISTS; i++)
3440 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3441 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3442
7f016ee8 3443#ifdef CONFIG_DEBUG_VM
7f016ee8 3444 {
ef8f2327
MG
3445 pg_data_t *pgdat;
3446 struct mem_cgroup_per_node *mz;
89abfab1 3447 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3448 unsigned long recent_rotated[2] = {0, 0};
3449 unsigned long recent_scanned[2] = {0, 0};
3450
ef8f2327
MG
3451 for_each_online_pgdat(pgdat) {
3452 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3453 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3454
ef8f2327
MG
3455 recent_rotated[0] += rstat->recent_rotated[0];
3456 recent_rotated[1] += rstat->recent_rotated[1];
3457 recent_scanned[0] += rstat->recent_scanned[0];
3458 recent_scanned[1] += rstat->recent_scanned[1];
3459 }
78ccf5b5
JW
3460 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3461 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3462 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3463 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3464 }
3465#endif
3466
d2ceb9b7
KH
3467 return 0;
3468}
3469
182446d0
TH
3470static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3471 struct cftype *cft)
a7885eb8 3472{
182446d0 3473 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3474
1f4c025b 3475 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3476}
3477
182446d0
TH
3478static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3479 struct cftype *cft, u64 val)
a7885eb8 3480{
182446d0 3481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3482
3dae7fec 3483 if (val > 100)
a7885eb8
KM
3484 return -EINVAL;
3485
14208b0e 3486 if (css->parent)
3dae7fec
JW
3487 memcg->swappiness = val;
3488 else
3489 vm_swappiness = val;
068b38c1 3490
a7885eb8
KM
3491 return 0;
3492}
3493
2e72b634
KS
3494static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3495{
3496 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3497 unsigned long usage;
2e72b634
KS
3498 int i;
3499
3500 rcu_read_lock();
3501 if (!swap)
2c488db2 3502 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3503 else
2c488db2 3504 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3505
3506 if (!t)
3507 goto unlock;
3508
ce00a967 3509 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3510
3511 /*
748dad36 3512 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3513 * If it's not true, a threshold was crossed after last
3514 * call of __mem_cgroup_threshold().
3515 */
5407a562 3516 i = t->current_threshold;
2e72b634
KS
3517
3518 /*
3519 * Iterate backward over array of thresholds starting from
3520 * current_threshold and check if a threshold is crossed.
3521 * If none of thresholds below usage is crossed, we read
3522 * only one element of the array here.
3523 */
3524 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3525 eventfd_signal(t->entries[i].eventfd, 1);
3526
3527 /* i = current_threshold + 1 */
3528 i++;
3529
3530 /*
3531 * Iterate forward over array of thresholds starting from
3532 * current_threshold+1 and check if a threshold is crossed.
3533 * If none of thresholds above usage is crossed, we read
3534 * only one element of the array here.
3535 */
3536 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3537 eventfd_signal(t->entries[i].eventfd, 1);
3538
3539 /* Update current_threshold */
5407a562 3540 t->current_threshold = i - 1;
2e72b634
KS
3541unlock:
3542 rcu_read_unlock();
3543}
3544
3545static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3546{
ad4ca5f4
KS
3547 while (memcg) {
3548 __mem_cgroup_threshold(memcg, false);
7941d214 3549 if (do_memsw_account())
ad4ca5f4
KS
3550 __mem_cgroup_threshold(memcg, true);
3551
3552 memcg = parent_mem_cgroup(memcg);
3553 }
2e72b634
KS
3554}
3555
3556static int compare_thresholds(const void *a, const void *b)
3557{
3558 const struct mem_cgroup_threshold *_a = a;
3559 const struct mem_cgroup_threshold *_b = b;
3560
2bff24a3
GT
3561 if (_a->threshold > _b->threshold)
3562 return 1;
3563
3564 if (_a->threshold < _b->threshold)
3565 return -1;
3566
3567 return 0;
2e72b634
KS
3568}
3569
c0ff4b85 3570static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3571{
3572 struct mem_cgroup_eventfd_list *ev;
3573
2bcf2e92
MH
3574 spin_lock(&memcg_oom_lock);
3575
c0ff4b85 3576 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3577 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3578
3579 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3580 return 0;
3581}
3582
c0ff4b85 3583static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3584{
7d74b06f
KH
3585 struct mem_cgroup *iter;
3586
c0ff4b85 3587 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3588 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3589}
3590
59b6f873 3591static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3592 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3593{
2c488db2
KS
3594 struct mem_cgroup_thresholds *thresholds;
3595 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3596 unsigned long threshold;
3597 unsigned long usage;
2c488db2 3598 int i, size, ret;
2e72b634 3599
650c5e56 3600 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3601 if (ret)
3602 return ret;
3603
3604 mutex_lock(&memcg->thresholds_lock);
2c488db2 3605
05b84301 3606 if (type == _MEM) {
2c488db2 3607 thresholds = &memcg->thresholds;
ce00a967 3608 usage = mem_cgroup_usage(memcg, false);
05b84301 3609 } else if (type == _MEMSWAP) {
2c488db2 3610 thresholds = &memcg->memsw_thresholds;
ce00a967 3611 usage = mem_cgroup_usage(memcg, true);
05b84301 3612 } else
2e72b634
KS
3613 BUG();
3614
2e72b634 3615 /* Check if a threshold crossed before adding a new one */
2c488db2 3616 if (thresholds->primary)
2e72b634
KS
3617 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3618
2c488db2 3619 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3620
3621 /* Allocate memory for new array of thresholds */
2c488db2 3622 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3623 GFP_KERNEL);
2c488db2 3624 if (!new) {
2e72b634
KS
3625 ret = -ENOMEM;
3626 goto unlock;
3627 }
2c488db2 3628 new->size = size;
2e72b634
KS
3629
3630 /* Copy thresholds (if any) to new array */
2c488db2
KS
3631 if (thresholds->primary) {
3632 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3633 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3634 }
3635
2e72b634 3636 /* Add new threshold */
2c488db2
KS
3637 new->entries[size - 1].eventfd = eventfd;
3638 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3639
3640 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3641 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3642 compare_thresholds, NULL);
3643
3644 /* Find current threshold */
2c488db2 3645 new->current_threshold = -1;
2e72b634 3646 for (i = 0; i < size; i++) {
748dad36 3647 if (new->entries[i].threshold <= usage) {
2e72b634 3648 /*
2c488db2
KS
3649 * new->current_threshold will not be used until
3650 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3651 * it here.
3652 */
2c488db2 3653 ++new->current_threshold;
748dad36
SZ
3654 } else
3655 break;
2e72b634
KS
3656 }
3657
2c488db2
KS
3658 /* Free old spare buffer and save old primary buffer as spare */
3659 kfree(thresholds->spare);
3660 thresholds->spare = thresholds->primary;
3661
3662 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3663
907860ed 3664 /* To be sure that nobody uses thresholds */
2e72b634
KS
3665 synchronize_rcu();
3666
2e72b634
KS
3667unlock:
3668 mutex_unlock(&memcg->thresholds_lock);
3669
3670 return ret;
3671}
3672
59b6f873 3673static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3674 struct eventfd_ctx *eventfd, const char *args)
3675{
59b6f873 3676 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3677}
3678
59b6f873 3679static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3680 struct eventfd_ctx *eventfd, const char *args)
3681{
59b6f873 3682 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3683}
3684
59b6f873 3685static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3686 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3687{
2c488db2
KS
3688 struct mem_cgroup_thresholds *thresholds;
3689 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3690 unsigned long usage;
2c488db2 3691 int i, j, size;
2e72b634
KS
3692
3693 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3694
3695 if (type == _MEM) {
2c488db2 3696 thresholds = &memcg->thresholds;
ce00a967 3697 usage = mem_cgroup_usage(memcg, false);
05b84301 3698 } else if (type == _MEMSWAP) {
2c488db2 3699 thresholds = &memcg->memsw_thresholds;
ce00a967 3700 usage = mem_cgroup_usage(memcg, true);
05b84301 3701 } else
2e72b634
KS
3702 BUG();
3703
371528ca
AV
3704 if (!thresholds->primary)
3705 goto unlock;
3706
2e72b634
KS
3707 /* Check if a threshold crossed before removing */
3708 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3709
3710 /* Calculate new number of threshold */
2c488db2
KS
3711 size = 0;
3712 for (i = 0; i < thresholds->primary->size; i++) {
3713 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3714 size++;
3715 }
3716
2c488db2 3717 new = thresholds->spare;
907860ed 3718
2e72b634
KS
3719 /* Set thresholds array to NULL if we don't have thresholds */
3720 if (!size) {
2c488db2
KS
3721 kfree(new);
3722 new = NULL;
907860ed 3723 goto swap_buffers;
2e72b634
KS
3724 }
3725
2c488db2 3726 new->size = size;
2e72b634
KS
3727
3728 /* Copy thresholds and find current threshold */
2c488db2
KS
3729 new->current_threshold = -1;
3730 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3731 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3732 continue;
3733
2c488db2 3734 new->entries[j] = thresholds->primary->entries[i];
748dad36 3735 if (new->entries[j].threshold <= usage) {
2e72b634 3736 /*
2c488db2 3737 * new->current_threshold will not be used
2e72b634
KS
3738 * until rcu_assign_pointer(), so it's safe to increment
3739 * it here.
3740 */
2c488db2 3741 ++new->current_threshold;
2e72b634
KS
3742 }
3743 j++;
3744 }
3745
907860ed 3746swap_buffers:
2c488db2
KS
3747 /* Swap primary and spare array */
3748 thresholds->spare = thresholds->primary;
8c757763 3749
2c488db2 3750 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3751
907860ed 3752 /* To be sure that nobody uses thresholds */
2e72b634 3753 synchronize_rcu();
6611d8d7
MC
3754
3755 /* If all events are unregistered, free the spare array */
3756 if (!new) {
3757 kfree(thresholds->spare);
3758 thresholds->spare = NULL;
3759 }
371528ca 3760unlock:
2e72b634 3761 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3762}
c1e862c1 3763
59b6f873 3764static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3765 struct eventfd_ctx *eventfd)
3766{
59b6f873 3767 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3768}
3769
59b6f873 3770static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3771 struct eventfd_ctx *eventfd)
3772{
59b6f873 3773 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3774}
3775
59b6f873 3776static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3777 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3778{
9490ff27 3779 struct mem_cgroup_eventfd_list *event;
9490ff27 3780
9490ff27
KH
3781 event = kmalloc(sizeof(*event), GFP_KERNEL);
3782 if (!event)
3783 return -ENOMEM;
3784
1af8efe9 3785 spin_lock(&memcg_oom_lock);
9490ff27
KH
3786
3787 event->eventfd = eventfd;
3788 list_add(&event->list, &memcg->oom_notify);
3789
3790 /* already in OOM ? */
c2b42d3c 3791 if (memcg->under_oom)
9490ff27 3792 eventfd_signal(eventfd, 1);
1af8efe9 3793 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3794
3795 return 0;
3796}
3797
59b6f873 3798static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3799 struct eventfd_ctx *eventfd)
9490ff27 3800{
9490ff27 3801 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3802
1af8efe9 3803 spin_lock(&memcg_oom_lock);
9490ff27 3804
c0ff4b85 3805 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3806 if (ev->eventfd == eventfd) {
3807 list_del(&ev->list);
3808 kfree(ev);
3809 }
3810 }
3811
1af8efe9 3812 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3813}
3814
2da8ca82 3815static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3816{
2da8ca82 3817 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3818
791badbd 3819 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3820 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3821 seq_printf(sf, "oom_kill %lu\n",
3822 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3823 return 0;
3824}
3825
182446d0 3826static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3827 struct cftype *cft, u64 val)
3828{
182446d0 3829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3830
3831 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3832 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3833 return -EINVAL;
3834
c0ff4b85 3835 memcg->oom_kill_disable = val;
4d845ebf 3836 if (!val)
c0ff4b85 3837 memcg_oom_recover(memcg);
3dae7fec 3838
3c11ecf4
KH
3839 return 0;
3840}
3841
52ebea74
TH
3842#ifdef CONFIG_CGROUP_WRITEBACK
3843
841710aa
TH
3844static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3845{
3846 return wb_domain_init(&memcg->cgwb_domain, gfp);
3847}
3848
3849static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3850{
3851 wb_domain_exit(&memcg->cgwb_domain);
3852}
3853
2529bb3a
TH
3854static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3855{
3856 wb_domain_size_changed(&memcg->cgwb_domain);
3857}
3858
841710aa
TH
3859struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3860{
3861 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3862
3863 if (!memcg->css.parent)
3864 return NULL;
3865
3866 return &memcg->cgwb_domain;
3867}
3868
c2aa723a
TH
3869/**
3870 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3871 * @wb: bdi_writeback in question
c5edf9cd
TH
3872 * @pfilepages: out parameter for number of file pages
3873 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3874 * @pdirty: out parameter for number of dirty pages
3875 * @pwriteback: out parameter for number of pages under writeback
3876 *
c5edf9cd
TH
3877 * Determine the numbers of file, headroom, dirty, and writeback pages in
3878 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3879 * is a bit more involved.
c2aa723a 3880 *
c5edf9cd
TH
3881 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3882 * headroom is calculated as the lowest headroom of itself and the
3883 * ancestors. Note that this doesn't consider the actual amount of
3884 * available memory in the system. The caller should further cap
3885 * *@pheadroom accordingly.
c2aa723a 3886 */
c5edf9cd
TH
3887void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3888 unsigned long *pheadroom, unsigned long *pdirty,
3889 unsigned long *pwriteback)
c2aa723a
TH
3890{
3891 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3892 struct mem_cgroup *parent;
c2aa723a 3893
ccda7f43 3894 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3895
3896 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3897 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3898 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3899 (1 << LRU_ACTIVE_FILE));
3900 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3901
c2aa723a 3902 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3903 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3904 unsigned long used = page_counter_read(&memcg->memory);
3905
c5edf9cd 3906 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3907 memcg = parent;
3908 }
c2aa723a
TH
3909}
3910
841710aa
TH
3911#else /* CONFIG_CGROUP_WRITEBACK */
3912
3913static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3914{
3915 return 0;
3916}
3917
3918static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3919{
3920}
3921
2529bb3a
TH
3922static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3923{
3924}
3925
52ebea74
TH
3926#endif /* CONFIG_CGROUP_WRITEBACK */
3927
3bc942f3
TH
3928/*
3929 * DO NOT USE IN NEW FILES.
3930 *
3931 * "cgroup.event_control" implementation.
3932 *
3933 * This is way over-engineered. It tries to support fully configurable
3934 * events for each user. Such level of flexibility is completely
3935 * unnecessary especially in the light of the planned unified hierarchy.
3936 *
3937 * Please deprecate this and replace with something simpler if at all
3938 * possible.
3939 */
3940
79bd9814
TH
3941/*
3942 * Unregister event and free resources.
3943 *
3944 * Gets called from workqueue.
3945 */
3bc942f3 3946static void memcg_event_remove(struct work_struct *work)
79bd9814 3947{
3bc942f3
TH
3948 struct mem_cgroup_event *event =
3949 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3950 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3951
3952 remove_wait_queue(event->wqh, &event->wait);
3953
59b6f873 3954 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3955
3956 /* Notify userspace the event is going away. */
3957 eventfd_signal(event->eventfd, 1);
3958
3959 eventfd_ctx_put(event->eventfd);
3960 kfree(event);
59b6f873 3961 css_put(&memcg->css);
79bd9814
TH
3962}
3963
3964/*
a9a08845 3965 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3966 *
3967 * Called with wqh->lock held and interrupts disabled.
3968 */
ac6424b9 3969static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3970 int sync, void *key)
79bd9814 3971{
3bc942f3
TH
3972 struct mem_cgroup_event *event =
3973 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3974 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3975 __poll_t flags = key_to_poll(key);
79bd9814 3976
a9a08845 3977 if (flags & EPOLLHUP) {
79bd9814
TH
3978 /*
3979 * If the event has been detached at cgroup removal, we
3980 * can simply return knowing the other side will cleanup
3981 * for us.
3982 *
3983 * We can't race against event freeing since the other
3984 * side will require wqh->lock via remove_wait_queue(),
3985 * which we hold.
3986 */
fba94807 3987 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3988 if (!list_empty(&event->list)) {
3989 list_del_init(&event->list);
3990 /*
3991 * We are in atomic context, but cgroup_event_remove()
3992 * may sleep, so we have to call it in workqueue.
3993 */
3994 schedule_work(&event->remove);
3995 }
fba94807 3996 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3997 }
3998
3999 return 0;
4000}
4001
3bc942f3 4002static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4003 wait_queue_head_t *wqh, poll_table *pt)
4004{
3bc942f3
TH
4005 struct mem_cgroup_event *event =
4006 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4007
4008 event->wqh = wqh;
4009 add_wait_queue(wqh, &event->wait);
4010}
4011
4012/*
3bc942f3
TH
4013 * DO NOT USE IN NEW FILES.
4014 *
79bd9814
TH
4015 * Parse input and register new cgroup event handler.
4016 *
4017 * Input must be in format '<event_fd> <control_fd> <args>'.
4018 * Interpretation of args is defined by control file implementation.
4019 */
451af504
TH
4020static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4021 char *buf, size_t nbytes, loff_t off)
79bd9814 4022{
451af504 4023 struct cgroup_subsys_state *css = of_css(of);
fba94807 4024 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4025 struct mem_cgroup_event *event;
79bd9814
TH
4026 struct cgroup_subsys_state *cfile_css;
4027 unsigned int efd, cfd;
4028 struct fd efile;
4029 struct fd cfile;
fba94807 4030 const char *name;
79bd9814
TH
4031 char *endp;
4032 int ret;
4033
451af504
TH
4034 buf = strstrip(buf);
4035
4036 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4037 if (*endp != ' ')
4038 return -EINVAL;
451af504 4039 buf = endp + 1;
79bd9814 4040
451af504 4041 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4042 if ((*endp != ' ') && (*endp != '\0'))
4043 return -EINVAL;
451af504 4044 buf = endp + 1;
79bd9814
TH
4045
4046 event = kzalloc(sizeof(*event), GFP_KERNEL);
4047 if (!event)
4048 return -ENOMEM;
4049
59b6f873 4050 event->memcg = memcg;
79bd9814 4051 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4052 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4053 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4054 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4055
4056 efile = fdget(efd);
4057 if (!efile.file) {
4058 ret = -EBADF;
4059 goto out_kfree;
4060 }
4061
4062 event->eventfd = eventfd_ctx_fileget(efile.file);
4063 if (IS_ERR(event->eventfd)) {
4064 ret = PTR_ERR(event->eventfd);
4065 goto out_put_efile;
4066 }
4067
4068 cfile = fdget(cfd);
4069 if (!cfile.file) {
4070 ret = -EBADF;
4071 goto out_put_eventfd;
4072 }
4073
4074 /* the process need read permission on control file */
4075 /* AV: shouldn't we check that it's been opened for read instead? */
4076 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4077 if (ret < 0)
4078 goto out_put_cfile;
4079
fba94807
TH
4080 /*
4081 * Determine the event callbacks and set them in @event. This used
4082 * to be done via struct cftype but cgroup core no longer knows
4083 * about these events. The following is crude but the whole thing
4084 * is for compatibility anyway.
3bc942f3
TH
4085 *
4086 * DO NOT ADD NEW FILES.
fba94807 4087 */
b583043e 4088 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4089
4090 if (!strcmp(name, "memory.usage_in_bytes")) {
4091 event->register_event = mem_cgroup_usage_register_event;
4092 event->unregister_event = mem_cgroup_usage_unregister_event;
4093 } else if (!strcmp(name, "memory.oom_control")) {
4094 event->register_event = mem_cgroup_oom_register_event;
4095 event->unregister_event = mem_cgroup_oom_unregister_event;
4096 } else if (!strcmp(name, "memory.pressure_level")) {
4097 event->register_event = vmpressure_register_event;
4098 event->unregister_event = vmpressure_unregister_event;
4099 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4100 event->register_event = memsw_cgroup_usage_register_event;
4101 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4102 } else {
4103 ret = -EINVAL;
4104 goto out_put_cfile;
4105 }
4106
79bd9814 4107 /*
b5557c4c
TH
4108 * Verify @cfile should belong to @css. Also, remaining events are
4109 * automatically removed on cgroup destruction but the removal is
4110 * asynchronous, so take an extra ref on @css.
79bd9814 4111 */
b583043e 4112 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4113 &memory_cgrp_subsys);
79bd9814 4114 ret = -EINVAL;
5a17f543 4115 if (IS_ERR(cfile_css))
79bd9814 4116 goto out_put_cfile;
5a17f543
TH
4117 if (cfile_css != css) {
4118 css_put(cfile_css);
79bd9814 4119 goto out_put_cfile;
5a17f543 4120 }
79bd9814 4121
451af504 4122 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4123 if (ret)
4124 goto out_put_css;
4125
9965ed17 4126 vfs_poll(efile.file, &event->pt);
79bd9814 4127
fba94807
TH
4128 spin_lock(&memcg->event_list_lock);
4129 list_add(&event->list, &memcg->event_list);
4130 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4131
4132 fdput(cfile);
4133 fdput(efile);
4134
451af504 4135 return nbytes;
79bd9814
TH
4136
4137out_put_css:
b5557c4c 4138 css_put(css);
79bd9814
TH
4139out_put_cfile:
4140 fdput(cfile);
4141out_put_eventfd:
4142 eventfd_ctx_put(event->eventfd);
4143out_put_efile:
4144 fdput(efile);
4145out_kfree:
4146 kfree(event);
4147
4148 return ret;
4149}
4150
241994ed 4151static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4152 {
0eea1030 4153 .name = "usage_in_bytes",
8c7c6e34 4154 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4155 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4156 },
c84872e1
PE
4157 {
4158 .name = "max_usage_in_bytes",
8c7c6e34 4159 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4160 .write = mem_cgroup_reset,
791badbd 4161 .read_u64 = mem_cgroup_read_u64,
c84872e1 4162 },
8cdea7c0 4163 {
0eea1030 4164 .name = "limit_in_bytes",
8c7c6e34 4165 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4166 .write = mem_cgroup_write,
791badbd 4167 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4168 },
296c81d8
BS
4169 {
4170 .name = "soft_limit_in_bytes",
4171 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4172 .write = mem_cgroup_write,
791badbd 4173 .read_u64 = mem_cgroup_read_u64,
296c81d8 4174 },
8cdea7c0
BS
4175 {
4176 .name = "failcnt",
8c7c6e34 4177 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4178 .write = mem_cgroup_reset,
791badbd 4179 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4180 },
d2ceb9b7
KH
4181 {
4182 .name = "stat",
2da8ca82 4183 .seq_show = memcg_stat_show,
d2ceb9b7 4184 },
c1e862c1
KH
4185 {
4186 .name = "force_empty",
6770c64e 4187 .write = mem_cgroup_force_empty_write,
c1e862c1 4188 },
18f59ea7
BS
4189 {
4190 .name = "use_hierarchy",
4191 .write_u64 = mem_cgroup_hierarchy_write,
4192 .read_u64 = mem_cgroup_hierarchy_read,
4193 },
79bd9814 4194 {
3bc942f3 4195 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4196 .write = memcg_write_event_control,
7dbdb199 4197 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4198 },
a7885eb8
KM
4199 {
4200 .name = "swappiness",
4201 .read_u64 = mem_cgroup_swappiness_read,
4202 .write_u64 = mem_cgroup_swappiness_write,
4203 },
7dc74be0
DN
4204 {
4205 .name = "move_charge_at_immigrate",
4206 .read_u64 = mem_cgroup_move_charge_read,
4207 .write_u64 = mem_cgroup_move_charge_write,
4208 },
9490ff27
KH
4209 {
4210 .name = "oom_control",
2da8ca82 4211 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4212 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4213 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4214 },
70ddf637
AV
4215 {
4216 .name = "pressure_level",
70ddf637 4217 },
406eb0c9
YH
4218#ifdef CONFIG_NUMA
4219 {
4220 .name = "numa_stat",
2da8ca82 4221 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4222 },
4223#endif
510fc4e1
GC
4224 {
4225 .name = "kmem.limit_in_bytes",
4226 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4227 .write = mem_cgroup_write,
791badbd 4228 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4229 },
4230 {
4231 .name = "kmem.usage_in_bytes",
4232 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4233 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4234 },
4235 {
4236 .name = "kmem.failcnt",
4237 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4238 .write = mem_cgroup_reset,
791badbd 4239 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4240 },
4241 {
4242 .name = "kmem.max_usage_in_bytes",
4243 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4244 .write = mem_cgroup_reset,
791badbd 4245 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4246 },
5b365771 4247#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4248 {
4249 .name = "kmem.slabinfo",
bc2791f8
TH
4250 .seq_start = memcg_slab_start,
4251 .seq_next = memcg_slab_next,
4252 .seq_stop = memcg_slab_stop,
b047501c 4253 .seq_show = memcg_slab_show,
749c5415
GC
4254 },
4255#endif
d55f90bf
VD
4256 {
4257 .name = "kmem.tcp.limit_in_bytes",
4258 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4259 .write = mem_cgroup_write,
4260 .read_u64 = mem_cgroup_read_u64,
4261 },
4262 {
4263 .name = "kmem.tcp.usage_in_bytes",
4264 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4265 .read_u64 = mem_cgroup_read_u64,
4266 },
4267 {
4268 .name = "kmem.tcp.failcnt",
4269 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4270 .write = mem_cgroup_reset,
4271 .read_u64 = mem_cgroup_read_u64,
4272 },
4273 {
4274 .name = "kmem.tcp.max_usage_in_bytes",
4275 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4276 .write = mem_cgroup_reset,
4277 .read_u64 = mem_cgroup_read_u64,
4278 },
6bc10349 4279 { }, /* terminate */
af36f906 4280};
8c7c6e34 4281
73f576c0
JW
4282/*
4283 * Private memory cgroup IDR
4284 *
4285 * Swap-out records and page cache shadow entries need to store memcg
4286 * references in constrained space, so we maintain an ID space that is
4287 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4288 * memory-controlled cgroups to 64k.
4289 *
4290 * However, there usually are many references to the oflline CSS after
4291 * the cgroup has been destroyed, such as page cache or reclaimable
4292 * slab objects, that don't need to hang on to the ID. We want to keep
4293 * those dead CSS from occupying IDs, or we might quickly exhaust the
4294 * relatively small ID space and prevent the creation of new cgroups
4295 * even when there are much fewer than 64k cgroups - possibly none.
4296 *
4297 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4298 * be freed and recycled when it's no longer needed, which is usually
4299 * when the CSS is offlined.
4300 *
4301 * The only exception to that are records of swapped out tmpfs/shmem
4302 * pages that need to be attributed to live ancestors on swapin. But
4303 * those references are manageable from userspace.
4304 */
4305
4306static DEFINE_IDR(mem_cgroup_idr);
4307
7e97de0b
KT
4308static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4309{
4310 if (memcg->id.id > 0) {
4311 idr_remove(&mem_cgroup_idr, memcg->id.id);
4312 memcg->id.id = 0;
4313 }
4314}
4315
615d66c3 4316static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4317{
1c2d479a 4318 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4319}
4320
615d66c3 4321static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4322{
1c2d479a 4323 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4324 mem_cgroup_id_remove(memcg);
73f576c0
JW
4325
4326 /* Memcg ID pins CSS */
4327 css_put(&memcg->css);
4328 }
4329}
4330
615d66c3
VD
4331static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4332{
4333 mem_cgroup_id_get_many(memcg, 1);
4334}
4335
4336static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4337{
4338 mem_cgroup_id_put_many(memcg, 1);
4339}
4340
73f576c0
JW
4341/**
4342 * mem_cgroup_from_id - look up a memcg from a memcg id
4343 * @id: the memcg id to look up
4344 *
4345 * Caller must hold rcu_read_lock().
4346 */
4347struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4348{
4349 WARN_ON_ONCE(!rcu_read_lock_held());
4350 return idr_find(&mem_cgroup_idr, id);
4351}
4352
ef8f2327 4353static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4354{
4355 struct mem_cgroup_per_node *pn;
ef8f2327 4356 int tmp = node;
1ecaab2b
KH
4357 /*
4358 * This routine is called against possible nodes.
4359 * But it's BUG to call kmalloc() against offline node.
4360 *
4361 * TODO: this routine can waste much memory for nodes which will
4362 * never be onlined. It's better to use memory hotplug callback
4363 * function.
4364 */
41e3355d
KH
4365 if (!node_state(node, N_NORMAL_MEMORY))
4366 tmp = -1;
17295c88 4367 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4368 if (!pn)
4369 return 1;
1ecaab2b 4370
a983b5eb
JW
4371 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4372 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4373 kfree(pn);
4374 return 1;
4375 }
4376
ef8f2327
MG
4377 lruvec_init(&pn->lruvec);
4378 pn->usage_in_excess = 0;
4379 pn->on_tree = false;
4380 pn->memcg = memcg;
4381
54f72fe0 4382 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4383 return 0;
4384}
4385
ef8f2327 4386static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4387{
00f3ca2c
JW
4388 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4389
4eaf431f
MH
4390 if (!pn)
4391 return;
4392
a983b5eb 4393 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4394 kfree(pn);
1ecaab2b
KH
4395}
4396
40e952f9 4397static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4398{
c8b2a36f 4399 int node;
59927fb9 4400
c8b2a36f 4401 for_each_node(node)
ef8f2327 4402 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4403 free_percpu(memcg->stat_cpu);
8ff69e2c 4404 kfree(memcg);
59927fb9 4405}
3afe36b1 4406
40e952f9
TE
4407static void mem_cgroup_free(struct mem_cgroup *memcg)
4408{
4409 memcg_wb_domain_exit(memcg);
4410 __mem_cgroup_free(memcg);
4411}
4412
0b8f73e1 4413static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4414{
d142e3e6 4415 struct mem_cgroup *memcg;
0b8f73e1 4416 size_t size;
6d12e2d8 4417 int node;
8cdea7c0 4418
0b8f73e1
JW
4419 size = sizeof(struct mem_cgroup);
4420 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4421
4422 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4423 if (!memcg)
0b8f73e1
JW
4424 return NULL;
4425
73f576c0
JW
4426 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4427 1, MEM_CGROUP_ID_MAX,
4428 GFP_KERNEL);
4429 if (memcg->id.id < 0)
4430 goto fail;
4431
a983b5eb
JW
4432 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4433 if (!memcg->stat_cpu)
0b8f73e1 4434 goto fail;
78fb7466 4435
3ed28fa1 4436 for_each_node(node)
ef8f2327 4437 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4438 goto fail;
f64c3f54 4439
0b8f73e1
JW
4440 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4441 goto fail;
28dbc4b6 4442
f7e1cb6e 4443 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4444 memcg->last_scanned_node = MAX_NUMNODES;
4445 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4446 mutex_init(&memcg->thresholds_lock);
4447 spin_lock_init(&memcg->move_lock);
70ddf637 4448 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4449 INIT_LIST_HEAD(&memcg->event_list);
4450 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4451 memcg->socket_pressure = jiffies;
84c07d11 4452#ifdef CONFIG_MEMCG_KMEM
900a38f0 4453 memcg->kmemcg_id = -1;
900a38f0 4454#endif
52ebea74
TH
4455#ifdef CONFIG_CGROUP_WRITEBACK
4456 INIT_LIST_HEAD(&memcg->cgwb_list);
4457#endif
73f576c0 4458 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4459 return memcg;
4460fail:
7e97de0b 4461 mem_cgroup_id_remove(memcg);
40e952f9 4462 __mem_cgroup_free(memcg);
0b8f73e1 4463 return NULL;
d142e3e6
GC
4464}
4465
0b8f73e1
JW
4466static struct cgroup_subsys_state * __ref
4467mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4468{
0b8f73e1
JW
4469 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4470 struct mem_cgroup *memcg;
4471 long error = -ENOMEM;
d142e3e6 4472
0b8f73e1
JW
4473 memcg = mem_cgroup_alloc();
4474 if (!memcg)
4475 return ERR_PTR(error);
d142e3e6 4476
0b8f73e1
JW
4477 memcg->high = PAGE_COUNTER_MAX;
4478 memcg->soft_limit = PAGE_COUNTER_MAX;
4479 if (parent) {
4480 memcg->swappiness = mem_cgroup_swappiness(parent);
4481 memcg->oom_kill_disable = parent->oom_kill_disable;
4482 }
4483 if (parent && parent->use_hierarchy) {
4484 memcg->use_hierarchy = true;
3e32cb2e 4485 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4486 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4487 page_counter_init(&memcg->memsw, &parent->memsw);
4488 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4489 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4490 } else {
3e32cb2e 4491 page_counter_init(&memcg->memory, NULL);
37e84351 4492 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4493 page_counter_init(&memcg->memsw, NULL);
4494 page_counter_init(&memcg->kmem, NULL);
0db15298 4495 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4496 /*
4497 * Deeper hierachy with use_hierarchy == false doesn't make
4498 * much sense so let cgroup subsystem know about this
4499 * unfortunate state in our controller.
4500 */
d142e3e6 4501 if (parent != root_mem_cgroup)
073219e9 4502 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4503 }
d6441637 4504
0b8f73e1
JW
4505 /* The following stuff does not apply to the root */
4506 if (!parent) {
4507 root_mem_cgroup = memcg;
4508 return &memcg->css;
4509 }
4510
b313aeee 4511 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4512 if (error)
4513 goto fail;
127424c8 4514
f7e1cb6e 4515 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4516 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4517
0b8f73e1
JW
4518 return &memcg->css;
4519fail:
7e97de0b 4520 mem_cgroup_id_remove(memcg);
0b8f73e1 4521 mem_cgroup_free(memcg);
ea3a9645 4522 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4523}
4524
73f576c0 4525static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4526{
58fa2a55
VD
4527 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4528
0a4465d3
KT
4529 /*
4530 * A memcg must be visible for memcg_expand_shrinker_maps()
4531 * by the time the maps are allocated. So, we allocate maps
4532 * here, when for_each_mem_cgroup() can't skip it.
4533 */
4534 if (memcg_alloc_shrinker_maps(memcg)) {
4535 mem_cgroup_id_remove(memcg);
4536 return -ENOMEM;
4537 }
4538
73f576c0 4539 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4540 refcount_set(&memcg->id.ref, 1);
73f576c0 4541 css_get(css);
2f7dd7a4 4542 return 0;
8cdea7c0
BS
4543}
4544
eb95419b 4545static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4546{
eb95419b 4547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4548 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4549
4550 /*
4551 * Unregister events and notify userspace.
4552 * Notify userspace about cgroup removing only after rmdir of cgroup
4553 * directory to avoid race between userspace and kernelspace.
4554 */
fba94807
TH
4555 spin_lock(&memcg->event_list_lock);
4556 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4557 list_del_init(&event->list);
4558 schedule_work(&event->remove);
4559 }
fba94807 4560 spin_unlock(&memcg->event_list_lock);
ec64f515 4561
bf8d5d52 4562 page_counter_set_min(&memcg->memory, 0);
23067153 4563 page_counter_set_low(&memcg->memory, 0);
63677c74 4564
567e9ab2 4565 memcg_offline_kmem(memcg);
52ebea74 4566 wb_memcg_offline(memcg);
73f576c0 4567
591edfb1
RG
4568 drain_all_stock(memcg);
4569
73f576c0 4570 mem_cgroup_id_put(memcg);
df878fb0
KH
4571}
4572
6df38689
VD
4573static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4574{
4575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4576
4577 invalidate_reclaim_iterators(memcg);
4578}
4579
eb95419b 4580static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4581{
eb95419b 4582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4583
f7e1cb6e 4584 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4585 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4586
0db15298 4587 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4588 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4589
0b8f73e1
JW
4590 vmpressure_cleanup(&memcg->vmpressure);
4591 cancel_work_sync(&memcg->high_work);
4592 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4593 memcg_free_shrinker_maps(memcg);
d886f4e4 4594 memcg_free_kmem(memcg);
0b8f73e1 4595 mem_cgroup_free(memcg);
8cdea7c0
BS
4596}
4597
1ced953b
TH
4598/**
4599 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4600 * @css: the target css
4601 *
4602 * Reset the states of the mem_cgroup associated with @css. This is
4603 * invoked when the userland requests disabling on the default hierarchy
4604 * but the memcg is pinned through dependency. The memcg should stop
4605 * applying policies and should revert to the vanilla state as it may be
4606 * made visible again.
4607 *
4608 * The current implementation only resets the essential configurations.
4609 * This needs to be expanded to cover all the visible parts.
4610 */
4611static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4612{
4613 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4614
bbec2e15
RG
4615 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4616 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4617 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4618 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4619 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4620 page_counter_set_min(&memcg->memory, 0);
23067153 4621 page_counter_set_low(&memcg->memory, 0);
241994ed 4622 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4623 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4624 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4625}
4626
02491447 4627#ifdef CONFIG_MMU
7dc74be0 4628/* Handlers for move charge at task migration. */
854ffa8d 4629static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4630{
05b84301 4631 int ret;
9476db97 4632
d0164adc
MG
4633 /* Try a single bulk charge without reclaim first, kswapd may wake */
4634 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4635 if (!ret) {
854ffa8d 4636 mc.precharge += count;
854ffa8d
DN
4637 return ret;
4638 }
9476db97 4639
3674534b 4640 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4641 while (count--) {
3674534b 4642 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4643 if (ret)
38c5d72f 4644 return ret;
854ffa8d 4645 mc.precharge++;
9476db97 4646 cond_resched();
854ffa8d 4647 }
9476db97 4648 return 0;
4ffef5fe
DN
4649}
4650
4ffef5fe
DN
4651union mc_target {
4652 struct page *page;
02491447 4653 swp_entry_t ent;
4ffef5fe
DN
4654};
4655
4ffef5fe 4656enum mc_target_type {
8d32ff84 4657 MC_TARGET_NONE = 0,
4ffef5fe 4658 MC_TARGET_PAGE,
02491447 4659 MC_TARGET_SWAP,
c733a828 4660 MC_TARGET_DEVICE,
4ffef5fe
DN
4661};
4662
90254a65
DN
4663static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4664 unsigned long addr, pte_t ptent)
4ffef5fe 4665{
c733a828 4666 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4667
90254a65
DN
4668 if (!page || !page_mapped(page))
4669 return NULL;
4670 if (PageAnon(page)) {
1dfab5ab 4671 if (!(mc.flags & MOVE_ANON))
90254a65 4672 return NULL;
1dfab5ab
JW
4673 } else {
4674 if (!(mc.flags & MOVE_FILE))
4675 return NULL;
4676 }
90254a65
DN
4677 if (!get_page_unless_zero(page))
4678 return NULL;
4679
4680 return page;
4681}
4682
c733a828 4683#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4684static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4685 pte_t ptent, swp_entry_t *entry)
90254a65 4686{
90254a65
DN
4687 struct page *page = NULL;
4688 swp_entry_t ent = pte_to_swp_entry(ptent);
4689
1dfab5ab 4690 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4691 return NULL;
c733a828
JG
4692
4693 /*
4694 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4695 * a device and because they are not accessible by CPU they are store
4696 * as special swap entry in the CPU page table.
4697 */
4698 if (is_device_private_entry(ent)) {
4699 page = device_private_entry_to_page(ent);
4700 /*
4701 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4702 * a refcount of 1 when free (unlike normal page)
4703 */
4704 if (!page_ref_add_unless(page, 1, 1))
4705 return NULL;
4706 return page;
4707 }
4708
4b91355e
KH
4709 /*
4710 * Because lookup_swap_cache() updates some statistics counter,
4711 * we call find_get_page() with swapper_space directly.
4712 */
f6ab1f7f 4713 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4714 if (do_memsw_account())
90254a65
DN
4715 entry->val = ent.val;
4716
4717 return page;
4718}
4b91355e
KH
4719#else
4720static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4721 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4722{
4723 return NULL;
4724}
4725#endif
90254a65 4726
87946a72
DN
4727static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4728 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4729{
4730 struct page *page = NULL;
87946a72
DN
4731 struct address_space *mapping;
4732 pgoff_t pgoff;
4733
4734 if (!vma->vm_file) /* anonymous vma */
4735 return NULL;
1dfab5ab 4736 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4737 return NULL;
4738
87946a72 4739 mapping = vma->vm_file->f_mapping;
0661a336 4740 pgoff = linear_page_index(vma, addr);
87946a72
DN
4741
4742 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4743#ifdef CONFIG_SWAP
4744 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4745 if (shmem_mapping(mapping)) {
4746 page = find_get_entry(mapping, pgoff);
3159f943 4747 if (xa_is_value(page)) {
139b6a6f 4748 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4749 if (do_memsw_account())
139b6a6f 4750 *entry = swp;
f6ab1f7f
HY
4751 page = find_get_page(swap_address_space(swp),
4752 swp_offset(swp));
139b6a6f
JW
4753 }
4754 } else
4755 page = find_get_page(mapping, pgoff);
4756#else
4757 page = find_get_page(mapping, pgoff);
aa3b1895 4758#endif
87946a72
DN
4759 return page;
4760}
4761
b1b0deab
CG
4762/**
4763 * mem_cgroup_move_account - move account of the page
4764 * @page: the page
25843c2b 4765 * @compound: charge the page as compound or small page
b1b0deab
CG
4766 * @from: mem_cgroup which the page is moved from.
4767 * @to: mem_cgroup which the page is moved to. @from != @to.
4768 *
3ac808fd 4769 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4770 *
4771 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4772 * from old cgroup.
4773 */
4774static int mem_cgroup_move_account(struct page *page,
f627c2f5 4775 bool compound,
b1b0deab
CG
4776 struct mem_cgroup *from,
4777 struct mem_cgroup *to)
4778{
4779 unsigned long flags;
f627c2f5 4780 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4781 int ret;
c4843a75 4782 bool anon;
b1b0deab
CG
4783
4784 VM_BUG_ON(from == to);
4785 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4786 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4787
4788 /*
6a93ca8f 4789 * Prevent mem_cgroup_migrate() from looking at
45637bab 4790 * page->mem_cgroup of its source page while we change it.
b1b0deab 4791 */
f627c2f5 4792 ret = -EBUSY;
b1b0deab
CG
4793 if (!trylock_page(page))
4794 goto out;
4795
4796 ret = -EINVAL;
4797 if (page->mem_cgroup != from)
4798 goto out_unlock;
4799
c4843a75
GT
4800 anon = PageAnon(page);
4801
b1b0deab
CG
4802 spin_lock_irqsave(&from->move_lock, flags);
4803
c4843a75 4804 if (!anon && page_mapped(page)) {
c9019e9b
JW
4805 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4806 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4807 }
4808
c4843a75
GT
4809 /*
4810 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4811 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4812 * So mapping should be stable for dirty pages.
4813 */
4814 if (!anon && PageDirty(page)) {
4815 struct address_space *mapping = page_mapping(page);
4816
4817 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4818 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4819 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4820 }
4821 }
4822
b1b0deab 4823 if (PageWriteback(page)) {
c9019e9b
JW
4824 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4825 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4826 }
4827
4828 /*
4829 * It is safe to change page->mem_cgroup here because the page
4830 * is referenced, charged, and isolated - we can't race with
4831 * uncharging, charging, migration, or LRU putback.
4832 */
4833
4834 /* caller should have done css_get */
4835 page->mem_cgroup = to;
4836 spin_unlock_irqrestore(&from->move_lock, flags);
4837
4838 ret = 0;
4839
4840 local_irq_disable();
f627c2f5 4841 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4842 memcg_check_events(to, page);
f627c2f5 4843 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4844 memcg_check_events(from, page);
4845 local_irq_enable();
4846out_unlock:
4847 unlock_page(page);
4848out:
4849 return ret;
4850}
4851
7cf7806c
LR
4852/**
4853 * get_mctgt_type - get target type of moving charge
4854 * @vma: the vma the pte to be checked belongs
4855 * @addr: the address corresponding to the pte to be checked
4856 * @ptent: the pte to be checked
4857 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4858 *
4859 * Returns
4860 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4861 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4862 * move charge. if @target is not NULL, the page is stored in target->page
4863 * with extra refcnt got(Callers should handle it).
4864 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4865 * target for charge migration. if @target is not NULL, the entry is stored
4866 * in target->ent.
df6ad698
JG
4867 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4868 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4869 * For now we such page is charge like a regular page would be as for all
4870 * intent and purposes it is just special memory taking the place of a
4871 * regular page.
c733a828
JG
4872 *
4873 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4874 *
4875 * Called with pte lock held.
4876 */
4877
8d32ff84 4878static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4879 unsigned long addr, pte_t ptent, union mc_target *target)
4880{
4881 struct page *page = NULL;
8d32ff84 4882 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4883 swp_entry_t ent = { .val = 0 };
4884
4885 if (pte_present(ptent))
4886 page = mc_handle_present_pte(vma, addr, ptent);
4887 else if (is_swap_pte(ptent))
48406ef8 4888 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4889 else if (pte_none(ptent))
87946a72 4890 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4891
4892 if (!page && !ent.val)
8d32ff84 4893 return ret;
02491447 4894 if (page) {
02491447 4895 /*
0a31bc97 4896 * Do only loose check w/o serialization.
1306a85a 4897 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4898 * not under LRU exclusion.
02491447 4899 */
1306a85a 4900 if (page->mem_cgroup == mc.from) {
02491447 4901 ret = MC_TARGET_PAGE;
df6ad698
JG
4902 if (is_device_private_page(page) ||
4903 is_device_public_page(page))
c733a828 4904 ret = MC_TARGET_DEVICE;
02491447
DN
4905 if (target)
4906 target->page = page;
4907 }
4908 if (!ret || !target)
4909 put_page(page);
4910 }
3e14a57b
HY
4911 /*
4912 * There is a swap entry and a page doesn't exist or isn't charged.
4913 * But we cannot move a tail-page in a THP.
4914 */
4915 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4916 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4917 ret = MC_TARGET_SWAP;
4918 if (target)
4919 target->ent = ent;
4ffef5fe 4920 }
4ffef5fe
DN
4921 return ret;
4922}
4923
12724850
NH
4924#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4925/*
d6810d73
HY
4926 * We don't consider PMD mapped swapping or file mapped pages because THP does
4927 * not support them for now.
12724850
NH
4928 * Caller should make sure that pmd_trans_huge(pmd) is true.
4929 */
4930static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4931 unsigned long addr, pmd_t pmd, union mc_target *target)
4932{
4933 struct page *page = NULL;
12724850
NH
4934 enum mc_target_type ret = MC_TARGET_NONE;
4935
84c3fc4e
ZY
4936 if (unlikely(is_swap_pmd(pmd))) {
4937 VM_BUG_ON(thp_migration_supported() &&
4938 !is_pmd_migration_entry(pmd));
4939 return ret;
4940 }
12724850 4941 page = pmd_page(pmd);
309381fe 4942 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4943 if (!(mc.flags & MOVE_ANON))
12724850 4944 return ret;
1306a85a 4945 if (page->mem_cgroup == mc.from) {
12724850
NH
4946 ret = MC_TARGET_PAGE;
4947 if (target) {
4948 get_page(page);
4949 target->page = page;
4950 }
4951 }
4952 return ret;
4953}
4954#else
4955static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4956 unsigned long addr, pmd_t pmd, union mc_target *target)
4957{
4958 return MC_TARGET_NONE;
4959}
4960#endif
4961
4ffef5fe
DN
4962static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4963 unsigned long addr, unsigned long end,
4964 struct mm_walk *walk)
4965{
26bcd64a 4966 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4967 pte_t *pte;
4968 spinlock_t *ptl;
4969
b6ec57f4
KS
4970 ptl = pmd_trans_huge_lock(pmd, vma);
4971 if (ptl) {
c733a828
JG
4972 /*
4973 * Note their can not be MC_TARGET_DEVICE for now as we do not
4974 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4975 * MEMORY_DEVICE_PRIVATE but this might change.
4976 */
12724850
NH
4977 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4978 mc.precharge += HPAGE_PMD_NR;
bf929152 4979 spin_unlock(ptl);
1a5a9906 4980 return 0;
12724850 4981 }
03319327 4982
45f83cef
AA
4983 if (pmd_trans_unstable(pmd))
4984 return 0;
4ffef5fe
DN
4985 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4986 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4987 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4988 mc.precharge++; /* increment precharge temporarily */
4989 pte_unmap_unlock(pte - 1, ptl);
4990 cond_resched();
4991
7dc74be0
DN
4992 return 0;
4993}
4994
4ffef5fe
DN
4995static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4996{
4997 unsigned long precharge;
4ffef5fe 4998
26bcd64a
NH
4999 struct mm_walk mem_cgroup_count_precharge_walk = {
5000 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5001 .mm = mm,
5002 };
dfe076b0 5003 down_read(&mm->mmap_sem);
0247f3f4
JM
5004 walk_page_range(0, mm->highest_vm_end,
5005 &mem_cgroup_count_precharge_walk);
dfe076b0 5006 up_read(&mm->mmap_sem);
4ffef5fe
DN
5007
5008 precharge = mc.precharge;
5009 mc.precharge = 0;
5010
5011 return precharge;
5012}
5013
4ffef5fe
DN
5014static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5015{
dfe076b0
DN
5016 unsigned long precharge = mem_cgroup_count_precharge(mm);
5017
5018 VM_BUG_ON(mc.moving_task);
5019 mc.moving_task = current;
5020 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5021}
5022
dfe076b0
DN
5023/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5024static void __mem_cgroup_clear_mc(void)
4ffef5fe 5025{
2bd9bb20
KH
5026 struct mem_cgroup *from = mc.from;
5027 struct mem_cgroup *to = mc.to;
5028
4ffef5fe 5029 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5030 if (mc.precharge) {
00501b53 5031 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5032 mc.precharge = 0;
5033 }
5034 /*
5035 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5036 * we must uncharge here.
5037 */
5038 if (mc.moved_charge) {
00501b53 5039 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5040 mc.moved_charge = 0;
4ffef5fe 5041 }
483c30b5
DN
5042 /* we must fixup refcnts and charges */
5043 if (mc.moved_swap) {
483c30b5 5044 /* uncharge swap account from the old cgroup */
ce00a967 5045 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5046 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5047
615d66c3
VD
5048 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5049
05b84301 5050 /*
3e32cb2e
JW
5051 * we charged both to->memory and to->memsw, so we
5052 * should uncharge to->memory.
05b84301 5053 */
ce00a967 5054 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5055 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5056
615d66c3
VD
5057 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5058 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5059
483c30b5
DN
5060 mc.moved_swap = 0;
5061 }
dfe076b0
DN
5062 memcg_oom_recover(from);
5063 memcg_oom_recover(to);
5064 wake_up_all(&mc.waitq);
5065}
5066
5067static void mem_cgroup_clear_mc(void)
5068{
264a0ae1
TH
5069 struct mm_struct *mm = mc.mm;
5070
dfe076b0
DN
5071 /*
5072 * we must clear moving_task before waking up waiters at the end of
5073 * task migration.
5074 */
5075 mc.moving_task = NULL;
5076 __mem_cgroup_clear_mc();
2bd9bb20 5077 spin_lock(&mc.lock);
4ffef5fe
DN
5078 mc.from = NULL;
5079 mc.to = NULL;
264a0ae1 5080 mc.mm = NULL;
2bd9bb20 5081 spin_unlock(&mc.lock);
264a0ae1
TH
5082
5083 mmput(mm);
4ffef5fe
DN
5084}
5085
1f7dd3e5 5086static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5087{
1f7dd3e5 5088 struct cgroup_subsys_state *css;
eed67d75 5089 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5090 struct mem_cgroup *from;
4530eddb 5091 struct task_struct *leader, *p;
9f2115f9 5092 struct mm_struct *mm;
1dfab5ab 5093 unsigned long move_flags;
9f2115f9 5094 int ret = 0;
7dc74be0 5095
1f7dd3e5
TH
5096 /* charge immigration isn't supported on the default hierarchy */
5097 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5098 return 0;
5099
4530eddb
TH
5100 /*
5101 * Multi-process migrations only happen on the default hierarchy
5102 * where charge immigration is not used. Perform charge
5103 * immigration if @tset contains a leader and whine if there are
5104 * multiple.
5105 */
5106 p = NULL;
1f7dd3e5 5107 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5108 WARN_ON_ONCE(p);
5109 p = leader;
1f7dd3e5 5110 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5111 }
5112 if (!p)
5113 return 0;
5114
1f7dd3e5
TH
5115 /*
5116 * We are now commited to this value whatever it is. Changes in this
5117 * tunable will only affect upcoming migrations, not the current one.
5118 * So we need to save it, and keep it going.
5119 */
5120 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5121 if (!move_flags)
5122 return 0;
5123
9f2115f9
TH
5124 from = mem_cgroup_from_task(p);
5125
5126 VM_BUG_ON(from == memcg);
5127
5128 mm = get_task_mm(p);
5129 if (!mm)
5130 return 0;
5131 /* We move charges only when we move a owner of the mm */
5132 if (mm->owner == p) {
5133 VM_BUG_ON(mc.from);
5134 VM_BUG_ON(mc.to);
5135 VM_BUG_ON(mc.precharge);
5136 VM_BUG_ON(mc.moved_charge);
5137 VM_BUG_ON(mc.moved_swap);
5138
5139 spin_lock(&mc.lock);
264a0ae1 5140 mc.mm = mm;
9f2115f9
TH
5141 mc.from = from;
5142 mc.to = memcg;
5143 mc.flags = move_flags;
5144 spin_unlock(&mc.lock);
5145 /* We set mc.moving_task later */
5146
5147 ret = mem_cgroup_precharge_mc(mm);
5148 if (ret)
5149 mem_cgroup_clear_mc();
264a0ae1
TH
5150 } else {
5151 mmput(mm);
7dc74be0
DN
5152 }
5153 return ret;
5154}
5155
1f7dd3e5 5156static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5157{
4e2f245d
JW
5158 if (mc.to)
5159 mem_cgroup_clear_mc();
7dc74be0
DN
5160}
5161
4ffef5fe
DN
5162static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5163 unsigned long addr, unsigned long end,
5164 struct mm_walk *walk)
7dc74be0 5165{
4ffef5fe 5166 int ret = 0;
26bcd64a 5167 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5168 pte_t *pte;
5169 spinlock_t *ptl;
12724850
NH
5170 enum mc_target_type target_type;
5171 union mc_target target;
5172 struct page *page;
4ffef5fe 5173
b6ec57f4
KS
5174 ptl = pmd_trans_huge_lock(pmd, vma);
5175 if (ptl) {
62ade86a 5176 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5177 spin_unlock(ptl);
12724850
NH
5178 return 0;
5179 }
5180 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5181 if (target_type == MC_TARGET_PAGE) {
5182 page = target.page;
5183 if (!isolate_lru_page(page)) {
f627c2f5 5184 if (!mem_cgroup_move_account(page, true,
1306a85a 5185 mc.from, mc.to)) {
12724850
NH
5186 mc.precharge -= HPAGE_PMD_NR;
5187 mc.moved_charge += HPAGE_PMD_NR;
5188 }
5189 putback_lru_page(page);
5190 }
5191 put_page(page);
c733a828
JG
5192 } else if (target_type == MC_TARGET_DEVICE) {
5193 page = target.page;
5194 if (!mem_cgroup_move_account(page, true,
5195 mc.from, mc.to)) {
5196 mc.precharge -= HPAGE_PMD_NR;
5197 mc.moved_charge += HPAGE_PMD_NR;
5198 }
5199 put_page(page);
12724850 5200 }
bf929152 5201 spin_unlock(ptl);
1a5a9906 5202 return 0;
12724850
NH
5203 }
5204
45f83cef
AA
5205 if (pmd_trans_unstable(pmd))
5206 return 0;
4ffef5fe
DN
5207retry:
5208 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5209 for (; addr != end; addr += PAGE_SIZE) {
5210 pte_t ptent = *(pte++);
c733a828 5211 bool device = false;
02491447 5212 swp_entry_t ent;
4ffef5fe
DN
5213
5214 if (!mc.precharge)
5215 break;
5216
8d32ff84 5217 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5218 case MC_TARGET_DEVICE:
5219 device = true;
5220 /* fall through */
4ffef5fe
DN
5221 case MC_TARGET_PAGE:
5222 page = target.page;
53f9263b
KS
5223 /*
5224 * We can have a part of the split pmd here. Moving it
5225 * can be done but it would be too convoluted so simply
5226 * ignore such a partial THP and keep it in original
5227 * memcg. There should be somebody mapping the head.
5228 */
5229 if (PageTransCompound(page))
5230 goto put;
c733a828 5231 if (!device && isolate_lru_page(page))
4ffef5fe 5232 goto put;
f627c2f5
KS
5233 if (!mem_cgroup_move_account(page, false,
5234 mc.from, mc.to)) {
4ffef5fe 5235 mc.precharge--;
854ffa8d
DN
5236 /* we uncharge from mc.from later. */
5237 mc.moved_charge++;
4ffef5fe 5238 }
c733a828
JG
5239 if (!device)
5240 putback_lru_page(page);
8d32ff84 5241put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5242 put_page(page);
5243 break;
02491447
DN
5244 case MC_TARGET_SWAP:
5245 ent = target.ent;
e91cbb42 5246 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5247 mc.precharge--;
483c30b5
DN
5248 /* we fixup refcnts and charges later. */
5249 mc.moved_swap++;
5250 }
02491447 5251 break;
4ffef5fe
DN
5252 default:
5253 break;
5254 }
5255 }
5256 pte_unmap_unlock(pte - 1, ptl);
5257 cond_resched();
5258
5259 if (addr != end) {
5260 /*
5261 * We have consumed all precharges we got in can_attach().
5262 * We try charge one by one, but don't do any additional
5263 * charges to mc.to if we have failed in charge once in attach()
5264 * phase.
5265 */
854ffa8d 5266 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5267 if (!ret)
5268 goto retry;
5269 }
5270
5271 return ret;
5272}
5273
264a0ae1 5274static void mem_cgroup_move_charge(void)
4ffef5fe 5275{
26bcd64a
NH
5276 struct mm_walk mem_cgroup_move_charge_walk = {
5277 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5278 .mm = mc.mm,
26bcd64a 5279 };
4ffef5fe
DN
5280
5281 lru_add_drain_all();
312722cb 5282 /*
81f8c3a4
JW
5283 * Signal lock_page_memcg() to take the memcg's move_lock
5284 * while we're moving its pages to another memcg. Then wait
5285 * for already started RCU-only updates to finish.
312722cb
JW
5286 */
5287 atomic_inc(&mc.from->moving_account);
5288 synchronize_rcu();
dfe076b0 5289retry:
264a0ae1 5290 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5291 /*
5292 * Someone who are holding the mmap_sem might be waiting in
5293 * waitq. So we cancel all extra charges, wake up all waiters,
5294 * and retry. Because we cancel precharges, we might not be able
5295 * to move enough charges, but moving charge is a best-effort
5296 * feature anyway, so it wouldn't be a big problem.
5297 */
5298 __mem_cgroup_clear_mc();
5299 cond_resched();
5300 goto retry;
5301 }
26bcd64a
NH
5302 /*
5303 * When we have consumed all precharges and failed in doing
5304 * additional charge, the page walk just aborts.
5305 */
0247f3f4
JM
5306 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5307
264a0ae1 5308 up_read(&mc.mm->mmap_sem);
312722cb 5309 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5310}
5311
264a0ae1 5312static void mem_cgroup_move_task(void)
67e465a7 5313{
264a0ae1
TH
5314 if (mc.to) {
5315 mem_cgroup_move_charge();
a433658c 5316 mem_cgroup_clear_mc();
264a0ae1 5317 }
67e465a7 5318}
5cfb80a7 5319#else /* !CONFIG_MMU */
1f7dd3e5 5320static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5321{
5322 return 0;
5323}
1f7dd3e5 5324static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5325{
5326}
264a0ae1 5327static void mem_cgroup_move_task(void)
5cfb80a7
DN
5328{
5329}
5330#endif
67e465a7 5331
f00baae7
TH
5332/*
5333 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5334 * to verify whether we're attached to the default hierarchy on each mount
5335 * attempt.
f00baae7 5336 */
eb95419b 5337static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5338{
5339 /*
aa6ec29b 5340 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5341 * guarantees that @root doesn't have any children, so turning it
5342 * on for the root memcg is enough.
5343 */
9e10a130 5344 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5345 root_mem_cgroup->use_hierarchy = true;
5346 else
5347 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5348}
5349
241994ed
JW
5350static u64 memory_current_read(struct cgroup_subsys_state *css,
5351 struct cftype *cft)
5352{
f5fc3c5d
JW
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354
5355 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5356}
5357
bf8d5d52
RG
5358static int memory_min_show(struct seq_file *m, void *v)
5359{
5360 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5361 unsigned long min = READ_ONCE(memcg->memory.min);
5362
5363 if (min == PAGE_COUNTER_MAX)
5364 seq_puts(m, "max\n");
5365 else
5366 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5367
5368 return 0;
5369}
5370
5371static ssize_t memory_min_write(struct kernfs_open_file *of,
5372 char *buf, size_t nbytes, loff_t off)
5373{
5374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5375 unsigned long min;
5376 int err;
5377
5378 buf = strstrip(buf);
5379 err = page_counter_memparse(buf, "max", &min);
5380 if (err)
5381 return err;
5382
5383 page_counter_set_min(&memcg->memory, min);
5384
5385 return nbytes;
5386}
5387
241994ed
JW
5388static int memory_low_show(struct seq_file *m, void *v)
5389{
5390 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5391 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5392
5393 if (low == PAGE_COUNTER_MAX)
d2973697 5394 seq_puts(m, "max\n");
241994ed
JW
5395 else
5396 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5397
5398 return 0;
5399}
5400
5401static ssize_t memory_low_write(struct kernfs_open_file *of,
5402 char *buf, size_t nbytes, loff_t off)
5403{
5404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5405 unsigned long low;
5406 int err;
5407
5408 buf = strstrip(buf);
d2973697 5409 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5410 if (err)
5411 return err;
5412
23067153 5413 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5414
5415 return nbytes;
5416}
5417
5418static int memory_high_show(struct seq_file *m, void *v)
5419{
5420 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5421 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5422
5423 if (high == PAGE_COUNTER_MAX)
d2973697 5424 seq_puts(m, "max\n");
241994ed
JW
5425 else
5426 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5427
5428 return 0;
5429}
5430
5431static ssize_t memory_high_write(struct kernfs_open_file *of,
5432 char *buf, size_t nbytes, loff_t off)
5433{
5434 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5435 unsigned long nr_pages;
241994ed
JW
5436 unsigned long high;
5437 int err;
5438
5439 buf = strstrip(buf);
d2973697 5440 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5441 if (err)
5442 return err;
5443
5444 memcg->high = high;
5445
588083bb
JW
5446 nr_pages = page_counter_read(&memcg->memory);
5447 if (nr_pages > high)
5448 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5449 GFP_KERNEL, true);
5450
2529bb3a 5451 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5452 return nbytes;
5453}
5454
5455static int memory_max_show(struct seq_file *m, void *v)
5456{
5457 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5458 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5459
5460 if (max == PAGE_COUNTER_MAX)
d2973697 5461 seq_puts(m, "max\n");
241994ed
JW
5462 else
5463 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5464
5465 return 0;
5466}
5467
5468static ssize_t memory_max_write(struct kernfs_open_file *of,
5469 char *buf, size_t nbytes, loff_t off)
5470{
5471 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5472 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5473 bool drained = false;
241994ed
JW
5474 unsigned long max;
5475 int err;
5476
5477 buf = strstrip(buf);
d2973697 5478 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5479 if (err)
5480 return err;
5481
bbec2e15 5482 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5483
5484 for (;;) {
5485 unsigned long nr_pages = page_counter_read(&memcg->memory);
5486
5487 if (nr_pages <= max)
5488 break;
5489
5490 if (signal_pending(current)) {
5491 err = -EINTR;
5492 break;
5493 }
5494
5495 if (!drained) {
5496 drain_all_stock(memcg);
5497 drained = true;
5498 continue;
5499 }
5500
5501 if (nr_reclaims) {
5502 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5503 GFP_KERNEL, true))
5504 nr_reclaims--;
5505 continue;
5506 }
5507
e27be240 5508 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5509 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5510 break;
5511 }
241994ed 5512
2529bb3a 5513 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5514 return nbytes;
5515}
5516
5517static int memory_events_show(struct seq_file *m, void *v)
5518{
5519 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5520
e27be240
JW
5521 seq_printf(m, "low %lu\n",
5522 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5523 seq_printf(m, "high %lu\n",
5524 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5525 seq_printf(m, "max %lu\n",
5526 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5527 seq_printf(m, "oom %lu\n",
5528 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5529 seq_printf(m, "oom_kill %lu\n",
5530 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5531
5532 return 0;
5533}
5534
587d9f72
JW
5535static int memory_stat_show(struct seq_file *m, void *v)
5536{
5537 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
8de7ecc6 5538 struct accumulated_stats acc;
587d9f72
JW
5539 int i;
5540
5541 /*
5542 * Provide statistics on the state of the memory subsystem as
5543 * well as cumulative event counters that show past behavior.
5544 *
5545 * This list is ordered following a combination of these gradients:
5546 * 1) generic big picture -> specifics and details
5547 * 2) reflecting userspace activity -> reflecting kernel heuristics
5548 *
5549 * Current memory state:
5550 */
5551
8de7ecc6
SB
5552 memset(&acc, 0, sizeof(acc));
5553 acc.stats_size = MEMCG_NR_STAT;
5554 acc.events_size = NR_VM_EVENT_ITEMS;
5555 accumulate_memcg_tree(memcg, &acc);
72b54e73 5556
587d9f72 5557 seq_printf(m, "anon %llu\n",
8de7ecc6 5558 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5559 seq_printf(m, "file %llu\n",
8de7ecc6 5560 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5561 seq_printf(m, "kernel_stack %llu\n",
8de7ecc6 5562 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5563 seq_printf(m, "slab %llu\n",
8de7ecc6
SB
5564 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5565 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5566 seq_printf(m, "sock %llu\n",
8de7ecc6 5567 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5568
9a4caf1e 5569 seq_printf(m, "shmem %llu\n",
8de7ecc6 5570 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5571 seq_printf(m, "file_mapped %llu\n",
8de7ecc6 5572 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5573 seq_printf(m, "file_dirty %llu\n",
8de7ecc6 5574 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5575 seq_printf(m, "file_writeback %llu\n",
8de7ecc6 5576 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5577
8de7ecc6
SB
5578 for (i = 0; i < NR_LRU_LISTS; i++)
5579 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5580 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5581
27ee57c9 5582 seq_printf(m, "slab_reclaimable %llu\n",
8de7ecc6 5583 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5584 seq_printf(m, "slab_unreclaimable %llu\n",
8de7ecc6 5585 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5586
587d9f72
JW
5587 /* Accumulated memory events */
5588
8de7ecc6
SB
5589 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5590 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
587d9f72 5591
e9b257ed
JW
5592 seq_printf(m, "workingset_refault %lu\n",
5593 acc.stat[WORKINGSET_REFAULT]);
5594 seq_printf(m, "workingset_activate %lu\n",
5595 acc.stat[WORKINGSET_ACTIVATE]);
5596 seq_printf(m, "workingset_nodereclaim %lu\n",
5597 acc.stat[WORKINGSET_NODERECLAIM]);
5598
8de7ecc6
SB
5599 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5600 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5601 acc.events[PGSCAN_DIRECT]);
5602 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5603 acc.events[PGSTEAL_DIRECT]);
5604 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5605 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5606 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5607 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
2262185c 5608
587d9f72
JW
5609 return 0;
5610}
5611
3d8b38eb
RG
5612static int memory_oom_group_show(struct seq_file *m, void *v)
5613{
5614 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5615
5616 seq_printf(m, "%d\n", memcg->oom_group);
5617
5618 return 0;
5619}
5620
5621static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5622 char *buf, size_t nbytes, loff_t off)
5623{
5624 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5625 int ret, oom_group;
5626
5627 buf = strstrip(buf);
5628 if (!buf)
5629 return -EINVAL;
5630
5631 ret = kstrtoint(buf, 0, &oom_group);
5632 if (ret)
5633 return ret;
5634
5635 if (oom_group != 0 && oom_group != 1)
5636 return -EINVAL;
5637
5638 memcg->oom_group = oom_group;
5639
5640 return nbytes;
5641}
5642
241994ed
JW
5643static struct cftype memory_files[] = {
5644 {
5645 .name = "current",
f5fc3c5d 5646 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5647 .read_u64 = memory_current_read,
5648 },
bf8d5d52
RG
5649 {
5650 .name = "min",
5651 .flags = CFTYPE_NOT_ON_ROOT,
5652 .seq_show = memory_min_show,
5653 .write = memory_min_write,
5654 },
241994ed
JW
5655 {
5656 .name = "low",
5657 .flags = CFTYPE_NOT_ON_ROOT,
5658 .seq_show = memory_low_show,
5659 .write = memory_low_write,
5660 },
5661 {
5662 .name = "high",
5663 .flags = CFTYPE_NOT_ON_ROOT,
5664 .seq_show = memory_high_show,
5665 .write = memory_high_write,
5666 },
5667 {
5668 .name = "max",
5669 .flags = CFTYPE_NOT_ON_ROOT,
5670 .seq_show = memory_max_show,
5671 .write = memory_max_write,
5672 },
5673 {
5674 .name = "events",
5675 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5676 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5677 .seq_show = memory_events_show,
5678 },
587d9f72
JW
5679 {
5680 .name = "stat",
5681 .flags = CFTYPE_NOT_ON_ROOT,
5682 .seq_show = memory_stat_show,
5683 },
3d8b38eb
RG
5684 {
5685 .name = "oom.group",
5686 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5687 .seq_show = memory_oom_group_show,
5688 .write = memory_oom_group_write,
5689 },
241994ed
JW
5690 { } /* terminate */
5691};
5692
073219e9 5693struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5694 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5695 .css_online = mem_cgroup_css_online,
92fb9748 5696 .css_offline = mem_cgroup_css_offline,
6df38689 5697 .css_released = mem_cgroup_css_released,
92fb9748 5698 .css_free = mem_cgroup_css_free,
1ced953b 5699 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5700 .can_attach = mem_cgroup_can_attach,
5701 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5702 .post_attach = mem_cgroup_move_task,
f00baae7 5703 .bind = mem_cgroup_bind,
241994ed
JW
5704 .dfl_cftypes = memory_files,
5705 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5706 .early_init = 0,
8cdea7c0 5707};
c077719b 5708
241994ed 5709/**
bf8d5d52 5710 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5711 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5712 * @memcg: the memory cgroup to check
5713 *
23067153
RG
5714 * WARNING: This function is not stateless! It can only be used as part
5715 * of a top-down tree iteration, not for isolated queries.
34c81057 5716 *
bf8d5d52
RG
5717 * Returns one of the following:
5718 * MEMCG_PROT_NONE: cgroup memory is not protected
5719 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5720 * an unprotected supply of reclaimable memory from other cgroups.
5721 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5722 *
bf8d5d52 5723 * @root is exclusive; it is never protected when looked at directly
34c81057 5724 *
bf8d5d52
RG
5725 * To provide a proper hierarchical behavior, effective memory.min/low values
5726 * are used. Below is the description of how effective memory.low is calculated.
5727 * Effective memory.min values is calculated in the same way.
34c81057 5728 *
23067153
RG
5729 * Effective memory.low is always equal or less than the original memory.low.
5730 * If there is no memory.low overcommittment (which is always true for
5731 * top-level memory cgroups), these two values are equal.
5732 * Otherwise, it's a part of parent's effective memory.low,
5733 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5734 * memory.low usages, where memory.low usage is the size of actually
5735 * protected memory.
34c81057 5736 *
23067153
RG
5737 * low_usage
5738 * elow = min( memory.low, parent->elow * ------------------ ),
5739 * siblings_low_usage
34c81057 5740 *
23067153
RG
5741 * | memory.current, if memory.current < memory.low
5742 * low_usage = |
5743 | 0, otherwise.
34c81057 5744 *
23067153
RG
5745 *
5746 * Such definition of the effective memory.low provides the expected
5747 * hierarchical behavior: parent's memory.low value is limiting
5748 * children, unprotected memory is reclaimed first and cgroups,
5749 * which are not using their guarantee do not affect actual memory
5750 * distribution.
5751 *
5752 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5753 *
5754 * A A/memory.low = 2G, A/memory.current = 6G
5755 * //\\
5756 * BC DE B/memory.low = 3G B/memory.current = 2G
5757 * C/memory.low = 1G C/memory.current = 2G
5758 * D/memory.low = 0 D/memory.current = 2G
5759 * E/memory.low = 10G E/memory.current = 0
5760 *
5761 * and the memory pressure is applied, the following memory distribution
5762 * is expected (approximately):
5763 *
5764 * A/memory.current = 2G
5765 *
5766 * B/memory.current = 1.3G
5767 * C/memory.current = 0.6G
5768 * D/memory.current = 0
5769 * E/memory.current = 0
5770 *
5771 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5772 * (see propagate_protected_usage()), as well as recursive calculation of
5773 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5774 * path for each memory cgroup top-down from the reclaim,
5775 * it's possible to optimize this part, and save calculated elow
5776 * for next usage. This part is intentionally racy, but it's ok,
5777 * as memory.low is a best-effort mechanism.
241994ed 5778 */
bf8d5d52
RG
5779enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5780 struct mem_cgroup *memcg)
241994ed 5781{
23067153 5782 struct mem_cgroup *parent;
bf8d5d52
RG
5783 unsigned long emin, parent_emin;
5784 unsigned long elow, parent_elow;
5785 unsigned long usage;
23067153 5786
241994ed 5787 if (mem_cgroup_disabled())
bf8d5d52 5788 return MEMCG_PROT_NONE;
241994ed 5789
34c81057
SC
5790 if (!root)
5791 root = root_mem_cgroup;
5792 if (memcg == root)
bf8d5d52 5793 return MEMCG_PROT_NONE;
241994ed 5794
23067153 5795 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5796 if (!usage)
5797 return MEMCG_PROT_NONE;
5798
5799 emin = memcg->memory.min;
5800 elow = memcg->memory.low;
34c81057 5801
bf8d5d52 5802 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5803 /* No parent means a non-hierarchical mode on v1 memcg */
5804 if (!parent)
5805 return MEMCG_PROT_NONE;
5806
23067153
RG
5807 if (parent == root)
5808 goto exit;
5809
bf8d5d52
RG
5810 parent_emin = READ_ONCE(parent->memory.emin);
5811 emin = min(emin, parent_emin);
5812 if (emin && parent_emin) {
5813 unsigned long min_usage, siblings_min_usage;
5814
5815 min_usage = min(usage, memcg->memory.min);
5816 siblings_min_usage = atomic_long_read(
5817 &parent->memory.children_min_usage);
5818
5819 if (min_usage && siblings_min_usage)
5820 emin = min(emin, parent_emin * min_usage /
5821 siblings_min_usage);
5822 }
5823
23067153
RG
5824 parent_elow = READ_ONCE(parent->memory.elow);
5825 elow = min(elow, parent_elow);
bf8d5d52
RG
5826 if (elow && parent_elow) {
5827 unsigned long low_usage, siblings_low_usage;
23067153 5828
bf8d5d52
RG
5829 low_usage = min(usage, memcg->memory.low);
5830 siblings_low_usage = atomic_long_read(
5831 &parent->memory.children_low_usage);
23067153 5832
bf8d5d52
RG
5833 if (low_usage && siblings_low_usage)
5834 elow = min(elow, parent_elow * low_usage /
5835 siblings_low_usage);
5836 }
23067153 5837
23067153 5838exit:
bf8d5d52 5839 memcg->memory.emin = emin;
23067153 5840 memcg->memory.elow = elow;
bf8d5d52
RG
5841
5842 if (usage <= emin)
5843 return MEMCG_PROT_MIN;
5844 else if (usage <= elow)
5845 return MEMCG_PROT_LOW;
5846 else
5847 return MEMCG_PROT_NONE;
241994ed
JW
5848}
5849
00501b53
JW
5850/**
5851 * mem_cgroup_try_charge - try charging a page
5852 * @page: page to charge
5853 * @mm: mm context of the victim
5854 * @gfp_mask: reclaim mode
5855 * @memcgp: charged memcg return
25843c2b 5856 * @compound: charge the page as compound or small page
00501b53
JW
5857 *
5858 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5859 * pages according to @gfp_mask if necessary.
5860 *
5861 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5862 * Otherwise, an error code is returned.
5863 *
5864 * After page->mapping has been set up, the caller must finalize the
5865 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5866 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5867 */
5868int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5869 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5870 bool compound)
00501b53
JW
5871{
5872 struct mem_cgroup *memcg = NULL;
f627c2f5 5873 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5874 int ret = 0;
5875
5876 if (mem_cgroup_disabled())
5877 goto out;
5878
5879 if (PageSwapCache(page)) {
00501b53
JW
5880 /*
5881 * Every swap fault against a single page tries to charge the
5882 * page, bail as early as possible. shmem_unuse() encounters
5883 * already charged pages, too. The USED bit is protected by
5884 * the page lock, which serializes swap cache removal, which
5885 * in turn serializes uncharging.
5886 */
e993d905 5887 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5888 if (compound_head(page)->mem_cgroup)
00501b53 5889 goto out;
e993d905 5890
37e84351 5891 if (do_swap_account) {
e993d905
VD
5892 swp_entry_t ent = { .val = page_private(page), };
5893 unsigned short id = lookup_swap_cgroup_id(ent);
5894
5895 rcu_read_lock();
5896 memcg = mem_cgroup_from_id(id);
5897 if (memcg && !css_tryget_online(&memcg->css))
5898 memcg = NULL;
5899 rcu_read_unlock();
5900 }
00501b53
JW
5901 }
5902
00501b53
JW
5903 if (!memcg)
5904 memcg = get_mem_cgroup_from_mm(mm);
5905
5906 ret = try_charge(memcg, gfp_mask, nr_pages);
5907
5908 css_put(&memcg->css);
00501b53
JW
5909out:
5910 *memcgp = memcg;
5911 return ret;
5912}
5913
2cf85583
TH
5914int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5915 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5916 bool compound)
5917{
5918 struct mem_cgroup *memcg;
5919 int ret;
5920
5921 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5922 memcg = *memcgp;
5923 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5924 return ret;
5925}
5926
00501b53
JW
5927/**
5928 * mem_cgroup_commit_charge - commit a page charge
5929 * @page: page to charge
5930 * @memcg: memcg to charge the page to
5931 * @lrucare: page might be on LRU already
25843c2b 5932 * @compound: charge the page as compound or small page
00501b53
JW
5933 *
5934 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5935 * after page->mapping has been set up. This must happen atomically
5936 * as part of the page instantiation, i.e. under the page table lock
5937 * for anonymous pages, under the page lock for page and swap cache.
5938 *
5939 * In addition, the page must not be on the LRU during the commit, to
5940 * prevent racing with task migration. If it might be, use @lrucare.
5941 *
5942 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5943 */
5944void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5945 bool lrucare, bool compound)
00501b53 5946{
f627c2f5 5947 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5948
5949 VM_BUG_ON_PAGE(!page->mapping, page);
5950 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5951
5952 if (mem_cgroup_disabled())
5953 return;
5954 /*
5955 * Swap faults will attempt to charge the same page multiple
5956 * times. But reuse_swap_page() might have removed the page
5957 * from swapcache already, so we can't check PageSwapCache().
5958 */
5959 if (!memcg)
5960 return;
5961
6abb5a86
JW
5962 commit_charge(page, memcg, lrucare);
5963
6abb5a86 5964 local_irq_disable();
f627c2f5 5965 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5966 memcg_check_events(memcg, page);
5967 local_irq_enable();
00501b53 5968
7941d214 5969 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5970 swp_entry_t entry = { .val = page_private(page) };
5971 /*
5972 * The swap entry might not get freed for a long time,
5973 * let's not wait for it. The page already received a
5974 * memory+swap charge, drop the swap entry duplicate.
5975 */
38d8b4e6 5976 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5977 }
5978}
5979
5980/**
5981 * mem_cgroup_cancel_charge - cancel a page charge
5982 * @page: page to charge
5983 * @memcg: memcg to charge the page to
25843c2b 5984 * @compound: charge the page as compound or small page
00501b53
JW
5985 *
5986 * Cancel a charge transaction started by mem_cgroup_try_charge().
5987 */
f627c2f5
KS
5988void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5989 bool compound)
00501b53 5990{
f627c2f5 5991 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5992
5993 if (mem_cgroup_disabled())
5994 return;
5995 /*
5996 * Swap faults will attempt to charge the same page multiple
5997 * times. But reuse_swap_page() might have removed the page
5998 * from swapcache already, so we can't check PageSwapCache().
5999 */
6000 if (!memcg)
6001 return;
6002
00501b53
JW
6003 cancel_charge(memcg, nr_pages);
6004}
6005
a9d5adee
JG
6006struct uncharge_gather {
6007 struct mem_cgroup *memcg;
6008 unsigned long pgpgout;
6009 unsigned long nr_anon;
6010 unsigned long nr_file;
6011 unsigned long nr_kmem;
6012 unsigned long nr_huge;
6013 unsigned long nr_shmem;
6014 struct page *dummy_page;
6015};
6016
6017static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6018{
a9d5adee
JG
6019 memset(ug, 0, sizeof(*ug));
6020}
6021
6022static void uncharge_batch(const struct uncharge_gather *ug)
6023{
6024 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6025 unsigned long flags;
6026
a9d5adee
JG
6027 if (!mem_cgroup_is_root(ug->memcg)) {
6028 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6029 if (do_memsw_account())
a9d5adee
JG
6030 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6031 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6032 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6033 memcg_oom_recover(ug->memcg);
ce00a967 6034 }
747db954
JW
6035
6036 local_irq_save(flags);
c9019e9b
JW
6037 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6038 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6039 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6040 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6041 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 6042 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 6043 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6044 local_irq_restore(flags);
e8ea14cc 6045
a9d5adee
JG
6046 if (!mem_cgroup_is_root(ug->memcg))
6047 css_put_many(&ug->memcg->css, nr_pages);
6048}
6049
6050static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6051{
6052 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6053 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6054 !PageHWPoison(page) , page);
a9d5adee
JG
6055
6056 if (!page->mem_cgroup)
6057 return;
6058
6059 /*
6060 * Nobody should be changing or seriously looking at
6061 * page->mem_cgroup at this point, we have fully
6062 * exclusive access to the page.
6063 */
6064
6065 if (ug->memcg != page->mem_cgroup) {
6066 if (ug->memcg) {
6067 uncharge_batch(ug);
6068 uncharge_gather_clear(ug);
6069 }
6070 ug->memcg = page->mem_cgroup;
6071 }
6072
6073 if (!PageKmemcg(page)) {
6074 unsigned int nr_pages = 1;
6075
6076 if (PageTransHuge(page)) {
6077 nr_pages <<= compound_order(page);
6078 ug->nr_huge += nr_pages;
6079 }
6080 if (PageAnon(page))
6081 ug->nr_anon += nr_pages;
6082 else {
6083 ug->nr_file += nr_pages;
6084 if (PageSwapBacked(page))
6085 ug->nr_shmem += nr_pages;
6086 }
6087 ug->pgpgout++;
6088 } else {
6089 ug->nr_kmem += 1 << compound_order(page);
6090 __ClearPageKmemcg(page);
6091 }
6092
6093 ug->dummy_page = page;
6094 page->mem_cgroup = NULL;
747db954
JW
6095}
6096
6097static void uncharge_list(struct list_head *page_list)
6098{
a9d5adee 6099 struct uncharge_gather ug;
747db954 6100 struct list_head *next;
a9d5adee
JG
6101
6102 uncharge_gather_clear(&ug);
747db954 6103
8b592656
JW
6104 /*
6105 * Note that the list can be a single page->lru; hence the
6106 * do-while loop instead of a simple list_for_each_entry().
6107 */
747db954
JW
6108 next = page_list->next;
6109 do {
a9d5adee
JG
6110 struct page *page;
6111
747db954
JW
6112 page = list_entry(next, struct page, lru);
6113 next = page->lru.next;
6114
a9d5adee 6115 uncharge_page(page, &ug);
747db954
JW
6116 } while (next != page_list);
6117
a9d5adee
JG
6118 if (ug.memcg)
6119 uncharge_batch(&ug);
747db954
JW
6120}
6121
0a31bc97
JW
6122/**
6123 * mem_cgroup_uncharge - uncharge a page
6124 * @page: page to uncharge
6125 *
6126 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6127 * mem_cgroup_commit_charge().
6128 */
6129void mem_cgroup_uncharge(struct page *page)
6130{
a9d5adee
JG
6131 struct uncharge_gather ug;
6132
0a31bc97
JW
6133 if (mem_cgroup_disabled())
6134 return;
6135
747db954 6136 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6137 if (!page->mem_cgroup)
0a31bc97
JW
6138 return;
6139
a9d5adee
JG
6140 uncharge_gather_clear(&ug);
6141 uncharge_page(page, &ug);
6142 uncharge_batch(&ug);
747db954 6143}
0a31bc97 6144
747db954
JW
6145/**
6146 * mem_cgroup_uncharge_list - uncharge a list of page
6147 * @page_list: list of pages to uncharge
6148 *
6149 * Uncharge a list of pages previously charged with
6150 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6151 */
6152void mem_cgroup_uncharge_list(struct list_head *page_list)
6153{
6154 if (mem_cgroup_disabled())
6155 return;
0a31bc97 6156
747db954
JW
6157 if (!list_empty(page_list))
6158 uncharge_list(page_list);
0a31bc97
JW
6159}
6160
6161/**
6a93ca8f
JW
6162 * mem_cgroup_migrate - charge a page's replacement
6163 * @oldpage: currently circulating page
6164 * @newpage: replacement page
0a31bc97 6165 *
6a93ca8f
JW
6166 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6167 * be uncharged upon free.
0a31bc97
JW
6168 *
6169 * Both pages must be locked, @newpage->mapping must be set up.
6170 */
6a93ca8f 6171void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6172{
29833315 6173 struct mem_cgroup *memcg;
44b7a8d3
JW
6174 unsigned int nr_pages;
6175 bool compound;
d93c4130 6176 unsigned long flags;
0a31bc97
JW
6177
6178 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6179 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6180 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6181 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6182 newpage);
0a31bc97
JW
6183
6184 if (mem_cgroup_disabled())
6185 return;
6186
6187 /* Page cache replacement: new page already charged? */
1306a85a 6188 if (newpage->mem_cgroup)
0a31bc97
JW
6189 return;
6190
45637bab 6191 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6192 memcg = oldpage->mem_cgroup;
29833315 6193 if (!memcg)
0a31bc97
JW
6194 return;
6195
44b7a8d3
JW
6196 /* Force-charge the new page. The old one will be freed soon */
6197 compound = PageTransHuge(newpage);
6198 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6199
6200 page_counter_charge(&memcg->memory, nr_pages);
6201 if (do_memsw_account())
6202 page_counter_charge(&memcg->memsw, nr_pages);
6203 css_get_many(&memcg->css, nr_pages);
0a31bc97 6204
9cf7666a 6205 commit_charge(newpage, memcg, false);
44b7a8d3 6206
d93c4130 6207 local_irq_save(flags);
44b7a8d3
JW
6208 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6209 memcg_check_events(memcg, newpage);
d93c4130 6210 local_irq_restore(flags);
0a31bc97
JW
6211}
6212
ef12947c 6213DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6214EXPORT_SYMBOL(memcg_sockets_enabled_key);
6215
2d758073 6216void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6217{
6218 struct mem_cgroup *memcg;
6219
2d758073
JW
6220 if (!mem_cgroup_sockets_enabled)
6221 return;
6222
edbe69ef
RG
6223 /*
6224 * Socket cloning can throw us here with sk_memcg already
6225 * filled. It won't however, necessarily happen from
6226 * process context. So the test for root memcg given
6227 * the current task's memcg won't help us in this case.
6228 *
6229 * Respecting the original socket's memcg is a better
6230 * decision in this case.
6231 */
6232 if (sk->sk_memcg) {
6233 css_get(&sk->sk_memcg->css);
6234 return;
6235 }
6236
11092087
JW
6237 rcu_read_lock();
6238 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6239 if (memcg == root_mem_cgroup)
6240 goto out;
0db15298 6241 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6242 goto out;
f7e1cb6e 6243 if (css_tryget_online(&memcg->css))
11092087 6244 sk->sk_memcg = memcg;
f7e1cb6e 6245out:
11092087
JW
6246 rcu_read_unlock();
6247}
11092087 6248
2d758073 6249void mem_cgroup_sk_free(struct sock *sk)
11092087 6250{
2d758073
JW
6251 if (sk->sk_memcg)
6252 css_put(&sk->sk_memcg->css);
11092087
JW
6253}
6254
6255/**
6256 * mem_cgroup_charge_skmem - charge socket memory
6257 * @memcg: memcg to charge
6258 * @nr_pages: number of pages to charge
6259 *
6260 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6261 * @memcg's configured limit, %false if the charge had to be forced.
6262 */
6263bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6264{
f7e1cb6e 6265 gfp_t gfp_mask = GFP_KERNEL;
11092087 6266
f7e1cb6e 6267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6268 struct page_counter *fail;
f7e1cb6e 6269
0db15298
JW
6270 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6271 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6272 return true;
6273 }
0db15298
JW
6274 page_counter_charge(&memcg->tcpmem, nr_pages);
6275 memcg->tcpmem_pressure = 1;
f7e1cb6e 6276 return false;
11092087 6277 }
d886f4e4 6278
f7e1cb6e
JW
6279 /* Don't block in the packet receive path */
6280 if (in_softirq())
6281 gfp_mask = GFP_NOWAIT;
6282
c9019e9b 6283 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6284
f7e1cb6e
JW
6285 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6286 return true;
6287
6288 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6289 return false;
6290}
6291
6292/**
6293 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6294 * @memcg: memcg to uncharge
6295 * @nr_pages: number of pages to uncharge
11092087
JW
6296 */
6297void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6298{
f7e1cb6e 6299 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6300 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6301 return;
6302 }
d886f4e4 6303
c9019e9b 6304 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6305
475d0487 6306 refill_stock(memcg, nr_pages);
11092087
JW
6307}
6308
f7e1cb6e
JW
6309static int __init cgroup_memory(char *s)
6310{
6311 char *token;
6312
6313 while ((token = strsep(&s, ",")) != NULL) {
6314 if (!*token)
6315 continue;
6316 if (!strcmp(token, "nosocket"))
6317 cgroup_memory_nosocket = true;
04823c83
VD
6318 if (!strcmp(token, "nokmem"))
6319 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6320 }
6321 return 0;
6322}
6323__setup("cgroup.memory=", cgroup_memory);
11092087 6324
2d11085e 6325/*
1081312f
MH
6326 * subsys_initcall() for memory controller.
6327 *
308167fc
SAS
6328 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6329 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6330 * basically everything that doesn't depend on a specific mem_cgroup structure
6331 * should be initialized from here.
2d11085e
MH
6332 */
6333static int __init mem_cgroup_init(void)
6334{
95a045f6
JW
6335 int cpu, node;
6336
84c07d11 6337#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6338 /*
6339 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6340 * so use a workqueue with limited concurrency to avoid stalling
6341 * all worker threads in case lots of cgroups are created and
6342 * destroyed simultaneously.
13583c3d 6343 */
17cc4dfe
TH
6344 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6345 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6346#endif
6347
308167fc
SAS
6348 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6349 memcg_hotplug_cpu_dead);
95a045f6
JW
6350
6351 for_each_possible_cpu(cpu)
6352 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6353 drain_local_stock);
6354
6355 for_each_node(node) {
6356 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6357
6358 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6359 node_online(node) ? node : NUMA_NO_NODE);
6360
ef8f2327 6361 rtpn->rb_root = RB_ROOT;
fa90b2fd 6362 rtpn->rb_rightmost = NULL;
ef8f2327 6363 spin_lock_init(&rtpn->lock);
95a045f6
JW
6364 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6365 }
6366
2d11085e
MH
6367 return 0;
6368}
6369subsys_initcall(mem_cgroup_init);
21afa38e
JW
6370
6371#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6372static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6373{
1c2d479a 6374 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6375 /*
6376 * The root cgroup cannot be destroyed, so it's refcount must
6377 * always be >= 1.
6378 */
6379 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6380 VM_BUG_ON(1);
6381 break;
6382 }
6383 memcg = parent_mem_cgroup(memcg);
6384 if (!memcg)
6385 memcg = root_mem_cgroup;
6386 }
6387 return memcg;
6388}
6389
21afa38e
JW
6390/**
6391 * mem_cgroup_swapout - transfer a memsw charge to swap
6392 * @page: page whose memsw charge to transfer
6393 * @entry: swap entry to move the charge to
6394 *
6395 * Transfer the memsw charge of @page to @entry.
6396 */
6397void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6398{
1f47b61f 6399 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6400 unsigned int nr_entries;
21afa38e
JW
6401 unsigned short oldid;
6402
6403 VM_BUG_ON_PAGE(PageLRU(page), page);
6404 VM_BUG_ON_PAGE(page_count(page), page);
6405
7941d214 6406 if (!do_memsw_account())
21afa38e
JW
6407 return;
6408
6409 memcg = page->mem_cgroup;
6410
6411 /* Readahead page, never charged */
6412 if (!memcg)
6413 return;
6414
1f47b61f
VD
6415 /*
6416 * In case the memcg owning these pages has been offlined and doesn't
6417 * have an ID allocated to it anymore, charge the closest online
6418 * ancestor for the swap instead and transfer the memory+swap charge.
6419 */
6420 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6421 nr_entries = hpage_nr_pages(page);
6422 /* Get references for the tail pages, too */
6423 if (nr_entries > 1)
6424 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6425 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6426 nr_entries);
21afa38e 6427 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6428 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6429
6430 page->mem_cgroup = NULL;
6431
6432 if (!mem_cgroup_is_root(memcg))
d6810d73 6433 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6434
1f47b61f
VD
6435 if (memcg != swap_memcg) {
6436 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6437 page_counter_charge(&swap_memcg->memsw, nr_entries);
6438 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6439 }
6440
ce9ce665
SAS
6441 /*
6442 * Interrupts should be disabled here because the caller holds the
b93b0163 6443 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6444 * important here to have the interrupts disabled because it is the
b93b0163 6445 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6446 */
6447 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6448 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6449 -nr_entries);
21afa38e 6450 memcg_check_events(memcg, page);
73f576c0
JW
6451
6452 if (!mem_cgroup_is_root(memcg))
d08afa14 6453 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6454}
6455
38d8b4e6
HY
6456/**
6457 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6458 * @page: page being added to swap
6459 * @entry: swap entry to charge
6460 *
38d8b4e6 6461 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6462 *
6463 * Returns 0 on success, -ENOMEM on failure.
6464 */
6465int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6466{
38d8b4e6 6467 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6468 struct page_counter *counter;
38d8b4e6 6469 struct mem_cgroup *memcg;
37e84351
VD
6470 unsigned short oldid;
6471
6472 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6473 return 0;
6474
6475 memcg = page->mem_cgroup;
6476
6477 /* Readahead page, never charged */
6478 if (!memcg)
6479 return 0;
6480
f3a53a3a
TH
6481 if (!entry.val) {
6482 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6483 return 0;
f3a53a3a 6484 }
bb98f2c5 6485
1f47b61f
VD
6486 memcg = mem_cgroup_id_get_online(memcg);
6487
37e84351 6488 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6489 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6490 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6491 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6492 mem_cgroup_id_put(memcg);
37e84351 6493 return -ENOMEM;
1f47b61f 6494 }
37e84351 6495
38d8b4e6
HY
6496 /* Get references for the tail pages, too */
6497 if (nr_pages > 1)
6498 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6499 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6500 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6501 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6502
37e84351
VD
6503 return 0;
6504}
6505
21afa38e 6506/**
38d8b4e6 6507 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6508 * @entry: swap entry to uncharge
38d8b4e6 6509 * @nr_pages: the amount of swap space to uncharge
21afa38e 6510 */
38d8b4e6 6511void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6512{
6513 struct mem_cgroup *memcg;
6514 unsigned short id;
6515
37e84351 6516 if (!do_swap_account)
21afa38e
JW
6517 return;
6518
38d8b4e6 6519 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6520 rcu_read_lock();
adbe427b 6521 memcg = mem_cgroup_from_id(id);
21afa38e 6522 if (memcg) {
37e84351
VD
6523 if (!mem_cgroup_is_root(memcg)) {
6524 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6525 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6526 else
38d8b4e6 6527 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6528 }
c9019e9b 6529 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6530 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6531 }
6532 rcu_read_unlock();
6533}
6534
d8b38438
VD
6535long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6536{
6537 long nr_swap_pages = get_nr_swap_pages();
6538
6539 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6540 return nr_swap_pages;
6541 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6542 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6543 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6544 page_counter_read(&memcg->swap));
6545 return nr_swap_pages;
6546}
6547
5ccc5aba
VD
6548bool mem_cgroup_swap_full(struct page *page)
6549{
6550 struct mem_cgroup *memcg;
6551
6552 VM_BUG_ON_PAGE(!PageLocked(page), page);
6553
6554 if (vm_swap_full())
6555 return true;
6556 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6557 return false;
6558
6559 memcg = page->mem_cgroup;
6560 if (!memcg)
6561 return false;
6562
6563 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6564 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6565 return true;
6566
6567 return false;
6568}
6569
21afa38e
JW
6570/* for remember boot option*/
6571#ifdef CONFIG_MEMCG_SWAP_ENABLED
6572static int really_do_swap_account __initdata = 1;
6573#else
6574static int really_do_swap_account __initdata;
6575#endif
6576
6577static int __init enable_swap_account(char *s)
6578{
6579 if (!strcmp(s, "1"))
6580 really_do_swap_account = 1;
6581 else if (!strcmp(s, "0"))
6582 really_do_swap_account = 0;
6583 return 1;
6584}
6585__setup("swapaccount=", enable_swap_account);
6586
37e84351
VD
6587static u64 swap_current_read(struct cgroup_subsys_state *css,
6588 struct cftype *cft)
6589{
6590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6591
6592 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6593}
6594
6595static int swap_max_show(struct seq_file *m, void *v)
6596{
6597 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6598 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6599
6600 if (max == PAGE_COUNTER_MAX)
6601 seq_puts(m, "max\n");
6602 else
6603 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6604
6605 return 0;
6606}
6607
6608static ssize_t swap_max_write(struct kernfs_open_file *of,
6609 char *buf, size_t nbytes, loff_t off)
6610{
6611 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6612 unsigned long max;
6613 int err;
6614
6615 buf = strstrip(buf);
6616 err = page_counter_memparse(buf, "max", &max);
6617 if (err)
6618 return err;
6619
be09102b 6620 xchg(&memcg->swap.max, max);
37e84351
VD
6621
6622 return nbytes;
6623}
6624
f3a53a3a
TH
6625static int swap_events_show(struct seq_file *m, void *v)
6626{
6627 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6628
6629 seq_printf(m, "max %lu\n",
6630 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6631 seq_printf(m, "fail %lu\n",
6632 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6633
6634 return 0;
6635}
6636
37e84351
VD
6637static struct cftype swap_files[] = {
6638 {
6639 .name = "swap.current",
6640 .flags = CFTYPE_NOT_ON_ROOT,
6641 .read_u64 = swap_current_read,
6642 },
6643 {
6644 .name = "swap.max",
6645 .flags = CFTYPE_NOT_ON_ROOT,
6646 .seq_show = swap_max_show,
6647 .write = swap_max_write,
6648 },
f3a53a3a
TH
6649 {
6650 .name = "swap.events",
6651 .flags = CFTYPE_NOT_ON_ROOT,
6652 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6653 .seq_show = swap_events_show,
6654 },
37e84351
VD
6655 { } /* terminate */
6656};
6657
21afa38e
JW
6658static struct cftype memsw_cgroup_files[] = {
6659 {
6660 .name = "memsw.usage_in_bytes",
6661 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6662 .read_u64 = mem_cgroup_read_u64,
6663 },
6664 {
6665 .name = "memsw.max_usage_in_bytes",
6666 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6667 .write = mem_cgroup_reset,
6668 .read_u64 = mem_cgroup_read_u64,
6669 },
6670 {
6671 .name = "memsw.limit_in_bytes",
6672 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6673 .write = mem_cgroup_write,
6674 .read_u64 = mem_cgroup_read_u64,
6675 },
6676 {
6677 .name = "memsw.failcnt",
6678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6679 .write = mem_cgroup_reset,
6680 .read_u64 = mem_cgroup_read_u64,
6681 },
6682 { }, /* terminate */
6683};
6684
6685static int __init mem_cgroup_swap_init(void)
6686{
6687 if (!mem_cgroup_disabled() && really_do_swap_account) {
6688 do_swap_account = 1;
37e84351
VD
6689 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6690 swap_files));
21afa38e
JW
6691 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6692 memsw_cgroup_files));
6693 }
6694 return 0;
6695}
6696subsys_initcall(mem_cgroup_swap_init);
6697
6698#endif /* CONFIG_MEMCG_SWAP */