]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: writeback: use exact memcg dirty counts
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
9d785b92
TH
251static inline bool should_force_charge(void)
252{
253 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
254 (current->flags & PF_EXITING);
255}
256
70ddf637
AV
257/* Some nice accessors for the vmpressure. */
258struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259{
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263}
264
265struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266{
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268}
269
84c07d11 270#ifdef CONFIG_MEMCG_KMEM
55007d84 271/*
f7ce3190 272 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
273 * The main reason for not using cgroup id for this:
274 * this works better in sparse environments, where we have a lot of memcgs,
275 * but only a few kmem-limited. Or also, if we have, for instance, 200
276 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
277 * 200 entry array for that.
55007d84 278 *
dbcf73e2
VD
279 * The current size of the caches array is stored in memcg_nr_cache_ids. It
280 * will double each time we have to increase it.
55007d84 281 */
dbcf73e2
VD
282static DEFINE_IDA(memcg_cache_ida);
283int memcg_nr_cache_ids;
749c5415 284
05257a1a
VD
285/* Protects memcg_nr_cache_ids */
286static DECLARE_RWSEM(memcg_cache_ids_sem);
287
288void memcg_get_cache_ids(void)
289{
290 down_read(&memcg_cache_ids_sem);
291}
292
293void memcg_put_cache_ids(void)
294{
295 up_read(&memcg_cache_ids_sem);
296}
297
55007d84
GC
298/*
299 * MIN_SIZE is different than 1, because we would like to avoid going through
300 * the alloc/free process all the time. In a small machine, 4 kmem-limited
301 * cgroups is a reasonable guess. In the future, it could be a parameter or
302 * tunable, but that is strictly not necessary.
303 *
b8627835 304 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
305 * this constant directly from cgroup, but it is understandable that this is
306 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 307 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
308 * increase ours as well if it increases.
309 */
310#define MEMCG_CACHES_MIN_SIZE 4
b8627835 311#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 312
d7f25f8a
GC
313/*
314 * A lot of the calls to the cache allocation functions are expected to be
315 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316 * conditional to this static branch, we'll have to allow modules that does
317 * kmem_cache_alloc and the such to see this symbol as well
318 */
ef12947c 319DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 320EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 321
17cc4dfe
TH
322struct workqueue_struct *memcg_kmem_cache_wq;
323
0a4465d3
KT
324static int memcg_shrinker_map_size;
325static DEFINE_MUTEX(memcg_shrinker_map_mutex);
326
327static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
328{
329 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
330}
331
332static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
333 int size, int old_size)
334{
335 struct memcg_shrinker_map *new, *old;
336 int nid;
337
338 lockdep_assert_held(&memcg_shrinker_map_mutex);
339
340 for_each_node(nid) {
341 old = rcu_dereference_protected(
342 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
343 /* Not yet online memcg */
344 if (!old)
345 return 0;
346
347 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
348 if (!new)
349 return -ENOMEM;
350
351 /* Set all old bits, clear all new bits */
352 memset(new->map, (int)0xff, old_size);
353 memset((void *)new->map + old_size, 0, size - old_size);
354
355 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
356 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
357 }
358
359 return 0;
360}
361
362static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
363{
364 struct mem_cgroup_per_node *pn;
365 struct memcg_shrinker_map *map;
366 int nid;
367
368 if (mem_cgroup_is_root(memcg))
369 return;
370
371 for_each_node(nid) {
372 pn = mem_cgroup_nodeinfo(memcg, nid);
373 map = rcu_dereference_protected(pn->shrinker_map, true);
374 if (map)
375 kvfree(map);
376 rcu_assign_pointer(pn->shrinker_map, NULL);
377 }
378}
379
380static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
381{
382 struct memcg_shrinker_map *map;
383 int nid, size, ret = 0;
384
385 if (mem_cgroup_is_root(memcg))
386 return 0;
387
388 mutex_lock(&memcg_shrinker_map_mutex);
389 size = memcg_shrinker_map_size;
390 for_each_node(nid) {
391 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
392 if (!map) {
393 memcg_free_shrinker_maps(memcg);
394 ret = -ENOMEM;
395 break;
396 }
397 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
398 }
399 mutex_unlock(&memcg_shrinker_map_mutex);
400
401 return ret;
402}
403
404int memcg_expand_shrinker_maps(int new_id)
405{
406 int size, old_size, ret = 0;
407 struct mem_cgroup *memcg;
408
409 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
410 old_size = memcg_shrinker_map_size;
411 if (size <= old_size)
412 return 0;
413
414 mutex_lock(&memcg_shrinker_map_mutex);
415 if (!root_mem_cgroup)
416 goto unlock;
417
418 for_each_mem_cgroup(memcg) {
419 if (mem_cgroup_is_root(memcg))
420 continue;
421 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
422 if (ret)
423 goto unlock;
424 }
425unlock:
426 if (!ret)
427 memcg_shrinker_map_size = size;
428 mutex_unlock(&memcg_shrinker_map_mutex);
429 return ret;
430}
fae91d6d
KT
431
432void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
433{
434 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
435 struct memcg_shrinker_map *map;
436
437 rcu_read_lock();
438 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
439 /* Pairs with smp mb in shrink_slab() */
440 smp_mb__before_atomic();
fae91d6d
KT
441 set_bit(shrinker_id, map->map);
442 rcu_read_unlock();
443 }
444}
445
0a4465d3
KT
446#else /* CONFIG_MEMCG_KMEM */
447static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
448{
449 return 0;
450}
451static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 452#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 453
ad7fa852
TH
454/**
455 * mem_cgroup_css_from_page - css of the memcg associated with a page
456 * @page: page of interest
457 *
458 * If memcg is bound to the default hierarchy, css of the memcg associated
459 * with @page is returned. The returned css remains associated with @page
460 * until it is released.
461 *
462 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
463 * is returned.
ad7fa852
TH
464 */
465struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
466{
467 struct mem_cgroup *memcg;
468
ad7fa852
TH
469 memcg = page->mem_cgroup;
470
9e10a130 471 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
472 memcg = root_mem_cgroup;
473
ad7fa852
TH
474 return &memcg->css;
475}
476
2fc04524
VD
477/**
478 * page_cgroup_ino - return inode number of the memcg a page is charged to
479 * @page: the page
480 *
481 * Look up the closest online ancestor of the memory cgroup @page is charged to
482 * and return its inode number or 0 if @page is not charged to any cgroup. It
483 * is safe to call this function without holding a reference to @page.
484 *
485 * Note, this function is inherently racy, because there is nothing to prevent
486 * the cgroup inode from getting torn down and potentially reallocated a moment
487 * after page_cgroup_ino() returns, so it only should be used by callers that
488 * do not care (such as procfs interfaces).
489 */
490ino_t page_cgroup_ino(struct page *page)
491{
492 struct mem_cgroup *memcg;
493 unsigned long ino = 0;
494
495 rcu_read_lock();
496 memcg = READ_ONCE(page->mem_cgroup);
497 while (memcg && !(memcg->css.flags & CSS_ONLINE))
498 memcg = parent_mem_cgroup(memcg);
499 if (memcg)
500 ino = cgroup_ino(memcg->css.cgroup);
501 rcu_read_unlock();
502 return ino;
503}
504
ef8f2327
MG
505static struct mem_cgroup_per_node *
506mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 507{
97a6c37b 508 int nid = page_to_nid(page);
f64c3f54 509
ef8f2327 510 return memcg->nodeinfo[nid];
f64c3f54
BS
511}
512
ef8f2327
MG
513static struct mem_cgroup_tree_per_node *
514soft_limit_tree_node(int nid)
bb4cc1a8 515{
ef8f2327 516 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
517}
518
ef8f2327 519static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
520soft_limit_tree_from_page(struct page *page)
521{
522 int nid = page_to_nid(page);
bb4cc1a8 523
ef8f2327 524 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
525}
526
ef8f2327
MG
527static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
528 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 529 unsigned long new_usage_in_excess)
bb4cc1a8
AM
530{
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
ef8f2327 533 struct mem_cgroup_per_node *mz_node;
fa90b2fd 534 bool rightmost = true;
bb4cc1a8
AM
535
536 if (mz->on_tree)
537 return;
538
539 mz->usage_in_excess = new_usage_in_excess;
540 if (!mz->usage_in_excess)
541 return;
542 while (*p) {
543 parent = *p;
ef8f2327 544 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 545 tree_node);
fa90b2fd 546 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 547 p = &(*p)->rb_left;
fa90b2fd
DB
548 rightmost = false;
549 }
550
bb4cc1a8
AM
551 /*
552 * We can't avoid mem cgroups that are over their soft
553 * limit by the same amount
554 */
555 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
556 p = &(*p)->rb_right;
557 }
fa90b2fd
DB
558
559 if (rightmost)
560 mctz->rb_rightmost = &mz->tree_node;
561
bb4cc1a8
AM
562 rb_link_node(&mz->tree_node, parent, p);
563 rb_insert_color(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = true;
565}
566
ef8f2327
MG
567static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
569{
570 if (!mz->on_tree)
571 return;
fa90b2fd
DB
572
573 if (&mz->tree_node == mctz->rb_rightmost)
574 mctz->rb_rightmost = rb_prev(&mz->tree_node);
575
bb4cc1a8
AM
576 rb_erase(&mz->tree_node, &mctz->rb_root);
577 mz->on_tree = false;
578}
579
ef8f2327
MG
580static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
581 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 582{
0a31bc97
JW
583 unsigned long flags;
584
585 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 586 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 587 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
588}
589
3e32cb2e
JW
590static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
591{
592 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 593 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
594 unsigned long excess = 0;
595
596 if (nr_pages > soft_limit)
597 excess = nr_pages - soft_limit;
598
599 return excess;
600}
bb4cc1a8
AM
601
602static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
603{
3e32cb2e 604 unsigned long excess;
ef8f2327
MG
605 struct mem_cgroup_per_node *mz;
606 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 607
e231875b 608 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
609 if (!mctz)
610 return;
bb4cc1a8
AM
611 /*
612 * Necessary to update all ancestors when hierarchy is used.
613 * because their event counter is not touched.
614 */
615 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 616 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 617 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
618 /*
619 * We have to update the tree if mz is on RB-tree or
620 * mem is over its softlimit.
621 */
622 if (excess || mz->on_tree) {
0a31bc97
JW
623 unsigned long flags;
624
625 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
626 /* if on-tree, remove it */
627 if (mz->on_tree)
cf2c8127 628 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
629 /*
630 * Insert again. mz->usage_in_excess will be updated.
631 * If excess is 0, no tree ops.
632 */
cf2c8127 633 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 634 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
635 }
636 }
637}
638
639static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
640{
ef8f2327
MG
641 struct mem_cgroup_tree_per_node *mctz;
642 struct mem_cgroup_per_node *mz;
643 int nid;
bb4cc1a8 644
e231875b 645 for_each_node(nid) {
ef8f2327
MG
646 mz = mem_cgroup_nodeinfo(memcg, nid);
647 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
648 if (mctz)
649 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
650 }
651}
652
ef8f2327
MG
653static struct mem_cgroup_per_node *
654__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 655{
ef8f2327 656 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
657
658retry:
659 mz = NULL;
fa90b2fd 660 if (!mctz->rb_rightmost)
bb4cc1a8
AM
661 goto done; /* Nothing to reclaim from */
662
fa90b2fd
DB
663 mz = rb_entry(mctz->rb_rightmost,
664 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
665 /*
666 * Remove the node now but someone else can add it back,
667 * we will to add it back at the end of reclaim to its correct
668 * position in the tree.
669 */
cf2c8127 670 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 671 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 672 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
673 goto retry;
674done:
675 return mz;
676}
677
ef8f2327
MG
678static struct mem_cgroup_per_node *
679mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 680{
ef8f2327 681 struct mem_cgroup_per_node *mz;
bb4cc1a8 682
0a31bc97 683 spin_lock_irq(&mctz->lock);
bb4cc1a8 684 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 685 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
686 return mz;
687}
688
ccda7f43 689static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 690 int event)
e9f8974f 691{
a983b5eb 692 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
693}
694
c0ff4b85 695static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 696 struct page *page,
f627c2f5 697 bool compound, int nr_pages)
d52aa412 698{
b2402857
KH
699 /*
700 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
701 * counted as CACHE even if it's on ANON LRU.
702 */
0a31bc97 703 if (PageAnon(page))
c9019e9b 704 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 705 else {
c9019e9b 706 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 707 if (PageSwapBacked(page))
c9019e9b 708 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 709 }
55e462b0 710
f627c2f5
KS
711 if (compound) {
712 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 713 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 714 }
b070e65c 715
e401f176
KH
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
c9019e9b 718 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 719 else {
c9019e9b 720 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
721 nr_pages = -nr_pages; /* for event */
722 }
e401f176 723
a983b5eb 724 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
725}
726
0a6b76dd
VD
727unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid, unsigned int lru_mask)
bb2a0de9 729{
b4536f0c 730 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 731 unsigned long nr = 0;
ef8f2327 732 enum lru_list lru;
889976db 733
e231875b 734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 735
ef8f2327
MG
736 for_each_lru(lru) {
737 if (!(BIT(lru) & lru_mask))
738 continue;
b4536f0c 739 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
740 }
741 return nr;
889976db 742}
bb2a0de9 743
c0ff4b85 744static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 745 unsigned int lru_mask)
6d12e2d8 746{
e231875b 747 unsigned long nr = 0;
889976db 748 int nid;
6d12e2d8 749
31aaea4a 750 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
751 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
752 return nr;
d52aa412
KH
753}
754
f53d7ce3
JW
755static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
756 enum mem_cgroup_events_target target)
7a159cc9
JW
757{
758 unsigned long val, next;
759
a983b5eb
JW
760 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
761 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 762 /* from time_after() in jiffies.h */
6a1a8b80 763 if ((long)(next - val) < 0) {
f53d7ce3
JW
764 switch (target) {
765 case MEM_CGROUP_TARGET_THRESH:
766 next = val + THRESHOLDS_EVENTS_TARGET;
767 break;
bb4cc1a8
AM
768 case MEM_CGROUP_TARGET_SOFTLIMIT:
769 next = val + SOFTLIMIT_EVENTS_TARGET;
770 break;
f53d7ce3
JW
771 case MEM_CGROUP_TARGET_NUMAINFO:
772 next = val + NUMAINFO_EVENTS_TARGET;
773 break;
774 default:
775 break;
776 }
a983b5eb 777 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 778 return true;
7a159cc9 779 }
f53d7ce3 780 return false;
d2265e6f
KH
781}
782
783/*
784 * Check events in order.
785 *
786 */
c0ff4b85 787static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
788{
789 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
790 if (unlikely(mem_cgroup_event_ratelimit(memcg,
791 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 792 bool do_softlimit;
82b3f2a7 793 bool do_numainfo __maybe_unused;
f53d7ce3 794
bb4cc1a8
AM
795 do_softlimit = mem_cgroup_event_ratelimit(memcg,
796 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
797#if MAX_NUMNODES > 1
798 do_numainfo = mem_cgroup_event_ratelimit(memcg,
799 MEM_CGROUP_TARGET_NUMAINFO);
800#endif
c0ff4b85 801 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
802 if (unlikely(do_softlimit))
803 mem_cgroup_update_tree(memcg, page);
453a9bf3 804#if MAX_NUMNODES > 1
f53d7ce3 805 if (unlikely(do_numainfo))
c0ff4b85 806 atomic_inc(&memcg->numainfo_events);
453a9bf3 807#endif
0a31bc97 808 }
d2265e6f
KH
809}
810
cf475ad2 811struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 812{
31a78f23
BS
813 /*
814 * mm_update_next_owner() may clear mm->owner to NULL
815 * if it races with swapoff, page migration, etc.
816 * So this can be called with p == NULL.
817 */
818 if (unlikely(!p))
819 return NULL;
820
073219e9 821 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 822}
33398cf2 823EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 824
d46eb14b
SB
825/**
826 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
827 * @mm: mm from which memcg should be extracted. It can be NULL.
828 *
829 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
830 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
831 * returned.
832 */
833struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 834{
d46eb14b
SB
835 struct mem_cgroup *memcg;
836
837 if (mem_cgroup_disabled())
838 return NULL;
0b7f569e 839
54595fe2
KH
840 rcu_read_lock();
841 do {
6f6acb00
MH
842 /*
843 * Page cache insertions can happen withou an
844 * actual mm context, e.g. during disk probing
845 * on boot, loopback IO, acct() writes etc.
846 */
847 if (unlikely(!mm))
df381975 848 memcg = root_mem_cgroup;
6f6acb00
MH
849 else {
850 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 if (unlikely(!memcg))
852 memcg = root_mem_cgroup;
853 }
ec903c0c 854 } while (!css_tryget_online(&memcg->css));
54595fe2 855 rcu_read_unlock();
c0ff4b85 856 return memcg;
54595fe2 857}
d46eb14b
SB
858EXPORT_SYMBOL(get_mem_cgroup_from_mm);
859
f745c6f5
SB
860/**
861 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
862 * @page: page from which memcg should be extracted.
863 *
864 * Obtain a reference on page->memcg and returns it if successful. Otherwise
865 * root_mem_cgroup is returned.
866 */
867struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
868{
869 struct mem_cgroup *memcg = page->mem_cgroup;
870
871 if (mem_cgroup_disabled())
872 return NULL;
873
874 rcu_read_lock();
875 if (!memcg || !css_tryget_online(&memcg->css))
876 memcg = root_mem_cgroup;
877 rcu_read_unlock();
878 return memcg;
879}
880EXPORT_SYMBOL(get_mem_cgroup_from_page);
881
d46eb14b
SB
882/**
883 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
884 */
885static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
886{
887 if (unlikely(current->active_memcg)) {
888 struct mem_cgroup *memcg = root_mem_cgroup;
889
890 rcu_read_lock();
891 if (css_tryget_online(&current->active_memcg->css))
892 memcg = current->active_memcg;
893 rcu_read_unlock();
894 return memcg;
895 }
896 return get_mem_cgroup_from_mm(current->mm);
897}
54595fe2 898
5660048c
JW
899/**
900 * mem_cgroup_iter - iterate over memory cgroup hierarchy
901 * @root: hierarchy root
902 * @prev: previously returned memcg, NULL on first invocation
903 * @reclaim: cookie for shared reclaim walks, NULL for full walks
904 *
905 * Returns references to children of the hierarchy below @root, or
906 * @root itself, or %NULL after a full round-trip.
907 *
908 * Caller must pass the return value in @prev on subsequent
909 * invocations for reference counting, or use mem_cgroup_iter_break()
910 * to cancel a hierarchy walk before the round-trip is complete.
911 *
b213b54f 912 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 913 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 914 * reclaimers operating on the same node and priority.
5660048c 915 */
694fbc0f 916struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 917 struct mem_cgroup *prev,
694fbc0f 918 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 919{
33398cf2 920 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 921 struct cgroup_subsys_state *css = NULL;
9f3a0d09 922 struct mem_cgroup *memcg = NULL;
5ac8fb31 923 struct mem_cgroup *pos = NULL;
711d3d2c 924
694fbc0f
AM
925 if (mem_cgroup_disabled())
926 return NULL;
5660048c 927
9f3a0d09
JW
928 if (!root)
929 root = root_mem_cgroup;
7d74b06f 930
9f3a0d09 931 if (prev && !reclaim)
5ac8fb31 932 pos = prev;
14067bb3 933
9f3a0d09
JW
934 if (!root->use_hierarchy && root != root_mem_cgroup) {
935 if (prev)
5ac8fb31 936 goto out;
694fbc0f 937 return root;
9f3a0d09 938 }
14067bb3 939
542f85f9 940 rcu_read_lock();
5f578161 941
5ac8fb31 942 if (reclaim) {
ef8f2327 943 struct mem_cgroup_per_node *mz;
5ac8fb31 944
ef8f2327 945 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
946 iter = &mz->iter[reclaim->priority];
947
948 if (prev && reclaim->generation != iter->generation)
949 goto out_unlock;
950
6df38689 951 while (1) {
4db0c3c2 952 pos = READ_ONCE(iter->position);
6df38689
VD
953 if (!pos || css_tryget(&pos->css))
954 break;
5ac8fb31 955 /*
6df38689
VD
956 * css reference reached zero, so iter->position will
957 * be cleared by ->css_released. However, we should not
958 * rely on this happening soon, because ->css_released
959 * is called from a work queue, and by busy-waiting we
960 * might block it. So we clear iter->position right
961 * away.
5ac8fb31 962 */
6df38689
VD
963 (void)cmpxchg(&iter->position, pos, NULL);
964 }
5ac8fb31
JW
965 }
966
967 if (pos)
968 css = &pos->css;
969
970 for (;;) {
971 css = css_next_descendant_pre(css, &root->css);
972 if (!css) {
973 /*
974 * Reclaimers share the hierarchy walk, and a
975 * new one might jump in right at the end of
976 * the hierarchy - make sure they see at least
977 * one group and restart from the beginning.
978 */
979 if (!prev)
980 continue;
981 break;
527a5ec9 982 }
7d74b06f 983
5ac8fb31
JW
984 /*
985 * Verify the css and acquire a reference. The root
986 * is provided by the caller, so we know it's alive
987 * and kicking, and don't take an extra reference.
988 */
989 memcg = mem_cgroup_from_css(css);
14067bb3 990
5ac8fb31
JW
991 if (css == &root->css)
992 break;
14067bb3 993
0b8f73e1
JW
994 if (css_tryget(css))
995 break;
9f3a0d09 996
5ac8fb31 997 memcg = NULL;
9f3a0d09 998 }
5ac8fb31
JW
999
1000 if (reclaim) {
5ac8fb31 1001 /*
6df38689
VD
1002 * The position could have already been updated by a competing
1003 * thread, so check that the value hasn't changed since we read
1004 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1005 */
6df38689
VD
1006 (void)cmpxchg(&iter->position, pos, memcg);
1007
5ac8fb31
JW
1008 if (pos)
1009 css_put(&pos->css);
1010
1011 if (!memcg)
1012 iter->generation++;
1013 else if (!prev)
1014 reclaim->generation = iter->generation;
9f3a0d09 1015 }
5ac8fb31 1016
542f85f9
MH
1017out_unlock:
1018 rcu_read_unlock();
5ac8fb31 1019out:
c40046f3
MH
1020 if (prev && prev != root)
1021 css_put(&prev->css);
1022
9f3a0d09 1023 return memcg;
14067bb3 1024}
7d74b06f 1025
5660048c
JW
1026/**
1027 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1028 * @root: hierarchy root
1029 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1030 */
1031void mem_cgroup_iter_break(struct mem_cgroup *root,
1032 struct mem_cgroup *prev)
9f3a0d09
JW
1033{
1034 if (!root)
1035 root = root_mem_cgroup;
1036 if (prev && prev != root)
1037 css_put(&prev->css);
1038}
7d74b06f 1039
6df38689
VD
1040static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1041{
1042 struct mem_cgroup *memcg = dead_memcg;
1043 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1044 struct mem_cgroup_per_node *mz;
1045 int nid;
6df38689
VD
1046 int i;
1047
9f15bde6 1048 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1049 for_each_node(nid) {
ef8f2327
MG
1050 mz = mem_cgroup_nodeinfo(memcg, nid);
1051 for (i = 0; i <= DEF_PRIORITY; i++) {
1052 iter = &mz->iter[i];
1053 cmpxchg(&iter->position,
1054 dead_memcg, NULL);
6df38689
VD
1055 }
1056 }
1057 }
1058}
1059
7c5f64f8
VD
1060/**
1061 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1062 * @memcg: hierarchy root
1063 * @fn: function to call for each task
1064 * @arg: argument passed to @fn
1065 *
1066 * This function iterates over tasks attached to @memcg or to any of its
1067 * descendants and calls @fn for each task. If @fn returns a non-zero
1068 * value, the function breaks the iteration loop and returns the value.
1069 * Otherwise, it will iterate over all tasks and return 0.
1070 *
1071 * This function must not be called for the root memory cgroup.
1072 */
1073int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1074 int (*fn)(struct task_struct *, void *), void *arg)
1075{
1076 struct mem_cgroup *iter;
1077 int ret = 0;
1078
1079 BUG_ON(memcg == root_mem_cgroup);
1080
1081 for_each_mem_cgroup_tree(iter, memcg) {
1082 struct css_task_iter it;
1083 struct task_struct *task;
1084
bc2fb7ed 1085 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1086 while (!ret && (task = css_task_iter_next(&it)))
1087 ret = fn(task, arg);
1088 css_task_iter_end(&it);
1089 if (ret) {
1090 mem_cgroup_iter_break(memcg, iter);
1091 break;
1092 }
1093 }
1094 return ret;
1095}
1096
925b7673 1097/**
dfe0e773 1098 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1099 * @page: the page
f144c390 1100 * @pgdat: pgdat of the page
dfe0e773
JW
1101 *
1102 * This function is only safe when following the LRU page isolation
1103 * and putback protocol: the LRU lock must be held, and the page must
1104 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1105 */
599d0c95 1106struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1107{
ef8f2327 1108 struct mem_cgroup_per_node *mz;
925b7673 1109 struct mem_cgroup *memcg;
bea8c150 1110 struct lruvec *lruvec;
6d12e2d8 1111
bea8c150 1112 if (mem_cgroup_disabled()) {
599d0c95 1113 lruvec = &pgdat->lruvec;
bea8c150
HD
1114 goto out;
1115 }
925b7673 1116
1306a85a 1117 memcg = page->mem_cgroup;
7512102c 1118 /*
dfe0e773 1119 * Swapcache readahead pages are added to the LRU - and
29833315 1120 * possibly migrated - before they are charged.
7512102c 1121 */
29833315
JW
1122 if (!memcg)
1123 memcg = root_mem_cgroup;
7512102c 1124
ef8f2327 1125 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1126 lruvec = &mz->lruvec;
1127out:
1128 /*
1129 * Since a node can be onlined after the mem_cgroup was created,
1130 * we have to be prepared to initialize lruvec->zone here;
1131 * and if offlined then reonlined, we need to reinitialize it.
1132 */
599d0c95
MG
1133 if (unlikely(lruvec->pgdat != pgdat))
1134 lruvec->pgdat = pgdat;
bea8c150 1135 return lruvec;
08e552c6 1136}
b69408e8 1137
925b7673 1138/**
fa9add64
HD
1139 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1140 * @lruvec: mem_cgroup per zone lru vector
1141 * @lru: index of lru list the page is sitting on
b4536f0c 1142 * @zid: zone id of the accounted pages
fa9add64 1143 * @nr_pages: positive when adding or negative when removing
925b7673 1144 *
ca707239
HD
1145 * This function must be called under lru_lock, just before a page is added
1146 * to or just after a page is removed from an lru list (that ordering being
1147 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1148 */
fa9add64 1149void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1150 int zid, int nr_pages)
3f58a829 1151{
ef8f2327 1152 struct mem_cgroup_per_node *mz;
fa9add64 1153 unsigned long *lru_size;
ca707239 1154 long size;
3f58a829
MK
1155
1156 if (mem_cgroup_disabled())
1157 return;
1158
ef8f2327 1159 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1160 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1161
1162 if (nr_pages < 0)
1163 *lru_size += nr_pages;
1164
1165 size = *lru_size;
b4536f0c
MH
1166 if (WARN_ONCE(size < 0,
1167 "%s(%p, %d, %d): lru_size %ld\n",
1168 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1169 VM_BUG_ON(1);
1170 *lru_size = 0;
1171 }
1172
1173 if (nr_pages > 0)
1174 *lru_size += nr_pages;
08e552c6 1175}
544122e5 1176
2314b42d 1177bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1178{
2314b42d 1179 struct mem_cgroup *task_memcg;
158e0a2d 1180 struct task_struct *p;
ffbdccf5 1181 bool ret;
4c4a2214 1182
158e0a2d 1183 p = find_lock_task_mm(task);
de077d22 1184 if (p) {
2314b42d 1185 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1186 task_unlock(p);
1187 } else {
1188 /*
1189 * All threads may have already detached their mm's, but the oom
1190 * killer still needs to detect if they have already been oom
1191 * killed to prevent needlessly killing additional tasks.
1192 */
ffbdccf5 1193 rcu_read_lock();
2314b42d
JW
1194 task_memcg = mem_cgroup_from_task(task);
1195 css_get(&task_memcg->css);
ffbdccf5 1196 rcu_read_unlock();
de077d22 1197 }
2314b42d
JW
1198 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1199 css_put(&task_memcg->css);
4c4a2214
DR
1200 return ret;
1201}
1202
19942822 1203/**
9d11ea9f 1204 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1205 * @memcg: the memory cgroup
19942822 1206 *
9d11ea9f 1207 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1208 * pages.
19942822 1209 */
c0ff4b85 1210static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1211{
3e32cb2e
JW
1212 unsigned long margin = 0;
1213 unsigned long count;
1214 unsigned long limit;
9d11ea9f 1215
3e32cb2e 1216 count = page_counter_read(&memcg->memory);
bbec2e15 1217 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1218 if (count < limit)
1219 margin = limit - count;
1220
7941d214 1221 if (do_memsw_account()) {
3e32cb2e 1222 count = page_counter_read(&memcg->memsw);
bbec2e15 1223 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1224 if (count <= limit)
1225 margin = min(margin, limit - count);
cbedbac3
LR
1226 else
1227 margin = 0;
3e32cb2e
JW
1228 }
1229
1230 return margin;
19942822
JW
1231}
1232
32047e2a 1233/*
bdcbb659 1234 * A routine for checking "mem" is under move_account() or not.
32047e2a 1235 *
bdcbb659
QH
1236 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1237 * moving cgroups. This is for waiting at high-memory pressure
1238 * caused by "move".
32047e2a 1239 */
c0ff4b85 1240static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1241{
2bd9bb20
KH
1242 struct mem_cgroup *from;
1243 struct mem_cgroup *to;
4b534334 1244 bool ret = false;
2bd9bb20
KH
1245 /*
1246 * Unlike task_move routines, we access mc.to, mc.from not under
1247 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1248 */
1249 spin_lock(&mc.lock);
1250 from = mc.from;
1251 to = mc.to;
1252 if (!from)
1253 goto unlock;
3e92041d 1254
2314b42d
JW
1255 ret = mem_cgroup_is_descendant(from, memcg) ||
1256 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1257unlock:
1258 spin_unlock(&mc.lock);
4b534334
KH
1259 return ret;
1260}
1261
c0ff4b85 1262static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1263{
1264 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1265 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1266 DEFINE_WAIT(wait);
1267 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1268 /* moving charge context might have finished. */
1269 if (mc.moving_task)
1270 schedule();
1271 finish_wait(&mc.waitq, &wait);
1272 return true;
1273 }
1274 }
1275 return false;
1276}
1277
8ad6e404 1278static const unsigned int memcg1_stats[] = {
71cd3113
JW
1279 MEMCG_CACHE,
1280 MEMCG_RSS,
1281 MEMCG_RSS_HUGE,
1282 NR_SHMEM,
1283 NR_FILE_MAPPED,
1284 NR_FILE_DIRTY,
1285 NR_WRITEBACK,
1286 MEMCG_SWAP,
1287};
1288
1289static const char *const memcg1_stat_names[] = {
1290 "cache",
1291 "rss",
1292 "rss_huge",
1293 "shmem",
1294 "mapped_file",
1295 "dirty",
1296 "writeback",
1297 "swap",
1298};
1299
58cf188e 1300#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1301/**
58cf188e 1302 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1303 * @memcg: The memory cgroup that went over limit
1304 * @p: Task that is going to be killed
1305 *
1306 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1307 * enabled
1308 */
1309void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1310{
58cf188e
SZ
1311 struct mem_cgroup *iter;
1312 unsigned int i;
e222432b 1313
e222432b
BS
1314 rcu_read_lock();
1315
2415b9f5
BV
1316 if (p) {
1317 pr_info("Task in ");
1318 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1319 pr_cont(" killed as a result of limit of ");
1320 } else {
1321 pr_info("Memory limit reached of cgroup ");
1322 }
1323
e61734c5 1324 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1325 pr_cont("\n");
e222432b 1326
e222432b
BS
1327 rcu_read_unlock();
1328
3e32cb2e
JW
1329 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1331 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1332 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1333 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1334 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1335 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1336 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1337 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1338
1339 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1340 pr_info("Memory cgroup stats for ");
1341 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1342 pr_cont(":");
1343
71cd3113
JW
1344 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1345 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1346 continue;
71cd3113 1347 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1348 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1349 }
1350
1351 for (i = 0; i < NR_LRU_LISTS; i++)
1352 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1353 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1354
1355 pr_cont("\n");
1356 }
e222432b
BS
1357}
1358
a63d83f4
DR
1359/*
1360 * Return the memory (and swap, if configured) limit for a memcg.
1361 */
bbec2e15 1362unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1363{
bbec2e15 1364 unsigned long max;
f3e8eb70 1365
bbec2e15 1366 max = memcg->memory.max;
9a5a8f19 1367 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1368 unsigned long memsw_max;
1369 unsigned long swap_max;
9a5a8f19 1370
bbec2e15
RG
1371 memsw_max = memcg->memsw.max;
1372 swap_max = memcg->swap.max;
1373 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1374 max = min(max + swap_max, memsw_max);
9a5a8f19 1375 }
bbec2e15 1376 return max;
a63d83f4
DR
1377}
1378
b6e6edcf 1379static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1380 int order)
9cbb78bb 1381{
6e0fc46d
DR
1382 struct oom_control oc = {
1383 .zonelist = NULL,
1384 .nodemask = NULL,
2a966b77 1385 .memcg = memcg,
6e0fc46d
DR
1386 .gfp_mask = gfp_mask,
1387 .order = order,
6e0fc46d 1388 };
7c5f64f8 1389 bool ret;
9cbb78bb 1390
9d785b92
TH
1391 if (mutex_lock_killable(&oom_lock))
1392 return true;
1393 /*
1394 * A few threads which were not waiting at mutex_lock_killable() can
1395 * fail to bail out. Therefore, check again after holding oom_lock.
1396 */
1397 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1398 mutex_unlock(&oom_lock);
7c5f64f8 1399 return ret;
9cbb78bb
DR
1400}
1401
ae6e71d3
MC
1402#if MAX_NUMNODES > 1
1403
4d0c066d
KH
1404/**
1405 * test_mem_cgroup_node_reclaimable
dad7557e 1406 * @memcg: the target memcg
4d0c066d
KH
1407 * @nid: the node ID to be checked.
1408 * @noswap : specify true here if the user wants flle only information.
1409 *
1410 * This function returns whether the specified memcg contains any
1411 * reclaimable pages on a node. Returns true if there are any reclaimable
1412 * pages in the node.
1413 */
c0ff4b85 1414static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1415 int nid, bool noswap)
1416{
c0ff4b85 1417 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1418 return true;
1419 if (noswap || !total_swap_pages)
1420 return false;
c0ff4b85 1421 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1422 return true;
1423 return false;
1424
1425}
889976db
YH
1426
1427/*
1428 * Always updating the nodemask is not very good - even if we have an empty
1429 * list or the wrong list here, we can start from some node and traverse all
1430 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1431 *
1432 */
c0ff4b85 1433static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1434{
1435 int nid;
453a9bf3
KH
1436 /*
1437 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1438 * pagein/pageout changes since the last update.
1439 */
c0ff4b85 1440 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1441 return;
c0ff4b85 1442 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1443 return;
1444
889976db 1445 /* make a nodemask where this memcg uses memory from */
31aaea4a 1446 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1447
31aaea4a 1448 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1449
c0ff4b85
R
1450 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1451 node_clear(nid, memcg->scan_nodes);
889976db 1452 }
453a9bf3 1453
c0ff4b85
R
1454 atomic_set(&memcg->numainfo_events, 0);
1455 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1456}
1457
1458/*
1459 * Selecting a node where we start reclaim from. Because what we need is just
1460 * reducing usage counter, start from anywhere is O,K. Considering
1461 * memory reclaim from current node, there are pros. and cons.
1462 *
1463 * Freeing memory from current node means freeing memory from a node which
1464 * we'll use or we've used. So, it may make LRU bad. And if several threads
1465 * hit limits, it will see a contention on a node. But freeing from remote
1466 * node means more costs for memory reclaim because of memory latency.
1467 *
1468 * Now, we use round-robin. Better algorithm is welcomed.
1469 */
c0ff4b85 1470int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1471{
1472 int node;
1473
c0ff4b85
R
1474 mem_cgroup_may_update_nodemask(memcg);
1475 node = memcg->last_scanned_node;
889976db 1476
0edaf86c 1477 node = next_node_in(node, memcg->scan_nodes);
889976db 1478 /*
fda3d69b
MH
1479 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1480 * last time it really checked all the LRUs due to rate limiting.
1481 * Fallback to the current node in that case for simplicity.
889976db
YH
1482 */
1483 if (unlikely(node == MAX_NUMNODES))
1484 node = numa_node_id();
1485
c0ff4b85 1486 memcg->last_scanned_node = node;
889976db
YH
1487 return node;
1488}
889976db 1489#else
c0ff4b85 1490int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1491{
1492 return 0;
1493}
1494#endif
1495
0608f43d 1496static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1497 pg_data_t *pgdat,
0608f43d
AM
1498 gfp_t gfp_mask,
1499 unsigned long *total_scanned)
1500{
1501 struct mem_cgroup *victim = NULL;
1502 int total = 0;
1503 int loop = 0;
1504 unsigned long excess;
1505 unsigned long nr_scanned;
1506 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1507 .pgdat = pgdat,
0608f43d
AM
1508 .priority = 0,
1509 };
1510
3e32cb2e 1511 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1512
1513 while (1) {
1514 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1515 if (!victim) {
1516 loop++;
1517 if (loop >= 2) {
1518 /*
1519 * If we have not been able to reclaim
1520 * anything, it might because there are
1521 * no reclaimable pages under this hierarchy
1522 */
1523 if (!total)
1524 break;
1525 /*
1526 * We want to do more targeted reclaim.
1527 * excess >> 2 is not to excessive so as to
1528 * reclaim too much, nor too less that we keep
1529 * coming back to reclaim from this cgroup
1530 */
1531 if (total >= (excess >> 2) ||
1532 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1533 break;
1534 }
1535 continue;
1536 }
a9dd0a83 1537 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1538 pgdat, &nr_scanned);
0608f43d 1539 *total_scanned += nr_scanned;
3e32cb2e 1540 if (!soft_limit_excess(root_memcg))
0608f43d 1541 break;
6d61ef40 1542 }
0608f43d
AM
1543 mem_cgroup_iter_break(root_memcg, victim);
1544 return total;
6d61ef40
BS
1545}
1546
0056f4e6
JW
1547#ifdef CONFIG_LOCKDEP
1548static struct lockdep_map memcg_oom_lock_dep_map = {
1549 .name = "memcg_oom_lock",
1550};
1551#endif
1552
fb2a6fc5
JW
1553static DEFINE_SPINLOCK(memcg_oom_lock);
1554
867578cb
KH
1555/*
1556 * Check OOM-Killer is already running under our hierarchy.
1557 * If someone is running, return false.
1558 */
fb2a6fc5 1559static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1560{
79dfdacc 1561 struct mem_cgroup *iter, *failed = NULL;
a636b327 1562
fb2a6fc5
JW
1563 spin_lock(&memcg_oom_lock);
1564
9f3a0d09 1565 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1566 if (iter->oom_lock) {
79dfdacc
MH
1567 /*
1568 * this subtree of our hierarchy is already locked
1569 * so we cannot give a lock.
1570 */
79dfdacc 1571 failed = iter;
9f3a0d09
JW
1572 mem_cgroup_iter_break(memcg, iter);
1573 break;
23751be0
JW
1574 } else
1575 iter->oom_lock = true;
7d74b06f 1576 }
867578cb 1577
fb2a6fc5
JW
1578 if (failed) {
1579 /*
1580 * OK, we failed to lock the whole subtree so we have
1581 * to clean up what we set up to the failing subtree
1582 */
1583 for_each_mem_cgroup_tree(iter, memcg) {
1584 if (iter == failed) {
1585 mem_cgroup_iter_break(memcg, iter);
1586 break;
1587 }
1588 iter->oom_lock = false;
79dfdacc 1589 }
0056f4e6
JW
1590 } else
1591 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1592
1593 spin_unlock(&memcg_oom_lock);
1594
1595 return !failed;
a636b327 1596}
0b7f569e 1597
fb2a6fc5 1598static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1599{
7d74b06f
KH
1600 struct mem_cgroup *iter;
1601
fb2a6fc5 1602 spin_lock(&memcg_oom_lock);
0056f4e6 1603 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1604 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1605 iter->oom_lock = false;
fb2a6fc5 1606 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1607}
1608
c0ff4b85 1609static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1610{
1611 struct mem_cgroup *iter;
1612
c2b42d3c 1613 spin_lock(&memcg_oom_lock);
c0ff4b85 1614 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1615 iter->under_oom++;
1616 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1617}
1618
c0ff4b85 1619static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1620{
1621 struct mem_cgroup *iter;
1622
867578cb
KH
1623 /*
1624 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1625 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1626 */
c2b42d3c 1627 spin_lock(&memcg_oom_lock);
c0ff4b85 1628 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1629 if (iter->under_oom > 0)
1630 iter->under_oom--;
1631 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1632}
1633
867578cb
KH
1634static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1635
dc98df5a 1636struct oom_wait_info {
d79154bb 1637 struct mem_cgroup *memcg;
ac6424b9 1638 wait_queue_entry_t wait;
dc98df5a
KH
1639};
1640
ac6424b9 1641static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1642 unsigned mode, int sync, void *arg)
1643{
d79154bb
HD
1644 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1645 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1646 struct oom_wait_info *oom_wait_info;
1647
1648 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1649 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1650
2314b42d
JW
1651 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1652 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1653 return 0;
dc98df5a
KH
1654 return autoremove_wake_function(wait, mode, sync, arg);
1655}
1656
c0ff4b85 1657static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1658{
c2b42d3c
TH
1659 /*
1660 * For the following lockless ->under_oom test, the only required
1661 * guarantee is that it must see the state asserted by an OOM when
1662 * this function is called as a result of userland actions
1663 * triggered by the notification of the OOM. This is trivially
1664 * achieved by invoking mem_cgroup_mark_under_oom() before
1665 * triggering notification.
1666 */
1667 if (memcg && memcg->under_oom)
f4b90b70 1668 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1669}
1670
29ef680a
MH
1671enum oom_status {
1672 OOM_SUCCESS,
1673 OOM_FAILED,
1674 OOM_ASYNC,
1675 OOM_SKIPPED
1676};
1677
1678static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1679{
1c5e0be3
MH
1680 enum oom_status ret;
1681 bool locked;
1682
29ef680a
MH
1683 if (order > PAGE_ALLOC_COSTLY_ORDER)
1684 return OOM_SKIPPED;
1685
867578cb 1686 /*
49426420
JW
1687 * We are in the middle of the charge context here, so we
1688 * don't want to block when potentially sitting on a callstack
1689 * that holds all kinds of filesystem and mm locks.
1690 *
29ef680a
MH
1691 * cgroup1 allows disabling the OOM killer and waiting for outside
1692 * handling until the charge can succeed; remember the context and put
1693 * the task to sleep at the end of the page fault when all locks are
1694 * released.
49426420 1695 *
29ef680a
MH
1696 * On the other hand, in-kernel OOM killer allows for an async victim
1697 * memory reclaim (oom_reaper) and that means that we are not solely
1698 * relying on the oom victim to make a forward progress and we can
1699 * invoke the oom killer here.
1700 *
1701 * Please note that mem_cgroup_out_of_memory might fail to find a
1702 * victim and then we have to bail out from the charge path.
867578cb 1703 */
29ef680a
MH
1704 if (memcg->oom_kill_disable) {
1705 if (!current->in_user_fault)
1706 return OOM_SKIPPED;
1707 css_get(&memcg->css);
1708 current->memcg_in_oom = memcg;
1709 current->memcg_oom_gfp_mask = mask;
1710 current->memcg_oom_order = order;
1711
1712 return OOM_ASYNC;
1713 }
1714
1c5e0be3
MH
1715 mem_cgroup_mark_under_oom(memcg);
1716
1717 locked = mem_cgroup_oom_trylock(memcg);
1718
1719 if (locked)
1720 mem_cgroup_oom_notify(memcg);
1721
1722 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1723 if (mem_cgroup_out_of_memory(memcg, mask, order))
1c5e0be3
MH
1724 ret = OOM_SUCCESS;
1725 else
1726 ret = OOM_FAILED;
1727
1728 if (locked)
1729 mem_cgroup_oom_unlock(memcg);
29ef680a 1730
1c5e0be3 1731 return ret;
3812c8c8
JW
1732}
1733
1734/**
1735 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1736 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1737 *
49426420
JW
1738 * This has to be called at the end of a page fault if the memcg OOM
1739 * handler was enabled.
3812c8c8 1740 *
49426420 1741 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1742 * sleep on a waitqueue until the userspace task resolves the
1743 * situation. Sleeping directly in the charge context with all kinds
1744 * of locks held is not a good idea, instead we remember an OOM state
1745 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1746 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1747 *
1748 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1749 * completed, %false otherwise.
3812c8c8 1750 */
49426420 1751bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1752{
626ebc41 1753 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1754 struct oom_wait_info owait;
49426420 1755 bool locked;
3812c8c8
JW
1756
1757 /* OOM is global, do not handle */
3812c8c8 1758 if (!memcg)
49426420 1759 return false;
3812c8c8 1760
7c5f64f8 1761 if (!handle)
49426420 1762 goto cleanup;
3812c8c8
JW
1763
1764 owait.memcg = memcg;
1765 owait.wait.flags = 0;
1766 owait.wait.func = memcg_oom_wake_function;
1767 owait.wait.private = current;
2055da97 1768 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1769
3812c8c8 1770 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1771 mem_cgroup_mark_under_oom(memcg);
1772
1773 locked = mem_cgroup_oom_trylock(memcg);
1774
1775 if (locked)
1776 mem_cgroup_oom_notify(memcg);
1777
1778 if (locked && !memcg->oom_kill_disable) {
1779 mem_cgroup_unmark_under_oom(memcg);
1780 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1781 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1782 current->memcg_oom_order);
49426420 1783 } else {
3812c8c8 1784 schedule();
49426420
JW
1785 mem_cgroup_unmark_under_oom(memcg);
1786 finish_wait(&memcg_oom_waitq, &owait.wait);
1787 }
1788
1789 if (locked) {
fb2a6fc5
JW
1790 mem_cgroup_oom_unlock(memcg);
1791 /*
1792 * There is no guarantee that an OOM-lock contender
1793 * sees the wakeups triggered by the OOM kill
1794 * uncharges. Wake any sleepers explicitely.
1795 */
1796 memcg_oom_recover(memcg);
1797 }
49426420 1798cleanup:
626ebc41 1799 current->memcg_in_oom = NULL;
3812c8c8 1800 css_put(&memcg->css);
867578cb 1801 return true;
0b7f569e
KH
1802}
1803
3d8b38eb
RG
1804/**
1805 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1806 * @victim: task to be killed by the OOM killer
1807 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1808 *
1809 * Returns a pointer to a memory cgroup, which has to be cleaned up
1810 * by killing all belonging OOM-killable tasks.
1811 *
1812 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1813 */
1814struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1815 struct mem_cgroup *oom_domain)
1816{
1817 struct mem_cgroup *oom_group = NULL;
1818 struct mem_cgroup *memcg;
1819
1820 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1821 return NULL;
1822
1823 if (!oom_domain)
1824 oom_domain = root_mem_cgroup;
1825
1826 rcu_read_lock();
1827
1828 memcg = mem_cgroup_from_task(victim);
1829 if (memcg == root_mem_cgroup)
1830 goto out;
1831
1832 /*
1833 * Traverse the memory cgroup hierarchy from the victim task's
1834 * cgroup up to the OOMing cgroup (or root) to find the
1835 * highest-level memory cgroup with oom.group set.
1836 */
1837 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1838 if (memcg->oom_group)
1839 oom_group = memcg;
1840
1841 if (memcg == oom_domain)
1842 break;
1843 }
1844
1845 if (oom_group)
1846 css_get(&oom_group->css);
1847out:
1848 rcu_read_unlock();
1849
1850 return oom_group;
1851}
1852
1853void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1854{
1855 pr_info("Tasks in ");
1856 pr_cont_cgroup_path(memcg->css.cgroup);
1857 pr_cont(" are going to be killed due to memory.oom.group set\n");
1858}
1859
d7365e78 1860/**
81f8c3a4
JW
1861 * lock_page_memcg - lock a page->mem_cgroup binding
1862 * @page: the page
32047e2a 1863 *
81f8c3a4 1864 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1865 * another cgroup.
1866 *
1867 * It ensures lifetime of the returned memcg. Caller is responsible
1868 * for the lifetime of the page; __unlock_page_memcg() is available
1869 * when @page might get freed inside the locked section.
d69b042f 1870 */
739f79fc 1871struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1872{
1873 struct mem_cgroup *memcg;
6de22619 1874 unsigned long flags;
89c06bd5 1875
6de22619
JW
1876 /*
1877 * The RCU lock is held throughout the transaction. The fast
1878 * path can get away without acquiring the memcg->move_lock
1879 * because page moving starts with an RCU grace period.
739f79fc
JW
1880 *
1881 * The RCU lock also protects the memcg from being freed when
1882 * the page state that is going to change is the only thing
1883 * preventing the page itself from being freed. E.g. writeback
1884 * doesn't hold a page reference and relies on PG_writeback to
1885 * keep off truncation, migration and so forth.
1886 */
d7365e78
JW
1887 rcu_read_lock();
1888
1889 if (mem_cgroup_disabled())
739f79fc 1890 return NULL;
89c06bd5 1891again:
1306a85a 1892 memcg = page->mem_cgroup;
29833315 1893 if (unlikely(!memcg))
739f79fc 1894 return NULL;
d7365e78 1895
bdcbb659 1896 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1897 return memcg;
89c06bd5 1898
6de22619 1899 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1900 if (memcg != page->mem_cgroup) {
6de22619 1901 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1902 goto again;
1903 }
6de22619
JW
1904
1905 /*
1906 * When charge migration first begins, we can have locked and
1907 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1908 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1909 */
1910 memcg->move_lock_task = current;
1911 memcg->move_lock_flags = flags;
d7365e78 1912
739f79fc 1913 return memcg;
89c06bd5 1914}
81f8c3a4 1915EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1916
d7365e78 1917/**
739f79fc
JW
1918 * __unlock_page_memcg - unlock and unpin a memcg
1919 * @memcg: the memcg
1920 *
1921 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1922 */
739f79fc 1923void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1924{
6de22619
JW
1925 if (memcg && memcg->move_lock_task == current) {
1926 unsigned long flags = memcg->move_lock_flags;
1927
1928 memcg->move_lock_task = NULL;
1929 memcg->move_lock_flags = 0;
1930
1931 spin_unlock_irqrestore(&memcg->move_lock, flags);
1932 }
89c06bd5 1933
d7365e78 1934 rcu_read_unlock();
89c06bd5 1935}
739f79fc
JW
1936
1937/**
1938 * unlock_page_memcg - unlock a page->mem_cgroup binding
1939 * @page: the page
1940 */
1941void unlock_page_memcg(struct page *page)
1942{
1943 __unlock_page_memcg(page->mem_cgroup);
1944}
81f8c3a4 1945EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1946
cdec2e42
KH
1947struct memcg_stock_pcp {
1948 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1949 unsigned int nr_pages;
cdec2e42 1950 struct work_struct work;
26fe6168 1951 unsigned long flags;
a0db00fc 1952#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1953};
1954static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1955static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1956
a0956d54
SS
1957/**
1958 * consume_stock: Try to consume stocked charge on this cpu.
1959 * @memcg: memcg to consume from.
1960 * @nr_pages: how many pages to charge.
1961 *
1962 * The charges will only happen if @memcg matches the current cpu's memcg
1963 * stock, and at least @nr_pages are available in that stock. Failure to
1964 * service an allocation will refill the stock.
1965 *
1966 * returns true if successful, false otherwise.
cdec2e42 1967 */
a0956d54 1968static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1969{
1970 struct memcg_stock_pcp *stock;
db2ba40c 1971 unsigned long flags;
3e32cb2e 1972 bool ret = false;
cdec2e42 1973
a983b5eb 1974 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1975 return ret;
a0956d54 1976
db2ba40c
JW
1977 local_irq_save(flags);
1978
1979 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1980 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1981 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1982 ret = true;
1983 }
db2ba40c
JW
1984
1985 local_irq_restore(flags);
1986
cdec2e42
KH
1987 return ret;
1988}
1989
1990/*
3e32cb2e 1991 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1992 */
1993static void drain_stock(struct memcg_stock_pcp *stock)
1994{
1995 struct mem_cgroup *old = stock->cached;
1996
11c9ea4e 1997 if (stock->nr_pages) {
3e32cb2e 1998 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1999 if (do_memsw_account())
3e32cb2e 2000 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2001 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2002 stock->nr_pages = 0;
cdec2e42
KH
2003 }
2004 stock->cached = NULL;
cdec2e42
KH
2005}
2006
cdec2e42
KH
2007static void drain_local_stock(struct work_struct *dummy)
2008{
db2ba40c
JW
2009 struct memcg_stock_pcp *stock;
2010 unsigned long flags;
2011
72f0184c
MH
2012 /*
2013 * The only protection from memory hotplug vs. drain_stock races is
2014 * that we always operate on local CPU stock here with IRQ disabled
2015 */
db2ba40c
JW
2016 local_irq_save(flags);
2017
2018 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2019 drain_stock(stock);
26fe6168 2020 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2021
2022 local_irq_restore(flags);
cdec2e42
KH
2023}
2024
2025/*
3e32cb2e 2026 * Cache charges(val) to local per_cpu area.
320cc51d 2027 * This will be consumed by consume_stock() function, later.
cdec2e42 2028 */
c0ff4b85 2029static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2030{
db2ba40c
JW
2031 struct memcg_stock_pcp *stock;
2032 unsigned long flags;
2033
2034 local_irq_save(flags);
cdec2e42 2035
db2ba40c 2036 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2037 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2038 drain_stock(stock);
c0ff4b85 2039 stock->cached = memcg;
cdec2e42 2040 }
11c9ea4e 2041 stock->nr_pages += nr_pages;
db2ba40c 2042
a983b5eb 2043 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2044 drain_stock(stock);
2045
db2ba40c 2046 local_irq_restore(flags);
cdec2e42
KH
2047}
2048
2049/*
c0ff4b85 2050 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2051 * of the hierarchy under it.
cdec2e42 2052 */
6d3d6aa2 2053static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2054{
26fe6168 2055 int cpu, curcpu;
d38144b7 2056
6d3d6aa2
JW
2057 /* If someone's already draining, avoid adding running more workers. */
2058 if (!mutex_trylock(&percpu_charge_mutex))
2059 return;
72f0184c
MH
2060 /*
2061 * Notify other cpus that system-wide "drain" is running
2062 * We do not care about races with the cpu hotplug because cpu down
2063 * as well as workers from this path always operate on the local
2064 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2065 */
5af12d0e 2066 curcpu = get_cpu();
cdec2e42
KH
2067 for_each_online_cpu(cpu) {
2068 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2069 struct mem_cgroup *memcg;
26fe6168 2070
c0ff4b85 2071 memcg = stock->cached;
72f0184c 2072 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2073 continue;
72f0184c
MH
2074 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2075 css_put(&memcg->css);
3e92041d 2076 continue;
72f0184c 2077 }
d1a05b69
MH
2078 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2079 if (cpu == curcpu)
2080 drain_local_stock(&stock->work);
2081 else
2082 schedule_work_on(cpu, &stock->work);
2083 }
72f0184c 2084 css_put(&memcg->css);
cdec2e42 2085 }
5af12d0e 2086 put_cpu();
9f50fad6 2087 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2088}
2089
308167fc 2090static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2091{
cdec2e42 2092 struct memcg_stock_pcp *stock;
a983b5eb 2093 struct mem_cgroup *memcg;
cdec2e42 2094
cdec2e42
KH
2095 stock = &per_cpu(memcg_stock, cpu);
2096 drain_stock(stock);
a983b5eb
JW
2097
2098 for_each_mem_cgroup(memcg) {
2099 int i;
2100
2101 for (i = 0; i < MEMCG_NR_STAT; i++) {
2102 int nid;
2103 long x;
2104
2105 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2106 if (x)
2107 atomic_long_add(x, &memcg->stat[i]);
2108
2109 if (i >= NR_VM_NODE_STAT_ITEMS)
2110 continue;
2111
2112 for_each_node(nid) {
2113 struct mem_cgroup_per_node *pn;
2114
2115 pn = mem_cgroup_nodeinfo(memcg, nid);
2116 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2117 if (x)
2118 atomic_long_add(x, &pn->lruvec_stat[i]);
2119 }
2120 }
2121
e27be240 2122 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2123 long x;
2124
2125 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2126 if (x)
2127 atomic_long_add(x, &memcg->events[i]);
2128 }
2129 }
2130
308167fc 2131 return 0;
cdec2e42
KH
2132}
2133
f7e1cb6e
JW
2134static void reclaim_high(struct mem_cgroup *memcg,
2135 unsigned int nr_pages,
2136 gfp_t gfp_mask)
2137{
2138 do {
2139 if (page_counter_read(&memcg->memory) <= memcg->high)
2140 continue;
e27be240 2141 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2142 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2143 } while ((memcg = parent_mem_cgroup(memcg)));
2144}
2145
2146static void high_work_func(struct work_struct *work)
2147{
2148 struct mem_cgroup *memcg;
2149
2150 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2151 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2152}
2153
b23afb93
TH
2154/*
2155 * Scheduled by try_charge() to be executed from the userland return path
2156 * and reclaims memory over the high limit.
2157 */
2158void mem_cgroup_handle_over_high(void)
2159{
2160 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2161 struct mem_cgroup *memcg;
b23afb93
TH
2162
2163 if (likely(!nr_pages))
2164 return;
2165
f7e1cb6e
JW
2166 memcg = get_mem_cgroup_from_mm(current->mm);
2167 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2168 css_put(&memcg->css);
2169 current->memcg_nr_pages_over_high = 0;
2170}
2171
00501b53
JW
2172static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2173 unsigned int nr_pages)
8a9f3ccd 2174{
a983b5eb 2175 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2176 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2177 struct mem_cgroup *mem_over_limit;
3e32cb2e 2178 struct page_counter *counter;
6539cc05 2179 unsigned long nr_reclaimed;
b70a2a21
JW
2180 bool may_swap = true;
2181 bool drained = false;
29ef680a
MH
2182 bool oomed = false;
2183 enum oom_status oom_status;
a636b327 2184
ce00a967 2185 if (mem_cgroup_is_root(memcg))
10d53c74 2186 return 0;
6539cc05 2187retry:
b6b6cc72 2188 if (consume_stock(memcg, nr_pages))
10d53c74 2189 return 0;
8a9f3ccd 2190
7941d214 2191 if (!do_memsw_account() ||
6071ca52
JW
2192 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2193 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2194 goto done_restock;
7941d214 2195 if (do_memsw_account())
3e32cb2e
JW
2196 page_counter_uncharge(&memcg->memsw, batch);
2197 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2198 } else {
3e32cb2e 2199 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2200 may_swap = false;
3fbe7244 2201 }
7a81b88c 2202
6539cc05
JW
2203 if (batch > nr_pages) {
2204 batch = nr_pages;
2205 goto retry;
2206 }
6d61ef40 2207
06b078fc
JW
2208 /*
2209 * Unlike in global OOM situations, memcg is not in a physical
2210 * memory shortage. Allow dying and OOM-killed tasks to
2211 * bypass the last charges so that they can exit quickly and
2212 * free their memory.
2213 */
9d785b92 2214 if (unlikely(should_force_charge()))
10d53c74 2215 goto force;
06b078fc 2216
89a28483
JW
2217 /*
2218 * Prevent unbounded recursion when reclaim operations need to
2219 * allocate memory. This might exceed the limits temporarily,
2220 * but we prefer facilitating memory reclaim and getting back
2221 * under the limit over triggering OOM kills in these cases.
2222 */
2223 if (unlikely(current->flags & PF_MEMALLOC))
2224 goto force;
2225
06b078fc
JW
2226 if (unlikely(task_in_memcg_oom(current)))
2227 goto nomem;
2228
d0164adc 2229 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2230 goto nomem;
4b534334 2231
e27be240 2232 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2233
b70a2a21
JW
2234 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2235 gfp_mask, may_swap);
6539cc05 2236
61e02c74 2237 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2238 goto retry;
28c34c29 2239
b70a2a21 2240 if (!drained) {
6d3d6aa2 2241 drain_all_stock(mem_over_limit);
b70a2a21
JW
2242 drained = true;
2243 goto retry;
2244 }
2245
28c34c29
JW
2246 if (gfp_mask & __GFP_NORETRY)
2247 goto nomem;
6539cc05
JW
2248 /*
2249 * Even though the limit is exceeded at this point, reclaim
2250 * may have been able to free some pages. Retry the charge
2251 * before killing the task.
2252 *
2253 * Only for regular pages, though: huge pages are rather
2254 * unlikely to succeed so close to the limit, and we fall back
2255 * to regular pages anyway in case of failure.
2256 */
61e02c74 2257 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2258 goto retry;
2259 /*
2260 * At task move, charge accounts can be doubly counted. So, it's
2261 * better to wait until the end of task_move if something is going on.
2262 */
2263 if (mem_cgroup_wait_acct_move(mem_over_limit))
2264 goto retry;
2265
9b130619
JW
2266 if (nr_retries--)
2267 goto retry;
2268
29ef680a
MH
2269 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2270 goto nomem;
2271
06b078fc 2272 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2273 goto force;
06b078fc 2274
6539cc05 2275 if (fatal_signal_pending(current))
10d53c74 2276 goto force;
6539cc05 2277
e27be240 2278 memcg_memory_event(mem_over_limit, MEMCG_OOM);
241994ed 2279
29ef680a
MH
2280 /*
2281 * keep retrying as long as the memcg oom killer is able to make
2282 * a forward progress or bypass the charge if the oom killer
2283 * couldn't make any progress.
2284 */
2285 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2286 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2287 switch (oom_status) {
2288 case OOM_SUCCESS:
2289 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2290 oomed = true;
2291 goto retry;
2292 case OOM_FAILED:
2293 goto force;
2294 default:
2295 goto nomem;
2296 }
7a81b88c 2297nomem:
6d1fdc48 2298 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2299 return -ENOMEM;
10d53c74
TH
2300force:
2301 /*
2302 * The allocation either can't fail or will lead to more memory
2303 * being freed very soon. Allow memory usage go over the limit
2304 * temporarily by force charging it.
2305 */
2306 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2307 if (do_memsw_account())
10d53c74
TH
2308 page_counter_charge(&memcg->memsw, nr_pages);
2309 css_get_many(&memcg->css, nr_pages);
2310
2311 return 0;
6539cc05
JW
2312
2313done_restock:
e8ea14cc 2314 css_get_many(&memcg->css, batch);
6539cc05
JW
2315 if (batch > nr_pages)
2316 refill_stock(memcg, batch - nr_pages);
b23afb93 2317
241994ed 2318 /*
b23afb93
TH
2319 * If the hierarchy is above the normal consumption range, schedule
2320 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2321 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2322 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2323 * not recorded as it most likely matches current's and won't
2324 * change in the meantime. As high limit is checked again before
2325 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2326 */
2327 do {
b23afb93 2328 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2329 /* Don't bother a random interrupted task */
2330 if (in_interrupt()) {
2331 schedule_work(&memcg->high_work);
2332 break;
2333 }
9516a18a 2334 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2335 set_notify_resume(current);
2336 break;
2337 }
241994ed 2338 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2339
2340 return 0;
7a81b88c 2341}
8a9f3ccd 2342
00501b53 2343static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2344{
ce00a967
JW
2345 if (mem_cgroup_is_root(memcg))
2346 return;
2347
3e32cb2e 2348 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2349 if (do_memsw_account())
3e32cb2e 2350 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2351
e8ea14cc 2352 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2353}
2354
0a31bc97
JW
2355static void lock_page_lru(struct page *page, int *isolated)
2356{
2357 struct zone *zone = page_zone(page);
2358
a52633d8 2359 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2360 if (PageLRU(page)) {
2361 struct lruvec *lruvec;
2362
599d0c95 2363 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2364 ClearPageLRU(page);
2365 del_page_from_lru_list(page, lruvec, page_lru(page));
2366 *isolated = 1;
2367 } else
2368 *isolated = 0;
2369}
2370
2371static void unlock_page_lru(struct page *page, int isolated)
2372{
2373 struct zone *zone = page_zone(page);
2374
2375 if (isolated) {
2376 struct lruvec *lruvec;
2377
599d0c95 2378 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2379 VM_BUG_ON_PAGE(PageLRU(page), page);
2380 SetPageLRU(page);
2381 add_page_to_lru_list(page, lruvec, page_lru(page));
2382 }
a52633d8 2383 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2384}
2385
00501b53 2386static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2387 bool lrucare)
7a81b88c 2388{
0a31bc97 2389 int isolated;
9ce70c02 2390
1306a85a 2391 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2392
2393 /*
2394 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2395 * may already be on some other mem_cgroup's LRU. Take care of it.
2396 */
0a31bc97
JW
2397 if (lrucare)
2398 lock_page_lru(page, &isolated);
9ce70c02 2399
0a31bc97
JW
2400 /*
2401 * Nobody should be changing or seriously looking at
1306a85a 2402 * page->mem_cgroup at this point:
0a31bc97
JW
2403 *
2404 * - the page is uncharged
2405 *
2406 * - the page is off-LRU
2407 *
2408 * - an anonymous fault has exclusive page access, except for
2409 * a locked page table
2410 *
2411 * - a page cache insertion, a swapin fault, or a migration
2412 * have the page locked
2413 */
1306a85a 2414 page->mem_cgroup = memcg;
9ce70c02 2415
0a31bc97
JW
2416 if (lrucare)
2417 unlock_page_lru(page, isolated);
7a81b88c 2418}
66e1707b 2419
84c07d11 2420#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2421static int memcg_alloc_cache_id(void)
55007d84 2422{
f3bb3043
VD
2423 int id, size;
2424 int err;
2425
dbcf73e2 2426 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2427 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2428 if (id < 0)
2429 return id;
55007d84 2430
dbcf73e2 2431 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2432 return id;
2433
2434 /*
2435 * There's no space for the new id in memcg_caches arrays,
2436 * so we have to grow them.
2437 */
05257a1a 2438 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2439
2440 size = 2 * (id + 1);
55007d84
GC
2441 if (size < MEMCG_CACHES_MIN_SIZE)
2442 size = MEMCG_CACHES_MIN_SIZE;
2443 else if (size > MEMCG_CACHES_MAX_SIZE)
2444 size = MEMCG_CACHES_MAX_SIZE;
2445
f3bb3043 2446 err = memcg_update_all_caches(size);
60d3fd32
VD
2447 if (!err)
2448 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2449 if (!err)
2450 memcg_nr_cache_ids = size;
2451
2452 up_write(&memcg_cache_ids_sem);
2453
f3bb3043 2454 if (err) {
dbcf73e2 2455 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2456 return err;
2457 }
2458 return id;
2459}
2460
2461static void memcg_free_cache_id(int id)
2462{
dbcf73e2 2463 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2464}
2465
d5b3cf71 2466struct memcg_kmem_cache_create_work {
5722d094
VD
2467 struct mem_cgroup *memcg;
2468 struct kmem_cache *cachep;
2469 struct work_struct work;
2470};
2471
d5b3cf71 2472static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2473{
d5b3cf71
VD
2474 struct memcg_kmem_cache_create_work *cw =
2475 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2476 struct mem_cgroup *memcg = cw->memcg;
2477 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2478
d5b3cf71 2479 memcg_create_kmem_cache(memcg, cachep);
bd673145 2480
5722d094 2481 css_put(&memcg->css);
d7f25f8a
GC
2482 kfree(cw);
2483}
2484
2485/*
2486 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2487 */
d5b3cf71
VD
2488static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2489 struct kmem_cache *cachep)
d7f25f8a 2490{
d5b3cf71 2491 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2492
c892fd82 2493 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2494 if (!cw)
d7f25f8a 2495 return;
8135be5a
VD
2496
2497 css_get(&memcg->css);
d7f25f8a
GC
2498
2499 cw->memcg = memcg;
2500 cw->cachep = cachep;
d5b3cf71 2501 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2502
17cc4dfe 2503 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2504}
2505
d5b3cf71
VD
2506static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2507 struct kmem_cache *cachep)
0e9d92f2
GC
2508{
2509 /*
2510 * We need to stop accounting when we kmalloc, because if the
2511 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2512 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2513 *
2514 * However, it is better to enclose the whole function. Depending on
2515 * the debugging options enabled, INIT_WORK(), for instance, can
2516 * trigger an allocation. This too, will make us recurse. Because at
2517 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2518 * the safest choice is to do it like this, wrapping the whole function.
2519 */
6f185c29 2520 current->memcg_kmem_skip_account = 1;
d5b3cf71 2521 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2522 current->memcg_kmem_skip_account = 0;
0e9d92f2 2523}
c67a8a68 2524
45264778
VD
2525static inline bool memcg_kmem_bypass(void)
2526{
2527 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2528 return true;
2529 return false;
2530}
2531
2532/**
2533 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2534 * @cachep: the original global kmem cache
2535 *
d7f25f8a
GC
2536 * Return the kmem_cache we're supposed to use for a slab allocation.
2537 * We try to use the current memcg's version of the cache.
2538 *
45264778
VD
2539 * If the cache does not exist yet, if we are the first user of it, we
2540 * create it asynchronously in a workqueue and let the current allocation
2541 * go through with the original cache.
d7f25f8a 2542 *
45264778
VD
2543 * This function takes a reference to the cache it returns to assure it
2544 * won't get destroyed while we are working with it. Once the caller is
2545 * done with it, memcg_kmem_put_cache() must be called to release the
2546 * reference.
d7f25f8a 2547 */
45264778 2548struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2549{
2550 struct mem_cgroup *memcg;
959c8963 2551 struct kmem_cache *memcg_cachep;
2a4db7eb 2552 int kmemcg_id;
d7f25f8a 2553
f7ce3190 2554 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2555
45264778 2556 if (memcg_kmem_bypass())
230e9fc2
VD
2557 return cachep;
2558
9d100c5e 2559 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2560 return cachep;
2561
d46eb14b 2562 memcg = get_mem_cgroup_from_current();
4db0c3c2 2563 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2564 if (kmemcg_id < 0)
ca0dde97 2565 goto out;
d7f25f8a 2566
2a4db7eb 2567 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2568 if (likely(memcg_cachep))
2569 return memcg_cachep;
ca0dde97
LZ
2570
2571 /*
2572 * If we are in a safe context (can wait, and not in interrupt
2573 * context), we could be be predictable and return right away.
2574 * This would guarantee that the allocation being performed
2575 * already belongs in the new cache.
2576 *
2577 * However, there are some clashes that can arrive from locking.
2578 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2579 * memcg_create_kmem_cache, this means no further allocation
2580 * could happen with the slab_mutex held. So it's better to
2581 * defer everything.
ca0dde97 2582 */
d5b3cf71 2583 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2584out:
8135be5a 2585 css_put(&memcg->css);
ca0dde97 2586 return cachep;
d7f25f8a 2587}
d7f25f8a 2588
45264778
VD
2589/**
2590 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2591 * @cachep: the cache returned by memcg_kmem_get_cache
2592 */
2593void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2594{
2595 if (!is_root_cache(cachep))
f7ce3190 2596 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2597}
2598
45264778 2599/**
b213b54f 2600 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2601 * @page: page to charge
2602 * @gfp: reclaim mode
2603 * @order: allocation order
2604 * @memcg: memory cgroup to charge
2605 *
2606 * Returns 0 on success, an error code on failure.
2607 */
2608int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2609 struct mem_cgroup *memcg)
7ae1e1d0 2610{
f3ccb2c4
VD
2611 unsigned int nr_pages = 1 << order;
2612 struct page_counter *counter;
7ae1e1d0
GC
2613 int ret;
2614
f3ccb2c4 2615 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2616 if (ret)
f3ccb2c4 2617 return ret;
52c29b04
JW
2618
2619 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2620 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2621 cancel_charge(memcg, nr_pages);
2622 return -ENOMEM;
7ae1e1d0
GC
2623 }
2624
f3ccb2c4 2625 page->mem_cgroup = memcg;
7ae1e1d0 2626
f3ccb2c4 2627 return 0;
7ae1e1d0
GC
2628}
2629
45264778
VD
2630/**
2631 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2632 * @page: page to charge
2633 * @gfp: reclaim mode
2634 * @order: allocation order
2635 *
2636 * Returns 0 on success, an error code on failure.
2637 */
2638int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2639{
f3ccb2c4 2640 struct mem_cgroup *memcg;
fcff7d7e 2641 int ret = 0;
7ae1e1d0 2642
45264778
VD
2643 if (memcg_kmem_bypass())
2644 return 0;
2645
d46eb14b 2646 memcg = get_mem_cgroup_from_current();
c4159a75 2647 if (!mem_cgroup_is_root(memcg)) {
45264778 2648 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2649 if (!ret)
2650 __SetPageKmemcg(page);
2651 }
7ae1e1d0 2652 css_put(&memcg->css);
d05e83a6 2653 return ret;
7ae1e1d0 2654}
45264778
VD
2655/**
2656 * memcg_kmem_uncharge: uncharge a kmem page
2657 * @page: page to uncharge
2658 * @order: allocation order
2659 */
2660void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2661{
1306a85a 2662 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2663 unsigned int nr_pages = 1 << order;
7ae1e1d0 2664
7ae1e1d0
GC
2665 if (!memcg)
2666 return;
2667
309381fe 2668 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2669
52c29b04
JW
2670 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2671 page_counter_uncharge(&memcg->kmem, nr_pages);
2672
f3ccb2c4 2673 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2674 if (do_memsw_account())
f3ccb2c4 2675 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2676
1306a85a 2677 page->mem_cgroup = NULL;
c4159a75
VD
2678
2679 /* slab pages do not have PageKmemcg flag set */
2680 if (PageKmemcg(page))
2681 __ClearPageKmemcg(page);
2682
f3ccb2c4 2683 css_put_many(&memcg->css, nr_pages);
60d3fd32 2684}
84c07d11 2685#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2686
ca3e0214
KH
2687#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2688
ca3e0214
KH
2689/*
2690 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2691 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2692 */
e94c8a9c 2693void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2694{
e94c8a9c 2695 int i;
ca3e0214 2696
3d37c4a9
KH
2697 if (mem_cgroup_disabled())
2698 return;
b070e65c 2699
29833315 2700 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2701 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2702
c9019e9b 2703 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2704}
12d27107 2705#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2706
c255a458 2707#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2708/**
2709 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2710 * @entry: swap entry to be moved
2711 * @from: mem_cgroup which the entry is moved from
2712 * @to: mem_cgroup which the entry is moved to
2713 *
2714 * It succeeds only when the swap_cgroup's record for this entry is the same
2715 * as the mem_cgroup's id of @from.
2716 *
2717 * Returns 0 on success, -EINVAL on failure.
2718 *
3e32cb2e 2719 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2720 * both res and memsw, and called css_get().
2721 */
2722static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2723 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2724{
2725 unsigned short old_id, new_id;
2726
34c00c31
LZ
2727 old_id = mem_cgroup_id(from);
2728 new_id = mem_cgroup_id(to);
02491447
DN
2729
2730 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2731 mod_memcg_state(from, MEMCG_SWAP, -1);
2732 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2733 return 0;
2734 }
2735 return -EINVAL;
2736}
2737#else
2738static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2739 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2740{
2741 return -EINVAL;
2742}
8c7c6e34 2743#endif
d13d1443 2744
bbec2e15 2745static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2746
bbec2e15
RG
2747static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2748 unsigned long max, bool memsw)
628f4235 2749{
3e32cb2e 2750 bool enlarge = false;
bb4a7ea2 2751 bool drained = false;
3e32cb2e 2752 int ret;
c054a78c
YZ
2753 bool limits_invariant;
2754 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2755
3e32cb2e 2756 do {
628f4235
KH
2757 if (signal_pending(current)) {
2758 ret = -EINTR;
2759 break;
2760 }
3e32cb2e 2761
bbec2e15 2762 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2763 /*
2764 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2765 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2766 */
bbec2e15
RG
2767 limits_invariant = memsw ? max >= memcg->memory.max :
2768 max <= memcg->memsw.max;
c054a78c 2769 if (!limits_invariant) {
bbec2e15 2770 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2771 ret = -EINVAL;
8c7c6e34
KH
2772 break;
2773 }
bbec2e15 2774 if (max > counter->max)
3e32cb2e 2775 enlarge = true;
bbec2e15
RG
2776 ret = page_counter_set_max(counter, max);
2777 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2778
2779 if (!ret)
2780 break;
2781
bb4a7ea2
SB
2782 if (!drained) {
2783 drain_all_stock(memcg);
2784 drained = true;
2785 continue;
2786 }
2787
1ab5c056
AR
2788 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2789 GFP_KERNEL, !memsw)) {
2790 ret = -EBUSY;
2791 break;
2792 }
2793 } while (true);
3e32cb2e 2794
3c11ecf4
KH
2795 if (!ret && enlarge)
2796 memcg_oom_recover(memcg);
3e32cb2e 2797
628f4235
KH
2798 return ret;
2799}
2800
ef8f2327 2801unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2802 gfp_t gfp_mask,
2803 unsigned long *total_scanned)
2804{
2805 unsigned long nr_reclaimed = 0;
ef8f2327 2806 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2807 unsigned long reclaimed;
2808 int loop = 0;
ef8f2327 2809 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2810 unsigned long excess;
0608f43d
AM
2811 unsigned long nr_scanned;
2812
2813 if (order > 0)
2814 return 0;
2815
ef8f2327 2816 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2817
2818 /*
2819 * Do not even bother to check the largest node if the root
2820 * is empty. Do it lockless to prevent lock bouncing. Races
2821 * are acceptable as soft limit is best effort anyway.
2822 */
bfc7228b 2823 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2824 return 0;
2825
0608f43d
AM
2826 /*
2827 * This loop can run a while, specially if mem_cgroup's continuously
2828 * keep exceeding their soft limit and putting the system under
2829 * pressure
2830 */
2831 do {
2832 if (next_mz)
2833 mz = next_mz;
2834 else
2835 mz = mem_cgroup_largest_soft_limit_node(mctz);
2836 if (!mz)
2837 break;
2838
2839 nr_scanned = 0;
ef8f2327 2840 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2841 gfp_mask, &nr_scanned);
2842 nr_reclaimed += reclaimed;
2843 *total_scanned += nr_scanned;
0a31bc97 2844 spin_lock_irq(&mctz->lock);
bc2f2e7f 2845 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2846
2847 /*
2848 * If we failed to reclaim anything from this memory cgroup
2849 * it is time to move on to the next cgroup
2850 */
2851 next_mz = NULL;
bc2f2e7f
VD
2852 if (!reclaimed)
2853 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2854
3e32cb2e 2855 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2856 /*
2857 * One school of thought says that we should not add
2858 * back the node to the tree if reclaim returns 0.
2859 * But our reclaim could return 0, simply because due
2860 * to priority we are exposing a smaller subset of
2861 * memory to reclaim from. Consider this as a longer
2862 * term TODO.
2863 */
2864 /* If excess == 0, no tree ops */
cf2c8127 2865 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2866 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2867 css_put(&mz->memcg->css);
2868 loop++;
2869 /*
2870 * Could not reclaim anything and there are no more
2871 * mem cgroups to try or we seem to be looping without
2872 * reclaiming anything.
2873 */
2874 if (!nr_reclaimed &&
2875 (next_mz == NULL ||
2876 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2877 break;
2878 } while (!nr_reclaimed);
2879 if (next_mz)
2880 css_put(&next_mz->memcg->css);
2881 return nr_reclaimed;
2882}
2883
ea280e7b
TH
2884/*
2885 * Test whether @memcg has children, dead or alive. Note that this
2886 * function doesn't care whether @memcg has use_hierarchy enabled and
2887 * returns %true if there are child csses according to the cgroup
2888 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2889 */
b5f99b53
GC
2890static inline bool memcg_has_children(struct mem_cgroup *memcg)
2891{
ea280e7b
TH
2892 bool ret;
2893
ea280e7b
TH
2894 rcu_read_lock();
2895 ret = css_next_child(NULL, &memcg->css);
2896 rcu_read_unlock();
2897 return ret;
b5f99b53
GC
2898}
2899
c26251f9 2900/*
51038171 2901 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2902 *
2903 * Caller is responsible for holding css reference for memcg.
2904 */
2905static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2906{
2907 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2908
c1e862c1
KH
2909 /* we call try-to-free pages for make this cgroup empty */
2910 lru_add_drain_all();
d12c60f6
JS
2911
2912 drain_all_stock(memcg);
2913
f817ed48 2914 /* try to free all pages in this cgroup */
3e32cb2e 2915 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2916 int progress;
c1e862c1 2917
c26251f9
MH
2918 if (signal_pending(current))
2919 return -EINTR;
2920
b70a2a21
JW
2921 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2922 GFP_KERNEL, true);
c1e862c1 2923 if (!progress) {
f817ed48 2924 nr_retries--;
c1e862c1 2925 /* maybe some writeback is necessary */
8aa7e847 2926 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2927 }
f817ed48
KH
2928
2929 }
ab5196c2
MH
2930
2931 return 0;
cc847582
KH
2932}
2933
6770c64e
TH
2934static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2935 char *buf, size_t nbytes,
2936 loff_t off)
c1e862c1 2937{
6770c64e 2938 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2939
d8423011
MH
2940 if (mem_cgroup_is_root(memcg))
2941 return -EINVAL;
6770c64e 2942 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2943}
2944
182446d0
TH
2945static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2946 struct cftype *cft)
18f59ea7 2947{
182446d0 2948 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2949}
2950
182446d0
TH
2951static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2952 struct cftype *cft, u64 val)
18f59ea7
BS
2953{
2954 int retval = 0;
182446d0 2955 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2956 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2957
567fb435 2958 if (memcg->use_hierarchy == val)
0b8f73e1 2959 return 0;
567fb435 2960
18f59ea7 2961 /*
af901ca1 2962 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2963 * in the child subtrees. If it is unset, then the change can
2964 * occur, provided the current cgroup has no children.
2965 *
2966 * For the root cgroup, parent_mem is NULL, we allow value to be
2967 * set if there are no children.
2968 */
c0ff4b85 2969 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2970 (val == 1 || val == 0)) {
ea280e7b 2971 if (!memcg_has_children(memcg))
c0ff4b85 2972 memcg->use_hierarchy = val;
18f59ea7
BS
2973 else
2974 retval = -EBUSY;
2975 } else
2976 retval = -EINVAL;
567fb435 2977
18f59ea7
BS
2978 return retval;
2979}
2980
8de7ecc6
SB
2981struct accumulated_stats {
2982 unsigned long stat[MEMCG_NR_STAT];
2983 unsigned long events[NR_VM_EVENT_ITEMS];
2984 unsigned long lru_pages[NR_LRU_LISTS];
2985 const unsigned int *stats_array;
2986 const unsigned int *events_array;
2987 int stats_size;
2988 int events_size;
2989};
ce00a967 2990
8de7ecc6
SB
2991static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2992 struct accumulated_stats *acc)
587d9f72 2993{
8de7ecc6 2994 struct mem_cgroup *mi;
72b54e73 2995 int i;
587d9f72 2996
8de7ecc6
SB
2997 for_each_mem_cgroup_tree(mi, memcg) {
2998 for (i = 0; i < acc->stats_size; i++)
2999 acc->stat[i] += memcg_page_state(mi,
3000 acc->stats_array ? acc->stats_array[i] : i);
587d9f72 3001
8de7ecc6
SB
3002 for (i = 0; i < acc->events_size; i++)
3003 acc->events[i] += memcg_sum_events(mi,
3004 acc->events_array ? acc->events_array[i] : i);
3005
3006 for (i = 0; i < NR_LRU_LISTS; i++)
3007 acc->lru_pages[i] +=
3008 mem_cgroup_nr_lru_pages(mi, BIT(i));
72b54e73 3009 }
587d9f72
JW
3010}
3011
6f646156 3012static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3013{
72b54e73 3014 unsigned long val = 0;
ce00a967 3015
3e32cb2e 3016 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
3017 struct mem_cgroup *iter;
3018
3019 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
3020 val += memcg_page_state(iter, MEMCG_CACHE);
3021 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 3022 if (swap)
ccda7f43 3023 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 3024 }
3e32cb2e 3025 } else {
ce00a967 3026 if (!swap)
3e32cb2e 3027 val = page_counter_read(&memcg->memory);
ce00a967 3028 else
3e32cb2e 3029 val = page_counter_read(&memcg->memsw);
ce00a967 3030 }
c12176d3 3031 return val;
ce00a967
JW
3032}
3033
3e32cb2e
JW
3034enum {
3035 RES_USAGE,
3036 RES_LIMIT,
3037 RES_MAX_USAGE,
3038 RES_FAILCNT,
3039 RES_SOFT_LIMIT,
3040};
ce00a967 3041
791badbd 3042static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3043 struct cftype *cft)
8cdea7c0 3044{
182446d0 3045 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3046 struct page_counter *counter;
af36f906 3047
3e32cb2e 3048 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3049 case _MEM:
3e32cb2e
JW
3050 counter = &memcg->memory;
3051 break;
8c7c6e34 3052 case _MEMSWAP:
3e32cb2e
JW
3053 counter = &memcg->memsw;
3054 break;
510fc4e1 3055 case _KMEM:
3e32cb2e 3056 counter = &memcg->kmem;
510fc4e1 3057 break;
d55f90bf 3058 case _TCP:
0db15298 3059 counter = &memcg->tcpmem;
d55f90bf 3060 break;
8c7c6e34
KH
3061 default:
3062 BUG();
8c7c6e34 3063 }
3e32cb2e
JW
3064
3065 switch (MEMFILE_ATTR(cft->private)) {
3066 case RES_USAGE:
3067 if (counter == &memcg->memory)
c12176d3 3068 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3069 if (counter == &memcg->memsw)
c12176d3 3070 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3071 return (u64)page_counter_read(counter) * PAGE_SIZE;
3072 case RES_LIMIT:
bbec2e15 3073 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3074 case RES_MAX_USAGE:
3075 return (u64)counter->watermark * PAGE_SIZE;
3076 case RES_FAILCNT:
3077 return counter->failcnt;
3078 case RES_SOFT_LIMIT:
3079 return (u64)memcg->soft_limit * PAGE_SIZE;
3080 default:
3081 BUG();
3082 }
8cdea7c0 3083}
510fc4e1 3084
84c07d11 3085#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3086static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3087{
d6441637
VD
3088 int memcg_id;
3089
b313aeee
VD
3090 if (cgroup_memory_nokmem)
3091 return 0;
3092
2a4db7eb 3093 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3094 BUG_ON(memcg->kmem_state);
d6441637 3095
f3bb3043 3096 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3097 if (memcg_id < 0)
3098 return memcg_id;
d6441637 3099
ef12947c 3100 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3101 /*
567e9ab2 3102 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3103 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3104 * guarantee no one starts accounting before all call sites are
3105 * patched.
3106 */
900a38f0 3107 memcg->kmemcg_id = memcg_id;
567e9ab2 3108 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3109 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3110
3111 return 0;
d6441637
VD
3112}
3113
8e0a8912
JW
3114static void memcg_offline_kmem(struct mem_cgroup *memcg)
3115{
3116 struct cgroup_subsys_state *css;
3117 struct mem_cgroup *parent, *child;
3118 int kmemcg_id;
3119
3120 if (memcg->kmem_state != KMEM_ONLINE)
3121 return;
3122 /*
3123 * Clear the online state before clearing memcg_caches array
3124 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3125 * guarantees that no cache will be created for this cgroup
3126 * after we are done (see memcg_create_kmem_cache()).
3127 */
3128 memcg->kmem_state = KMEM_ALLOCATED;
3129
3130 memcg_deactivate_kmem_caches(memcg);
3131
3132 kmemcg_id = memcg->kmemcg_id;
3133 BUG_ON(kmemcg_id < 0);
3134
3135 parent = parent_mem_cgroup(memcg);
3136 if (!parent)
3137 parent = root_mem_cgroup;
3138
3139 /*
3140 * Change kmemcg_id of this cgroup and all its descendants to the
3141 * parent's id, and then move all entries from this cgroup's list_lrus
3142 * to ones of the parent. After we have finished, all list_lrus
3143 * corresponding to this cgroup are guaranteed to remain empty. The
3144 * ordering is imposed by list_lru_node->lock taken by
3145 * memcg_drain_all_list_lrus().
3146 */
3a06bb78 3147 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3148 css_for_each_descendant_pre(css, &memcg->css) {
3149 child = mem_cgroup_from_css(css);
3150 BUG_ON(child->kmemcg_id != kmemcg_id);
3151 child->kmemcg_id = parent->kmemcg_id;
3152 if (!memcg->use_hierarchy)
3153 break;
3154 }
3a06bb78
TH
3155 rcu_read_unlock();
3156
9bec5c35 3157 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3158
3159 memcg_free_cache_id(kmemcg_id);
3160}
3161
3162static void memcg_free_kmem(struct mem_cgroup *memcg)
3163{
0b8f73e1
JW
3164 /* css_alloc() failed, offlining didn't happen */
3165 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3166 memcg_offline_kmem(memcg);
3167
8e0a8912
JW
3168 if (memcg->kmem_state == KMEM_ALLOCATED) {
3169 memcg_destroy_kmem_caches(memcg);
3170 static_branch_dec(&memcg_kmem_enabled_key);
3171 WARN_ON(page_counter_read(&memcg->kmem));
3172 }
8e0a8912 3173}
d6441637 3174#else
0b8f73e1 3175static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3176{
3177 return 0;
3178}
3179static void memcg_offline_kmem(struct mem_cgroup *memcg)
3180{
3181}
3182static void memcg_free_kmem(struct mem_cgroup *memcg)
3183{
3184}
84c07d11 3185#endif /* CONFIG_MEMCG_KMEM */
127424c8 3186
bbec2e15
RG
3187static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3188 unsigned long max)
d6441637 3189{
b313aeee 3190 int ret;
127424c8 3191
bbec2e15
RG
3192 mutex_lock(&memcg_max_mutex);
3193 ret = page_counter_set_max(&memcg->kmem, max);
3194 mutex_unlock(&memcg_max_mutex);
127424c8 3195 return ret;
d6441637 3196}
510fc4e1 3197
bbec2e15 3198static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3199{
3200 int ret;
3201
bbec2e15 3202 mutex_lock(&memcg_max_mutex);
d55f90bf 3203
bbec2e15 3204 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3205 if (ret)
3206 goto out;
3207
0db15298 3208 if (!memcg->tcpmem_active) {
d55f90bf
VD
3209 /*
3210 * The active flag needs to be written after the static_key
3211 * update. This is what guarantees that the socket activation
2d758073
JW
3212 * function is the last one to run. See mem_cgroup_sk_alloc()
3213 * for details, and note that we don't mark any socket as
3214 * belonging to this memcg until that flag is up.
d55f90bf
VD
3215 *
3216 * We need to do this, because static_keys will span multiple
3217 * sites, but we can't control their order. If we mark a socket
3218 * as accounted, but the accounting functions are not patched in
3219 * yet, we'll lose accounting.
3220 *
2d758073 3221 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3222 * because when this value change, the code to process it is not
3223 * patched in yet.
3224 */
3225 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3226 memcg->tcpmem_active = true;
d55f90bf
VD
3227 }
3228out:
bbec2e15 3229 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3230 return ret;
3231}
d55f90bf 3232
628f4235
KH
3233/*
3234 * The user of this function is...
3235 * RES_LIMIT.
3236 */
451af504
TH
3237static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3238 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3239{
451af504 3240 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3241 unsigned long nr_pages;
628f4235
KH
3242 int ret;
3243
451af504 3244 buf = strstrip(buf);
650c5e56 3245 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3246 if (ret)
3247 return ret;
af36f906 3248
3e32cb2e 3249 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3250 case RES_LIMIT:
4b3bde4c
BS
3251 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3252 ret = -EINVAL;
3253 break;
3254 }
3e32cb2e
JW
3255 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3256 case _MEM:
bbec2e15 3257 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3258 break;
3e32cb2e 3259 case _MEMSWAP:
bbec2e15 3260 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3261 break;
3e32cb2e 3262 case _KMEM:
bbec2e15 3263 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3264 break;
d55f90bf 3265 case _TCP:
bbec2e15 3266 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3267 break;
3e32cb2e 3268 }
296c81d8 3269 break;
3e32cb2e
JW
3270 case RES_SOFT_LIMIT:
3271 memcg->soft_limit = nr_pages;
3272 ret = 0;
628f4235
KH
3273 break;
3274 }
451af504 3275 return ret ?: nbytes;
8cdea7c0
BS
3276}
3277
6770c64e
TH
3278static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3279 size_t nbytes, loff_t off)
c84872e1 3280{
6770c64e 3281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3282 struct page_counter *counter;
c84872e1 3283
3e32cb2e
JW
3284 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3285 case _MEM:
3286 counter = &memcg->memory;
3287 break;
3288 case _MEMSWAP:
3289 counter = &memcg->memsw;
3290 break;
3291 case _KMEM:
3292 counter = &memcg->kmem;
3293 break;
d55f90bf 3294 case _TCP:
0db15298 3295 counter = &memcg->tcpmem;
d55f90bf 3296 break;
3e32cb2e
JW
3297 default:
3298 BUG();
3299 }
af36f906 3300
3e32cb2e 3301 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3302 case RES_MAX_USAGE:
3e32cb2e 3303 page_counter_reset_watermark(counter);
29f2a4da
PE
3304 break;
3305 case RES_FAILCNT:
3e32cb2e 3306 counter->failcnt = 0;
29f2a4da 3307 break;
3e32cb2e
JW
3308 default:
3309 BUG();
29f2a4da 3310 }
f64c3f54 3311
6770c64e 3312 return nbytes;
c84872e1
PE
3313}
3314
182446d0 3315static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3316 struct cftype *cft)
3317{
182446d0 3318 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3319}
3320
02491447 3321#ifdef CONFIG_MMU
182446d0 3322static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3323 struct cftype *cft, u64 val)
3324{
182446d0 3325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3326
1dfab5ab 3327 if (val & ~MOVE_MASK)
7dc74be0 3328 return -EINVAL;
ee5e8472 3329
7dc74be0 3330 /*
ee5e8472
GC
3331 * No kind of locking is needed in here, because ->can_attach() will
3332 * check this value once in the beginning of the process, and then carry
3333 * on with stale data. This means that changes to this value will only
3334 * affect task migrations starting after the change.
7dc74be0 3335 */
c0ff4b85 3336 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3337 return 0;
3338}
02491447 3339#else
182446d0 3340static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3341 struct cftype *cft, u64 val)
3342{
3343 return -ENOSYS;
3344}
3345#endif
7dc74be0 3346
406eb0c9 3347#ifdef CONFIG_NUMA
2da8ca82 3348static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3349{
25485de6
GT
3350 struct numa_stat {
3351 const char *name;
3352 unsigned int lru_mask;
3353 };
3354
3355 static const struct numa_stat stats[] = {
3356 { "total", LRU_ALL },
3357 { "file", LRU_ALL_FILE },
3358 { "anon", LRU_ALL_ANON },
3359 { "unevictable", BIT(LRU_UNEVICTABLE) },
3360 };
3361 const struct numa_stat *stat;
406eb0c9 3362 int nid;
25485de6 3363 unsigned long nr;
2da8ca82 3364 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3365
25485de6
GT
3366 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3367 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3368 seq_printf(m, "%s=%lu", stat->name, nr);
3369 for_each_node_state(nid, N_MEMORY) {
3370 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3371 stat->lru_mask);
3372 seq_printf(m, " N%d=%lu", nid, nr);
3373 }
3374 seq_putc(m, '\n');
406eb0c9 3375 }
406eb0c9 3376
071aee13
YH
3377 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3378 struct mem_cgroup *iter;
3379
3380 nr = 0;
3381 for_each_mem_cgroup_tree(iter, memcg)
3382 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3383 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3384 for_each_node_state(nid, N_MEMORY) {
3385 nr = 0;
3386 for_each_mem_cgroup_tree(iter, memcg)
3387 nr += mem_cgroup_node_nr_lru_pages(
3388 iter, nid, stat->lru_mask);
3389 seq_printf(m, " N%d=%lu", nid, nr);
3390 }
3391 seq_putc(m, '\n');
406eb0c9 3392 }
406eb0c9 3393
406eb0c9
YH
3394 return 0;
3395}
3396#endif /* CONFIG_NUMA */
3397
df0e53d0 3398/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3399static const unsigned int memcg1_events[] = {
df0e53d0
JW
3400 PGPGIN,
3401 PGPGOUT,
3402 PGFAULT,
3403 PGMAJFAULT,
3404};
3405
3406static const char *const memcg1_event_names[] = {
3407 "pgpgin",
3408 "pgpgout",
3409 "pgfault",
3410 "pgmajfault",
3411};
3412
2da8ca82 3413static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3414{
2da8ca82 3415 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3416 unsigned long memory, memsw;
af7c4b0e
JW
3417 struct mem_cgroup *mi;
3418 unsigned int i;
8de7ecc6 3419 struct accumulated_stats acc;
406eb0c9 3420
71cd3113 3421 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3422 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3423
71cd3113
JW
3424 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3425 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3426 continue;
71cd3113 3427 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3428 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3429 PAGE_SIZE);
1dd3a273 3430 }
7b854121 3431
df0e53d0
JW
3432 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3433 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3434 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3435
3436 for (i = 0; i < NR_LRU_LISTS; i++)
3437 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3438 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3439
14067bb3 3440 /* Hierarchical information */
3e32cb2e
JW
3441 memory = memsw = PAGE_COUNTER_MAX;
3442 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3443 memory = min(memory, mi->memory.max);
3444 memsw = min(memsw, mi->memsw.max);
fee7b548 3445 }
3e32cb2e
JW
3446 seq_printf(m, "hierarchical_memory_limit %llu\n",
3447 (u64)memory * PAGE_SIZE);
7941d214 3448 if (do_memsw_account())
3e32cb2e
JW
3449 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3450 (u64)memsw * PAGE_SIZE);
7f016ee8 3451
8de7ecc6
SB
3452 memset(&acc, 0, sizeof(acc));
3453 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3454 acc.stats_array = memcg1_stats;
3455 acc.events_size = ARRAY_SIZE(memcg1_events);
3456 acc.events_array = memcg1_events;
3457 accumulate_memcg_tree(memcg, &acc);
af7c4b0e 3458
8de7ecc6 3459 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3460 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3461 continue;
8de7ecc6
SB
3462 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3463 (u64)acc.stat[i] * PAGE_SIZE);
af7c4b0e
JW
3464 }
3465
8de7ecc6
SB
3466 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3467 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3468 (u64)acc.events[i]);
af7c4b0e 3469
8de7ecc6
SB
3470 for (i = 0; i < NR_LRU_LISTS; i++)
3471 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3472 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3473
7f016ee8 3474#ifdef CONFIG_DEBUG_VM
7f016ee8 3475 {
ef8f2327
MG
3476 pg_data_t *pgdat;
3477 struct mem_cgroup_per_node *mz;
89abfab1 3478 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3479 unsigned long recent_rotated[2] = {0, 0};
3480 unsigned long recent_scanned[2] = {0, 0};
3481
ef8f2327
MG
3482 for_each_online_pgdat(pgdat) {
3483 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3484 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3485
ef8f2327
MG
3486 recent_rotated[0] += rstat->recent_rotated[0];
3487 recent_rotated[1] += rstat->recent_rotated[1];
3488 recent_scanned[0] += rstat->recent_scanned[0];
3489 recent_scanned[1] += rstat->recent_scanned[1];
3490 }
78ccf5b5
JW
3491 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3492 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3493 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3494 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3495 }
3496#endif
3497
d2ceb9b7
KH
3498 return 0;
3499}
3500
182446d0
TH
3501static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3502 struct cftype *cft)
a7885eb8 3503{
182446d0 3504 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3505
1f4c025b 3506 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3507}
3508
182446d0
TH
3509static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3510 struct cftype *cft, u64 val)
a7885eb8 3511{
182446d0 3512 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3513
3dae7fec 3514 if (val > 100)
a7885eb8
KM
3515 return -EINVAL;
3516
14208b0e 3517 if (css->parent)
3dae7fec
JW
3518 memcg->swappiness = val;
3519 else
3520 vm_swappiness = val;
068b38c1 3521
a7885eb8
KM
3522 return 0;
3523}
3524
2e72b634
KS
3525static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3526{
3527 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3528 unsigned long usage;
2e72b634
KS
3529 int i;
3530
3531 rcu_read_lock();
3532 if (!swap)
2c488db2 3533 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3534 else
2c488db2 3535 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3536
3537 if (!t)
3538 goto unlock;
3539
ce00a967 3540 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3541
3542 /*
748dad36 3543 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3544 * If it's not true, a threshold was crossed after last
3545 * call of __mem_cgroup_threshold().
3546 */
5407a562 3547 i = t->current_threshold;
2e72b634
KS
3548
3549 /*
3550 * Iterate backward over array of thresholds starting from
3551 * current_threshold and check if a threshold is crossed.
3552 * If none of thresholds below usage is crossed, we read
3553 * only one element of the array here.
3554 */
3555 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3556 eventfd_signal(t->entries[i].eventfd, 1);
3557
3558 /* i = current_threshold + 1 */
3559 i++;
3560
3561 /*
3562 * Iterate forward over array of thresholds starting from
3563 * current_threshold+1 and check if a threshold is crossed.
3564 * If none of thresholds above usage is crossed, we read
3565 * only one element of the array here.
3566 */
3567 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3568 eventfd_signal(t->entries[i].eventfd, 1);
3569
3570 /* Update current_threshold */
5407a562 3571 t->current_threshold = i - 1;
2e72b634
KS
3572unlock:
3573 rcu_read_unlock();
3574}
3575
3576static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3577{
ad4ca5f4
KS
3578 while (memcg) {
3579 __mem_cgroup_threshold(memcg, false);
7941d214 3580 if (do_memsw_account())
ad4ca5f4
KS
3581 __mem_cgroup_threshold(memcg, true);
3582
3583 memcg = parent_mem_cgroup(memcg);
3584 }
2e72b634
KS
3585}
3586
3587static int compare_thresholds(const void *a, const void *b)
3588{
3589 const struct mem_cgroup_threshold *_a = a;
3590 const struct mem_cgroup_threshold *_b = b;
3591
2bff24a3
GT
3592 if (_a->threshold > _b->threshold)
3593 return 1;
3594
3595 if (_a->threshold < _b->threshold)
3596 return -1;
3597
3598 return 0;
2e72b634
KS
3599}
3600
c0ff4b85 3601static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3602{
3603 struct mem_cgroup_eventfd_list *ev;
3604
2bcf2e92
MH
3605 spin_lock(&memcg_oom_lock);
3606
c0ff4b85 3607 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3608 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3609
3610 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3611 return 0;
3612}
3613
c0ff4b85 3614static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3615{
7d74b06f
KH
3616 struct mem_cgroup *iter;
3617
c0ff4b85 3618 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3619 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3620}
3621
59b6f873 3622static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3623 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3624{
2c488db2
KS
3625 struct mem_cgroup_thresholds *thresholds;
3626 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3627 unsigned long threshold;
3628 unsigned long usage;
2c488db2 3629 int i, size, ret;
2e72b634 3630
650c5e56 3631 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3632 if (ret)
3633 return ret;
3634
3635 mutex_lock(&memcg->thresholds_lock);
2c488db2 3636
05b84301 3637 if (type == _MEM) {
2c488db2 3638 thresholds = &memcg->thresholds;
ce00a967 3639 usage = mem_cgroup_usage(memcg, false);
05b84301 3640 } else if (type == _MEMSWAP) {
2c488db2 3641 thresholds = &memcg->memsw_thresholds;
ce00a967 3642 usage = mem_cgroup_usage(memcg, true);
05b84301 3643 } else
2e72b634
KS
3644 BUG();
3645
2e72b634 3646 /* Check if a threshold crossed before adding a new one */
2c488db2 3647 if (thresholds->primary)
2e72b634
KS
3648 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3649
2c488db2 3650 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3651
3652 /* Allocate memory for new array of thresholds */
2c488db2 3653 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3654 GFP_KERNEL);
2c488db2 3655 if (!new) {
2e72b634
KS
3656 ret = -ENOMEM;
3657 goto unlock;
3658 }
2c488db2 3659 new->size = size;
2e72b634
KS
3660
3661 /* Copy thresholds (if any) to new array */
2c488db2
KS
3662 if (thresholds->primary) {
3663 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3664 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3665 }
3666
2e72b634 3667 /* Add new threshold */
2c488db2
KS
3668 new->entries[size - 1].eventfd = eventfd;
3669 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3670
3671 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3672 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3673 compare_thresholds, NULL);
3674
3675 /* Find current threshold */
2c488db2 3676 new->current_threshold = -1;
2e72b634 3677 for (i = 0; i < size; i++) {
748dad36 3678 if (new->entries[i].threshold <= usage) {
2e72b634 3679 /*
2c488db2
KS
3680 * new->current_threshold will not be used until
3681 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3682 * it here.
3683 */
2c488db2 3684 ++new->current_threshold;
748dad36
SZ
3685 } else
3686 break;
2e72b634
KS
3687 }
3688
2c488db2
KS
3689 /* Free old spare buffer and save old primary buffer as spare */
3690 kfree(thresholds->spare);
3691 thresholds->spare = thresholds->primary;
3692
3693 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3694
907860ed 3695 /* To be sure that nobody uses thresholds */
2e72b634
KS
3696 synchronize_rcu();
3697
2e72b634
KS
3698unlock:
3699 mutex_unlock(&memcg->thresholds_lock);
3700
3701 return ret;
3702}
3703
59b6f873 3704static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3705 struct eventfd_ctx *eventfd, const char *args)
3706{
59b6f873 3707 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3708}
3709
59b6f873 3710static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3711 struct eventfd_ctx *eventfd, const char *args)
3712{
59b6f873 3713 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3714}
3715
59b6f873 3716static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3717 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3718{
2c488db2
KS
3719 struct mem_cgroup_thresholds *thresholds;
3720 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3721 unsigned long usage;
2c488db2 3722 int i, j, size;
2e72b634
KS
3723
3724 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3725
3726 if (type == _MEM) {
2c488db2 3727 thresholds = &memcg->thresholds;
ce00a967 3728 usage = mem_cgroup_usage(memcg, false);
05b84301 3729 } else if (type == _MEMSWAP) {
2c488db2 3730 thresholds = &memcg->memsw_thresholds;
ce00a967 3731 usage = mem_cgroup_usage(memcg, true);
05b84301 3732 } else
2e72b634
KS
3733 BUG();
3734
371528ca
AV
3735 if (!thresholds->primary)
3736 goto unlock;
3737
2e72b634
KS
3738 /* Check if a threshold crossed before removing */
3739 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3740
3741 /* Calculate new number of threshold */
2c488db2
KS
3742 size = 0;
3743 for (i = 0; i < thresholds->primary->size; i++) {
3744 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3745 size++;
3746 }
3747
2c488db2 3748 new = thresholds->spare;
907860ed 3749
2e72b634
KS
3750 /* Set thresholds array to NULL if we don't have thresholds */
3751 if (!size) {
2c488db2
KS
3752 kfree(new);
3753 new = NULL;
907860ed 3754 goto swap_buffers;
2e72b634
KS
3755 }
3756
2c488db2 3757 new->size = size;
2e72b634
KS
3758
3759 /* Copy thresholds and find current threshold */
2c488db2
KS
3760 new->current_threshold = -1;
3761 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3762 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3763 continue;
3764
2c488db2 3765 new->entries[j] = thresholds->primary->entries[i];
748dad36 3766 if (new->entries[j].threshold <= usage) {
2e72b634 3767 /*
2c488db2 3768 * new->current_threshold will not be used
2e72b634
KS
3769 * until rcu_assign_pointer(), so it's safe to increment
3770 * it here.
3771 */
2c488db2 3772 ++new->current_threshold;
2e72b634
KS
3773 }
3774 j++;
3775 }
3776
907860ed 3777swap_buffers:
2c488db2
KS
3778 /* Swap primary and spare array */
3779 thresholds->spare = thresholds->primary;
8c757763 3780
2c488db2 3781 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3782
907860ed 3783 /* To be sure that nobody uses thresholds */
2e72b634 3784 synchronize_rcu();
6611d8d7
MC
3785
3786 /* If all events are unregistered, free the spare array */
3787 if (!new) {
3788 kfree(thresholds->spare);
3789 thresholds->spare = NULL;
3790 }
371528ca 3791unlock:
2e72b634 3792 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3793}
c1e862c1 3794
59b6f873 3795static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3796 struct eventfd_ctx *eventfd)
3797{
59b6f873 3798 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3799}
3800
59b6f873 3801static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3802 struct eventfd_ctx *eventfd)
3803{
59b6f873 3804 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3805}
3806
59b6f873 3807static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3808 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3809{
9490ff27 3810 struct mem_cgroup_eventfd_list *event;
9490ff27 3811
9490ff27
KH
3812 event = kmalloc(sizeof(*event), GFP_KERNEL);
3813 if (!event)
3814 return -ENOMEM;
3815
1af8efe9 3816 spin_lock(&memcg_oom_lock);
9490ff27
KH
3817
3818 event->eventfd = eventfd;
3819 list_add(&event->list, &memcg->oom_notify);
3820
3821 /* already in OOM ? */
c2b42d3c 3822 if (memcg->under_oom)
9490ff27 3823 eventfd_signal(eventfd, 1);
1af8efe9 3824 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3825
3826 return 0;
3827}
3828
59b6f873 3829static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3830 struct eventfd_ctx *eventfd)
9490ff27 3831{
9490ff27 3832 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3833
1af8efe9 3834 spin_lock(&memcg_oom_lock);
9490ff27 3835
c0ff4b85 3836 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3837 if (ev->eventfd == eventfd) {
3838 list_del(&ev->list);
3839 kfree(ev);
3840 }
3841 }
3842
1af8efe9 3843 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3844}
3845
2da8ca82 3846static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3847{
2da8ca82 3848 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3849
791badbd 3850 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3851 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3852 seq_printf(sf, "oom_kill %lu\n",
3853 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3854 return 0;
3855}
3856
182446d0 3857static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3858 struct cftype *cft, u64 val)
3859{
182446d0 3860 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3861
3862 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3863 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3864 return -EINVAL;
3865
c0ff4b85 3866 memcg->oom_kill_disable = val;
4d845ebf 3867 if (!val)
c0ff4b85 3868 memcg_oom_recover(memcg);
3dae7fec 3869
3c11ecf4
KH
3870 return 0;
3871}
3872
52ebea74
TH
3873#ifdef CONFIG_CGROUP_WRITEBACK
3874
841710aa
TH
3875static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3876{
3877 return wb_domain_init(&memcg->cgwb_domain, gfp);
3878}
3879
3880static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3881{
3882 wb_domain_exit(&memcg->cgwb_domain);
3883}
3884
2529bb3a
TH
3885static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3886{
3887 wb_domain_size_changed(&memcg->cgwb_domain);
3888}
3889
841710aa
TH
3890struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3891{
3892 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3893
3894 if (!memcg->css.parent)
3895 return NULL;
3896
3897 return &memcg->cgwb_domain;
3898}
3899
43f47331
GT
3900/*
3901 * idx can be of type enum memcg_stat_item or node_stat_item.
3902 * Keep in sync with memcg_exact_page().
3903 */
3904static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3905{
3906 long x = atomic_long_read(&memcg->stat[idx]);
3907 int cpu;
3908
3909 for_each_online_cpu(cpu)
3910 x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
3911 if (x < 0)
3912 x = 0;
3913 return x;
3914}
3915
c2aa723a
TH
3916/**
3917 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3918 * @wb: bdi_writeback in question
c5edf9cd
TH
3919 * @pfilepages: out parameter for number of file pages
3920 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3921 * @pdirty: out parameter for number of dirty pages
3922 * @pwriteback: out parameter for number of pages under writeback
3923 *
c5edf9cd
TH
3924 * Determine the numbers of file, headroom, dirty, and writeback pages in
3925 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3926 * is a bit more involved.
c2aa723a 3927 *
c5edf9cd
TH
3928 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3929 * headroom is calculated as the lowest headroom of itself and the
3930 * ancestors. Note that this doesn't consider the actual amount of
3931 * available memory in the system. The caller should further cap
3932 * *@pheadroom accordingly.
c2aa723a 3933 */
c5edf9cd
TH
3934void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3935 unsigned long *pheadroom, unsigned long *pdirty,
3936 unsigned long *pwriteback)
c2aa723a
TH
3937{
3938 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3939 struct mem_cgroup *parent;
c2aa723a 3940
43f47331 3941 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3942
3943 /* this should eventually include NR_UNSTABLE_NFS */
43f47331 3944 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3945 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3946 (1 << LRU_ACTIVE_FILE));
3947 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3948
c2aa723a 3949 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3950 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3951 unsigned long used = page_counter_read(&memcg->memory);
3952
c5edf9cd 3953 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3954 memcg = parent;
3955 }
c2aa723a
TH
3956}
3957
841710aa
TH
3958#else /* CONFIG_CGROUP_WRITEBACK */
3959
3960static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3961{
3962 return 0;
3963}
3964
3965static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3966{
3967}
3968
2529bb3a
TH
3969static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3970{
3971}
3972
52ebea74
TH
3973#endif /* CONFIG_CGROUP_WRITEBACK */
3974
3bc942f3
TH
3975/*
3976 * DO NOT USE IN NEW FILES.
3977 *
3978 * "cgroup.event_control" implementation.
3979 *
3980 * This is way over-engineered. It tries to support fully configurable
3981 * events for each user. Such level of flexibility is completely
3982 * unnecessary especially in the light of the planned unified hierarchy.
3983 *
3984 * Please deprecate this and replace with something simpler if at all
3985 * possible.
3986 */
3987
79bd9814
TH
3988/*
3989 * Unregister event and free resources.
3990 *
3991 * Gets called from workqueue.
3992 */
3bc942f3 3993static void memcg_event_remove(struct work_struct *work)
79bd9814 3994{
3bc942f3
TH
3995 struct mem_cgroup_event *event =
3996 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3997 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3998
3999 remove_wait_queue(event->wqh, &event->wait);
4000
59b6f873 4001 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4002
4003 /* Notify userspace the event is going away. */
4004 eventfd_signal(event->eventfd, 1);
4005
4006 eventfd_ctx_put(event->eventfd);
4007 kfree(event);
59b6f873 4008 css_put(&memcg->css);
79bd9814
TH
4009}
4010
4011/*
a9a08845 4012 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4013 *
4014 * Called with wqh->lock held and interrupts disabled.
4015 */
ac6424b9 4016static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4017 int sync, void *key)
79bd9814 4018{
3bc942f3
TH
4019 struct mem_cgroup_event *event =
4020 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4021 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4022 __poll_t flags = key_to_poll(key);
79bd9814 4023
a9a08845 4024 if (flags & EPOLLHUP) {
79bd9814
TH
4025 /*
4026 * If the event has been detached at cgroup removal, we
4027 * can simply return knowing the other side will cleanup
4028 * for us.
4029 *
4030 * We can't race against event freeing since the other
4031 * side will require wqh->lock via remove_wait_queue(),
4032 * which we hold.
4033 */
fba94807 4034 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4035 if (!list_empty(&event->list)) {
4036 list_del_init(&event->list);
4037 /*
4038 * We are in atomic context, but cgroup_event_remove()
4039 * may sleep, so we have to call it in workqueue.
4040 */
4041 schedule_work(&event->remove);
4042 }
fba94807 4043 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4044 }
4045
4046 return 0;
4047}
4048
3bc942f3 4049static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4050 wait_queue_head_t *wqh, poll_table *pt)
4051{
3bc942f3
TH
4052 struct mem_cgroup_event *event =
4053 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4054
4055 event->wqh = wqh;
4056 add_wait_queue(wqh, &event->wait);
4057}
4058
4059/*
3bc942f3
TH
4060 * DO NOT USE IN NEW FILES.
4061 *
79bd9814
TH
4062 * Parse input and register new cgroup event handler.
4063 *
4064 * Input must be in format '<event_fd> <control_fd> <args>'.
4065 * Interpretation of args is defined by control file implementation.
4066 */
451af504
TH
4067static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4068 char *buf, size_t nbytes, loff_t off)
79bd9814 4069{
451af504 4070 struct cgroup_subsys_state *css = of_css(of);
fba94807 4071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4072 struct mem_cgroup_event *event;
79bd9814
TH
4073 struct cgroup_subsys_state *cfile_css;
4074 unsigned int efd, cfd;
4075 struct fd efile;
4076 struct fd cfile;
fba94807 4077 const char *name;
79bd9814
TH
4078 char *endp;
4079 int ret;
4080
451af504
TH
4081 buf = strstrip(buf);
4082
4083 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4084 if (*endp != ' ')
4085 return -EINVAL;
451af504 4086 buf = endp + 1;
79bd9814 4087
451af504 4088 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4089 if ((*endp != ' ') && (*endp != '\0'))
4090 return -EINVAL;
451af504 4091 buf = endp + 1;
79bd9814
TH
4092
4093 event = kzalloc(sizeof(*event), GFP_KERNEL);
4094 if (!event)
4095 return -ENOMEM;
4096
59b6f873 4097 event->memcg = memcg;
79bd9814 4098 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4099 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4100 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4101 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4102
4103 efile = fdget(efd);
4104 if (!efile.file) {
4105 ret = -EBADF;
4106 goto out_kfree;
4107 }
4108
4109 event->eventfd = eventfd_ctx_fileget(efile.file);
4110 if (IS_ERR(event->eventfd)) {
4111 ret = PTR_ERR(event->eventfd);
4112 goto out_put_efile;
4113 }
4114
4115 cfile = fdget(cfd);
4116 if (!cfile.file) {
4117 ret = -EBADF;
4118 goto out_put_eventfd;
4119 }
4120
4121 /* the process need read permission on control file */
4122 /* AV: shouldn't we check that it's been opened for read instead? */
4123 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4124 if (ret < 0)
4125 goto out_put_cfile;
4126
fba94807
TH
4127 /*
4128 * Determine the event callbacks and set them in @event. This used
4129 * to be done via struct cftype but cgroup core no longer knows
4130 * about these events. The following is crude but the whole thing
4131 * is for compatibility anyway.
3bc942f3
TH
4132 *
4133 * DO NOT ADD NEW FILES.
fba94807 4134 */
b583043e 4135 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4136
4137 if (!strcmp(name, "memory.usage_in_bytes")) {
4138 event->register_event = mem_cgroup_usage_register_event;
4139 event->unregister_event = mem_cgroup_usage_unregister_event;
4140 } else if (!strcmp(name, "memory.oom_control")) {
4141 event->register_event = mem_cgroup_oom_register_event;
4142 event->unregister_event = mem_cgroup_oom_unregister_event;
4143 } else if (!strcmp(name, "memory.pressure_level")) {
4144 event->register_event = vmpressure_register_event;
4145 event->unregister_event = vmpressure_unregister_event;
4146 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4147 event->register_event = memsw_cgroup_usage_register_event;
4148 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4149 } else {
4150 ret = -EINVAL;
4151 goto out_put_cfile;
4152 }
4153
79bd9814 4154 /*
b5557c4c
TH
4155 * Verify @cfile should belong to @css. Also, remaining events are
4156 * automatically removed on cgroup destruction but the removal is
4157 * asynchronous, so take an extra ref on @css.
79bd9814 4158 */
b583043e 4159 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4160 &memory_cgrp_subsys);
79bd9814 4161 ret = -EINVAL;
5a17f543 4162 if (IS_ERR(cfile_css))
79bd9814 4163 goto out_put_cfile;
5a17f543
TH
4164 if (cfile_css != css) {
4165 css_put(cfile_css);
79bd9814 4166 goto out_put_cfile;
5a17f543 4167 }
79bd9814 4168
451af504 4169 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4170 if (ret)
4171 goto out_put_css;
4172
9965ed17 4173 vfs_poll(efile.file, &event->pt);
79bd9814 4174
fba94807
TH
4175 spin_lock(&memcg->event_list_lock);
4176 list_add(&event->list, &memcg->event_list);
4177 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4178
4179 fdput(cfile);
4180 fdput(efile);
4181
451af504 4182 return nbytes;
79bd9814
TH
4183
4184out_put_css:
b5557c4c 4185 css_put(css);
79bd9814
TH
4186out_put_cfile:
4187 fdput(cfile);
4188out_put_eventfd:
4189 eventfd_ctx_put(event->eventfd);
4190out_put_efile:
4191 fdput(efile);
4192out_kfree:
4193 kfree(event);
4194
4195 return ret;
4196}
4197
241994ed 4198static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4199 {
0eea1030 4200 .name = "usage_in_bytes",
8c7c6e34 4201 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4202 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4203 },
c84872e1
PE
4204 {
4205 .name = "max_usage_in_bytes",
8c7c6e34 4206 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4207 .write = mem_cgroup_reset,
791badbd 4208 .read_u64 = mem_cgroup_read_u64,
c84872e1 4209 },
8cdea7c0 4210 {
0eea1030 4211 .name = "limit_in_bytes",
8c7c6e34 4212 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4213 .write = mem_cgroup_write,
791badbd 4214 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4215 },
296c81d8
BS
4216 {
4217 .name = "soft_limit_in_bytes",
4218 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4219 .write = mem_cgroup_write,
791badbd 4220 .read_u64 = mem_cgroup_read_u64,
296c81d8 4221 },
8cdea7c0
BS
4222 {
4223 .name = "failcnt",
8c7c6e34 4224 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4225 .write = mem_cgroup_reset,
791badbd 4226 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4227 },
d2ceb9b7
KH
4228 {
4229 .name = "stat",
2da8ca82 4230 .seq_show = memcg_stat_show,
d2ceb9b7 4231 },
c1e862c1
KH
4232 {
4233 .name = "force_empty",
6770c64e 4234 .write = mem_cgroup_force_empty_write,
c1e862c1 4235 },
18f59ea7
BS
4236 {
4237 .name = "use_hierarchy",
4238 .write_u64 = mem_cgroup_hierarchy_write,
4239 .read_u64 = mem_cgroup_hierarchy_read,
4240 },
79bd9814 4241 {
3bc942f3 4242 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4243 .write = memcg_write_event_control,
7dbdb199 4244 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4245 },
a7885eb8
KM
4246 {
4247 .name = "swappiness",
4248 .read_u64 = mem_cgroup_swappiness_read,
4249 .write_u64 = mem_cgroup_swappiness_write,
4250 },
7dc74be0
DN
4251 {
4252 .name = "move_charge_at_immigrate",
4253 .read_u64 = mem_cgroup_move_charge_read,
4254 .write_u64 = mem_cgroup_move_charge_write,
4255 },
9490ff27
KH
4256 {
4257 .name = "oom_control",
2da8ca82 4258 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4259 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4260 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4261 },
70ddf637
AV
4262 {
4263 .name = "pressure_level",
70ddf637 4264 },
406eb0c9
YH
4265#ifdef CONFIG_NUMA
4266 {
4267 .name = "numa_stat",
2da8ca82 4268 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4269 },
4270#endif
510fc4e1
GC
4271 {
4272 .name = "kmem.limit_in_bytes",
4273 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4274 .write = mem_cgroup_write,
791badbd 4275 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4276 },
4277 {
4278 .name = "kmem.usage_in_bytes",
4279 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4280 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4281 },
4282 {
4283 .name = "kmem.failcnt",
4284 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4285 .write = mem_cgroup_reset,
791badbd 4286 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4287 },
4288 {
4289 .name = "kmem.max_usage_in_bytes",
4290 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4291 .write = mem_cgroup_reset,
791badbd 4292 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4293 },
5b365771 4294#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4295 {
4296 .name = "kmem.slabinfo",
bc2791f8
TH
4297 .seq_start = memcg_slab_start,
4298 .seq_next = memcg_slab_next,
4299 .seq_stop = memcg_slab_stop,
b047501c 4300 .seq_show = memcg_slab_show,
749c5415
GC
4301 },
4302#endif
d55f90bf
VD
4303 {
4304 .name = "kmem.tcp.limit_in_bytes",
4305 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4306 .write = mem_cgroup_write,
4307 .read_u64 = mem_cgroup_read_u64,
4308 },
4309 {
4310 .name = "kmem.tcp.usage_in_bytes",
4311 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4312 .read_u64 = mem_cgroup_read_u64,
4313 },
4314 {
4315 .name = "kmem.tcp.failcnt",
4316 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4317 .write = mem_cgroup_reset,
4318 .read_u64 = mem_cgroup_read_u64,
4319 },
4320 {
4321 .name = "kmem.tcp.max_usage_in_bytes",
4322 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4323 .write = mem_cgroup_reset,
4324 .read_u64 = mem_cgroup_read_u64,
4325 },
6bc10349 4326 { }, /* terminate */
af36f906 4327};
8c7c6e34 4328
73f576c0
JW
4329/*
4330 * Private memory cgroup IDR
4331 *
4332 * Swap-out records and page cache shadow entries need to store memcg
4333 * references in constrained space, so we maintain an ID space that is
4334 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4335 * memory-controlled cgroups to 64k.
4336 *
4337 * However, there usually are many references to the oflline CSS after
4338 * the cgroup has been destroyed, such as page cache or reclaimable
4339 * slab objects, that don't need to hang on to the ID. We want to keep
4340 * those dead CSS from occupying IDs, or we might quickly exhaust the
4341 * relatively small ID space and prevent the creation of new cgroups
4342 * even when there are much fewer than 64k cgroups - possibly none.
4343 *
4344 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4345 * be freed and recycled when it's no longer needed, which is usually
4346 * when the CSS is offlined.
4347 *
4348 * The only exception to that are records of swapped out tmpfs/shmem
4349 * pages that need to be attributed to live ancestors on swapin. But
4350 * those references are manageable from userspace.
4351 */
4352
4353static DEFINE_IDR(mem_cgroup_idr);
4354
7e97de0b
KT
4355static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4356{
4357 if (memcg->id.id > 0) {
4358 idr_remove(&mem_cgroup_idr, memcg->id.id);
4359 memcg->id.id = 0;
4360 }
4361}
4362
615d66c3 4363static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4364{
58fa2a55 4365 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4366 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4367}
4368
615d66c3 4369static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4370{
58fa2a55 4371 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4372 if (atomic_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4373 mem_cgroup_id_remove(memcg);
73f576c0
JW
4374
4375 /* Memcg ID pins CSS */
4376 css_put(&memcg->css);
4377 }
4378}
4379
615d66c3
VD
4380static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4381{
4382 mem_cgroup_id_get_many(memcg, 1);
4383}
4384
4385static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4386{
4387 mem_cgroup_id_put_many(memcg, 1);
4388}
4389
73f576c0
JW
4390/**
4391 * mem_cgroup_from_id - look up a memcg from a memcg id
4392 * @id: the memcg id to look up
4393 *
4394 * Caller must hold rcu_read_lock().
4395 */
4396struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4397{
4398 WARN_ON_ONCE(!rcu_read_lock_held());
4399 return idr_find(&mem_cgroup_idr, id);
4400}
4401
ef8f2327 4402static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4403{
4404 struct mem_cgroup_per_node *pn;
ef8f2327 4405 int tmp = node;
1ecaab2b
KH
4406 /*
4407 * This routine is called against possible nodes.
4408 * But it's BUG to call kmalloc() against offline node.
4409 *
4410 * TODO: this routine can waste much memory for nodes which will
4411 * never be onlined. It's better to use memory hotplug callback
4412 * function.
4413 */
41e3355d
KH
4414 if (!node_state(node, N_NORMAL_MEMORY))
4415 tmp = -1;
17295c88 4416 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4417 if (!pn)
4418 return 1;
1ecaab2b 4419
a983b5eb
JW
4420 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4421 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4422 kfree(pn);
4423 return 1;
4424 }
4425
ef8f2327
MG
4426 lruvec_init(&pn->lruvec);
4427 pn->usage_in_excess = 0;
4428 pn->on_tree = false;
4429 pn->memcg = memcg;
4430
54f72fe0 4431 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4432 return 0;
4433}
4434
ef8f2327 4435static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4436{
00f3ca2c
JW
4437 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4438
4eaf431f
MH
4439 if (!pn)
4440 return;
4441
a983b5eb 4442 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4443 kfree(pn);
1ecaab2b
KH
4444}
4445
40e952f9 4446static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4447{
c8b2a36f 4448 int node;
59927fb9 4449
c8b2a36f 4450 for_each_node(node)
ef8f2327 4451 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4452 free_percpu(memcg->stat_cpu);
8ff69e2c 4453 kfree(memcg);
59927fb9 4454}
3afe36b1 4455
40e952f9
TE
4456static void mem_cgroup_free(struct mem_cgroup *memcg)
4457{
4458 memcg_wb_domain_exit(memcg);
4459 __mem_cgroup_free(memcg);
4460}
4461
0b8f73e1 4462static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4463{
d142e3e6 4464 struct mem_cgroup *memcg;
0b8f73e1 4465 size_t size;
6d12e2d8 4466 int node;
8cdea7c0 4467
0b8f73e1
JW
4468 size = sizeof(struct mem_cgroup);
4469 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4470
4471 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4472 if (!memcg)
0b8f73e1
JW
4473 return NULL;
4474
73f576c0
JW
4475 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4476 1, MEM_CGROUP_ID_MAX,
4477 GFP_KERNEL);
4478 if (memcg->id.id < 0)
4479 goto fail;
4480
a983b5eb
JW
4481 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4482 if (!memcg->stat_cpu)
0b8f73e1 4483 goto fail;
78fb7466 4484
3ed28fa1 4485 for_each_node(node)
ef8f2327 4486 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4487 goto fail;
f64c3f54 4488
0b8f73e1
JW
4489 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4490 goto fail;
28dbc4b6 4491
f7e1cb6e 4492 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4493 memcg->last_scanned_node = MAX_NUMNODES;
4494 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4495 mutex_init(&memcg->thresholds_lock);
4496 spin_lock_init(&memcg->move_lock);
70ddf637 4497 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4498 INIT_LIST_HEAD(&memcg->event_list);
4499 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4500 memcg->socket_pressure = jiffies;
84c07d11 4501#ifdef CONFIG_MEMCG_KMEM
900a38f0 4502 memcg->kmemcg_id = -1;
900a38f0 4503#endif
52ebea74
TH
4504#ifdef CONFIG_CGROUP_WRITEBACK
4505 INIT_LIST_HEAD(&memcg->cgwb_list);
4506#endif
73f576c0 4507 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4508 return memcg;
4509fail:
7e97de0b 4510 mem_cgroup_id_remove(memcg);
40e952f9 4511 __mem_cgroup_free(memcg);
0b8f73e1 4512 return NULL;
d142e3e6
GC
4513}
4514
0b8f73e1
JW
4515static struct cgroup_subsys_state * __ref
4516mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4517{
0b8f73e1
JW
4518 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4519 struct mem_cgroup *memcg;
4520 long error = -ENOMEM;
d142e3e6 4521
0b8f73e1
JW
4522 memcg = mem_cgroup_alloc();
4523 if (!memcg)
4524 return ERR_PTR(error);
d142e3e6 4525
0b8f73e1
JW
4526 memcg->high = PAGE_COUNTER_MAX;
4527 memcg->soft_limit = PAGE_COUNTER_MAX;
4528 if (parent) {
4529 memcg->swappiness = mem_cgroup_swappiness(parent);
4530 memcg->oom_kill_disable = parent->oom_kill_disable;
4531 }
4532 if (parent && parent->use_hierarchy) {
4533 memcg->use_hierarchy = true;
3e32cb2e 4534 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4535 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4536 page_counter_init(&memcg->memsw, &parent->memsw);
4537 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4538 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4539 } else {
3e32cb2e 4540 page_counter_init(&memcg->memory, NULL);
37e84351 4541 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4542 page_counter_init(&memcg->memsw, NULL);
4543 page_counter_init(&memcg->kmem, NULL);
0db15298 4544 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4545 /*
4546 * Deeper hierachy with use_hierarchy == false doesn't make
4547 * much sense so let cgroup subsystem know about this
4548 * unfortunate state in our controller.
4549 */
d142e3e6 4550 if (parent != root_mem_cgroup)
073219e9 4551 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4552 }
d6441637 4553
0b8f73e1
JW
4554 /* The following stuff does not apply to the root */
4555 if (!parent) {
4556 root_mem_cgroup = memcg;
4557 return &memcg->css;
4558 }
4559
b313aeee 4560 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4561 if (error)
4562 goto fail;
127424c8 4563
f7e1cb6e 4564 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4565 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4566
0b8f73e1
JW
4567 return &memcg->css;
4568fail:
7e97de0b 4569 mem_cgroup_id_remove(memcg);
0b8f73e1 4570 mem_cgroup_free(memcg);
ea3a9645 4571 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4572}
4573
73f576c0 4574static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4575{
58fa2a55
VD
4576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4577
0a4465d3
KT
4578 /*
4579 * A memcg must be visible for memcg_expand_shrinker_maps()
4580 * by the time the maps are allocated. So, we allocate maps
4581 * here, when for_each_mem_cgroup() can't skip it.
4582 */
4583 if (memcg_alloc_shrinker_maps(memcg)) {
4584 mem_cgroup_id_remove(memcg);
4585 return -ENOMEM;
4586 }
4587
73f576c0 4588 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4589 atomic_set(&memcg->id.ref, 1);
73f576c0 4590 css_get(css);
2f7dd7a4 4591 return 0;
8cdea7c0
BS
4592}
4593
eb95419b 4594static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4595{
eb95419b 4596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4597 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4598
4599 /*
4600 * Unregister events and notify userspace.
4601 * Notify userspace about cgroup removing only after rmdir of cgroup
4602 * directory to avoid race between userspace and kernelspace.
4603 */
fba94807
TH
4604 spin_lock(&memcg->event_list_lock);
4605 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4606 list_del_init(&event->list);
4607 schedule_work(&event->remove);
4608 }
fba94807 4609 spin_unlock(&memcg->event_list_lock);
ec64f515 4610
bf8d5d52 4611 page_counter_set_min(&memcg->memory, 0);
23067153 4612 page_counter_set_low(&memcg->memory, 0);
63677c74 4613
567e9ab2 4614 memcg_offline_kmem(memcg);
52ebea74 4615 wb_memcg_offline(memcg);
73f576c0
JW
4616
4617 mem_cgroup_id_put(memcg);
df878fb0
KH
4618}
4619
6df38689
VD
4620static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4621{
4622 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4623
4624 invalidate_reclaim_iterators(memcg);
4625}
4626
eb95419b 4627static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4628{
eb95419b 4629 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4630
f7e1cb6e 4631 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4632 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4633
0db15298 4634 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4635 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4636
0b8f73e1
JW
4637 vmpressure_cleanup(&memcg->vmpressure);
4638 cancel_work_sync(&memcg->high_work);
4639 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4640 memcg_free_shrinker_maps(memcg);
d886f4e4 4641 memcg_free_kmem(memcg);
0b8f73e1 4642 mem_cgroup_free(memcg);
8cdea7c0
BS
4643}
4644
1ced953b
TH
4645/**
4646 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4647 * @css: the target css
4648 *
4649 * Reset the states of the mem_cgroup associated with @css. This is
4650 * invoked when the userland requests disabling on the default hierarchy
4651 * but the memcg is pinned through dependency. The memcg should stop
4652 * applying policies and should revert to the vanilla state as it may be
4653 * made visible again.
4654 *
4655 * The current implementation only resets the essential configurations.
4656 * This needs to be expanded to cover all the visible parts.
4657 */
4658static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4659{
4660 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4661
bbec2e15
RG
4662 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4663 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4664 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4665 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4666 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4667 page_counter_set_min(&memcg->memory, 0);
23067153 4668 page_counter_set_low(&memcg->memory, 0);
241994ed 4669 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4670 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4671 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4672}
4673
02491447 4674#ifdef CONFIG_MMU
7dc74be0 4675/* Handlers for move charge at task migration. */
854ffa8d 4676static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4677{
05b84301 4678 int ret;
9476db97 4679
d0164adc
MG
4680 /* Try a single bulk charge without reclaim first, kswapd may wake */
4681 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4682 if (!ret) {
854ffa8d 4683 mc.precharge += count;
854ffa8d
DN
4684 return ret;
4685 }
9476db97 4686
3674534b 4687 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4688 while (count--) {
3674534b 4689 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4690 if (ret)
38c5d72f 4691 return ret;
854ffa8d 4692 mc.precharge++;
9476db97 4693 cond_resched();
854ffa8d 4694 }
9476db97 4695 return 0;
4ffef5fe
DN
4696}
4697
4ffef5fe
DN
4698union mc_target {
4699 struct page *page;
02491447 4700 swp_entry_t ent;
4ffef5fe
DN
4701};
4702
4ffef5fe 4703enum mc_target_type {
8d32ff84 4704 MC_TARGET_NONE = 0,
4ffef5fe 4705 MC_TARGET_PAGE,
02491447 4706 MC_TARGET_SWAP,
c733a828 4707 MC_TARGET_DEVICE,
4ffef5fe
DN
4708};
4709
90254a65
DN
4710static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4711 unsigned long addr, pte_t ptent)
4ffef5fe 4712{
c733a828 4713 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4714
90254a65
DN
4715 if (!page || !page_mapped(page))
4716 return NULL;
4717 if (PageAnon(page)) {
1dfab5ab 4718 if (!(mc.flags & MOVE_ANON))
90254a65 4719 return NULL;
1dfab5ab
JW
4720 } else {
4721 if (!(mc.flags & MOVE_FILE))
4722 return NULL;
4723 }
90254a65
DN
4724 if (!get_page_unless_zero(page))
4725 return NULL;
4726
4727 return page;
4728}
4729
c733a828 4730#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4731static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4732 pte_t ptent, swp_entry_t *entry)
90254a65 4733{
90254a65
DN
4734 struct page *page = NULL;
4735 swp_entry_t ent = pte_to_swp_entry(ptent);
4736
1dfab5ab 4737 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4738 return NULL;
c733a828
JG
4739
4740 /*
4741 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4742 * a device and because they are not accessible by CPU they are store
4743 * as special swap entry in the CPU page table.
4744 */
4745 if (is_device_private_entry(ent)) {
4746 page = device_private_entry_to_page(ent);
4747 /*
4748 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4749 * a refcount of 1 when free (unlike normal page)
4750 */
4751 if (!page_ref_add_unless(page, 1, 1))
4752 return NULL;
4753 return page;
4754 }
4755
4b91355e
KH
4756 /*
4757 * Because lookup_swap_cache() updates some statistics counter,
4758 * we call find_get_page() with swapper_space directly.
4759 */
f6ab1f7f 4760 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4761 if (do_memsw_account())
90254a65
DN
4762 entry->val = ent.val;
4763
4764 return page;
4765}
4b91355e
KH
4766#else
4767static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4768 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4769{
4770 return NULL;
4771}
4772#endif
90254a65 4773
87946a72
DN
4774static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4775 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4776{
4777 struct page *page = NULL;
87946a72
DN
4778 struct address_space *mapping;
4779 pgoff_t pgoff;
4780
4781 if (!vma->vm_file) /* anonymous vma */
4782 return NULL;
1dfab5ab 4783 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4784 return NULL;
4785
87946a72 4786 mapping = vma->vm_file->f_mapping;
0661a336 4787 pgoff = linear_page_index(vma, addr);
87946a72
DN
4788
4789 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4790#ifdef CONFIG_SWAP
4791 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4792 if (shmem_mapping(mapping)) {
4793 page = find_get_entry(mapping, pgoff);
4794 if (radix_tree_exceptional_entry(page)) {
4795 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4796 if (do_memsw_account())
139b6a6f 4797 *entry = swp;
f6ab1f7f
HY
4798 page = find_get_page(swap_address_space(swp),
4799 swp_offset(swp));
139b6a6f
JW
4800 }
4801 } else
4802 page = find_get_page(mapping, pgoff);
4803#else
4804 page = find_get_page(mapping, pgoff);
aa3b1895 4805#endif
87946a72
DN
4806 return page;
4807}
4808
b1b0deab
CG
4809/**
4810 * mem_cgroup_move_account - move account of the page
4811 * @page: the page
25843c2b 4812 * @compound: charge the page as compound or small page
b1b0deab
CG
4813 * @from: mem_cgroup which the page is moved from.
4814 * @to: mem_cgroup which the page is moved to. @from != @to.
4815 *
3ac808fd 4816 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4817 *
4818 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4819 * from old cgroup.
4820 */
4821static int mem_cgroup_move_account(struct page *page,
f627c2f5 4822 bool compound,
b1b0deab
CG
4823 struct mem_cgroup *from,
4824 struct mem_cgroup *to)
4825{
4826 unsigned long flags;
f627c2f5 4827 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4828 int ret;
c4843a75 4829 bool anon;
b1b0deab
CG
4830
4831 VM_BUG_ON(from == to);
4832 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4833 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4834
4835 /*
6a93ca8f 4836 * Prevent mem_cgroup_migrate() from looking at
45637bab 4837 * page->mem_cgroup of its source page while we change it.
b1b0deab 4838 */
f627c2f5 4839 ret = -EBUSY;
b1b0deab
CG
4840 if (!trylock_page(page))
4841 goto out;
4842
4843 ret = -EINVAL;
4844 if (page->mem_cgroup != from)
4845 goto out_unlock;
4846
c4843a75
GT
4847 anon = PageAnon(page);
4848
b1b0deab
CG
4849 spin_lock_irqsave(&from->move_lock, flags);
4850
c4843a75 4851 if (!anon && page_mapped(page)) {
c9019e9b
JW
4852 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4853 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4854 }
4855
c4843a75
GT
4856 /*
4857 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4858 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4859 * So mapping should be stable for dirty pages.
4860 */
4861 if (!anon && PageDirty(page)) {
4862 struct address_space *mapping = page_mapping(page);
4863
4864 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4865 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4866 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4867 }
4868 }
4869
b1b0deab 4870 if (PageWriteback(page)) {
c9019e9b
JW
4871 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4872 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4873 }
4874
4875 /*
4876 * It is safe to change page->mem_cgroup here because the page
4877 * is referenced, charged, and isolated - we can't race with
4878 * uncharging, charging, migration, or LRU putback.
4879 */
4880
4881 /* caller should have done css_get */
4882 page->mem_cgroup = to;
4883 spin_unlock_irqrestore(&from->move_lock, flags);
4884
4885 ret = 0;
4886
4887 local_irq_disable();
f627c2f5 4888 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4889 memcg_check_events(to, page);
f627c2f5 4890 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4891 memcg_check_events(from, page);
4892 local_irq_enable();
4893out_unlock:
4894 unlock_page(page);
4895out:
4896 return ret;
4897}
4898
7cf7806c
LR
4899/**
4900 * get_mctgt_type - get target type of moving charge
4901 * @vma: the vma the pte to be checked belongs
4902 * @addr: the address corresponding to the pte to be checked
4903 * @ptent: the pte to be checked
4904 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4905 *
4906 * Returns
4907 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4908 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4909 * move charge. if @target is not NULL, the page is stored in target->page
4910 * with extra refcnt got(Callers should handle it).
4911 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4912 * target for charge migration. if @target is not NULL, the entry is stored
4913 * in target->ent.
df6ad698
JG
4914 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4915 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4916 * For now we such page is charge like a regular page would be as for all
4917 * intent and purposes it is just special memory taking the place of a
4918 * regular page.
c733a828
JG
4919 *
4920 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4921 *
4922 * Called with pte lock held.
4923 */
4924
8d32ff84 4925static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4926 unsigned long addr, pte_t ptent, union mc_target *target)
4927{
4928 struct page *page = NULL;
8d32ff84 4929 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4930 swp_entry_t ent = { .val = 0 };
4931
4932 if (pte_present(ptent))
4933 page = mc_handle_present_pte(vma, addr, ptent);
4934 else if (is_swap_pte(ptent))
48406ef8 4935 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4936 else if (pte_none(ptent))
87946a72 4937 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4938
4939 if (!page && !ent.val)
8d32ff84 4940 return ret;
02491447 4941 if (page) {
02491447 4942 /*
0a31bc97 4943 * Do only loose check w/o serialization.
1306a85a 4944 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4945 * not under LRU exclusion.
02491447 4946 */
1306a85a 4947 if (page->mem_cgroup == mc.from) {
02491447 4948 ret = MC_TARGET_PAGE;
df6ad698
JG
4949 if (is_device_private_page(page) ||
4950 is_device_public_page(page))
c733a828 4951 ret = MC_TARGET_DEVICE;
02491447
DN
4952 if (target)
4953 target->page = page;
4954 }
4955 if (!ret || !target)
4956 put_page(page);
4957 }
3e14a57b
HY
4958 /*
4959 * There is a swap entry and a page doesn't exist or isn't charged.
4960 * But we cannot move a tail-page in a THP.
4961 */
4962 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4963 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4964 ret = MC_TARGET_SWAP;
4965 if (target)
4966 target->ent = ent;
4ffef5fe 4967 }
4ffef5fe
DN
4968 return ret;
4969}
4970
12724850
NH
4971#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4972/*
d6810d73
HY
4973 * We don't consider PMD mapped swapping or file mapped pages because THP does
4974 * not support them for now.
12724850
NH
4975 * Caller should make sure that pmd_trans_huge(pmd) is true.
4976 */
4977static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4978 unsigned long addr, pmd_t pmd, union mc_target *target)
4979{
4980 struct page *page = NULL;
12724850
NH
4981 enum mc_target_type ret = MC_TARGET_NONE;
4982
84c3fc4e
ZY
4983 if (unlikely(is_swap_pmd(pmd))) {
4984 VM_BUG_ON(thp_migration_supported() &&
4985 !is_pmd_migration_entry(pmd));
4986 return ret;
4987 }
12724850 4988 page = pmd_page(pmd);
309381fe 4989 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4990 if (!(mc.flags & MOVE_ANON))
12724850 4991 return ret;
1306a85a 4992 if (page->mem_cgroup == mc.from) {
12724850
NH
4993 ret = MC_TARGET_PAGE;
4994 if (target) {
4995 get_page(page);
4996 target->page = page;
4997 }
4998 }
4999 return ret;
5000}
5001#else
5002static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5003 unsigned long addr, pmd_t pmd, union mc_target *target)
5004{
5005 return MC_TARGET_NONE;
5006}
5007#endif
5008
4ffef5fe
DN
5009static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5010 unsigned long addr, unsigned long end,
5011 struct mm_walk *walk)
5012{
26bcd64a 5013 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5014 pte_t *pte;
5015 spinlock_t *ptl;
5016
b6ec57f4
KS
5017 ptl = pmd_trans_huge_lock(pmd, vma);
5018 if (ptl) {
c733a828
JG
5019 /*
5020 * Note their can not be MC_TARGET_DEVICE for now as we do not
5021 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5022 * MEMORY_DEVICE_PRIVATE but this might change.
5023 */
12724850
NH
5024 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5025 mc.precharge += HPAGE_PMD_NR;
bf929152 5026 spin_unlock(ptl);
1a5a9906 5027 return 0;
12724850 5028 }
03319327 5029
45f83cef
AA
5030 if (pmd_trans_unstable(pmd))
5031 return 0;
4ffef5fe
DN
5032 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5033 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5034 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5035 mc.precharge++; /* increment precharge temporarily */
5036 pte_unmap_unlock(pte - 1, ptl);
5037 cond_resched();
5038
7dc74be0
DN
5039 return 0;
5040}
5041
4ffef5fe
DN
5042static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5043{
5044 unsigned long precharge;
4ffef5fe 5045
26bcd64a
NH
5046 struct mm_walk mem_cgroup_count_precharge_walk = {
5047 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5048 .mm = mm,
5049 };
dfe076b0 5050 down_read(&mm->mmap_sem);
0247f3f4
JM
5051 walk_page_range(0, mm->highest_vm_end,
5052 &mem_cgroup_count_precharge_walk);
dfe076b0 5053 up_read(&mm->mmap_sem);
4ffef5fe
DN
5054
5055 precharge = mc.precharge;
5056 mc.precharge = 0;
5057
5058 return precharge;
5059}
5060
4ffef5fe
DN
5061static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5062{
dfe076b0
DN
5063 unsigned long precharge = mem_cgroup_count_precharge(mm);
5064
5065 VM_BUG_ON(mc.moving_task);
5066 mc.moving_task = current;
5067 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5068}
5069
dfe076b0
DN
5070/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5071static void __mem_cgroup_clear_mc(void)
4ffef5fe 5072{
2bd9bb20
KH
5073 struct mem_cgroup *from = mc.from;
5074 struct mem_cgroup *to = mc.to;
5075
4ffef5fe 5076 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5077 if (mc.precharge) {
00501b53 5078 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5079 mc.precharge = 0;
5080 }
5081 /*
5082 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5083 * we must uncharge here.
5084 */
5085 if (mc.moved_charge) {
00501b53 5086 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5087 mc.moved_charge = 0;
4ffef5fe 5088 }
483c30b5
DN
5089 /* we must fixup refcnts and charges */
5090 if (mc.moved_swap) {
483c30b5 5091 /* uncharge swap account from the old cgroup */
ce00a967 5092 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5093 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5094
615d66c3
VD
5095 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5096
05b84301 5097 /*
3e32cb2e
JW
5098 * we charged both to->memory and to->memsw, so we
5099 * should uncharge to->memory.
05b84301 5100 */
ce00a967 5101 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5102 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5103
615d66c3
VD
5104 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5105 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5106
483c30b5
DN
5107 mc.moved_swap = 0;
5108 }
dfe076b0
DN
5109 memcg_oom_recover(from);
5110 memcg_oom_recover(to);
5111 wake_up_all(&mc.waitq);
5112}
5113
5114static void mem_cgroup_clear_mc(void)
5115{
264a0ae1
TH
5116 struct mm_struct *mm = mc.mm;
5117
dfe076b0
DN
5118 /*
5119 * we must clear moving_task before waking up waiters at the end of
5120 * task migration.
5121 */
5122 mc.moving_task = NULL;
5123 __mem_cgroup_clear_mc();
2bd9bb20 5124 spin_lock(&mc.lock);
4ffef5fe
DN
5125 mc.from = NULL;
5126 mc.to = NULL;
264a0ae1 5127 mc.mm = NULL;
2bd9bb20 5128 spin_unlock(&mc.lock);
264a0ae1
TH
5129
5130 mmput(mm);
4ffef5fe
DN
5131}
5132
1f7dd3e5 5133static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5134{
1f7dd3e5 5135 struct cgroup_subsys_state *css;
eed67d75 5136 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5137 struct mem_cgroup *from;
4530eddb 5138 struct task_struct *leader, *p;
9f2115f9 5139 struct mm_struct *mm;
1dfab5ab 5140 unsigned long move_flags;
9f2115f9 5141 int ret = 0;
7dc74be0 5142
1f7dd3e5
TH
5143 /* charge immigration isn't supported on the default hierarchy */
5144 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5145 return 0;
5146
4530eddb
TH
5147 /*
5148 * Multi-process migrations only happen on the default hierarchy
5149 * where charge immigration is not used. Perform charge
5150 * immigration if @tset contains a leader and whine if there are
5151 * multiple.
5152 */
5153 p = NULL;
1f7dd3e5 5154 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5155 WARN_ON_ONCE(p);
5156 p = leader;
1f7dd3e5 5157 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5158 }
5159 if (!p)
5160 return 0;
5161
1f7dd3e5
TH
5162 /*
5163 * We are now commited to this value whatever it is. Changes in this
5164 * tunable will only affect upcoming migrations, not the current one.
5165 * So we need to save it, and keep it going.
5166 */
5167 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5168 if (!move_flags)
5169 return 0;
5170
9f2115f9
TH
5171 from = mem_cgroup_from_task(p);
5172
5173 VM_BUG_ON(from == memcg);
5174
5175 mm = get_task_mm(p);
5176 if (!mm)
5177 return 0;
5178 /* We move charges only when we move a owner of the mm */
5179 if (mm->owner == p) {
5180 VM_BUG_ON(mc.from);
5181 VM_BUG_ON(mc.to);
5182 VM_BUG_ON(mc.precharge);
5183 VM_BUG_ON(mc.moved_charge);
5184 VM_BUG_ON(mc.moved_swap);
5185
5186 spin_lock(&mc.lock);
264a0ae1 5187 mc.mm = mm;
9f2115f9
TH
5188 mc.from = from;
5189 mc.to = memcg;
5190 mc.flags = move_flags;
5191 spin_unlock(&mc.lock);
5192 /* We set mc.moving_task later */
5193
5194 ret = mem_cgroup_precharge_mc(mm);
5195 if (ret)
5196 mem_cgroup_clear_mc();
264a0ae1
TH
5197 } else {
5198 mmput(mm);
7dc74be0
DN
5199 }
5200 return ret;
5201}
5202
1f7dd3e5 5203static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5204{
4e2f245d
JW
5205 if (mc.to)
5206 mem_cgroup_clear_mc();
7dc74be0
DN
5207}
5208
4ffef5fe
DN
5209static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5210 unsigned long addr, unsigned long end,
5211 struct mm_walk *walk)
7dc74be0 5212{
4ffef5fe 5213 int ret = 0;
26bcd64a 5214 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5215 pte_t *pte;
5216 spinlock_t *ptl;
12724850
NH
5217 enum mc_target_type target_type;
5218 union mc_target target;
5219 struct page *page;
4ffef5fe 5220
b6ec57f4
KS
5221 ptl = pmd_trans_huge_lock(pmd, vma);
5222 if (ptl) {
62ade86a 5223 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5224 spin_unlock(ptl);
12724850
NH
5225 return 0;
5226 }
5227 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5228 if (target_type == MC_TARGET_PAGE) {
5229 page = target.page;
5230 if (!isolate_lru_page(page)) {
f627c2f5 5231 if (!mem_cgroup_move_account(page, true,
1306a85a 5232 mc.from, mc.to)) {
12724850
NH
5233 mc.precharge -= HPAGE_PMD_NR;
5234 mc.moved_charge += HPAGE_PMD_NR;
5235 }
5236 putback_lru_page(page);
5237 }
5238 put_page(page);
c733a828
JG
5239 } else if (target_type == MC_TARGET_DEVICE) {
5240 page = target.page;
5241 if (!mem_cgroup_move_account(page, true,
5242 mc.from, mc.to)) {
5243 mc.precharge -= HPAGE_PMD_NR;
5244 mc.moved_charge += HPAGE_PMD_NR;
5245 }
5246 put_page(page);
12724850 5247 }
bf929152 5248 spin_unlock(ptl);
1a5a9906 5249 return 0;
12724850
NH
5250 }
5251
45f83cef
AA
5252 if (pmd_trans_unstable(pmd))
5253 return 0;
4ffef5fe
DN
5254retry:
5255 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5256 for (; addr != end; addr += PAGE_SIZE) {
5257 pte_t ptent = *(pte++);
c733a828 5258 bool device = false;
02491447 5259 swp_entry_t ent;
4ffef5fe
DN
5260
5261 if (!mc.precharge)
5262 break;
5263
8d32ff84 5264 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5265 case MC_TARGET_DEVICE:
5266 device = true;
5267 /* fall through */
4ffef5fe
DN
5268 case MC_TARGET_PAGE:
5269 page = target.page;
53f9263b
KS
5270 /*
5271 * We can have a part of the split pmd here. Moving it
5272 * can be done but it would be too convoluted so simply
5273 * ignore such a partial THP and keep it in original
5274 * memcg. There should be somebody mapping the head.
5275 */
5276 if (PageTransCompound(page))
5277 goto put;
c733a828 5278 if (!device && isolate_lru_page(page))
4ffef5fe 5279 goto put;
f627c2f5
KS
5280 if (!mem_cgroup_move_account(page, false,
5281 mc.from, mc.to)) {
4ffef5fe 5282 mc.precharge--;
854ffa8d
DN
5283 /* we uncharge from mc.from later. */
5284 mc.moved_charge++;
4ffef5fe 5285 }
c733a828
JG
5286 if (!device)
5287 putback_lru_page(page);
8d32ff84 5288put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5289 put_page(page);
5290 break;
02491447
DN
5291 case MC_TARGET_SWAP:
5292 ent = target.ent;
e91cbb42 5293 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5294 mc.precharge--;
483c30b5
DN
5295 /* we fixup refcnts and charges later. */
5296 mc.moved_swap++;
5297 }
02491447 5298 break;
4ffef5fe
DN
5299 default:
5300 break;
5301 }
5302 }
5303 pte_unmap_unlock(pte - 1, ptl);
5304 cond_resched();
5305
5306 if (addr != end) {
5307 /*
5308 * We have consumed all precharges we got in can_attach().
5309 * We try charge one by one, but don't do any additional
5310 * charges to mc.to if we have failed in charge once in attach()
5311 * phase.
5312 */
854ffa8d 5313 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5314 if (!ret)
5315 goto retry;
5316 }
5317
5318 return ret;
5319}
5320
264a0ae1 5321static void mem_cgroup_move_charge(void)
4ffef5fe 5322{
26bcd64a
NH
5323 struct mm_walk mem_cgroup_move_charge_walk = {
5324 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5325 .mm = mc.mm,
26bcd64a 5326 };
4ffef5fe
DN
5327
5328 lru_add_drain_all();
312722cb 5329 /*
81f8c3a4
JW
5330 * Signal lock_page_memcg() to take the memcg's move_lock
5331 * while we're moving its pages to another memcg. Then wait
5332 * for already started RCU-only updates to finish.
312722cb
JW
5333 */
5334 atomic_inc(&mc.from->moving_account);
5335 synchronize_rcu();
dfe076b0 5336retry:
264a0ae1 5337 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5338 /*
5339 * Someone who are holding the mmap_sem might be waiting in
5340 * waitq. So we cancel all extra charges, wake up all waiters,
5341 * and retry. Because we cancel precharges, we might not be able
5342 * to move enough charges, but moving charge is a best-effort
5343 * feature anyway, so it wouldn't be a big problem.
5344 */
5345 __mem_cgroup_clear_mc();
5346 cond_resched();
5347 goto retry;
5348 }
26bcd64a
NH
5349 /*
5350 * When we have consumed all precharges and failed in doing
5351 * additional charge, the page walk just aborts.
5352 */
0247f3f4
JM
5353 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5354
264a0ae1 5355 up_read(&mc.mm->mmap_sem);
312722cb 5356 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5357}
5358
264a0ae1 5359static void mem_cgroup_move_task(void)
67e465a7 5360{
264a0ae1
TH
5361 if (mc.to) {
5362 mem_cgroup_move_charge();
a433658c 5363 mem_cgroup_clear_mc();
264a0ae1 5364 }
67e465a7 5365}
5cfb80a7 5366#else /* !CONFIG_MMU */
1f7dd3e5 5367static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5368{
5369 return 0;
5370}
1f7dd3e5 5371static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5372{
5373}
264a0ae1 5374static void mem_cgroup_move_task(void)
5cfb80a7
DN
5375{
5376}
5377#endif
67e465a7 5378
f00baae7
TH
5379/*
5380 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5381 * to verify whether we're attached to the default hierarchy on each mount
5382 * attempt.
f00baae7 5383 */
eb95419b 5384static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5385{
5386 /*
aa6ec29b 5387 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5388 * guarantees that @root doesn't have any children, so turning it
5389 * on for the root memcg is enough.
5390 */
9e10a130 5391 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5392 root_mem_cgroup->use_hierarchy = true;
5393 else
5394 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5395}
5396
241994ed
JW
5397static u64 memory_current_read(struct cgroup_subsys_state *css,
5398 struct cftype *cft)
5399{
f5fc3c5d
JW
5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5401
5402 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5403}
5404
bf8d5d52
RG
5405static int memory_min_show(struct seq_file *m, void *v)
5406{
5407 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5408 unsigned long min = READ_ONCE(memcg->memory.min);
5409
5410 if (min == PAGE_COUNTER_MAX)
5411 seq_puts(m, "max\n");
5412 else
5413 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5414
5415 return 0;
5416}
5417
5418static ssize_t memory_min_write(struct kernfs_open_file *of,
5419 char *buf, size_t nbytes, loff_t off)
5420{
5421 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5422 unsigned long min;
5423 int err;
5424
5425 buf = strstrip(buf);
5426 err = page_counter_memparse(buf, "max", &min);
5427 if (err)
5428 return err;
5429
5430 page_counter_set_min(&memcg->memory, min);
5431
5432 return nbytes;
5433}
5434
241994ed
JW
5435static int memory_low_show(struct seq_file *m, void *v)
5436{
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5438 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5439
5440 if (low == PAGE_COUNTER_MAX)
d2973697 5441 seq_puts(m, "max\n");
241994ed
JW
5442 else
5443 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5444
5445 return 0;
5446}
5447
5448static ssize_t memory_low_write(struct kernfs_open_file *of,
5449 char *buf, size_t nbytes, loff_t off)
5450{
5451 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5452 unsigned long low;
5453 int err;
5454
5455 buf = strstrip(buf);
d2973697 5456 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5457 if (err)
5458 return err;
5459
23067153 5460 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5461
5462 return nbytes;
5463}
5464
5465static int memory_high_show(struct seq_file *m, void *v)
5466{
5467 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5468 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5469
5470 if (high == PAGE_COUNTER_MAX)
d2973697 5471 seq_puts(m, "max\n");
241994ed
JW
5472 else
5473 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5474
5475 return 0;
5476}
5477
5478static ssize_t memory_high_write(struct kernfs_open_file *of,
5479 char *buf, size_t nbytes, loff_t off)
5480{
5481 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5482 unsigned long nr_pages;
241994ed
JW
5483 unsigned long high;
5484 int err;
5485
5486 buf = strstrip(buf);
d2973697 5487 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5488 if (err)
5489 return err;
5490
5491 memcg->high = high;
5492
588083bb
JW
5493 nr_pages = page_counter_read(&memcg->memory);
5494 if (nr_pages > high)
5495 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5496 GFP_KERNEL, true);
5497
2529bb3a 5498 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5499 return nbytes;
5500}
5501
5502static int memory_max_show(struct seq_file *m, void *v)
5503{
5504 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5505 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5506
5507 if (max == PAGE_COUNTER_MAX)
d2973697 5508 seq_puts(m, "max\n");
241994ed
JW
5509 else
5510 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5511
5512 return 0;
5513}
5514
5515static ssize_t memory_max_write(struct kernfs_open_file *of,
5516 char *buf, size_t nbytes, loff_t off)
5517{
5518 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5519 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5520 bool drained = false;
241994ed
JW
5521 unsigned long max;
5522 int err;
5523
5524 buf = strstrip(buf);
d2973697 5525 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5526 if (err)
5527 return err;
5528
bbec2e15 5529 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5530
5531 for (;;) {
5532 unsigned long nr_pages = page_counter_read(&memcg->memory);
5533
5534 if (nr_pages <= max)
5535 break;
5536
5537 if (signal_pending(current)) {
5538 err = -EINTR;
5539 break;
5540 }
5541
5542 if (!drained) {
5543 drain_all_stock(memcg);
5544 drained = true;
5545 continue;
5546 }
5547
5548 if (nr_reclaims) {
5549 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5550 GFP_KERNEL, true))
5551 nr_reclaims--;
5552 continue;
5553 }
5554
e27be240 5555 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5556 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5557 break;
5558 }
241994ed 5559
2529bb3a 5560 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5561 return nbytes;
5562}
5563
5564static int memory_events_show(struct seq_file *m, void *v)
5565{
5566 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5567
e27be240
JW
5568 seq_printf(m, "low %lu\n",
5569 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5570 seq_printf(m, "high %lu\n",
5571 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5572 seq_printf(m, "max %lu\n",
5573 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5574 seq_printf(m, "oom %lu\n",
5575 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5576 seq_printf(m, "oom_kill %lu\n",
5577 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5578
5579 return 0;
5580}
5581
587d9f72
JW
5582static int memory_stat_show(struct seq_file *m, void *v)
5583{
5584 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
8de7ecc6 5585 struct accumulated_stats acc;
587d9f72
JW
5586 int i;
5587
5588 /*
5589 * Provide statistics on the state of the memory subsystem as
5590 * well as cumulative event counters that show past behavior.
5591 *
5592 * This list is ordered following a combination of these gradients:
5593 * 1) generic big picture -> specifics and details
5594 * 2) reflecting userspace activity -> reflecting kernel heuristics
5595 *
5596 * Current memory state:
5597 */
5598
8de7ecc6
SB
5599 memset(&acc, 0, sizeof(acc));
5600 acc.stats_size = MEMCG_NR_STAT;
5601 acc.events_size = NR_VM_EVENT_ITEMS;
5602 accumulate_memcg_tree(memcg, &acc);
72b54e73 5603
587d9f72 5604 seq_printf(m, "anon %llu\n",
8de7ecc6 5605 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5606 seq_printf(m, "file %llu\n",
8de7ecc6 5607 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5608 seq_printf(m, "kernel_stack %llu\n",
8de7ecc6 5609 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5610 seq_printf(m, "slab %llu\n",
8de7ecc6
SB
5611 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5612 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5613 seq_printf(m, "sock %llu\n",
8de7ecc6 5614 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5615
9a4caf1e 5616 seq_printf(m, "shmem %llu\n",
8de7ecc6 5617 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5618 seq_printf(m, "file_mapped %llu\n",
8de7ecc6 5619 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5620 seq_printf(m, "file_dirty %llu\n",
8de7ecc6 5621 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5622 seq_printf(m, "file_writeback %llu\n",
8de7ecc6 5623 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5624
8de7ecc6
SB
5625 for (i = 0; i < NR_LRU_LISTS; i++)
5626 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5627 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5628
27ee57c9 5629 seq_printf(m, "slab_reclaimable %llu\n",
8de7ecc6 5630 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5631 seq_printf(m, "slab_unreclaimable %llu\n",
8de7ecc6 5632 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5633
587d9f72
JW
5634 /* Accumulated memory events */
5635
8de7ecc6
SB
5636 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5637 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
587d9f72 5638
8de7ecc6
SB
5639 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5640 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5641 acc.events[PGSCAN_DIRECT]);
5642 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5643 acc.events[PGSTEAL_DIRECT]);
5644 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5645 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5646 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5647 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
2262185c 5648
2a2e4885 5649 seq_printf(m, "workingset_refault %lu\n",
8de7ecc6 5650 acc.stat[WORKINGSET_REFAULT]);
2a2e4885 5651 seq_printf(m, "workingset_activate %lu\n",
8de7ecc6 5652 acc.stat[WORKINGSET_ACTIVATE]);
2a2e4885 5653 seq_printf(m, "workingset_nodereclaim %lu\n",
8de7ecc6 5654 acc.stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5655
587d9f72
JW
5656 return 0;
5657}
5658
3d8b38eb
RG
5659static int memory_oom_group_show(struct seq_file *m, void *v)
5660{
5661 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5662
5663 seq_printf(m, "%d\n", memcg->oom_group);
5664
5665 return 0;
5666}
5667
5668static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5669 char *buf, size_t nbytes, loff_t off)
5670{
5671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5672 int ret, oom_group;
5673
5674 buf = strstrip(buf);
5675 if (!buf)
5676 return -EINVAL;
5677
5678 ret = kstrtoint(buf, 0, &oom_group);
5679 if (ret)
5680 return ret;
5681
5682 if (oom_group != 0 && oom_group != 1)
5683 return -EINVAL;
5684
5685 memcg->oom_group = oom_group;
5686
5687 return nbytes;
5688}
5689
241994ed
JW
5690static struct cftype memory_files[] = {
5691 {
5692 .name = "current",
f5fc3c5d 5693 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5694 .read_u64 = memory_current_read,
5695 },
bf8d5d52
RG
5696 {
5697 .name = "min",
5698 .flags = CFTYPE_NOT_ON_ROOT,
5699 .seq_show = memory_min_show,
5700 .write = memory_min_write,
5701 },
241994ed
JW
5702 {
5703 .name = "low",
5704 .flags = CFTYPE_NOT_ON_ROOT,
5705 .seq_show = memory_low_show,
5706 .write = memory_low_write,
5707 },
5708 {
5709 .name = "high",
5710 .flags = CFTYPE_NOT_ON_ROOT,
5711 .seq_show = memory_high_show,
5712 .write = memory_high_write,
5713 },
5714 {
5715 .name = "max",
5716 .flags = CFTYPE_NOT_ON_ROOT,
5717 .seq_show = memory_max_show,
5718 .write = memory_max_write,
5719 },
5720 {
5721 .name = "events",
5722 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5723 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5724 .seq_show = memory_events_show,
5725 },
587d9f72
JW
5726 {
5727 .name = "stat",
5728 .flags = CFTYPE_NOT_ON_ROOT,
5729 .seq_show = memory_stat_show,
5730 },
3d8b38eb
RG
5731 {
5732 .name = "oom.group",
5733 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5734 .seq_show = memory_oom_group_show,
5735 .write = memory_oom_group_write,
5736 },
241994ed
JW
5737 { } /* terminate */
5738};
5739
073219e9 5740struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5741 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5742 .css_online = mem_cgroup_css_online,
92fb9748 5743 .css_offline = mem_cgroup_css_offline,
6df38689 5744 .css_released = mem_cgroup_css_released,
92fb9748 5745 .css_free = mem_cgroup_css_free,
1ced953b 5746 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5747 .can_attach = mem_cgroup_can_attach,
5748 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5749 .post_attach = mem_cgroup_move_task,
f00baae7 5750 .bind = mem_cgroup_bind,
241994ed
JW
5751 .dfl_cftypes = memory_files,
5752 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5753 .early_init = 0,
8cdea7c0 5754};
c077719b 5755
241994ed 5756/**
bf8d5d52 5757 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5758 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5759 * @memcg: the memory cgroup to check
5760 *
23067153
RG
5761 * WARNING: This function is not stateless! It can only be used as part
5762 * of a top-down tree iteration, not for isolated queries.
34c81057 5763 *
bf8d5d52
RG
5764 * Returns one of the following:
5765 * MEMCG_PROT_NONE: cgroup memory is not protected
5766 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5767 * an unprotected supply of reclaimable memory from other cgroups.
5768 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5769 *
bf8d5d52 5770 * @root is exclusive; it is never protected when looked at directly
34c81057 5771 *
bf8d5d52
RG
5772 * To provide a proper hierarchical behavior, effective memory.min/low values
5773 * are used. Below is the description of how effective memory.low is calculated.
5774 * Effective memory.min values is calculated in the same way.
34c81057 5775 *
23067153
RG
5776 * Effective memory.low is always equal or less than the original memory.low.
5777 * If there is no memory.low overcommittment (which is always true for
5778 * top-level memory cgroups), these two values are equal.
5779 * Otherwise, it's a part of parent's effective memory.low,
5780 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5781 * memory.low usages, where memory.low usage is the size of actually
5782 * protected memory.
34c81057 5783 *
23067153
RG
5784 * low_usage
5785 * elow = min( memory.low, parent->elow * ------------------ ),
5786 * siblings_low_usage
34c81057 5787 *
23067153
RG
5788 * | memory.current, if memory.current < memory.low
5789 * low_usage = |
5790 | 0, otherwise.
34c81057 5791 *
23067153
RG
5792 *
5793 * Such definition of the effective memory.low provides the expected
5794 * hierarchical behavior: parent's memory.low value is limiting
5795 * children, unprotected memory is reclaimed first and cgroups,
5796 * which are not using their guarantee do not affect actual memory
5797 * distribution.
5798 *
5799 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5800 *
5801 * A A/memory.low = 2G, A/memory.current = 6G
5802 * //\\
5803 * BC DE B/memory.low = 3G B/memory.current = 2G
5804 * C/memory.low = 1G C/memory.current = 2G
5805 * D/memory.low = 0 D/memory.current = 2G
5806 * E/memory.low = 10G E/memory.current = 0
5807 *
5808 * and the memory pressure is applied, the following memory distribution
5809 * is expected (approximately):
5810 *
5811 * A/memory.current = 2G
5812 *
5813 * B/memory.current = 1.3G
5814 * C/memory.current = 0.6G
5815 * D/memory.current = 0
5816 * E/memory.current = 0
5817 *
5818 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5819 * (see propagate_protected_usage()), as well as recursive calculation of
5820 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5821 * path for each memory cgroup top-down from the reclaim,
5822 * it's possible to optimize this part, and save calculated elow
5823 * for next usage. This part is intentionally racy, but it's ok,
5824 * as memory.low is a best-effort mechanism.
241994ed 5825 */
bf8d5d52
RG
5826enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5827 struct mem_cgroup *memcg)
241994ed 5828{
23067153 5829 struct mem_cgroup *parent;
bf8d5d52
RG
5830 unsigned long emin, parent_emin;
5831 unsigned long elow, parent_elow;
5832 unsigned long usage;
23067153 5833
241994ed 5834 if (mem_cgroup_disabled())
bf8d5d52 5835 return MEMCG_PROT_NONE;
241994ed 5836
34c81057
SC
5837 if (!root)
5838 root = root_mem_cgroup;
5839 if (memcg == root)
bf8d5d52 5840 return MEMCG_PROT_NONE;
241994ed 5841
23067153 5842 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5843 if (!usage)
5844 return MEMCG_PROT_NONE;
5845
5846 emin = memcg->memory.min;
5847 elow = memcg->memory.low;
34c81057 5848
bf8d5d52 5849 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5850 /* No parent means a non-hierarchical mode on v1 memcg */
5851 if (!parent)
5852 return MEMCG_PROT_NONE;
5853
23067153
RG
5854 if (parent == root)
5855 goto exit;
5856
bf8d5d52
RG
5857 parent_emin = READ_ONCE(parent->memory.emin);
5858 emin = min(emin, parent_emin);
5859 if (emin && parent_emin) {
5860 unsigned long min_usage, siblings_min_usage;
5861
5862 min_usage = min(usage, memcg->memory.min);
5863 siblings_min_usage = atomic_long_read(
5864 &parent->memory.children_min_usage);
5865
5866 if (min_usage && siblings_min_usage)
5867 emin = min(emin, parent_emin * min_usage /
5868 siblings_min_usage);
5869 }
5870
23067153
RG
5871 parent_elow = READ_ONCE(parent->memory.elow);
5872 elow = min(elow, parent_elow);
bf8d5d52
RG
5873 if (elow && parent_elow) {
5874 unsigned long low_usage, siblings_low_usage;
23067153 5875
bf8d5d52
RG
5876 low_usage = min(usage, memcg->memory.low);
5877 siblings_low_usage = atomic_long_read(
5878 &parent->memory.children_low_usage);
23067153 5879
bf8d5d52
RG
5880 if (low_usage && siblings_low_usage)
5881 elow = min(elow, parent_elow * low_usage /
5882 siblings_low_usage);
5883 }
23067153 5884
23067153 5885exit:
bf8d5d52 5886 memcg->memory.emin = emin;
23067153 5887 memcg->memory.elow = elow;
bf8d5d52
RG
5888
5889 if (usage <= emin)
5890 return MEMCG_PROT_MIN;
5891 else if (usage <= elow)
5892 return MEMCG_PROT_LOW;
5893 else
5894 return MEMCG_PROT_NONE;
241994ed
JW
5895}
5896
00501b53
JW
5897/**
5898 * mem_cgroup_try_charge - try charging a page
5899 * @page: page to charge
5900 * @mm: mm context of the victim
5901 * @gfp_mask: reclaim mode
5902 * @memcgp: charged memcg return
25843c2b 5903 * @compound: charge the page as compound or small page
00501b53
JW
5904 *
5905 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5906 * pages according to @gfp_mask if necessary.
5907 *
5908 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5909 * Otherwise, an error code is returned.
5910 *
5911 * After page->mapping has been set up, the caller must finalize the
5912 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5913 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5914 */
5915int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5916 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5917 bool compound)
00501b53
JW
5918{
5919 struct mem_cgroup *memcg = NULL;
f627c2f5 5920 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5921 int ret = 0;
5922
5923 if (mem_cgroup_disabled())
5924 goto out;
5925
5926 if (PageSwapCache(page)) {
00501b53
JW
5927 /*
5928 * Every swap fault against a single page tries to charge the
5929 * page, bail as early as possible. shmem_unuse() encounters
5930 * already charged pages, too. The USED bit is protected by
5931 * the page lock, which serializes swap cache removal, which
5932 * in turn serializes uncharging.
5933 */
e993d905 5934 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5935 if (compound_head(page)->mem_cgroup)
00501b53 5936 goto out;
e993d905 5937
37e84351 5938 if (do_swap_account) {
e993d905
VD
5939 swp_entry_t ent = { .val = page_private(page), };
5940 unsigned short id = lookup_swap_cgroup_id(ent);
5941
5942 rcu_read_lock();
5943 memcg = mem_cgroup_from_id(id);
5944 if (memcg && !css_tryget_online(&memcg->css))
5945 memcg = NULL;
5946 rcu_read_unlock();
5947 }
00501b53
JW
5948 }
5949
00501b53
JW
5950 if (!memcg)
5951 memcg = get_mem_cgroup_from_mm(mm);
5952
5953 ret = try_charge(memcg, gfp_mask, nr_pages);
5954
5955 css_put(&memcg->css);
00501b53
JW
5956out:
5957 *memcgp = memcg;
5958 return ret;
5959}
5960
2cf85583
TH
5961int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5962 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5963 bool compound)
5964{
5965 struct mem_cgroup *memcg;
5966 int ret;
5967
5968 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5969 memcg = *memcgp;
5970 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5971 return ret;
5972}
5973
00501b53
JW
5974/**
5975 * mem_cgroup_commit_charge - commit a page charge
5976 * @page: page to charge
5977 * @memcg: memcg to charge the page to
5978 * @lrucare: page might be on LRU already
25843c2b 5979 * @compound: charge the page as compound or small page
00501b53
JW
5980 *
5981 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5982 * after page->mapping has been set up. This must happen atomically
5983 * as part of the page instantiation, i.e. under the page table lock
5984 * for anonymous pages, under the page lock for page and swap cache.
5985 *
5986 * In addition, the page must not be on the LRU during the commit, to
5987 * prevent racing with task migration. If it might be, use @lrucare.
5988 *
5989 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5990 */
5991void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5992 bool lrucare, bool compound)
00501b53 5993{
f627c2f5 5994 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5995
5996 VM_BUG_ON_PAGE(!page->mapping, page);
5997 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5998
5999 if (mem_cgroup_disabled())
6000 return;
6001 /*
6002 * Swap faults will attempt to charge the same page multiple
6003 * times. But reuse_swap_page() might have removed the page
6004 * from swapcache already, so we can't check PageSwapCache().
6005 */
6006 if (!memcg)
6007 return;
6008
6abb5a86
JW
6009 commit_charge(page, memcg, lrucare);
6010
6abb5a86 6011 local_irq_disable();
f627c2f5 6012 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6013 memcg_check_events(memcg, page);
6014 local_irq_enable();
00501b53 6015
7941d214 6016 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6017 swp_entry_t entry = { .val = page_private(page) };
6018 /*
6019 * The swap entry might not get freed for a long time,
6020 * let's not wait for it. The page already received a
6021 * memory+swap charge, drop the swap entry duplicate.
6022 */
38d8b4e6 6023 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6024 }
6025}
6026
6027/**
6028 * mem_cgroup_cancel_charge - cancel a page charge
6029 * @page: page to charge
6030 * @memcg: memcg to charge the page to
25843c2b 6031 * @compound: charge the page as compound or small page
00501b53
JW
6032 *
6033 * Cancel a charge transaction started by mem_cgroup_try_charge().
6034 */
f627c2f5
KS
6035void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6036 bool compound)
00501b53 6037{
f627c2f5 6038 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6039
6040 if (mem_cgroup_disabled())
6041 return;
6042 /*
6043 * Swap faults will attempt to charge the same page multiple
6044 * times. But reuse_swap_page() might have removed the page
6045 * from swapcache already, so we can't check PageSwapCache().
6046 */
6047 if (!memcg)
6048 return;
6049
00501b53
JW
6050 cancel_charge(memcg, nr_pages);
6051}
6052
a9d5adee
JG
6053struct uncharge_gather {
6054 struct mem_cgroup *memcg;
6055 unsigned long pgpgout;
6056 unsigned long nr_anon;
6057 unsigned long nr_file;
6058 unsigned long nr_kmem;
6059 unsigned long nr_huge;
6060 unsigned long nr_shmem;
6061 struct page *dummy_page;
6062};
6063
6064static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6065{
a9d5adee
JG
6066 memset(ug, 0, sizeof(*ug));
6067}
6068
6069static void uncharge_batch(const struct uncharge_gather *ug)
6070{
6071 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6072 unsigned long flags;
6073
a9d5adee
JG
6074 if (!mem_cgroup_is_root(ug->memcg)) {
6075 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6076 if (do_memsw_account())
a9d5adee
JG
6077 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6079 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6080 memcg_oom_recover(ug->memcg);
ce00a967 6081 }
747db954
JW
6082
6083 local_irq_save(flags);
c9019e9b
JW
6084 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6085 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6086 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6087 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6088 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 6089 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 6090 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6091 local_irq_restore(flags);
e8ea14cc 6092
a9d5adee
JG
6093 if (!mem_cgroup_is_root(ug->memcg))
6094 css_put_many(&ug->memcg->css, nr_pages);
6095}
6096
6097static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6098{
6099 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6100 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6101 !PageHWPoison(page) , page);
a9d5adee
JG
6102
6103 if (!page->mem_cgroup)
6104 return;
6105
6106 /*
6107 * Nobody should be changing or seriously looking at
6108 * page->mem_cgroup at this point, we have fully
6109 * exclusive access to the page.
6110 */
6111
6112 if (ug->memcg != page->mem_cgroup) {
6113 if (ug->memcg) {
6114 uncharge_batch(ug);
6115 uncharge_gather_clear(ug);
6116 }
6117 ug->memcg = page->mem_cgroup;
6118 }
6119
6120 if (!PageKmemcg(page)) {
6121 unsigned int nr_pages = 1;
6122
6123 if (PageTransHuge(page)) {
6124 nr_pages <<= compound_order(page);
6125 ug->nr_huge += nr_pages;
6126 }
6127 if (PageAnon(page))
6128 ug->nr_anon += nr_pages;
6129 else {
6130 ug->nr_file += nr_pages;
6131 if (PageSwapBacked(page))
6132 ug->nr_shmem += nr_pages;
6133 }
6134 ug->pgpgout++;
6135 } else {
6136 ug->nr_kmem += 1 << compound_order(page);
6137 __ClearPageKmemcg(page);
6138 }
6139
6140 ug->dummy_page = page;
6141 page->mem_cgroup = NULL;
747db954
JW
6142}
6143
6144static void uncharge_list(struct list_head *page_list)
6145{
a9d5adee 6146 struct uncharge_gather ug;
747db954 6147 struct list_head *next;
a9d5adee
JG
6148
6149 uncharge_gather_clear(&ug);
747db954 6150
8b592656
JW
6151 /*
6152 * Note that the list can be a single page->lru; hence the
6153 * do-while loop instead of a simple list_for_each_entry().
6154 */
747db954
JW
6155 next = page_list->next;
6156 do {
a9d5adee
JG
6157 struct page *page;
6158
747db954
JW
6159 page = list_entry(next, struct page, lru);
6160 next = page->lru.next;
6161
a9d5adee 6162 uncharge_page(page, &ug);
747db954
JW
6163 } while (next != page_list);
6164
a9d5adee
JG
6165 if (ug.memcg)
6166 uncharge_batch(&ug);
747db954
JW
6167}
6168
0a31bc97
JW
6169/**
6170 * mem_cgroup_uncharge - uncharge a page
6171 * @page: page to uncharge
6172 *
6173 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6174 * mem_cgroup_commit_charge().
6175 */
6176void mem_cgroup_uncharge(struct page *page)
6177{
a9d5adee
JG
6178 struct uncharge_gather ug;
6179
0a31bc97
JW
6180 if (mem_cgroup_disabled())
6181 return;
6182
747db954 6183 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6184 if (!page->mem_cgroup)
0a31bc97
JW
6185 return;
6186
a9d5adee
JG
6187 uncharge_gather_clear(&ug);
6188 uncharge_page(page, &ug);
6189 uncharge_batch(&ug);
747db954 6190}
0a31bc97 6191
747db954
JW
6192/**
6193 * mem_cgroup_uncharge_list - uncharge a list of page
6194 * @page_list: list of pages to uncharge
6195 *
6196 * Uncharge a list of pages previously charged with
6197 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6198 */
6199void mem_cgroup_uncharge_list(struct list_head *page_list)
6200{
6201 if (mem_cgroup_disabled())
6202 return;
0a31bc97 6203
747db954
JW
6204 if (!list_empty(page_list))
6205 uncharge_list(page_list);
0a31bc97
JW
6206}
6207
6208/**
6a93ca8f
JW
6209 * mem_cgroup_migrate - charge a page's replacement
6210 * @oldpage: currently circulating page
6211 * @newpage: replacement page
0a31bc97 6212 *
6a93ca8f
JW
6213 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6214 * be uncharged upon free.
0a31bc97
JW
6215 *
6216 * Both pages must be locked, @newpage->mapping must be set up.
6217 */
6a93ca8f 6218void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6219{
29833315 6220 struct mem_cgroup *memcg;
44b7a8d3
JW
6221 unsigned int nr_pages;
6222 bool compound;
d93c4130 6223 unsigned long flags;
0a31bc97
JW
6224
6225 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6226 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6227 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6228 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6229 newpage);
0a31bc97
JW
6230
6231 if (mem_cgroup_disabled())
6232 return;
6233
6234 /* Page cache replacement: new page already charged? */
1306a85a 6235 if (newpage->mem_cgroup)
0a31bc97
JW
6236 return;
6237
45637bab 6238 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6239 memcg = oldpage->mem_cgroup;
29833315 6240 if (!memcg)
0a31bc97
JW
6241 return;
6242
44b7a8d3
JW
6243 /* Force-charge the new page. The old one will be freed soon */
6244 compound = PageTransHuge(newpage);
6245 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6246
6247 page_counter_charge(&memcg->memory, nr_pages);
6248 if (do_memsw_account())
6249 page_counter_charge(&memcg->memsw, nr_pages);
6250 css_get_many(&memcg->css, nr_pages);
0a31bc97 6251
9cf7666a 6252 commit_charge(newpage, memcg, false);
44b7a8d3 6253
d93c4130 6254 local_irq_save(flags);
44b7a8d3
JW
6255 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6256 memcg_check_events(memcg, newpage);
d93c4130 6257 local_irq_restore(flags);
0a31bc97
JW
6258}
6259
ef12947c 6260DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6261EXPORT_SYMBOL(memcg_sockets_enabled_key);
6262
2d758073 6263void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6264{
6265 struct mem_cgroup *memcg;
6266
2d758073
JW
6267 if (!mem_cgroup_sockets_enabled)
6268 return;
6269
edbe69ef
RG
6270 /*
6271 * Socket cloning can throw us here with sk_memcg already
6272 * filled. It won't however, necessarily happen from
6273 * process context. So the test for root memcg given
6274 * the current task's memcg won't help us in this case.
6275 *
6276 * Respecting the original socket's memcg is a better
6277 * decision in this case.
6278 */
6279 if (sk->sk_memcg) {
6280 css_get(&sk->sk_memcg->css);
6281 return;
6282 }
6283
11092087
JW
6284 rcu_read_lock();
6285 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6286 if (memcg == root_mem_cgroup)
6287 goto out;
0db15298 6288 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6289 goto out;
f7e1cb6e 6290 if (css_tryget_online(&memcg->css))
11092087 6291 sk->sk_memcg = memcg;
f7e1cb6e 6292out:
11092087
JW
6293 rcu_read_unlock();
6294}
11092087 6295
2d758073 6296void mem_cgroup_sk_free(struct sock *sk)
11092087 6297{
2d758073
JW
6298 if (sk->sk_memcg)
6299 css_put(&sk->sk_memcg->css);
11092087
JW
6300}
6301
6302/**
6303 * mem_cgroup_charge_skmem - charge socket memory
6304 * @memcg: memcg to charge
6305 * @nr_pages: number of pages to charge
6306 *
6307 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6308 * @memcg's configured limit, %false if the charge had to be forced.
6309 */
6310bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6311{
f7e1cb6e 6312 gfp_t gfp_mask = GFP_KERNEL;
11092087 6313
f7e1cb6e 6314 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6315 struct page_counter *fail;
f7e1cb6e 6316
0db15298
JW
6317 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6318 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6319 return true;
6320 }
0db15298
JW
6321 page_counter_charge(&memcg->tcpmem, nr_pages);
6322 memcg->tcpmem_pressure = 1;
f7e1cb6e 6323 return false;
11092087 6324 }
d886f4e4 6325
f7e1cb6e
JW
6326 /* Don't block in the packet receive path */
6327 if (in_softirq())
6328 gfp_mask = GFP_NOWAIT;
6329
c9019e9b 6330 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6331
f7e1cb6e
JW
6332 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6333 return true;
6334
6335 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6336 return false;
6337}
6338
6339/**
6340 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6341 * @memcg: memcg to uncharge
6342 * @nr_pages: number of pages to uncharge
11092087
JW
6343 */
6344void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6345{
f7e1cb6e 6346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6347 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6348 return;
6349 }
d886f4e4 6350
c9019e9b 6351 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6352
475d0487 6353 refill_stock(memcg, nr_pages);
11092087
JW
6354}
6355
f7e1cb6e
JW
6356static int __init cgroup_memory(char *s)
6357{
6358 char *token;
6359
6360 while ((token = strsep(&s, ",")) != NULL) {
6361 if (!*token)
6362 continue;
6363 if (!strcmp(token, "nosocket"))
6364 cgroup_memory_nosocket = true;
04823c83
VD
6365 if (!strcmp(token, "nokmem"))
6366 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6367 }
6368 return 0;
6369}
6370__setup("cgroup.memory=", cgroup_memory);
11092087 6371
2d11085e 6372/*
1081312f
MH
6373 * subsys_initcall() for memory controller.
6374 *
308167fc
SAS
6375 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6376 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6377 * basically everything that doesn't depend on a specific mem_cgroup structure
6378 * should be initialized from here.
2d11085e
MH
6379 */
6380static int __init mem_cgroup_init(void)
6381{
95a045f6
JW
6382 int cpu, node;
6383
84c07d11 6384#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6385 /*
6386 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6387 * so use a workqueue with limited concurrency to avoid stalling
6388 * all worker threads in case lots of cgroups are created and
6389 * destroyed simultaneously.
13583c3d 6390 */
17cc4dfe
TH
6391 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6392 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6393#endif
6394
308167fc
SAS
6395 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6396 memcg_hotplug_cpu_dead);
95a045f6
JW
6397
6398 for_each_possible_cpu(cpu)
6399 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6400 drain_local_stock);
6401
6402 for_each_node(node) {
6403 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6404
6405 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6406 node_online(node) ? node : NUMA_NO_NODE);
6407
ef8f2327 6408 rtpn->rb_root = RB_ROOT;
fa90b2fd 6409 rtpn->rb_rightmost = NULL;
ef8f2327 6410 spin_lock_init(&rtpn->lock);
95a045f6
JW
6411 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6412 }
6413
2d11085e
MH
6414 return 0;
6415}
6416subsys_initcall(mem_cgroup_init);
21afa38e
JW
6417
6418#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6419static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6420{
6421 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6422 /*
6423 * The root cgroup cannot be destroyed, so it's refcount must
6424 * always be >= 1.
6425 */
6426 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6427 VM_BUG_ON(1);
6428 break;
6429 }
6430 memcg = parent_mem_cgroup(memcg);
6431 if (!memcg)
6432 memcg = root_mem_cgroup;
6433 }
6434 return memcg;
6435}
6436
21afa38e
JW
6437/**
6438 * mem_cgroup_swapout - transfer a memsw charge to swap
6439 * @page: page whose memsw charge to transfer
6440 * @entry: swap entry to move the charge to
6441 *
6442 * Transfer the memsw charge of @page to @entry.
6443 */
6444void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6445{
1f47b61f 6446 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6447 unsigned int nr_entries;
21afa38e
JW
6448 unsigned short oldid;
6449
6450 VM_BUG_ON_PAGE(PageLRU(page), page);
6451 VM_BUG_ON_PAGE(page_count(page), page);
6452
7941d214 6453 if (!do_memsw_account())
21afa38e
JW
6454 return;
6455
6456 memcg = page->mem_cgroup;
6457
6458 /* Readahead page, never charged */
6459 if (!memcg)
6460 return;
6461
1f47b61f
VD
6462 /*
6463 * In case the memcg owning these pages has been offlined and doesn't
6464 * have an ID allocated to it anymore, charge the closest online
6465 * ancestor for the swap instead and transfer the memory+swap charge.
6466 */
6467 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6468 nr_entries = hpage_nr_pages(page);
6469 /* Get references for the tail pages, too */
6470 if (nr_entries > 1)
6471 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6472 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6473 nr_entries);
21afa38e 6474 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6475 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6476
6477 page->mem_cgroup = NULL;
6478
6479 if (!mem_cgroup_is_root(memcg))
d6810d73 6480 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6481
1f47b61f
VD
6482 if (memcg != swap_memcg) {
6483 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6484 page_counter_charge(&swap_memcg->memsw, nr_entries);
6485 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6486 }
6487
ce9ce665
SAS
6488 /*
6489 * Interrupts should be disabled here because the caller holds the
b93b0163 6490 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6491 * important here to have the interrupts disabled because it is the
b93b0163 6492 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6493 */
6494 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6495 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6496 -nr_entries);
21afa38e 6497 memcg_check_events(memcg, page);
73f576c0
JW
6498
6499 if (!mem_cgroup_is_root(memcg))
d08afa14 6500 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6501}
6502
38d8b4e6
HY
6503/**
6504 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6505 * @page: page being added to swap
6506 * @entry: swap entry to charge
6507 *
38d8b4e6 6508 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6509 *
6510 * Returns 0 on success, -ENOMEM on failure.
6511 */
6512int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6513{
38d8b4e6 6514 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6515 struct page_counter *counter;
38d8b4e6 6516 struct mem_cgroup *memcg;
37e84351
VD
6517 unsigned short oldid;
6518
6519 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6520 return 0;
6521
6522 memcg = page->mem_cgroup;
6523
6524 /* Readahead page, never charged */
6525 if (!memcg)
6526 return 0;
6527
f3a53a3a
TH
6528 if (!entry.val) {
6529 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6530 return 0;
f3a53a3a 6531 }
bb98f2c5 6532
1f47b61f
VD
6533 memcg = mem_cgroup_id_get_online(memcg);
6534
37e84351 6535 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6536 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6537 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6538 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6539 mem_cgroup_id_put(memcg);
37e84351 6540 return -ENOMEM;
1f47b61f 6541 }
37e84351 6542
38d8b4e6
HY
6543 /* Get references for the tail pages, too */
6544 if (nr_pages > 1)
6545 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6546 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6547 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6548 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6549
37e84351
VD
6550 return 0;
6551}
6552
21afa38e 6553/**
38d8b4e6 6554 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6555 * @entry: swap entry to uncharge
38d8b4e6 6556 * @nr_pages: the amount of swap space to uncharge
21afa38e 6557 */
38d8b4e6 6558void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6559{
6560 struct mem_cgroup *memcg;
6561 unsigned short id;
6562
37e84351 6563 if (!do_swap_account)
21afa38e
JW
6564 return;
6565
38d8b4e6 6566 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6567 rcu_read_lock();
adbe427b 6568 memcg = mem_cgroup_from_id(id);
21afa38e 6569 if (memcg) {
37e84351
VD
6570 if (!mem_cgroup_is_root(memcg)) {
6571 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6572 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6573 else
38d8b4e6 6574 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6575 }
c9019e9b 6576 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6577 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6578 }
6579 rcu_read_unlock();
6580}
6581
d8b38438
VD
6582long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6583{
6584 long nr_swap_pages = get_nr_swap_pages();
6585
6586 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6587 return nr_swap_pages;
6588 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6589 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6590 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6591 page_counter_read(&memcg->swap));
6592 return nr_swap_pages;
6593}
6594
5ccc5aba
VD
6595bool mem_cgroup_swap_full(struct page *page)
6596{
6597 struct mem_cgroup *memcg;
6598
6599 VM_BUG_ON_PAGE(!PageLocked(page), page);
6600
6601 if (vm_swap_full())
6602 return true;
6603 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6604 return false;
6605
6606 memcg = page->mem_cgroup;
6607 if (!memcg)
6608 return false;
6609
6610 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6611 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6612 return true;
6613
6614 return false;
6615}
6616
21afa38e
JW
6617/* for remember boot option*/
6618#ifdef CONFIG_MEMCG_SWAP_ENABLED
6619static int really_do_swap_account __initdata = 1;
6620#else
6621static int really_do_swap_account __initdata;
6622#endif
6623
6624static int __init enable_swap_account(char *s)
6625{
6626 if (!strcmp(s, "1"))
6627 really_do_swap_account = 1;
6628 else if (!strcmp(s, "0"))
6629 really_do_swap_account = 0;
6630 return 1;
6631}
6632__setup("swapaccount=", enable_swap_account);
6633
37e84351
VD
6634static u64 swap_current_read(struct cgroup_subsys_state *css,
6635 struct cftype *cft)
6636{
6637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6638
6639 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6640}
6641
6642static int swap_max_show(struct seq_file *m, void *v)
6643{
6644 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6645 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6646
6647 if (max == PAGE_COUNTER_MAX)
6648 seq_puts(m, "max\n");
6649 else
6650 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6651
6652 return 0;
6653}
6654
6655static ssize_t swap_max_write(struct kernfs_open_file *of,
6656 char *buf, size_t nbytes, loff_t off)
6657{
6658 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6659 unsigned long max;
6660 int err;
6661
6662 buf = strstrip(buf);
6663 err = page_counter_memparse(buf, "max", &max);
6664 if (err)
6665 return err;
6666
be09102b 6667 xchg(&memcg->swap.max, max);
37e84351
VD
6668
6669 return nbytes;
6670}
6671
f3a53a3a
TH
6672static int swap_events_show(struct seq_file *m, void *v)
6673{
6674 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6675
6676 seq_printf(m, "max %lu\n",
6677 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6678 seq_printf(m, "fail %lu\n",
6679 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6680
6681 return 0;
6682}
6683
37e84351
VD
6684static struct cftype swap_files[] = {
6685 {
6686 .name = "swap.current",
6687 .flags = CFTYPE_NOT_ON_ROOT,
6688 .read_u64 = swap_current_read,
6689 },
6690 {
6691 .name = "swap.max",
6692 .flags = CFTYPE_NOT_ON_ROOT,
6693 .seq_show = swap_max_show,
6694 .write = swap_max_write,
6695 },
f3a53a3a
TH
6696 {
6697 .name = "swap.events",
6698 .flags = CFTYPE_NOT_ON_ROOT,
6699 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6700 .seq_show = swap_events_show,
6701 },
37e84351
VD
6702 { } /* terminate */
6703};
6704
21afa38e
JW
6705static struct cftype memsw_cgroup_files[] = {
6706 {
6707 .name = "memsw.usage_in_bytes",
6708 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6709 .read_u64 = mem_cgroup_read_u64,
6710 },
6711 {
6712 .name = "memsw.max_usage_in_bytes",
6713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6714 .write = mem_cgroup_reset,
6715 .read_u64 = mem_cgroup_read_u64,
6716 },
6717 {
6718 .name = "memsw.limit_in_bytes",
6719 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6720 .write = mem_cgroup_write,
6721 .read_u64 = mem_cgroup_read_u64,
6722 },
6723 {
6724 .name = "memsw.failcnt",
6725 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6726 .write = mem_cgroup_reset,
6727 .read_u64 = mem_cgroup_read_u64,
6728 },
6729 { }, /* terminate */
6730};
6731
6732static int __init mem_cgroup_swap_init(void)
6733{
6734 if (!mem_cgroup_disabled() && really_do_swap_account) {
6735 do_swap_account = 1;
37e84351
VD
6736 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6737 swap_files));
21afa38e
JW
6738 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6739 memsw_cgroup_files));
6740 }
6741 return 0;
6742}
6743subsys_initcall(mem_cgroup_swap_init);
6744
6745#endif /* CONFIG_MEMCG_SWAP */