]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memory.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
af27d940 83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
1da177e4
LT
189/*
190 * Note: this doesn't free the actual pages themselves. That
191 * has been handled earlier when unmapping all the memory regions.
192 */
9e1b32ca
BH
193static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194 unsigned long addr)
1da177e4 195{
2f569afd 196 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 197 pmd_clear(pmd);
9e1b32ca 198 pte_free_tlb(tlb, token, addr);
c4812909 199 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
200}
201
e0da382c
HD
202static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203 unsigned long addr, unsigned long end,
204 unsigned long floor, unsigned long ceiling)
1da177e4
LT
205{
206 pmd_t *pmd;
207 unsigned long next;
e0da382c 208 unsigned long start;
1da177e4 209
e0da382c 210 start = addr;
1da177e4 211 pmd = pmd_offset(pud, addr);
1da177e4
LT
212 do {
213 next = pmd_addr_end(addr, end);
214 if (pmd_none_or_clear_bad(pmd))
215 continue;
9e1b32ca 216 free_pte_range(tlb, pmd, addr);
1da177e4
LT
217 } while (pmd++, addr = next, addr != end);
218
e0da382c
HD
219 start &= PUD_MASK;
220 if (start < floor)
221 return;
222 if (ceiling) {
223 ceiling &= PUD_MASK;
224 if (!ceiling)
225 return;
1da177e4 226 }
e0da382c
HD
227 if (end - 1 > ceiling - 1)
228 return;
229
230 pmd = pmd_offset(pud, start);
231 pud_clear(pud);
9e1b32ca 232 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 233 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
234}
235
c2febafc 236static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pud_t *pud;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
c2febafc 245 pud = pud_offset(p4d, addr);
1da177e4
LT
246 do {
247 next = pud_addr_end(addr, end);
248 if (pud_none_or_clear_bad(pud))
249 continue;
e0da382c 250 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
251 } while (pud++, addr = next, addr != end);
252
c2febafc
KS
253 start &= P4D_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= P4D_MASK;
258 if (!ceiling)
259 return;
260 }
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pud = pud_offset(p4d, start);
265 p4d_clear(p4d);
266 pud_free_tlb(tlb, pud, start);
b4e98d9a 267 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
268}
269
270static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
273{
274 p4d_t *p4d;
275 unsigned long next;
276 unsigned long start;
277
278 start = addr;
279 p4d = p4d_offset(pgd, addr);
280 do {
281 next = p4d_addr_end(addr, end);
282 if (p4d_none_or_clear_bad(p4d))
283 continue;
284 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285 } while (p4d++, addr = next, addr != end);
286
e0da382c
HD
287 start &= PGDIR_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= PGDIR_MASK;
292 if (!ceiling)
293 return;
1da177e4 294 }
e0da382c
HD
295 if (end - 1 > ceiling - 1)
296 return;
297
c2febafc 298 p4d = p4d_offset(pgd, start);
e0da382c 299 pgd_clear(pgd);
c2febafc 300 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
301}
302
303/*
e0da382c 304 * This function frees user-level page tables of a process.
1da177e4 305 */
42b77728 306void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
307 unsigned long addr, unsigned long end,
308 unsigned long floor, unsigned long ceiling)
1da177e4
LT
309{
310 pgd_t *pgd;
311 unsigned long next;
e0da382c
HD
312
313 /*
314 * The next few lines have given us lots of grief...
315 *
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
319 *
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
327 *
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
332 *
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
337 */
1da177e4 338
e0da382c
HD
339 addr &= PMD_MASK;
340 if (addr < floor) {
341 addr += PMD_SIZE;
342 if (!addr)
343 return;
344 }
345 if (ceiling) {
346 ceiling &= PMD_MASK;
347 if (!ceiling)
348 return;
349 }
350 if (end - 1 > ceiling - 1)
351 end -= PMD_SIZE;
352 if (addr > end - 1)
353 return;
07e32661
AK
354 /*
355 * We add page table cache pages with PAGE_SIZE,
356 * (see pte_free_tlb()), flush the tlb if we need
357 */
358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 359 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
360 do {
361 next = pgd_addr_end(addr, end);
362 if (pgd_none_or_clear_bad(pgd))
363 continue;
c2febafc 364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 365 } while (pgd++, addr = next, addr != end);
e0da382c
HD
366}
367
42b77728 368void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 369 unsigned long floor, unsigned long ceiling)
e0da382c
HD
370{
371 while (vma) {
372 struct vm_area_struct *next = vma->vm_next;
373 unsigned long addr = vma->vm_start;
374
8f4f8c16 375 /*
25d9e2d1
NP
376 * Hide vma from rmap and truncate_pagecache before freeing
377 * pgtables
8f4f8c16 378 */
5beb4930 379 unlink_anon_vmas(vma);
8f4f8c16
HD
380 unlink_file_vma(vma);
381
9da61aef 382 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 384 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
385 } else {
386 /*
387 * Optimization: gather nearby vmas into one call down
388 */
389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 390 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
391 vma = next;
392 next = vma->vm_next;
5beb4930 393 unlink_anon_vmas(vma);
8f4f8c16 394 unlink_file_vma(vma);
3bf5ee95
HD
395 }
396 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 397 floor, next ? next->vm_start : ceiling);
3bf5ee95 398 }
e0da382c
HD
399 vma = next;
400 }
1da177e4
LT
401}
402
3ed3a4f0 403int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 404{
c4088ebd 405 spinlock_t *ptl;
2f569afd 406 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
407 if (!new)
408 return -ENOMEM;
409
362a61ad
NP
410 /*
411 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 * visible before the pte is made visible to other CPUs by being
413 * put into page tables.
414 *
415 * The other side of the story is the pointer chasing in the page
416 * table walking code (when walking the page table without locking;
417 * ie. most of the time). Fortunately, these data accesses consist
418 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 * being the notable exception) will already guarantee loads are
420 * seen in-order. See the alpha page table accessors for the
421 * smp_read_barrier_depends() barriers in page table walking code.
422 */
423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
424
c4088ebd 425 ptl = pmd_lock(mm, pmd);
8ac1f832 426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 427 mm_inc_nr_ptes(mm);
1da177e4 428 pmd_populate(mm, pmd, new);
2f569afd 429 new = NULL;
4b471e88 430 }
c4088ebd 431 spin_unlock(ptl);
2f569afd
MS
432 if (new)
433 pte_free(mm, new);
1bb3630e 434 return 0;
1da177e4
LT
435}
436
1bb3630e 437int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 438{
1bb3630e
HD
439 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
440 if (!new)
441 return -ENOMEM;
442
362a61ad
NP
443 smp_wmb(); /* See comment in __pte_alloc */
444
1bb3630e 445 spin_lock(&init_mm.page_table_lock);
8ac1f832 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 447 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 448 new = NULL;
4b471e88 449 }
1bb3630e 450 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
451 if (new)
452 pte_free_kernel(&init_mm, new);
1bb3630e 453 return 0;
1da177e4
LT
454}
455
d559db08
KH
456static inline void init_rss_vec(int *rss)
457{
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 462{
d559db08
KH
463 int i;
464
34e55232 465 if (current->mm == mm)
05af2e10 466 sync_mm_rss(mm);
d559db08
KH
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
ae859762
HD
470}
471
b5810039 472/*
6aab341e
LT
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
b5810039
NP
476 *
477 * The calling function must still handle the error.
478 */
3dc14741
HD
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
b5810039 481{
3dc14741 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
483 p4d_t *p4d = p4d_offset(pgd, addr);
484 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
485 pmd_t *pmd = pmd_offset(pud, addr);
486 struct address_space *mapping;
487 pgoff_t index;
d936cf9b
HD
488 static unsigned long resume;
489 static unsigned long nr_shown;
490 static unsigned long nr_unshown;
491
492 /*
493 * Allow a burst of 60 reports, then keep quiet for that minute;
494 * or allow a steady drip of one report per second.
495 */
496 if (nr_shown == 60) {
497 if (time_before(jiffies, resume)) {
498 nr_unshown++;
499 return;
500 }
501 if (nr_unshown) {
1170532b
JP
502 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
d936cf9b
HD
504 nr_unshown = 0;
505 }
506 nr_shown = 0;
507 }
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
3dc14741
HD
510
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
513
1170532b
JP
514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
515 current->comm,
516 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 517 if (page)
f0b791a3 518 dump_page(page, "bad pte");
1170532b
JP
519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522 vma->vm_file,
523 vma->vm_ops ? vma->vm_ops->fault : NULL,
524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525 mapping ? mapping->a_ops->readpage : NULL);
b5810039 526 dump_stack();
373d4d09 527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
528}
529
ee498ed7 530/*
7e675137 531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 532 *
7e675137
NP
533 * "Special" mappings do not wish to be associated with a "struct page" (either
534 * it doesn't exist, or it exists but they don't want to touch it). In this
535 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 536 *
7e675137
NP
537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538 * pte bit, in which case this function is trivial. Secondly, an architecture
539 * may not have a spare pte bit, which requires a more complicated scheme,
540 * described below.
541 *
542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543 * special mapping (even if there are underlying and valid "struct pages").
544 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 545 *
b379d790
JH
546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549 * mapping will always honor the rule
6aab341e
LT
550 *
551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
552 *
7e675137
NP
553 * And for normal mappings this is false.
554 *
555 * This restricts such mappings to be a linear translation from virtual address
556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
557 * as the vma is not a COW mapping; in that case, we know that all ptes are
558 * special (because none can have been COWed).
b379d790 559 *
b379d790 560 *
7e675137 561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
562 *
563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564 * page" backing, however the difference is that _all_ pages with a struct
565 * page (that is, those where pfn_valid is true) are refcounted and considered
566 * normal pages by the VM. The disadvantage is that pages are refcounted
567 * (which can be slower and simply not an option for some PFNMAP users). The
568 * advantage is that we don't have to follow the strict linearity rule of
569 * PFNMAP mappings in order to support COWable mappings.
570 *
ee498ed7 571 */
df6ad698
JG
572struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573 pte_t pte, bool with_public_device)
ee498ed7 574{
22b31eec 575 unsigned long pfn = pte_pfn(pte);
7e675137 576
00b3a331 577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 578 if (likely(!pte_special(pte)))
22b31eec 579 goto check_pfn;
667a0a06
DV
580 if (vma->vm_ops && vma->vm_ops->find_special_page)
581 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583 return NULL;
df6ad698
JG
584 if (is_zero_pfn(pfn))
585 return NULL;
586
587 /*
588 * Device public pages are special pages (they are ZONE_DEVICE
589 * pages but different from persistent memory). They behave
590 * allmost like normal pages. The difference is that they are
591 * not on the lru and thus should never be involve with any-
592 * thing that involve lru manipulation (mlock, numa balancing,
593 * ...).
594 *
595 * This is why we still want to return NULL for such page from
596 * vm_normal_page() so that we do not have to special case all
597 * call site of vm_normal_page().
598 */
7d790d2d 599 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
600 struct page *page = pfn_to_page(pfn);
601
602 if (is_device_public_page(page)) {
603 if (with_public_device)
604 return page;
605 return NULL;
606 }
607 }
e1fb4a08
DJ
608
609 if (pte_devmap(pte))
610 return NULL;
611
df6ad698 612 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
613 return NULL;
614 }
615
00b3a331 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 617
b379d790
JH
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
7e675137
NP
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
6aab341e
LT
631 }
632
b38af472
HD
633 if (is_zero_pfn(pfn))
634 return NULL;
00b3a331 635
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
28093f9f
GS
650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653{
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
e1fb4a08
DJ
676 if (pmd_devmap(pmd))
677 return NULL;
28093f9f
GS
678 if (is_zero_pfn(pfn))
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687out:
688 return pfn_to_page(pfn);
689}
690#endif
691
1da177e4
LT
692/*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
1da177e4
LT
696 */
697
570a335b 698static inline unsigned long
1da177e4 699copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 701 unsigned long addr, int *rss)
1da177e4 702{
b5810039 703 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
704 pte_t pte = *src_pte;
705 struct page *page;
1da177e4
LT
706
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte))) {
0661a336
KS
709 swp_entry_t entry = pte_to_swp_entry(pte);
710
711 if (likely(!non_swap_entry(entry))) {
712 if (swap_duplicate(entry) < 0)
713 return entry.val;
714
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm->mmlist))) {
717 spin_lock(&mmlist_lock);
718 if (list_empty(&dst_mm->mmlist))
719 list_add(&dst_mm->mmlist,
720 &src_mm->mmlist);
721 spin_unlock(&mmlist_lock);
722 }
723 rss[MM_SWAPENTS]++;
724 } else if (is_migration_entry(entry)) {
725 page = migration_entry_to_page(entry);
726
eca56ff9 727 rss[mm_counter(page)]++;
0661a336
KS
728
729 if (is_write_migration_entry(entry) &&
730 is_cow_mapping(vm_flags)) {
731 /*
732 * COW mappings require pages in both
733 * parent and child to be set to read.
734 */
735 make_migration_entry_read(&entry);
736 pte = swp_entry_to_pte(entry);
737 if (pte_swp_soft_dirty(*src_pte))
738 pte = pte_swp_mksoft_dirty(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 740 }
5042db43
JG
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
743
744 /*
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
748 *
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
752 */
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
756
757 /*
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
763 */
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
1da177e4 770 }
ae859762 771 goto out_set_pte;
1da177e4
LT
772 }
773
1da177e4
LT
774 /*
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
777 */
1b2de5d0 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 779 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 780 pte = pte_wrprotect(pte);
1da177e4
LT
781 }
782
783 /*
784 * If it's a shared mapping, mark it clean in
785 * the child
786 */
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
6aab341e
LT
790
791 page = vm_normal_page(vma, addr, pte);
792 if (page) {
793 get_page(page);
53f9263b 794 page_dup_rmap(page, false);
eca56ff9 795 rss[mm_counter(page)]++;
df6ad698
JG
796 } else if (pte_devmap(pte)) {
797 page = pte_page(pte);
798
799 /*
800 * Cache coherent device memory behave like regular page and
801 * not like persistent memory page. For more informations see
802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
803 */
804 if (is_device_public_page(page)) {
805 get_page(page);
806 page_dup_rmap(page, false);
807 rss[mm_counter(page)]++;
808 }
6aab341e 809 }
ae859762
HD
810
811out_set_pte:
812 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 813 return 0;
1da177e4
LT
814}
815
21bda264 816static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818 unsigned long addr, unsigned long end)
1da177e4 819{
c36987e2 820 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 821 pte_t *src_pte, *dst_pte;
c74df32c 822 spinlock_t *src_ptl, *dst_ptl;
e040f218 823 int progress = 0;
d559db08 824 int rss[NR_MM_COUNTERS];
570a335b 825 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
826
827again:
d559db08
KH
828 init_rss_vec(rss);
829
c74df32c 830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
831 if (!dst_pte)
832 return -ENOMEM;
ece0e2b6 833 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 834 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
836 orig_src_pte = src_pte;
837 orig_dst_pte = dst_pte;
6606c3e0 838 arch_enter_lazy_mmu_mode();
1da177e4 839
1da177e4
LT
840 do {
841 /*
842 * We are holding two locks at this point - either of them
843 * could generate latencies in another task on another CPU.
844 */
e040f218
HD
845 if (progress >= 32) {
846 progress = 0;
847 if (need_resched() ||
95c354fe 848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
849 break;
850 }
1da177e4
LT
851 if (pte_none(*src_pte)) {
852 progress++;
853 continue;
854 }
570a335b
HD
855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856 vma, addr, rss);
857 if (entry.val)
858 break;
1da177e4
LT
859 progress += 8;
860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 861
6606c3e0 862 arch_leave_lazy_mmu_mode();
c74df32c 863 spin_unlock(src_ptl);
ece0e2b6 864 pte_unmap(orig_src_pte);
d559db08 865 add_mm_rss_vec(dst_mm, rss);
c36987e2 866 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 867 cond_resched();
570a335b
HD
868
869 if (entry.val) {
870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871 return -ENOMEM;
872 progress = 0;
873 }
1da177e4
LT
874 if (addr != end)
875 goto again;
876 return 0;
877}
878
879static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881 unsigned long addr, unsigned long end)
882{
883 pmd_t *src_pmd, *dst_pmd;
884 unsigned long next;
885
886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887 if (!dst_pmd)
888 return -ENOMEM;
889 src_pmd = pmd_offset(src_pud, addr);
890 do {
891 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893 || pmd_devmap(*src_pmd)) {
71e3aac0 894 int err;
a00cc7d9 895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
896 err = copy_huge_pmd(dst_mm, src_mm,
897 dst_pmd, src_pmd, addr, vma);
898 if (err == -ENOMEM)
899 return -ENOMEM;
900 if (!err)
901 continue;
902 /* fall through */
903 }
1da177e4
LT
904 if (pmd_none_or_clear_bad(src_pmd))
905 continue;
906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907 vma, addr, next))
908 return -ENOMEM;
909 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910 return 0;
911}
912
913static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
915 unsigned long addr, unsigned long end)
916{
917 pud_t *src_pud, *dst_pud;
918 unsigned long next;
919
c2febafc 920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
921 if (!dst_pud)
922 return -ENOMEM;
c2febafc 923 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
924 do {
925 next = pud_addr_end(addr, end);
a00cc7d9
MW
926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927 int err;
928
929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930 err = copy_huge_pud(dst_mm, src_mm,
931 dst_pud, src_pud, addr, vma);
932 if (err == -ENOMEM)
933 return -ENOMEM;
934 if (!err)
935 continue;
936 /* fall through */
937 }
1da177e4
LT
938 if (pud_none_or_clear_bad(src_pud))
939 continue;
940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941 vma, addr, next))
942 return -ENOMEM;
943 } while (dst_pud++, src_pud++, addr = next, addr != end);
944 return 0;
945}
946
c2febafc
KS
947static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949 unsigned long addr, unsigned long end)
950{
951 p4d_t *src_p4d, *dst_p4d;
952 unsigned long next;
953
954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955 if (!dst_p4d)
956 return -ENOMEM;
957 src_p4d = p4d_offset(src_pgd, addr);
958 do {
959 next = p4d_addr_end(addr, end);
960 if (p4d_none_or_clear_bad(src_p4d))
961 continue;
962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963 vma, addr, next))
964 return -ENOMEM;
965 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966 return 0;
967}
968
1da177e4
LT
969int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 struct vm_area_struct *vma)
971{
972 pgd_t *src_pgd, *dst_pgd;
973 unsigned long next;
974 unsigned long addr = vma->vm_start;
975 unsigned long end = vma->vm_end;
2ec74c3e
SG
976 unsigned long mmun_start; /* For mmu_notifiers */
977 unsigned long mmun_end; /* For mmu_notifiers */
978 bool is_cow;
cddb8a5c 979 int ret;
1da177e4 980
d992895b
NP
981 /*
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
986 */
0661a336
KS
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
d992895b 990
1da177e4
LT
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
b3b9c293 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 995 /*
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
998 */
5180da41 999 ret = track_pfn_copy(vma);
2ab64037 1000 if (ret)
1001 return ret;
1002 }
1003
cddb8a5c
AA
1004 /*
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1009 */
2ec74c3e
SG
1010 is_cow = is_cow_mapping(vma->vm_flags);
1011 mmun_start = addr;
1012 mmun_end = end;
1013 if (is_cow)
1014 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1015 mmun_end);
cddb8a5c
AA
1016
1017 ret = 0;
1da177e4
LT
1018 dst_pgd = pgd_offset(dst_mm, addr);
1019 src_pgd = pgd_offset(src_mm, addr);
1020 do {
1021 next = pgd_addr_end(addr, end);
1022 if (pgd_none_or_clear_bad(src_pgd))
1023 continue;
c2febafc 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1025 vma, addr, next))) {
1026 ret = -ENOMEM;
1027 break;
1028 }
1da177e4 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1030
2ec74c3e
SG
1031 if (is_cow)
1032 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1033 return ret;
1da177e4
LT
1034}
1035
51c6f666 1036static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1037 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1038 unsigned long addr, unsigned long end,
97a89413 1039 struct zap_details *details)
1da177e4 1040{
b5810039 1041 struct mm_struct *mm = tlb->mm;
d16dfc55 1042 int force_flush = 0;
d559db08 1043 int rss[NR_MM_COUNTERS];
97a89413 1044 spinlock_t *ptl;
5f1a1907 1045 pte_t *start_pte;
97a89413 1046 pte_t *pte;
8a5f14a2 1047 swp_entry_t entry;
d559db08 1048
07e32661 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1050again:
e303297e 1051 init_rss_vec(rss);
5f1a1907
SR
1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 pte = start_pte;
3ea27719 1054 flush_tlb_batched_pending(mm);
6606c3e0 1055 arch_enter_lazy_mmu_mode();
1da177e4
LT
1056 do {
1057 pte_t ptent = *pte;
166f61b9 1058 if (pte_none(ptent))
1da177e4 1059 continue;
6f5e6b9e 1060
1da177e4 1061 if (pte_present(ptent)) {
ee498ed7 1062 struct page *page;
51c6f666 1063
df6ad698 1064 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1065 if (unlikely(details) && page) {
1066 /*
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1070 */
1071 if (details->check_mapping &&
800d8c63 1072 details->check_mapping != page_rmapping(page))
1da177e4 1073 continue;
1da177e4 1074 }
b5810039 1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1076 tlb->fullmm);
1da177e4
LT
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
eca56ff9
JM
1080
1081 if (!PageAnon(page)) {
1cf35d47
LT
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
6237bcd9 1084 set_page_dirty(page);
1cf35d47 1085 }
4917e5d0 1086 if (pte_young(ptent) &&
64363aad 1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1088 mark_page_accessed(page);
6237bcd9 1089 }
eca56ff9 1090 rss[mm_counter(page)]--;
d281ee61 1091 page_remove_rmap(page, false);
3dc14741
HD
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1095 force_flush = 1;
ce9ec37b 1096 addr += PAGE_SIZE;
d16dfc55 1097 break;
1cf35d47 1098 }
1da177e4
LT
1099 continue;
1100 }
5042db43
JG
1101
1102 entry = pte_to_swp_entry(ptent);
1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1105
1106 if (unlikely(details && details->check_mapping)) {
1107 /*
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1111 */
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1115 }
1116
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1122 }
1123
3e8715fd
KS
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1da177e4 1126 continue;
b084d435 1127
8a5f14a2
KS
1128 entry = pte_to_swp_entry(ptent);
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
9f9f1acd 1133
8a5f14a2 1134 page = migration_entry_to_page(entry);
eca56ff9 1135 rss[mm_counter(page)]--;
b084d435 1136 }
8a5f14a2
KS
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1140 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1141
d559db08 1142 add_mm_rss_vec(mm, rss);
6606c3e0 1143 arch_leave_lazy_mmu_mode();
51c6f666 1144
1cf35d47 1145 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1146 if (force_flush)
1cf35d47 1147 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
1158 tlb_flush_mmu_free(tlb);
2b047252 1159 if (addr != end)
d16dfc55
PZ
1160 goto again;
1161 }
1162
51c6f666 1163 return addr;
1da177e4
LT
1164}
1165
51c6f666 1166static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1167 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1168 unsigned long addr, unsigned long end,
97a89413 1169 struct zap_details *details)
1da177e4
LT
1170{
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
84c3fc4e 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1178 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1181 goto next;
71e3aac0
AA
1182 /* fall through */
1183 }
1a5a9906
AA
1184 /*
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1189 * mode.
1190 */
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
97a89413 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1194next:
97a89413
PZ
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1197
1198 return addr;
1da177e4
LT
1199}
1200
51c6f666 1201static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1202 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1203 unsigned long addr, unsigned long end,
97a89413 1204 struct zap_details *details)
1da177e4
LT
1205{
1206 pud_t *pud;
1207 unsigned long next;
1208
c2febafc 1209 pud = pud_offset(p4d, addr);
1da177e4
LT
1210 do {
1211 next = pud_addr_end(addr, end);
a00cc7d9
MW
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1219 }
97a89413 1220 if (pud_none_or_clear_bad(pud))
1da177e4 1221 continue;
97a89413 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1223next:
1224 cond_resched();
97a89413 1225 } while (pud++, addr = next, addr != end);
51c6f666
RH
1226
1227 return addr;
1da177e4
LT
1228}
1229
c2febafc
KS
1230static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234{
1235 p4d_t *p4d;
1236 unsigned long next;
1237
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
aac45363 1249void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1da177e4
LT
1253{
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1da177e4
LT
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
97a89413 1262 if (pgd_none_or_clear_bad(pgd))
1da177e4 1263 continue;
c2febafc 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1265 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1266 tlb_end_vma(tlb, vma);
1267}
51c6f666 1268
f5cc4eef
AV
1269
1270static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1272 unsigned long end_addr,
f5cc4eef
AV
1273 struct zap_details *details)
1274{
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1277
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1283
cbc91f71
SD
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1286
b3b9c293 1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1288 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1289
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 /*
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
7aa6b4ad 1296 * cleanup path of mmap_region. When
f5cc4eef 1297 * hugetlbfs ->mmap method fails,
7aa6b4ad 1298 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1302 */
24669e58 1303 if (vma->vm_file) {
83cde9e8 1304 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1307 }
f5cc4eef
AV
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1310 }
1da177e4
LT
1311}
1312
1da177e4
LT
1313/**
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1315 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1da177e4 1319 *
508034a3 1320 * Unmap all pages in the vma list.
1da177e4 1321 *
1da177e4
LT
1322 * Only addresses between `start' and `end' will be unmapped.
1323 *
1324 * The VMA list must be sorted in ascending virtual address order.
1325 *
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1330 */
6e8bb019 1331void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1332 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1333 unsigned long end_addr)
1da177e4 1334{
cddb8a5c 1335 struct mm_struct *mm = vma->vm_mm;
1da177e4 1336
cddb8a5c 1337 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1340 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1341}
1342
1343/**
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1346 * @start: starting address of pages to zap
1da177e4 1347 * @size: number of bytes to zap
f5cc4eef
AV
1348 *
1349 * Caller must protect the VMA list
1da177e4 1350 */
7e027b14 1351void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1352 unsigned long size)
1da177e4
LT
1353{
1354 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1355 struct mmu_gather tlb;
7e027b14 1356 unsigned long end = start + size;
1da177e4 1357
1da177e4 1358 lru_add_drain();
2b047252 1359 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1360 update_hiwater_rss(mm);
7e027b14 1361 mmu_notifier_invalidate_range_start(mm, start, end);
50c150f2 1362 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1363 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1364 mmu_notifier_invalidate_range_end(mm, start, end);
1365 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1366}
1367
f5cc4eef
AV
1368/**
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
8a5f14a2 1373 * @details: details of shared cache invalidation
f5cc4eef
AV
1374 *
1375 * The range must fit into one VMA.
1da177e4 1376 */
f5cc4eef 1377static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1378 unsigned long size, struct zap_details *details)
1379{
1380 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1381 struct mmu_gather tlb;
1da177e4 1382 unsigned long end = address + size;
1da177e4 1383
1da177e4 1384 lru_add_drain();
2b047252 1385 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1386 update_hiwater_rss(mm);
f5cc4eef 1387 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1388 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1389 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1390 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1391}
1392
c627f9cc
JS
1393/**
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 *
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400 *
1401 * The entire address range must be fully contained within the vma.
1402 *
c627f9cc 1403 */
27d036e3 1404void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1405 unsigned long size)
1406{
1407 if (address < vma->vm_start || address + size > vma->vm_end ||
1408 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1409 return;
1410
f5cc4eef 1411 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1412}
1413EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
25ca1d6c 1415pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1416 spinlock_t **ptl)
c9cfcddf 1417{
c2febafc
KS
1418 pgd_t *pgd;
1419 p4d_t *p4d;
1420 pud_t *pud;
1421 pmd_t *pmd;
1422
1423 pgd = pgd_offset(mm, addr);
1424 p4d = p4d_alloc(mm, pgd, addr);
1425 if (!p4d)
1426 return NULL;
1427 pud = pud_alloc(mm, p4d, addr);
1428 if (!pud)
1429 return NULL;
1430 pmd = pmd_alloc(mm, pud, addr);
1431 if (!pmd)
1432 return NULL;
1433
1434 VM_BUG_ON(pmd_trans_huge(*pmd));
1435 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1436}
1437
238f58d8
LT
1438/*
1439 * This is the old fallback for page remapping.
1440 *
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1444 */
423bad60
NP
1445static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446 struct page *page, pgprot_t prot)
238f58d8 1447{
423bad60 1448 struct mm_struct *mm = vma->vm_mm;
238f58d8 1449 int retval;
c9cfcddf 1450 pte_t *pte;
8a9f3ccd
BS
1451 spinlock_t *ptl;
1452
238f58d8 1453 retval = -EINVAL;
a145dd41 1454 if (PageAnon(page))
5b4e655e 1455 goto out;
238f58d8
LT
1456 retval = -ENOMEM;
1457 flush_dcache_page(page);
c9cfcddf 1458 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1459 if (!pte)
5b4e655e 1460 goto out;
238f58d8
LT
1461 retval = -EBUSY;
1462 if (!pte_none(*pte))
1463 goto out_unlock;
1464
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
eca56ff9 1467 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1468 page_add_file_rmap(page, false);
238f58d8
LT
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471 retval = 0;
8a9f3ccd
BS
1472 pte_unmap_unlock(pte, ptl);
1473 return retval;
238f58d8
LT
1474out_unlock:
1475 pte_unmap_unlock(pte, ptl);
1476out:
1477 return retval;
1478}
1479
bfa5bf6d
REB
1480/**
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1485 *
a145dd41
LT
1486 * This allows drivers to insert individual pages they've allocated
1487 * into a user vma.
1488 *
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1492 * (see split_page()).
a145dd41
LT
1493 *
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1499 *
1500 * The page does not need to be reserved.
4b6e1e37
KK
1501 *
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
a145dd41 1506 */
423bad60
NP
1507int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508 struct page *page)
a145dd41
LT
1509{
1510 if (addr < vma->vm_start || addr >= vma->vm_end)
1511 return -EFAULT;
1512 if (!page_count(page))
1513 return -EINVAL;
4b6e1e37
KK
1514 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517 vma->vm_flags |= VM_MIXEDMAP;
1518 }
423bad60 1519 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1520}
e3c3374f 1521EXPORT_SYMBOL(vm_insert_page);
a145dd41 1522
9b5a8e00 1523static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1524 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1525{
1526 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1527 pte_t *pte, entry;
1528 spinlock_t *ptl;
1529
423bad60
NP
1530 pte = get_locked_pte(mm, addr, &ptl);
1531 if (!pte)
9b5a8e00 1532 return VM_FAULT_OOM;
b2770da6
RZ
1533 if (!pte_none(*pte)) {
1534 if (mkwrite) {
1535 /*
1536 * For read faults on private mappings the PFN passed
1537 * in may not match the PFN we have mapped if the
1538 * mapped PFN is a writeable COW page. In the mkwrite
1539 * case we are creating a writable PTE for a shared
f2c57d91
JK
1540 * mapping and we expect the PFNs to match. If they
1541 * don't match, we are likely racing with block
1542 * allocation and mapping invalidation so just skip the
1543 * update.
b2770da6 1544 */
f2c57d91
JK
1545 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1546 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1547 goto out_unlock;
f2c57d91 1548 }
b2770da6
RZ
1549 entry = *pte;
1550 goto out_mkwrite;
1551 } else
1552 goto out_unlock;
1553 }
423bad60
NP
1554
1555 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1556 if (pfn_t_devmap(pfn))
1557 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1558 else
1559 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1560
1561out_mkwrite:
1562 if (mkwrite) {
1563 entry = pte_mkyoung(entry);
1564 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1565 }
1566
423bad60 1567 set_pte_at(mm, addr, pte, entry);
4b3073e1 1568 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1569
423bad60
NP
1570out_unlock:
1571 pte_unmap_unlock(pte, ptl);
9b5a8e00 1572 return VM_FAULT_NOPAGE;
423bad60
NP
1573}
1574
f5e6d1d5
MW
1575/**
1576 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1580 * @pgprot: pgprot flags for the inserted page
1581 *
1582 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1583 * to override pgprot on a per-page basis.
1584 *
1585 * This only makes sense for IO mappings, and it makes no sense for
1586 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1587 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1588 * impractical.
1589 *
ae2b01f3 1590 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1591 * Return: vm_fault_t value.
1592 */
1593vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1594 unsigned long pfn, pgprot_t pgprot)
1595{
6d958546
MW
1596 /*
1597 * Technically, architectures with pte_special can avoid all these
1598 * restrictions (same for remap_pfn_range). However we would like
1599 * consistency in testing and feature parity among all, so we should
1600 * try to keep these invariants in place for everybody.
1601 */
1602 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1603 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1604 (VM_PFNMAP|VM_MIXEDMAP));
1605 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1606 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1607
1608 if (addr < vma->vm_start || addr >= vma->vm_end)
1609 return VM_FAULT_SIGBUS;
1610
1611 if (!pfn_modify_allowed(pfn, pgprot))
1612 return VM_FAULT_SIGBUS;
1613
1614 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1615
9b5a8e00 1616 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1617 false);
f5e6d1d5
MW
1618}
1619EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1620
ae2b01f3
MW
1621/**
1622 * vmf_insert_pfn - insert single pfn into user vma
1623 * @vma: user vma to map to
1624 * @addr: target user address of this page
1625 * @pfn: source kernel pfn
1626 *
1627 * Similar to vm_insert_page, this allows drivers to insert individual pages
1628 * they've allocated into a user vma. Same comments apply.
1629 *
1630 * This function should only be called from a vm_ops->fault handler, and
1631 * in that case the handler should return the result of this function.
1632 *
1633 * vma cannot be a COW mapping.
1634 *
1635 * As this is called only for pages that do not currently exist, we
1636 * do not need to flush old virtual caches or the TLB.
1637 *
1638 * Context: Process context. May allocate using %GFP_KERNEL.
1639 * Return: vm_fault_t value.
1640 */
1641vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1642 unsigned long pfn)
1643{
1644 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1645}
1646EXPORT_SYMBOL(vmf_insert_pfn);
1647
785a3fab
DW
1648static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1649{
1650 /* these checks mirror the abort conditions in vm_normal_page */
1651 if (vma->vm_flags & VM_MIXEDMAP)
1652 return true;
1653 if (pfn_t_devmap(pfn))
1654 return true;
1655 if (pfn_t_special(pfn))
1656 return true;
1657 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1658 return true;
1659 return false;
1660}
1661
79f3aa5b
MW
1662static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1663 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1664{
87744ab3 1665 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1666 int err;
87744ab3 1667
785a3fab 1668 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1669
423bad60 1670 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1671 return VM_FAULT_SIGBUS;
308a047c
BP
1672
1673 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1674
42e4089c 1675 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1676 return VM_FAULT_SIGBUS;
42e4089c 1677
423bad60
NP
1678 /*
1679 * If we don't have pte special, then we have to use the pfn_valid()
1680 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1681 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1682 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1683 * without pte special, it would there be refcounted as a normal page.
423bad60 1684 */
00b3a331
LD
1685 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1686 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1687 struct page *page;
1688
03fc2da6
DW
1689 /*
1690 * At this point we are committed to insert_page()
1691 * regardless of whether the caller specified flags that
1692 * result in pfn_t_has_page() == false.
1693 */
1694 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1695 err = insert_page(vma, addr, page, pgprot);
1696 } else {
9b5a8e00 1697 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1698 }
b2770da6 1699
5d747637
MW
1700 if (err == -ENOMEM)
1701 return VM_FAULT_OOM;
1702 if (err < 0 && err != -EBUSY)
1703 return VM_FAULT_SIGBUS;
1704
1705 return VM_FAULT_NOPAGE;
e0dc0d8f 1706}
79f3aa5b
MW
1707
1708vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1709 pfn_t pfn)
1710{
1711 return __vm_insert_mixed(vma, addr, pfn, false);
1712}
5d747637 1713EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1714
ab77dab4
SJ
1715/*
1716 * If the insertion of PTE failed because someone else already added a
1717 * different entry in the mean time, we treat that as success as we assume
1718 * the same entry was actually inserted.
1719 */
ab77dab4
SJ
1720vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1721 unsigned long addr, pfn_t pfn)
b2770da6 1722{
79f3aa5b 1723 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1724}
ab77dab4 1725EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1726
1da177e4
LT
1727/*
1728 * maps a range of physical memory into the requested pages. the old
1729 * mappings are removed. any references to nonexistent pages results
1730 * in null mappings (currently treated as "copy-on-access")
1731 */
1732static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1733 unsigned long addr, unsigned long end,
1734 unsigned long pfn, pgprot_t prot)
1735{
1736 pte_t *pte;
c74df32c 1737 spinlock_t *ptl;
42e4089c 1738 int err = 0;
1da177e4 1739
c74df32c 1740 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1741 if (!pte)
1742 return -ENOMEM;
6606c3e0 1743 arch_enter_lazy_mmu_mode();
1da177e4
LT
1744 do {
1745 BUG_ON(!pte_none(*pte));
42e4089c
AK
1746 if (!pfn_modify_allowed(pfn, prot)) {
1747 err = -EACCES;
1748 break;
1749 }
7e675137 1750 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1751 pfn++;
1752 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1753 arch_leave_lazy_mmu_mode();
c74df32c 1754 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1755 return err;
1da177e4
LT
1756}
1757
1758static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1759 unsigned long addr, unsigned long end,
1760 unsigned long pfn, pgprot_t prot)
1761{
1762 pmd_t *pmd;
1763 unsigned long next;
42e4089c 1764 int err;
1da177e4
LT
1765
1766 pfn -= addr >> PAGE_SHIFT;
1767 pmd = pmd_alloc(mm, pud, addr);
1768 if (!pmd)
1769 return -ENOMEM;
f66055ab 1770 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1771 do {
1772 next = pmd_addr_end(addr, end);
42e4089c
AK
1773 err = remap_pte_range(mm, pmd, addr, next,
1774 pfn + (addr >> PAGE_SHIFT), prot);
1775 if (err)
1776 return err;
1da177e4
LT
1777 } while (pmd++, addr = next, addr != end);
1778 return 0;
1779}
1780
c2febafc 1781static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1782 unsigned long addr, unsigned long end,
1783 unsigned long pfn, pgprot_t prot)
1784{
1785 pud_t *pud;
1786 unsigned long next;
42e4089c 1787 int err;
1da177e4
LT
1788
1789 pfn -= addr >> PAGE_SHIFT;
c2febafc 1790 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1791 if (!pud)
1792 return -ENOMEM;
1793 do {
1794 next = pud_addr_end(addr, end);
42e4089c
AK
1795 err = remap_pmd_range(mm, pud, addr, next,
1796 pfn + (addr >> PAGE_SHIFT), prot);
1797 if (err)
1798 return err;
1da177e4
LT
1799 } while (pud++, addr = next, addr != end);
1800 return 0;
1801}
1802
c2febafc
KS
1803static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1804 unsigned long addr, unsigned long end,
1805 unsigned long pfn, pgprot_t prot)
1806{
1807 p4d_t *p4d;
1808 unsigned long next;
42e4089c 1809 int err;
c2febafc
KS
1810
1811 pfn -= addr >> PAGE_SHIFT;
1812 p4d = p4d_alloc(mm, pgd, addr);
1813 if (!p4d)
1814 return -ENOMEM;
1815 do {
1816 next = p4d_addr_end(addr, end);
42e4089c
AK
1817 err = remap_pud_range(mm, p4d, addr, next,
1818 pfn + (addr >> PAGE_SHIFT), prot);
1819 if (err)
1820 return err;
c2febafc
KS
1821 } while (p4d++, addr = next, addr != end);
1822 return 0;
1823}
1824
bfa5bf6d
REB
1825/**
1826 * remap_pfn_range - remap kernel memory to userspace
1827 * @vma: user vma to map to
1828 * @addr: target user address to start at
1829 * @pfn: physical address of kernel memory
1830 * @size: size of map area
1831 * @prot: page protection flags for this mapping
1832 *
1833 * Note: this is only safe if the mm semaphore is held when called.
1834 */
1da177e4
LT
1835int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1836 unsigned long pfn, unsigned long size, pgprot_t prot)
1837{
1838 pgd_t *pgd;
1839 unsigned long next;
2d15cab8 1840 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1841 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1842 unsigned long remap_pfn = pfn;
1da177e4
LT
1843 int err;
1844
1845 /*
1846 * Physically remapped pages are special. Tell the
1847 * rest of the world about it:
1848 * VM_IO tells people not to look at these pages
1849 * (accesses can have side effects).
6aab341e
LT
1850 * VM_PFNMAP tells the core MM that the base pages are just
1851 * raw PFN mappings, and do not have a "struct page" associated
1852 * with them.
314e51b9
KK
1853 * VM_DONTEXPAND
1854 * Disable vma merging and expanding with mremap().
1855 * VM_DONTDUMP
1856 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1857 *
1858 * There's a horrible special case to handle copy-on-write
1859 * behaviour that some programs depend on. We mark the "original"
1860 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1861 * See vm_normal_page() for details.
1da177e4 1862 */
b3b9c293
KK
1863 if (is_cow_mapping(vma->vm_flags)) {
1864 if (addr != vma->vm_start || end != vma->vm_end)
1865 return -EINVAL;
fb155c16 1866 vma->vm_pgoff = pfn;
b3b9c293
KK
1867 }
1868
d5957d2f 1869 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1870 if (err)
3c8bb73a 1871 return -EINVAL;
fb155c16 1872
314e51b9 1873 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1874
1875 BUG_ON(addr >= end);
1876 pfn -= addr >> PAGE_SHIFT;
1877 pgd = pgd_offset(mm, addr);
1878 flush_cache_range(vma, addr, end);
1da177e4
LT
1879 do {
1880 next = pgd_addr_end(addr, end);
c2febafc 1881 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1882 pfn + (addr >> PAGE_SHIFT), prot);
1883 if (err)
1884 break;
1885 } while (pgd++, addr = next, addr != end);
2ab64037 1886
1887 if (err)
d5957d2f 1888 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1889
1da177e4
LT
1890 return err;
1891}
1892EXPORT_SYMBOL(remap_pfn_range);
1893
b4cbb197
LT
1894/**
1895 * vm_iomap_memory - remap memory to userspace
1896 * @vma: user vma to map to
1897 * @start: start of area
1898 * @len: size of area
1899 *
1900 * This is a simplified io_remap_pfn_range() for common driver use. The
1901 * driver just needs to give us the physical memory range to be mapped,
1902 * we'll figure out the rest from the vma information.
1903 *
1904 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1905 * whatever write-combining details or similar.
1906 */
1907int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1908{
1909 unsigned long vm_len, pfn, pages;
1910
1911 /* Check that the physical memory area passed in looks valid */
1912 if (start + len < start)
1913 return -EINVAL;
1914 /*
1915 * You *really* shouldn't map things that aren't page-aligned,
1916 * but we've historically allowed it because IO memory might
1917 * just have smaller alignment.
1918 */
1919 len += start & ~PAGE_MASK;
1920 pfn = start >> PAGE_SHIFT;
1921 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1922 if (pfn + pages < pfn)
1923 return -EINVAL;
1924
1925 /* We start the mapping 'vm_pgoff' pages into the area */
1926 if (vma->vm_pgoff > pages)
1927 return -EINVAL;
1928 pfn += vma->vm_pgoff;
1929 pages -= vma->vm_pgoff;
1930
1931 /* Can we fit all of the mapping? */
1932 vm_len = vma->vm_end - vma->vm_start;
1933 if (vm_len >> PAGE_SHIFT > pages)
1934 return -EINVAL;
1935
1936 /* Ok, let it rip */
1937 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1938}
1939EXPORT_SYMBOL(vm_iomap_memory);
1940
aee16b3c
JF
1941static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1942 unsigned long addr, unsigned long end,
1943 pte_fn_t fn, void *data)
1944{
1945 pte_t *pte;
1946 int err;
2f569afd 1947 pgtable_t token;
94909914 1948 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1949
1950 pte = (mm == &init_mm) ?
1951 pte_alloc_kernel(pmd, addr) :
1952 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1953 if (!pte)
1954 return -ENOMEM;
1955
1956 BUG_ON(pmd_huge(*pmd));
1957
38e0edb1
JF
1958 arch_enter_lazy_mmu_mode();
1959
2f569afd 1960 token = pmd_pgtable(*pmd);
aee16b3c
JF
1961
1962 do {
c36987e2 1963 err = fn(pte++, token, addr, data);
aee16b3c
JF
1964 if (err)
1965 break;
c36987e2 1966 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1967
38e0edb1
JF
1968 arch_leave_lazy_mmu_mode();
1969
aee16b3c
JF
1970 if (mm != &init_mm)
1971 pte_unmap_unlock(pte-1, ptl);
1972 return err;
1973}
1974
1975static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1976 unsigned long addr, unsigned long end,
1977 pte_fn_t fn, void *data)
1978{
1979 pmd_t *pmd;
1980 unsigned long next;
1981 int err;
1982
ceb86879
AK
1983 BUG_ON(pud_huge(*pud));
1984
aee16b3c
JF
1985 pmd = pmd_alloc(mm, pud, addr);
1986 if (!pmd)
1987 return -ENOMEM;
1988 do {
1989 next = pmd_addr_end(addr, end);
1990 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1991 if (err)
1992 break;
1993 } while (pmd++, addr = next, addr != end);
1994 return err;
1995}
1996
c2febafc 1997static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
1998 unsigned long addr, unsigned long end,
1999 pte_fn_t fn, void *data)
2000{
2001 pud_t *pud;
2002 unsigned long next;
2003 int err;
2004
c2febafc 2005 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2006 if (!pud)
2007 return -ENOMEM;
2008 do {
2009 next = pud_addr_end(addr, end);
2010 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2011 if (err)
2012 break;
2013 } while (pud++, addr = next, addr != end);
2014 return err;
2015}
2016
c2febafc
KS
2017static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2018 unsigned long addr, unsigned long end,
2019 pte_fn_t fn, void *data)
2020{
2021 p4d_t *p4d;
2022 unsigned long next;
2023 int err;
2024
2025 p4d = p4d_alloc(mm, pgd, addr);
2026 if (!p4d)
2027 return -ENOMEM;
2028 do {
2029 next = p4d_addr_end(addr, end);
2030 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2031 if (err)
2032 break;
2033 } while (p4d++, addr = next, addr != end);
2034 return err;
2035}
2036
aee16b3c
JF
2037/*
2038 * Scan a region of virtual memory, filling in page tables as necessary
2039 * and calling a provided function on each leaf page table.
2040 */
2041int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2042 unsigned long size, pte_fn_t fn, void *data)
2043{
2044 pgd_t *pgd;
2045 unsigned long next;
57250a5b 2046 unsigned long end = addr + size;
aee16b3c
JF
2047 int err;
2048
9cb65bc3
MP
2049 if (WARN_ON(addr >= end))
2050 return -EINVAL;
2051
aee16b3c
JF
2052 pgd = pgd_offset(mm, addr);
2053 do {
2054 next = pgd_addr_end(addr, end);
c2febafc 2055 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2056 if (err)
2057 break;
2058 } while (pgd++, addr = next, addr != end);
57250a5b 2059
aee16b3c
JF
2060 return err;
2061}
2062EXPORT_SYMBOL_GPL(apply_to_page_range);
2063
8f4e2101 2064/*
9b4bdd2f
KS
2065 * handle_pte_fault chooses page fault handler according to an entry which was
2066 * read non-atomically. Before making any commitment, on those architectures
2067 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2068 * parts, do_swap_page must check under lock before unmapping the pte and
2069 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2070 * and do_anonymous_page can safely check later on).
8f4e2101 2071 */
4c21e2f2 2072static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2073 pte_t *page_table, pte_t orig_pte)
2074{
2075 int same = 1;
2076#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2077 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2078 spinlock_t *ptl = pte_lockptr(mm, pmd);
2079 spin_lock(ptl);
8f4e2101 2080 same = pte_same(*page_table, orig_pte);
4c21e2f2 2081 spin_unlock(ptl);
8f4e2101
HD
2082 }
2083#endif
2084 pte_unmap(page_table);
2085 return same;
2086}
2087
9de455b2 2088static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2089{
0abdd7a8
DW
2090 debug_dma_assert_idle(src);
2091
6aab341e
LT
2092 /*
2093 * If the source page was a PFN mapping, we don't have
2094 * a "struct page" for it. We do a best-effort copy by
2095 * just copying from the original user address. If that
2096 * fails, we just zero-fill it. Live with it.
2097 */
2098 if (unlikely(!src)) {
9b04c5fe 2099 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2100 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2101
2102 /*
2103 * This really shouldn't fail, because the page is there
2104 * in the page tables. But it might just be unreadable,
2105 * in which case we just give up and fill the result with
2106 * zeroes.
2107 */
2108 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2109 clear_page(kaddr);
9b04c5fe 2110 kunmap_atomic(kaddr);
c4ec7b0d 2111 flush_dcache_page(dst);
0ed361de
NP
2112 } else
2113 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2114}
2115
c20cd45e
MH
2116static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2117{
2118 struct file *vm_file = vma->vm_file;
2119
2120 if (vm_file)
2121 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2122
2123 /*
2124 * Special mappings (e.g. VDSO) do not have any file so fake
2125 * a default GFP_KERNEL for them.
2126 */
2127 return GFP_KERNEL;
2128}
2129
fb09a464
KS
2130/*
2131 * Notify the address space that the page is about to become writable so that
2132 * it can prohibit this or wait for the page to get into an appropriate state.
2133 *
2134 * We do this without the lock held, so that it can sleep if it needs to.
2135 */
2b740303 2136static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2137{
2b740303 2138 vm_fault_t ret;
38b8cb7f
JK
2139 struct page *page = vmf->page;
2140 unsigned int old_flags = vmf->flags;
fb09a464 2141
38b8cb7f 2142 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2143
11bac800 2144 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2145 /* Restore original flags so that caller is not surprised */
2146 vmf->flags = old_flags;
fb09a464
KS
2147 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2148 return ret;
2149 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2150 lock_page(page);
2151 if (!page->mapping) {
2152 unlock_page(page);
2153 return 0; /* retry */
2154 }
2155 ret |= VM_FAULT_LOCKED;
2156 } else
2157 VM_BUG_ON_PAGE(!PageLocked(page), page);
2158 return ret;
2159}
2160
97ba0c2b
JK
2161/*
2162 * Handle dirtying of a page in shared file mapping on a write fault.
2163 *
2164 * The function expects the page to be locked and unlocks it.
2165 */
2166static void fault_dirty_shared_page(struct vm_area_struct *vma,
2167 struct page *page)
2168{
2169 struct address_space *mapping;
2170 bool dirtied;
2171 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2172
2173 dirtied = set_page_dirty(page);
2174 VM_BUG_ON_PAGE(PageAnon(page), page);
2175 /*
2176 * Take a local copy of the address_space - page.mapping may be zeroed
2177 * by truncate after unlock_page(). The address_space itself remains
2178 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2179 * release semantics to prevent the compiler from undoing this copying.
2180 */
2181 mapping = page_rmapping(page);
2182 unlock_page(page);
2183
2184 if ((dirtied || page_mkwrite) && mapping) {
2185 /*
2186 * Some device drivers do not set page.mapping
2187 * but still dirty their pages
2188 */
2189 balance_dirty_pages_ratelimited(mapping);
2190 }
2191
2192 if (!page_mkwrite)
2193 file_update_time(vma->vm_file);
2194}
2195
4e047f89
SR
2196/*
2197 * Handle write page faults for pages that can be reused in the current vma
2198 *
2199 * This can happen either due to the mapping being with the VM_SHARED flag,
2200 * or due to us being the last reference standing to the page. In either
2201 * case, all we need to do here is to mark the page as writable and update
2202 * any related book-keeping.
2203 */
997dd98d 2204static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2205 __releases(vmf->ptl)
4e047f89 2206{
82b0f8c3 2207 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2208 struct page *page = vmf->page;
4e047f89
SR
2209 pte_t entry;
2210 /*
2211 * Clear the pages cpupid information as the existing
2212 * information potentially belongs to a now completely
2213 * unrelated process.
2214 */
2215 if (page)
2216 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2217
2994302b
JK
2218 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2219 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2220 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2221 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2222 update_mmu_cache(vma, vmf->address, vmf->pte);
2223 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2224}
2225
2f38ab2c
SR
2226/*
2227 * Handle the case of a page which we actually need to copy to a new page.
2228 *
2229 * Called with mmap_sem locked and the old page referenced, but
2230 * without the ptl held.
2231 *
2232 * High level logic flow:
2233 *
2234 * - Allocate a page, copy the content of the old page to the new one.
2235 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2236 * - Take the PTL. If the pte changed, bail out and release the allocated page
2237 * - If the pte is still the way we remember it, update the page table and all
2238 * relevant references. This includes dropping the reference the page-table
2239 * held to the old page, as well as updating the rmap.
2240 * - In any case, unlock the PTL and drop the reference we took to the old page.
2241 */
2b740303 2242static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2243{
82b0f8c3 2244 struct vm_area_struct *vma = vmf->vma;
bae473a4 2245 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2246 struct page *old_page = vmf->page;
2f38ab2c 2247 struct page *new_page = NULL;
2f38ab2c
SR
2248 pte_t entry;
2249 int page_copied = 0;
82b0f8c3 2250 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2251 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2252 struct mem_cgroup *memcg;
2253
2254 if (unlikely(anon_vma_prepare(vma)))
2255 goto oom;
2256
2994302b 2257 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2258 new_page = alloc_zeroed_user_highpage_movable(vma,
2259 vmf->address);
2f38ab2c
SR
2260 if (!new_page)
2261 goto oom;
2262 } else {
bae473a4 2263 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2264 vmf->address);
2f38ab2c
SR
2265 if (!new_page)
2266 goto oom;
82b0f8c3 2267 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2268 }
2f38ab2c 2269
2cf85583 2270 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2271 goto oom_free_new;
2272
eb3c24f3
MG
2273 __SetPageUptodate(new_page);
2274
2f38ab2c
SR
2275 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2276
2277 /*
2278 * Re-check the pte - we dropped the lock
2279 */
82b0f8c3 2280 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2281 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2282 if (old_page) {
2283 if (!PageAnon(old_page)) {
eca56ff9
JM
2284 dec_mm_counter_fast(mm,
2285 mm_counter_file(old_page));
2f38ab2c
SR
2286 inc_mm_counter_fast(mm, MM_ANONPAGES);
2287 }
2288 } else {
2289 inc_mm_counter_fast(mm, MM_ANONPAGES);
2290 }
2994302b 2291 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2292 entry = mk_pte(new_page, vma->vm_page_prot);
2293 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2294 /*
2295 * Clear the pte entry and flush it first, before updating the
2296 * pte with the new entry. This will avoid a race condition
2297 * seen in the presence of one thread doing SMC and another
2298 * thread doing COW.
2299 */
82b0f8c3
JK
2300 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2301 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2302 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2303 lru_cache_add_active_or_unevictable(new_page, vma);
2304 /*
2305 * We call the notify macro here because, when using secondary
2306 * mmu page tables (such as kvm shadow page tables), we want the
2307 * new page to be mapped directly into the secondary page table.
2308 */
82b0f8c3
JK
2309 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2310 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2311 if (old_page) {
2312 /*
2313 * Only after switching the pte to the new page may
2314 * we remove the mapcount here. Otherwise another
2315 * process may come and find the rmap count decremented
2316 * before the pte is switched to the new page, and
2317 * "reuse" the old page writing into it while our pte
2318 * here still points into it and can be read by other
2319 * threads.
2320 *
2321 * The critical issue is to order this
2322 * page_remove_rmap with the ptp_clear_flush above.
2323 * Those stores are ordered by (if nothing else,)
2324 * the barrier present in the atomic_add_negative
2325 * in page_remove_rmap.
2326 *
2327 * Then the TLB flush in ptep_clear_flush ensures that
2328 * no process can access the old page before the
2329 * decremented mapcount is visible. And the old page
2330 * cannot be reused until after the decremented
2331 * mapcount is visible. So transitively, TLBs to
2332 * old page will be flushed before it can be reused.
2333 */
d281ee61 2334 page_remove_rmap(old_page, false);
2f38ab2c
SR
2335 }
2336
2337 /* Free the old page.. */
2338 new_page = old_page;
2339 page_copied = 1;
2340 } else {
f627c2f5 2341 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2342 }
2343
2344 if (new_page)
09cbfeaf 2345 put_page(new_page);
2f38ab2c 2346
82b0f8c3 2347 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2348 /*
2349 * No need to double call mmu_notifier->invalidate_range() callback as
2350 * the above ptep_clear_flush_notify() did already call it.
2351 */
2352 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2f38ab2c
SR
2353 if (old_page) {
2354 /*
2355 * Don't let another task, with possibly unlocked vma,
2356 * keep the mlocked page.
2357 */
2358 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2359 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2360 if (PageMlocked(old_page))
2361 munlock_vma_page(old_page);
2f38ab2c
SR
2362 unlock_page(old_page);
2363 }
09cbfeaf 2364 put_page(old_page);
2f38ab2c
SR
2365 }
2366 return page_copied ? VM_FAULT_WRITE : 0;
2367oom_free_new:
09cbfeaf 2368 put_page(new_page);
2f38ab2c
SR
2369oom:
2370 if (old_page)
09cbfeaf 2371 put_page(old_page);
2f38ab2c
SR
2372 return VM_FAULT_OOM;
2373}
2374
66a6197c
JK
2375/**
2376 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2377 * writeable once the page is prepared
2378 *
2379 * @vmf: structure describing the fault
2380 *
2381 * This function handles all that is needed to finish a write page fault in a
2382 * shared mapping due to PTE being read-only once the mapped page is prepared.
2383 * It handles locking of PTE and modifying it. The function returns
2384 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2385 * lock.
2386 *
2387 * The function expects the page to be locked or other protection against
2388 * concurrent faults / writeback (such as DAX radix tree locks).
2389 */
2b740303 2390vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2391{
2392 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2393 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2394 &vmf->ptl);
2395 /*
2396 * We might have raced with another page fault while we released the
2397 * pte_offset_map_lock.
2398 */
2399 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2400 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2401 return VM_FAULT_NOPAGE;
66a6197c
JK
2402 }
2403 wp_page_reuse(vmf);
a19e2553 2404 return 0;
66a6197c
JK
2405}
2406
dd906184
BH
2407/*
2408 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2409 * mapping
2410 */
2b740303 2411static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2412{
82b0f8c3 2413 struct vm_area_struct *vma = vmf->vma;
bae473a4 2414
dd906184 2415 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2416 vm_fault_t ret;
dd906184 2417
82b0f8c3 2418 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2419 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2420 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2421 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2422 return ret;
66a6197c 2423 return finish_mkwrite_fault(vmf);
dd906184 2424 }
997dd98d
JK
2425 wp_page_reuse(vmf);
2426 return VM_FAULT_WRITE;
dd906184
BH
2427}
2428
2b740303 2429static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2430 __releases(vmf->ptl)
93e478d4 2431{
82b0f8c3 2432 struct vm_area_struct *vma = vmf->vma;
93e478d4 2433
a41b70d6 2434 get_page(vmf->page);
93e478d4 2435
93e478d4 2436 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2437 vm_fault_t tmp;
93e478d4 2438
82b0f8c3 2439 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2440 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2441 if (unlikely(!tmp || (tmp &
2442 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2443 put_page(vmf->page);
93e478d4
SR
2444 return tmp;
2445 }
66a6197c 2446 tmp = finish_mkwrite_fault(vmf);
a19e2553 2447 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2448 unlock_page(vmf->page);
a41b70d6 2449 put_page(vmf->page);
66a6197c 2450 return tmp;
93e478d4 2451 }
66a6197c
JK
2452 } else {
2453 wp_page_reuse(vmf);
997dd98d 2454 lock_page(vmf->page);
93e478d4 2455 }
997dd98d
JK
2456 fault_dirty_shared_page(vma, vmf->page);
2457 put_page(vmf->page);
93e478d4 2458
997dd98d 2459 return VM_FAULT_WRITE;
93e478d4
SR
2460}
2461
1da177e4
LT
2462/*
2463 * This routine handles present pages, when users try to write
2464 * to a shared page. It is done by copying the page to a new address
2465 * and decrementing the shared-page counter for the old page.
2466 *
1da177e4
LT
2467 * Note that this routine assumes that the protection checks have been
2468 * done by the caller (the low-level page fault routine in most cases).
2469 * Thus we can safely just mark it writable once we've done any necessary
2470 * COW.
2471 *
2472 * We also mark the page dirty at this point even though the page will
2473 * change only once the write actually happens. This avoids a few races,
2474 * and potentially makes it more efficient.
2475 *
8f4e2101
HD
2476 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2477 * but allow concurrent faults), with pte both mapped and locked.
2478 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2479 */
2b740303 2480static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2481 __releases(vmf->ptl)
1da177e4 2482{
82b0f8c3 2483 struct vm_area_struct *vma = vmf->vma;
1da177e4 2484
a41b70d6
JK
2485 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2486 if (!vmf->page) {
251b97f5 2487 /*
64e45507
PF
2488 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2489 * VM_PFNMAP VMA.
251b97f5
PZ
2490 *
2491 * We should not cow pages in a shared writeable mapping.
dd906184 2492 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2493 */
2494 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2495 (VM_WRITE|VM_SHARED))
2994302b 2496 return wp_pfn_shared(vmf);
2f38ab2c 2497
82b0f8c3 2498 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2499 return wp_page_copy(vmf);
251b97f5 2500 }
1da177e4 2501
d08b3851 2502 /*
ee6a6457
PZ
2503 * Take out anonymous pages first, anonymous shared vmas are
2504 * not dirty accountable.
d08b3851 2505 */
a41b70d6 2506 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
ba3c4ce6 2507 int total_map_swapcount;
a41b70d6
JK
2508 if (!trylock_page(vmf->page)) {
2509 get_page(vmf->page);
82b0f8c3 2510 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2511 lock_page(vmf->page);
82b0f8c3
JK
2512 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2513 vmf->address, &vmf->ptl);
2994302b 2514 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2515 unlock_page(vmf->page);
82b0f8c3 2516 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2517 put_page(vmf->page);
28766805 2518 return 0;
ab967d86 2519 }
a41b70d6 2520 put_page(vmf->page);
ee6a6457 2521 }
ba3c4ce6
HY
2522 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2523 if (total_map_swapcount == 1) {
6d0a07ed
AA
2524 /*
2525 * The page is all ours. Move it to
2526 * our anon_vma so the rmap code will
2527 * not search our parent or siblings.
2528 * Protected against the rmap code by
2529 * the page lock.
2530 */
a41b70d6 2531 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2532 }
a41b70d6 2533 unlock_page(vmf->page);
997dd98d
JK
2534 wp_page_reuse(vmf);
2535 return VM_FAULT_WRITE;
b009c024 2536 }
a41b70d6 2537 unlock_page(vmf->page);
ee6a6457 2538 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2539 (VM_WRITE|VM_SHARED))) {
a41b70d6 2540 return wp_page_shared(vmf);
1da177e4 2541 }
1da177e4
LT
2542
2543 /*
2544 * Ok, we need to copy. Oh, well..
2545 */
a41b70d6 2546 get_page(vmf->page);
28766805 2547
82b0f8c3 2548 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2549 return wp_page_copy(vmf);
1da177e4
LT
2550}
2551
97a89413 2552static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2553 unsigned long start_addr, unsigned long end_addr,
2554 struct zap_details *details)
2555{
f5cc4eef 2556 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2557}
2558
f808c13f 2559static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2560 struct zap_details *details)
2561{
2562 struct vm_area_struct *vma;
1da177e4
LT
2563 pgoff_t vba, vea, zba, zea;
2564
6b2dbba8 2565 vma_interval_tree_foreach(vma, root,
1da177e4 2566 details->first_index, details->last_index) {
1da177e4
LT
2567
2568 vba = vma->vm_pgoff;
d6e93217 2569 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2570 zba = details->first_index;
2571 if (zba < vba)
2572 zba = vba;
2573 zea = details->last_index;
2574 if (zea > vea)
2575 zea = vea;
2576
97a89413 2577 unmap_mapping_range_vma(vma,
1da177e4
LT
2578 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2579 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2580 details);
1da177e4
LT
2581 }
2582}
2583
977fbdcd
MW
2584/**
2585 * unmap_mapping_pages() - Unmap pages from processes.
2586 * @mapping: The address space containing pages to be unmapped.
2587 * @start: Index of first page to be unmapped.
2588 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2589 * @even_cows: Whether to unmap even private COWed pages.
2590 *
2591 * Unmap the pages in this address space from any userspace process which
2592 * has them mmaped. Generally, you want to remove COWed pages as well when
2593 * a file is being truncated, but not when invalidating pages from the page
2594 * cache.
2595 */
2596void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2597 pgoff_t nr, bool even_cows)
2598{
2599 struct zap_details details = { };
2600
2601 details.check_mapping = even_cows ? NULL : mapping;
2602 details.first_index = start;
2603 details.last_index = start + nr - 1;
2604 if (details.last_index < details.first_index)
2605 details.last_index = ULONG_MAX;
2606
2607 i_mmap_lock_write(mapping);
2608 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2609 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2610 i_mmap_unlock_write(mapping);
2611}
2612
1da177e4 2613/**
8a5f14a2 2614 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2615 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2616 * file.
2617 *
3d41088f 2618 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2619 * @holebegin: byte in first page to unmap, relative to the start of
2620 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2621 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2622 * must keep the partial page. In contrast, we must get rid of
2623 * partial pages.
2624 * @holelen: size of prospective hole in bytes. This will be rounded
2625 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2626 * end of the file.
2627 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2628 * but 0 when invalidating pagecache, don't throw away private data.
2629 */
2630void unmap_mapping_range(struct address_space *mapping,
2631 loff_t const holebegin, loff_t const holelen, int even_cows)
2632{
1da177e4
LT
2633 pgoff_t hba = holebegin >> PAGE_SHIFT;
2634 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2635
2636 /* Check for overflow. */
2637 if (sizeof(holelen) > sizeof(hlen)) {
2638 long long holeend =
2639 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2640 if (holeend & ~(long long)ULONG_MAX)
2641 hlen = ULONG_MAX - hba + 1;
2642 }
2643
977fbdcd 2644 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2645}
2646EXPORT_SYMBOL(unmap_mapping_range);
2647
1da177e4 2648/*
8f4e2101
HD
2649 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2650 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2651 * We return with pte unmapped and unlocked.
2652 *
2653 * We return with the mmap_sem locked or unlocked in the same cases
2654 * as does filemap_fault().
1da177e4 2655 */
2b740303 2656vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2657{
82b0f8c3 2658 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2659 struct page *page = NULL, *swapcache;
00501b53 2660 struct mem_cgroup *memcg;
65500d23 2661 swp_entry_t entry;
1da177e4 2662 pte_t pte;
d065bd81 2663 int locked;
ad8c2ee8 2664 int exclusive = 0;
2b740303 2665 vm_fault_t ret = 0;
1da177e4 2666
eaf649eb 2667 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2668 goto out;
65500d23 2669
2994302b 2670 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2671 if (unlikely(non_swap_entry(entry))) {
2672 if (is_migration_entry(entry)) {
82b0f8c3
JK
2673 migration_entry_wait(vma->vm_mm, vmf->pmd,
2674 vmf->address);
5042db43
JG
2675 } else if (is_device_private_entry(entry)) {
2676 /*
2677 * For un-addressable device memory we call the pgmap
2678 * fault handler callback. The callback must migrate
2679 * the page back to some CPU accessible page.
2680 */
2681 ret = device_private_entry_fault(vma, vmf->address, entry,
2682 vmf->flags, vmf->pmd);
d1737fdb
AK
2683 } else if (is_hwpoison_entry(entry)) {
2684 ret = VM_FAULT_HWPOISON;
2685 } else {
2994302b 2686 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2687 ret = VM_FAULT_SIGBUS;
d1737fdb 2688 }
0697212a
CL
2689 goto out;
2690 }
0bcac06f
MK
2691
2692
0ff92245 2693 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2694 page = lookup_swap_cache(entry, vma, vmf->address);
2695 swapcache = page;
f8020772 2696
1da177e4 2697 if (!page) {
0bcac06f
MK
2698 struct swap_info_struct *si = swp_swap_info(entry);
2699
aa8d22a1
MK
2700 if (si->flags & SWP_SYNCHRONOUS_IO &&
2701 __swap_count(si, entry) == 1) {
0bcac06f 2702 /* skip swapcache */
e9e9b7ec
MK
2703 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2704 vmf->address);
0bcac06f
MK
2705 if (page) {
2706 __SetPageLocked(page);
2707 __SetPageSwapBacked(page);
2708 set_page_private(page, entry.val);
2709 lru_cache_add_anon(page);
2710 swap_readpage(page, true);
2711 }
aa8d22a1 2712 } else {
e9e9b7ec
MK
2713 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2714 vmf);
aa8d22a1 2715 swapcache = page;
0bcac06f
MK
2716 }
2717
1da177e4
LT
2718 if (!page) {
2719 /*
8f4e2101
HD
2720 * Back out if somebody else faulted in this pte
2721 * while we released the pte lock.
1da177e4 2722 */
82b0f8c3
JK
2723 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2724 vmf->address, &vmf->ptl);
2994302b 2725 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2726 ret = VM_FAULT_OOM;
0ff92245 2727 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2728 goto unlock;
1da177e4
LT
2729 }
2730
2731 /* Had to read the page from swap area: Major fault */
2732 ret = VM_FAULT_MAJOR;
f8891e5e 2733 count_vm_event(PGMAJFAULT);
2262185c 2734 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2735 } else if (PageHWPoison(page)) {
71f72525
WF
2736 /*
2737 * hwpoisoned dirty swapcache pages are kept for killing
2738 * owner processes (which may be unknown at hwpoison time)
2739 */
d1737fdb
AK
2740 ret = VM_FAULT_HWPOISON;
2741 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2742 goto out_release;
1da177e4
LT
2743 }
2744
82b0f8c3 2745 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2746
073e587e 2747 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2748 if (!locked) {
2749 ret |= VM_FAULT_RETRY;
2750 goto out_release;
2751 }
073e587e 2752
4969c119 2753 /*
31c4a3d3
HD
2754 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2755 * release the swapcache from under us. The page pin, and pte_same
2756 * test below, are not enough to exclude that. Even if it is still
2757 * swapcache, we need to check that the page's swap has not changed.
4969c119 2758 */
0bcac06f
MK
2759 if (unlikely((!PageSwapCache(page) ||
2760 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2761 goto out_page;
2762
82b0f8c3 2763 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2764 if (unlikely(!page)) {
2765 ret = VM_FAULT_OOM;
2766 page = swapcache;
cbf86cfe 2767 goto out_page;
5ad64688
HD
2768 }
2769
2cf85583
TH
2770 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2771 &memcg, false)) {
8a9f3ccd 2772 ret = VM_FAULT_OOM;
bc43f75c 2773 goto out_page;
8a9f3ccd
BS
2774 }
2775
1da177e4 2776 /*
8f4e2101 2777 * Back out if somebody else already faulted in this pte.
1da177e4 2778 */
82b0f8c3
JK
2779 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2780 &vmf->ptl);
2994302b 2781 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2782 goto out_nomap;
b8107480
KK
2783
2784 if (unlikely(!PageUptodate(page))) {
2785 ret = VM_FAULT_SIGBUS;
2786 goto out_nomap;
1da177e4
LT
2787 }
2788
8c7c6e34
KH
2789 /*
2790 * The page isn't present yet, go ahead with the fault.
2791 *
2792 * Be careful about the sequence of operations here.
2793 * To get its accounting right, reuse_swap_page() must be called
2794 * while the page is counted on swap but not yet in mapcount i.e.
2795 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2796 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2797 */
1da177e4 2798
bae473a4
KS
2799 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2800 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2801 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2802 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2803 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2804 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2805 ret |= VM_FAULT_WRITE;
d281ee61 2806 exclusive = RMAP_EXCLUSIVE;
1da177e4 2807 }
1da177e4 2808 flush_icache_page(vma, page);
2994302b 2809 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2810 pte = pte_mksoft_dirty(pte);
82b0f8c3 2811 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2812 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2813 vmf->orig_pte = pte;
0bcac06f
MK
2814
2815 /* ksm created a completely new copy */
2816 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2817 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2818 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2819 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2820 } else {
2821 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2822 mem_cgroup_commit_charge(page, memcg, true, false);
2823 activate_page(page);
00501b53 2824 }
1da177e4 2825
c475a8ab 2826 swap_free(entry);
5ccc5aba
VD
2827 if (mem_cgroup_swap_full(page) ||
2828 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2829 try_to_free_swap(page);
c475a8ab 2830 unlock_page(page);
0bcac06f 2831 if (page != swapcache && swapcache) {
4969c119
AA
2832 /*
2833 * Hold the lock to avoid the swap entry to be reused
2834 * until we take the PT lock for the pte_same() check
2835 * (to avoid false positives from pte_same). For
2836 * further safety release the lock after the swap_free
2837 * so that the swap count won't change under a
2838 * parallel locked swapcache.
2839 */
2840 unlock_page(swapcache);
09cbfeaf 2841 put_page(swapcache);
4969c119 2842 }
c475a8ab 2843
82b0f8c3 2844 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2845 ret |= do_wp_page(vmf);
61469f1d
HD
2846 if (ret & VM_FAULT_ERROR)
2847 ret &= VM_FAULT_ERROR;
1da177e4
LT
2848 goto out;
2849 }
2850
2851 /* No need to invalidate - it was non-present before */
82b0f8c3 2852 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2853unlock:
82b0f8c3 2854 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2855out:
2856 return ret;
b8107480 2857out_nomap:
f627c2f5 2858 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2859 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2860out_page:
b8107480 2861 unlock_page(page);
4779cb31 2862out_release:
09cbfeaf 2863 put_page(page);
0bcac06f 2864 if (page != swapcache && swapcache) {
4969c119 2865 unlock_page(swapcache);
09cbfeaf 2866 put_page(swapcache);
4969c119 2867 }
65500d23 2868 return ret;
1da177e4
LT
2869}
2870
2871/*
8f4e2101
HD
2872 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2873 * but allow concurrent faults), and pte mapped but not yet locked.
2874 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2875 */
2b740303 2876static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2877{
82b0f8c3 2878 struct vm_area_struct *vma = vmf->vma;
00501b53 2879 struct mem_cgroup *memcg;
8f4e2101 2880 struct page *page;
2b740303 2881 vm_fault_t ret = 0;
1da177e4 2882 pte_t entry;
1da177e4 2883
6b7339f4
KS
2884 /* File mapping without ->vm_ops ? */
2885 if (vma->vm_flags & VM_SHARED)
2886 return VM_FAULT_SIGBUS;
2887
7267ec00
KS
2888 /*
2889 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2890 * pte_offset_map() on pmds where a huge pmd might be created
2891 * from a different thread.
2892 *
2893 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2894 * parallel threads are excluded by other means.
2895 *
2896 * Here we only have down_read(mmap_sem).
2897 */
82b0f8c3 2898 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2899 return VM_FAULT_OOM;
2900
2901 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2902 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2903 return 0;
2904
11ac5524 2905 /* Use the zero-page for reads */
82b0f8c3 2906 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2907 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2908 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2909 vma->vm_page_prot));
82b0f8c3
JK
2910 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2911 vmf->address, &vmf->ptl);
2912 if (!pte_none(*vmf->pte))
a13ea5b7 2913 goto unlock;
6b31d595
MH
2914 ret = check_stable_address_space(vma->vm_mm);
2915 if (ret)
2916 goto unlock;
6b251fc9
AA
2917 /* Deliver the page fault to userland, check inside PT lock */
2918 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2919 pte_unmap_unlock(vmf->pte, vmf->ptl);
2920 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2921 }
a13ea5b7
HD
2922 goto setpte;
2923 }
2924
557ed1fa 2925 /* Allocate our own private page. */
557ed1fa
NP
2926 if (unlikely(anon_vma_prepare(vma)))
2927 goto oom;
82b0f8c3 2928 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2929 if (!page)
2930 goto oom;
eb3c24f3 2931
2cf85583
TH
2932 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2933 false))
eb3c24f3
MG
2934 goto oom_free_page;
2935
52f37629
MK
2936 /*
2937 * The memory barrier inside __SetPageUptodate makes sure that
2938 * preceeding stores to the page contents become visible before
2939 * the set_pte_at() write.
2940 */
0ed361de 2941 __SetPageUptodate(page);
8f4e2101 2942
557ed1fa 2943 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2944 if (vma->vm_flags & VM_WRITE)
2945 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2946
82b0f8c3
JK
2947 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2948 &vmf->ptl);
2949 if (!pte_none(*vmf->pte))
557ed1fa 2950 goto release;
9ba69294 2951
6b31d595
MH
2952 ret = check_stable_address_space(vma->vm_mm);
2953 if (ret)
2954 goto release;
2955
6b251fc9
AA
2956 /* Deliver the page fault to userland, check inside PT lock */
2957 if (userfaultfd_missing(vma)) {
82b0f8c3 2958 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2959 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2960 put_page(page);
82b0f8c3 2961 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2962 }
2963
bae473a4 2964 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2965 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2966 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2967 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2968setpte:
82b0f8c3 2969 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2970
2971 /* No need to invalidate - it was non-present before */
82b0f8c3 2972 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2973unlock:
82b0f8c3 2974 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 2975 return ret;
8f4e2101 2976release:
f627c2f5 2977 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2978 put_page(page);
8f4e2101 2979 goto unlock;
8a9f3ccd 2980oom_free_page:
09cbfeaf 2981 put_page(page);
65500d23 2982oom:
1da177e4
LT
2983 return VM_FAULT_OOM;
2984}
2985
9a95f3cf
PC
2986/*
2987 * The mmap_sem must have been held on entry, and may have been
2988 * released depending on flags and vma->vm_ops->fault() return value.
2989 * See filemap_fault() and __lock_page_retry().
2990 */
2b740303 2991static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 2992{
82b0f8c3 2993 struct vm_area_struct *vma = vmf->vma;
2b740303 2994 vm_fault_t ret;
7eae74af 2995
60a801a2
MH
2996 /*
2997 * Preallocate pte before we take page_lock because this might lead to
2998 * deadlocks for memcg reclaim which waits for pages under writeback:
2999 * lock_page(A)
3000 * SetPageWriteback(A)
3001 * unlock_page(A)
3002 * lock_page(B)
3003 * lock_page(B)
3004 * pte_alloc_pne
3005 * shrink_page_list
3006 * wait_on_page_writeback(A)
3007 * SetPageWriteback(B)
3008 * unlock_page(B)
3009 * # flush A, B to clear the writeback
3010 */
3011 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3012 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3013 vmf->address);
3014 if (!vmf->prealloc_pte)
3015 return VM_FAULT_OOM;
3016 smp_wmb(); /* See comment in __pte_alloc() */
3017 }
3018
11bac800 3019 ret = vma->vm_ops->fault(vmf);
3917048d 3020 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3021 VM_FAULT_DONE_COW)))
bc2466e4 3022 return ret;
7eae74af 3023
667240e0 3024 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3025 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3026 unlock_page(vmf->page);
3027 put_page(vmf->page);
936ca80d 3028 vmf->page = NULL;
7eae74af
KS
3029 return VM_FAULT_HWPOISON;
3030 }
3031
3032 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3033 lock_page(vmf->page);
7eae74af 3034 else
667240e0 3035 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3036
7eae74af
KS
3037 return ret;
3038}
3039
d0f0931d
RZ
3040/*
3041 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3042 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3043 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3044 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3045 */
3046static int pmd_devmap_trans_unstable(pmd_t *pmd)
3047{
3048 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3049}
3050
2b740303 3051static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3052{
82b0f8c3 3053 struct vm_area_struct *vma = vmf->vma;
7267ec00 3054
82b0f8c3 3055 if (!pmd_none(*vmf->pmd))
7267ec00 3056 goto map_pte;
82b0f8c3
JK
3057 if (vmf->prealloc_pte) {
3058 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3059 if (unlikely(!pmd_none(*vmf->pmd))) {
3060 spin_unlock(vmf->ptl);
7267ec00
KS
3061 goto map_pte;
3062 }
3063
c4812909 3064 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3065 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3066 spin_unlock(vmf->ptl);
7f2b6ce8 3067 vmf->prealloc_pte = NULL;
82b0f8c3 3068 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3069 return VM_FAULT_OOM;
3070 }
3071map_pte:
3072 /*
3073 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3074 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3075 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3076 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3077 * running immediately after a huge pmd fault in a different thread of
3078 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3079 * All we have to ensure is that it is a regular pmd that we can walk
3080 * with pte_offset_map() and we can do that through an atomic read in
3081 * C, which is what pmd_trans_unstable() provides.
7267ec00 3082 */
d0f0931d 3083 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3084 return VM_FAULT_NOPAGE;
3085
d0f0931d
RZ
3086 /*
3087 * At this point we know that our vmf->pmd points to a page of ptes
3088 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3089 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3090 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3091 * be valid and we will re-check to make sure the vmf->pte isn't
3092 * pte_none() under vmf->ptl protection when we return to
3093 * alloc_set_pte().
3094 */
82b0f8c3
JK
3095 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3096 &vmf->ptl);
7267ec00
KS
3097 return 0;
3098}
3099
e496cf3d 3100#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3101
3102#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3103static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3104 unsigned long haddr)
3105{
3106 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3107 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3108 return false;
3109 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3110 return false;
3111 return true;
3112}
3113
82b0f8c3 3114static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3115{
82b0f8c3 3116 struct vm_area_struct *vma = vmf->vma;
953c66c2 3117
82b0f8c3 3118 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3119 /*
3120 * We are going to consume the prealloc table,
3121 * count that as nr_ptes.
3122 */
c4812909 3123 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3124 vmf->prealloc_pte = NULL;
953c66c2
AK
3125}
3126
2b740303 3127static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3128{
82b0f8c3
JK
3129 struct vm_area_struct *vma = vmf->vma;
3130 bool write = vmf->flags & FAULT_FLAG_WRITE;
3131 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3132 pmd_t entry;
2b740303
SJ
3133 int i;
3134 vm_fault_t ret;
10102459
KS
3135
3136 if (!transhuge_vma_suitable(vma, haddr))
3137 return VM_FAULT_FALLBACK;
3138
3139 ret = VM_FAULT_FALLBACK;
3140 page = compound_head(page);
3141
953c66c2
AK
3142 /*
3143 * Archs like ppc64 need additonal space to store information
3144 * related to pte entry. Use the preallocated table for that.
3145 */
82b0f8c3
JK
3146 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3147 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3148 if (!vmf->prealloc_pte)
953c66c2
AK
3149 return VM_FAULT_OOM;
3150 smp_wmb(); /* See comment in __pte_alloc() */
3151 }
3152
82b0f8c3
JK
3153 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3154 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3155 goto out;
3156
3157 for (i = 0; i < HPAGE_PMD_NR; i++)
3158 flush_icache_page(vma, page + i);
3159
3160 entry = mk_huge_pmd(page, vma->vm_page_prot);
3161 if (write)
f55e1014 3162 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3163
fadae295 3164 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3165 page_add_file_rmap(page, true);
953c66c2
AK
3166 /*
3167 * deposit and withdraw with pmd lock held
3168 */
3169 if (arch_needs_pgtable_deposit())
82b0f8c3 3170 deposit_prealloc_pte(vmf);
10102459 3171
82b0f8c3 3172 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3173
82b0f8c3 3174 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3175
3176 /* fault is handled */
3177 ret = 0;
95ecedcd 3178 count_vm_event(THP_FILE_MAPPED);
10102459 3179out:
82b0f8c3 3180 spin_unlock(vmf->ptl);
10102459
KS
3181 return ret;
3182}
3183#else
2b740303 3184static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3185{
3186 BUILD_BUG();
3187 return 0;
3188}
3189#endif
3190
8c6e50b0 3191/**
7267ec00
KS
3192 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3193 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3194 *
82b0f8c3 3195 * @vmf: fault environment
7267ec00 3196 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3197 * @page: page to map
8c6e50b0 3198 *
82b0f8c3
JK
3199 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3200 * return.
8c6e50b0
KS
3201 *
3202 * Target users are page handler itself and implementations of
3203 * vm_ops->map_pages.
3204 */
2b740303 3205vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3206 struct page *page)
3bb97794 3207{
82b0f8c3
JK
3208 struct vm_area_struct *vma = vmf->vma;
3209 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3210 pte_t entry;
2b740303 3211 vm_fault_t ret;
10102459 3212
82b0f8c3 3213 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3214 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3215 /* THP on COW? */
3216 VM_BUG_ON_PAGE(memcg, page);
3217
82b0f8c3 3218 ret = do_set_pmd(vmf, page);
10102459 3219 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3220 return ret;
10102459 3221 }
3bb97794 3222
82b0f8c3
JK
3223 if (!vmf->pte) {
3224 ret = pte_alloc_one_map(vmf);
7267ec00 3225 if (ret)
b0b9b3df 3226 return ret;
7267ec00
KS
3227 }
3228
3229 /* Re-check under ptl */
b0b9b3df
HD
3230 if (unlikely(!pte_none(*vmf->pte)))
3231 return VM_FAULT_NOPAGE;
7267ec00 3232
3bb97794
KS
3233 flush_icache_page(vma, page);
3234 entry = mk_pte(page, vma->vm_page_prot);
3235 if (write)
3236 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3237 /* copy-on-write page */
3238 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3239 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3240 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3241 mem_cgroup_commit_charge(page, memcg, false, false);
3242 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3243 } else {
eca56ff9 3244 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3245 page_add_file_rmap(page, false);
3bb97794 3246 }
82b0f8c3 3247 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3248
3249 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3250 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3251
b0b9b3df 3252 return 0;
3bb97794
KS
3253}
3254
9118c0cb
JK
3255
3256/**
3257 * finish_fault - finish page fault once we have prepared the page to fault
3258 *
3259 * @vmf: structure describing the fault
3260 *
3261 * This function handles all that is needed to finish a page fault once the
3262 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3263 * given page, adds reverse page mapping, handles memcg charges and LRU
3264 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3265 * error.
3266 *
3267 * The function expects the page to be locked and on success it consumes a
3268 * reference of a page being mapped (for the PTE which maps it).
3269 */
2b740303 3270vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3271{
3272 struct page *page;
2b740303 3273 vm_fault_t ret = 0;
9118c0cb
JK
3274
3275 /* Did we COW the page? */
3276 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3277 !(vmf->vma->vm_flags & VM_SHARED))
3278 page = vmf->cow_page;
3279 else
3280 page = vmf->page;
6b31d595
MH
3281
3282 /*
3283 * check even for read faults because we might have lost our CoWed
3284 * page
3285 */
3286 if (!(vmf->vma->vm_flags & VM_SHARED))
3287 ret = check_stable_address_space(vmf->vma->vm_mm);
3288 if (!ret)
3289 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3290 if (vmf->pte)
3291 pte_unmap_unlock(vmf->pte, vmf->ptl);
3292 return ret;
3293}
3294
3a91053a
KS
3295static unsigned long fault_around_bytes __read_mostly =
3296 rounddown_pow_of_two(65536);
a9b0f861 3297
a9b0f861
KS
3298#ifdef CONFIG_DEBUG_FS
3299static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3300{
a9b0f861 3301 *val = fault_around_bytes;
1592eef0
KS
3302 return 0;
3303}
3304
b4903d6e 3305/*
da391d64
WK
3306 * fault_around_bytes must be rounded down to the nearest page order as it's
3307 * what do_fault_around() expects to see.
b4903d6e 3308 */
a9b0f861 3309static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3310{
a9b0f861 3311 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3312 return -EINVAL;
b4903d6e
AR
3313 if (val > PAGE_SIZE)
3314 fault_around_bytes = rounddown_pow_of_two(val);
3315 else
3316 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3317 return 0;
3318}
0a1345f8 3319DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3320 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3321
3322static int __init fault_around_debugfs(void)
3323{
3324 void *ret;
3325
0a1345f8 3326 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3327 &fault_around_bytes_fops);
1592eef0 3328 if (!ret)
a9b0f861 3329 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3330 return 0;
3331}
3332late_initcall(fault_around_debugfs);
1592eef0 3333#endif
8c6e50b0 3334
1fdb412b
KS
3335/*
3336 * do_fault_around() tries to map few pages around the fault address. The hope
3337 * is that the pages will be needed soon and this will lower the number of
3338 * faults to handle.
3339 *
3340 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3341 * not ready to be mapped: not up-to-date, locked, etc.
3342 *
3343 * This function is called with the page table lock taken. In the split ptlock
3344 * case the page table lock only protects only those entries which belong to
3345 * the page table corresponding to the fault address.
3346 *
3347 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3348 * only once.
3349 *
da391d64
WK
3350 * fault_around_bytes defines how many bytes we'll try to map.
3351 * do_fault_around() expects it to be set to a power of two less than or equal
3352 * to PTRS_PER_PTE.
1fdb412b 3353 *
da391d64
WK
3354 * The virtual address of the area that we map is naturally aligned to
3355 * fault_around_bytes rounded down to the machine page size
3356 * (and therefore to page order). This way it's easier to guarantee
3357 * that we don't cross page table boundaries.
1fdb412b 3358 */
2b740303 3359static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3360{
82b0f8c3 3361 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3362 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3363 pgoff_t end_pgoff;
2b740303
SJ
3364 int off;
3365 vm_fault_t ret = 0;
8c6e50b0 3366
4db0c3c2 3367 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3368 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3369
82b0f8c3
JK
3370 vmf->address = max(address & mask, vmf->vma->vm_start);
3371 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3372 start_pgoff -= off;
8c6e50b0
KS
3373
3374 /*
da391d64
WK
3375 * end_pgoff is either the end of the page table, the end of
3376 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3377 */
bae473a4 3378 end_pgoff = start_pgoff -
82b0f8c3 3379 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3380 PTRS_PER_PTE - 1;
82b0f8c3 3381 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3382 start_pgoff + nr_pages - 1);
8c6e50b0 3383
82b0f8c3
JK
3384 if (pmd_none(*vmf->pmd)) {
3385 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3386 vmf->address);
3387 if (!vmf->prealloc_pte)
c5f88bd2 3388 goto out;
7267ec00 3389 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3390 }
3391
82b0f8c3 3392 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3393
7267ec00 3394 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3395 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3396 ret = VM_FAULT_NOPAGE;
3397 goto out;
3398 }
3399
3400 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3401 if (!vmf->pte)
7267ec00
KS
3402 goto out;
3403
3404 /* check if the page fault is solved */
82b0f8c3
JK
3405 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3406 if (!pte_none(*vmf->pte))
7267ec00 3407 ret = VM_FAULT_NOPAGE;
82b0f8c3 3408 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3409out:
82b0f8c3
JK
3410 vmf->address = address;
3411 vmf->pte = NULL;
7267ec00 3412 return ret;
8c6e50b0
KS
3413}
3414
2b740303 3415static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3416{
82b0f8c3 3417 struct vm_area_struct *vma = vmf->vma;
2b740303 3418 vm_fault_t ret = 0;
8c6e50b0
KS
3419
3420 /*
3421 * Let's call ->map_pages() first and use ->fault() as fallback
3422 * if page by the offset is not ready to be mapped (cold cache or
3423 * something).
3424 */
9b4bdd2f 3425 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3426 ret = do_fault_around(vmf);
7267ec00
KS
3427 if (ret)
3428 return ret;
8c6e50b0 3429 }
e655fb29 3430
936ca80d 3431 ret = __do_fault(vmf);
e655fb29
KS
3432 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3433 return ret;
3434
9118c0cb 3435 ret |= finish_fault(vmf);
936ca80d 3436 unlock_page(vmf->page);
7267ec00 3437 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3438 put_page(vmf->page);
e655fb29
KS
3439 return ret;
3440}
3441
2b740303 3442static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3443{
82b0f8c3 3444 struct vm_area_struct *vma = vmf->vma;
2b740303 3445 vm_fault_t ret;
ec47c3b9
KS
3446
3447 if (unlikely(anon_vma_prepare(vma)))
3448 return VM_FAULT_OOM;
3449
936ca80d
JK
3450 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3451 if (!vmf->cow_page)
ec47c3b9
KS
3452 return VM_FAULT_OOM;
3453
2cf85583 3454 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3455 &vmf->memcg, false)) {
936ca80d 3456 put_page(vmf->cow_page);
ec47c3b9
KS
3457 return VM_FAULT_OOM;
3458 }
3459
936ca80d 3460 ret = __do_fault(vmf);
ec47c3b9
KS
3461 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3462 goto uncharge_out;
3917048d
JK
3463 if (ret & VM_FAULT_DONE_COW)
3464 return ret;
ec47c3b9 3465
b1aa812b 3466 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3467 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3468
9118c0cb 3469 ret |= finish_fault(vmf);
b1aa812b
JK
3470 unlock_page(vmf->page);
3471 put_page(vmf->page);
7267ec00
KS
3472 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3473 goto uncharge_out;
ec47c3b9
KS
3474 return ret;
3475uncharge_out:
3917048d 3476 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3477 put_page(vmf->cow_page);
ec47c3b9
KS
3478 return ret;
3479}
3480
2b740303 3481static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3482{
82b0f8c3 3483 struct vm_area_struct *vma = vmf->vma;
2b740303 3484 vm_fault_t ret, tmp;
1d65f86d 3485
936ca80d 3486 ret = __do_fault(vmf);
7eae74af 3487 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3488 return ret;
1da177e4
LT
3489
3490 /*
f0c6d4d2
KS
3491 * Check if the backing address space wants to know that the page is
3492 * about to become writable
1da177e4 3493 */
fb09a464 3494 if (vma->vm_ops->page_mkwrite) {
936ca80d 3495 unlock_page(vmf->page);
38b8cb7f 3496 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3497 if (unlikely(!tmp ||
3498 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3499 put_page(vmf->page);
fb09a464 3500 return tmp;
4294621f 3501 }
fb09a464
KS
3502 }
3503
9118c0cb 3504 ret |= finish_fault(vmf);
7267ec00
KS
3505 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3506 VM_FAULT_RETRY))) {
936ca80d
JK
3507 unlock_page(vmf->page);
3508 put_page(vmf->page);
f0c6d4d2 3509 return ret;
1da177e4 3510 }
b827e496 3511
97ba0c2b 3512 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3513 return ret;
54cb8821 3514}
d00806b1 3515
9a95f3cf
PC
3516/*
3517 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3518 * but allow concurrent faults).
3519 * The mmap_sem may have been released depending on flags and our
3520 * return value. See filemap_fault() and __lock_page_or_retry().
3521 */
2b740303 3522static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3523{
82b0f8c3 3524 struct vm_area_struct *vma = vmf->vma;
2b740303 3525 vm_fault_t ret;
54cb8821 3526
ff09d7ec
AK
3527 /*
3528 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3529 */
3530 if (!vma->vm_ops->fault) {
3531 /*
3532 * If we find a migration pmd entry or a none pmd entry, which
3533 * should never happen, return SIGBUS
3534 */
3535 if (unlikely(!pmd_present(*vmf->pmd)))
3536 ret = VM_FAULT_SIGBUS;
3537 else {
3538 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3539 vmf->pmd,
3540 vmf->address,
3541 &vmf->ptl);
3542 /*
3543 * Make sure this is not a temporary clearing of pte
3544 * by holding ptl and checking again. A R/M/W update
3545 * of pte involves: take ptl, clearing the pte so that
3546 * we don't have concurrent modification by hardware
3547 * followed by an update.
3548 */
3549 if (unlikely(pte_none(*vmf->pte)))
3550 ret = VM_FAULT_SIGBUS;
3551 else
3552 ret = VM_FAULT_NOPAGE;
3553
3554 pte_unmap_unlock(vmf->pte, vmf->ptl);
3555 }
3556 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3557 ret = do_read_fault(vmf);
3558 else if (!(vma->vm_flags & VM_SHARED))
3559 ret = do_cow_fault(vmf);
3560 else
3561 ret = do_shared_fault(vmf);
3562
3563 /* preallocated pagetable is unused: free it */
3564 if (vmf->prealloc_pte) {
3565 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3566 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3567 }
3568 return ret;
54cb8821
NP
3569}
3570
b19a9939 3571static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3572 unsigned long addr, int page_nid,
3573 int *flags)
9532fec1
MG
3574{
3575 get_page(page);
3576
3577 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3578 if (page_nid == numa_node_id()) {
9532fec1 3579 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3580 *flags |= TNF_FAULT_LOCAL;
3581 }
9532fec1
MG
3582
3583 return mpol_misplaced(page, vma, addr);
3584}
3585
2b740303 3586static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3587{
82b0f8c3 3588 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3589 struct page *page = NULL;
8191acbd 3590 int page_nid = -1;
90572890 3591 int last_cpupid;
cbee9f88 3592 int target_nid;
b8593bfd 3593 bool migrated = false;
cee216a6 3594 pte_t pte;
288bc549 3595 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3596 int flags = 0;
d10e63f2
MG
3597
3598 /*
166f61b9
TH
3599 * The "pte" at this point cannot be used safely without
3600 * validation through pte_unmap_same(). It's of NUMA type but
3601 * the pfn may be screwed if the read is non atomic.
166f61b9 3602 */
82b0f8c3
JK
3603 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3604 spin_lock(vmf->ptl);
cee216a6 3605 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3606 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3607 goto out;
3608 }
3609
cee216a6
AK
3610 /*
3611 * Make it present again, Depending on how arch implementes non
3612 * accessible ptes, some can allow access by kernel mode.
3613 */
3614 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3615 pte = pte_modify(pte, vma->vm_page_prot);
3616 pte = pte_mkyoung(pte);
b191f9b1
MG
3617 if (was_writable)
3618 pte = pte_mkwrite(pte);
cee216a6 3619 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3620 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3621
82b0f8c3 3622 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3623 if (!page) {
82b0f8c3 3624 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3625 return 0;
3626 }
3627
e81c4802
KS
3628 /* TODO: handle PTE-mapped THP */
3629 if (PageCompound(page)) {
82b0f8c3 3630 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3631 return 0;
3632 }
3633
6688cc05 3634 /*
bea66fbd
MG
3635 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3636 * much anyway since they can be in shared cache state. This misses
3637 * the case where a mapping is writable but the process never writes
3638 * to it but pte_write gets cleared during protection updates and
3639 * pte_dirty has unpredictable behaviour between PTE scan updates,
3640 * background writeback, dirty balancing and application behaviour.
6688cc05 3641 */
d59dc7bc 3642 if (!pte_write(pte))
6688cc05
PZ
3643 flags |= TNF_NO_GROUP;
3644
dabe1d99
RR
3645 /*
3646 * Flag if the page is shared between multiple address spaces. This
3647 * is later used when determining whether to group tasks together
3648 */
3649 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3650 flags |= TNF_SHARED;
3651
90572890 3652 last_cpupid = page_cpupid_last(page);
8191acbd 3653 page_nid = page_to_nid(page);
82b0f8c3 3654 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3655 &flags);
82b0f8c3 3656 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3657 if (target_nid == -1) {
4daae3b4
MG
3658 put_page(page);
3659 goto out;
3660 }
3661
3662 /* Migrate to the requested node */
1bc115d8 3663 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3664 if (migrated) {
8191acbd 3665 page_nid = target_nid;
6688cc05 3666 flags |= TNF_MIGRATED;
074c2381
MG
3667 } else
3668 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3669
3670out:
8191acbd 3671 if (page_nid != -1)
6688cc05 3672 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3673 return 0;
3674}
3675
2b740303 3676static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3677{
f4200391 3678 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3679 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3680 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3681 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3682 return VM_FAULT_FALLBACK;
3683}
3684
183f24aa 3685/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3686static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3687{
82b0f8c3
JK
3688 if (vma_is_anonymous(vmf->vma))
3689 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3690 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3691 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3692
3693 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3694 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3695 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3696
b96375f7
MW
3697 return VM_FAULT_FALLBACK;
3698}
3699
38e08854
LS
3700static inline bool vma_is_accessible(struct vm_area_struct *vma)
3701{
3702 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3703}
3704
2b740303 3705static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3706{
3707#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3708 /* No support for anonymous transparent PUD pages yet */
3709 if (vma_is_anonymous(vmf->vma))
3710 return VM_FAULT_FALLBACK;
3711 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3712 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3713#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3714 return VM_FAULT_FALLBACK;
3715}
3716
2b740303 3717static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3718{
3719#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3720 /* No support for anonymous transparent PUD pages yet */
3721 if (vma_is_anonymous(vmf->vma))
3722 return VM_FAULT_FALLBACK;
3723 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3724 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3725#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3726 return VM_FAULT_FALLBACK;
3727}
3728
1da177e4
LT
3729/*
3730 * These routines also need to handle stuff like marking pages dirty
3731 * and/or accessed for architectures that don't do it in hardware (most
3732 * RISC architectures). The early dirtying is also good on the i386.
3733 *
3734 * There is also a hook called "update_mmu_cache()" that architectures
3735 * with external mmu caches can use to update those (ie the Sparc or
3736 * PowerPC hashed page tables that act as extended TLBs).
3737 *
7267ec00
KS
3738 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3739 * concurrent faults).
9a95f3cf 3740 *
7267ec00
KS
3741 * The mmap_sem may have been released depending on flags and our return value.
3742 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3743 */
2b740303 3744static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3745{
3746 pte_t entry;
3747
82b0f8c3 3748 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3749 /*
3750 * Leave __pte_alloc() until later: because vm_ops->fault may
3751 * want to allocate huge page, and if we expose page table
3752 * for an instant, it will be difficult to retract from
3753 * concurrent faults and from rmap lookups.
3754 */
82b0f8c3 3755 vmf->pte = NULL;
7267ec00
KS
3756 } else {
3757 /* See comment in pte_alloc_one_map() */
d0f0931d 3758 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3759 return 0;
3760 /*
3761 * A regular pmd is established and it can't morph into a huge
3762 * pmd from under us anymore at this point because we hold the
3763 * mmap_sem read mode and khugepaged takes it in write mode.
3764 * So now it's safe to run pte_offset_map().
3765 */
82b0f8c3 3766 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3767 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3768
3769 /*
3770 * some architectures can have larger ptes than wordsize,
3771 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3772 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3773 * accesses. The code below just needs a consistent view
3774 * for the ifs and we later double check anyway with the
7267ec00
KS
3775 * ptl lock held. So here a barrier will do.
3776 */
3777 barrier();
2994302b 3778 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3779 pte_unmap(vmf->pte);
3780 vmf->pte = NULL;
65500d23 3781 }
1da177e4
LT
3782 }
3783
82b0f8c3
JK
3784 if (!vmf->pte) {
3785 if (vma_is_anonymous(vmf->vma))
3786 return do_anonymous_page(vmf);
7267ec00 3787 else
82b0f8c3 3788 return do_fault(vmf);
7267ec00
KS
3789 }
3790
2994302b
JK
3791 if (!pte_present(vmf->orig_pte))
3792 return do_swap_page(vmf);
7267ec00 3793
2994302b
JK
3794 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3795 return do_numa_page(vmf);
d10e63f2 3796
82b0f8c3
JK
3797 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3798 spin_lock(vmf->ptl);
2994302b 3799 entry = vmf->orig_pte;
82b0f8c3 3800 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3801 goto unlock;
82b0f8c3 3802 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3803 if (!pte_write(entry))
2994302b 3804 return do_wp_page(vmf);
1da177e4
LT
3805 entry = pte_mkdirty(entry);
3806 }
3807 entry = pte_mkyoung(entry);
82b0f8c3
JK
3808 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3809 vmf->flags & FAULT_FLAG_WRITE)) {
3810 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3811 } else {
3812 /*
3813 * This is needed only for protection faults but the arch code
3814 * is not yet telling us if this is a protection fault or not.
3815 * This still avoids useless tlb flushes for .text page faults
3816 * with threads.
3817 */
82b0f8c3
JK
3818 if (vmf->flags & FAULT_FLAG_WRITE)
3819 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3820 }
8f4e2101 3821unlock:
82b0f8c3 3822 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3823 return 0;
1da177e4
LT
3824}
3825
3826/*
3827 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3828 *
3829 * The mmap_sem may have been released depending on flags and our
3830 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3831 */
2b740303
SJ
3832static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3833 unsigned long address, unsigned int flags)
1da177e4 3834{
82b0f8c3 3835 struct vm_fault vmf = {
bae473a4 3836 .vma = vma,
1a29d85e 3837 .address = address & PAGE_MASK,
bae473a4 3838 .flags = flags,
0721ec8b 3839 .pgoff = linear_page_index(vma, address),
667240e0 3840 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3841 };
fde26bed 3842 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3843 struct mm_struct *mm = vma->vm_mm;
1da177e4 3844 pgd_t *pgd;
c2febafc 3845 p4d_t *p4d;
2b740303 3846 vm_fault_t ret;
1da177e4 3847
1da177e4 3848 pgd = pgd_offset(mm, address);
c2febafc
KS
3849 p4d = p4d_alloc(mm, pgd, address);
3850 if (!p4d)
3851 return VM_FAULT_OOM;
a00cc7d9 3852
c2febafc 3853 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3854 if (!vmf.pud)
c74df32c 3855 return VM_FAULT_OOM;
a00cc7d9 3856 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3857 ret = create_huge_pud(&vmf);
3858 if (!(ret & VM_FAULT_FALLBACK))
3859 return ret;
3860 } else {
3861 pud_t orig_pud = *vmf.pud;
3862
3863 barrier();
3864 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3865
a00cc7d9
MW
3866 /* NUMA case for anonymous PUDs would go here */
3867
f6f37321 3868 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3869 ret = wp_huge_pud(&vmf, orig_pud);
3870 if (!(ret & VM_FAULT_FALLBACK))
3871 return ret;
3872 } else {
3873 huge_pud_set_accessed(&vmf, orig_pud);
3874 return 0;
3875 }
3876 }
3877 }
3878
3879 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3880 if (!vmf.pmd)
c74df32c 3881 return VM_FAULT_OOM;
82b0f8c3 3882 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3883 ret = create_huge_pmd(&vmf);
c0292554
KS
3884 if (!(ret & VM_FAULT_FALLBACK))
3885 return ret;
71e3aac0 3886 } else {
82b0f8c3 3887 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3888
71e3aac0 3889 barrier();
84c3fc4e
ZY
3890 if (unlikely(is_swap_pmd(orig_pmd))) {
3891 VM_BUG_ON(thp_migration_supported() &&
3892 !is_pmd_migration_entry(orig_pmd));
3893 if (is_pmd_migration_entry(orig_pmd))
3894 pmd_migration_entry_wait(mm, vmf.pmd);
3895 return 0;
3896 }
5c7fb56e 3897 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3898 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3899 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3900
f6f37321 3901 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3902 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3903 if (!(ret & VM_FAULT_FALLBACK))
3904 return ret;
a1dd450b 3905 } else {
82b0f8c3 3906 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3907 return 0;
1f1d06c3 3908 }
71e3aac0
AA
3909 }
3910 }
3911
82b0f8c3 3912 return handle_pte_fault(&vmf);
1da177e4
LT
3913}
3914
9a95f3cf
PC
3915/*
3916 * By the time we get here, we already hold the mm semaphore
3917 *
3918 * The mmap_sem may have been released depending on flags and our
3919 * return value. See filemap_fault() and __lock_page_or_retry().
3920 */
2b740303 3921vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3922 unsigned int flags)
519e5247 3923{
2b740303 3924 vm_fault_t ret;
519e5247
JW
3925
3926 __set_current_state(TASK_RUNNING);
3927
3928 count_vm_event(PGFAULT);
2262185c 3929 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3930
3931 /* do counter updates before entering really critical section. */
3932 check_sync_rss_stat(current);
3933
de0c799b
LD
3934 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3935 flags & FAULT_FLAG_INSTRUCTION,
3936 flags & FAULT_FLAG_REMOTE))
3937 return VM_FAULT_SIGSEGV;
3938
519e5247
JW
3939 /*
3940 * Enable the memcg OOM handling for faults triggered in user
3941 * space. Kernel faults are handled more gracefully.
3942 */
3943 if (flags & FAULT_FLAG_USER)
29ef680a 3944 mem_cgroup_enter_user_fault();
519e5247 3945
bae473a4
KS
3946 if (unlikely(is_vm_hugetlb_page(vma)))
3947 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3948 else
3949 ret = __handle_mm_fault(vma, address, flags);
519e5247 3950
49426420 3951 if (flags & FAULT_FLAG_USER) {
29ef680a 3952 mem_cgroup_exit_user_fault();
166f61b9
TH
3953 /*
3954 * The task may have entered a memcg OOM situation but
3955 * if the allocation error was handled gracefully (no
3956 * VM_FAULT_OOM), there is no need to kill anything.
3957 * Just clean up the OOM state peacefully.
3958 */
3959 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3960 mem_cgroup_oom_synchronize(false);
49426420 3961 }
3812c8c8 3962
519e5247
JW
3963 return ret;
3964}
e1d6d01a 3965EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3966
90eceff1
KS
3967#ifndef __PAGETABLE_P4D_FOLDED
3968/*
3969 * Allocate p4d page table.
3970 * We've already handled the fast-path in-line.
3971 */
3972int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3973{
3974 p4d_t *new = p4d_alloc_one(mm, address);
3975 if (!new)
3976 return -ENOMEM;
3977
3978 smp_wmb(); /* See comment in __pte_alloc */
3979
3980 spin_lock(&mm->page_table_lock);
3981 if (pgd_present(*pgd)) /* Another has populated it */
3982 p4d_free(mm, new);
3983 else
3984 pgd_populate(mm, pgd, new);
3985 spin_unlock(&mm->page_table_lock);
3986 return 0;
3987}
3988#endif /* __PAGETABLE_P4D_FOLDED */
3989
1da177e4
LT
3990#ifndef __PAGETABLE_PUD_FOLDED
3991/*
3992 * Allocate page upper directory.
872fec16 3993 * We've already handled the fast-path in-line.
1da177e4 3994 */
c2febafc 3995int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 3996{
c74df32c
HD
3997 pud_t *new = pud_alloc_one(mm, address);
3998 if (!new)
1bb3630e 3999 return -ENOMEM;
1da177e4 4000
362a61ad
NP
4001 smp_wmb(); /* See comment in __pte_alloc */
4002
872fec16 4003 spin_lock(&mm->page_table_lock);
c2febafc 4004#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4005 if (!p4d_present(*p4d)) {
4006 mm_inc_nr_puds(mm);
c2febafc 4007 p4d_populate(mm, p4d, new);
b4e98d9a 4008 } else /* Another has populated it */
5e541973 4009 pud_free(mm, new);
b4e98d9a
KS
4010#else
4011 if (!pgd_present(*p4d)) {
4012 mm_inc_nr_puds(mm);
c2febafc 4013 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4014 } else /* Another has populated it */
4015 pud_free(mm, new);
c2febafc 4016#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4017 spin_unlock(&mm->page_table_lock);
1bb3630e 4018 return 0;
1da177e4
LT
4019}
4020#endif /* __PAGETABLE_PUD_FOLDED */
4021
4022#ifndef __PAGETABLE_PMD_FOLDED
4023/*
4024 * Allocate page middle directory.
872fec16 4025 * We've already handled the fast-path in-line.
1da177e4 4026 */
1bb3630e 4027int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4028{
a00cc7d9 4029 spinlock_t *ptl;
c74df32c
HD
4030 pmd_t *new = pmd_alloc_one(mm, address);
4031 if (!new)
1bb3630e 4032 return -ENOMEM;
1da177e4 4033
362a61ad
NP
4034 smp_wmb(); /* See comment in __pte_alloc */
4035
a00cc7d9 4036 ptl = pud_lock(mm, pud);
1da177e4 4037#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4038 if (!pud_present(*pud)) {
4039 mm_inc_nr_pmds(mm);
1bb3630e 4040 pud_populate(mm, pud, new);
dc6c9a35 4041 } else /* Another has populated it */
5e541973 4042 pmd_free(mm, new);
dc6c9a35
KS
4043#else
4044 if (!pgd_present(*pud)) {
4045 mm_inc_nr_pmds(mm);
1bb3630e 4046 pgd_populate(mm, pud, new);
dc6c9a35
KS
4047 } else /* Another has populated it */
4048 pmd_free(mm, new);
1da177e4 4049#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4050 spin_unlock(ptl);
1bb3630e 4051 return 0;
e0f39591 4052}
1da177e4
LT
4053#endif /* __PAGETABLE_PMD_FOLDED */
4054
09796395 4055static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4056 unsigned long *start, unsigned long *end,
4057 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4058{
4059 pgd_t *pgd;
c2febafc 4060 p4d_t *p4d;
f8ad0f49
JW
4061 pud_t *pud;
4062 pmd_t *pmd;
4063 pte_t *ptep;
4064
4065 pgd = pgd_offset(mm, address);
4066 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4067 goto out;
4068
c2febafc
KS
4069 p4d = p4d_offset(pgd, address);
4070 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4071 goto out;
4072
4073 pud = pud_offset(p4d, address);
f8ad0f49
JW
4074 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4075 goto out;
4076
4077 pmd = pmd_offset(pud, address);
f66055ab 4078 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4079
09796395
RZ
4080 if (pmd_huge(*pmd)) {
4081 if (!pmdpp)
4082 goto out;
4083
a4d1a885
JG
4084 if (start && end) {
4085 *start = address & PMD_MASK;
4086 *end = *start + PMD_SIZE;
4087 mmu_notifier_invalidate_range_start(mm, *start, *end);
4088 }
09796395
RZ
4089 *ptlp = pmd_lock(mm, pmd);
4090 if (pmd_huge(*pmd)) {
4091 *pmdpp = pmd;
4092 return 0;
4093 }
4094 spin_unlock(*ptlp);
a4d1a885
JG
4095 if (start && end)
4096 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4097 }
4098
4099 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4100 goto out;
4101
a4d1a885
JG
4102 if (start && end) {
4103 *start = address & PAGE_MASK;
4104 *end = *start + PAGE_SIZE;
4105 mmu_notifier_invalidate_range_start(mm, *start, *end);
4106 }
f8ad0f49 4107 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4108 if (!pte_present(*ptep))
4109 goto unlock;
4110 *ptepp = ptep;
4111 return 0;
4112unlock:
4113 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4114 if (start && end)
4115 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4116out:
4117 return -EINVAL;
4118}
4119
f729c8c9
RZ
4120static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4121 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4122{
4123 int res;
4124
4125 /* (void) is needed to make gcc happy */
4126 (void) __cond_lock(*ptlp,
a4d1a885
JG
4127 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4128 ptepp, NULL, ptlp)));
09796395
RZ
4129 return res;
4130}
4131
4132int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4133 unsigned long *start, unsigned long *end,
09796395
RZ
4134 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4135{
4136 int res;
4137
4138 /* (void) is needed to make gcc happy */
4139 (void) __cond_lock(*ptlp,
a4d1a885
JG
4140 !(res = __follow_pte_pmd(mm, address, start, end,
4141 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4142 return res;
4143}
09796395 4144EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4145
3b6748e2
JW
4146/**
4147 * follow_pfn - look up PFN at a user virtual address
4148 * @vma: memory mapping
4149 * @address: user virtual address
4150 * @pfn: location to store found PFN
4151 *
4152 * Only IO mappings and raw PFN mappings are allowed.
4153 *
4154 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4155 */
4156int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4157 unsigned long *pfn)
4158{
4159 int ret = -EINVAL;
4160 spinlock_t *ptl;
4161 pte_t *ptep;
4162
4163 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4164 return ret;
4165
4166 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4167 if (ret)
4168 return ret;
4169 *pfn = pte_pfn(*ptep);
4170 pte_unmap_unlock(ptep, ptl);
4171 return 0;
4172}
4173EXPORT_SYMBOL(follow_pfn);
4174
28b2ee20 4175#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4176int follow_phys(struct vm_area_struct *vma,
4177 unsigned long address, unsigned int flags,
4178 unsigned long *prot, resource_size_t *phys)
28b2ee20 4179{
03668a4d 4180 int ret = -EINVAL;
28b2ee20
RR
4181 pte_t *ptep, pte;
4182 spinlock_t *ptl;
28b2ee20 4183
d87fe660 4184 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4185 goto out;
28b2ee20 4186
03668a4d 4187 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4188 goto out;
28b2ee20 4189 pte = *ptep;
03668a4d 4190
f6f37321 4191 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4192 goto unlock;
28b2ee20
RR
4193
4194 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4195 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4196
03668a4d 4197 ret = 0;
28b2ee20
RR
4198unlock:
4199 pte_unmap_unlock(ptep, ptl);
4200out:
d87fe660 4201 return ret;
28b2ee20
RR
4202}
4203
4204int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4205 void *buf, int len, int write)
4206{
4207 resource_size_t phys_addr;
4208 unsigned long prot = 0;
2bc7273b 4209 void __iomem *maddr;
28b2ee20
RR
4210 int offset = addr & (PAGE_SIZE-1);
4211
d87fe660 4212 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4213 return -EINVAL;
4214
9cb12d7b 4215 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4216 if (!maddr)
4217 return -ENOMEM;
4218
28b2ee20
RR
4219 if (write)
4220 memcpy_toio(maddr + offset, buf, len);
4221 else
4222 memcpy_fromio(buf, maddr + offset, len);
4223 iounmap(maddr);
4224
4225 return len;
4226}
5a73633e 4227EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4228#endif
4229
0ec76a11 4230/*
206cb636
SW
4231 * Access another process' address space as given in mm. If non-NULL, use the
4232 * given task for page fault accounting.
0ec76a11 4233 */
84d77d3f 4234int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4235 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4236{
0ec76a11 4237 struct vm_area_struct *vma;
0ec76a11 4238 void *old_buf = buf;
442486ec 4239 int write = gup_flags & FOLL_WRITE;
0ec76a11 4240
0ec76a11 4241 down_read(&mm->mmap_sem);
183ff22b 4242 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4243 while (len) {
4244 int bytes, ret, offset;
4245 void *maddr;
28b2ee20 4246 struct page *page = NULL;
0ec76a11 4247
1e987790 4248 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4249 gup_flags, &page, &vma, NULL);
28b2ee20 4250 if (ret <= 0) {
dbffcd03
RR
4251#ifndef CONFIG_HAVE_IOREMAP_PROT
4252 break;
4253#else
28b2ee20
RR
4254 /*
4255 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4256 * we can access using slightly different code.
4257 */
28b2ee20 4258 vma = find_vma(mm, addr);
fe936dfc 4259 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4260 break;
4261 if (vma->vm_ops && vma->vm_ops->access)
4262 ret = vma->vm_ops->access(vma, addr, buf,
4263 len, write);
4264 if (ret <= 0)
28b2ee20
RR
4265 break;
4266 bytes = ret;
dbffcd03 4267#endif
0ec76a11 4268 } else {
28b2ee20
RR
4269 bytes = len;
4270 offset = addr & (PAGE_SIZE-1);
4271 if (bytes > PAGE_SIZE-offset)
4272 bytes = PAGE_SIZE-offset;
4273
4274 maddr = kmap(page);
4275 if (write) {
4276 copy_to_user_page(vma, page, addr,
4277 maddr + offset, buf, bytes);
4278 set_page_dirty_lock(page);
4279 } else {
4280 copy_from_user_page(vma, page, addr,
4281 buf, maddr + offset, bytes);
4282 }
4283 kunmap(page);
09cbfeaf 4284 put_page(page);
0ec76a11 4285 }
0ec76a11
DH
4286 len -= bytes;
4287 buf += bytes;
4288 addr += bytes;
4289 }
4290 up_read(&mm->mmap_sem);
0ec76a11
DH
4291
4292 return buf - old_buf;
4293}
03252919 4294
5ddd36b9 4295/**
ae91dbfc 4296 * access_remote_vm - access another process' address space
5ddd36b9
SW
4297 * @mm: the mm_struct of the target address space
4298 * @addr: start address to access
4299 * @buf: source or destination buffer
4300 * @len: number of bytes to transfer
6347e8d5 4301 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4302 *
4303 * The caller must hold a reference on @mm.
4304 */
4305int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4306 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4307{
6347e8d5 4308 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4309}
4310
206cb636
SW
4311/*
4312 * Access another process' address space.
4313 * Source/target buffer must be kernel space,
4314 * Do not walk the page table directly, use get_user_pages
4315 */
4316int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4317 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4318{
4319 struct mm_struct *mm;
4320 int ret;
4321
4322 mm = get_task_mm(tsk);
4323 if (!mm)
4324 return 0;
4325
f307ab6d 4326 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4327
206cb636
SW
4328 mmput(mm);
4329
4330 return ret;
4331}
fcd35857 4332EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4333
03252919
AK
4334/*
4335 * Print the name of a VMA.
4336 */
4337void print_vma_addr(char *prefix, unsigned long ip)
4338{
4339 struct mm_struct *mm = current->mm;
4340 struct vm_area_struct *vma;
4341
e8bff74a 4342 /*
0a7f682d 4343 * we might be running from an atomic context so we cannot sleep
e8bff74a 4344 */
0a7f682d 4345 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4346 return;
4347
03252919
AK
4348 vma = find_vma(mm, ip);
4349 if (vma && vma->vm_file) {
4350 struct file *f = vma->vm_file;
0a7f682d 4351 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4352 if (buf) {
2fbc57c5 4353 char *p;
03252919 4354
9bf39ab2 4355 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4356 if (IS_ERR(p))
4357 p = "?";
2fbc57c5 4358 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4359 vma->vm_start,
4360 vma->vm_end - vma->vm_start);
4361 free_page((unsigned long)buf);
4362 }
4363 }
51a07e50 4364 up_read(&mm->mmap_sem);
03252919 4365}
3ee1afa3 4366
662bbcb2 4367#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4368void __might_fault(const char *file, int line)
3ee1afa3 4369{
95156f00
PZ
4370 /*
4371 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4372 * holding the mmap_sem, this is safe because kernel memory doesn't
4373 * get paged out, therefore we'll never actually fault, and the
4374 * below annotations will generate false positives.
4375 */
db68ce10 4376 if (uaccess_kernel())
95156f00 4377 return;
9ec23531 4378 if (pagefault_disabled())
662bbcb2 4379 return;
9ec23531
DH
4380 __might_sleep(file, line, 0);
4381#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4382 if (current->mm)
3ee1afa3 4383 might_lock_read(&current->mm->mmap_sem);
9ec23531 4384#endif
3ee1afa3 4385}
9ec23531 4386EXPORT_SYMBOL(__might_fault);
3ee1afa3 4387#endif
47ad8475
AA
4388
4389#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4390/*
4391 * Process all subpages of the specified huge page with the specified
4392 * operation. The target subpage will be processed last to keep its
4393 * cache lines hot.
4394 */
4395static inline void process_huge_page(
4396 unsigned long addr_hint, unsigned int pages_per_huge_page,
4397 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4398 void *arg)
47ad8475 4399{
c79b57e4
HY
4400 int i, n, base, l;
4401 unsigned long addr = addr_hint &
4402 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4403
c6ddfb6c 4404 /* Process target subpage last to keep its cache lines hot */
47ad8475 4405 might_sleep();
c79b57e4
HY
4406 n = (addr_hint - addr) / PAGE_SIZE;
4407 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4408 /* If target subpage in first half of huge page */
c79b57e4
HY
4409 base = 0;
4410 l = n;
c6ddfb6c 4411 /* Process subpages at the end of huge page */
c79b57e4
HY
4412 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4413 cond_resched();
c6ddfb6c 4414 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4415 }
4416 } else {
c6ddfb6c 4417 /* If target subpage in second half of huge page */
c79b57e4
HY
4418 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4419 l = pages_per_huge_page - n;
c6ddfb6c 4420 /* Process subpages at the begin of huge page */
c79b57e4
HY
4421 for (i = 0; i < base; i++) {
4422 cond_resched();
c6ddfb6c 4423 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4424 }
4425 }
4426 /*
c6ddfb6c
HY
4427 * Process remaining subpages in left-right-left-right pattern
4428 * towards the target subpage
c79b57e4
HY
4429 */
4430 for (i = 0; i < l; i++) {
4431 int left_idx = base + i;
4432 int right_idx = base + 2 * l - 1 - i;
4433
4434 cond_resched();
c6ddfb6c 4435 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4436 cond_resched();
c6ddfb6c 4437 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4438 }
4439}
4440
c6ddfb6c
HY
4441static void clear_gigantic_page(struct page *page,
4442 unsigned long addr,
4443 unsigned int pages_per_huge_page)
4444{
4445 int i;
4446 struct page *p = page;
4447
4448 might_sleep();
4449 for (i = 0; i < pages_per_huge_page;
4450 i++, p = mem_map_next(p, page, i)) {
4451 cond_resched();
4452 clear_user_highpage(p, addr + i * PAGE_SIZE);
4453 }
4454}
4455
4456static void clear_subpage(unsigned long addr, int idx, void *arg)
4457{
4458 struct page *page = arg;
4459
4460 clear_user_highpage(page + idx, addr);
4461}
4462
4463void clear_huge_page(struct page *page,
4464 unsigned long addr_hint, unsigned int pages_per_huge_page)
4465{
4466 unsigned long addr = addr_hint &
4467 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4468
4469 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4470 clear_gigantic_page(page, addr, pages_per_huge_page);
4471 return;
4472 }
4473
4474 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4475}
4476
47ad8475
AA
4477static void copy_user_gigantic_page(struct page *dst, struct page *src,
4478 unsigned long addr,
4479 struct vm_area_struct *vma,
4480 unsigned int pages_per_huge_page)
4481{
4482 int i;
4483 struct page *dst_base = dst;
4484 struct page *src_base = src;
4485
4486 for (i = 0; i < pages_per_huge_page; ) {
4487 cond_resched();
4488 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4489
4490 i++;
4491 dst = mem_map_next(dst, dst_base, i);
4492 src = mem_map_next(src, src_base, i);
4493 }
4494}
4495
c9f4cd71
HY
4496struct copy_subpage_arg {
4497 struct page *dst;
4498 struct page *src;
4499 struct vm_area_struct *vma;
4500};
4501
4502static void copy_subpage(unsigned long addr, int idx, void *arg)
4503{
4504 struct copy_subpage_arg *copy_arg = arg;
4505
4506 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4507 addr, copy_arg->vma);
4508}
4509
47ad8475 4510void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4511 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4512 unsigned int pages_per_huge_page)
4513{
c9f4cd71
HY
4514 unsigned long addr = addr_hint &
4515 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4516 struct copy_subpage_arg arg = {
4517 .dst = dst,
4518 .src = src,
4519 .vma = vma,
4520 };
47ad8475
AA
4521
4522 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4523 copy_user_gigantic_page(dst, src, addr, vma,
4524 pages_per_huge_page);
4525 return;
4526 }
4527
c9f4cd71 4528 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4529}
fa4d75c1
MK
4530
4531long copy_huge_page_from_user(struct page *dst_page,
4532 const void __user *usr_src,
810a56b9
MK
4533 unsigned int pages_per_huge_page,
4534 bool allow_pagefault)
fa4d75c1
MK
4535{
4536 void *src = (void *)usr_src;
4537 void *page_kaddr;
4538 unsigned long i, rc = 0;
4539 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4540
4541 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4542 if (allow_pagefault)
4543 page_kaddr = kmap(dst_page + i);
4544 else
4545 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4546 rc = copy_from_user(page_kaddr,
4547 (const void __user *)(src + i * PAGE_SIZE),
4548 PAGE_SIZE);
810a56b9
MK
4549 if (allow_pagefault)
4550 kunmap(dst_page + i);
4551 else
4552 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4553
4554 ret_val -= (PAGE_SIZE - rc);
4555 if (rc)
4556 break;
4557
4558 cond_resched();
4559 }
4560 return ret_val;
4561}
47ad8475 4562#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4563
40b64acd 4564#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4565
4566static struct kmem_cache *page_ptl_cachep;
4567
4568void __init ptlock_cache_init(void)
4569{
4570 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4571 SLAB_PANIC, NULL);
4572}
4573
539edb58 4574bool ptlock_alloc(struct page *page)
49076ec2
KS
4575{
4576 spinlock_t *ptl;
4577
b35f1819 4578 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4579 if (!ptl)
4580 return false;
539edb58 4581 page->ptl = ptl;
49076ec2
KS
4582 return true;
4583}
4584
539edb58 4585void ptlock_free(struct page *page)
49076ec2 4586{
b35f1819 4587 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4588}
4589#endif