]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/swap.c
Linux 4.20.17
[thirdparty/kernel/stable.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4 26#include <linux/percpu_counter.h>
3565fce3 27#include <linux/memremap.h>
1da177e4
LT
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
e0bf68dd 31#include <linux/backing-dev.h>
66e1707b 32#include <linux/memcontrol.h>
5a0e3ad6 33#include <linux/gfp.h>
a27bb332 34#include <linux/uio.h>
822fc613 35#include <linux/hugetlb.h>
33c3fc71 36#include <linux/page_idle.h>
1da177e4 37
64d6519d
LS
38#include "internal.h"
39
c6286c98
MG
40#define CREATE_TRACE_POINTS
41#include <trace/events/pagemap.h>
42
1da177e4
LT
43/* How many pages do we try to swap or page in/out together? */
44int page_cluster;
45
13f7f789 46static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 47static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
cc5993bd 48static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
f7ad2a6c 49static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
a4a921aa
ML
50#ifdef CONFIG_SMP
51static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52#endif
902aaed0 53
b221385b
AB
54/*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
920c7a5d 58static void __page_cache_release(struct page *page)
b221385b
AB
59{
60 if (PageLRU(page)) {
b221385b 61 struct zone *zone = page_zone(page);
fa9add64
HD
62 struct lruvec *lruvec;
63 unsigned long flags;
b221385b 64
a52633d8 65 spin_lock_irqsave(zone_lru_lock(zone), flags);
599d0c95 66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
309381fe 67 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 68 __ClearPageLRU(page);
fa9add64 69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
a52633d8 70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
b221385b 71 }
62906027 72 __ClearPageWaiters(page);
0a31bc97 73 mem_cgroup_uncharge(page);
91807063
AA
74}
75
76static void __put_single_page(struct page *page)
77{
78 __page_cache_release(page);
2d4894b5 79 free_unref_page(page);
b221385b
AB
80}
81
91807063 82static void __put_compound_page(struct page *page)
1da177e4 83{
91807063 84 compound_page_dtor *dtor;
1da177e4 85
822fc613
NH
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
91807063
AA
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96}
97
ddc58f27 98void __put_page(struct page *page)
8519fb30 99{
71389703
DW
100 if (is_zone_device_page(page)) {
101 put_dev_pagemap(page->pgmap);
102
103 /*
104 * The page belongs to the device that created pgmap. Do
105 * not return it to page allocator.
106 */
107 return;
108 }
109
8519fb30 110 if (unlikely(PageCompound(page)))
ddc58f27
KS
111 __put_compound_page(page);
112 else
91807063 113 __put_single_page(page);
1da177e4 114}
ddc58f27 115EXPORT_SYMBOL(__put_page);
70b50f94 116
1d7ea732 117/**
7682486b
RD
118 * put_pages_list() - release a list of pages
119 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
120 *
121 * Release a list of pages which are strung together on page.lru. Currently
122 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
123 */
124void put_pages_list(struct list_head *pages)
125{
126 while (!list_empty(pages)) {
127 struct page *victim;
128
129 victim = list_entry(pages->prev, struct page, lru);
130 list_del(&victim->lru);
09cbfeaf 131 put_page(victim);
1d7ea732
AZ
132 }
133}
134EXPORT_SYMBOL(put_pages_list);
135
18022c5d
MG
136/*
137 * get_kernel_pages() - pin kernel pages in memory
138 * @kiov: An array of struct kvec structures
139 * @nr_segs: number of segments to pin
140 * @write: pinning for read/write, currently ignored
141 * @pages: array that receives pointers to the pages pinned.
142 * Should be at least nr_segs long.
143 *
144 * Returns number of pages pinned. This may be fewer than the number
145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
146 * were pinned, returns -errno. Each page returned must be released
147 * with a put_page() call when it is finished with.
148 */
149int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 struct page **pages)
151{
152 int seg;
153
154 for (seg = 0; seg < nr_segs; seg++) {
155 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 return seg;
157
5a178119 158 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 159 get_page(pages[seg]);
18022c5d
MG
160 }
161
162 return seg;
163}
164EXPORT_SYMBOL_GPL(get_kernel_pages);
165
166/*
167 * get_kernel_page() - pin a kernel page in memory
168 * @start: starting kernel address
169 * @write: pinning for read/write, currently ignored
170 * @pages: array that receives pointer to the page pinned.
171 * Must be at least nr_segs long.
172 *
173 * Returns 1 if page is pinned. If the page was not pinned, returns
174 * -errno. The page returned must be released with a put_page() call
175 * when it is finished with.
176 */
177int get_kernel_page(unsigned long start, int write, struct page **pages)
178{
179 const struct kvec kiov = {
180 .iov_base = (void *)start,
181 .iov_len = PAGE_SIZE
182 };
183
184 return get_kernel_pages(&kiov, 1, write, pages);
185}
186EXPORT_SYMBOL_GPL(get_kernel_page);
187
3dd7ae8e 188static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
189 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 void *arg)
902aaed0
HH
191{
192 int i;
68eb0731 193 struct pglist_data *pgdat = NULL;
fa9add64 194 struct lruvec *lruvec;
3dd7ae8e 195 unsigned long flags = 0;
902aaed0
HH
196
197 for (i = 0; i < pagevec_count(pvec); i++) {
198 struct page *page = pvec->pages[i];
68eb0731 199 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 200
68eb0731
MG
201 if (pagepgdat != pgdat) {
202 if (pgdat)
203 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 pgdat = pagepgdat;
205 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 206 }
3dd7ae8e 207
68eb0731 208 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 209 (*move_fn)(page, lruvec, arg);
902aaed0 210 }
68eb0731
MG
211 if (pgdat)
212 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
c6f92f9f 213 release_pages(pvec->pages, pvec->nr);
83896fb5 214 pagevec_reinit(pvec);
d8505dee
SL
215}
216
fa9add64
HD
217static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 void *arg)
3dd7ae8e
SL
219{
220 int *pgmoved = arg;
3dd7ae8e 221
c55e8d03
JW
222 if (PageLRU(page) && !PageUnevictable(page)) {
223 del_page_from_lru_list(page, lruvec, page_lru(page));
224 ClearPageActive(page);
225 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
3dd7ae8e
SL
226 (*pgmoved)++;
227 }
228}
229
230/*
231 * pagevec_move_tail() must be called with IRQ disabled.
232 * Otherwise this may cause nasty races.
233 */
234static void pagevec_move_tail(struct pagevec *pvec)
235{
236 int pgmoved = 0;
237
238 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 __count_vm_events(PGROTATED, pgmoved);
240}
241
1da177e4
LT
242/*
243 * Writeback is about to end against a page which has been marked for immediate
244 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 245 * inactive list.
1da177e4 246 */
3dd7ae8e 247void rotate_reclaimable_page(struct page *page)
1da177e4 248{
c55e8d03 249 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 250 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
251 struct pagevec *pvec;
252 unsigned long flags;
253
09cbfeaf 254 get_page(page);
ac6aadb2 255 local_irq_save(flags);
7c8e0181 256 pvec = this_cpu_ptr(&lru_rotate_pvecs);
8f182270 257 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2
MS
258 pagevec_move_tail(pvec);
259 local_irq_restore(flags);
260 }
1da177e4
LT
261}
262
fa9add64 263static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
264 int file, int rotated)
265{
fa9add64 266 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
267
268 reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
271}
272
fa9add64
HD
273static void __activate_page(struct page *page, struct lruvec *lruvec,
274 void *arg)
1da177e4 275{
744ed144 276 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
277 int file = page_is_file_cache(page);
278 int lru = page_lru_base_type(page);
744ed144 279
fa9add64 280 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
281 SetPageActive(page);
282 lru += LRU_ACTIVE;
fa9add64 283 add_page_to_lru_list(page, lruvec, lru);
24b7e581 284 trace_mm_lru_activate(page);
4f98a2fe 285
fa9add64
HD
286 __count_vm_event(PGACTIVATE);
287 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 288 }
eb709b0d
SL
289}
290
291#ifdef CONFIG_SMP
eb709b0d
SL
292static void activate_page_drain(int cpu)
293{
294 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295
296 if (pagevec_count(pvec))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298}
299
5fbc4616
CM
300static bool need_activate_page_drain(int cpu)
301{
302 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303}
304
eb709b0d
SL
305void activate_page(struct page *page)
306{
800d8c63 307 page = compound_head(page);
eb709b0d
SL
308 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310
09cbfeaf 311 get_page(page);
8f182270 312 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d
SL
313 pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 put_cpu_var(activate_page_pvecs);
315 }
316}
317
318#else
319static inline void activate_page_drain(int cpu)
320{
321}
322
5fbc4616
CM
323static bool need_activate_page_drain(int cpu)
324{
325 return false;
326}
327
eb709b0d
SL
328void activate_page(struct page *page)
329{
330 struct zone *zone = page_zone(page);
331
800d8c63 332 page = compound_head(page);
a52633d8 333 spin_lock_irq(zone_lru_lock(zone));
599d0c95 334 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
a52633d8 335 spin_unlock_irq(zone_lru_lock(zone));
1da177e4 336}
eb709b0d 337#endif
1da177e4 338
059285a2
MG
339static void __lru_cache_activate_page(struct page *page)
340{
341 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
342 int i;
343
344 /*
345 * Search backwards on the optimistic assumption that the page being
346 * activated has just been added to this pagevec. Note that only
347 * the local pagevec is examined as a !PageLRU page could be in the
348 * process of being released, reclaimed, migrated or on a remote
349 * pagevec that is currently being drained. Furthermore, marking
350 * a remote pagevec's page PageActive potentially hits a race where
351 * a page is marked PageActive just after it is added to the inactive
352 * list causing accounting errors and BUG_ON checks to trigger.
353 */
354 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
355 struct page *pagevec_page = pvec->pages[i];
356
357 if (pagevec_page == page) {
358 SetPageActive(page);
359 break;
360 }
361 }
362
363 put_cpu_var(lru_add_pvec);
364}
365
1da177e4
LT
366/*
367 * Mark a page as having seen activity.
368 *
369 * inactive,unreferenced -> inactive,referenced
370 * inactive,referenced -> active,unreferenced
371 * active,unreferenced -> active,referenced
eb39d618
HD
372 *
373 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
374 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 375 */
920c7a5d 376void mark_page_accessed(struct page *page)
1da177e4 377{
e90309c9 378 page = compound_head(page);
894bc310 379 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
380 PageReferenced(page)) {
381
382 /*
383 * If the page is on the LRU, queue it for activation via
384 * activate_page_pvecs. Otherwise, assume the page is on a
385 * pagevec, mark it active and it'll be moved to the active
386 * LRU on the next drain.
387 */
388 if (PageLRU(page))
389 activate_page(page);
390 else
391 __lru_cache_activate_page(page);
1da177e4 392 ClearPageReferenced(page);
a528910e
JW
393 if (page_is_file_cache(page))
394 workingset_activation(page);
1da177e4
LT
395 } else if (!PageReferenced(page)) {
396 SetPageReferenced(page);
397 }
33c3fc71
VD
398 if (page_is_idle(page))
399 clear_page_idle(page);
1da177e4 400}
1da177e4
LT
401EXPORT_SYMBOL(mark_page_accessed);
402
2329d375 403static void __lru_cache_add(struct page *page)
1da177e4 404{
13f7f789
MG
405 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
406
09cbfeaf 407 get_page(page);
8f182270 408 if (!pagevec_add(pvec, page) || PageCompound(page))
a0b8cab3 409 __pagevec_lru_add(pvec);
13f7f789 410 put_cpu_var(lru_add_pvec);
1da177e4 411}
2329d375
JZ
412
413/**
e02a9f04 414 * lru_cache_add_anon - add a page to the page lists
2329d375
JZ
415 * @page: the page to add
416 */
417void lru_cache_add_anon(struct page *page)
418{
6fb81a17
MG
419 if (PageActive(page))
420 ClearPageActive(page);
2329d375
JZ
421 __lru_cache_add(page);
422}
423
424void lru_cache_add_file(struct page *page)
425{
6fb81a17
MG
426 if (PageActive(page))
427 ClearPageActive(page);
2329d375
JZ
428 __lru_cache_add(page);
429}
430EXPORT_SYMBOL(lru_cache_add_file);
1da177e4 431
f04e9ebb 432/**
c53954a0 433 * lru_cache_add - add a page to a page list
f04e9ebb 434 * @page: the page to be added to the LRU.
2329d375
JZ
435 *
436 * Queue the page for addition to the LRU via pagevec. The decision on whether
437 * to add the page to the [in]active [file|anon] list is deferred until the
438 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
439 * have the page added to the active list using mark_page_accessed().
f04e9ebb 440 */
c53954a0 441void lru_cache_add(struct page *page)
1da177e4 442{
309381fe
SL
443 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
444 VM_BUG_ON_PAGE(PageLRU(page), page);
c53954a0 445 __lru_cache_add(page);
1da177e4
LT
446}
447
00501b53
JW
448/**
449 * lru_cache_add_active_or_unevictable
450 * @page: the page to be added to LRU
451 * @vma: vma in which page is mapped for determining reclaimability
452 *
453 * Place @page on the active or unevictable LRU list, depending on its
454 * evictability. Note that if the page is not evictable, it goes
455 * directly back onto it's zone's unevictable list, it does NOT use a
456 * per cpu pagevec.
457 */
458void lru_cache_add_active_or_unevictable(struct page *page,
459 struct vm_area_struct *vma)
460{
461 VM_BUG_ON_PAGE(PageLRU(page), page);
462
9c4e6b1a 463 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
00501b53 464 SetPageActive(page);
9c4e6b1a 465 else if (!TestSetPageMlocked(page)) {
00501b53
JW
466 /*
467 * We use the irq-unsafe __mod_zone_page_stat because this
468 * counter is not modified from interrupt context, and the pte
469 * lock is held(spinlock), which implies preemption disabled.
470 */
471 __mod_zone_page_state(page_zone(page), NR_MLOCK,
472 hpage_nr_pages(page));
473 count_vm_event(UNEVICTABLE_PGMLOCKED);
474 }
9c4e6b1a 475 lru_cache_add(page);
00501b53
JW
476}
477
31560180
MK
478/*
479 * If the page can not be invalidated, it is moved to the
480 * inactive list to speed up its reclaim. It is moved to the
481 * head of the list, rather than the tail, to give the flusher
482 * threads some time to write it out, as this is much more
483 * effective than the single-page writeout from reclaim.
278df9f4
MK
484 *
485 * If the page isn't page_mapped and dirty/writeback, the page
486 * could reclaim asap using PG_reclaim.
487 *
488 * 1. active, mapped page -> none
489 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
490 * 3. inactive, mapped page -> none
491 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
492 * 5. inactive, clean -> inactive, tail
493 * 6. Others -> none
494 *
495 * In 4, why it moves inactive's head, the VM expects the page would
496 * be write it out by flusher threads as this is much more effective
497 * than the single-page writeout from reclaim.
31560180 498 */
cc5993bd 499static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 500 void *arg)
31560180
MK
501{
502 int lru, file;
278df9f4 503 bool active;
31560180 504
278df9f4 505 if (!PageLRU(page))
31560180
MK
506 return;
507
bad49d9c
MK
508 if (PageUnevictable(page))
509 return;
510
31560180
MK
511 /* Some processes are using the page */
512 if (page_mapped(page))
513 return;
514
278df9f4 515 active = PageActive(page);
31560180
MK
516 file = page_is_file_cache(page);
517 lru = page_lru_base_type(page);
fa9add64
HD
518
519 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
520 ClearPageActive(page);
521 ClearPageReferenced(page);
fa9add64 522 add_page_to_lru_list(page, lruvec, lru);
31560180 523
278df9f4
MK
524 if (PageWriteback(page) || PageDirty(page)) {
525 /*
526 * PG_reclaim could be raced with end_page_writeback
527 * It can make readahead confusing. But race window
528 * is _really_ small and it's non-critical problem.
529 */
530 SetPageReclaim(page);
531 } else {
532 /*
533 * The page's writeback ends up during pagevec
534 * We moves tha page into tail of inactive.
535 */
925b7673 536 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
537 __count_vm_event(PGROTATED);
538 }
539
540 if (active)
541 __count_vm_event(PGDEACTIVATE);
fa9add64 542 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
543}
544
10853a03 545
f7ad2a6c 546static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
547 void *arg)
548{
f7ad2a6c 549 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 550 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 551 bool active = PageActive(page);
10853a03 552
f7ad2a6c
SL
553 del_page_from_lru_list(page, lruvec,
554 LRU_INACTIVE_ANON + active);
10853a03
MK
555 ClearPageActive(page);
556 ClearPageReferenced(page);
f7ad2a6c
SL
557 /*
558 * lazyfree pages are clean anonymous pages. They have
559 * SwapBacked flag cleared to distinguish normal anonymous
560 * pages
561 */
562 ClearPageSwapBacked(page);
563 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 564
f7ad2a6c 565 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
2262185c 566 count_memcg_page_event(page, PGLAZYFREE);
f7ad2a6c 567 update_page_reclaim_stat(lruvec, 1, 0);
10853a03
MK
568 }
569}
570
902aaed0
HH
571/*
572 * Drain pages out of the cpu's pagevecs.
573 * Either "cpu" is the current CPU, and preemption has already been
574 * disabled; or "cpu" is being hot-unplugged, and is already dead.
575 */
f0cb3c76 576void lru_add_drain_cpu(int cpu)
1da177e4 577{
13f7f789 578 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 579
13f7f789 580 if (pagevec_count(pvec))
a0b8cab3 581 __pagevec_lru_add(pvec);
902aaed0
HH
582
583 pvec = &per_cpu(lru_rotate_pvecs, cpu);
584 if (pagevec_count(pvec)) {
585 unsigned long flags;
586
587 /* No harm done if a racing interrupt already did this */
588 local_irq_save(flags);
589 pagevec_move_tail(pvec);
590 local_irq_restore(flags);
591 }
31560180 592
cc5993bd 593 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
31560180 594 if (pagevec_count(pvec))
cc5993bd 595 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 596
f7ad2a6c 597 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
10853a03 598 if (pagevec_count(pvec))
f7ad2a6c 599 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 600
eb709b0d 601 activate_page_drain(cpu);
31560180
MK
602}
603
604/**
cc5993bd 605 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
606 * @page: page to deactivate
607 *
608 * This function hints the VM that @page is a good reclaim candidate,
609 * for example if its invalidation fails due to the page being dirty
610 * or under writeback.
611 */
cc5993bd 612void deactivate_file_page(struct page *page)
31560180 613{
821ed6bb 614 /*
cc5993bd
MK
615 * In a workload with many unevictable page such as mprotect,
616 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
617 */
618 if (PageUnevictable(page))
619 return;
620
31560180 621 if (likely(get_page_unless_zero(page))) {
cc5993bd 622 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
31560180 623
8f182270 624 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd
MK
625 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
626 put_cpu_var(lru_deactivate_file_pvecs);
31560180 627 }
80bfed90
AM
628}
629
10853a03 630/**
f7ad2a6c 631 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
632 * @page: page to deactivate
633 *
f7ad2a6c
SL
634 * mark_page_lazyfree() moves @page to the inactive file list.
635 * This is done to accelerate the reclaim of @page.
10853a03 636 */
f7ad2a6c 637void mark_page_lazyfree(struct page *page)
10853a03 638{
f7ad2a6c 639 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 640 !PageSwapCache(page) && !PageUnevictable(page)) {
f7ad2a6c 641 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
10853a03 642
09cbfeaf 643 get_page(page);
8f182270 644 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c
SL
645 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
646 put_cpu_var(lru_lazyfree_pvecs);
10853a03
MK
647 }
648}
649
80bfed90
AM
650void lru_add_drain(void)
651{
f0cb3c76 652 lru_add_drain_cpu(get_cpu());
80bfed90 653 put_cpu();
1da177e4
LT
654}
655
c4028958 656static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
657{
658 lru_add_drain();
659}
660
5fbc4616
CM
661static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
662
9852a721
MH
663/*
664 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
665 * kworkers being shut down before our page_alloc_cpu_dead callback is
666 * executed on the offlined cpu.
667 * Calling this function with cpu hotplug locks held can actually lead
668 * to obscure indirect dependencies via WQ context.
669 */
670void lru_add_drain_all(void)
053837fc 671{
5fbc4616
CM
672 static DEFINE_MUTEX(lock);
673 static struct cpumask has_work;
674 int cpu;
675
ce612879
MH
676 /*
677 * Make sure nobody triggers this path before mm_percpu_wq is fully
678 * initialized.
679 */
680 if (WARN_ON(!mm_percpu_wq))
681 return;
682
5fbc4616 683 mutex_lock(&lock);
5fbc4616
CM
684 cpumask_clear(&has_work);
685
686 for_each_online_cpu(cpu) {
687 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
688
689 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
690 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
cc5993bd 691 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
f7ad2a6c 692 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
5fbc4616
CM
693 need_activate_page_drain(cpu)) {
694 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 695 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
696 cpumask_set_cpu(cpu, &has_work);
697 }
698 }
699
700 for_each_cpu(cpu, &has_work)
701 flush_work(&per_cpu(lru_add_drain_work, cpu));
702
5fbc4616 703 mutex_unlock(&lock);
053837fc
NP
704}
705
aabfb572 706/**
ea1754a0 707 * release_pages - batched put_page()
aabfb572
MH
708 * @pages: array of pages to release
709 * @nr: number of pages
1da177e4 710 *
aabfb572
MH
711 * Decrement the reference count on all the pages in @pages. If it
712 * fell to zero, remove the page from the LRU and free it.
1da177e4 713 */
c6f92f9f 714void release_pages(struct page **pages, int nr)
1da177e4
LT
715{
716 int i;
cc59850e 717 LIST_HEAD(pages_to_free);
599d0c95 718 struct pglist_data *locked_pgdat = NULL;
fa9add64 719 struct lruvec *lruvec;
902aaed0 720 unsigned long uninitialized_var(flags);
aabfb572 721 unsigned int uninitialized_var(lock_batch);
1da177e4 722
1da177e4
LT
723 for (i = 0; i < nr; i++) {
724 struct page *page = pages[i];
1da177e4 725
aabfb572
MH
726 /*
727 * Make sure the IRQ-safe lock-holding time does not get
728 * excessive with a continuous string of pages from the
599d0c95 729 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 730 */
599d0c95
MG
731 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
732 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
733 locked_pgdat = NULL;
aabfb572
MH
734 }
735
6fcb52a5 736 if (is_huge_zero_page(page))
aa88b68c 737 continue;
aa88b68c 738
df6ad698
JG
739 /* Device public page can not be huge page */
740 if (is_device_public_page(page)) {
741 if (locked_pgdat) {
742 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
743 flags);
744 locked_pgdat = NULL;
745 }
e7638488 746 put_devmap_managed_page(page);
df6ad698
JG
747 continue;
748 }
749
ddc58f27 750 page = compound_head(page);
b5810039 751 if (!put_page_testzero(page))
1da177e4
LT
752 continue;
753
ddc58f27 754 if (PageCompound(page)) {
599d0c95
MG
755 if (locked_pgdat) {
756 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
757 locked_pgdat = NULL;
ddc58f27
KS
758 }
759 __put_compound_page(page);
760 continue;
761 }
762
46453a6e 763 if (PageLRU(page)) {
599d0c95 764 struct pglist_data *pgdat = page_pgdat(page);
894bc310 765
599d0c95
MG
766 if (pgdat != locked_pgdat) {
767 if (locked_pgdat)
768 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 769 flags);
aabfb572 770 lock_batch = 0;
599d0c95
MG
771 locked_pgdat = pgdat;
772 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 773 }
fa9add64 774
599d0c95 775 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 776 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 777 __ClearPageLRU(page);
fa9add64 778 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
779 }
780
c53954a0 781 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 782 __ClearPageActive(page);
62906027 783 __ClearPageWaiters(page);
c53954a0 784
cc59850e 785 list_add(&page->lru, &pages_to_free);
1da177e4 786 }
599d0c95
MG
787 if (locked_pgdat)
788 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 789
747db954 790 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 791 free_unref_page_list(&pages_to_free);
1da177e4 792}
0be8557b 793EXPORT_SYMBOL(release_pages);
1da177e4
LT
794
795/*
796 * The pages which we're about to release may be in the deferred lru-addition
797 * queues. That would prevent them from really being freed right now. That's
798 * OK from a correctness point of view but is inefficient - those pages may be
799 * cache-warm and we want to give them back to the page allocator ASAP.
800 *
801 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
802 * and __pagevec_lru_add_active() call release_pages() directly to avoid
803 * mutual recursion.
804 */
805void __pagevec_release(struct pagevec *pvec)
806{
7f0b5fb9 807 if (!pvec->percpu_pvec_drained) {
d9ed0d08 808 lru_add_drain();
7f0b5fb9 809 pvec->percpu_pvec_drained = true;
d9ed0d08 810 }
c6f92f9f 811 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
812 pagevec_reinit(pvec);
813}
7f285701
SF
814EXPORT_SYMBOL(__pagevec_release);
815
12d27107 816#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 817/* used by __split_huge_page_refcount() */
fa9add64 818void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 819 struct lruvec *lruvec, struct list_head *list)
71e3aac0 820{
71e3aac0 821 const int file = 0;
71e3aac0 822
309381fe
SL
823 VM_BUG_ON_PAGE(!PageHead(page), page);
824 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
825 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
fa9add64 826 VM_BUG_ON(NR_CPUS != 1 &&
599d0c95 827 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
71e3aac0 828
5bc7b8ac
SL
829 if (!list)
830 SetPageLRU(page_tail);
71e3aac0 831
12d27107
HD
832 if (likely(PageLRU(page)))
833 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
834 else if (list) {
835 /* page reclaim is reclaiming a huge page */
836 get_page(page_tail);
837 list_add_tail(&page_tail->lru, list);
838 } else {
12d27107
HD
839 struct list_head *list_head;
840 /*
841 * Head page has not yet been counted, as an hpage,
842 * so we must account for each subpage individually.
843 *
844 * Use the standard add function to put page_tail on the list,
845 * but then correct its position so they all end up in order.
846 */
e180cf80 847 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
12d27107
HD
848 list_head = page_tail->lru.prev;
849 list_move_tail(&page_tail->lru, list_head);
71e3aac0 850 }
7512102c
HD
851
852 if (!PageUnevictable(page))
e180cf80 853 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 854}
12d27107 855#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 856
fa9add64
HD
857static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
858 void *arg)
3dd7ae8e 859{
9c4e6b1a
SB
860 enum lru_list lru;
861 int was_unevictable = TestClearPageUnevictable(page);
3dd7ae8e 862
309381fe 863 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e
SL
864
865 SetPageLRU(page);
9c4e6b1a
SB
866 /*
867 * Page becomes evictable in two ways:
868 * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
869 * 2) Before acquiring LRU lock to put the page to correct LRU and then
870 * a) do PageLRU check with lock [check_move_unevictable_pages]
871 * b) do PageLRU check before lock [clear_page_mlock]
872 *
873 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
874 * following strict ordering:
875 *
876 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
877 *
878 * SetPageLRU() TestClearPageMlocked()
879 * smp_mb() // explicit ordering // above provides strict
880 * // ordering
881 * PageMlocked() PageLRU()
882 *
883 *
884 * if '#1' does not observe setting of PG_lru by '#0' and fails
885 * isolation, the explicit barrier will make sure that page_evictable
886 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
887 * can be reordered after PageMlocked check and can make '#1' to fail
888 * the isolation of the page whose Mlocked bit is cleared (#0 is also
889 * looking at the same page) and the evictable page will be stranded
890 * in an unevictable LRU.
891 */
892 smp_mb();
893
894 if (page_evictable(page)) {
895 lru = page_lru(page);
896 update_page_reclaim_stat(lruvec, page_is_file_cache(page),
897 PageActive(page));
898 if (was_unevictable)
899 count_vm_event(UNEVICTABLE_PGRESCUED);
900 } else {
901 lru = LRU_UNEVICTABLE;
902 ClearPageActive(page);
903 SetPageUnevictable(page);
904 if (!was_unevictable)
905 count_vm_event(UNEVICTABLE_PGCULLED);
906 }
907
fa9add64 908 add_page_to_lru_list(page, lruvec, lru);
24b7e581 909 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
910}
911
1da177e4
LT
912/*
913 * Add the passed pages to the LRU, then drop the caller's refcount
914 * on them. Reinitialises the caller's pagevec.
915 */
a0b8cab3 916void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 917{
a0b8cab3 918 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 919}
5095ae83 920EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 921
0cd6144a
JW
922/**
923 * pagevec_lookup_entries - gang pagecache lookup
924 * @pvec: Where the resulting entries are placed
925 * @mapping: The address_space to search
926 * @start: The starting entry index
cb6f0f34 927 * @nr_entries: The maximum number of pages
0cd6144a
JW
928 * @indices: The cache indices corresponding to the entries in @pvec
929 *
930 * pagevec_lookup_entries() will search for and return a group of up
f144c390 931 * to @nr_pages pages and shadow entries in the mapping. All
0cd6144a
JW
932 * entries are placed in @pvec. pagevec_lookup_entries() takes a
933 * reference against actual pages in @pvec.
934 *
935 * The search returns a group of mapping-contiguous entries with
936 * ascending indexes. There may be holes in the indices due to
937 * not-present entries.
938 *
939 * pagevec_lookup_entries() returns the number of entries which were
940 * found.
941 */
942unsigned pagevec_lookup_entries(struct pagevec *pvec,
943 struct address_space *mapping,
e02a9f04 944 pgoff_t start, unsigned nr_entries,
0cd6144a
JW
945 pgoff_t *indices)
946{
e02a9f04 947 pvec->nr = find_get_entries(mapping, start, nr_entries,
0cd6144a
JW
948 pvec->pages, indices);
949 return pagevec_count(pvec);
950}
951
952/**
953 * pagevec_remove_exceptionals - pagevec exceptionals pruning
954 * @pvec: The pagevec to prune
955 *
956 * pagevec_lookup_entries() fills both pages and exceptional radix
957 * tree entries into the pagevec. This function prunes all
958 * exceptionals from @pvec without leaving holes, so that it can be
959 * passed on to page-only pagevec operations.
960 */
961void pagevec_remove_exceptionals(struct pagevec *pvec)
962{
963 int i, j;
964
965 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
966 struct page *page = pvec->pages[i];
3159f943 967 if (!xa_is_value(page))
0cd6144a
JW
968 pvec->pages[j++] = page;
969 }
970 pvec->nr = j;
971}
972
1da177e4 973/**
b947cee4 974 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
975 * @pvec: Where the resulting pages are placed
976 * @mapping: The address_space to search
977 * @start: The starting page index
b947cee4 978 * @end: The final page index
1da177e4 979 *
e02a9f04 980 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
981 * pages in the mapping starting from index @start and upto index @end
982 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
983 * reference against the pages in @pvec.
984 *
985 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
986 * indexes. There may be holes in the indices due to not-present pages. We
987 * also update @start to index the next page for the traversal.
1da177e4 988 *
b947cee4 989 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 990 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 991 * reached.
1da177e4 992 */
b947cee4 993unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 994 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 995{
397162ff 996 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 997 pvec->pages);
1da177e4
LT
998 return pagevec_count(pvec);
999}
b947cee4 1000EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1001
72b045ae
JK
1002unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1003 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1004 xa_mark_t tag)
1da177e4 1005{
72b045ae 1006 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1007 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1008 return pagevec_count(pvec);
1009}
72b045ae 1010EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1011
93d3b714
JK
1012unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1013 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1014 xa_mark_t tag, unsigned max_pages)
93d3b714
JK
1015{
1016 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1017 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1018 return pagevec_count(pvec);
1019}
1020EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1da177e4
LT
1021/*
1022 * Perform any setup for the swap system
1023 */
1024void __init swap_setup(void)
1025{
4481374c 1026 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
e0bf68dd 1027
1da177e4
LT
1028 /* Use a smaller cluster for small-memory machines */
1029 if (megs < 16)
1030 page_cluster = 2;
1031 else
1032 page_cluster = 3;
1033 /*
1034 * Right now other parts of the system means that we
1035 * _really_ don't want to cluster much more
1036 */
1da177e4 1037}