]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/vmscan.c
memcg: kill CONFIG_MM_OWNER
[thirdparty/kernel/stable.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
117aad1e 51#include <linux/balloon_compaction.h>
1da177e4 52
0f8053a5
NP
53#include "internal.h"
54
33906bc5
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/vmscan.h>
57
1da177e4 58struct scan_control {
1da177e4
LT
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
a79311c1
RR
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
7b51755c
KM
68 unsigned long hibernation_mode;
69
1da177e4 70 /* This context's GFP mask */
6daa0e28 71 gfp_t gfp_mask;
1da177e4
LT
72
73 int may_writepage;
74
a6dc60f8
JW
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
f1fd1067 77
2e2e4259
KM
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
5ad333eb 81 int order;
66e1707b 82
9e3b2f8c
KK
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
f16015fb
JW
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
66e1707b 91
327c0e96
KH
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
1da177e4
LT
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
b21e0b90 133unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
c255a458 138#ifdef CONFIG_MEMCG
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
a1c3bfb2 150static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
151{
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162}
163
164bool zone_reclaimable(struct zone *zone)
165{
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167}
168
4d7dcca2 169static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 170{
c3c787e8 171 if (!mem_cgroup_disabled())
4d7dcca2 172 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 173
074291fe 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
175}
176
1da177e4 177/*
1d3d4437 178 * Add a shrinker callback to be called from the vm.
1da177e4 179 */
1d3d4437 180int register_shrinker(struct shrinker *shrinker)
1da177e4 181{
1d3d4437
GC
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
8e1f936b
RR
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
1d3d4437 202 return 0;
1da177e4 203}
8e1f936b 204EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
205
206/*
207 * Remove one
208 */
8e1f936b 209void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
210{
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
ae393321 214 kfree(shrinker->nr_deferred);
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
217
218#define SHRINK_BATCH 128
1d3d4437
GC
219
220static unsigned long
221shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
223{
224 unsigned long freed = 0;
225 unsigned long long delta;
226 long total_scan;
d5bc5fd3 227 long freeable;
1d3d4437
GC
228 long nr;
229 long new_nr;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
d5bc5fd3
VD
234 freeable = shrinker->count_objects(shrinker, shrinkctl);
235 if (freeable == 0)
1d3d4437
GC
236 return 0;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 247 delta *= freeable;
1d3d4437
GC
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 253 shrinker->scan_objects, total_scan);
d5bc5fd3 254 total_scan = freeable;
1d3d4437
GC
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 263 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
d5bc5fd3
VD
269 if (delta < freeable / 4)
270 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
d5bc5fd3
VD
277 if (total_scan > freeable * 2)
278 total_scan = freeable * 2;
1d3d4437
GC
279
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
d5bc5fd3 282 freeable, delta, total_scan);
1d3d4437 283
0b1fb40a
VD
284 /*
285 * Normally, we should not scan less than batch_size objects in one
286 * pass to avoid too frequent shrinker calls, but if the slab has less
287 * than batch_size objects in total and we are really tight on memory,
288 * we will try to reclaim all available objects, otherwise we can end
289 * up failing allocations although there are plenty of reclaimable
290 * objects spread over several slabs with usage less than the
291 * batch_size.
292 *
293 * We detect the "tight on memory" situations by looking at the total
294 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 295 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
296 * scanning at high prio and therefore should try to reclaim as much as
297 * possible.
298 */
299 while (total_scan >= batch_size ||
d5bc5fd3 300 total_scan >= freeable) {
a0b02131 301 unsigned long ret;
0b1fb40a 302 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 303
0b1fb40a 304 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
305 ret = shrinker->scan_objects(shrinker, shrinkctl);
306 if (ret == SHRINK_STOP)
307 break;
308 freed += ret;
1d3d4437 309
0b1fb40a
VD
310 count_vm_events(SLABS_SCANNED, nr_to_scan);
311 total_scan -= nr_to_scan;
1d3d4437
GC
312
313 cond_resched();
314 }
315
316 /*
317 * move the unused scan count back into the shrinker in a
318 * manner that handles concurrent updates. If we exhausted the
319 * scan, there is no need to do an update.
320 */
321 if (total_scan > 0)
322 new_nr = atomic_long_add_return(total_scan,
323 &shrinker->nr_deferred[nid]);
324 else
325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326
327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
328 return freed;
1495f230
YH
329}
330
1da177e4
LT
331/*
332 * Call the shrink functions to age shrinkable caches
333 *
334 * Here we assume it costs one seek to replace a lru page and that it also
335 * takes a seek to recreate a cache object. With this in mind we age equal
336 * percentages of the lru and ageable caches. This should balance the seeks
337 * generated by these structures.
338 *
183ff22b 339 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
340 * slab to avoid swapping.
341 *
342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343 *
344 * `lru_pages' represents the number of on-LRU pages in all the zones which
345 * are eligible for the caller's allocation attempt. It is used for balancing
346 * slab reclaim versus page reclaim.
b15e0905 347 *
348 * Returns the number of slab objects which we shrunk.
1da177e4 349 */
24f7c6b9 350unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 351 unsigned long nr_pages_scanned,
a09ed5e0 352 unsigned long lru_pages)
1da177e4
LT
353{
354 struct shrinker *shrinker;
24f7c6b9 355 unsigned long freed = 0;
1da177e4 356
1495f230
YH
357 if (nr_pages_scanned == 0)
358 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 359
f06590bd 360 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
361 /*
362 * If we would return 0, our callers would understand that we
363 * have nothing else to shrink and give up trying. By returning
364 * 1 we keep it going and assume we'll be able to shrink next
365 * time.
366 */
367 freed = 1;
f06590bd
MK
368 goto out;
369 }
1da177e4
LT
370
371 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
373 shrinkctl->nid = 0;
1d3d4437 374 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
375 nr_pages_scanned, lru_pages);
376 continue;
377 }
378
379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 if (node_online(shrinkctl->nid))
381 freed += shrink_slab_node(shrinkctl, shrinker,
382 nr_pages_scanned, lru_pages);
1da177e4 383
1da177e4 384 }
1da177e4
LT
385 }
386 up_read(&shrinker_rwsem);
f06590bd
MK
387out:
388 cond_resched();
24f7c6b9 389 return freed;
1da177e4
LT
390}
391
1da177e4
LT
392static inline int is_page_cache_freeable(struct page *page)
393{
ceddc3a5
JW
394 /*
395 * A freeable page cache page is referenced only by the caller
396 * that isolated the page, the page cache radix tree and
397 * optional buffer heads at page->private.
398 */
edcf4748 399 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
400}
401
7d3579e8
KM
402static int may_write_to_queue(struct backing_dev_info *bdi,
403 struct scan_control *sc)
1da177e4 404{
930d9152 405 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
406 return 1;
407 if (!bdi_write_congested(bdi))
408 return 1;
409 if (bdi == current->backing_dev_info)
410 return 1;
411 return 0;
412}
413
414/*
415 * We detected a synchronous write error writing a page out. Probably
416 * -ENOSPC. We need to propagate that into the address_space for a subsequent
417 * fsync(), msync() or close().
418 *
419 * The tricky part is that after writepage we cannot touch the mapping: nothing
420 * prevents it from being freed up. But we have a ref on the page and once
421 * that page is locked, the mapping is pinned.
422 *
423 * We're allowed to run sleeping lock_page() here because we know the caller has
424 * __GFP_FS.
425 */
426static void handle_write_error(struct address_space *mapping,
427 struct page *page, int error)
428{
7eaceacc 429 lock_page(page);
3e9f45bd
GC
430 if (page_mapping(page) == mapping)
431 mapping_set_error(mapping, error);
1da177e4
LT
432 unlock_page(page);
433}
434
04e62a29
CL
435/* possible outcome of pageout() */
436typedef enum {
437 /* failed to write page out, page is locked */
438 PAGE_KEEP,
439 /* move page to the active list, page is locked */
440 PAGE_ACTIVATE,
441 /* page has been sent to the disk successfully, page is unlocked */
442 PAGE_SUCCESS,
443 /* page is clean and locked */
444 PAGE_CLEAN,
445} pageout_t;
446
1da177e4 447/*
1742f19f
AM
448 * pageout is called by shrink_page_list() for each dirty page.
449 * Calls ->writepage().
1da177e4 450 */
c661b078 451static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 452 struct scan_control *sc)
1da177e4
LT
453{
454 /*
455 * If the page is dirty, only perform writeback if that write
456 * will be non-blocking. To prevent this allocation from being
457 * stalled by pagecache activity. But note that there may be
458 * stalls if we need to run get_block(). We could test
459 * PagePrivate for that.
460 *
6aceb53b 461 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
462 * this page's queue, we can perform writeback even if that
463 * will block.
464 *
465 * If the page is swapcache, write it back even if that would
466 * block, for some throttling. This happens by accident, because
467 * swap_backing_dev_info is bust: it doesn't reflect the
468 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
469 */
470 if (!is_page_cache_freeable(page))
471 return PAGE_KEEP;
472 if (!mapping) {
473 /*
474 * Some data journaling orphaned pages can have
475 * page->mapping == NULL while being dirty with clean buffers.
476 */
266cf658 477 if (page_has_private(page)) {
1da177e4
LT
478 if (try_to_free_buffers(page)) {
479 ClearPageDirty(page);
d40cee24 480 printk("%s: orphaned page\n", __func__);
1da177e4
LT
481 return PAGE_CLEAN;
482 }
483 }
484 return PAGE_KEEP;
485 }
486 if (mapping->a_ops->writepage == NULL)
487 return PAGE_ACTIVATE;
0e093d99 488 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
489 return PAGE_KEEP;
490
491 if (clear_page_dirty_for_io(page)) {
492 int res;
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
496 .range_start = 0,
497 .range_end = LLONG_MAX,
1da177e4
LT
498 .for_reclaim = 1,
499 };
500
501 SetPageReclaim(page);
502 res = mapping->a_ops->writepage(page, &wbc);
503 if (res < 0)
504 handle_write_error(mapping, page, res);
994fc28c 505 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
506 ClearPageReclaim(page);
507 return PAGE_ACTIVATE;
508 }
c661b078 509
1da177e4
LT
510 if (!PageWriteback(page)) {
511 /* synchronous write or broken a_ops? */
512 ClearPageReclaim(page);
513 }
23b9da55 514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 515 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
516 return PAGE_SUCCESS;
517 }
518
519 return PAGE_CLEAN;
520}
521
a649fd92 522/*
e286781d
NP
523 * Same as remove_mapping, but if the page is removed from the mapping, it
524 * gets returned with a refcount of 0.
a649fd92 525 */
a528910e
JW
526static int __remove_mapping(struct address_space *mapping, struct page *page,
527 bool reclaimed)
49d2e9cc 528{
28e4d965
NP
529 BUG_ON(!PageLocked(page));
530 BUG_ON(mapping != page_mapping(page));
49d2e9cc 531
19fd6231 532 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 533 /*
0fd0e6b0
NP
534 * The non racy check for a busy page.
535 *
536 * Must be careful with the order of the tests. When someone has
537 * a ref to the page, it may be possible that they dirty it then
538 * drop the reference. So if PageDirty is tested before page_count
539 * here, then the following race may occur:
540 *
541 * get_user_pages(&page);
542 * [user mapping goes away]
543 * write_to(page);
544 * !PageDirty(page) [good]
545 * SetPageDirty(page);
546 * put_page(page);
547 * !page_count(page) [good, discard it]
548 *
549 * [oops, our write_to data is lost]
550 *
551 * Reversing the order of the tests ensures such a situation cannot
552 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
553 * load is not satisfied before that of page->_count.
554 *
555 * Note that if SetPageDirty is always performed via set_page_dirty,
556 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 557 */
e286781d 558 if (!page_freeze_refs(page, 2))
49d2e9cc 559 goto cannot_free;
e286781d
NP
560 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
561 if (unlikely(PageDirty(page))) {
562 page_unfreeze_refs(page, 2);
49d2e9cc 563 goto cannot_free;
e286781d 564 }
49d2e9cc
CL
565
566 if (PageSwapCache(page)) {
567 swp_entry_t swap = { .val = page_private(page) };
568 __delete_from_swap_cache(page);
19fd6231 569 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 570 swapcache_free(swap, page);
e286781d 571 } else {
6072d13c 572 void (*freepage)(struct page *);
a528910e 573 void *shadow = NULL;
6072d13c
LT
574
575 freepage = mapping->a_ops->freepage;
a528910e
JW
576 /*
577 * Remember a shadow entry for reclaimed file cache in
578 * order to detect refaults, thus thrashing, later on.
579 *
580 * But don't store shadows in an address space that is
581 * already exiting. This is not just an optizimation,
582 * inode reclaim needs to empty out the radix tree or
583 * the nodes are lost. Don't plant shadows behind its
584 * back.
585 */
586 if (reclaimed && page_is_file_cache(page) &&
587 !mapping_exiting(mapping))
588 shadow = workingset_eviction(mapping, page);
589 __delete_from_page_cache(page, shadow);
19fd6231 590 spin_unlock_irq(&mapping->tree_lock);
e767e056 591 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
592
593 if (freepage != NULL)
594 freepage(page);
49d2e9cc
CL
595 }
596
49d2e9cc
CL
597 return 1;
598
599cannot_free:
19fd6231 600 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
601 return 0;
602}
603
e286781d
NP
604/*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610int remove_mapping(struct address_space *mapping, struct page *page)
611{
a528910e 612 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622}
623
894bc310
LS
624/**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
894bc310
LS
633void putback_lru_page(struct page *page)
634{
0ec3b74c 635 bool is_unevictable;
bbfd28ee 636 int was_unevictable = PageUnevictable(page);
894bc310 637
309381fe 638 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
639
640redo:
641 ClearPageUnevictable(page);
642
39b5f29a 643 if (page_evictable(page)) {
894bc310
LS
644 /*
645 * For evictable pages, we can use the cache.
646 * In event of a race, worst case is we end up with an
647 * unevictable page on [in]active list.
648 * We know how to handle that.
649 */
0ec3b74c 650 is_unevictable = false;
c53954a0 651 lru_cache_add(page);
894bc310
LS
652 } else {
653 /*
654 * Put unevictable pages directly on zone's unevictable
655 * list.
656 */
0ec3b74c 657 is_unevictable = true;
894bc310 658 add_page_to_unevictable_list(page);
6a7b9548 659 /*
21ee9f39
MK
660 * When racing with an mlock or AS_UNEVICTABLE clearing
661 * (page is unlocked) make sure that if the other thread
662 * does not observe our setting of PG_lru and fails
24513264 663 * isolation/check_move_unevictable_pages,
21ee9f39 664 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
665 * the page back to the evictable list.
666 *
21ee9f39 667 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
668 */
669 smp_mb();
894bc310 670 }
894bc310
LS
671
672 /*
673 * page's status can change while we move it among lru. If an evictable
674 * page is on unevictable list, it never be freed. To avoid that,
675 * check after we added it to the list, again.
676 */
0ec3b74c 677 if (is_unevictable && page_evictable(page)) {
894bc310
LS
678 if (!isolate_lru_page(page)) {
679 put_page(page);
680 goto redo;
681 }
682 /* This means someone else dropped this page from LRU
683 * So, it will be freed or putback to LRU again. There is
684 * nothing to do here.
685 */
686 }
687
0ec3b74c 688 if (was_unevictable && !is_unevictable)
bbfd28ee 689 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 690 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
691 count_vm_event(UNEVICTABLE_PGCULLED);
692
894bc310
LS
693 put_page(page); /* drop ref from isolate */
694}
695
dfc8d636
JW
696enum page_references {
697 PAGEREF_RECLAIM,
698 PAGEREF_RECLAIM_CLEAN,
64574746 699 PAGEREF_KEEP,
dfc8d636
JW
700 PAGEREF_ACTIVATE,
701};
702
703static enum page_references page_check_references(struct page *page,
704 struct scan_control *sc)
705{
64574746 706 int referenced_ptes, referenced_page;
dfc8d636 707 unsigned long vm_flags;
dfc8d636 708
c3ac9a8a
JW
709 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
710 &vm_flags);
64574746 711 referenced_page = TestClearPageReferenced(page);
dfc8d636 712
dfc8d636
JW
713 /*
714 * Mlock lost the isolation race with us. Let try_to_unmap()
715 * move the page to the unevictable list.
716 */
717 if (vm_flags & VM_LOCKED)
718 return PAGEREF_RECLAIM;
719
64574746 720 if (referenced_ptes) {
e4898273 721 if (PageSwapBacked(page))
64574746
JW
722 return PAGEREF_ACTIVATE;
723 /*
724 * All mapped pages start out with page table
725 * references from the instantiating fault, so we need
726 * to look twice if a mapped file page is used more
727 * than once.
728 *
729 * Mark it and spare it for another trip around the
730 * inactive list. Another page table reference will
731 * lead to its activation.
732 *
733 * Note: the mark is set for activated pages as well
734 * so that recently deactivated but used pages are
735 * quickly recovered.
736 */
737 SetPageReferenced(page);
738
34dbc67a 739 if (referenced_page || referenced_ptes > 1)
64574746
JW
740 return PAGEREF_ACTIVATE;
741
c909e993
KK
742 /*
743 * Activate file-backed executable pages after first usage.
744 */
745 if (vm_flags & VM_EXEC)
746 return PAGEREF_ACTIVATE;
747
64574746
JW
748 return PAGEREF_KEEP;
749 }
dfc8d636
JW
750
751 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 752 if (referenced_page && !PageSwapBacked(page))
64574746
JW
753 return PAGEREF_RECLAIM_CLEAN;
754
755 return PAGEREF_RECLAIM;
dfc8d636
JW
756}
757
e2be15f6
MG
758/* Check if a page is dirty or under writeback */
759static void page_check_dirty_writeback(struct page *page,
760 bool *dirty, bool *writeback)
761{
b4597226
MG
762 struct address_space *mapping;
763
e2be15f6
MG
764 /*
765 * Anonymous pages are not handled by flushers and must be written
766 * from reclaim context. Do not stall reclaim based on them
767 */
768 if (!page_is_file_cache(page)) {
769 *dirty = false;
770 *writeback = false;
771 return;
772 }
773
774 /* By default assume that the page flags are accurate */
775 *dirty = PageDirty(page);
776 *writeback = PageWriteback(page);
b4597226
MG
777
778 /* Verify dirty/writeback state if the filesystem supports it */
779 if (!page_has_private(page))
780 return;
781
782 mapping = page_mapping(page);
783 if (mapping && mapping->a_ops->is_dirty_writeback)
784 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
785}
786
1da177e4 787/*
1742f19f 788 * shrink_page_list() returns the number of reclaimed pages
1da177e4 789 */
1742f19f 790static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 791 struct zone *zone,
f84f6e2b 792 struct scan_control *sc,
02c6de8d 793 enum ttu_flags ttu_flags,
8e950282 794 unsigned long *ret_nr_dirty,
d43006d5 795 unsigned long *ret_nr_unqueued_dirty,
8e950282 796 unsigned long *ret_nr_congested,
02c6de8d 797 unsigned long *ret_nr_writeback,
b1a6f21e 798 unsigned long *ret_nr_immediate,
02c6de8d 799 bool force_reclaim)
1da177e4
LT
800{
801 LIST_HEAD(ret_pages);
abe4c3b5 802 LIST_HEAD(free_pages);
1da177e4 803 int pgactivate = 0;
d43006d5 804 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
805 unsigned long nr_dirty = 0;
806 unsigned long nr_congested = 0;
05ff5137 807 unsigned long nr_reclaimed = 0;
92df3a72 808 unsigned long nr_writeback = 0;
b1a6f21e 809 unsigned long nr_immediate = 0;
1da177e4
LT
810
811 cond_resched();
812
69980e31 813 mem_cgroup_uncharge_start();
1da177e4
LT
814 while (!list_empty(page_list)) {
815 struct address_space *mapping;
816 struct page *page;
817 int may_enter_fs;
02c6de8d 818 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 819 bool dirty, writeback;
1da177e4
LT
820
821 cond_resched();
822
823 page = lru_to_page(page_list);
824 list_del(&page->lru);
825
529ae9aa 826 if (!trylock_page(page))
1da177e4
LT
827 goto keep;
828
309381fe
SL
829 VM_BUG_ON_PAGE(PageActive(page), page);
830 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
831
832 sc->nr_scanned++;
80e43426 833
39b5f29a 834 if (unlikely(!page_evictable(page)))
b291f000 835 goto cull_mlocked;
894bc310 836
a6dc60f8 837 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
838 goto keep_locked;
839
1da177e4
LT
840 /* Double the slab pressure for mapped and swapcache pages */
841 if (page_mapped(page) || PageSwapCache(page))
842 sc->nr_scanned++;
843
c661b078
AW
844 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
845 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
846
e2be15f6
MG
847 /*
848 * The number of dirty pages determines if a zone is marked
849 * reclaim_congested which affects wait_iff_congested. kswapd
850 * will stall and start writing pages if the tail of the LRU
851 * is all dirty unqueued pages.
852 */
853 page_check_dirty_writeback(page, &dirty, &writeback);
854 if (dirty || writeback)
855 nr_dirty++;
856
857 if (dirty && !writeback)
858 nr_unqueued_dirty++;
859
d04e8acd
MG
860 /*
861 * Treat this page as congested if the underlying BDI is or if
862 * pages are cycling through the LRU so quickly that the
863 * pages marked for immediate reclaim are making it to the
864 * end of the LRU a second time.
865 */
e2be15f6 866 mapping = page_mapping(page);
d04e8acd
MG
867 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
868 (writeback && PageReclaim(page)))
e2be15f6
MG
869 nr_congested++;
870
283aba9f
MG
871 /*
872 * If a page at the tail of the LRU is under writeback, there
873 * are three cases to consider.
874 *
875 * 1) If reclaim is encountering an excessive number of pages
876 * under writeback and this page is both under writeback and
877 * PageReclaim then it indicates that pages are being queued
878 * for IO but are being recycled through the LRU before the
879 * IO can complete. Waiting on the page itself risks an
880 * indefinite stall if it is impossible to writeback the
881 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
882 * note that the LRU is being scanned too quickly and the
883 * caller can stall after page list has been processed.
283aba9f
MG
884 *
885 * 2) Global reclaim encounters a page, memcg encounters a
886 * page that is not marked for immediate reclaim or
887 * the caller does not have __GFP_IO. In this case mark
888 * the page for immediate reclaim and continue scanning.
889 *
890 * __GFP_IO is checked because a loop driver thread might
891 * enter reclaim, and deadlock if it waits on a page for
892 * which it is needed to do the write (loop masks off
893 * __GFP_IO|__GFP_FS for this reason); but more thought
894 * would probably show more reasons.
895 *
896 * Don't require __GFP_FS, since we're not going into the
897 * FS, just waiting on its writeback completion. Worryingly,
898 * ext4 gfs2 and xfs allocate pages with
899 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
900 * may_enter_fs here is liable to OOM on them.
901 *
902 * 3) memcg encounters a page that is not already marked
903 * PageReclaim. memcg does not have any dirty pages
904 * throttling so we could easily OOM just because too many
905 * pages are in writeback and there is nothing else to
906 * reclaim. Wait for the writeback to complete.
907 */
c661b078 908 if (PageWriteback(page)) {
283aba9f
MG
909 /* Case 1 above */
910 if (current_is_kswapd() &&
911 PageReclaim(page) &&
912 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
913 nr_immediate++;
914 goto keep_locked;
283aba9f
MG
915
916 /* Case 2 above */
917 } else if (global_reclaim(sc) ||
c3b94f44
HD
918 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
919 /*
920 * This is slightly racy - end_page_writeback()
921 * might have just cleared PageReclaim, then
922 * setting PageReclaim here end up interpreted
923 * as PageReadahead - but that does not matter
924 * enough to care. What we do want is for this
925 * page to have PageReclaim set next time memcg
926 * reclaim reaches the tests above, so it will
927 * then wait_on_page_writeback() to avoid OOM;
928 * and it's also appropriate in global reclaim.
929 */
930 SetPageReclaim(page);
e62e384e 931 nr_writeback++;
283aba9f 932
c3b94f44 933 goto keep_locked;
283aba9f
MG
934
935 /* Case 3 above */
936 } else {
937 wait_on_page_writeback(page);
e62e384e 938 }
c661b078 939 }
1da177e4 940
02c6de8d
MK
941 if (!force_reclaim)
942 references = page_check_references(page, sc);
943
dfc8d636
JW
944 switch (references) {
945 case PAGEREF_ACTIVATE:
1da177e4 946 goto activate_locked;
64574746
JW
947 case PAGEREF_KEEP:
948 goto keep_locked;
dfc8d636
JW
949 case PAGEREF_RECLAIM:
950 case PAGEREF_RECLAIM_CLEAN:
951 ; /* try to reclaim the page below */
952 }
1da177e4 953
1da177e4
LT
954 /*
955 * Anonymous process memory has backing store?
956 * Try to allocate it some swap space here.
957 */
b291f000 958 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
959 if (!(sc->gfp_mask & __GFP_IO))
960 goto keep_locked;
5bc7b8ac 961 if (!add_to_swap(page, page_list))
1da177e4 962 goto activate_locked;
63eb6b93 963 may_enter_fs = 1;
1da177e4 964
e2be15f6
MG
965 /* Adding to swap updated mapping */
966 mapping = page_mapping(page);
967 }
1da177e4
LT
968
969 /*
970 * The page is mapped into the page tables of one or more
971 * processes. Try to unmap it here.
972 */
973 if (page_mapped(page) && mapping) {
02c6de8d 974 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
975 case SWAP_FAIL:
976 goto activate_locked;
977 case SWAP_AGAIN:
978 goto keep_locked;
b291f000
NP
979 case SWAP_MLOCK:
980 goto cull_mlocked;
1da177e4
LT
981 case SWAP_SUCCESS:
982 ; /* try to free the page below */
983 }
984 }
985
986 if (PageDirty(page)) {
ee72886d
MG
987 /*
988 * Only kswapd can writeback filesystem pages to
d43006d5
MG
989 * avoid risk of stack overflow but only writeback
990 * if many dirty pages have been encountered.
ee72886d 991 */
f84f6e2b 992 if (page_is_file_cache(page) &&
9e3b2f8c 993 (!current_is_kswapd() ||
d43006d5 994 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
995 /*
996 * Immediately reclaim when written back.
997 * Similar in principal to deactivate_page()
998 * except we already have the page isolated
999 * and know it's dirty
1000 */
1001 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002 SetPageReclaim(page);
1003
ee72886d
MG
1004 goto keep_locked;
1005 }
1006
dfc8d636 1007 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1008 goto keep_locked;
4dd4b920 1009 if (!may_enter_fs)
1da177e4 1010 goto keep_locked;
52a8363e 1011 if (!sc->may_writepage)
1da177e4
LT
1012 goto keep_locked;
1013
1014 /* Page is dirty, try to write it out here */
7d3579e8 1015 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1016 case PAGE_KEEP:
1017 goto keep_locked;
1018 case PAGE_ACTIVATE:
1019 goto activate_locked;
1020 case PAGE_SUCCESS:
7d3579e8 1021 if (PageWriteback(page))
41ac1999 1022 goto keep;
7d3579e8 1023 if (PageDirty(page))
1da177e4 1024 goto keep;
7d3579e8 1025
1da177e4
LT
1026 /*
1027 * A synchronous write - probably a ramdisk. Go
1028 * ahead and try to reclaim the page.
1029 */
529ae9aa 1030 if (!trylock_page(page))
1da177e4
LT
1031 goto keep;
1032 if (PageDirty(page) || PageWriteback(page))
1033 goto keep_locked;
1034 mapping = page_mapping(page);
1035 case PAGE_CLEAN:
1036 ; /* try to free the page below */
1037 }
1038 }
1039
1040 /*
1041 * If the page has buffers, try to free the buffer mappings
1042 * associated with this page. If we succeed we try to free
1043 * the page as well.
1044 *
1045 * We do this even if the page is PageDirty().
1046 * try_to_release_page() does not perform I/O, but it is
1047 * possible for a page to have PageDirty set, but it is actually
1048 * clean (all its buffers are clean). This happens if the
1049 * buffers were written out directly, with submit_bh(). ext3
894bc310 1050 * will do this, as well as the blockdev mapping.
1da177e4
LT
1051 * try_to_release_page() will discover that cleanness and will
1052 * drop the buffers and mark the page clean - it can be freed.
1053 *
1054 * Rarely, pages can have buffers and no ->mapping. These are
1055 * the pages which were not successfully invalidated in
1056 * truncate_complete_page(). We try to drop those buffers here
1057 * and if that worked, and the page is no longer mapped into
1058 * process address space (page_count == 1) it can be freed.
1059 * Otherwise, leave the page on the LRU so it is swappable.
1060 */
266cf658 1061 if (page_has_private(page)) {
1da177e4
LT
1062 if (!try_to_release_page(page, sc->gfp_mask))
1063 goto activate_locked;
e286781d
NP
1064 if (!mapping && page_count(page) == 1) {
1065 unlock_page(page);
1066 if (put_page_testzero(page))
1067 goto free_it;
1068 else {
1069 /*
1070 * rare race with speculative reference.
1071 * the speculative reference will free
1072 * this page shortly, so we may
1073 * increment nr_reclaimed here (and
1074 * leave it off the LRU).
1075 */
1076 nr_reclaimed++;
1077 continue;
1078 }
1079 }
1da177e4
LT
1080 }
1081
a528910e 1082 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1083 goto keep_locked;
1da177e4 1084
a978d6f5
NP
1085 /*
1086 * At this point, we have no other references and there is
1087 * no way to pick any more up (removed from LRU, removed
1088 * from pagecache). Can use non-atomic bitops now (and
1089 * we obviously don't have to worry about waking up a process
1090 * waiting on the page lock, because there are no references.
1091 */
1092 __clear_page_locked(page);
e286781d 1093free_it:
05ff5137 1094 nr_reclaimed++;
abe4c3b5
MG
1095
1096 /*
1097 * Is there need to periodically free_page_list? It would
1098 * appear not as the counts should be low
1099 */
1100 list_add(&page->lru, &free_pages);
1da177e4
LT
1101 continue;
1102
b291f000 1103cull_mlocked:
63d6c5ad
HD
1104 if (PageSwapCache(page))
1105 try_to_free_swap(page);
b291f000
NP
1106 unlock_page(page);
1107 putback_lru_page(page);
1108 continue;
1109
1da177e4 1110activate_locked:
68a22394
RR
1111 /* Not a candidate for swapping, so reclaim swap space. */
1112 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1113 try_to_free_swap(page);
309381fe 1114 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1115 SetPageActive(page);
1116 pgactivate++;
1117keep_locked:
1118 unlock_page(page);
1119keep:
1120 list_add(&page->lru, &ret_pages);
309381fe 1121 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1122 }
abe4c3b5 1123
cc59850e 1124 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1125
1da177e4 1126 list_splice(&ret_pages, page_list);
f8891e5e 1127 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1128 mem_cgroup_uncharge_end();
8e950282
MG
1129 *ret_nr_dirty += nr_dirty;
1130 *ret_nr_congested += nr_congested;
d43006d5 1131 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1132 *ret_nr_writeback += nr_writeback;
b1a6f21e 1133 *ret_nr_immediate += nr_immediate;
05ff5137 1134 return nr_reclaimed;
1da177e4
LT
1135}
1136
02c6de8d
MK
1137unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138 struct list_head *page_list)
1139{
1140 struct scan_control sc = {
1141 .gfp_mask = GFP_KERNEL,
1142 .priority = DEF_PRIORITY,
1143 .may_unmap = 1,
1144 };
8e950282 1145 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1146 struct page *page, *next;
1147 LIST_HEAD(clean_pages);
1148
1149 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1150 if (page_is_file_cache(page) && !PageDirty(page) &&
1151 !isolated_balloon_page(page)) {
02c6de8d
MK
1152 ClearPageActive(page);
1153 list_move(&page->lru, &clean_pages);
1154 }
1155 }
1156
1157 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1158 TTU_UNMAP|TTU_IGNORE_ACCESS,
1159 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1160 list_splice(&clean_pages, page_list);
83da7510 1161 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1162 return ret;
1163}
1164
5ad333eb
AW
1165/*
1166 * Attempt to remove the specified page from its LRU. Only take this page
1167 * if it is of the appropriate PageActive status. Pages which are being
1168 * freed elsewhere are also ignored.
1169 *
1170 * page: page to consider
1171 * mode: one of the LRU isolation modes defined above
1172 *
1173 * returns 0 on success, -ve errno on failure.
1174 */
f3fd4a61 1175int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1176{
1177 int ret = -EINVAL;
1178
1179 /* Only take pages on the LRU. */
1180 if (!PageLRU(page))
1181 return ret;
1182
e46a2879
MK
1183 /* Compaction should not handle unevictable pages but CMA can do so */
1184 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1185 return ret;
1186
5ad333eb 1187 ret = -EBUSY;
08e552c6 1188
c8244935
MG
1189 /*
1190 * To minimise LRU disruption, the caller can indicate that it only
1191 * wants to isolate pages it will be able to operate on without
1192 * blocking - clean pages for the most part.
1193 *
1194 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195 * is used by reclaim when it is cannot write to backing storage
1196 *
1197 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198 * that it is possible to migrate without blocking
1199 */
1200 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201 /* All the caller can do on PageWriteback is block */
1202 if (PageWriteback(page))
1203 return ret;
1204
1205 if (PageDirty(page)) {
1206 struct address_space *mapping;
1207
1208 /* ISOLATE_CLEAN means only clean pages */
1209 if (mode & ISOLATE_CLEAN)
1210 return ret;
1211
1212 /*
1213 * Only pages without mappings or that have a
1214 * ->migratepage callback are possible to migrate
1215 * without blocking
1216 */
1217 mapping = page_mapping(page);
1218 if (mapping && !mapping->a_ops->migratepage)
1219 return ret;
1220 }
1221 }
39deaf85 1222
f80c0673
MK
1223 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224 return ret;
1225
5ad333eb
AW
1226 if (likely(get_page_unless_zero(page))) {
1227 /*
1228 * Be careful not to clear PageLRU until after we're
1229 * sure the page is not being freed elsewhere -- the
1230 * page release code relies on it.
1231 */
1232 ClearPageLRU(page);
1233 ret = 0;
1234 }
1235
1236 return ret;
1237}
1238
1da177e4
LT
1239/*
1240 * zone->lru_lock is heavily contended. Some of the functions that
1241 * shrink the lists perform better by taking out a batch of pages
1242 * and working on them outside the LRU lock.
1243 *
1244 * For pagecache intensive workloads, this function is the hottest
1245 * spot in the kernel (apart from copy_*_user functions).
1246 *
1247 * Appropriate locks must be held before calling this function.
1248 *
1249 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1250 * @lruvec: The LRU vector to pull pages from.
1da177e4 1251 * @dst: The temp list to put pages on to.
f626012d 1252 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1253 * @sc: The scan_control struct for this reclaim session
5ad333eb 1254 * @mode: One of the LRU isolation modes
3cb99451 1255 * @lru: LRU list id for isolating
1da177e4
LT
1256 *
1257 * returns how many pages were moved onto *@dst.
1258 */
69e05944 1259static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1260 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1261 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1262 isolate_mode_t mode, enum lru_list lru)
1da177e4 1263{
75b00af7 1264 struct list_head *src = &lruvec->lists[lru];
69e05944 1265 unsigned long nr_taken = 0;
c9b02d97 1266 unsigned long scan;
1da177e4 1267
c9b02d97 1268 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1269 struct page *page;
fa9add64 1270 int nr_pages;
5ad333eb 1271
1da177e4
LT
1272 page = lru_to_page(src);
1273 prefetchw_prev_lru_page(page, src, flags);
1274
309381fe 1275 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1276
f3fd4a61 1277 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1278 case 0:
fa9add64
HD
1279 nr_pages = hpage_nr_pages(page);
1280 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1281 list_move(&page->lru, dst);
fa9add64 1282 nr_taken += nr_pages;
5ad333eb
AW
1283 break;
1284
1285 case -EBUSY:
1286 /* else it is being freed elsewhere */
1287 list_move(&page->lru, src);
1288 continue;
46453a6e 1289
5ad333eb
AW
1290 default:
1291 BUG();
1292 }
1da177e4
LT
1293 }
1294
f626012d 1295 *nr_scanned = scan;
75b00af7
HD
1296 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1298 return nr_taken;
1299}
1300
62695a84
NP
1301/**
1302 * isolate_lru_page - tries to isolate a page from its LRU list
1303 * @page: page to isolate from its LRU list
1304 *
1305 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306 * vmstat statistic corresponding to whatever LRU list the page was on.
1307 *
1308 * Returns 0 if the page was removed from an LRU list.
1309 * Returns -EBUSY if the page was not on an LRU list.
1310 *
1311 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1312 * the active list, it will have PageActive set. If it was found on
1313 * the unevictable list, it will have the PageUnevictable bit set. That flag
1314 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1315 *
1316 * The vmstat statistic corresponding to the list on which the page was
1317 * found will be decremented.
1318 *
1319 * Restrictions:
1320 * (1) Must be called with an elevated refcount on the page. This is a
1321 * fundamentnal difference from isolate_lru_pages (which is called
1322 * without a stable reference).
1323 * (2) the lru_lock must not be held.
1324 * (3) interrupts must be enabled.
1325 */
1326int isolate_lru_page(struct page *page)
1327{
1328 int ret = -EBUSY;
1329
309381fe 1330 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1331
62695a84
NP
1332 if (PageLRU(page)) {
1333 struct zone *zone = page_zone(page);
fa9add64 1334 struct lruvec *lruvec;
62695a84
NP
1335
1336 spin_lock_irq(&zone->lru_lock);
fa9add64 1337 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1338 if (PageLRU(page)) {
894bc310 1339 int lru = page_lru(page);
0c917313 1340 get_page(page);
62695a84 1341 ClearPageLRU(page);
fa9add64
HD
1342 del_page_from_lru_list(page, lruvec, lru);
1343 ret = 0;
62695a84
NP
1344 }
1345 spin_unlock_irq(&zone->lru_lock);
1346 }
1347 return ret;
1348}
1349
35cd7815 1350/*
d37dd5dc
FW
1351 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352 * then get resheduled. When there are massive number of tasks doing page
1353 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354 * the LRU list will go small and be scanned faster than necessary, leading to
1355 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1356 */
1357static int too_many_isolated(struct zone *zone, int file,
1358 struct scan_control *sc)
1359{
1360 unsigned long inactive, isolated;
1361
1362 if (current_is_kswapd())
1363 return 0;
1364
89b5fae5 1365 if (!global_reclaim(sc))
35cd7815
RR
1366 return 0;
1367
1368 if (file) {
1369 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371 } else {
1372 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374 }
1375
3cf23841
FW
1376 /*
1377 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378 * won't get blocked by normal direct-reclaimers, forming a circular
1379 * deadlock.
1380 */
1381 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382 inactive >>= 3;
1383
35cd7815
RR
1384 return isolated > inactive;
1385}
1386
66635629 1387static noinline_for_stack void
75b00af7 1388putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1389{
27ac81d8
KK
1390 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1392 LIST_HEAD(pages_to_free);
66635629 1393
66635629
MG
1394 /*
1395 * Put back any unfreeable pages.
1396 */
66635629 1397 while (!list_empty(page_list)) {
3f79768f 1398 struct page *page = lru_to_page(page_list);
66635629 1399 int lru;
3f79768f 1400
309381fe 1401 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1402 list_del(&page->lru);
39b5f29a 1403 if (unlikely(!page_evictable(page))) {
66635629
MG
1404 spin_unlock_irq(&zone->lru_lock);
1405 putback_lru_page(page);
1406 spin_lock_irq(&zone->lru_lock);
1407 continue;
1408 }
fa9add64
HD
1409
1410 lruvec = mem_cgroup_page_lruvec(page, zone);
1411
7a608572 1412 SetPageLRU(page);
66635629 1413 lru = page_lru(page);
fa9add64
HD
1414 add_page_to_lru_list(page, lruvec, lru);
1415
66635629
MG
1416 if (is_active_lru(lru)) {
1417 int file = is_file_lru(lru);
9992af10
RR
1418 int numpages = hpage_nr_pages(page);
1419 reclaim_stat->recent_rotated[file] += numpages;
66635629 1420 }
2bcf8879
HD
1421 if (put_page_testzero(page)) {
1422 __ClearPageLRU(page);
1423 __ClearPageActive(page);
fa9add64 1424 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1425
1426 if (unlikely(PageCompound(page))) {
1427 spin_unlock_irq(&zone->lru_lock);
1428 (*get_compound_page_dtor(page))(page);
1429 spin_lock_irq(&zone->lru_lock);
1430 } else
1431 list_add(&page->lru, &pages_to_free);
66635629
MG
1432 }
1433 }
66635629 1434
3f79768f
HD
1435 /*
1436 * To save our caller's stack, now use input list for pages to free.
1437 */
1438 list_splice(&pages_to_free, page_list);
66635629
MG
1439}
1440
1da177e4 1441/*
1742f19f
AM
1442 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1443 * of reclaimed pages
1da177e4 1444 */
66635629 1445static noinline_for_stack unsigned long
1a93be0e 1446shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1447 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1448{
1449 LIST_HEAD(page_list);
e247dbce 1450 unsigned long nr_scanned;
05ff5137 1451 unsigned long nr_reclaimed = 0;
e247dbce 1452 unsigned long nr_taken;
8e950282
MG
1453 unsigned long nr_dirty = 0;
1454 unsigned long nr_congested = 0;
e2be15f6 1455 unsigned long nr_unqueued_dirty = 0;
92df3a72 1456 unsigned long nr_writeback = 0;
b1a6f21e 1457 unsigned long nr_immediate = 0;
f3fd4a61 1458 isolate_mode_t isolate_mode = 0;
3cb99451 1459 int file = is_file_lru(lru);
1a93be0e
KK
1460 struct zone *zone = lruvec_zone(lruvec);
1461 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1462
35cd7815 1463 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1464 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1465
1466 /* We are about to die and free our memory. Return now. */
1467 if (fatal_signal_pending(current))
1468 return SWAP_CLUSTER_MAX;
1469 }
1470
1da177e4 1471 lru_add_drain();
f80c0673
MK
1472
1473 if (!sc->may_unmap)
61317289 1474 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1475 if (!sc->may_writepage)
61317289 1476 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1477
1da177e4 1478 spin_lock_irq(&zone->lru_lock);
b35ea17b 1479
5dc35979
KK
1480 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1481 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1482
1483 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1484 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1485
89b5fae5 1486 if (global_reclaim(sc)) {
e247dbce
KM
1487 zone->pages_scanned += nr_scanned;
1488 if (current_is_kswapd())
75b00af7 1489 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1490 else
75b00af7 1491 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1492 }
d563c050 1493 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1494
d563c050 1495 if (nr_taken == 0)
66635629 1496 return 0;
5ad333eb 1497
02c6de8d 1498 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1499 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1500 &nr_writeback, &nr_immediate,
1501 false);
c661b078 1502
3f79768f
HD
1503 spin_lock_irq(&zone->lru_lock);
1504
95d918fc 1505 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1506
904249aa
YH
1507 if (global_reclaim(sc)) {
1508 if (current_is_kswapd())
1509 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1510 nr_reclaimed);
1511 else
1512 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1513 nr_reclaimed);
1514 }
a74609fa 1515
27ac81d8 1516 putback_inactive_pages(lruvec, &page_list);
3f79768f 1517
95d918fc 1518 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1519
1520 spin_unlock_irq(&zone->lru_lock);
1521
1522 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1523
92df3a72
MG
1524 /*
1525 * If reclaim is isolating dirty pages under writeback, it implies
1526 * that the long-lived page allocation rate is exceeding the page
1527 * laundering rate. Either the global limits are not being effective
1528 * at throttling processes due to the page distribution throughout
1529 * zones or there is heavy usage of a slow backing device. The
1530 * only option is to throttle from reclaim context which is not ideal
1531 * as there is no guarantee the dirtying process is throttled in the
1532 * same way balance_dirty_pages() manages.
1533 *
8e950282
MG
1534 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1535 * of pages under pages flagged for immediate reclaim and stall if any
1536 * are encountered in the nr_immediate check below.
92df3a72 1537 */
918fc718 1538 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1539 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1540
d43006d5 1541 /*
b1a6f21e
MG
1542 * memcg will stall in page writeback so only consider forcibly
1543 * stalling for global reclaim
d43006d5 1544 */
b1a6f21e 1545 if (global_reclaim(sc)) {
8e950282
MG
1546 /*
1547 * Tag a zone as congested if all the dirty pages scanned were
1548 * backed by a congested BDI and wait_iff_congested will stall.
1549 */
1550 if (nr_dirty && nr_dirty == nr_congested)
1551 zone_set_flag(zone, ZONE_CONGESTED);
1552
b1a6f21e
MG
1553 /*
1554 * If dirty pages are scanned that are not queued for IO, it
1555 * implies that flushers are not keeping up. In this case, flag
1556 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1557 * pages from reclaim context. It will forcibly stall in the
1558 * next check.
1559 */
1560 if (nr_unqueued_dirty == nr_taken)
1561 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1562
1563 /*
1564 * In addition, if kswapd scans pages marked marked for
1565 * immediate reclaim and under writeback (nr_immediate), it
1566 * implies that pages are cycling through the LRU faster than
1567 * they are written so also forcibly stall.
1568 */
1569 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1570 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1571 }
d43006d5 1572
8e950282
MG
1573 /*
1574 * Stall direct reclaim for IO completions if underlying BDIs or zone
1575 * is congested. Allow kswapd to continue until it starts encountering
1576 * unqueued dirty pages or cycling through the LRU too quickly.
1577 */
1578 if (!sc->hibernation_mode && !current_is_kswapd())
1579 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
e11da5b4
MG
1581 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582 zone_idx(zone),
1583 nr_scanned, nr_reclaimed,
9e3b2f8c 1584 sc->priority,
23b9da55 1585 trace_shrink_flags(file));
05ff5137 1586 return nr_reclaimed;
1da177e4
LT
1587}
1588
1589/*
1590 * This moves pages from the active list to the inactive list.
1591 *
1592 * We move them the other way if the page is referenced by one or more
1593 * processes, from rmap.
1594 *
1595 * If the pages are mostly unmapped, the processing is fast and it is
1596 * appropriate to hold zone->lru_lock across the whole operation. But if
1597 * the pages are mapped, the processing is slow (page_referenced()) so we
1598 * should drop zone->lru_lock around each page. It's impossible to balance
1599 * this, so instead we remove the pages from the LRU while processing them.
1600 * It is safe to rely on PG_active against the non-LRU pages in here because
1601 * nobody will play with that bit on a non-LRU page.
1602 *
1603 * The downside is that we have to touch page->_count against each page.
1604 * But we had to alter page->flags anyway.
1605 */
1cfb419b 1606
fa9add64 1607static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1608 struct list_head *list,
2bcf8879 1609 struct list_head *pages_to_free,
3eb4140f
WF
1610 enum lru_list lru)
1611{
fa9add64 1612 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1613 unsigned long pgmoved = 0;
3eb4140f 1614 struct page *page;
fa9add64 1615 int nr_pages;
3eb4140f 1616
3eb4140f
WF
1617 while (!list_empty(list)) {
1618 page = lru_to_page(list);
fa9add64 1619 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1620
309381fe 1621 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1622 SetPageLRU(page);
1623
fa9add64
HD
1624 nr_pages = hpage_nr_pages(page);
1625 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1626 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1627 pgmoved += nr_pages;
3eb4140f 1628
2bcf8879
HD
1629 if (put_page_testzero(page)) {
1630 __ClearPageLRU(page);
1631 __ClearPageActive(page);
fa9add64 1632 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1633
1634 if (unlikely(PageCompound(page))) {
1635 spin_unlock_irq(&zone->lru_lock);
1636 (*get_compound_page_dtor(page))(page);
1637 spin_lock_irq(&zone->lru_lock);
1638 } else
1639 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1640 }
1641 }
1642 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1643 if (!is_active_lru(lru))
1644 __count_vm_events(PGDEACTIVATE, pgmoved);
1645}
1cfb419b 1646
f626012d 1647static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1648 struct lruvec *lruvec,
f16015fb 1649 struct scan_control *sc,
9e3b2f8c 1650 enum lru_list lru)
1da177e4 1651{
44c241f1 1652 unsigned long nr_taken;
f626012d 1653 unsigned long nr_scanned;
6fe6b7e3 1654 unsigned long vm_flags;
1da177e4 1655 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1656 LIST_HEAD(l_active);
b69408e8 1657 LIST_HEAD(l_inactive);
1da177e4 1658 struct page *page;
1a93be0e 1659 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1660 unsigned long nr_rotated = 0;
f3fd4a61 1661 isolate_mode_t isolate_mode = 0;
3cb99451 1662 int file = is_file_lru(lru);
1a93be0e 1663 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1664
1665 lru_add_drain();
f80c0673
MK
1666
1667 if (!sc->may_unmap)
61317289 1668 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1669 if (!sc->may_writepage)
61317289 1670 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1671
1da177e4 1672 spin_lock_irq(&zone->lru_lock);
925b7673 1673
5dc35979
KK
1674 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1675 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1676 if (global_reclaim(sc))
f626012d 1677 zone->pages_scanned += nr_scanned;
89b5fae5 1678
b7c46d15 1679 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1680
f626012d 1681 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1682 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1683 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1684 spin_unlock_irq(&zone->lru_lock);
1685
1da177e4
LT
1686 while (!list_empty(&l_hold)) {
1687 cond_resched();
1688 page = lru_to_page(&l_hold);
1689 list_del(&page->lru);
7e9cd484 1690
39b5f29a 1691 if (unlikely(!page_evictable(page))) {
894bc310
LS
1692 putback_lru_page(page);
1693 continue;
1694 }
1695
cc715d99
MG
1696 if (unlikely(buffer_heads_over_limit)) {
1697 if (page_has_private(page) && trylock_page(page)) {
1698 if (page_has_private(page))
1699 try_to_release_page(page, 0);
1700 unlock_page(page);
1701 }
1702 }
1703
c3ac9a8a
JW
1704 if (page_referenced(page, 0, sc->target_mem_cgroup,
1705 &vm_flags)) {
9992af10 1706 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1707 /*
1708 * Identify referenced, file-backed active pages and
1709 * give them one more trip around the active list. So
1710 * that executable code get better chances to stay in
1711 * memory under moderate memory pressure. Anon pages
1712 * are not likely to be evicted by use-once streaming
1713 * IO, plus JVM can create lots of anon VM_EXEC pages,
1714 * so we ignore them here.
1715 */
41e20983 1716 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1717 list_add(&page->lru, &l_active);
1718 continue;
1719 }
1720 }
7e9cd484 1721
5205e56e 1722 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1723 list_add(&page->lru, &l_inactive);
1724 }
1725
b555749a 1726 /*
8cab4754 1727 * Move pages back to the lru list.
b555749a 1728 */
2a1dc509 1729 spin_lock_irq(&zone->lru_lock);
556adecb 1730 /*
8cab4754
WF
1731 * Count referenced pages from currently used mappings as rotated,
1732 * even though only some of them are actually re-activated. This
1733 * helps balance scan pressure between file and anonymous pages in
1734 * get_scan_ratio.
7e9cd484 1735 */
b7c46d15 1736 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1737
fa9add64
HD
1738 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1739 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1740 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1741 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1742
1743 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1744}
1745
74e3f3c3 1746#ifdef CONFIG_SWAP
14797e23 1747static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1748{
1749 unsigned long active, inactive;
1750
1751 active = zone_page_state(zone, NR_ACTIVE_ANON);
1752 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753
1754 if (inactive * zone->inactive_ratio < active)
1755 return 1;
1756
1757 return 0;
1758}
1759
14797e23
KM
1760/**
1761 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1762 * @lruvec: LRU vector to check
14797e23
KM
1763 *
1764 * Returns true if the zone does not have enough inactive anon pages,
1765 * meaning some active anon pages need to be deactivated.
1766 */
c56d5c7d 1767static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1768{
74e3f3c3
MK
1769 /*
1770 * If we don't have swap space, anonymous page deactivation
1771 * is pointless.
1772 */
1773 if (!total_swap_pages)
1774 return 0;
1775
c3c787e8 1776 if (!mem_cgroup_disabled())
c56d5c7d 1777 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1778
c56d5c7d 1779 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1780}
74e3f3c3 1781#else
c56d5c7d 1782static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1783{
1784 return 0;
1785}
1786#endif
14797e23 1787
56e49d21
RR
1788/**
1789 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1790 * @lruvec: LRU vector to check
56e49d21
RR
1791 *
1792 * When the system is doing streaming IO, memory pressure here
1793 * ensures that active file pages get deactivated, until more
1794 * than half of the file pages are on the inactive list.
1795 *
1796 * Once we get to that situation, protect the system's working
1797 * set from being evicted by disabling active file page aging.
1798 *
1799 * This uses a different ratio than the anonymous pages, because
1800 * the page cache uses a use-once replacement algorithm.
1801 */
c56d5c7d 1802static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1803{
e3790144
JW
1804 unsigned long inactive;
1805 unsigned long active;
1806
1807 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1808 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1809
e3790144 1810 return active > inactive;
56e49d21
RR
1811}
1812
75b00af7 1813static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1814{
75b00af7 1815 if (is_file_lru(lru))
c56d5c7d 1816 return inactive_file_is_low(lruvec);
b39415b2 1817 else
c56d5c7d 1818 return inactive_anon_is_low(lruvec);
b39415b2
RR
1819}
1820
4f98a2fe 1821static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1822 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1823{
b39415b2 1824 if (is_active_lru(lru)) {
75b00af7 1825 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1826 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1827 return 0;
1828 }
1829
1a93be0e 1830 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1831}
1832
3d58ab5c 1833static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1834{
89b5fae5 1835 if (global_reclaim(sc))
1f4c025b 1836 return vm_swappiness;
3d58ab5c 1837 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1838}
1839
9a265114
JW
1840enum scan_balance {
1841 SCAN_EQUAL,
1842 SCAN_FRACT,
1843 SCAN_ANON,
1844 SCAN_FILE,
1845};
1846
4f98a2fe
RR
1847/*
1848 * Determine how aggressively the anon and file LRU lists should be
1849 * scanned. The relative value of each set of LRU lists is determined
1850 * by looking at the fraction of the pages scanned we did rotate back
1851 * onto the active list instead of evict.
1852 *
be7bd59d
WL
1853 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1854 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1855 */
90126375 1856static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1857 unsigned long *nr)
4f98a2fe 1858{
9a265114
JW
1859 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1860 u64 fraction[2];
1861 u64 denominator = 0; /* gcc */
1862 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1863 unsigned long anon_prio, file_prio;
9a265114 1864 enum scan_balance scan_balance;
0bf1457f 1865 unsigned long anon, file;
9a265114 1866 bool force_scan = false;
4f98a2fe 1867 unsigned long ap, fp;
4111304d 1868 enum lru_list lru;
6f04f48d
SS
1869 bool some_scanned;
1870 int pass;
246e87a9 1871
f11c0ca5
JW
1872 /*
1873 * If the zone or memcg is small, nr[l] can be 0. This
1874 * results in no scanning on this priority and a potential
1875 * priority drop. Global direct reclaim can go to the next
1876 * zone and tends to have no problems. Global kswapd is for
1877 * zone balancing and it needs to scan a minimum amount. When
1878 * reclaiming for a memcg, a priority drop can cause high
1879 * latencies, so it's better to scan a minimum amount there as
1880 * well.
1881 */
6e543d57 1882 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1883 force_scan = true;
89b5fae5 1884 if (!global_reclaim(sc))
a4d3e9e7 1885 force_scan = true;
76a33fc3
SL
1886
1887 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1888 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1889 scan_balance = SCAN_FILE;
76a33fc3
SL
1890 goto out;
1891 }
4f98a2fe 1892
10316b31
JW
1893 /*
1894 * Global reclaim will swap to prevent OOM even with no
1895 * swappiness, but memcg users want to use this knob to
1896 * disable swapping for individual groups completely when
1897 * using the memory controller's swap limit feature would be
1898 * too expensive.
1899 */
1900 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1901 scan_balance = SCAN_FILE;
10316b31
JW
1902 goto out;
1903 }
1904
1905 /*
1906 * Do not apply any pressure balancing cleverness when the
1907 * system is close to OOM, scan both anon and file equally
1908 * (unless the swappiness setting disagrees with swapping).
1909 */
1910 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1911 scan_balance = SCAN_EQUAL;
10316b31
JW
1912 goto out;
1913 }
1914
4d7dcca2
HD
1915 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1916 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1917 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1918 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1919
62376251
JW
1920 /*
1921 * Prevent the reclaimer from falling into the cache trap: as
1922 * cache pages start out inactive, every cache fault will tip
1923 * the scan balance towards the file LRU. And as the file LRU
1924 * shrinks, so does the window for rotation from references.
1925 * This means we have a runaway feedback loop where a tiny
1926 * thrashing file LRU becomes infinitely more attractive than
1927 * anon pages. Try to detect this based on file LRU size.
1928 */
1929 if (global_reclaim(sc)) {
1930 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1931
1932 if (unlikely(file + free <= high_wmark_pages(zone))) {
1933 scan_balance = SCAN_ANON;
1934 goto out;
1935 }
1936 }
1937
7c5bd705
JW
1938 /*
1939 * There is enough inactive page cache, do not reclaim
1940 * anything from the anonymous working set right now.
1941 */
1942 if (!inactive_file_is_low(lruvec)) {
9a265114 1943 scan_balance = SCAN_FILE;
7c5bd705
JW
1944 goto out;
1945 }
1946
9a265114
JW
1947 scan_balance = SCAN_FRACT;
1948
58c37f6e
KM
1949 /*
1950 * With swappiness at 100, anonymous and file have the same priority.
1951 * This scanning priority is essentially the inverse of IO cost.
1952 */
3d58ab5c 1953 anon_prio = vmscan_swappiness(sc);
75b00af7 1954 file_prio = 200 - anon_prio;
58c37f6e 1955
4f98a2fe
RR
1956 /*
1957 * OK, so we have swap space and a fair amount of page cache
1958 * pages. We use the recently rotated / recently scanned
1959 * ratios to determine how valuable each cache is.
1960 *
1961 * Because workloads change over time (and to avoid overflow)
1962 * we keep these statistics as a floating average, which ends
1963 * up weighing recent references more than old ones.
1964 *
1965 * anon in [0], file in [1]
1966 */
90126375 1967 spin_lock_irq(&zone->lru_lock);
6e901571 1968 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1969 reclaim_stat->recent_scanned[0] /= 2;
1970 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1971 }
1972
6e901571 1973 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1974 reclaim_stat->recent_scanned[1] /= 2;
1975 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1976 }
1977
4f98a2fe 1978 /*
00d8089c
RR
1979 * The amount of pressure on anon vs file pages is inversely
1980 * proportional to the fraction of recently scanned pages on
1981 * each list that were recently referenced and in active use.
4f98a2fe 1982 */
fe35004f 1983 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1984 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1985
fe35004f 1986 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1987 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1988 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1989
76a33fc3
SL
1990 fraction[0] = ap;
1991 fraction[1] = fp;
1992 denominator = ap + fp + 1;
1993out:
6f04f48d
SS
1994 some_scanned = false;
1995 /* Only use force_scan on second pass. */
1996 for (pass = 0; !some_scanned && pass < 2; pass++) {
1997 for_each_evictable_lru(lru) {
1998 int file = is_file_lru(lru);
1999 unsigned long size;
2000 unsigned long scan;
6e08a369 2001
6f04f48d
SS
2002 size = get_lru_size(lruvec, lru);
2003 scan = size >> sc->priority;
9a265114 2004
6f04f48d
SS
2005 if (!scan && pass && force_scan)
2006 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2007
6f04f48d
SS
2008 switch (scan_balance) {
2009 case SCAN_EQUAL:
2010 /* Scan lists relative to size */
2011 break;
2012 case SCAN_FRACT:
2013 /*
2014 * Scan types proportional to swappiness and
2015 * their relative recent reclaim efficiency.
2016 */
2017 scan = div64_u64(scan * fraction[file],
2018 denominator);
2019 break;
2020 case SCAN_FILE:
2021 case SCAN_ANON:
2022 /* Scan one type exclusively */
2023 if ((scan_balance == SCAN_FILE) != file)
2024 scan = 0;
2025 break;
2026 default:
2027 /* Look ma, no brain */
2028 BUG();
2029 }
2030 nr[lru] = scan;
9a265114 2031 /*
6f04f48d
SS
2032 * Skip the second pass and don't force_scan,
2033 * if we found something to scan.
9a265114 2034 */
6f04f48d 2035 some_scanned |= !!scan;
9a265114 2036 }
76a33fc3 2037 }
6e08a369 2038}
4f98a2fe 2039
9b4f98cd
JW
2040/*
2041 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2042 */
2043static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2044{
2045 unsigned long nr[NR_LRU_LISTS];
e82e0561 2046 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2047 unsigned long nr_to_scan;
2048 enum lru_list lru;
2049 unsigned long nr_reclaimed = 0;
2050 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2051 struct blk_plug plug;
e82e0561 2052 bool scan_adjusted = false;
9b4f98cd
JW
2053
2054 get_scan_count(lruvec, sc, nr);
2055
e82e0561
MG
2056 /* Record the original scan target for proportional adjustments later */
2057 memcpy(targets, nr, sizeof(nr));
2058
9b4f98cd
JW
2059 blk_start_plug(&plug);
2060 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2061 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2062 unsigned long nr_anon, nr_file, percentage;
2063 unsigned long nr_scanned;
2064
9b4f98cd
JW
2065 for_each_evictable_lru(lru) {
2066 if (nr[lru]) {
2067 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2068 nr[lru] -= nr_to_scan;
2069
2070 nr_reclaimed += shrink_list(lru, nr_to_scan,
2071 lruvec, sc);
2072 }
2073 }
e82e0561
MG
2074
2075 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2076 continue;
2077
9b4f98cd 2078 /*
e82e0561
MG
2079 * For global direct reclaim, reclaim only the number of pages
2080 * requested. Less care is taken to scan proportionally as it
2081 * is more important to minimise direct reclaim stall latency
2082 * than it is to properly age the LRU lists.
9b4f98cd 2083 */
e82e0561 2084 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2085 break;
e82e0561
MG
2086
2087 /*
2088 * For kswapd and memcg, reclaim at least the number of pages
2089 * requested. Ensure that the anon and file LRUs shrink
2090 * proportionally what was requested by get_scan_count(). We
2091 * stop reclaiming one LRU and reduce the amount scanning
2092 * proportional to the original scan target.
2093 */
2094 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2095 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2096
2097 if (nr_file > nr_anon) {
2098 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2099 targets[LRU_ACTIVE_ANON] + 1;
2100 lru = LRU_BASE;
2101 percentage = nr_anon * 100 / scan_target;
2102 } else {
2103 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2104 targets[LRU_ACTIVE_FILE] + 1;
2105 lru = LRU_FILE;
2106 percentage = nr_file * 100 / scan_target;
2107 }
2108
2109 /* Stop scanning the smaller of the LRU */
2110 nr[lru] = 0;
2111 nr[lru + LRU_ACTIVE] = 0;
2112
2113 /*
2114 * Recalculate the other LRU scan count based on its original
2115 * scan target and the percentage scanning already complete
2116 */
2117 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2118 nr_scanned = targets[lru] - nr[lru];
2119 nr[lru] = targets[lru] * (100 - percentage) / 100;
2120 nr[lru] -= min(nr[lru], nr_scanned);
2121
2122 lru += LRU_ACTIVE;
2123 nr_scanned = targets[lru] - nr[lru];
2124 nr[lru] = targets[lru] * (100 - percentage) / 100;
2125 nr[lru] -= min(nr[lru], nr_scanned);
2126
2127 scan_adjusted = true;
9b4f98cd
JW
2128 }
2129 blk_finish_plug(&plug);
2130 sc->nr_reclaimed += nr_reclaimed;
2131
2132 /*
2133 * Even if we did not try to evict anon pages at all, we want to
2134 * rebalance the anon lru active/inactive ratio.
2135 */
2136 if (inactive_anon_is_low(lruvec))
2137 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2138 sc, LRU_ACTIVE_ANON);
2139
2140 throttle_vm_writeout(sc->gfp_mask);
2141}
2142
23b9da55 2143/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2144static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2145{
d84da3f9 2146 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2147 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2148 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2149 return true;
2150
2151 return false;
2152}
2153
3e7d3449 2154/*
23b9da55
MG
2155 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2156 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2157 * true if more pages should be reclaimed such that when the page allocator
2158 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2159 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2160 */
9b4f98cd 2161static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2162 unsigned long nr_reclaimed,
2163 unsigned long nr_scanned,
2164 struct scan_control *sc)
2165{
2166 unsigned long pages_for_compaction;
2167 unsigned long inactive_lru_pages;
2168
2169 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2170 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2171 return false;
2172
2876592f
MG
2173 /* Consider stopping depending on scan and reclaim activity */
2174 if (sc->gfp_mask & __GFP_REPEAT) {
2175 /*
2176 * For __GFP_REPEAT allocations, stop reclaiming if the
2177 * full LRU list has been scanned and we are still failing
2178 * to reclaim pages. This full LRU scan is potentially
2179 * expensive but a __GFP_REPEAT caller really wants to succeed
2180 */
2181 if (!nr_reclaimed && !nr_scanned)
2182 return false;
2183 } else {
2184 /*
2185 * For non-__GFP_REPEAT allocations which can presumably
2186 * fail without consequence, stop if we failed to reclaim
2187 * any pages from the last SWAP_CLUSTER_MAX number of
2188 * pages that were scanned. This will return to the
2189 * caller faster at the risk reclaim/compaction and
2190 * the resulting allocation attempt fails
2191 */
2192 if (!nr_reclaimed)
2193 return false;
2194 }
3e7d3449
MG
2195
2196 /*
2197 * If we have not reclaimed enough pages for compaction and the
2198 * inactive lists are large enough, continue reclaiming
2199 */
2200 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2201 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2202 if (get_nr_swap_pages() > 0)
9b4f98cd 2203 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2204 if (sc->nr_reclaimed < pages_for_compaction &&
2205 inactive_lru_pages > pages_for_compaction)
2206 return true;
2207
2208 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2209 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2210 case COMPACT_PARTIAL:
2211 case COMPACT_CONTINUE:
2212 return false;
2213 default:
2214 return true;
2215 }
2216}
2217
0608f43d 2218static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2219{
f0fdc5e8 2220 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2221
9b4f98cd
JW
2222 do {
2223 struct mem_cgroup *root = sc->target_mem_cgroup;
2224 struct mem_cgroup_reclaim_cookie reclaim = {
2225 .zone = zone,
2226 .priority = sc->priority,
2227 };
694fbc0f 2228 struct mem_cgroup *memcg;
3e7d3449 2229
9b4f98cd
JW
2230 nr_reclaimed = sc->nr_reclaimed;
2231 nr_scanned = sc->nr_scanned;
1da177e4 2232
694fbc0f
AM
2233 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2234 do {
9b4f98cd 2235 struct lruvec *lruvec;
5660048c 2236
9b4f98cd 2237 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2238
9b4f98cd 2239 shrink_lruvec(lruvec, sc);
f16015fb 2240
9b4f98cd 2241 /*
a394cb8e
MH
2242 * Direct reclaim and kswapd have to scan all memory
2243 * cgroups to fulfill the overall scan target for the
9b4f98cd 2244 * zone.
a394cb8e
MH
2245 *
2246 * Limit reclaim, on the other hand, only cares about
2247 * nr_to_reclaim pages to be reclaimed and it will
2248 * retry with decreasing priority if one round over the
2249 * whole hierarchy is not sufficient.
9b4f98cd 2250 */
a394cb8e
MH
2251 if (!global_reclaim(sc) &&
2252 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2253 mem_cgroup_iter_break(root, memcg);
2254 break;
2255 }
694fbc0f
AM
2256 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2257 } while (memcg);
70ddf637
AV
2258
2259 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2260 sc->nr_scanned - nr_scanned,
2261 sc->nr_reclaimed - nr_reclaimed);
2262
9b4f98cd
JW
2263 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2264 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2265}
2266
fe4b1b24
MG
2267/* Returns true if compaction should go ahead for a high-order request */
2268static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2269{
2270 unsigned long balance_gap, watermark;
2271 bool watermark_ok;
2272
2273 /* Do not consider compaction for orders reclaim is meant to satisfy */
2274 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2275 return false;
2276
2277 /*
2278 * Compaction takes time to run and there are potentially other
2279 * callers using the pages just freed. Continue reclaiming until
2280 * there is a buffer of free pages available to give compaction
2281 * a reasonable chance of completing and allocating the page
2282 */
2283 balance_gap = min(low_wmark_pages(zone),
b40da049 2284 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2285 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2286 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2287 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2288
2289 /*
2290 * If compaction is deferred, reclaim up to a point where
2291 * compaction will have a chance of success when re-enabled
2292 */
aff62249 2293 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2294 return watermark_ok;
2295
2296 /* If compaction is not ready to start, keep reclaiming */
2297 if (!compaction_suitable(zone, sc->order))
2298 return false;
2299
2300 return watermark_ok;
2301}
2302
1da177e4
LT
2303/*
2304 * This is the direct reclaim path, for page-allocating processes. We only
2305 * try to reclaim pages from zones which will satisfy the caller's allocation
2306 * request.
2307 *
41858966
MG
2308 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2309 * Because:
1da177e4
LT
2310 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2311 * allocation or
41858966
MG
2312 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2313 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2314 * zone defense algorithm.
1da177e4 2315 *
1da177e4
LT
2316 * If a zone is deemed to be full of pinned pages then just give it a light
2317 * scan then give up on it.
e0c23279
MG
2318 *
2319 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2320 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2321 * the caller that it should consider retrying the allocation instead of
2322 * further reclaim.
1da177e4 2323 */
3115cd91 2324static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2325{
dd1a239f 2326 struct zoneref *z;
54a6eb5c 2327 struct zone *zone;
0608f43d
AM
2328 unsigned long nr_soft_reclaimed;
2329 unsigned long nr_soft_scanned;
65ec02cb 2330 unsigned long lru_pages = 0;
0cee34fd 2331 bool aborted_reclaim = false;
65ec02cb 2332 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2333 gfp_t orig_mask;
3115cd91
VD
2334 struct shrink_control shrink = {
2335 .gfp_mask = sc->gfp_mask,
2336 };
9bbc04ee 2337 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
1cfb419b 2338
cc715d99
MG
2339 /*
2340 * If the number of buffer_heads in the machine exceeds the maximum
2341 * allowed level, force direct reclaim to scan the highmem zone as
2342 * highmem pages could be pinning lowmem pages storing buffer_heads
2343 */
619d0d76 2344 orig_mask = sc->gfp_mask;
cc715d99
MG
2345 if (buffer_heads_over_limit)
2346 sc->gfp_mask |= __GFP_HIGHMEM;
2347
3115cd91 2348 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2349
d4debc66
MG
2350 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2351 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2352 if (!populated_zone(zone))
1da177e4 2353 continue;
1cfb419b
KH
2354 /*
2355 * Take care memory controller reclaiming has small influence
2356 * to global LRU.
2357 */
89b5fae5 2358 if (global_reclaim(sc)) {
1cfb419b
KH
2359 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2360 continue;
65ec02cb
VD
2361
2362 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2363 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2364
6e543d57
LD
2365 if (sc->priority != DEF_PRIORITY &&
2366 !zone_reclaimable(zone))
1cfb419b 2367 continue; /* Let kswapd poll it */
d84da3f9 2368 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2369 /*
e0c23279
MG
2370 * If we already have plenty of memory free for
2371 * compaction in this zone, don't free any more.
2372 * Even though compaction is invoked for any
2373 * non-zero order, only frequent costly order
2374 * reclamation is disruptive enough to become a
c7cfa37b
CA
2375 * noticeable problem, like transparent huge
2376 * page allocations.
e0887c19 2377 */
9bbc04ee
WY
2378 if ((zonelist_zone_idx(z) <= requested_highidx)
2379 && compaction_ready(zone, sc)) {
0cee34fd 2380 aborted_reclaim = true;
e0887c19 2381 continue;
e0c23279 2382 }
e0887c19 2383 }
0608f43d
AM
2384 /*
2385 * This steals pages from memory cgroups over softlimit
2386 * and returns the number of reclaimed pages and
2387 * scanned pages. This works for global memory pressure
2388 * and balancing, not for a memcg's limit.
2389 */
2390 nr_soft_scanned = 0;
2391 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2392 sc->order, sc->gfp_mask,
2393 &nr_soft_scanned);
2394 sc->nr_reclaimed += nr_soft_reclaimed;
2395 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2396 /* need some check for avoid more shrink_zone() */
1cfb419b 2397 }
408d8544 2398
9e3b2f8c 2399 shrink_zone(zone, sc);
1da177e4 2400 }
e0c23279 2401
65ec02cb
VD
2402 /*
2403 * Don't shrink slabs when reclaiming memory from over limit cgroups
2404 * but do shrink slab at least once when aborting reclaim for
2405 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2406 * pages.
2407 */
2408 if (global_reclaim(sc)) {
3115cd91 2409 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2410 if (reclaim_state) {
2411 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2412 reclaim_state->reclaimed_slab = 0;
2413 }
2414 }
2415
619d0d76
WY
2416 /*
2417 * Restore to original mask to avoid the impact on the caller if we
2418 * promoted it to __GFP_HIGHMEM.
2419 */
2420 sc->gfp_mask = orig_mask;
2421
0cee34fd 2422 return aborted_reclaim;
d1908362
MK
2423}
2424
929bea7c 2425/* All zones in zonelist are unreclaimable? */
d1908362
MK
2426static bool all_unreclaimable(struct zonelist *zonelist,
2427 struct scan_control *sc)
2428{
2429 struct zoneref *z;
2430 struct zone *zone;
d1908362
MK
2431
2432 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2433 gfp_zone(sc->gfp_mask), sc->nodemask) {
2434 if (!populated_zone(zone))
2435 continue;
2436 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2437 continue;
6e543d57 2438 if (zone_reclaimable(zone))
929bea7c 2439 return false;
d1908362
MK
2440 }
2441
929bea7c 2442 return true;
1da177e4 2443}
4f98a2fe 2444
1da177e4
LT
2445/*
2446 * This is the main entry point to direct page reclaim.
2447 *
2448 * If a full scan of the inactive list fails to free enough memory then we
2449 * are "out of memory" and something needs to be killed.
2450 *
2451 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2452 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2453 * caller can't do much about. We kick the writeback threads and take explicit
2454 * naps in the hope that some of these pages can be written. But if the
2455 * allocating task holds filesystem locks which prevent writeout this might not
2456 * work, and the allocation attempt will fail.
a41f24ea
NA
2457 *
2458 * returns: 0, if no pages reclaimed
2459 * else, the number of pages reclaimed
1da177e4 2460 */
dac1d27b 2461static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2462 struct scan_control *sc)
1da177e4 2463{
69e05944 2464 unsigned long total_scanned = 0;
22fba335 2465 unsigned long writeback_threshold;
0cee34fd 2466 bool aborted_reclaim;
1da177e4 2467
873b4771
KK
2468 delayacct_freepages_start();
2469
89b5fae5 2470 if (global_reclaim(sc))
1cfb419b 2471 count_vm_event(ALLOCSTALL);
1da177e4 2472
9e3b2f8c 2473 do {
70ddf637
AV
2474 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2475 sc->priority);
66e1707b 2476 sc->nr_scanned = 0;
3115cd91 2477 aborted_reclaim = shrink_zones(zonelist, sc);
c6a8a8c5 2478
66e1707b 2479 total_scanned += sc->nr_scanned;
bb21c7ce 2480 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2481 goto out;
1da177e4 2482
0e50ce3b
MK
2483 /*
2484 * If we're getting trouble reclaiming, start doing
2485 * writepage even in laptop mode.
2486 */
2487 if (sc->priority < DEF_PRIORITY - 2)
2488 sc->may_writepage = 1;
2489
1da177e4
LT
2490 /*
2491 * Try to write back as many pages as we just scanned. This
2492 * tends to cause slow streaming writers to write data to the
2493 * disk smoothly, at the dirtying rate, which is nice. But
2494 * that's undesirable in laptop mode, where we *want* lumpy
2495 * writeout. So in laptop mode, write out the whole world.
2496 */
22fba335
KM
2497 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2498 if (total_scanned > writeback_threshold) {
0e175a18
CW
2499 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2500 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2501 sc->may_writepage = 1;
1da177e4 2502 }
5a1c9cbc 2503 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2504
1da177e4 2505out:
873b4771
KK
2506 delayacct_freepages_end();
2507
bb21c7ce
KM
2508 if (sc->nr_reclaimed)
2509 return sc->nr_reclaimed;
2510
929bea7c
KM
2511 /*
2512 * As hibernation is going on, kswapd is freezed so that it can't mark
2513 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2514 * check.
2515 */
2516 if (oom_killer_disabled)
2517 return 0;
2518
0cee34fd
MG
2519 /* Aborted reclaim to try compaction? don't OOM, then */
2520 if (aborted_reclaim)
7335084d
MG
2521 return 1;
2522
bb21c7ce 2523 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2524 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2525 return 1;
2526
2527 return 0;
1da177e4
LT
2528}
2529
5515061d
MG
2530static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2531{
2532 struct zone *zone;
2533 unsigned long pfmemalloc_reserve = 0;
2534 unsigned long free_pages = 0;
2535 int i;
2536 bool wmark_ok;
2537
2538 for (i = 0; i <= ZONE_NORMAL; i++) {
2539 zone = &pgdat->node_zones[i];
2540 pfmemalloc_reserve += min_wmark_pages(zone);
2541 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2542 }
2543
2544 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2545
2546 /* kswapd must be awake if processes are being throttled */
2547 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2548 pgdat->classzone_idx = min(pgdat->classzone_idx,
2549 (enum zone_type)ZONE_NORMAL);
2550 wake_up_interruptible(&pgdat->kswapd_wait);
2551 }
2552
2553 return wmark_ok;
2554}
2555
2556/*
2557 * Throttle direct reclaimers if backing storage is backed by the network
2558 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2559 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2560 * when the low watermark is reached.
2561 *
2562 * Returns true if a fatal signal was delivered during throttling. If this
2563 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2564 */
50694c28 2565static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2566 nodemask_t *nodemask)
2567{
2568 struct zone *zone;
2569 int high_zoneidx = gfp_zone(gfp_mask);
2570 pg_data_t *pgdat;
2571
2572 /*
2573 * Kernel threads should not be throttled as they may be indirectly
2574 * responsible for cleaning pages necessary for reclaim to make forward
2575 * progress. kjournald for example may enter direct reclaim while
2576 * committing a transaction where throttling it could forcing other
2577 * processes to block on log_wait_commit().
2578 */
2579 if (current->flags & PF_KTHREAD)
50694c28
MG
2580 goto out;
2581
2582 /*
2583 * If a fatal signal is pending, this process should not throttle.
2584 * It should return quickly so it can exit and free its memory
2585 */
2586 if (fatal_signal_pending(current))
2587 goto out;
5515061d
MG
2588
2589 /* Check if the pfmemalloc reserves are ok */
2590 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2591 pgdat = zone->zone_pgdat;
2592 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2593 goto out;
5515061d 2594
68243e76
MG
2595 /* Account for the throttling */
2596 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2597
5515061d
MG
2598 /*
2599 * If the caller cannot enter the filesystem, it's possible that it
2600 * is due to the caller holding an FS lock or performing a journal
2601 * transaction in the case of a filesystem like ext[3|4]. In this case,
2602 * it is not safe to block on pfmemalloc_wait as kswapd could be
2603 * blocked waiting on the same lock. Instead, throttle for up to a
2604 * second before continuing.
2605 */
2606 if (!(gfp_mask & __GFP_FS)) {
2607 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2608 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2609
2610 goto check_pending;
5515061d
MG
2611 }
2612
2613 /* Throttle until kswapd wakes the process */
2614 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2615 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2616
2617check_pending:
2618 if (fatal_signal_pending(current))
2619 return true;
2620
2621out:
2622 return false;
5515061d
MG
2623}
2624
dac1d27b 2625unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2626 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2627{
33906bc5 2628 unsigned long nr_reclaimed;
66e1707b 2629 struct scan_control sc = {
21caf2fc 2630 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2631 .may_writepage = !laptop_mode,
22fba335 2632 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2633 .may_unmap = 1,
2e2e4259 2634 .may_swap = 1,
66e1707b 2635 .order = order,
9e3b2f8c 2636 .priority = DEF_PRIORITY,
f16015fb 2637 .target_mem_cgroup = NULL,
327c0e96 2638 .nodemask = nodemask,
66e1707b
BS
2639 };
2640
5515061d 2641 /*
50694c28
MG
2642 * Do not enter reclaim if fatal signal was delivered while throttled.
2643 * 1 is returned so that the page allocator does not OOM kill at this
2644 * point.
5515061d 2645 */
50694c28 2646 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2647 return 1;
2648
33906bc5
MG
2649 trace_mm_vmscan_direct_reclaim_begin(order,
2650 sc.may_writepage,
2651 gfp_mask);
2652
3115cd91 2653 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2654
2655 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2656
2657 return nr_reclaimed;
66e1707b
BS
2658}
2659
c255a458 2660#ifdef CONFIG_MEMCG
66e1707b 2661
72835c86 2662unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2663 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2664 struct zone *zone,
2665 unsigned long *nr_scanned)
4e416953
BS
2666{
2667 struct scan_control sc = {
0ae5e89c 2668 .nr_scanned = 0,
b8f5c566 2669 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2670 .may_writepage = !laptop_mode,
2671 .may_unmap = 1,
2672 .may_swap = !noswap,
4e416953 2673 .order = 0,
9e3b2f8c 2674 .priority = 0,
72835c86 2675 .target_mem_cgroup = memcg,
4e416953 2676 };
f9be23d6 2677 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2678
4e416953
BS
2679 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2680 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2681
9e3b2f8c 2682 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2683 sc.may_writepage,
2684 sc.gfp_mask);
2685
4e416953
BS
2686 /*
2687 * NOTE: Although we can get the priority field, using it
2688 * here is not a good idea, since it limits the pages we can scan.
2689 * if we don't reclaim here, the shrink_zone from balance_pgdat
2690 * will pick up pages from other mem cgroup's as well. We hack
2691 * the priority and make it zero.
2692 */
f9be23d6 2693 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2694
2695 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2696
0ae5e89c 2697 *nr_scanned = sc.nr_scanned;
4e416953
BS
2698 return sc.nr_reclaimed;
2699}
2700
72835c86 2701unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2702 gfp_t gfp_mask,
185efc0f 2703 bool noswap)
66e1707b 2704{
4e416953 2705 struct zonelist *zonelist;
bdce6d9e 2706 unsigned long nr_reclaimed;
889976db 2707 int nid;
66e1707b 2708 struct scan_control sc = {
66e1707b 2709 .may_writepage = !laptop_mode,
a6dc60f8 2710 .may_unmap = 1,
2e2e4259 2711 .may_swap = !noswap,
22fba335 2712 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2713 .order = 0,
9e3b2f8c 2714 .priority = DEF_PRIORITY,
72835c86 2715 .target_mem_cgroup = memcg,
327c0e96 2716 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2717 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2718 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2719 };
66e1707b 2720
889976db
YH
2721 /*
2722 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2723 * take care of from where we get pages. So the node where we start the
2724 * scan does not need to be the current node.
2725 */
72835c86 2726 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2727
2728 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2729
2730 trace_mm_vmscan_memcg_reclaim_begin(0,
2731 sc.may_writepage,
2732 sc.gfp_mask);
2733
3115cd91 2734 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2735
2736 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2737
2738 return nr_reclaimed;
66e1707b
BS
2739}
2740#endif
2741
9e3b2f8c 2742static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2743{
b95a2f2d 2744 struct mem_cgroup *memcg;
f16015fb 2745
b95a2f2d
JW
2746 if (!total_swap_pages)
2747 return;
2748
2749 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2750 do {
c56d5c7d 2751 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2752
c56d5c7d 2753 if (inactive_anon_is_low(lruvec))
1a93be0e 2754 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2755 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2756
2757 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2758 } while (memcg);
f16015fb
JW
2759}
2760
60cefed4
JW
2761static bool zone_balanced(struct zone *zone, int order,
2762 unsigned long balance_gap, int classzone_idx)
2763{
2764 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2765 balance_gap, classzone_idx, 0))
2766 return false;
2767
d84da3f9
KS
2768 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2769 !compaction_suitable(zone, order))
60cefed4
JW
2770 return false;
2771
2772 return true;
2773}
2774
1741c877 2775/*
4ae0a48b
ZC
2776 * pgdat_balanced() is used when checking if a node is balanced.
2777 *
2778 * For order-0, all zones must be balanced!
2779 *
2780 * For high-order allocations only zones that meet watermarks and are in a
2781 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2782 * total of balanced pages must be at least 25% of the zones allowed by
2783 * classzone_idx for the node to be considered balanced. Forcing all zones to
2784 * be balanced for high orders can cause excessive reclaim when there are
2785 * imbalanced zones.
1741c877
MG
2786 * The choice of 25% is due to
2787 * o a 16M DMA zone that is balanced will not balance a zone on any
2788 * reasonable sized machine
2789 * o On all other machines, the top zone must be at least a reasonable
25985edc 2790 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2791 * would need to be at least 256M for it to be balance a whole node.
2792 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2793 * to balance a node on its own. These seemed like reasonable ratios.
2794 */
4ae0a48b 2795static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2796{
b40da049 2797 unsigned long managed_pages = 0;
4ae0a48b 2798 unsigned long balanced_pages = 0;
1741c877
MG
2799 int i;
2800
4ae0a48b
ZC
2801 /* Check the watermark levels */
2802 for (i = 0; i <= classzone_idx; i++) {
2803 struct zone *zone = pgdat->node_zones + i;
1741c877 2804
4ae0a48b
ZC
2805 if (!populated_zone(zone))
2806 continue;
2807
b40da049 2808 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2809
2810 /*
2811 * A special case here:
2812 *
2813 * balance_pgdat() skips over all_unreclaimable after
2814 * DEF_PRIORITY. Effectively, it considers them balanced so
2815 * they must be considered balanced here as well!
2816 */
6e543d57 2817 if (!zone_reclaimable(zone)) {
b40da049 2818 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2819 continue;
2820 }
2821
2822 if (zone_balanced(zone, order, 0, i))
b40da049 2823 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2824 else if (!order)
2825 return false;
2826 }
2827
2828 if (order)
b40da049 2829 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2830 else
2831 return true;
1741c877
MG
2832}
2833
5515061d
MG
2834/*
2835 * Prepare kswapd for sleeping. This verifies that there are no processes
2836 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2837 *
2838 * Returns true if kswapd is ready to sleep
2839 */
2840static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2841 int classzone_idx)
f50de2d3 2842{
f50de2d3
MG
2843 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2844 if (remaining)
5515061d
MG
2845 return false;
2846
2847 /*
2848 * There is a potential race between when kswapd checks its watermarks
2849 * and a process gets throttled. There is also a potential race if
2850 * processes get throttled, kswapd wakes, a large process exits therby
2851 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2852 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2853 * so wake them now if necessary. If necessary, processes will wake
2854 * kswapd and get throttled again
2855 */
2856 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2857 wake_up(&pgdat->pfmemalloc_wait);
2858 return false;
2859 }
f50de2d3 2860
4ae0a48b 2861 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2862}
2863
75485363
MG
2864/*
2865 * kswapd shrinks the zone by the number of pages required to reach
2866 * the high watermark.
b8e83b94
MG
2867 *
2868 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2869 * reclaim or if the lack of progress was due to pages under writeback.
2870 * This is used to determine if the scanning priority needs to be raised.
75485363 2871 */
b8e83b94 2872static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2873 int classzone_idx,
75485363 2874 struct scan_control *sc,
2ab44f43
MG
2875 unsigned long lru_pages,
2876 unsigned long *nr_attempted)
75485363 2877{
7c954f6d
MG
2878 int testorder = sc->order;
2879 unsigned long balance_gap;
75485363
MG
2880 struct reclaim_state *reclaim_state = current->reclaim_state;
2881 struct shrink_control shrink = {
2882 .gfp_mask = sc->gfp_mask,
2883 };
7c954f6d 2884 bool lowmem_pressure;
75485363
MG
2885
2886 /* Reclaim above the high watermark. */
2887 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2888
2889 /*
2890 * Kswapd reclaims only single pages with compaction enabled. Trying
2891 * too hard to reclaim until contiguous free pages have become
2892 * available can hurt performance by evicting too much useful data
2893 * from memory. Do not reclaim more than needed for compaction.
2894 */
2895 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2896 compaction_suitable(zone, sc->order) !=
2897 COMPACT_SKIPPED)
2898 testorder = 0;
2899
2900 /*
2901 * We put equal pressure on every zone, unless one zone has way too
2902 * many pages free already. The "too many pages" is defined as the
2903 * high wmark plus a "gap" where the gap is either the low
2904 * watermark or 1% of the zone, whichever is smaller.
2905 */
2906 balance_gap = min(low_wmark_pages(zone),
2907 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2908 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2909
2910 /*
2911 * If there is no low memory pressure or the zone is balanced then no
2912 * reclaim is necessary
2913 */
2914 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2915 if (!lowmem_pressure && zone_balanced(zone, testorder,
2916 balance_gap, classzone_idx))
2917 return true;
2918
75485363 2919 shrink_zone(zone, sc);
0ce3d744
DC
2920 nodes_clear(shrink.nodes_to_scan);
2921 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2922
2923 reclaim_state->reclaimed_slab = 0;
6e543d57 2924 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2925 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2926
2ab44f43
MG
2927 /* Account for the number of pages attempted to reclaim */
2928 *nr_attempted += sc->nr_to_reclaim;
2929
283aba9f
MG
2930 zone_clear_flag(zone, ZONE_WRITEBACK);
2931
7c954f6d
MG
2932 /*
2933 * If a zone reaches its high watermark, consider it to be no longer
2934 * congested. It's possible there are dirty pages backed by congested
2935 * BDIs but as pressure is relieved, speculatively avoid congestion
2936 * waits.
2937 */
6e543d57 2938 if (zone_reclaimable(zone) &&
7c954f6d
MG
2939 zone_balanced(zone, testorder, 0, classzone_idx)) {
2940 zone_clear_flag(zone, ZONE_CONGESTED);
2941 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2942 }
2943
b8e83b94 2944 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2945}
2946
1da177e4
LT
2947/*
2948 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2949 * they are all at high_wmark_pages(zone).
1da177e4 2950 *
0abdee2b 2951 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2952 *
2953 * There is special handling here for zones which are full of pinned pages.
2954 * This can happen if the pages are all mlocked, or if they are all used by
2955 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2956 * What we do is to detect the case where all pages in the zone have been
2957 * scanned twice and there has been zero successful reclaim. Mark the zone as
2958 * dead and from now on, only perform a short scan. Basically we're polling
2959 * the zone for when the problem goes away.
2960 *
2961 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2962 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2963 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2964 * lower zones regardless of the number of free pages in the lower zones. This
2965 * interoperates with the page allocator fallback scheme to ensure that aging
2966 * of pages is balanced across the zones.
1da177e4 2967 */
99504748 2968static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2969 int *classzone_idx)
1da177e4 2970{
1da177e4 2971 int i;
99504748 2972 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
2973 unsigned long nr_soft_reclaimed;
2974 unsigned long nr_soft_scanned;
179e9639
AM
2975 struct scan_control sc = {
2976 .gfp_mask = GFP_KERNEL,
b8e83b94 2977 .priority = DEF_PRIORITY,
a6dc60f8 2978 .may_unmap = 1,
2e2e4259 2979 .may_swap = 1,
b8e83b94 2980 .may_writepage = !laptop_mode,
5ad333eb 2981 .order = order,
f16015fb 2982 .target_mem_cgroup = NULL,
179e9639 2983 };
f8891e5e 2984 count_vm_event(PAGEOUTRUN);
1da177e4 2985
9e3b2f8c 2986 do {
1da177e4 2987 unsigned long lru_pages = 0;
2ab44f43 2988 unsigned long nr_attempted = 0;
b8e83b94 2989 bool raise_priority = true;
2ab44f43 2990 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2991
2992 sc.nr_reclaimed = 0;
1da177e4 2993
d6277db4
RW
2994 /*
2995 * Scan in the highmem->dma direction for the highest
2996 * zone which needs scanning
2997 */
2998 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2999 struct zone *zone = pgdat->node_zones + i;
1da177e4 3000
d6277db4
RW
3001 if (!populated_zone(zone))
3002 continue;
1da177e4 3003
6e543d57
LD
3004 if (sc.priority != DEF_PRIORITY &&
3005 !zone_reclaimable(zone))
d6277db4 3006 continue;
1da177e4 3007
556adecb
RR
3008 /*
3009 * Do some background aging of the anon list, to give
3010 * pages a chance to be referenced before reclaiming.
3011 */
9e3b2f8c 3012 age_active_anon(zone, &sc);
556adecb 3013
cc715d99
MG
3014 /*
3015 * If the number of buffer_heads in the machine
3016 * exceeds the maximum allowed level and this node
3017 * has a highmem zone, force kswapd to reclaim from
3018 * it to relieve lowmem pressure.
3019 */
3020 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3021 end_zone = i;
3022 break;
3023 }
3024
60cefed4 3025 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3026 end_zone = i;
e1dbeda6 3027 break;
439423f6 3028 } else {
d43006d5
MG
3029 /*
3030 * If balanced, clear the dirty and congested
3031 * flags
3032 */
439423f6 3033 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3034 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3035 }
1da177e4 3036 }
dafcb73e 3037
b8e83b94 3038 if (i < 0)
e1dbeda6
AM
3039 goto out;
3040
1da177e4
LT
3041 for (i = 0; i <= end_zone; i++) {
3042 struct zone *zone = pgdat->node_zones + i;
3043
2ab44f43
MG
3044 if (!populated_zone(zone))
3045 continue;
3046
adea02a1 3047 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3048
3049 /*
3050 * If any zone is currently balanced then kswapd will
3051 * not call compaction as it is expected that the
3052 * necessary pages are already available.
3053 */
3054 if (pgdat_needs_compaction &&
3055 zone_watermark_ok(zone, order,
3056 low_wmark_pages(zone),
3057 *classzone_idx, 0))
3058 pgdat_needs_compaction = false;
1da177e4
LT
3059 }
3060
b7ea3c41
MG
3061 /*
3062 * If we're getting trouble reclaiming, start doing writepage
3063 * even in laptop mode.
3064 */
3065 if (sc.priority < DEF_PRIORITY - 2)
3066 sc.may_writepage = 1;
3067
1da177e4
LT
3068 /*
3069 * Now scan the zone in the dma->highmem direction, stopping
3070 * at the last zone which needs scanning.
3071 *
3072 * We do this because the page allocator works in the opposite
3073 * direction. This prevents the page allocator from allocating
3074 * pages behind kswapd's direction of progress, which would
3075 * cause too much scanning of the lower zones.
3076 */
3077 for (i = 0; i <= end_zone; i++) {
3078 struct zone *zone = pgdat->node_zones + i;
3079
f3fe6512 3080 if (!populated_zone(zone))
1da177e4
LT
3081 continue;
3082
6e543d57
LD
3083 if (sc.priority != DEF_PRIORITY &&
3084 !zone_reclaimable(zone))
1da177e4
LT
3085 continue;
3086
1da177e4 3087 sc.nr_scanned = 0;
4e416953 3088
0608f43d
AM
3089 nr_soft_scanned = 0;
3090 /*
3091 * Call soft limit reclaim before calling shrink_zone.
3092 */
3093 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3094 order, sc.gfp_mask,
3095 &nr_soft_scanned);
3096 sc.nr_reclaimed += nr_soft_reclaimed;
3097
32a4330d 3098 /*
7c954f6d
MG
3099 * There should be no need to raise the scanning
3100 * priority if enough pages are already being scanned
3101 * that that high watermark would be met at 100%
3102 * efficiency.
fe2c2a10 3103 */
7c954f6d
MG
3104 if (kswapd_shrink_zone(zone, end_zone, &sc,
3105 lru_pages, &nr_attempted))
3106 raise_priority = false;
1da177e4 3107 }
5515061d
MG
3108
3109 /*
3110 * If the low watermark is met there is no need for processes
3111 * to be throttled on pfmemalloc_wait as they should not be
3112 * able to safely make forward progress. Wake them
3113 */
3114 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3115 pfmemalloc_watermark_ok(pgdat))
3116 wake_up(&pgdat->pfmemalloc_wait);
3117
1da177e4 3118 /*
b8e83b94
MG
3119 * Fragmentation may mean that the system cannot be rebalanced
3120 * for high-order allocations in all zones. If twice the
3121 * allocation size has been reclaimed and the zones are still
3122 * not balanced then recheck the watermarks at order-0 to
3123 * prevent kswapd reclaiming excessively. Assume that a
3124 * process requested a high-order can direct reclaim/compact.
1da177e4 3125 */
b8e83b94
MG
3126 if (order && sc.nr_reclaimed >= 2UL << order)
3127 order = sc.order = 0;
8357376d 3128
b8e83b94
MG
3129 /* Check if kswapd should be suspending */
3130 if (try_to_freeze() || kthread_should_stop())
3131 break;
8357376d 3132
2ab44f43
MG
3133 /*
3134 * Compact if necessary and kswapd is reclaiming at least the
3135 * high watermark number of pages as requsted
3136 */
3137 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3138 compact_pgdat(pgdat, order);
3139
73ce02e9 3140 /*
b8e83b94
MG
3141 * Raise priority if scanning rate is too low or there was no
3142 * progress in reclaiming pages
73ce02e9 3143 */
b8e83b94
MG
3144 if (raise_priority || !sc.nr_reclaimed)
3145 sc.priority--;
9aa41348 3146 } while (sc.priority >= 1 &&
b8e83b94 3147 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3148
b8e83b94 3149out:
0abdee2b 3150 /*
5515061d 3151 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3152 * makes a decision on the order we were last reclaiming at. However,
3153 * if another caller entered the allocator slow path while kswapd
3154 * was awake, order will remain at the higher level
3155 */
dc83edd9 3156 *classzone_idx = end_zone;
0abdee2b 3157 return order;
1da177e4
LT
3158}
3159
dc83edd9 3160static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3161{
3162 long remaining = 0;
3163 DEFINE_WAIT(wait);
3164
3165 if (freezing(current) || kthread_should_stop())
3166 return;
3167
3168 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3169
3170 /* Try to sleep for a short interval */
5515061d 3171 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3172 remaining = schedule_timeout(HZ/10);
3173 finish_wait(&pgdat->kswapd_wait, &wait);
3174 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3175 }
3176
3177 /*
3178 * After a short sleep, check if it was a premature sleep. If not, then
3179 * go fully to sleep until explicitly woken up.
3180 */
5515061d 3181 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3182 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3183
3184 /*
3185 * vmstat counters are not perfectly accurate and the estimated
3186 * value for counters such as NR_FREE_PAGES can deviate from the
3187 * true value by nr_online_cpus * threshold. To avoid the zone
3188 * watermarks being breached while under pressure, we reduce the
3189 * per-cpu vmstat threshold while kswapd is awake and restore
3190 * them before going back to sleep.
3191 */
3192 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3193
62997027
MG
3194 /*
3195 * Compaction records what page blocks it recently failed to
3196 * isolate pages from and skips them in the future scanning.
3197 * When kswapd is going to sleep, it is reasonable to assume
3198 * that pages and compaction may succeed so reset the cache.
3199 */
3200 reset_isolation_suitable(pgdat);
3201
1c7e7f6c
AK
3202 if (!kthread_should_stop())
3203 schedule();
3204
f0bc0a60
KM
3205 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3206 } else {
3207 if (remaining)
3208 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3209 else
3210 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3211 }
3212 finish_wait(&pgdat->kswapd_wait, &wait);
3213}
3214
1da177e4
LT
3215/*
3216 * The background pageout daemon, started as a kernel thread
4f98a2fe 3217 * from the init process.
1da177e4
LT
3218 *
3219 * This basically trickles out pages so that we have _some_
3220 * free memory available even if there is no other activity
3221 * that frees anything up. This is needed for things like routing
3222 * etc, where we otherwise might have all activity going on in
3223 * asynchronous contexts that cannot page things out.
3224 *
3225 * If there are applications that are active memory-allocators
3226 * (most normal use), this basically shouldn't matter.
3227 */
3228static int kswapd(void *p)
3229{
215ddd66 3230 unsigned long order, new_order;
d2ebd0f6 3231 unsigned balanced_order;
215ddd66 3232 int classzone_idx, new_classzone_idx;
d2ebd0f6 3233 int balanced_classzone_idx;
1da177e4
LT
3234 pg_data_t *pgdat = (pg_data_t*)p;
3235 struct task_struct *tsk = current;
f0bc0a60 3236
1da177e4
LT
3237 struct reclaim_state reclaim_state = {
3238 .reclaimed_slab = 0,
3239 };
a70f7302 3240 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3241
cf40bd16
NP
3242 lockdep_set_current_reclaim_state(GFP_KERNEL);
3243
174596a0 3244 if (!cpumask_empty(cpumask))
c5f59f08 3245 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3246 current->reclaim_state = &reclaim_state;
3247
3248 /*
3249 * Tell the memory management that we're a "memory allocator",
3250 * and that if we need more memory we should get access to it
3251 * regardless (see "__alloc_pages()"). "kswapd" should
3252 * never get caught in the normal page freeing logic.
3253 *
3254 * (Kswapd normally doesn't need memory anyway, but sometimes
3255 * you need a small amount of memory in order to be able to
3256 * page out something else, and this flag essentially protects
3257 * us from recursively trying to free more memory as we're
3258 * trying to free the first piece of memory in the first place).
3259 */
930d9152 3260 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3261 set_freezable();
1da177e4 3262
215ddd66 3263 order = new_order = 0;
d2ebd0f6 3264 balanced_order = 0;
215ddd66 3265 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3266 balanced_classzone_idx = classzone_idx;
1da177e4 3267 for ( ; ; ) {
6f6313d4 3268 bool ret;
3e1d1d28 3269
215ddd66
MG
3270 /*
3271 * If the last balance_pgdat was unsuccessful it's unlikely a
3272 * new request of a similar or harder type will succeed soon
3273 * so consider going to sleep on the basis we reclaimed at
3274 */
d2ebd0f6
AS
3275 if (balanced_classzone_idx >= new_classzone_idx &&
3276 balanced_order == new_order) {
215ddd66
MG
3277 new_order = pgdat->kswapd_max_order;
3278 new_classzone_idx = pgdat->classzone_idx;
3279 pgdat->kswapd_max_order = 0;
3280 pgdat->classzone_idx = pgdat->nr_zones - 1;
3281 }
3282
99504748 3283 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3284 /*
3285 * Don't sleep if someone wants a larger 'order'
99504748 3286 * allocation or has tigher zone constraints
1da177e4
LT
3287 */
3288 order = new_order;
99504748 3289 classzone_idx = new_classzone_idx;
1da177e4 3290 } else {
d2ebd0f6
AS
3291 kswapd_try_to_sleep(pgdat, balanced_order,
3292 balanced_classzone_idx);
1da177e4 3293 order = pgdat->kswapd_max_order;
99504748 3294 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3295 new_order = order;
3296 new_classzone_idx = classzone_idx;
4d40502e 3297 pgdat->kswapd_max_order = 0;
215ddd66 3298 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3299 }
1da177e4 3300
8fe23e05
DR
3301 ret = try_to_freeze();
3302 if (kthread_should_stop())
3303 break;
3304
3305 /*
3306 * We can speed up thawing tasks if we don't call balance_pgdat
3307 * after returning from the refrigerator
3308 */
33906bc5
MG
3309 if (!ret) {
3310 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3311 balanced_classzone_idx = classzone_idx;
3312 balanced_order = balance_pgdat(pgdat, order,
3313 &balanced_classzone_idx);
33906bc5 3314 }
1da177e4 3315 }
b0a8cc58
TY
3316
3317 current->reclaim_state = NULL;
1da177e4
LT
3318 return 0;
3319}
3320
3321/*
3322 * A zone is low on free memory, so wake its kswapd task to service it.
3323 */
99504748 3324void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3325{
3326 pg_data_t *pgdat;
3327
f3fe6512 3328 if (!populated_zone(zone))
1da177e4
LT
3329 return;
3330
88f5acf8 3331 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3332 return;
88f5acf8 3333 pgdat = zone->zone_pgdat;
99504748 3334 if (pgdat->kswapd_max_order < order) {
1da177e4 3335 pgdat->kswapd_max_order = order;
99504748
MG
3336 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3337 }
8d0986e2 3338 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3339 return;
892f795d 3340 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3341 return;
3342
3343 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3344 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3345}
3346
c6f37f12 3347#ifdef CONFIG_HIBERNATION
1da177e4 3348/*
7b51755c 3349 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3350 * freed pages.
3351 *
3352 * Rather than trying to age LRUs the aim is to preserve the overall
3353 * LRU order by reclaiming preferentially
3354 * inactive > active > active referenced > active mapped
1da177e4 3355 */
7b51755c 3356unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3357{
d6277db4 3358 struct reclaim_state reclaim_state;
d6277db4 3359 struct scan_control sc = {
7b51755c
KM
3360 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3361 .may_swap = 1,
3362 .may_unmap = 1,
d6277db4 3363 .may_writepage = 1,
7b51755c
KM
3364 .nr_to_reclaim = nr_to_reclaim,
3365 .hibernation_mode = 1,
7b51755c 3366 .order = 0,
9e3b2f8c 3367 .priority = DEF_PRIORITY,
1da177e4 3368 };
a09ed5e0 3369 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3370 struct task_struct *p = current;
3371 unsigned long nr_reclaimed;
1da177e4 3372
7b51755c
KM
3373 p->flags |= PF_MEMALLOC;
3374 lockdep_set_current_reclaim_state(sc.gfp_mask);
3375 reclaim_state.reclaimed_slab = 0;
3376 p->reclaim_state = &reclaim_state;
d6277db4 3377
3115cd91 3378 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3379
7b51755c
KM
3380 p->reclaim_state = NULL;
3381 lockdep_clear_current_reclaim_state();
3382 p->flags &= ~PF_MEMALLOC;
d6277db4 3383
7b51755c 3384 return nr_reclaimed;
1da177e4 3385}
c6f37f12 3386#endif /* CONFIG_HIBERNATION */
1da177e4 3387
1da177e4
LT
3388/* It's optimal to keep kswapds on the same CPUs as their memory, but
3389 not required for correctness. So if the last cpu in a node goes
3390 away, we get changed to run anywhere: as the first one comes back,
3391 restore their cpu bindings. */
fcb35a9b
GKH
3392static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3393 void *hcpu)
1da177e4 3394{
58c0a4a7 3395 int nid;
1da177e4 3396
8bb78442 3397 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3398 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3399 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3400 const struct cpumask *mask;
3401
3402 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3403
3e597945 3404 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3405 /* One of our CPUs online: restore mask */
c5f59f08 3406 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3407 }
3408 }
3409 return NOTIFY_OK;
3410}
1da177e4 3411
3218ae14
YG
3412/*
3413 * This kswapd start function will be called by init and node-hot-add.
3414 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3415 */
3416int kswapd_run(int nid)
3417{
3418 pg_data_t *pgdat = NODE_DATA(nid);
3419 int ret = 0;
3420
3421 if (pgdat->kswapd)
3422 return 0;
3423
3424 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3425 if (IS_ERR(pgdat->kswapd)) {
3426 /* failure at boot is fatal */
3427 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3428 pr_err("Failed to start kswapd on node %d\n", nid);
3429 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3430 pgdat->kswapd = NULL;
3218ae14
YG
3431 }
3432 return ret;
3433}
3434
8fe23e05 3435/*
d8adde17 3436 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3437 * hold mem_hotplug_begin/end().
8fe23e05
DR
3438 */
3439void kswapd_stop(int nid)
3440{
3441 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3442
d8adde17 3443 if (kswapd) {
8fe23e05 3444 kthread_stop(kswapd);
d8adde17
JL
3445 NODE_DATA(nid)->kswapd = NULL;
3446 }
8fe23e05
DR
3447}
3448
1da177e4
LT
3449static int __init kswapd_init(void)
3450{
3218ae14 3451 int nid;
69e05944 3452
1da177e4 3453 swap_setup();
48fb2e24 3454 for_each_node_state(nid, N_MEMORY)
3218ae14 3455 kswapd_run(nid);
1da177e4
LT
3456 hotcpu_notifier(cpu_callback, 0);
3457 return 0;
3458}
3459
3460module_init(kswapd_init)
9eeff239
CL
3461
3462#ifdef CONFIG_NUMA
3463/*
3464 * Zone reclaim mode
3465 *
3466 * If non-zero call zone_reclaim when the number of free pages falls below
3467 * the watermarks.
9eeff239
CL
3468 */
3469int zone_reclaim_mode __read_mostly;
3470
1b2ffb78 3471#define RECLAIM_OFF 0
7d03431c 3472#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3473#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3474#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3475
a92f7126
CL
3476/*
3477 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3478 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3479 * a zone.
3480 */
3481#define ZONE_RECLAIM_PRIORITY 4
3482
9614634f
CL
3483/*
3484 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3485 * occur.
3486 */
3487int sysctl_min_unmapped_ratio = 1;
3488
0ff38490
CL
3489/*
3490 * If the number of slab pages in a zone grows beyond this percentage then
3491 * slab reclaim needs to occur.
3492 */
3493int sysctl_min_slab_ratio = 5;
3494
90afa5de
MG
3495static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3496{
3497 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3498 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3499 zone_page_state(zone, NR_ACTIVE_FILE);
3500
3501 /*
3502 * It's possible for there to be more file mapped pages than
3503 * accounted for by the pages on the file LRU lists because
3504 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3505 */
3506 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3507}
3508
3509/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3510static long zone_pagecache_reclaimable(struct zone *zone)
3511{
3512 long nr_pagecache_reclaimable;
3513 long delta = 0;
3514
3515 /*
3516 * If RECLAIM_SWAP is set, then all file pages are considered
3517 * potentially reclaimable. Otherwise, we have to worry about
3518 * pages like swapcache and zone_unmapped_file_pages() provides
3519 * a better estimate
3520 */
3521 if (zone_reclaim_mode & RECLAIM_SWAP)
3522 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3523 else
3524 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3525
3526 /* If we can't clean pages, remove dirty pages from consideration */
3527 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3528 delta += zone_page_state(zone, NR_FILE_DIRTY);
3529
3530 /* Watch for any possible underflows due to delta */
3531 if (unlikely(delta > nr_pagecache_reclaimable))
3532 delta = nr_pagecache_reclaimable;
3533
3534 return nr_pagecache_reclaimable - delta;
3535}
3536
9eeff239
CL
3537/*
3538 * Try to free up some pages from this zone through reclaim.
3539 */
179e9639 3540static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3541{
7fb2d46d 3542 /* Minimum pages needed in order to stay on node */
69e05944 3543 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3544 struct task_struct *p = current;
3545 struct reclaim_state reclaim_state;
179e9639
AM
3546 struct scan_control sc = {
3547 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3548 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3549 .may_swap = 1,
62b726c1 3550 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3551 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3552 .order = order,
9e3b2f8c 3553 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3554 };
a09ed5e0
YH
3555 struct shrink_control shrink = {
3556 .gfp_mask = sc.gfp_mask,
3557 };
15748048 3558 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3559
9eeff239 3560 cond_resched();
d4f7796e
CL
3561 /*
3562 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3563 * and we also need to be able to write out pages for RECLAIM_WRITE
3564 * and RECLAIM_SWAP.
3565 */
3566 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3567 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3568 reclaim_state.reclaimed_slab = 0;
3569 p->reclaim_state = &reclaim_state;
c84db23c 3570
90afa5de 3571 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3572 /*
3573 * Free memory by calling shrink zone with increasing
3574 * priorities until we have enough memory freed.
3575 */
0ff38490 3576 do {
9e3b2f8c
KK
3577 shrink_zone(zone, &sc);
3578 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3579 }
c84db23c 3580
15748048
KM
3581 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3582 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3583 /*
7fb2d46d 3584 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3585 * many pages were freed in this zone. So we take the current
3586 * number of slab pages and shake the slab until it is reduced
3587 * by the same nr_pages that we used for reclaiming unmapped
3588 * pages.
2a16e3f4 3589 */
0ce3d744
DC
3590 nodes_clear(shrink.nodes_to_scan);
3591 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3592 for (;;) {
3593 unsigned long lru_pages = zone_reclaimable_pages(zone);
3594
3595 /* No reclaimable slab or very low memory pressure */
1495f230 3596 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3597 break;
3598
3599 /* Freed enough memory */
3600 nr_slab_pages1 = zone_page_state(zone,
3601 NR_SLAB_RECLAIMABLE);
3602 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3603 break;
3604 }
83e33a47
CL
3605
3606 /*
3607 * Update nr_reclaimed by the number of slab pages we
3608 * reclaimed from this zone.
3609 */
15748048
KM
3610 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3611 if (nr_slab_pages1 < nr_slab_pages0)
3612 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3613 }
3614
9eeff239 3615 p->reclaim_state = NULL;
d4f7796e 3616 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3617 lockdep_clear_current_reclaim_state();
a79311c1 3618 return sc.nr_reclaimed >= nr_pages;
9eeff239 3619}
179e9639
AM
3620
3621int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3622{
179e9639 3623 int node_id;
d773ed6b 3624 int ret;
179e9639
AM
3625
3626 /*
0ff38490
CL
3627 * Zone reclaim reclaims unmapped file backed pages and
3628 * slab pages if we are over the defined limits.
34aa1330 3629 *
9614634f
CL
3630 * A small portion of unmapped file backed pages is needed for
3631 * file I/O otherwise pages read by file I/O will be immediately
3632 * thrown out if the zone is overallocated. So we do not reclaim
3633 * if less than a specified percentage of the zone is used by
3634 * unmapped file backed pages.
179e9639 3635 */
90afa5de
MG
3636 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3637 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3638 return ZONE_RECLAIM_FULL;
179e9639 3639
6e543d57 3640 if (!zone_reclaimable(zone))
fa5e084e 3641 return ZONE_RECLAIM_FULL;
d773ed6b 3642
179e9639 3643 /*
d773ed6b 3644 * Do not scan if the allocation should not be delayed.
179e9639 3645 */
d773ed6b 3646 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3647 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3648
3649 /*
3650 * Only run zone reclaim on the local zone or on zones that do not
3651 * have associated processors. This will favor the local processor
3652 * over remote processors and spread off node memory allocations
3653 * as wide as possible.
3654 */
89fa3024 3655 node_id = zone_to_nid(zone);
37c0708d 3656 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3657 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3658
3659 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3660 return ZONE_RECLAIM_NOSCAN;
3661
d773ed6b
DR
3662 ret = __zone_reclaim(zone, gfp_mask, order);
3663 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3664
24cf7251
MG
3665 if (!ret)
3666 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3667
d773ed6b 3668 return ret;
179e9639 3669}
9eeff239 3670#endif
894bc310 3671
894bc310
LS
3672/*
3673 * page_evictable - test whether a page is evictable
3674 * @page: the page to test
894bc310
LS
3675 *
3676 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3677 * lists vs unevictable list.
894bc310
LS
3678 *
3679 * Reasons page might not be evictable:
ba9ddf49 3680 * (1) page's mapping marked unevictable
b291f000 3681 * (2) page is part of an mlocked VMA
ba9ddf49 3682 *
894bc310 3683 */
39b5f29a 3684int page_evictable(struct page *page)
894bc310 3685{
39b5f29a 3686 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3687}
89e004ea 3688
85046579 3689#ifdef CONFIG_SHMEM
89e004ea 3690/**
24513264
HD
3691 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3692 * @pages: array of pages to check
3693 * @nr_pages: number of pages to check
89e004ea 3694 *
24513264 3695 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3696 *
3697 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3698 */
24513264 3699void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3700{
925b7673 3701 struct lruvec *lruvec;
24513264
HD
3702 struct zone *zone = NULL;
3703 int pgscanned = 0;
3704 int pgrescued = 0;
3705 int i;
89e004ea 3706
24513264
HD
3707 for (i = 0; i < nr_pages; i++) {
3708 struct page *page = pages[i];
3709 struct zone *pagezone;
89e004ea 3710
24513264
HD
3711 pgscanned++;
3712 pagezone = page_zone(page);
3713 if (pagezone != zone) {
3714 if (zone)
3715 spin_unlock_irq(&zone->lru_lock);
3716 zone = pagezone;
3717 spin_lock_irq(&zone->lru_lock);
3718 }
fa9add64 3719 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3720
24513264
HD
3721 if (!PageLRU(page) || !PageUnevictable(page))
3722 continue;
89e004ea 3723
39b5f29a 3724 if (page_evictable(page)) {
24513264
HD
3725 enum lru_list lru = page_lru_base_type(page);
3726
309381fe 3727 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3728 ClearPageUnevictable(page);
fa9add64
HD
3729 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3730 add_page_to_lru_list(page, lruvec, lru);
24513264 3731 pgrescued++;
89e004ea 3732 }
24513264 3733 }
89e004ea 3734
24513264
HD
3735 if (zone) {
3736 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3737 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3738 spin_unlock_irq(&zone->lru_lock);
89e004ea 3739 }
89e004ea 3740}
85046579 3741#endif /* CONFIG_SHMEM */
af936a16 3742
264e56d8 3743static void warn_scan_unevictable_pages(void)
af936a16 3744{
264e56d8 3745 printk_once(KERN_WARNING
25bd91bd 3746 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3747 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3748 "one, please send an email to linux-mm@kvack.org.\n",
3749 current->comm);
af936a16
LS
3750}
3751
3752/*
3753 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3754 * all nodes' unevictable lists for evictable pages
3755 */
3756unsigned long scan_unevictable_pages;
3757
3758int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3759 void __user *buffer,
af936a16
LS
3760 size_t *length, loff_t *ppos)
3761{
264e56d8 3762 warn_scan_unevictable_pages();
8d65af78 3763 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3764 scan_unevictable_pages = 0;
3765 return 0;
3766}
3767
e4455abb 3768#ifdef CONFIG_NUMA
af936a16
LS
3769/*
3770 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3771 * a specified node's per zone unevictable lists for evictable pages.
3772 */
3773
10fbcf4c
KS
3774static ssize_t read_scan_unevictable_node(struct device *dev,
3775 struct device_attribute *attr,
af936a16
LS
3776 char *buf)
3777{
264e56d8 3778 warn_scan_unevictable_pages();
af936a16
LS
3779 return sprintf(buf, "0\n"); /* always zero; should fit... */
3780}
3781
10fbcf4c
KS
3782static ssize_t write_scan_unevictable_node(struct device *dev,
3783 struct device_attribute *attr,
af936a16
LS
3784 const char *buf, size_t count)
3785{
264e56d8 3786 warn_scan_unevictable_pages();
af936a16
LS
3787 return 1;
3788}
3789
3790
10fbcf4c 3791static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3792 read_scan_unevictable_node,
3793 write_scan_unevictable_node);
3794
3795int scan_unevictable_register_node(struct node *node)
3796{
10fbcf4c 3797 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3798}
3799
3800void scan_unevictable_unregister_node(struct node *node)
3801{
10fbcf4c 3802 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3803}
e4455abb 3804#endif