]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - virt/kvm/kvm_main.c
KVM: remove deprecated UAPIs
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
982ed0de 62#include "kvm_mm.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
4c8c3c7f
VS
65#include <trace/events/ipi.h>
66
229456fc
MT
67#define CREATE_TRACE_POINTS
68#include <trace/events/kvm.h>
69
fb04a1ed
PX
70#include <linux/kvm_dirty_ring.h>
71
4c8c3c7f 72
536a6f88
JF
73/* Worst case buffer size needed for holding an integer. */
74#define ITOA_MAX_LEN 12
75
6aa8b732
AK
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
920552b2 79/* Architectures should define their poll value according to the halt latency */
ec76d819 80unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 81module_param(halt_poll_ns, uint, 0644);
ec76d819 82EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 83
aca6ff29 84/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 85unsigned int halt_poll_ns_grow = 2;
039c5d1b 86module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 87EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 88
49113d36
NW
89/* The start value to grow halt_poll_ns from */
90unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91module_param(halt_poll_ns_grow_start, uint, 0644);
92EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
aca6ff29 94/* Default resets per-vcpu halt_poll_ns . */
ec76d819 95unsigned int halt_poll_ns_shrink;
039c5d1b 96module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 97EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 98
fa40a821
MT
99/*
100 * Ordering of locks:
101 *
b7d409de 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
103 */
104
0d9ce162 105DEFINE_MUTEX(kvm_lock);
e9b11c17 106LIST_HEAD(vm_list);
133de902 107
aaba298c 108static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 109
15ad7146 110static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 111static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 112
76f7c879 113struct dentry *kvm_debugfs_dir;
e23a808b 114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 115
09cbcef6 116static const struct file_operations stat_fops_per_vm;
536a6f88 117
5f6de5cb
DM
118static struct file_operations kvm_chardev_ops;
119
bccf2150
AK
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
de8e5d74 122#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
7ddfd3e0
MZ
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
9cb09e7c
MZ
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
7ddfd3e0
MZ
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
1dda606c 143#endif
10474ae8
AG
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
bccf2150 146
e93f8a0f 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 148
286de8f6
CI
149#define KVM_EVENT_CREATE_VM 0
150#define KVM_EVENT_DESTROY_VM 1
151static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152static unsigned long long kvm_createvm_count;
153static unsigned long long kvm_active_vms;
154
baff59cc
VK
155static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
683412cc
MZ
157__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158{
159}
160
284dc493 161bool kvm_is_zone_device_page(struct page *page)
a78986aa
SC
162{
163 /*
164 * The metadata used by is_zone_device_page() to determine whether or
165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 * the device has been pinned, e.g. by get_user_pages(). WARN if the
167 * page_count() is zero to help detect bad usage of this helper.
168 */
284dc493 169 if (WARN_ON_ONCE(!page_count(page)))
a78986aa
SC
170 return false;
171
284dc493 172 return is_zone_device_page(page);
a78986aa
SC
173}
174
b14b2690
SC
175/*
176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
178 * is likely incomplete, it has been compiled purely through people wanting to
179 * back guest with a certain type of memory and encountering issues.
180 */
181struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
cbff90a7 182{
b14b2690
SC
183 struct page *page;
184
185 if (!pfn_valid(pfn))
186 return NULL;
187
188 page = pfn_to_page(pfn);
189 if (!PageReserved(page))
190 return page;
191
192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 if (is_zero_pfn(pfn))
194 return page;
195
a78986aa
SC
196 /*
197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 * perspective they are "normal" pages, albeit with slightly different
199 * usage rules.
200 */
b14b2690
SC
201 if (kvm_is_zone_device_page(page))
202 return page;
cbff90a7 203
b14b2690 204 return NULL;
cbff90a7
BAY
205}
206
bccf2150
AK
207/*
208 * Switches to specified vcpu, until a matching vcpu_put()
209 */
ec7660cc 210void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 211{
ec7660cc 212 int cpu = get_cpu();
7495e22b
PB
213
214 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 215 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 216 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 217 put_cpu();
6aa8b732 218}
2f1fe811 219EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 220
313a3dc7 221void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 222{
15ad7146 223 preempt_disable();
313a3dc7 224 kvm_arch_vcpu_put(vcpu);
15ad7146 225 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 226 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 227 preempt_enable();
6aa8b732 228}
2f1fe811 229EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 230
7a97cec2
PB
231/* TODO: merge with kvm_arch_vcpu_should_kick */
232static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233{
234 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236 /*
237 * We need to wait for the VCPU to reenable interrupts and get out of
238 * READING_SHADOW_PAGE_TABLES mode.
239 */
240 if (req & KVM_REQUEST_WAIT)
241 return mode != OUTSIDE_GUEST_MODE;
242
243 /*
244 * Need to kick a running VCPU, but otherwise there is nothing to do.
245 */
246 return mode == IN_GUEST_MODE;
247}
248
f24b44e4 249static void ack_kick(void *_completed)
d9e368d6 250{
d9e368d6
AK
251}
252
620b2438 253static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
b49defe8 254{
b49defe8
PB
255 if (cpumask_empty(cpus))
256 return false;
257
f24b44e4 258 smp_call_function_many(cpus, ack_kick, NULL, wait);
b49defe8
PB
259 return true;
260}
261
b56bd8e0
JL
262static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 struct cpumask *tmp, int current_cpu)
ae0946cd
VK
264{
265 int cpu;
266
df06dae3
SC
267 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 __kvm_make_request(req, vcpu);
ae0946cd
VK
269
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 return;
272
ae0946cd
VK
273 /*
274 * Note, the vCPU could get migrated to a different pCPU at any point
275 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 * to the previous pCPU. But, that's OK because the purpose of the IPI
277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 * after this point is also OK, as the requirement is only that KVM wait
280 * for vCPUs that were reading SPTEs _before_ any changes were
281 * finalized. See kvm_vcpu_kick() for more details on handling requests.
282 */
283 if (kvm_request_needs_ipi(vcpu, req)) {
284 cpu = READ_ONCE(vcpu->cpu);
285 if (cpu != -1 && cpu != current_cpu)
286 __cpumask_set_cpu(cpu, tmp);
287 }
288}
289
7053df4e 290bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
620b2438 291 unsigned long *vcpu_bitmap)
d9e368d6 292{
d9e368d6 293 struct kvm_vcpu *vcpu;
620b2438 294 struct cpumask *cpus;
ae0946cd 295 int i, me;
7053df4e 296 bool called;
6ef7a1bc 297
3cba4130 298 me = get_cpu();
7053df4e 299
620b2438
VK
300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301 cpumask_clear(cpus);
302
ae0946cd
VK
303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 vcpu = kvm_get_vcpu(kvm, i);
381cecc5 305 if (!vcpu)
7053df4e 306 continue;
b56bd8e0 307 kvm_make_vcpu_request(vcpu, req, cpus, me);
49846896 308 }
7053df4e 309
620b2438 310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
3cba4130 311 put_cpu();
7053df4e
VK
312
313 return called;
314}
315
54163a34
SS
316bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 struct kvm_vcpu *except)
7053df4e 318{
ae0946cd 319 struct kvm_vcpu *vcpu;
baff59cc 320 struct cpumask *cpus;
46808a4c 321 unsigned long i;
7053df4e 322 bool called;
46808a4c 323 int me;
7053df4e 324
ae0946cd
VK
325 me = get_cpu();
326
baff59cc
VK
327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328 cpumask_clear(cpus);
329
ae0946cd
VK
330 kvm_for_each_vcpu(i, vcpu, kvm) {
331 if (vcpu == except)
332 continue;
b56bd8e0 333 kvm_make_vcpu_request(vcpu, req, cpus, me);
ae0946cd
VK
334 }
335
336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337 put_cpu();
7053df4e 338
49846896 339 return called;
d9e368d6
AK
340}
341
54163a34
SS
342bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343{
344 return kvm_make_all_cpus_request_except(kvm, req, NULL);
345}
a2486020 346EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 347
49846896 348void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 349{
3cc4e148 350 ++kvm->stat.generic.remote_tlb_flush_requests;
6bc6db00 351
4ae3cb3a
LT
352 /*
353 * We want to publish modifications to the page tables before reading
354 * mode. Pairs with a memory barrier in arch-specific code.
355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356 * and smp_mb in walk_shadow_page_lockless_begin/end.
357 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
358 *
359 * There is already an smp_mb__after_atomic() before
360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361 * barrier here.
362 */
a1342c80 363 if (!kvm_arch_flush_remote_tlbs(kvm)
b08660e5 364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 365 ++kvm->stat.generic.remote_tlb_flush;
2e53d63a 366}
2ba9f0d8 367EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
2e53d63a 368
d4788996
DM
369void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
370{
371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
372 return;
373
374 /*
375 * Fall back to a flushing entire TLBs if the architecture range-based
376 * TLB invalidation is unsupported or can't be performed for whatever
377 * reason.
378 */
379 kvm_flush_remote_tlbs(kvm);
380}
381
619b5072
DM
382void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
383 const struct kvm_memory_slot *memslot)
384{
385 /*
386 * All current use cases for flushing the TLBs for a specific memslot
387 * are related to dirty logging, and many do the TLB flush out of
388 * mmu_lock. The interaction between the various operations on memslot
389 * must be serialized by slots_locks to ensure the TLB flush from one
390 * operation is observed by any other operation on the same memslot.
391 */
392 lockdep_assert_held(&kvm->slots_lock);
393 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
394}
2e53d63a 395
683412cc
MZ
396static void kvm_flush_shadow_all(struct kvm *kvm)
397{
398 kvm_arch_flush_shadow_all(kvm);
399 kvm_arch_guest_memory_reclaimed(kvm);
400}
401
6926f95a
SC
402#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
403static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
404 gfp_t gfp_flags)
405{
406 gfp_flags |= mc->gfp_zero;
407
408 if (mc->kmem_cache)
409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
410 else
411 return (void *)__get_free_page(gfp_flags);
412}
413
837f66c7 414int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
6926f95a 415{
63f4b210 416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
6926f95a
SC
417 void *obj;
418
419 if (mc->nobjs >= min)
420 return 0;
837f66c7
DM
421
422 if (unlikely(!mc->objects)) {
423 if (WARN_ON_ONCE(!capacity))
424 return -EIO;
425
426 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
427 if (!mc->objects)
428 return -ENOMEM;
429
430 mc->capacity = capacity;
431 }
432
433 /* It is illegal to request a different capacity across topups. */
434 if (WARN_ON_ONCE(mc->capacity != capacity))
435 return -EIO;
436
437 while (mc->nobjs < mc->capacity) {
438 obj = mmu_memory_cache_alloc_obj(mc, gfp);
6926f95a
SC
439 if (!obj)
440 return mc->nobjs >= min ? 0 : -ENOMEM;
441 mc->objects[mc->nobjs++] = obj;
442 }
443 return 0;
444}
445
837f66c7
DM
446int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
447{
448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
449}
450
6926f95a
SC
451int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
452{
453 return mc->nobjs;
454}
455
456void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
457{
458 while (mc->nobjs) {
459 if (mc->kmem_cache)
460 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
461 else
462 free_page((unsigned long)mc->objects[--mc->nobjs]);
463 }
837f66c7
DM
464
465 kvfree(mc->objects);
466
467 mc->objects = NULL;
468 mc->capacity = 0;
6926f95a
SC
469}
470
471void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
472{
473 void *p;
474
475 if (WARN_ON(!mc->nobjs))
476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
477 else
478 p = mc->objects[--mc->nobjs];
479 BUG_ON(!p);
480 return p;
481}
482#endif
483
8bd826d6 484static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 485{
fb3f0f51
RR
486 mutex_init(&vcpu->mutex);
487 vcpu->cpu = -1;
fb3f0f51
RR
488 vcpu->kvm = kvm;
489 vcpu->vcpu_id = id;
34bb10b7 490 vcpu->pid = NULL;
510958e9 491#ifndef __KVM_HAVE_ARCH_WQP
da4ad88c 492 rcuwait_init(&vcpu->wait);
510958e9 493#endif
af585b92 494 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 495
4c088493
R
496 kvm_vcpu_set_in_spin_loop(vcpu, false);
497 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 498 vcpu->preempted = false;
d73eb57b 499 vcpu->ready = false;
d5c48deb 500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
a54d8066 501 vcpu->last_used_slot = NULL;
58fc1166
OU
502
503 /* Fill the stats id string for the vcpu */
504 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
505 task_pid_nr(current), id);
fb3f0f51 506}
fb3f0f51 507
27592ae8 508static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
4543bdc0
SC
509{
510 kvm_arch_vcpu_destroy(vcpu);
5593473a 511 kvm_dirty_ring_free(&vcpu->dirty_ring);
e529ef66 512
9941d224
SC
513 /*
514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
515 * the vcpu->pid pointer, and at destruction time all file descriptors
516 * are already gone.
517 */
518 put_pid(rcu_dereference_protected(vcpu->pid, 1));
519
8bd826d6 520 free_page((unsigned long)vcpu->run);
e529ef66 521 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0 522}
27592ae8
MZ
523
524void kvm_destroy_vcpus(struct kvm *kvm)
525{
46808a4c 526 unsigned long i;
27592ae8
MZ
527 struct kvm_vcpu *vcpu;
528
529 kvm_for_each_vcpu(i, vcpu, kvm) {
530 kvm_vcpu_destroy(vcpu);
c5b07754 531 xa_erase(&kvm->vcpu_array, i);
27592ae8
MZ
532 }
533
534 atomic_set(&kvm->online_vcpus, 0);
535}
536EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
4543bdc0 537
f128cf8c 538#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
e930bffe
AA
539static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
540{
541 return container_of(mn, struct kvm, mmu_notifier);
542}
543
e97b39c5 544typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
3039bcc7 545
8569992d 546typedef void (*on_lock_fn_t)(struct kvm *kvm);
683412cc 547
e97b39c5
SC
548struct kvm_mmu_notifier_range {
549 /*
550 * 64-bit addresses, as KVM notifiers can operate on host virtual
551 * addresses (unsigned long) and guest physical addresses (64-bit).
552 */
553 u64 start;
554 u64 end;
3e1efe2b 555 union kvm_mmu_notifier_arg arg;
e97b39c5 556 gfn_handler_t handler;
f922bd9b 557 on_lock_fn_t on_lock;
3039bcc7
SC
558 bool flush_on_ret;
559 bool may_block;
560};
561
cec29eef
SC
562/*
563 * The inner-most helper returns a tuple containing the return value from the
564 * arch- and action-specific handler, plus a flag indicating whether or not at
565 * least one memslot was found, i.e. if the handler found guest memory.
566 *
567 * Note, most notifiers are averse to booleans, so even though KVM tracks the
568 * return from arch code as a bool, outer helpers will cast it to an int. :-(
569 */
570typedef struct kvm_mmu_notifier_return {
571 bool ret;
572 bool found_memslot;
573} kvm_mn_ret_t;
574
f922bd9b
SC
575/*
576 * Use a dedicated stub instead of NULL to indicate that there is no callback
577 * function/handler. The compiler technically can't guarantee that a real
578 * function will have a non-zero address, and so it will generate code to
579 * check for !NULL, whereas comparing against a stub will be elided at compile
580 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
581 */
582static void kvm_null_fn(void)
583{
584
585}
586#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
587
3e1efe2b
SC
588static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
589
ed922739
MS
590/* Iterate over each memslot intersecting [start, last] (inclusive) range */
591#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
592 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
593 node; \
594 node = interval_tree_iter_next(node, start, last)) \
595
cec29eef
SC
596static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
597 const struct kvm_mmu_notifier_range *range)
3039bcc7 598{
cec29eef
SC
599 struct kvm_mmu_notifier_return r = {
600 .ret = false,
601 .found_memslot = false,
602 };
f922bd9b 603 struct kvm_gfn_range gfn_range;
3039bcc7
SC
604 struct kvm_memory_slot *slot;
605 struct kvm_memslots *slots;
3039bcc7
SC
606 int i, idx;
607
ed922739 608 if (WARN_ON_ONCE(range->end <= range->start))
cec29eef 609 return r;
ed922739 610
f922bd9b
SC
611 /* A null handler is allowed if and only if on_lock() is provided. */
612 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
613 IS_KVM_NULL_FN(range->handler)))
cec29eef 614 return r;
f922bd9b 615
3039bcc7
SC
616 idx = srcu_read_lock(&kvm->srcu);
617
eed52e43 618 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
ed922739
MS
619 struct interval_tree_node *node;
620
3039bcc7 621 slots = __kvm_memslots(kvm, i);
ed922739
MS
622 kvm_for_each_memslot_in_hva_range(node, slots,
623 range->start, range->end - 1) {
3039bcc7
SC
624 unsigned long hva_start, hva_end;
625
a54d8066 626 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
e97b39c5
SC
627 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
628 hva_end = min_t(unsigned long, range->end,
629 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
3039bcc7
SC
630
631 /*
632 * To optimize for the likely case where the address
633 * range is covered by zero or one memslots, don't
634 * bother making these conditional (to avoid writes on
635 * the second or later invocation of the handler).
636 */
3e1efe2b 637 gfn_range.arg = range->arg;
3039bcc7
SC
638 gfn_range.may_block = range->may_block;
639
640 /*
641 * {gfn(page) | page intersects with [hva_start, hva_end)} =
642 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
643 */
644 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
645 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
646 gfn_range.slot = slot;
647
cec29eef
SC
648 if (!r.found_memslot) {
649 r.found_memslot = true;
8931a454 650 KVM_MMU_LOCK(kvm);
071064f1 651 if (!IS_KVM_NULL_FN(range->on_lock))
8569992d
CP
652 range->on_lock(kvm);
653
071064f1
PB
654 if (IS_KVM_NULL_FN(range->handler))
655 break;
8931a454 656 }
cec29eef 657 r.ret |= range->handler(kvm, &gfn_range);
3039bcc7
SC
658 }
659 }
660
cec29eef 661 if (range->flush_on_ret && r.ret)
3039bcc7
SC
662 kvm_flush_remote_tlbs(kvm);
663
193bbfaa 664 if (r.found_memslot)
8931a454 665 KVM_MMU_UNLOCK(kvm);
f922bd9b 666
3039bcc7
SC
667 srcu_read_unlock(&kvm->srcu, idx);
668
cec29eef 669 return r;
3039bcc7
SC
670}
671
672static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
673 unsigned long start,
674 unsigned long end,
3e1efe2b 675 union kvm_mmu_notifier_arg arg,
e97b39c5 676 gfn_handler_t handler)
3039bcc7
SC
677{
678 struct kvm *kvm = mmu_notifier_to_kvm(mn);
e97b39c5 679 const struct kvm_mmu_notifier_range range = {
3039bcc7
SC
680 .start = start,
681 .end = end,
3e1efe2b 682 .arg = arg,
3039bcc7 683 .handler = handler,
f922bd9b 684 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
685 .flush_on_ret = true,
686 .may_block = false,
687 };
3039bcc7 688
cec29eef 689 return __kvm_handle_hva_range(kvm, &range).ret;
3039bcc7
SC
690}
691
692static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
693 unsigned long start,
694 unsigned long end,
e97b39c5 695 gfn_handler_t handler)
3039bcc7
SC
696{
697 struct kvm *kvm = mmu_notifier_to_kvm(mn);
e97b39c5 698 const struct kvm_mmu_notifier_range range = {
3039bcc7
SC
699 .start = start,
700 .end = end,
3039bcc7 701 .handler = handler,
f922bd9b 702 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
703 .flush_on_ret = false,
704 .may_block = false,
705 };
3039bcc7 706
cec29eef 707 return __kvm_handle_hva_range(kvm, &range).ret;
3039bcc7 708}
2230f9e1
GS
709
710static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
711{
712 /*
713 * Skipping invalid memslots is correct if and only change_pte() is
714 * surrounded by invalidate_range_{start,end}(), which is currently
715 * guaranteed by the primary MMU. If that ever changes, KVM needs to
716 * unmap the memslot instead of skipping the memslot to ensure that KVM
717 * doesn't hold references to the old PFN.
718 */
719 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
720
721 if (range->slot->flags & KVM_MEMSLOT_INVALID)
722 return false;
723
724 return kvm_set_spte_gfn(kvm, range);
725}
726
3da0dd43
IE
727static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
728 struct mm_struct *mm,
729 unsigned long address,
730 pte_t pte)
731{
732 struct kvm *kvm = mmu_notifier_to_kvm(mn);
3e1efe2b 733 const union kvm_mmu_notifier_arg arg = { .pte = pte };
3da0dd43 734
501b9185
SC
735 trace_kvm_set_spte_hva(address);
736
c13fda23 737 /*
52ac8b35 738 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
20ec3ebd
CP
739 * If mmu_invalidate_in_progress is zero, then no in-progress
740 * invalidations, including this one, found a relevant memslot at
741 * start(); rechecking memslots here is unnecessary. Note, a false
742 * positive (count elevated by a different invalidation) is sub-optimal
743 * but functionally ok.
c13fda23 744 */
52ac8b35 745 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
20ec3ebd 746 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
071064f1 747 return;
c13fda23 748
3e1efe2b 749 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
3da0dd43
IE
750}
751
8569992d 752void kvm_mmu_invalidate_begin(struct kvm *kvm)
e930bffe 753{
8569992d 754 lockdep_assert_held_write(&kvm->mmu_lock);
e930bffe
AA
755 /*
756 * The count increase must become visible at unlock time as no
757 * spte can be established without taking the mmu_lock and
758 * count is also read inside the mmu_lock critical section.
759 */
20ec3ebd 760 kvm->mmu_invalidate_in_progress++;
8569992d 761
20ec3ebd 762 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
8569992d
CP
763 kvm->mmu_invalidate_range_start = INVALID_GPA;
764 kvm->mmu_invalidate_range_end = INVALID_GPA;
765 }
766}
767
768void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
769{
770 lockdep_assert_held_write(&kvm->mmu_lock);
771
772 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
773
774 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
20ec3ebd
CP
775 kvm->mmu_invalidate_range_start = start;
776 kvm->mmu_invalidate_range_end = end;
4a42d848
DS
777 } else {
778 /*
a413a625 779 * Fully tracking multiple concurrent ranges has diminishing
4a42d848
DS
780 * returns. Keep things simple and just find the minimal range
781 * which includes the current and new ranges. As there won't be
782 * enough information to subtract a range after its invalidate
783 * completes, any ranges invalidated concurrently will
784 * accumulate and persist until all outstanding invalidates
785 * complete.
786 */
20ec3ebd
CP
787 kvm->mmu_invalidate_range_start =
788 min(kvm->mmu_invalidate_range_start, start);
789 kvm->mmu_invalidate_range_end =
790 max(kvm->mmu_invalidate_range_end, end);
4a42d848 791 }
f922bd9b 792}
3039bcc7 793
a7800aa8 794bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
8569992d
CP
795{
796 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
797 return kvm_unmap_gfn_range(kvm, range);
798}
799
f922bd9b
SC
800static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
801 const struct mmu_notifier_range *range)
802{
803 struct kvm *kvm = mmu_notifier_to_kvm(mn);
e97b39c5 804 const struct kvm_mmu_notifier_range hva_range = {
f922bd9b
SC
805 .start = range->start,
806 .end = range->end,
8569992d 807 .handler = kvm_mmu_unmap_gfn_range,
20ec3ebd 808 .on_lock = kvm_mmu_invalidate_begin,
f922bd9b
SC
809 .flush_on_ret = true,
810 .may_block = mmu_notifier_range_blockable(range),
811 };
565f3be2 812
f922bd9b
SC
813 trace_kvm_unmap_hva_range(range->start, range->end);
814
52ac8b35
PB
815 /*
816 * Prevent memslot modification between range_start() and range_end()
817 * so that conditionally locking provides the same result in both
20ec3ebd 818 * functions. Without that guarantee, the mmu_invalidate_in_progress
52ac8b35
PB
819 * adjustments will be imbalanced.
820 *
821 * Pairs with the decrement in range_end().
822 */
823 spin_lock(&kvm->mn_invalidate_lock);
824 kvm->mn_active_invalidate_count++;
825 spin_unlock(&kvm->mn_invalidate_lock);
826
58cd407c
SC
827 /*
828 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
829 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
830 * each cache's lock. There are relatively few caches in existence at
831 * any given time, and the caches themselves can check for hva overlap,
832 * i.e. don't need to rely on memslot overlap checks for performance.
833 * Because this runs without holding mmu_lock, the pfn caches must use
20ec3ebd
CP
834 * mn_active_invalidate_count (see above) instead of
835 * mmu_invalidate_in_progress.
58cd407c 836 */
982ed0de
DW
837 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
838 hva_range.may_block);
839
cec29eef
SC
840 /*
841 * If one or more memslots were found and thus zapped, notify arch code
842 * that guest memory has been reclaimed. This needs to be done *after*
843 * dropping mmu_lock, as x86's reclaim path is slooooow.
844 */
845 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
846 kvm_arch_guest_memory_reclaimed(kvm);
93065ac7 847
e649b3f0 848 return 0;
e930bffe
AA
849}
850
8569992d 851void kvm_mmu_invalidate_end(struct kvm *kvm)
e930bffe 852{
8569992d
CP
853 lockdep_assert_held_write(&kvm->mmu_lock);
854
e930bffe
AA
855 /*
856 * This sequence increase will notify the kvm page fault that
857 * the page that is going to be mapped in the spte could have
858 * been freed.
859 */
20ec3ebd 860 kvm->mmu_invalidate_seq++;
a355aa54 861 smp_wmb();
e930bffe
AA
862 /*
863 * The above sequence increase must be visible before the
a355aa54 864 * below count decrease, which is ensured by the smp_wmb above
20ec3ebd 865 * in conjunction with the smp_rmb in mmu_invalidate_retry().
e930bffe 866 */
20ec3ebd 867 kvm->mmu_invalidate_in_progress--;
c0db1923 868 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
8569992d
CP
869
870 /*
871 * Assert that at least one range was added between start() and end().
872 * Not adding a range isn't fatal, but it is a KVM bug.
873 */
874 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
f922bd9b
SC
875}
876
877static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
878 const struct mmu_notifier_range *range)
879{
880 struct kvm *kvm = mmu_notifier_to_kvm(mn);
e97b39c5 881 const struct kvm_mmu_notifier_range hva_range = {
f922bd9b
SC
882 .start = range->start,
883 .end = range->end,
f922bd9b 884 .handler = (void *)kvm_null_fn,
20ec3ebd 885 .on_lock = kvm_mmu_invalidate_end,
f922bd9b
SC
886 .flush_on_ret = false,
887 .may_block = mmu_notifier_range_blockable(range),
888 };
52ac8b35 889 bool wake;
f922bd9b
SC
890
891 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe 892
52ac8b35
PB
893 /* Pairs with the increment in range_start(). */
894 spin_lock(&kvm->mn_invalidate_lock);
895 wake = (--kvm->mn_active_invalidate_count == 0);
896 spin_unlock(&kvm->mn_invalidate_lock);
897
898 /*
899 * There can only be one waiter, since the wait happens under
900 * slots_lock.
901 */
902 if (wake)
903 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
e930bffe
AA
904}
905
906static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
907 struct mm_struct *mm,
57128468
ALC
908 unsigned long start,
909 unsigned long end)
e930bffe 910{
501b9185
SC
911 trace_kvm_age_hva(start, end);
912
3e1efe2b
SC
913 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
914 kvm_age_gfn);
e930bffe
AA
915}
916
1d7715c6
VD
917static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
918 struct mm_struct *mm,
919 unsigned long start,
920 unsigned long end)
921{
501b9185
SC
922 trace_kvm_age_hva(start, end);
923
1d7715c6
VD
924 /*
925 * Even though we do not flush TLB, this will still adversely
926 * affect performance on pre-Haswell Intel EPT, where there is
927 * no EPT Access Bit to clear so that we have to tear down EPT
928 * tables instead. If we find this unacceptable, we can always
929 * add a parameter to kvm_age_hva so that it effectively doesn't
930 * do anything on clear_young.
931 *
932 * Also note that currently we never issue secondary TLB flushes
933 * from clear_young, leaving this job up to the regular system
934 * cadence. If we find this inaccurate, we might come up with a
935 * more sophisticated heuristic later.
936 */
3039bcc7 937 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
938}
939
8ee53820
AA
940static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
941 struct mm_struct *mm,
942 unsigned long address)
943{
501b9185
SC
944 trace_kvm_test_age_hva(address);
945
3039bcc7
SC
946 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
947 kvm_test_age_gfn);
8ee53820
AA
948}
949
85db06e5
MT
950static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
951 struct mm_struct *mm)
952{
953 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
954 int idx;
955
956 idx = srcu_read_lock(&kvm->srcu);
683412cc 957 kvm_flush_shadow_all(kvm);
eda2beda 958 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
959}
960
e930bffe 961static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
962 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
963 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
964 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 965 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 966 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 967 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 968 .release = kvm_mmu_notifier_release,
e930bffe 969};
4c07b0a4
AK
970
971static int kvm_init_mmu_notifier(struct kvm *kvm)
972{
973 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
974 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
975}
976
f128cf8c 977#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
4c07b0a4
AK
978
979static int kvm_init_mmu_notifier(struct kvm *kvm)
980{
981 return 0;
982}
983
f128cf8c 984#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
e930bffe 985
2fdef3a2
SS
986#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
987static int kvm_pm_notifier_call(struct notifier_block *bl,
988 unsigned long state,
989 void *unused)
990{
991 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
992
993 return kvm_arch_pm_notifier(kvm, state);
994}
995
996static void kvm_init_pm_notifier(struct kvm *kvm)
997{
998 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
999 /* Suspend KVM before we suspend ftrace, RCU, etc. */
1000 kvm->pm_notifier.priority = INT_MAX;
1001 register_pm_notifier(&kvm->pm_notifier);
1002}
1003
1004static void kvm_destroy_pm_notifier(struct kvm *kvm)
1005{
1006 unregister_pm_notifier(&kvm->pm_notifier);
1007}
1008#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1009static void kvm_init_pm_notifier(struct kvm *kvm)
1010{
1011}
1012
1013static void kvm_destroy_pm_notifier(struct kvm *kvm)
1014{
1015}
1016#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1017
a47d2b07
PB
1018static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1019{
1020 if (!memslot->dirty_bitmap)
1021 return;
1022
1023 kvfree(memslot->dirty_bitmap);
1024 memslot->dirty_bitmap = NULL;
1025}
1026
a54d8066 1027/* This does not remove the slot from struct kvm_memslots data structures */
e96c81ee 1028static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 1029{
a7800aa8
SC
1030 if (slot->flags & KVM_MEM_GUEST_MEMFD)
1031 kvm_gmem_unbind(slot);
1032
e96c81ee 1033 kvm_destroy_dirty_bitmap(slot);
a47d2b07 1034
e96c81ee 1035 kvm_arch_free_memslot(kvm, slot);
a47d2b07 1036
a54d8066 1037 kfree(slot);
a47d2b07
PB
1038}
1039
1040static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1041{
a54d8066 1042 struct hlist_node *idnode;
a47d2b07 1043 struct kvm_memory_slot *memslot;
a54d8066 1044 int bkt;
a47d2b07 1045
a54d8066
MS
1046 /*
1047 * The same memslot objects live in both active and inactive sets,
1048 * arbitrarily free using index '1' so the second invocation of this
1049 * function isn't operating over a structure with dangling pointers
1050 * (even though this function isn't actually touching them).
1051 */
1052 if (!slots->node_idx)
a47d2b07
PB
1053 return;
1054
a54d8066 1055 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
e96c81ee 1056 kvm_free_memslot(kvm, memslot);
bf3e05bc
XG
1057}
1058
bc9e9e67
JZ
1059static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1060{
1061 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1062 case KVM_STATS_TYPE_INSTANT:
1063 return 0444;
1064 case KVM_STATS_TYPE_CUMULATIVE:
1065 case KVM_STATS_TYPE_PEAK:
1066 default:
1067 return 0644;
1068 }
1069}
1070
1071
536a6f88
JF
1072static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1073{
1074 int i;
bc9e9e67
JZ
1075 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1076 kvm_vcpu_stats_header.num_desc;
536a6f88 1077
a44a4cc1 1078 if (IS_ERR(kvm->debugfs_dentry))
536a6f88
JF
1079 return;
1080
1081 debugfs_remove_recursive(kvm->debugfs_dentry);
1082
9d5a1dce
LC
1083 if (kvm->debugfs_stat_data) {
1084 for (i = 0; i < kvm_debugfs_num_entries; i++)
1085 kfree(kvm->debugfs_stat_data[i]);
1086 kfree(kvm->debugfs_stat_data);
1087 }
536a6f88
JF
1088}
1089
59f82aad 1090static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
536a6f88 1091{
85cd39af
PB
1092 static DEFINE_MUTEX(kvm_debugfs_lock);
1093 struct dentry *dent;
536a6f88
JF
1094 char dir_name[ITOA_MAX_LEN * 2];
1095 struct kvm_stat_data *stat_data;
bc9e9e67 1096 const struct _kvm_stats_desc *pdesc;
b74ed7a6 1097 int i, ret = -ENOMEM;
bc9e9e67
JZ
1098 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1099 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
1100
1101 if (!debugfs_initialized())
1102 return 0;
1103
59f82aad 1104 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
85cd39af
PB
1105 mutex_lock(&kvm_debugfs_lock);
1106 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1107 if (dent) {
1108 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1109 dput(dent);
1110 mutex_unlock(&kvm_debugfs_lock);
1111 return 0;
1112 }
1113 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1114 mutex_unlock(&kvm_debugfs_lock);
1115 if (IS_ERR(dent))
1116 return 0;
536a6f88 1117
85cd39af 1118 kvm->debugfs_dentry = dent;
536a6f88
JF
1119 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1120 sizeof(*kvm->debugfs_stat_data),
b12ce36a 1121 GFP_KERNEL_ACCOUNT);
536a6f88 1122 if (!kvm->debugfs_stat_data)
b74ed7a6 1123 goto out_err;
536a6f88 1124
bc9e9e67
JZ
1125 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1126 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 1127 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88 1128 if (!stat_data)
b74ed7a6 1129 goto out_err;
536a6f88
JF
1130
1131 stat_data->kvm = kvm;
bc9e9e67
JZ
1132 stat_data->desc = pdesc;
1133 stat_data->kind = KVM_STAT_VM;
1134 kvm->debugfs_stat_data[i] = stat_data;
1135 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1136 kvm->debugfs_dentry, stat_data,
1137 &stat_fops_per_vm);
1138 }
1139
1140 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1141 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 1142 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88 1143 if (!stat_data)
b74ed7a6 1144 goto out_err;
536a6f88
JF
1145
1146 stat_data->kvm = kvm;
bc9e9e67
JZ
1147 stat_data->desc = pdesc;
1148 stat_data->kind = KVM_STAT_VCPU;
004d62eb 1149 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 1150 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
1151 kvm->debugfs_dentry, stat_data,
1152 &stat_fops_per_vm);
536a6f88 1153 }
3165af73
PX
1154
1155 ret = kvm_arch_create_vm_debugfs(kvm);
b74ed7a6
OU
1156 if (ret)
1157 goto out_err;
3165af73 1158
536a6f88 1159 return 0;
b74ed7a6
OU
1160out_err:
1161 kvm_destroy_vm_debugfs(kvm);
1162 return ret;
536a6f88
JF
1163}
1164
1aa9b957
JS
1165/*
1166 * Called after the VM is otherwise initialized, but just before adding it to
1167 * the vm_list.
1168 */
1169int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1170{
1171 return 0;
1172}
1173
1174/*
1175 * Called just after removing the VM from the vm_list, but before doing any
1176 * other destruction.
1177 */
1178void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1179{
1180}
1181
3165af73
PX
1182/*
1183 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1184 * be setup already, so we can create arch-specific debugfs entries under it.
1185 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1186 * a per-arch destroy interface is not needed.
1187 */
1188int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1189{
1190 return 0;
1191}
1192
b74ed7a6 1193static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
6aa8b732 1194{
d89f5eff 1195 struct kvm *kvm = kvm_arch_alloc_vm();
a54d8066 1196 struct kvm_memslots *slots;
9121923c 1197 int r = -ENOMEM;
a54d8066 1198 int i, j;
6aa8b732 1199
d89f5eff
JK
1200 if (!kvm)
1201 return ERR_PTR(-ENOMEM);
1202
405294f2
SC
1203 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1204 __module_get(kvm_chardev_ops.owner);
1205
531810ca 1206 KVM_MMU_LOCK_INIT(kvm);
f1f10076 1207 mmgrab(current->mm);
e9ad4ec8
PB
1208 kvm->mm = current->mm;
1209 kvm_eventfd_init(kvm);
1210 mutex_init(&kvm->lock);
1211 mutex_init(&kvm->irq_lock);
1212 mutex_init(&kvm->slots_lock);
b10a038e 1213 mutex_init(&kvm->slots_arch_lock);
52ac8b35
PB
1214 spin_lock_init(&kvm->mn_invalidate_lock);
1215 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
c5b07754 1216 xa_init(&kvm->vcpu_array);
5a475554
CP
1217#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1218 xa_init(&kvm->mem_attr_array);
1219#endif
52ac8b35 1220
982ed0de
DW
1221 INIT_LIST_HEAD(&kvm->gpc_list);
1222 spin_lock_init(&kvm->gpc_lock);
52ac8b35 1223
e9ad4ec8 1224 INIT_LIST_HEAD(&kvm->devices);
f502cc56 1225 kvm->max_vcpus = KVM_MAX_VCPUS;
e9ad4ec8 1226
1e702d9a
AW
1227 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1228
5c697c36
SC
1229 /*
1230 * Force subsequent debugfs file creations to fail if the VM directory
1231 * is not created (by kvm_create_vm_debugfs()).
1232 */
1233 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1234
f2759c08
OU
1235 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1236 task_pid_nr(current));
1237
8a44119a
PB
1238 if (init_srcu_struct(&kvm->srcu))
1239 goto out_err_no_srcu;
1240 if (init_srcu_struct(&kvm->irq_srcu))
1241 goto out_err_no_irq_srcu;
1242
e2d3fcaf 1243 refcount_set(&kvm->users_count, 1);
eed52e43 1244 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
a54d8066
MS
1245 for (j = 0; j < 2; j++) {
1246 slots = &kvm->__memslots[i][j];
9121923c 1247
a54d8066
MS
1248 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1249 slots->hva_tree = RB_ROOT_CACHED;
1250 slots->gfn_tree = RB_ROOT;
1251 hash_init(slots->id_hash);
1252 slots->node_idx = j;
1253
1254 /* Generations must be different for each address space. */
1255 slots->generation = i;
1256 }
1257
1258 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
f481b069 1259 }
00f034a1 1260
e93f8a0f 1261 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1262 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1263 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1264 if (!kvm->buses[i])
a97b0e77 1265 goto out_err_no_arch_destroy_vm;
e93f8a0f 1266 }
e930bffe 1267
e08b9637 1268 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1269 if (r)
a97b0e77 1270 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1271
1272 r = hardware_enable_all();
1273 if (r)
719d93cd 1274 goto out_err_no_disable;
10474ae8 1275
c5b31cc2 1276#ifdef CONFIG_HAVE_KVM_IRQCHIP
136bdfee 1277 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1278#endif
6aa8b732 1279
74b5c5bf 1280 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1281 if (r)
1282 goto out_err_no_mmu_notifier;
1283
c2b82397
SC
1284 r = kvm_coalesced_mmio_init(kvm);
1285 if (r < 0)
1286 goto out_no_coalesced_mmio;
1287
4ba4f419
SC
1288 r = kvm_create_vm_debugfs(kvm, fdname);
1289 if (r)
1290 goto out_err_no_debugfs;
1291
1aa9b957 1292 r = kvm_arch_post_init_vm(kvm);
74b5c5bf 1293 if (r)
4ba4f419 1294 goto out_err;
74b5c5bf 1295
0d9ce162 1296 mutex_lock(&kvm_lock);
5e58cfe4 1297 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1298 mutex_unlock(&kvm_lock);
d89f5eff 1299
2ecd9d29 1300 preempt_notifier_inc();
2fdef3a2 1301 kvm_init_pm_notifier(kvm);
2ecd9d29 1302
f17abe9a 1303 return kvm;
10474ae8
AG
1304
1305out_err:
4ba4f419
SC
1306 kvm_destroy_vm_debugfs(kvm);
1307out_err_no_debugfs:
c2b82397
SC
1308 kvm_coalesced_mmio_free(kvm);
1309out_no_coalesced_mmio:
f128cf8c 1310#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1aa9b957
JS
1311 if (kvm->mmu_notifier.ops)
1312 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1313#endif
1314out_err_no_mmu_notifier:
10474ae8 1315 hardware_disable_all();
719d93cd 1316out_err_no_disable:
a97b0e77 1317 kvm_arch_destroy_vm(kvm);
a97b0e77 1318out_err_no_arch_destroy_vm:
e2d3fcaf 1319 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1320 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1321 kfree(kvm_get_bus(kvm, i));
8a44119a
PB
1322 cleanup_srcu_struct(&kvm->irq_srcu);
1323out_err_no_irq_srcu:
1324 cleanup_srcu_struct(&kvm->srcu);
1325out_err_no_srcu:
d89f5eff 1326 kvm_arch_free_vm(kvm);
e9ad4ec8 1327 mmdrop(current->mm);
405294f2 1328 module_put(kvm_chardev_ops.owner);
10474ae8 1329 return ERR_PTR(r);
f17abe9a
AK
1330}
1331
07f0a7bd
SW
1332static void kvm_destroy_devices(struct kvm *kvm)
1333{
e6e3b5a6 1334 struct kvm_device *dev, *tmp;
07f0a7bd 1335
a28ebea2
CD
1336 /*
1337 * We do not need to take the kvm->lock here, because nobody else
1338 * has a reference to the struct kvm at this point and therefore
1339 * cannot access the devices list anyhow.
1340 */
e6e3b5a6
GT
1341 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1342 list_del(&dev->vm_node);
07f0a7bd
SW
1343 dev->ops->destroy(dev);
1344 }
1345}
1346
f17abe9a
AK
1347static void kvm_destroy_vm(struct kvm *kvm)
1348{
e93f8a0f 1349 int i;
6d4e4c4f
AK
1350 struct mm_struct *mm = kvm->mm;
1351
2fdef3a2 1352 kvm_destroy_pm_notifier(kvm);
286de8f6 1353 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1354 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1355 kvm_arch_sync_events(kvm);
0d9ce162 1356 mutex_lock(&kvm_lock);
133de902 1357 list_del(&kvm->vm_list);
0d9ce162 1358 mutex_unlock(&kvm_lock);
1aa9b957
JS
1359 kvm_arch_pre_destroy_vm(kvm);
1360
399ec807 1361 kvm_free_irq_routing(kvm);
df630b8c 1362 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1363 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1364
4a12f951
CB
1365 if (bus)
1366 kvm_io_bus_destroy(bus);
df630b8c
PX
1367 kvm->buses[i] = NULL;
1368 }
980da6ce 1369 kvm_coalesced_mmio_free(kvm);
f128cf8c 1370#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
e930bffe 1371 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
52ac8b35
PB
1372 /*
1373 * At this point, pending calls to invalidate_range_start()
1374 * have completed but no more MMU notifiers will run, so
1375 * mn_active_invalidate_count may remain unbalanced.
b0d23708 1376 * No threads can be waiting in kvm_swap_active_memslots() as the
52ac8b35
PB
1377 * last reference on KVM has been dropped, but freeing
1378 * memslots would deadlock without this manual intervention.
d497a0fa
SC
1379 *
1380 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1381 * notifier between a start() and end(), then there shouldn't be any
1382 * in-progress invalidations.
52ac8b35
PB
1383 */
1384 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
d497a0fa
SC
1385 if (kvm->mn_active_invalidate_count)
1386 kvm->mn_active_invalidate_count = 0;
1387 else
1388 WARN_ON(kvm->mmu_invalidate_in_progress);
f00be0ca 1389#else
683412cc 1390 kvm_flush_shadow_all(kvm);
5f94c174 1391#endif
d19a9cd2 1392 kvm_arch_destroy_vm(kvm);
07f0a7bd 1393 kvm_destroy_devices(kvm);
eed52e43 1394 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
a54d8066
MS
1395 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1396 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1397 }
820b3fcd 1398 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff 1399 cleanup_srcu_struct(&kvm->srcu);
5a475554
CP
1400#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1401 xa_destroy(&kvm->mem_attr_array);
1402#endif
d89f5eff 1403 kvm_arch_free_vm(kvm);
2ecd9d29 1404 preempt_notifier_dec();
10474ae8 1405 hardware_disable_all();
6d4e4c4f 1406 mmdrop(mm);
5f6de5cb 1407 module_put(kvm_chardev_ops.owner);
f17abe9a
AK
1408}
1409
d39f13b0
IE
1410void kvm_get_kvm(struct kvm *kvm)
1411{
e3736c3e 1412 refcount_inc(&kvm->users_count);
d39f13b0
IE
1413}
1414EXPORT_SYMBOL_GPL(kvm_get_kvm);
1415
605c7130
PX
1416/*
1417 * Make sure the vm is not during destruction, which is a safe version of
1418 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1419 */
1420bool kvm_get_kvm_safe(struct kvm *kvm)
1421{
1422 return refcount_inc_not_zero(&kvm->users_count);
1423}
1424EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1425
d39f13b0
IE
1426void kvm_put_kvm(struct kvm *kvm)
1427{
e3736c3e 1428 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1429 kvm_destroy_vm(kvm);
1430}
1431EXPORT_SYMBOL_GPL(kvm_put_kvm);
1432
149487bd
SC
1433/*
1434 * Used to put a reference that was taken on behalf of an object associated
1435 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1436 * of the new file descriptor fails and the reference cannot be transferred to
1437 * its final owner. In such cases, the caller is still actively using @kvm and
1438 * will fail miserably if the refcount unexpectedly hits zero.
1439 */
1440void kvm_put_kvm_no_destroy(struct kvm *kvm)
1441{
1442 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1443}
1444EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1445
f17abe9a
AK
1446static int kvm_vm_release(struct inode *inode, struct file *filp)
1447{
1448 struct kvm *kvm = filp->private_data;
1449
721eecbf
GH
1450 kvm_irqfd_release(kvm);
1451
d39f13b0 1452 kvm_put_kvm(kvm);
6aa8b732
AK
1453 return 0;
1454}
1455
515a0127
TY
1456/*
1457 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1458 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1459 */
3c9bd400 1460static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1461{
37b2a651 1462 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1463
37b2a651 1464 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1465 if (!memslot->dirty_bitmap)
1466 return -ENOMEM;
1467
a36a57b1
TY
1468 return 0;
1469}
1470
a54d8066 1471static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
bf3e05bc 1472{
a54d8066
MS
1473 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1474 int node_idx_inactive = active->node_idx ^ 1;
0e60b079 1475
a54d8066 1476 return &kvm->__memslots[as_id][node_idx_inactive];
0577d1ab
SC
1477}
1478
1479/*
a54d8066
MS
1480 * Helper to get the address space ID when one of memslot pointers may be NULL.
1481 * This also serves as a sanity that at least one of the pointers is non-NULL,
1482 * and that their address space IDs don't diverge.
0577d1ab 1483 */
a54d8066
MS
1484static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1485 struct kvm_memory_slot *b)
0577d1ab 1486{
a54d8066
MS
1487 if (WARN_ON_ONCE(!a && !b))
1488 return 0;
0577d1ab 1489
a54d8066
MS
1490 if (!a)
1491 return b->as_id;
1492 if (!b)
1493 return a->as_id;
0577d1ab 1494
a54d8066
MS
1495 WARN_ON_ONCE(a->as_id != b->as_id);
1496 return a->as_id;
0577d1ab 1497}
efbeec70 1498
a54d8066
MS
1499static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1500 struct kvm_memory_slot *slot)
0577d1ab 1501{
a54d8066
MS
1502 struct rb_root *gfn_tree = &slots->gfn_tree;
1503 struct rb_node **node, *parent;
1504 int idx = slots->node_idx;
0577d1ab 1505
a54d8066
MS
1506 parent = NULL;
1507 for (node = &gfn_tree->rb_node; *node; ) {
1508 struct kvm_memory_slot *tmp;
f85e2cb5 1509
a54d8066
MS
1510 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1511 parent = *node;
1512 if (slot->base_gfn < tmp->base_gfn)
1513 node = &(*node)->rb_left;
1514 else if (slot->base_gfn > tmp->base_gfn)
1515 node = &(*node)->rb_right;
1516 else
1517 BUG();
0577d1ab 1518 }
a54d8066
MS
1519
1520 rb_link_node(&slot->gfn_node[idx], parent, node);
1521 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
0577d1ab
SC
1522}
1523
a54d8066
MS
1524static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1525 struct kvm_memory_slot *slot)
0577d1ab 1526{
a54d8066
MS
1527 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1528}
0577d1ab 1529
a54d8066
MS
1530static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1531 struct kvm_memory_slot *old,
1532 struct kvm_memory_slot *new)
1533{
1534 int idx = slots->node_idx;
0577d1ab 1535
a54d8066 1536 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
0577d1ab 1537
a54d8066
MS
1538 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1539 &slots->gfn_tree);
0577d1ab
SC
1540}
1541
1542/*
a54d8066 1543 * Replace @old with @new in the inactive memslots.
0577d1ab 1544 *
a54d8066
MS
1545 * With NULL @old this simply adds @new.
1546 * With NULL @new this simply removes @old.
0577d1ab 1547 *
a54d8066
MS
1548 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1549 * appropriately.
0577d1ab 1550 */
a54d8066
MS
1551static void kvm_replace_memslot(struct kvm *kvm,
1552 struct kvm_memory_slot *old,
1553 struct kvm_memory_slot *new)
0577d1ab 1554{
a54d8066
MS
1555 int as_id = kvm_memslots_get_as_id(old, new);
1556 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1557 int idx = slots->node_idx;
0577d1ab 1558
a54d8066
MS
1559 if (old) {
1560 hash_del(&old->id_node[idx]);
1561 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
0577d1ab 1562
a54d8066
MS
1563 if ((long)old == atomic_long_read(&slots->last_used_slot))
1564 atomic_long_set(&slots->last_used_slot, (long)new);
0577d1ab 1565
a54d8066
MS
1566 if (!new) {
1567 kvm_erase_gfn_node(slots, old);
1e8617d3 1568 return;
a54d8066
MS
1569 }
1570 }
1e8617d3 1571
a54d8066
MS
1572 /*
1573 * Initialize @new's hva range. Do this even when replacing an @old
1574 * slot, kvm_copy_memslot() deliberately does not touch node data.
1575 */
1576 new->hva_node[idx].start = new->userspace_addr;
1577 new->hva_node[idx].last = new->userspace_addr +
1578 (new->npages << PAGE_SHIFT) - 1;
1579
1580 /*
1581 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1582 * hva_node needs to be swapped with remove+insert even though hva can't
1583 * change when replacing an existing slot.
1584 */
1585 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1586 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1587
1588 /*
1589 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1590 * switch the node in the gfn tree instead of removing the old and
1591 * inserting the new as two separate operations. Replacement is a
1592 * single O(1) operation versus two O(log(n)) operations for
1593 * remove+insert.
1594 */
1595 if (old && old->base_gfn == new->base_gfn) {
1596 kvm_replace_gfn_node(slots, old, new);
1597 } else {
1598 if (old)
1599 kvm_erase_gfn_node(slots, old);
1600 kvm_insert_gfn_node(slots, new);
0577d1ab 1601 }
bf3e05bc
XG
1602}
1603
bb58b90b
SC
1604/*
1605 * Flags that do not access any of the extra space of struct
1606 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1607 * only allows these.
1608 */
1609#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1610 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1611
a7800aa8
SC
1612static int check_memory_region_flags(struct kvm *kvm,
1613 const struct kvm_userspace_memory_region2 *mem)
a50d64d6 1614{
4d8b81ab
XG
1615 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1616
a7800aa8
SC
1617 if (kvm_arch_has_private_mem(kvm))
1618 valid_flags |= KVM_MEM_GUEST_MEMFD;
1619
1620 /* Dirty logging private memory is not currently supported. */
1621 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1622 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1623
0f8a4de3 1624#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1625 valid_flags |= KVM_MEM_READONLY;
1626#endif
1627
1628 if (mem->flags & ~valid_flags)
a50d64d6
XG
1629 return -EINVAL;
1630
1631 return 0;
1632}
1633
a54d8066 1634static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
7ec4fb44 1635{
a54d8066
MS
1636 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1637
1638 /* Grab the generation from the activate memslots. */
1639 u64 gen = __kvm_memslots(kvm, as_id)->generation;
7ec4fb44 1640
361209e0
SC
1641 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1642 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1643
52ac8b35
PB
1644 /*
1645 * Do not store the new memslots while there are invalidations in
071064f1
PB
1646 * progress, otherwise the locking in invalidate_range_start and
1647 * invalidate_range_end will be unbalanced.
52ac8b35
PB
1648 */
1649 spin_lock(&kvm->mn_invalidate_lock);
1650 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1651 while (kvm->mn_active_invalidate_count) {
1652 set_current_state(TASK_UNINTERRUPTIBLE);
1653 spin_unlock(&kvm->mn_invalidate_lock);
1654 schedule();
1655 spin_lock(&kvm->mn_invalidate_lock);
1656 }
1657 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
f481b069 1658 rcu_assign_pointer(kvm->memslots[as_id], slots);
52ac8b35 1659 spin_unlock(&kvm->mn_invalidate_lock);
b10a038e
BG
1660
1661 /*
1662 * Acquired in kvm_set_memslot. Must be released before synchronize
1663 * SRCU below in order to avoid deadlock with another thread
1664 * acquiring the slots_arch_lock in an srcu critical section.
1665 */
1666 mutex_unlock(&kvm->slots_arch_lock);
1667
7ec4fb44 1668 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1669
ee3d1570 1670 /*
361209e0 1671 * Increment the new memslot generation a second time, dropping the
00116795 1672 * update in-progress flag and incrementing the generation based on
361209e0
SC
1673 * the number of address spaces. This provides a unique and easily
1674 * identifiable generation number while the memslots are in flux.
1675 */
1676 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1677
1678 /*
4bd518f1
PB
1679 * Generations must be unique even across address spaces. We do not need
1680 * a global counter for that, instead the generation space is evenly split
1681 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1682 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1683 * use generations 1, 3, 5, ...
ee3d1570 1684 */
eed52e43 1685 gen += kvm_arch_nr_memslot_as_ids(kvm);
ee3d1570 1686
15248258 1687 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1688
15248258 1689 slots->generation = gen;
7ec4fb44
GN
1690}
1691
07921665
SC
1692static int kvm_prepare_memory_region(struct kvm *kvm,
1693 const struct kvm_memory_slot *old,
1694 struct kvm_memory_slot *new,
1695 enum kvm_mr_change change)
ddc12f2a 1696{
07921665
SC
1697 int r;
1698
1699 /*
1700 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1701 * will be freed on "commit". If logging is enabled in both old and
1702 * new, reuse the existing bitmap. If logging is enabled only in the
1703 * new and KVM isn't using a ring buffer, allocate and initialize a
1704 * new bitmap.
1705 */
244893fa
SC
1706 if (change != KVM_MR_DELETE) {
1707 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1708 new->dirty_bitmap = NULL;
1709 else if (old && old->dirty_bitmap)
1710 new->dirty_bitmap = old->dirty_bitmap;
86bdf3eb 1711 else if (kvm_use_dirty_bitmap(kvm)) {
244893fa
SC
1712 r = kvm_alloc_dirty_bitmap(new);
1713 if (r)
1714 return r;
1715
1716 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1717 bitmap_set(new->dirty_bitmap, 0, new->npages);
1718 }
07921665
SC
1719 }
1720
1721 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1722
1723 /* Free the bitmap on failure if it was allocated above. */
c87661f8 1724 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
07921665
SC
1725 kvm_destroy_dirty_bitmap(new);
1726
1727 return r;
ddc12f2a
BG
1728}
1729
07921665
SC
1730static void kvm_commit_memory_region(struct kvm *kvm,
1731 struct kvm_memory_slot *old,
1732 const struct kvm_memory_slot *new,
1733 enum kvm_mr_change change)
ddc12f2a 1734{
6c7b2202
PB
1735 int old_flags = old ? old->flags : 0;
1736 int new_flags = new ? new->flags : 0;
07921665
SC
1737 /*
1738 * Update the total number of memslot pages before calling the arch
1739 * hook so that architectures can consume the result directly.
1740 */
1741 if (change == KVM_MR_DELETE)
1742 kvm->nr_memslot_pages -= old->npages;
1743 else if (change == KVM_MR_CREATE)
1744 kvm->nr_memslot_pages += new->npages;
1745
6c7b2202
PB
1746 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1747 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1748 atomic_set(&kvm->nr_memslots_dirty_logging,
1749 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1750 }
1751
07921665
SC
1752 kvm_arch_commit_memory_region(kvm, old, new, change);
1753
a54d8066
MS
1754 switch (change) {
1755 case KVM_MR_CREATE:
1756 /* Nothing more to do. */
1757 break;
1758 case KVM_MR_DELETE:
1759 /* Free the old memslot and all its metadata. */
1760 kvm_free_memslot(kvm, old);
1761 break;
1762 case KVM_MR_MOVE:
1763 case KVM_MR_FLAGS_ONLY:
1764 /*
1765 * Free the dirty bitmap as needed; the below check encompasses
1766 * both the flags and whether a ring buffer is being used)
1767 */
1768 if (old->dirty_bitmap && !new->dirty_bitmap)
1769 kvm_destroy_dirty_bitmap(old);
1770
1771 /*
1772 * The final quirk. Free the detached, old slot, but only its
1773 * memory, not any metadata. Metadata, including arch specific
1774 * data, may be reused by @new.
1775 */
1776 kfree(old);
1777 break;
1778 default:
1779 BUG();
1780 }
ddc12f2a
BG
1781}
1782
36947254 1783/*
a54d8066
MS
1784 * Activate @new, which must be installed in the inactive slots by the caller,
1785 * by swapping the active slots and then propagating @new to @old once @old is
1786 * unreachable and can be safely modified.
1787 *
1788 * With NULL @old this simply adds @new to @active (while swapping the sets).
1789 * With NULL @new this simply removes @old from @active and frees it
1790 * (while also swapping the sets).
36947254 1791 */
a54d8066
MS
1792static void kvm_activate_memslot(struct kvm *kvm,
1793 struct kvm_memory_slot *old,
1794 struct kvm_memory_slot *new)
36947254 1795{
a54d8066 1796 int as_id = kvm_memslots_get_as_id(old, new);
36947254 1797
a54d8066
MS
1798 kvm_swap_active_memslots(kvm, as_id);
1799
1800 /* Propagate the new memslot to the now inactive memslots. */
1801 kvm_replace_memslot(kvm, old, new);
1802}
1803
1804static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1805 const struct kvm_memory_slot *src)
1806{
1807 dest->base_gfn = src->base_gfn;
1808 dest->npages = src->npages;
1809 dest->dirty_bitmap = src->dirty_bitmap;
1810 dest->arch = src->arch;
1811 dest->userspace_addr = src->userspace_addr;
1812 dest->flags = src->flags;
1813 dest->id = src->id;
1814 dest->as_id = src->as_id;
1815}
1816
1817static void kvm_invalidate_memslot(struct kvm *kvm,
1818 struct kvm_memory_slot *old,
244893fa 1819 struct kvm_memory_slot *invalid_slot)
a54d8066 1820{
07921665 1821 /*
a54d8066
MS
1822 * Mark the current slot INVALID. As with all memslot modifications,
1823 * this must be done on an unreachable slot to avoid modifying the
1824 * current slot in the active tree.
07921665 1825 */
244893fa
SC
1826 kvm_copy_memslot(invalid_slot, old);
1827 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1828 kvm_replace_memslot(kvm, old, invalid_slot);
a54d8066
MS
1829
1830 /*
1831 * Activate the slot that is now marked INVALID, but don't propagate
1832 * the slot to the now inactive slots. The slot is either going to be
1833 * deleted or recreated as a new slot.
1834 */
1835 kvm_swap_active_memslots(kvm, old->as_id);
1836
1837 /*
1838 * From this point no new shadow pages pointing to a deleted, or moved,
1839 * memslot will be created. Validation of sp->gfn happens in:
1840 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1841 * - kvm_is_visible_gfn (mmu_check_root)
1842 */
bcb63dcd 1843 kvm_arch_flush_shadow_memslot(kvm, old);
683412cc 1844 kvm_arch_guest_memory_reclaimed(kvm);
a54d8066 1845
b0d23708 1846 /* Was released by kvm_swap_active_memslots(), reacquire. */
a54d8066
MS
1847 mutex_lock(&kvm->slots_arch_lock);
1848
1849 /*
1850 * Copy the arch-specific field of the newly-installed slot back to the
1851 * old slot as the arch data could have changed between releasing
b0d23708 1852 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
a54d8066
MS
1853 * above. Writers are required to retrieve memslots *after* acquiring
1854 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1855 */
244893fa 1856 old->arch = invalid_slot->arch;
a54d8066
MS
1857}
1858
1859static void kvm_create_memslot(struct kvm *kvm,
244893fa 1860 struct kvm_memory_slot *new)
a54d8066 1861{
244893fa
SC
1862 /* Add the new memslot to the inactive set and activate. */
1863 kvm_replace_memslot(kvm, NULL, new);
1864 kvm_activate_memslot(kvm, NULL, new);
a54d8066
MS
1865}
1866
1867static void kvm_delete_memslot(struct kvm *kvm,
1868 struct kvm_memory_slot *old,
1869 struct kvm_memory_slot *invalid_slot)
1870{
1871 /*
1872 * Remove the old memslot (in the inactive memslots) by passing NULL as
244893fa 1873 * the "new" slot, and for the invalid version in the active slots.
a54d8066
MS
1874 */
1875 kvm_replace_memslot(kvm, old, NULL);
a54d8066 1876 kvm_activate_memslot(kvm, invalid_slot, NULL);
a54d8066 1877}
36947254 1878
244893fa
SC
1879static void kvm_move_memslot(struct kvm *kvm,
1880 struct kvm_memory_slot *old,
1881 struct kvm_memory_slot *new,
1882 struct kvm_memory_slot *invalid_slot)
a54d8066 1883{
a54d8066 1884 /*
244893fa
SC
1885 * Replace the old memslot in the inactive slots, and then swap slots
1886 * and replace the current INVALID with the new as well.
a54d8066 1887 */
244893fa
SC
1888 kvm_replace_memslot(kvm, old, new);
1889 kvm_activate_memslot(kvm, invalid_slot, new);
a54d8066 1890}
36947254 1891
a54d8066
MS
1892static void kvm_update_flags_memslot(struct kvm *kvm,
1893 struct kvm_memory_slot *old,
244893fa 1894 struct kvm_memory_slot *new)
a54d8066
MS
1895{
1896 /*
1897 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1898 * an intermediate step. Instead, the old memslot is simply replaced
1899 * with a new, updated copy in both memslot sets.
1900 */
244893fa
SC
1901 kvm_replace_memslot(kvm, old, new);
1902 kvm_activate_memslot(kvm, old, new);
36947254
SC
1903}
1904
cf47f50b 1905static int kvm_set_memslot(struct kvm *kvm,
a54d8066 1906 struct kvm_memory_slot *old,
ce5f0215 1907 struct kvm_memory_slot *new,
cf47f50b
SC
1908 enum kvm_mr_change change)
1909{
244893fa 1910 struct kvm_memory_slot *invalid_slot;
cf47f50b
SC
1911 int r;
1912
b10a038e 1913 /*
b0d23708 1914 * Released in kvm_swap_active_memslots().
b10a038e 1915 *
b0d23708
JM
1916 * Must be held from before the current memslots are copied until after
1917 * the new memslots are installed with rcu_assign_pointer, then
1918 * released before the synchronize srcu in kvm_swap_active_memslots().
b10a038e
BG
1919 *
1920 * When modifying memslots outside of the slots_lock, must be held
1921 * before reading the pointer to the current memslots until after all
1922 * changes to those memslots are complete.
1923 *
1924 * These rules ensure that installing new memslots does not lose
1925 * changes made to the previous memslots.
1926 */
1927 mutex_lock(&kvm->slots_arch_lock);
1928
a54d8066
MS
1929 /*
1930 * Invalidate the old slot if it's being deleted or moved. This is
1931 * done prior to actually deleting/moving the memslot to allow vCPUs to
1932 * continue running by ensuring there are no mappings or shadow pages
1933 * for the memslot when it is deleted/moved. Without pre-invalidation
1934 * (and without a lock), a window would exist between effecting the
1935 * delete/move and committing the changes in arch code where KVM or a
1936 * guest could access a non-existent memslot.
244893fa
SC
1937 *
1938 * Modifications are done on a temporary, unreachable slot. The old
1939 * slot needs to be preserved in case a later step fails and the
1940 * invalidation needs to be reverted.
a54d8066 1941 */
cf47f50b 1942 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
244893fa
SC
1943 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1944 if (!invalid_slot) {
1945 mutex_unlock(&kvm->slots_arch_lock);
1946 return -ENOMEM;
1947 }
1948 kvm_invalidate_memslot(kvm, old, invalid_slot);
1949 }
b10a038e 1950
a54d8066
MS
1951 r = kvm_prepare_memory_region(kvm, old, new, change);
1952 if (r) {
b10a038e 1953 /*
a54d8066
MS
1954 * For DELETE/MOVE, revert the above INVALID change. No
1955 * modifications required since the original slot was preserved
1956 * in the inactive slots. Changing the active memslots also
1957 * release slots_arch_lock.
b10a038e 1958 */
244893fa
SC
1959 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1960 kvm_activate_memslot(kvm, invalid_slot, old);
1961 kfree(invalid_slot);
1962 } else {
a54d8066 1963 mutex_unlock(&kvm->slots_arch_lock);
244893fa 1964 }
a54d8066 1965 return r;
cf47f50b
SC
1966 }
1967
bda44d84 1968 /*
a54d8066
MS
1969 * For DELETE and MOVE, the working slot is now active as the INVALID
1970 * version of the old slot. MOVE is particularly special as it reuses
1971 * the old slot and returns a copy of the old slot (in working_slot).
1972 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1973 * old slot is detached but otherwise preserved.
bda44d84 1974 */
a54d8066 1975 if (change == KVM_MR_CREATE)
244893fa 1976 kvm_create_memslot(kvm, new);
a54d8066 1977 else if (change == KVM_MR_DELETE)
244893fa 1978 kvm_delete_memslot(kvm, old, invalid_slot);
a54d8066 1979 else if (change == KVM_MR_MOVE)
244893fa 1980 kvm_move_memslot(kvm, old, new, invalid_slot);
a54d8066 1981 else if (change == KVM_MR_FLAGS_ONLY)
244893fa 1982 kvm_update_flags_memslot(kvm, old, new);
a54d8066
MS
1983 else
1984 BUG();
cf47f50b 1985
244893fa
SC
1986 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1987 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1988 kfree(invalid_slot);
bda44d84 1989
a54d8066
MS
1990 /*
1991 * No need to refresh new->arch, changes after dropping slots_arch_lock
a413a625 1992 * will directly hit the final, active memslot. Architectures are
a54d8066
MS
1993 * responsible for knowing that new->arch may be stale.
1994 */
1995 kvm_commit_memory_region(kvm, old, new, change);
cf47f50b 1996
cf47f50b 1997 return 0;
cf47f50b
SC
1998}
1999
44401a20
MS
2000static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2001 gfn_t start, gfn_t end)
5c0b4f3d 2002{
44401a20 2003 struct kvm_memslot_iter iter;
5c0b4f3d 2004
44401a20
MS
2005 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2006 if (iter.slot->id != id)
2007 return true;
2008 }
5c0b4f3d 2009
44401a20 2010 return false;
5c0b4f3d
SC
2011}
2012
6aa8b732
AK
2013/*
2014 * Allocate some memory and give it an address in the guest physical address
2015 * space.
2016 *
2017 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 2018 *
02d5d55b 2019 * Must be called holding kvm->slots_lock for write.
6aa8b732 2020 */
f78e0e2e 2021int __kvm_set_memory_region(struct kvm *kvm,
bb58b90b 2022 const struct kvm_userspace_memory_region2 *mem)
6aa8b732 2023{
244893fa 2024 struct kvm_memory_slot *old, *new;
44401a20 2025 struct kvm_memslots *slots;
f64c0398 2026 enum kvm_mr_change change;
0f9bdef3
SC
2027 unsigned long npages;
2028 gfn_t base_gfn;
163da372
SC
2029 int as_id, id;
2030 int r;
6aa8b732 2031
a7800aa8 2032 r = check_memory_region_flags(kvm, mem);
a50d64d6 2033 if (r)
71a4c30b 2034 return r;
a50d64d6 2035
f481b069
PB
2036 as_id = mem->slot >> 16;
2037 id = (u16)mem->slot;
2038
6aa8b732 2039 /* General sanity checks */
6b285a55
SC
2040 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2041 (mem->memory_size != (unsigned long)mem->memory_size))
71a4c30b 2042 return -EINVAL;
6aa8b732 2043 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 2044 return -EINVAL;
fa3d315a 2045 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 2046 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 2047 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 2048 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 2049 mem->memory_size))
71a4c30b 2050 return -EINVAL;
a7800aa8
SC
2051 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2052 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2053 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2054 return -EINVAL;
eed52e43 2055 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 2056 return -EINVAL;
6aa8b732 2057 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 2058 return -EINVAL;
0f9bdef3
SC
2059 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2060 return -EINVAL;
6aa8b732 2061
44401a20 2062 slots = __kvm_memslots(kvm, as_id);
6aa8b732 2063
5c0b4f3d 2064 /*
7cd08553
SC
2065 * Note, the old memslot (and the pointer itself!) may be invalidated
2066 * and/or destroyed by kvm_set_memslot().
5c0b4f3d 2067 */
44401a20 2068 old = id_to_memslot(slots, id);
163da372 2069
47ea7d90 2070 if (!mem->memory_size) {
7cd08553 2071 if (!old || !old->npages)
47ea7d90 2072 return -EINVAL;
5c0b4f3d 2073
7cd08553 2074 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
47ea7d90 2075 return -EIO;
6aa8b732 2076
244893fa 2077 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
47ea7d90 2078 }
5c0b4f3d 2079
0f9bdef3
SC
2080 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2081 npages = (mem->memory_size >> PAGE_SHIFT);
163da372 2082
7cd08553 2083 if (!old || !old->npages) {
5c0b4f3d 2084 change = KVM_MR_CREATE;
afa319a5
SC
2085
2086 /*
2087 * To simplify KVM internals, the total number of pages across
2088 * all memslots must fit in an unsigned long.
2089 */
0f9bdef3 2090 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
afa319a5 2091 return -EINVAL;
5c0b4f3d 2092 } else { /* Modify an existing slot. */
a7800aa8
SC
2093 /* Private memslots are immutable, they can only be deleted. */
2094 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2095 return -EINVAL;
0f9bdef3
SC
2096 if ((mem->userspace_addr != old->userspace_addr) ||
2097 (npages != old->npages) ||
2098 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
71a4c30b 2099 return -EINVAL;
09170a49 2100
0f9bdef3 2101 if (base_gfn != old->base_gfn)
5c0b4f3d 2102 change = KVM_MR_MOVE;
0f9bdef3 2103 else if (mem->flags != old->flags)
5c0b4f3d
SC
2104 change = KVM_MR_FLAGS_ONLY;
2105 else /* Nothing to change. */
2106 return 0;
09170a49 2107 }
6aa8b732 2108
44401a20 2109 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
0f9bdef3 2110 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
44401a20 2111 return -EEXIST;
6aa8b732 2112
244893fa
SC
2113 /* Allocate a slot that will persist in the memslot. */
2114 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2115 if (!new)
2116 return -ENOMEM;
3c9bd400 2117
244893fa
SC
2118 new->as_id = as_id;
2119 new->id = id;
2120 new->base_gfn = base_gfn;
2121 new->npages = npages;
2122 new->flags = mem->flags;
2123 new->userspace_addr = mem->userspace_addr;
a7800aa8
SC
2124 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2125 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2126 if (r)
2127 goto out;
2128 }
6aa8b732 2129
244893fa 2130 r = kvm_set_memslot(kvm, old, new, change);
cf47f50b 2131 if (r)
a7800aa8
SC
2132 goto out_unbind;
2133
2134 return 0;
2135
2136out_unbind:
2137 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2138 kvm_gmem_unbind(new);
2139out:
2140 kfree(new);
6aa8b732 2141 return r;
210c7c4d 2142}
f78e0e2e
SY
2143EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2144
2145int kvm_set_memory_region(struct kvm *kvm,
bb58b90b 2146 const struct kvm_userspace_memory_region2 *mem)
f78e0e2e
SY
2147{
2148 int r;
2149
79fac95e 2150 mutex_lock(&kvm->slots_lock);
47ae31e2 2151 r = __kvm_set_memory_region(kvm, mem);
79fac95e 2152 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
2153 return r;
2154}
210c7c4d
IE
2155EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2156
7940876e 2157static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
bb58b90b 2158 struct kvm_userspace_memory_region2 *mem)
210c7c4d 2159{
f481b069 2160 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 2161 return -EINVAL;
09170a49 2162
47ae31e2 2163 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
2164}
2165
0dff0846 2166#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
2167/**
2168 * kvm_get_dirty_log - get a snapshot of dirty pages
2169 * @kvm: pointer to kvm instance
2170 * @log: slot id and address to which we copy the log
2171 * @is_dirty: set to '1' if any dirty pages were found
2172 * @memslot: set to the associated memslot, always valid on success
2173 */
2174int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2175 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 2176{
9f6b8029 2177 struct kvm_memslots *slots;
843574a3 2178 int i, as_id, id;
87bf6e7d 2179 unsigned long n;
6aa8b732
AK
2180 unsigned long any = 0;
2181
86bdf3eb
GS
2182 /* Dirty ring tracking may be exclusive to dirty log tracking */
2183 if (!kvm_use_dirty_bitmap(kvm))
b2cc64c4
PX
2184 return -ENXIO;
2185
2a49f61d
SC
2186 *memslot = NULL;
2187 *is_dirty = 0;
2188
f481b069
PB
2189 as_id = log->slot >> 16;
2190 id = (u16)log->slot;
eed52e43 2191 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
843574a3 2192 return -EINVAL;
6aa8b732 2193
f481b069 2194 slots = __kvm_memslots(kvm, as_id);
2a49f61d 2195 *memslot = id_to_memslot(slots, id);
0577d1ab 2196 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 2197 return -ENOENT;
6aa8b732 2198
2a49f61d
SC
2199 kvm_arch_sync_dirty_log(kvm, *memslot);
2200
2201 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 2202
cd1a4a98 2203 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 2204 any = (*memslot)->dirty_bitmap[i];
6aa8b732 2205
2a49f61d 2206 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 2207 return -EFAULT;
6aa8b732 2208
5bb064dc
ZX
2209 if (any)
2210 *is_dirty = 1;
843574a3 2211 return 0;
6aa8b732 2212}
2ba9f0d8 2213EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 2214
0dff0846 2215#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2216/**
b8b00220 2217 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 2218 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
2219 * @kvm: pointer to kvm instance
2220 * @log: slot id and address to which we copy the log
ba0513b5
MS
2221 *
2222 * We need to keep it in mind that VCPU threads can write to the bitmap
2223 * concurrently. So, to avoid losing track of dirty pages we keep the
2224 * following order:
2225 *
2226 * 1. Take a snapshot of the bit and clear it if needed.
2227 * 2. Write protect the corresponding page.
2228 * 3. Copy the snapshot to the userspace.
2229 * 4. Upon return caller flushes TLB's if needed.
2230 *
2231 * Between 2 and 4, the guest may write to the page using the remaining TLB
2232 * entry. This is not a problem because the page is reported dirty using
2233 * the snapshot taken before and step 4 ensures that writes done after
2234 * exiting to userspace will be logged for the next call.
2235 *
2236 */
0dff0846 2237static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 2238{
9f6b8029 2239 struct kvm_memslots *slots;
ba0513b5 2240 struct kvm_memory_slot *memslot;
58d6db34 2241 int i, as_id, id;
ba0513b5
MS
2242 unsigned long n;
2243 unsigned long *dirty_bitmap;
2244 unsigned long *dirty_bitmap_buffer;
0dff0846 2245 bool flush;
ba0513b5 2246
86bdf3eb
GS
2247 /* Dirty ring tracking may be exclusive to dirty log tracking */
2248 if (!kvm_use_dirty_bitmap(kvm))
b2cc64c4
PX
2249 return -ENXIO;
2250
f481b069
PB
2251 as_id = log->slot >> 16;
2252 id = (u16)log->slot;
eed52e43 2253 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
58d6db34 2254 return -EINVAL;
ba0513b5 2255
f481b069
PB
2256 slots = __kvm_memslots(kvm, as_id);
2257 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2258 if (!memslot || !memslot->dirty_bitmap)
2259 return -ENOENT;
ba0513b5
MS
2260
2261 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 2262
0dff0846
SC
2263 kvm_arch_sync_dirty_log(kvm, memslot);
2264
ba0513b5 2265 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 2266 flush = false;
2a31b9db
PB
2267 if (kvm->manual_dirty_log_protect) {
2268 /*
2269 * Unlike kvm_get_dirty_log, we always return false in *flush,
2270 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2271 * is some code duplication between this function and
2272 * kvm_get_dirty_log, but hopefully all architecture
2273 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2274 * can be eliminated.
2275 */
2276 dirty_bitmap_buffer = dirty_bitmap;
2277 } else {
2278 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2279 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 2280
531810ca 2281 KVM_MMU_LOCK(kvm);
2a31b9db
PB
2282 for (i = 0; i < n / sizeof(long); i++) {
2283 unsigned long mask;
2284 gfn_t offset;
ba0513b5 2285
2a31b9db
PB
2286 if (!dirty_bitmap[i])
2287 continue;
2288
0dff0846 2289 flush = true;
2a31b9db
PB
2290 mask = xchg(&dirty_bitmap[i], 0);
2291 dirty_bitmap_buffer[i] = mask;
2292
a67794ca
LT
2293 offset = i * BITS_PER_LONG;
2294 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2295 offset, mask);
2a31b9db 2296 }
531810ca 2297 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
2298 }
2299
0dff0846 2300 if (flush)
619b5072 2301 kvm_flush_remote_tlbs_memslot(kvm, memslot);
0dff0846 2302
2a31b9db
PB
2303 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2304 return -EFAULT;
2305 return 0;
2306}
0dff0846
SC
2307
2308
2309/**
2310 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2311 * @kvm: kvm instance
2312 * @log: slot id and address to which we copy the log
2313 *
2314 * Steps 1-4 below provide general overview of dirty page logging. See
2315 * kvm_get_dirty_log_protect() function description for additional details.
2316 *
2317 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2318 * always flush the TLB (step 4) even if previous step failed and the dirty
2319 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2320 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2321 * writes will be marked dirty for next log read.
2322 *
2323 * 1. Take a snapshot of the bit and clear it if needed.
2324 * 2. Write protect the corresponding page.
2325 * 3. Copy the snapshot to the userspace.
2326 * 4. Flush TLB's if needed.
2327 */
2328static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2329 struct kvm_dirty_log *log)
2330{
2331 int r;
2332
2333 mutex_lock(&kvm->slots_lock);
2334
2335 r = kvm_get_dirty_log_protect(kvm, log);
2336
2337 mutex_unlock(&kvm->slots_lock);
2338 return r;
2339}
2a31b9db
PB
2340
2341/**
2342 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2343 * and reenable dirty page tracking for the corresponding pages.
2344 * @kvm: pointer to kvm instance
2345 * @log: slot id and address from which to fetch the bitmap of dirty pages
2346 */
0dff0846
SC
2347static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2348 struct kvm_clear_dirty_log *log)
2a31b9db
PB
2349{
2350 struct kvm_memslots *slots;
2351 struct kvm_memory_slot *memslot;
98938aa8 2352 int as_id, id;
2a31b9db 2353 gfn_t offset;
98938aa8 2354 unsigned long i, n;
2a31b9db
PB
2355 unsigned long *dirty_bitmap;
2356 unsigned long *dirty_bitmap_buffer;
0dff0846 2357 bool flush;
2a31b9db 2358
86bdf3eb
GS
2359 /* Dirty ring tracking may be exclusive to dirty log tracking */
2360 if (!kvm_use_dirty_bitmap(kvm))
b2cc64c4
PX
2361 return -ENXIO;
2362
2a31b9db
PB
2363 as_id = log->slot >> 16;
2364 id = (u16)log->slot;
eed52e43 2365 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2a31b9db
PB
2366 return -EINVAL;
2367
76d58e0f 2368 if (log->first_page & 63)
2a31b9db
PB
2369 return -EINVAL;
2370
2371 slots = __kvm_memslots(kvm, as_id);
2372 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2373 if (!memslot || !memslot->dirty_bitmap)
2374 return -ENOENT;
2a31b9db
PB
2375
2376 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 2377
4ddc9204 2378 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
2379
2380 if (log->first_page > memslot->npages ||
76d58e0f
PB
2381 log->num_pages > memslot->npages - log->first_page ||
2382 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2383 return -EINVAL;
98938aa8 2384
0dff0846
SC
2385 kvm_arch_sync_dirty_log(kvm, memslot);
2386
2387 flush = false;
2a31b9db
PB
2388 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2389 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2390 return -EFAULT;
ba0513b5 2391
531810ca 2392 KVM_MMU_LOCK(kvm);
53eac7a8
PX
2393 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2394 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
2395 i++, offset += BITS_PER_LONG) {
2396 unsigned long mask = *dirty_bitmap_buffer++;
2397 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2398 if (!mask)
ba0513b5
MS
2399 continue;
2400
2a31b9db 2401 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 2402
2a31b9db
PB
2403 /*
2404 * mask contains the bits that really have been cleared. This
2405 * never includes any bits beyond the length of the memslot (if
2406 * the length is not aligned to 64 pages), therefore it is not
2407 * a problem if userspace sets them in log->dirty_bitmap.
2408 */
58d2930f 2409 if (mask) {
0dff0846 2410 flush = true;
58d2930f
TY
2411 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2412 offset, mask);
2413 }
ba0513b5 2414 }
531810ca 2415 KVM_MMU_UNLOCK(kvm);
2a31b9db 2416
0dff0846 2417 if (flush)
619b5072 2418 kvm_flush_remote_tlbs_memslot(kvm, memslot);
0dff0846 2419
58d6db34 2420 return 0;
ba0513b5 2421}
0dff0846
SC
2422
2423static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2424 struct kvm_clear_dirty_log *log)
2425{
2426 int r;
2427
2428 mutex_lock(&kvm->slots_lock);
2429
2430 r = kvm_clear_dirty_log_protect(kvm, log);
2431
2432 mutex_unlock(&kvm->slots_lock);
2433 return r;
2434}
2435#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2436
5a475554
CP
2437#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2438/*
2439 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2440 * matching @attrs.
2441 */
2442bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2443 unsigned long attrs)
2444{
2445 XA_STATE(xas, &kvm->mem_attr_array, start);
2446 unsigned long index;
2447 bool has_attrs;
2448 void *entry;
2449
2450 rcu_read_lock();
2451
2452 if (!attrs) {
2453 has_attrs = !xas_find(&xas, end - 1);
2454 goto out;
2455 }
2456
2457 has_attrs = true;
2458 for (index = start; index < end; index++) {
2459 do {
2460 entry = xas_next(&xas);
2461 } while (xas_retry(&xas, entry));
2462
2463 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2464 has_attrs = false;
2465 break;
2466 }
2467 }
2468
2469out:
2470 rcu_read_unlock();
2471 return has_attrs;
2472}
2473
2474static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2475{
a7800aa8 2476 if (!kvm || kvm_arch_has_private_mem(kvm))
5a475554
CP
2477 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2478
2479 return 0;
2480}
2481
2482static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2483 struct kvm_mmu_notifier_range *range)
2484{
2485 struct kvm_gfn_range gfn_range;
2486 struct kvm_memory_slot *slot;
2487 struct kvm_memslots *slots;
2488 struct kvm_memslot_iter iter;
2489 bool found_memslot = false;
2490 bool ret = false;
2491 int i;
2492
2493 gfn_range.arg = range->arg;
2494 gfn_range.may_block = range->may_block;
2495
eed52e43 2496 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5a475554
CP
2497 slots = __kvm_memslots(kvm, i);
2498
2499 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2500 slot = iter.slot;
2501 gfn_range.slot = slot;
2502
2503 gfn_range.start = max(range->start, slot->base_gfn);
2504 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2505 if (gfn_range.start >= gfn_range.end)
2506 continue;
2507
2508 if (!found_memslot) {
2509 found_memslot = true;
2510 KVM_MMU_LOCK(kvm);
2511 if (!IS_KVM_NULL_FN(range->on_lock))
2512 range->on_lock(kvm);
2513 }
2514
2515 ret |= range->handler(kvm, &gfn_range);
2516 }
2517 }
2518
2519 if (range->flush_on_ret && ret)
2520 kvm_flush_remote_tlbs(kvm);
2521
2522 if (found_memslot)
2523 KVM_MMU_UNLOCK(kvm);
2524}
2525
2526static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2527 struct kvm_gfn_range *range)
2528{
2529 /*
2530 * Unconditionally add the range to the invalidation set, regardless of
2531 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2532 * if KVM supports RWX attributes in the future and the attributes are
2533 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2534 * adding the range allows KVM to require that MMU invalidations add at
2535 * least one range between begin() and end(), e.g. allows KVM to detect
2536 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2537 * but it's not obvious that allowing new mappings while the attributes
2538 * are in flux is desirable or worth the complexity.
2539 */
2540 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2541
2542 return kvm_arch_pre_set_memory_attributes(kvm, range);
2543}
2544
2545/* Set @attributes for the gfn range [@start, @end). */
2546static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2547 unsigned long attributes)
2548{
2549 struct kvm_mmu_notifier_range pre_set_range = {
2550 .start = start,
2551 .end = end,
2552 .handler = kvm_pre_set_memory_attributes,
2553 .on_lock = kvm_mmu_invalidate_begin,
2554 .flush_on_ret = true,
2555 .may_block = true,
2556 };
2557 struct kvm_mmu_notifier_range post_set_range = {
2558 .start = start,
2559 .end = end,
2560 .arg.attributes = attributes,
2561 .handler = kvm_arch_post_set_memory_attributes,
2562 .on_lock = kvm_mmu_invalidate_end,
2563 .may_block = true,
2564 };
2565 unsigned long i;
2566 void *entry;
2567 int r = 0;
2568
2569 entry = attributes ? xa_mk_value(attributes) : NULL;
2570
2571 mutex_lock(&kvm->slots_lock);
2572
2573 /* Nothing to do if the entire range as the desired attributes. */
2574 if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2575 goto out_unlock;
2576
2577 /*
2578 * Reserve memory ahead of time to avoid having to deal with failures
2579 * partway through setting the new attributes.
2580 */
2581 for (i = start; i < end; i++) {
2582 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2583 if (r)
2584 goto out_unlock;
2585 }
2586
2587 kvm_handle_gfn_range(kvm, &pre_set_range);
2588
2589 for (i = start; i < end; i++) {
2590 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2591 GFP_KERNEL_ACCOUNT));
2592 KVM_BUG_ON(r, kvm);
2593 }
2594
2595 kvm_handle_gfn_range(kvm, &post_set_range);
2596
2597out_unlock:
2598 mutex_unlock(&kvm->slots_lock);
2599
2600 return r;
2601}
2602static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2603 struct kvm_memory_attributes *attrs)
2604{
2605 gfn_t start, end;
2606
2607 /* flags is currently not used. */
2608 if (attrs->flags)
2609 return -EINVAL;
2610 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2611 return -EINVAL;
2612 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2613 return -EINVAL;
2614 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2615 return -EINVAL;
2616
2617 start = attrs->address >> PAGE_SHIFT;
2618 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2619
2620 /*
2621 * xarray tracks data using "unsigned long", and as a result so does
2622 * KVM. For simplicity, supports generic attributes only on 64-bit
2623 * architectures.
2624 */
2625 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2626
2627 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2628}
2629#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2630
49c7754c
GN
2631struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2632{
2633 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2634}
a1f4d395 2635EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 2636
8e73485c
PB
2637struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2638{
fe22ed82 2639 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
a54d8066 2640 u64 gen = slots->generation;
fe22ed82 2641 struct kvm_memory_slot *slot;
fe22ed82 2642
a54d8066
MS
2643 /*
2644 * This also protects against using a memslot from a different address space,
2645 * since different address spaces have different generation numbers.
2646 */
2647 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2648 vcpu->last_used_slot = NULL;
2649 vcpu->last_used_slot_gen = gen;
2650 }
2651
2652 slot = try_get_memslot(vcpu->last_used_slot, gfn);
fe22ed82
DM
2653 if (slot)
2654 return slot;
2655
2656 /*
2657 * Fall back to searching all memslots. We purposely use
2658 * search_memslots() instead of __gfn_to_memslot() to avoid
a54d8066 2659 * thrashing the VM-wide last_used_slot in kvm_memslots.
fe22ed82 2660 */
a54d8066 2661 slot = search_memslots(slots, gfn, false);
fe22ed82 2662 if (slot) {
a54d8066 2663 vcpu->last_used_slot = slot;
fe22ed82
DM
2664 return slot;
2665 }
2666
2667 return NULL;
8e73485c
PB
2668}
2669
33e94154 2670bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 2671{
bf3e05bc 2672 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 2673
c36b7150 2674 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
2675}
2676EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2677
995decb6
VK
2678bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2679{
2680 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2681
2682 return kvm_is_visible_memslot(memslot);
2683}
2684EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2685
f9b84e19 2686unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
2687{
2688 struct vm_area_struct *vma;
2689 unsigned long addr, size;
2690
2691 size = PAGE_SIZE;
2692
42cde48b 2693 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
2694 if (kvm_is_error_hva(addr))
2695 return PAGE_SIZE;
2696
d8ed45c5 2697 mmap_read_lock(current->mm);
8f0b1ab6
JR
2698 vma = find_vma(current->mm, addr);
2699 if (!vma)
2700 goto out;
2701
2702 size = vma_kernel_pagesize(vma);
2703
2704out:
d8ed45c5 2705 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2706
2707 return size;
2708}
2709
8283e36a 2710static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
4d8b81ab
XG
2711{
2712 return slot->flags & KVM_MEM_READONLY;
2713}
2714
8283e36a 2715static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
4d8b81ab 2716 gfn_t *nr_pages, bool write)
539cb660 2717{
bc6678a3 2718 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2719 return KVM_HVA_ERR_BAD;
48987781 2720
4d8b81ab
XG
2721 if (memslot_is_readonly(slot) && write)
2722 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2723
2724 if (nr_pages)
2725 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2726
4d8b81ab 2727 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2728}
48987781 2729
4d8b81ab
XG
2730static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2731 gfn_t *nr_pages)
2732{
2733 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2734}
48987781 2735
4d8b81ab 2736unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2737 gfn_t gfn)
4d8b81ab
XG
2738{
2739 return gfn_to_hva_many(slot, gfn, NULL);
2740}
2741EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2742
48987781
XG
2743unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2744{
49c7754c 2745 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2746}
0d150298 2747EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2748
8e73485c
PB
2749unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2750{
2751 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2752}
2753EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2754
86ab8cff 2755/*
970c0d4b
WY
2756 * Return the hva of a @gfn and the R/W attribute if possible.
2757 *
2758 * @slot: the kvm_memory_slot which contains @gfn
2759 * @gfn: the gfn to be translated
2760 * @writable: used to return the read/write attribute of the @slot if the hva
2761 * is valid and @writable is not NULL
86ab8cff 2762 */
64d83126
CD
2763unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2764 gfn_t gfn, bool *writable)
86ab8cff 2765{
a2ac07fe
GN
2766 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2767
2768 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2769 *writable = !memslot_is_readonly(slot);
2770
a2ac07fe 2771 return hva;
86ab8cff
XG
2772}
2773
64d83126
CD
2774unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2775{
2776 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2777
2778 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2779}
2780
8e73485c
PB
2781unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2782{
2783 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2784
2785 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2786}
2787
fafc3dba
HY
2788static inline int check_user_page_hwpoison(unsigned long addr)
2789{
0d731759 2790 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2791
54d02069 2792 rc = get_user_pages(addr, 1, flags, NULL);
fafc3dba
HY
2793 return rc == -EHWPOISON;
2794}
2795
2fc84311 2796/*
b9b33da2
PB
2797 * The fast path to get the writable pfn which will be stored in @pfn,
2798 * true indicates success, otherwise false is returned. It's also the
311497e0 2799 * only part that runs if we can in atomic context.
2fc84311 2800 */
b9b33da2
PB
2801static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2802 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2803{
8d4e1288 2804 struct page *page[1];
954bbbc2 2805
12ce13fe
XG
2806 /*
2807 * Fast pin a writable pfn only if it is a write fault request
2808 * or the caller allows to map a writable pfn for a read fault
2809 * request.
2810 */
2811 if (!(write_fault || writable))
2812 return false;
612819c3 2813
dadbb612 2814 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2815 *pfn = page_to_pfn(page[0]);
612819c3 2816
2fc84311
XG
2817 if (writable)
2818 *writable = true;
2819 return true;
2820 }
af585b92 2821
2fc84311
XG
2822 return false;
2823}
612819c3 2824
2fc84311
XG
2825/*
2826 * The slow path to get the pfn of the specified host virtual address,
2827 * 1 indicates success, -errno is returned if error is detected.
2828 */
2829static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
c8b88b33 2830 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2fc84311 2831{
b1e1296d
DH
2832 /*
2833 * When a VCPU accesses a page that is not mapped into the secondary
2834 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2835 * make progress. We always want to honor NUMA hinting faults in that
2836 * case, because GUP usage corresponds to memory accesses from the VCPU.
2837 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2838 * mapped into the secondary MMU and gets accessed by a VCPU.
2839 *
2840 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2841 * implicitly honor NUMA hinting faults and don't need this flag.
2842 */
2843 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
ce53053c 2844 struct page *page;
28249139 2845 int npages;
612819c3 2846
2fc84311
XG
2847 might_sleep();
2848
2849 if (writable)
2850 *writable = write_fault;
2851
ce53053c
AV
2852 if (write_fault)
2853 flags |= FOLL_WRITE;
2854 if (async)
2855 flags |= FOLL_NOWAIT;
c8b88b33
PX
2856 if (interruptible)
2857 flags |= FOLL_INTERRUPTIBLE;
d4944b0e 2858
ce53053c 2859 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2860 if (npages != 1)
2861 return npages;
2862
2863 /* map read fault as writable if possible */
12ce13fe 2864 if (unlikely(!write_fault) && writable) {
ce53053c 2865 struct page *wpage;
2fc84311 2866
dadbb612 2867 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2868 *writable = true;
ce53053c
AV
2869 put_page(page);
2870 page = wpage;
612819c3 2871 }
887c08ac 2872 }
ce53053c 2873 *pfn = page_to_pfn(page);
2fc84311
XG
2874 return npages;
2875}
539cb660 2876
4d8b81ab
XG
2877static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2878{
2879 if (unlikely(!(vma->vm_flags & VM_READ)))
2880 return false;
2e2e3738 2881
4d8b81ab
XG
2882 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2883 return false;
887c08ac 2884
4d8b81ab
XG
2885 return true;
2886}
bf998156 2887
f8be156b
NP
2888static int kvm_try_get_pfn(kvm_pfn_t pfn)
2889{
b14b2690
SC
2890 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2891
2892 if (!page)
f8be156b 2893 return 1;
b14b2690
SC
2894
2895 return get_page_unless_zero(page);
f8be156b
NP
2896}
2897
92176a8e 2898static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1625566e
XT
2899 unsigned long addr, bool write_fault,
2900 bool *writable, kvm_pfn_t *p_pfn)
92176a8e 2901{
a9545779 2902 kvm_pfn_t pfn;
bd2fae8d 2903 pte_t *ptep;
c33c7948 2904 pte_t pte;
bd2fae8d 2905 spinlock_t *ptl;
add6a0cd
PB
2906 int r;
2907
9fd6dad1 2908 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2909 if (r) {
2910 /*
2911 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2912 * not call the fault handler, so do it here.
2913 */
2914 bool unlocked = false;
64019a2e 2915 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2916 (write_fault ? FAULT_FLAG_WRITE : 0),
2917 &unlocked);
a8387d0b
PB
2918 if (unlocked)
2919 return -EAGAIN;
add6a0cd
PB
2920 if (r)
2921 return r;
2922
9fd6dad1 2923 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2924 if (r)
2925 return r;
bd2fae8d 2926 }
add6a0cd 2927
c33c7948
RR
2928 pte = ptep_get(ptep);
2929
2930 if (write_fault && !pte_write(pte)) {
bd2fae8d
PB
2931 pfn = KVM_PFN_ERR_RO_FAULT;
2932 goto out;
add6a0cd
PB
2933 }
2934
a340b3e2 2935 if (writable)
c33c7948
RR
2936 *writable = pte_write(pte);
2937 pfn = pte_pfn(pte);
add6a0cd
PB
2938
2939 /*
2940 * Get a reference here because callers of *hva_to_pfn* and
2941 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2942 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
36c3ce6c 2943 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
add6a0cd
PB
2944 * simply do nothing for reserved pfns.
2945 *
2946 * Whoever called remap_pfn_range is also going to call e.g.
2947 * unmap_mapping_range before the underlying pages are freed,
2948 * causing a call to our MMU notifier.
f8be156b
NP
2949 *
2950 * Certain IO or PFNMAP mappings can be backed with valid
2951 * struct pages, but be allocated without refcounting e.g.,
2952 * tail pages of non-compound higher order allocations, which
2953 * would then underflow the refcount when the caller does the
2954 * required put_page. Don't allow those pages here.
c33c7948 2955 */
f8be156b
NP
2956 if (!kvm_try_get_pfn(pfn))
2957 r = -EFAULT;
add6a0cd 2958
bd2fae8d
PB
2959out:
2960 pte_unmap_unlock(ptep, ptl);
add6a0cd 2961 *p_pfn = pfn;
f8be156b
NP
2962
2963 return r;
92176a8e
PB
2964}
2965
12ce13fe
XG
2966/*
2967 * Pin guest page in memory and return its pfn.
2968 * @addr: host virtual address which maps memory to the guest
2969 * @atomic: whether this function can sleep
c8b88b33 2970 * @interruptible: whether the process can be interrupted by non-fatal signals
12ce13fe
XG
2971 * @async: whether this function need to wait IO complete if the
2972 * host page is not in the memory
2973 * @write_fault: whether we should get a writable host page
2974 * @writable: whether it allows to map a writable host page for !@write_fault
2975 *
2976 * The function will map a writable host page for these two cases:
2977 * 1): @write_fault = true
2978 * 2): @write_fault = false && @writable, @writable will tell the caller
2979 * whether the mapping is writable.
2980 */
c8b88b33
PX
2981kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2982 bool *async, bool write_fault, bool *writable)
2fc84311
XG
2983{
2984 struct vm_area_struct *vma;
943dfea8 2985 kvm_pfn_t pfn;
92176a8e 2986 int npages, r;
2e2e3738 2987
2fc84311
XG
2988 /* we can do it either atomically or asynchronously, not both */
2989 BUG_ON(atomic && async);
8d4e1288 2990
b9b33da2 2991 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2992 return pfn;
2993
2994 if (atomic)
2995 return KVM_PFN_ERR_FAULT;
2996
c8b88b33
PX
2997 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2998 writable, &pfn);
2fc84311
XG
2999 if (npages == 1)
3000 return pfn;
fe5ed56c
PX
3001 if (npages == -EINTR)
3002 return KVM_PFN_ERR_SIGPENDING;
8d4e1288 3003
d8ed45c5 3004 mmap_read_lock(current->mm);
2fc84311
XG
3005 if (npages == -EHWPOISON ||
3006 (!async && check_user_page_hwpoison(addr))) {
3007 pfn = KVM_PFN_ERR_HWPOISON;
3008 goto exit;
3009 }
3010
a8387d0b 3011retry:
fc98c03b 3012 vma = vma_lookup(current->mm, addr);
2fc84311
XG
3013
3014 if (vma == NULL)
3015 pfn = KVM_PFN_ERR_FAULT;
92176a8e 3016 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1625566e 3017 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
a8387d0b
PB
3018 if (r == -EAGAIN)
3019 goto retry;
92176a8e
PB
3020 if (r < 0)
3021 pfn = KVM_PFN_ERR_FAULT;
2fc84311 3022 } else {
4d8b81ab 3023 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
3024 *async = true;
3025 pfn = KVM_PFN_ERR_FAULT;
3026 }
3027exit:
d8ed45c5 3028 mmap_read_unlock(current->mm);
2e2e3738 3029 return pfn;
35149e21
AL
3030}
3031
8283e36a 3032kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
c8b88b33
PX
3033 bool atomic, bool interruptible, bool *async,
3034 bool write_fault, bool *writable, hva_t *hva)
887c08ac 3035{
4d8b81ab
XG
3036 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3037
4a42d848
DS
3038 if (hva)
3039 *hva = addr;
3040
b2740d35
PB
3041 if (addr == KVM_HVA_ERR_RO_BAD) {
3042 if (writable)
3043 *writable = false;
4d8b81ab 3044 return KVM_PFN_ERR_RO_FAULT;
b2740d35 3045 }
4d8b81ab 3046
b2740d35
PB
3047 if (kvm_is_error_hva(addr)) {
3048 if (writable)
3049 *writable = false;
81c52c56 3050 return KVM_PFN_NOSLOT;
b2740d35 3051 }
4d8b81ab
XG
3052
3053 /* Do not map writable pfn in the readonly memslot. */
3054 if (writable && memslot_is_readonly(slot)) {
3055 *writable = false;
3056 writable = NULL;
3057 }
3058
c8b88b33 3059 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
4d8b81ab 3060 writable);
887c08ac 3061}
3520469d 3062EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 3063
ba049e93 3064kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
3065 bool *writable)
3066{
c8b88b33
PX
3067 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3068 NULL, write_fault, writable, NULL);
612819c3
MT
3069}
3070EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3071
8283e36a 3072kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 3073{
c8b88b33
PX
3074 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3075 NULL, NULL);
506f0d6f 3076}
e37afc6e 3077EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 3078
8283e36a 3079kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 3080{
c8b88b33
PX
3081 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3082 NULL, NULL);
506f0d6f 3083}
037d92dc 3084EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 3085
ba049e93 3086kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
3087{
3088 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3089}
3090EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3091
ba049e93 3092kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
3093{
3094 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3095}
3096EXPORT_SYMBOL_GPL(gfn_to_pfn);
3097
ba049e93 3098kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
3099{
3100 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3101}
3102EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3103
d9ef13c2
PB
3104int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3105 struct page **pages, int nr_pages)
48987781
XG
3106{
3107 unsigned long addr;
076b925d 3108 gfn_t entry = 0;
48987781 3109
d9ef13c2 3110 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
3111 if (kvm_is_error_hva(addr))
3112 return -1;
3113
3114 if (entry < nr_pages)
3115 return 0;
3116
dadbb612 3117 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
3118}
3119EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3120
b1624f99
SC
3121/*
3122 * Do not use this helper unless you are absolutely certain the gfn _must_ be
3123 * backed by 'struct page'. A valid example is if the backing memslot is
3124 * controlled by KVM. Note, if the returned page is valid, it's refcount has
3125 * been elevated by gfn_to_pfn().
3126 */
35149e21
AL
3127struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3128{
b14b2690 3129 struct page *page;
ba049e93 3130 kvm_pfn_t pfn;
2e2e3738
AL
3131
3132 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 3133
81c52c56 3134 if (is_error_noslot_pfn(pfn))
cb9aaa30 3135 return KVM_ERR_PTR_BAD_PAGE;
a2766325 3136
b14b2690
SC
3137 page = kvm_pfn_to_refcounted_page(pfn);
3138 if (!page)
6cede2e6 3139 return KVM_ERR_PTR_BAD_PAGE;
a2766325 3140
b14b2690 3141 return page;
954bbbc2
AK
3142}
3143EXPORT_SYMBOL_GPL(gfn_to_page);
3144
357a18ad 3145void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
91724814 3146{
91724814
BO
3147 if (dirty)
3148 kvm_release_pfn_dirty(pfn);
3149 else
3150 kvm_release_pfn_clean(pfn);
3151}
3152
357a18ad 3153int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
e45adf66
KA
3154{
3155 kvm_pfn_t pfn;
3156 void *hva = NULL;
3157 struct page *page = KVM_UNMAPPED_PAGE;
3158
3159 if (!map)
3160 return -EINVAL;
3161
357a18ad 3162 pfn = gfn_to_pfn(vcpu->kvm, gfn);
e45adf66
KA
3163 if (is_error_noslot_pfn(pfn))
3164 return -EINVAL;
3165
3166 if (pfn_valid(pfn)) {
3167 page = pfn_to_page(pfn);
357a18ad 3168 hva = kmap(page);
d30b214d 3169#ifdef CONFIG_HAS_IOMEM
91724814 3170 } else {
357a18ad 3171 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
d30b214d 3172#endif
e45adf66
KA
3173 }
3174
3175 if (!hva)
3176 return -EFAULT;
3177
3178 map->page = page;
3179 map->hva = hva;
3180 map->pfn = pfn;
3181 map->gfn = gfn;
3182
3183 return 0;
3184}
e45adf66
KA
3185EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3186
357a18ad 3187void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
e45adf66
KA
3188{
3189 if (!map)
3190 return;
3191
3192 if (!map->hva)
3193 return;
3194
357a18ad
DW
3195 if (map->page != KVM_UNMAPPED_PAGE)
3196 kunmap(map->page);
eb1f2f38 3197#ifdef CONFIG_HAS_IOMEM
91724814 3198 else
357a18ad 3199 memunmap(map->hva);
eb1f2f38 3200#endif
e45adf66 3201
91724814 3202 if (dirty)
357a18ad 3203 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
91724814 3204
357a18ad 3205 kvm_release_pfn(map->pfn, dirty);
e45adf66
KA
3206
3207 map->hva = NULL;
3208 map->page = NULL;
3209}
3210EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3211
8e1c6914 3212static bool kvm_is_ad_tracked_page(struct page *page)
8e73485c 3213{
8e1c6914
SC
3214 /*
3215 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3216 * touched (e.g. set dirty) except by its owner".
3217 */
3218 return !PageReserved(page);
3219}
8e73485c 3220
8e1c6914
SC
3221static void kvm_set_page_dirty(struct page *page)
3222{
3223 if (kvm_is_ad_tracked_page(page))
3224 SetPageDirty(page);
3225}
8e73485c 3226
8e1c6914
SC
3227static void kvm_set_page_accessed(struct page *page)
3228{
3229 if (kvm_is_ad_tracked_page(page))
3230 mark_page_accessed(page);
8e73485c 3231}
8e73485c 3232
b4231d61
IE
3233void kvm_release_page_clean(struct page *page)
3234{
32cad84f
XG
3235 WARN_ON(is_error_page(page));
3236
8e1c6914
SC
3237 kvm_set_page_accessed(page);
3238 put_page(page);
b4231d61
IE
3239}
3240EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3241
ba049e93 3242void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 3243{
b14b2690
SC
3244 struct page *page;
3245
3246 if (is_error_noslot_pfn(pfn))
3247 return;
3248
3249 page = kvm_pfn_to_refcounted_page(pfn);
3250 if (!page)
3251 return;
3252
3253 kvm_release_page_clean(page);
35149e21
AL
3254}
3255EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3256
b4231d61 3257void kvm_release_page_dirty(struct page *page)
8a7ae055 3258{
a2766325
XG
3259 WARN_ON(is_error_page(page));
3260
8e1c6914
SC
3261 kvm_set_page_dirty(page);
3262 kvm_release_page_clean(page);
35149e21
AL
3263}
3264EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3265
f7a6509f 3266void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21 3267{
b14b2690
SC
3268 struct page *page;
3269
3270 if (is_error_noslot_pfn(pfn))
3271 return;
3272
3273 page = kvm_pfn_to_refcounted_page(pfn);
3274 if (!page)
3275 return;
3276
3277 kvm_release_page_dirty(page);
35149e21 3278}
f7a6509f 3279EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 3280
8e1c6914
SC
3281/*
3282 * Note, checking for an error/noslot pfn is the caller's responsibility when
3283 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3284 * "set" helpers are not to be used when the pfn might point at garbage.
3285 */
ba049e93 3286void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 3287{
8e1c6914
SC
3288 if (WARN_ON(is_error_noslot_pfn(pfn)))
3289 return;
3290
3291 if (pfn_valid(pfn))
3292 kvm_set_page_dirty(pfn_to_page(pfn));
8a7ae055 3293}
35149e21
AL
3294EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3295
ba049e93 3296void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 3297{
8e1c6914
SC
3298 if (WARN_ON(is_error_noslot_pfn(pfn)))
3299 return;
3300
3301 if (pfn_valid(pfn))
3302 kvm_set_page_accessed(pfn_to_page(pfn));
35149e21
AL
3303}
3304EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3305
195aefde
IE
3306static int next_segment(unsigned long len, int offset)
3307{
3308 if (len > PAGE_SIZE - offset)
3309 return PAGE_SIZE - offset;
3310 else
3311 return len;
3312}
3313
8e73485c
PB
3314static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3315 void *data, int offset, int len)
195aefde 3316{
e0506bcb
IE
3317 int r;
3318 unsigned long addr;
195aefde 3319
8e73485c 3320 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
3321 if (kvm_is_error_hva(addr))
3322 return -EFAULT;
3180a7fc 3323 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 3324 if (r)
195aefde 3325 return -EFAULT;
195aefde
IE
3326 return 0;
3327}
8e73485c
PB
3328
3329int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3330 int len)
3331{
3332 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3333
3334 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3335}
195aefde
IE
3336EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3337
8e73485c
PB
3338int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3339 int offset, int len)
3340{
3341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3342
3343 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3344}
3345EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3346
195aefde
IE
3347int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3348{
3349 gfn_t gfn = gpa >> PAGE_SHIFT;
3350 int seg;
3351 int offset = offset_in_page(gpa);
3352 int ret;
3353
3354 while ((seg = next_segment(len, offset)) != 0) {
3355 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3356 if (ret < 0)
3357 return ret;
3358 offset = 0;
3359 len -= seg;
3360 data += seg;
3361 ++gfn;
3362 }
3363 return 0;
3364}
3365EXPORT_SYMBOL_GPL(kvm_read_guest);
3366
8e73485c 3367int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 3368{
7ec54588 3369 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 3370 int seg;
7ec54588 3371 int offset = offset_in_page(gpa);
8e73485c
PB
3372 int ret;
3373
3374 while ((seg = next_segment(len, offset)) != 0) {
3375 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3376 if (ret < 0)
3377 return ret;
3378 offset = 0;
3379 len -= seg;
3380 data += seg;
3381 ++gfn;
3382 }
3383 return 0;
3384}
3385EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 3386
8e73485c
PB
3387static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3388 void *data, int offset, unsigned long len)
3389{
3390 int r;
3391 unsigned long addr;
3392
3393 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
3394 if (kvm_is_error_hva(addr))
3395 return -EFAULT;
0aac03f0 3396 pagefault_disable();
3180a7fc 3397 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 3398 pagefault_enable();
7ec54588
MT
3399 if (r)
3400 return -EFAULT;
3401 return 0;
3402}
7ec54588 3403
8e73485c
PB
3404int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3405 void *data, unsigned long len)
3406{
3407 gfn_t gfn = gpa >> PAGE_SHIFT;
3408 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3409 int offset = offset_in_page(gpa);
3410
3411 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3412}
3413EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3414
28bd726a
PX
3415static int __kvm_write_guest_page(struct kvm *kvm,
3416 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 3417 const void *data, int offset, int len)
195aefde 3418{
e0506bcb
IE
3419 int r;
3420 unsigned long addr;
195aefde 3421
251eb841 3422 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
3423 if (kvm_is_error_hva(addr))
3424 return -EFAULT;
8b0cedff 3425 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 3426 if (r)
195aefde 3427 return -EFAULT;
28bd726a 3428 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
3429 return 0;
3430}
8e73485c
PB
3431
3432int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3433 const void *data, int offset, int len)
3434{
3435 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3436
28bd726a 3437 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 3438}
195aefde
IE
3439EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3440
8e73485c
PB
3441int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3442 const void *data, int offset, int len)
3443{
3444 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3445
28bd726a 3446 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
3447}
3448EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3449
195aefde
IE
3450int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3451 unsigned long len)
3452{
3453 gfn_t gfn = gpa >> PAGE_SHIFT;
3454 int seg;
3455 int offset = offset_in_page(gpa);
3456 int ret;
3457
3458 while ((seg = next_segment(len, offset)) != 0) {
3459 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3460 if (ret < 0)
3461 return ret;
3462 offset = 0;
3463 len -= seg;
3464 data += seg;
3465 ++gfn;
3466 }
3467 return 0;
3468}
ff651cb6 3469EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 3470
8e73485c
PB
3471int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3472 unsigned long len)
3473{
3474 gfn_t gfn = gpa >> PAGE_SHIFT;
3475 int seg;
3476 int offset = offset_in_page(gpa);
3477 int ret;
3478
3479 while ((seg = next_segment(len, offset)) != 0) {
3480 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3481 if (ret < 0)
3482 return ret;
3483 offset = 0;
3484 len -= seg;
3485 data += seg;
3486 ++gfn;
3487 }
3488 return 0;
3489}
3490EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3491
5a2d4365
PB
3492static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3493 struct gfn_to_hva_cache *ghc,
3494 gpa_t gpa, unsigned long len)
49c7754c 3495{
49c7754c 3496 int offset = offset_in_page(gpa);
8f964525
AH
3497 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3498 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3499 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3500 gfn_t nr_pages_avail;
49c7754c 3501
6ad1e29f 3502 /* Update ghc->generation before performing any error checks. */
49c7754c 3503 ghc->generation = slots->generation;
6ad1e29f
SC
3504
3505 if (start_gfn > end_gfn) {
3506 ghc->hva = KVM_HVA_ERR_BAD;
3507 return -EINVAL;
3508 }
f1b9dd5e
JM
3509
3510 /*
3511 * If the requested region crosses two memslots, we still
3512 * verify that the entire region is valid here.
3513 */
6ad1e29f 3514 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
3515 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3516 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3517 &nr_pages_avail);
3518 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 3519 return -EFAULT;
f1b9dd5e
JM
3520 }
3521
3522 /* Use the slow path for cross page reads and writes. */
6ad1e29f 3523 if (nr_pages_needed == 1)
49c7754c 3524 ghc->hva += offset;
f1b9dd5e 3525 else
8f964525 3526 ghc->memslot = NULL;
f1b9dd5e 3527
6ad1e29f
SC
3528 ghc->gpa = gpa;
3529 ghc->len = len;
3530 return 0;
49c7754c 3531}
5a2d4365 3532
4e335d9e 3533int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
3534 gpa_t gpa, unsigned long len)
3535{
4e335d9e 3536 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
3537 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3538}
4e335d9e 3539EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 3540
4e335d9e 3541int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
3542 void *data, unsigned int offset,
3543 unsigned long len)
49c7754c 3544{
4e335d9e 3545 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 3546 int r;
4ec6e863 3547 gpa_t gpa = ghc->gpa + offset;
49c7754c 3548
5f25e71e
PB
3549 if (WARN_ON_ONCE(len + offset > ghc->len))
3550 return -EINVAL;
8f964525 3551
dc9ce71e
SC
3552 if (slots->generation != ghc->generation) {
3553 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3554 return -EFAULT;
3555 }
8f964525 3556
49c7754c
GN
3557 if (kvm_is_error_hva(ghc->hva))
3558 return -EFAULT;
3559
fcfbc617
SC
3560 if (unlikely(!ghc->memslot))
3561 return kvm_write_guest(kvm, gpa, data, len);
3562
4ec6e863 3563 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
3564 if (r)
3565 return -EFAULT;
28bd726a 3566 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
3567
3568 return 0;
3569}
4e335d9e 3570EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 3571
4e335d9e
PB
3572int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3573 void *data, unsigned long len)
4ec6e863 3574{
4e335d9e 3575 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 3576}
4e335d9e 3577EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 3578
0958f0ce
VK
3579int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3580 void *data, unsigned int offset,
3581 unsigned long len)
e03b644f 3582{
4e335d9e 3583 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 3584 int r;
0958f0ce 3585 gpa_t gpa = ghc->gpa + offset;
e03b644f 3586
5f25e71e
PB
3587 if (WARN_ON_ONCE(len + offset > ghc->len))
3588 return -EINVAL;
8f964525 3589
dc9ce71e
SC
3590 if (slots->generation != ghc->generation) {
3591 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3592 return -EFAULT;
3593 }
8f964525 3594
e03b644f
GN
3595 if (kvm_is_error_hva(ghc->hva))
3596 return -EFAULT;
3597
fcfbc617 3598 if (unlikely(!ghc->memslot))
0958f0ce 3599 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 3600
0958f0ce 3601 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
3602 if (r)
3603 return -EFAULT;
3604
3605 return 0;
3606}
0958f0ce
VK
3607EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3608
3609int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3610 void *data, unsigned long len)
3611{
3612 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3613}
4e335d9e 3614EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 3615
195aefde
IE
3616int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3617{
2f541442 3618 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
3619 gfn_t gfn = gpa >> PAGE_SHIFT;
3620 int seg;
3621 int offset = offset_in_page(gpa);
3622 int ret;
3623
bfda0e84 3624 while ((seg = next_segment(len, offset)) != 0) {
2f541442 3625 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
3626 if (ret < 0)
3627 return ret;
3628 offset = 0;
3629 len -= seg;
3630 ++gfn;
3631 }
3632 return 0;
3633}
3634EXPORT_SYMBOL_GPL(kvm_clear_guest);
3635
28bd726a 3636void mark_page_dirty_in_slot(struct kvm *kvm,
8283e36a 3637 const struct kvm_memory_slot *memslot,
28bd726a 3638 gfn_t gfn)
6aa8b732 3639{
2efd61a6
DW
3640 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3641
e09fccb5 3642#ifdef CONFIG_HAVE_KVM_DIRTY_RING
86bdf3eb 3643 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
2efd61a6 3644 return;
86bdf3eb 3645
c57351a7 3646 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
e09fccb5 3647#endif
2efd61a6 3648
044c59c4 3649 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 3650 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 3651 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 3652
86bdf3eb 3653 if (kvm->dirty_ring_size && vcpu)
cf87ac73 3654 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
c57351a7 3655 else if (memslot->dirty_bitmap)
fb04a1ed 3656 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
3657 }
3658}
a6a0b05d 3659EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 3660
49c7754c
GN
3661void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3662{
3663 struct kvm_memory_slot *memslot;
3664
3665 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 3666 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 3667}
2ba9f0d8 3668EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 3669
8e73485c
PB
3670void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3671{
3672 struct kvm_memory_slot *memslot;
3673
3674 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 3675 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
3676}
3677EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3678
20b7035c
JS
3679void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3680{
3681 if (!vcpu->sigset_active)
3682 return;
3683
3684 /*
3685 * This does a lockless modification of ->real_blocked, which is fine
3686 * because, only current can change ->real_blocked and all readers of
3687 * ->real_blocked don't care as long ->real_blocked is always a subset
3688 * of ->blocked.
3689 */
3690 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3691}
3692
3693void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3694{
3695 if (!vcpu->sigset_active)
3696 return;
3697
3698 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3699 sigemptyset(&current->real_blocked);
3700}
3701
aca6ff29
WL
3702static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3703{
dee339b5 3704 unsigned int old, val, grow, grow_start;
aca6ff29 3705
2cbd7824 3706 old = val = vcpu->halt_poll_ns;
dee339b5 3707 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3708 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3709 if (!grow)
3710 goto out;
3711
dee339b5
NW
3712 val *= grow;
3713 if (val < grow_start)
3714 val = grow_start;
aca6ff29
WL
3715
3716 vcpu->halt_poll_ns = val;
7fa08e71 3717out:
2cbd7824 3718 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3719}
3720
3721static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3722{
ae232ea4 3723 unsigned int old, val, shrink, grow_start;
aca6ff29 3724
2cbd7824 3725 old = val = vcpu->halt_poll_ns;
6b6de68c 3726 shrink = READ_ONCE(halt_poll_ns_shrink);
ae232ea4 3727 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3728 if (shrink == 0)
aca6ff29
WL
3729 val = 0;
3730 else
6b6de68c 3731 val /= shrink;
aca6ff29 3732
ae232ea4
SS
3733 if (val < grow_start)
3734 val = 0;
3735
aca6ff29 3736 vcpu->halt_poll_ns = val;
2cbd7824 3737 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3738}
3739
f7819512
PB
3740static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3741{
50c28f21
JS
3742 int ret = -EINTR;
3743 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3744
c59fb127 3745 if (kvm_arch_vcpu_runnable(vcpu))
50c28f21 3746 goto out;
f7819512 3747 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3748 goto out;
f7819512 3749 if (signal_pending(current))
50c28f21 3750 goto out;
084071d5
MT
3751 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3752 goto out;
f7819512 3753
50c28f21
JS
3754 ret = 0;
3755out:
3756 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3757 return ret;
f7819512
PB
3758}
3759
fac42688
SC
3760/*
3761 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3762 * pending. This is mostly used when halting a vCPU, but may also be used
3763 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3764 */
3765bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
cb953129 3766{
fac42688
SC
3767 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3768 bool waited = false;
3769
c3858335
JZ
3770 vcpu->stat.generic.blocking = 1;
3771
18869f26 3772 preempt_disable();
fac42688 3773 kvm_arch_vcpu_blocking(vcpu);
fac42688 3774 prepare_to_rcuwait(wait);
18869f26
ML
3775 preempt_enable();
3776
fac42688
SC
3777 for (;;) {
3778 set_current_state(TASK_INTERRUPTIBLE);
3779
3780 if (kvm_vcpu_check_block(vcpu) < 0)
3781 break;
3782
3783 waited = true;
3784 schedule();
3785 }
fac42688 3786
18869f26
ML
3787 preempt_disable();
3788 finish_rcuwait(wait);
fac42688 3789 kvm_arch_vcpu_unblocking(vcpu);
18869f26 3790 preempt_enable();
fac42688 3791
c3858335
JZ
3792 vcpu->stat.generic.blocking = 0;
3793
fac42688
SC
3794 return waited;
3795}
3796
29e72893
SC
3797static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3798 ktime_t end, bool success)
cb953129 3799{
30c94347 3800 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
29e72893
SC
3801 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3802
30c94347
SC
3803 ++vcpu->stat.generic.halt_attempted_poll;
3804
3805 if (success) {
3806 ++vcpu->stat.generic.halt_successful_poll;
3807
3808 if (!vcpu_valid_wakeup(vcpu))
3809 ++vcpu->stat.generic.halt_poll_invalid;
3810
3811 stats->halt_poll_success_ns += poll_ns;
3812 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3813 } else {
3814 stats->halt_poll_fail_ns += poll_ns;
3815 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3816 }
cb953129
DM
3817}
3818
175d5dc7
DM
3819static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3820{
9eb8ca04
DM
3821 struct kvm *kvm = vcpu->kvm;
3822
3823 if (kvm->override_halt_poll_ns) {
3824 /*
3825 * Ensure kvm->max_halt_poll_ns is not read before
3826 * kvm->override_halt_poll_ns.
3827 *
3828 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3829 */
3830 smp_rmb();
3831 return READ_ONCE(kvm->max_halt_poll_ns);
3832 }
3833
3834 return READ_ONCE(halt_poll_ns);
175d5dc7
DM
3835}
3836
b6958ce4 3837/*
fac42688
SC
3838 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3839 * polling is enabled, busy wait for a short time before blocking to avoid the
3840 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3841 * is halted.
b6958ce4 3842 */
91b99ea7 3843void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
d3bef15f 3844{
175d5dc7 3845 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
6f390916 3846 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
cb953129 3847 ktime_t start, cur, poll_end;
f7819512 3848 bool waited = false;
97b6847a 3849 bool do_halt_poll;
91b99ea7 3850 u64 halt_ns;
07ab0f8d 3851
175d5dc7
DM
3852 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3853 vcpu->halt_poll_ns = max_halt_poll_ns;
97b6847a
DM
3854
3855 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3856
cb953129 3857 start = cur = poll_end = ktime_get();
8df6a61c 3858 if (do_halt_poll) {
109a9826 3859 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
f95ef0cd 3860
f7819512 3861 do {
30c94347 3862 if (kvm_vcpu_check_block(vcpu) < 0)
f7819512 3863 goto out;
74775654 3864 cpu_relax();
cb953129 3865 poll_end = cur = ktime_get();
6bd5b743 3866 } while (kvm_vcpu_can_poll(cur, stop));
f7819512 3867 }
e5c239cf 3868
fac42688 3869 waited = kvm_vcpu_block(vcpu);
8ccba534 3870
f7819512 3871 cur = ktime_get();
87bcc5fa
JZ
3872 if (waited) {
3873 vcpu->stat.generic.halt_wait_ns +=
3874 ktime_to_ns(cur) - ktime_to_ns(poll_end);
8ccba534
JZ
3875 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3876 ktime_to_ns(cur) - ktime_to_ns(poll_end));
87bcc5fa 3877 }
f7819512 3878out:
91b99ea7
SC
3879 /* The total time the vCPU was "halted", including polling time. */
3880 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
aca6ff29 3881
29e72893
SC
3882 /*
3883 * Note, halt-polling is considered successful so long as the vCPU was
3884 * never actually scheduled out, i.e. even if the wake event arrived
3885 * after of the halt-polling loop itself, but before the full wait.
3886 */
8df6a61c 3887 if (do_halt_poll)
29e72893 3888 update_halt_poll_stats(vcpu, start, poll_end, !waited);
cb953129 3889
6f390916 3890 if (halt_poll_allowed) {
175d5dc7
DM
3891 /* Recompute the max halt poll time in case it changed. */
3892 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3893
44551b2f 3894 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3895 shrink_halt_poll_ns(vcpu);
175d5dc7 3896 } else if (max_halt_poll_ns) {
91b99ea7 3897 if (halt_ns <= vcpu->halt_poll_ns)
44551b2f
WL
3898 ;
3899 /* we had a long block, shrink polling */
acd05785 3900 else if (vcpu->halt_poll_ns &&
175d5dc7 3901 halt_ns > max_halt_poll_ns)
44551b2f
WL
3902 shrink_halt_poll_ns(vcpu);
3903 /* we had a short halt and our poll time is too small */
175d5dc7
DM
3904 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3905 halt_ns < max_halt_poll_ns)
44551b2f
WL
3906 grow_halt_poll_ns(vcpu);
3907 } else {
3908 vcpu->halt_poll_ns = 0;
3909 }
3910 }
aca6ff29 3911
91b99ea7 3912 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
b6958ce4 3913}
91b99ea7 3914EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
b6958ce4 3915
178f02ff 3916bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3917{
d92a5d1c 3918 if (__kvm_vcpu_wake_up(vcpu)) {
d73eb57b 3919 WRITE_ONCE(vcpu->ready, true);
0193cc90 3920 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3921 return true;
b6d33834
CD
3922 }
3923
178f02ff 3924 return false;
dd1a4cc1
RK
3925}
3926EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3927
0266c894 3928#ifndef CONFIG_S390
dd1a4cc1
RK
3929/*
3930 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3931 */
3932void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3933{
85b64045 3934 int me, cpu;
dd1a4cc1 3935
178f02ff
RK
3936 if (kvm_vcpu_wake_up(vcpu))
3937 return;
3938
aefdc2ed
PB
3939 me = get_cpu();
3940 /*
3941 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3942 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3943 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3944 * within the vCPU thread itself.
3945 */
3946 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3947 if (vcpu->mode == IN_GUEST_MODE)
3948 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3949 goto out;
3950 }
3951
85b64045
SC
3952 /*
3953 * Note, the vCPU could get migrated to a different pCPU at any point
3954 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3955 * IPI to the previous pCPU. But, that's ok because the purpose of the
3956 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3957 * vCPU also requires it to leave IN_GUEST_MODE.
3958 */
85b64045
SC
3959 if (kvm_arch_vcpu_should_kick(vcpu)) {
3960 cpu = READ_ONCE(vcpu->cpu);
3961 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
b6d33834 3962 smp_send_reschedule(cpu);
85b64045 3963 }
aefdc2ed 3964out:
b6d33834
CD
3965 put_cpu();
3966}
a20ed54d 3967EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3968#endif /* !CONFIG_S390 */
b6d33834 3969
fa93384f 3970int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3971{
3972 struct pid *pid;
3973 struct task_struct *task = NULL;
fa93384f 3974 int ret = 0;
41628d33
KW
3975
3976 rcu_read_lock();
3977 pid = rcu_dereference(target->pid);
3978 if (pid)
27fbe64b 3979 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3980 rcu_read_unlock();
3981 if (!task)
c45c528e 3982 return ret;
c45c528e 3983 ret = yield_to(task, 1);
41628d33 3984 put_task_struct(task);
c45c528e
R
3985
3986 return ret;
41628d33
KW
3987}
3988EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3989
06e48c51
R
3990/*
3991 * Helper that checks whether a VCPU is eligible for directed yield.
3992 * Most eligible candidate to yield is decided by following heuristics:
3993 *
3994 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3995 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3996 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3997 *
3998 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3999 * chance last time (mostly it has become eligible now since we have probably
4000 * yielded to lockholder in last iteration. This is done by toggling
4001 * @dy_eligible each time a VCPU checked for eligibility.)
4002 *
4003 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4004 * to preempted lock-holder could result in wrong VCPU selection and CPU
4005 * burning. Giving priority for a potential lock-holder increases lock
4006 * progress.
4007 *
4008 * Since algorithm is based on heuristics, accessing another VCPU data without
4009 * locking does not harm. It may result in trying to yield to same VCPU, fail
4010 * and continue with next VCPU and so on.
4011 */
7940876e 4012static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 4013{
4a55dd72 4014#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
4015 bool eligible;
4016
4017 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 4018 vcpu->spin_loop.dy_eligible;
06e48c51
R
4019
4020 if (vcpu->spin_loop.in_spin_loop)
4021 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4022
4023 return eligible;
4a55dd72
SW
4024#else
4025 return true;
06e48c51 4026#endif
4a55dd72 4027}
c45c528e 4028
17e433b5
WL
4029/*
4030 * Unlike kvm_arch_vcpu_runnable, this function is called outside
4031 * a vcpu_load/vcpu_put pair. However, for most architectures
4032 * kvm_arch_vcpu_runnable does not require vcpu_load.
4033 */
4034bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4035{
4036 return kvm_arch_vcpu_runnable(vcpu);
4037}
4038
4039static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4040{
4041 if (kvm_arch_dy_runnable(vcpu))
4042 return true;
4043
4044#ifdef CONFIG_KVM_ASYNC_PF
4045 if (!list_empty_careful(&vcpu->async_pf.done))
4046 return true;
4047#endif
4048
4049 return false;
4050}
4051
52acd22f
WL
4052bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4053{
4054 return false;
4055}
4056
199b5763 4057void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 4058{
217ece61
RR
4059 struct kvm *kvm = me->kvm;
4060 struct kvm_vcpu *vcpu;
4061 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
46808a4c 4062 unsigned long i;
217ece61 4063 int yielded = 0;
c45c528e 4064 int try = 3;
217ece61 4065 int pass;
d255f4f2 4066
4c088493 4067 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
4068 /*
4069 * We boost the priority of a VCPU that is runnable but not
4070 * currently running, because it got preempted by something
4071 * else and called schedule in __vcpu_run. Hopefully that
4072 * VCPU is holding the lock that we need and will release it.
4073 * We approximate round-robin by starting at the last boosted VCPU.
4074 */
c45c528e 4075 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 4076 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 4077 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
4078 i = last_boosted_vcpu;
4079 continue;
4080 } else if (pass && i > last_boosted_vcpu)
4081 break;
d73eb57b 4082 if (!READ_ONCE(vcpu->ready))
7bc7ae25 4083 continue;
217ece61
RR
4084 if (vcpu == me)
4085 continue;
d92a5d1c 4086 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
217ece61 4087 continue;
046ddeed 4088 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
4089 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4090 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 4091 continue;
06e48c51
R
4092 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4093 continue;
c45c528e
R
4094
4095 yielded = kvm_vcpu_yield_to(vcpu);
4096 if (yielded > 0) {
217ece61 4097 kvm->last_boosted_vcpu = i;
217ece61 4098 break;
c45c528e
R
4099 } else if (yielded < 0) {
4100 try--;
4101 if (!try)
4102 break;
217ece61 4103 }
217ece61
RR
4104 }
4105 }
4c088493 4106 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
4107
4108 /* Ensure vcpu is not eligible during next spinloop */
4109 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
4110}
4111EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4112
fb04a1ed
PX
4113static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4114{
dc70ec21 4115#ifdef CONFIG_HAVE_KVM_DIRTY_RING
fb04a1ed
PX
4116 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4117 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4118 kvm->dirty_ring_size / PAGE_SIZE);
4119#else
4120 return false;
4121#endif
4122}
4123
1499fa80 4124static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 4125{
11bac800 4126 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
4127 struct page *page;
4128
e4a533a4 4129 if (vmf->pgoff == 0)
039576c0 4130 page = virt_to_page(vcpu->run);
09566765 4131#ifdef CONFIG_X86
e4a533a4 4132 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 4133 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 4134#endif
4b4357e0 4135#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4136 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4137 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 4138#endif
fb04a1ed
PX
4139 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4140 page = kvm_dirty_ring_get_page(
4141 &vcpu->dirty_ring,
4142 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 4143 else
5b1c1493 4144 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 4145 get_page(page);
e4a533a4
NP
4146 vmf->page = page;
4147 return 0;
9a2bb7f4
AK
4148}
4149
f0f37e2f 4150static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 4151 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
4152};
4153
4154static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4155{
fb04a1ed 4156 struct kvm_vcpu *vcpu = file->private_data;
11476d27 4157 unsigned long pages = vma_pages(vma);
fb04a1ed
PX
4158
4159 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4160 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4161 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4162 return -EINVAL;
4163
9a2bb7f4
AK
4164 vma->vm_ops = &kvm_vcpu_vm_ops;
4165 return 0;
4166}
4167
bccf2150
AK
4168static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4169{
4170 struct kvm_vcpu *vcpu = filp->private_data;
4171
66c0b394 4172 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
4173 return 0;
4174}
4175
70375c2d 4176static const struct file_operations kvm_vcpu_fops = {
bccf2150
AK
4177 .release = kvm_vcpu_release,
4178 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 4179 .mmap = kvm_vcpu_mmap,
6038f373 4180 .llseek = noop_llseek,
7ddfd3e0 4181 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
4182};
4183
4184/*
4185 * Allocates an inode for the vcpu.
4186 */
4187static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4188{
e46b4692
MY
4189 char name[8 + 1 + ITOA_MAX_LEN + 1];
4190
4191 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4192 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
4193}
4194
e36de87d
VP
4195#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4196static int vcpu_get_pid(void *data, u64 *val)
4197{
14aa40a1 4198 struct kvm_vcpu *vcpu = data;
76021e96
SC
4199
4200 rcu_read_lock();
4201 *val = pid_nr(rcu_dereference(vcpu->pid));
4202 rcu_read_unlock();
e36de87d
VP
4203 return 0;
4204}
4205
4206DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4207
3e7093d0 4208static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 4209{
d56f5136 4210 struct dentry *debugfs_dentry;
45b5939e 4211 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 4212
45b5939e 4213 if (!debugfs_initialized())
3e7093d0 4214 return;
45b5939e
LC
4215
4216 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
4217 debugfs_dentry = debugfs_create_dir(dir_name,
4218 vcpu->kvm->debugfs_dentry);
e36de87d
VP
4219 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4220 &vcpu_get_pid_fops);
45b5939e 4221
d56f5136 4222 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
45b5939e 4223}
e36de87d 4224#endif
45b5939e 4225
c5ea7660
AK
4226/*
4227 * Creates some virtual cpus. Good luck creating more than one.
4228 */
73880c80 4229static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
4230{
4231 int r;
e09fefde 4232 struct kvm_vcpu *vcpu;
8bd826d6 4233 struct page *page;
c5ea7660 4234
a1c42dde 4235 if (id >= KVM_MAX_VCPU_IDS)
338c7dba
AH
4236 return -EINVAL;
4237
6c7caebc 4238 mutex_lock(&kvm->lock);
f502cc56 4239 if (kvm->created_vcpus >= kvm->max_vcpus) {
6c7caebc
PB
4240 mutex_unlock(&kvm->lock);
4241 return -EINVAL;
4242 }
4243
1d5e740d
ZG
4244 r = kvm_arch_vcpu_precreate(kvm, id);
4245 if (r) {
4246 mutex_unlock(&kvm->lock);
4247 return r;
4248 }
4249
6c7caebc
PB
4250 kvm->created_vcpus++;
4251 mutex_unlock(&kvm->lock);
4252
85f47930 4253 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
4254 if (!vcpu) {
4255 r = -ENOMEM;
6c7caebc
PB
4256 goto vcpu_decrement;
4257 }
c5ea7660 4258
fcd97ad5 4259 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 4260 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
4261 if (!page) {
4262 r = -ENOMEM;
e529ef66 4263 goto vcpu_free;
8bd826d6
SC
4264 }
4265 vcpu->run = page_address(page);
4266
4267 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
4268
4269 r = kvm_arch_vcpu_create(vcpu);
4270 if (r)
8bd826d6 4271 goto vcpu_free_run_page;
e529ef66 4272
fb04a1ed
PX
4273 if (kvm->dirty_ring_size) {
4274 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4275 id, kvm->dirty_ring_size);
4276 if (r)
4277 goto arch_vcpu_destroy;
4278 }
4279
11ec2804 4280 mutex_lock(&kvm->lock);
42a90008
DW
4281
4282#ifdef CONFIG_LOCKDEP
4283 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4284 mutex_lock(&vcpu->mutex);
4285 mutex_unlock(&vcpu->mutex);
4286#endif
4287
e09fefde
DH
4288 if (kvm_get_vcpu_by_id(kvm, id)) {
4289 r = -EEXIST;
4290 goto unlock_vcpu_destroy;
4291 }
73880c80 4292
8750e72a 4293 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
afb2acb2 4294 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
c5b07754
MZ
4295 if (r)
4296 goto unlock_vcpu_destroy;
c5ea7660 4297
fb3f0f51 4298 /* Now it's all set up, let userspace reach it */
66c0b394 4299 kvm_get_kvm(kvm);
bccf2150 4300 r = create_vcpu_fd(vcpu);
afb2acb2
ML
4301 if (r < 0)
4302 goto kvm_put_xa_release;
4303
5f643e46 4304 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
afb2acb2
ML
4305 r = -EINVAL;
4306 goto kvm_put_xa_release;
73880c80
GN
4307 }
4308
dd489240 4309 /*
c5b07754
MZ
4310 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4311 * pointer before kvm->online_vcpu's incremented value.
dd489240 4312 */
73880c80
GN
4313 smp_wmb();
4314 atomic_inc(&kvm->online_vcpus);
4315
73880c80 4316 mutex_unlock(&kvm->lock);
42897d86 4317 kvm_arch_vcpu_postcreate(vcpu);
63d04348 4318 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 4319 return r;
39c3b86e 4320
afb2acb2
ML
4321kvm_put_xa_release:
4322 kvm_put_kvm_no_destroy(kvm);
4323 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
d780592b 4324unlock_vcpu_destroy:
7d8fece6 4325 mutex_unlock(&kvm->lock);
fb04a1ed
PX
4326 kvm_dirty_ring_free(&vcpu->dirty_ring);
4327arch_vcpu_destroy:
d40ccc62 4328 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
4329vcpu_free_run_page:
4330 free_page((unsigned long)vcpu->run);
e529ef66
SC
4331vcpu_free:
4332 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
4333vcpu_decrement:
4334 mutex_lock(&kvm->lock);
4335 kvm->created_vcpus--;
4336 mutex_unlock(&kvm->lock);
c5ea7660
AK
4337 return r;
4338}
4339
1961d276
AK
4340static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4341{
4342 if (sigset) {
4343 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4344 vcpu->sigset_active = 1;
4345 vcpu->sigset = *sigset;
4346 } else
4347 vcpu->sigset_active = 0;
4348 return 0;
4349}
4350
ce55c049
JZ
4351static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4352 size_t size, loff_t *offset)
4353{
4354 struct kvm_vcpu *vcpu = file->private_data;
4355
4356 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4357 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4358 sizeof(vcpu->stat), user_buffer, size, offset);
4359}
4360
eed3013f
SC
4361static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4362{
4363 struct kvm_vcpu *vcpu = file->private_data;
4364
4365 kvm_put_kvm(vcpu->kvm);
4366 return 0;
4367}
4368
ce55c049
JZ
4369static const struct file_operations kvm_vcpu_stats_fops = {
4370 .read = kvm_vcpu_stats_read,
eed3013f 4371 .release = kvm_vcpu_stats_release,
ce55c049
JZ
4372 .llseek = noop_llseek,
4373};
4374
4375static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4376{
4377 int fd;
4378 struct file *file;
4379 char name[15 + ITOA_MAX_LEN + 1];
4380
4381 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4382
4383 fd = get_unused_fd_flags(O_CLOEXEC);
4384 if (fd < 0)
4385 return fd;
4386
4387 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4388 if (IS_ERR(file)) {
4389 put_unused_fd(fd);
4390 return PTR_ERR(file);
4391 }
eed3013f
SC
4392
4393 kvm_get_kvm(vcpu->kvm);
4394
ce55c049
JZ
4395 file->f_mode |= FMODE_PREAD;
4396 fd_install(fd, file);
4397
4398 return fd;
4399}
4400
bccf2150
AK
4401static long kvm_vcpu_ioctl(struct file *filp,
4402 unsigned int ioctl, unsigned long arg)
6aa8b732 4403{
bccf2150 4404 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 4405 void __user *argp = (void __user *)arg;
313a3dc7 4406 int r;
fa3795a7
DH
4407 struct kvm_fpu *fpu = NULL;
4408 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 4409
f4d31653 4410 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
6d4e4c4f 4411 return -EIO;
2122ff5e 4412
2ea75be3
DM
4413 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4414 return -EINVAL;
4415
2122ff5e 4416 /*
5cb0944c
PB
4417 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4418 * execution; mutex_lock() would break them.
2122ff5e 4419 */
5cb0944c
PB
4420 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4421 if (r != -ENOIOCTLCMD)
9fc77441 4422 return r;
2122ff5e 4423
ec7660cc
CD
4424 if (mutex_lock_killable(&vcpu->mutex))
4425 return -EINTR;
6aa8b732 4426 switch (ioctl) {
0e4524a5
CB
4427 case KVM_RUN: {
4428 struct pid *oldpid;
f0fe5108
AK
4429 r = -EINVAL;
4430 if (arg)
4431 goto out;
0e4524a5 4432 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 4433 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 4434 /* The thread running this VCPU changed. */
bd2a6394 4435 struct pid *newpid;
f95ef0cd 4436
bd2a6394
CD
4437 r = kvm_arch_vcpu_run_pid_change(vcpu);
4438 if (r)
4439 break;
4440
4441 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
4442 rcu_assign_pointer(vcpu->pid, newpid);
4443 if (oldpid)
4444 synchronize_rcu();
4445 put_pid(oldpid);
4446 }
1b94f6f8 4447 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 4448 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 4449 break;
0e4524a5 4450 }
6aa8b732 4451 case KVM_GET_REGS: {
3e4bb3ac 4452 struct kvm_regs *kvm_regs;
6aa8b732 4453
3e4bb3ac 4454 r = -ENOMEM;
b12ce36a 4455 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 4456 if (!kvm_regs)
6aa8b732 4457 goto out;
3e4bb3ac
XZ
4458 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4459 if (r)
4460 goto out_free1;
6aa8b732 4461 r = -EFAULT;
3e4bb3ac
XZ
4462 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4463 goto out_free1;
6aa8b732 4464 r = 0;
3e4bb3ac
XZ
4465out_free1:
4466 kfree(kvm_regs);
6aa8b732
AK
4467 break;
4468 }
4469 case KVM_SET_REGS: {
3e4bb3ac 4470 struct kvm_regs *kvm_regs;
6aa8b732 4471
ff5c2c03
SL
4472 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4473 if (IS_ERR(kvm_regs)) {
4474 r = PTR_ERR(kvm_regs);
6aa8b732 4475 goto out;
ff5c2c03 4476 }
3e4bb3ac 4477 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 4478 kfree(kvm_regs);
6aa8b732
AK
4479 break;
4480 }
4481 case KVM_GET_SREGS: {
b12ce36a
BG
4482 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4483 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4484 r = -ENOMEM;
4485 if (!kvm_sregs)
4486 goto out;
4487 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4488 if (r)
4489 goto out;
4490 r = -EFAULT;
fa3795a7 4491 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
4492 goto out;
4493 r = 0;
4494 break;
4495 }
4496 case KVM_SET_SREGS: {
ff5c2c03
SL
4497 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4498 if (IS_ERR(kvm_sregs)) {
4499 r = PTR_ERR(kvm_sregs);
18595411 4500 kvm_sregs = NULL;
6aa8b732 4501 goto out;
ff5c2c03 4502 }
fa3795a7 4503 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4504 break;
4505 }
62d9f0db
MT
4506 case KVM_GET_MP_STATE: {
4507 struct kvm_mp_state mp_state;
4508
4509 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4510 if (r)
4511 goto out;
4512 r = -EFAULT;
893bdbf1 4513 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
4514 goto out;
4515 r = 0;
4516 break;
4517 }
4518 case KVM_SET_MP_STATE: {
4519 struct kvm_mp_state mp_state;
4520
4521 r = -EFAULT;
893bdbf1 4522 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
4523 goto out;
4524 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
4525 break;
4526 }
6aa8b732
AK
4527 case KVM_TRANSLATE: {
4528 struct kvm_translation tr;
4529
4530 r = -EFAULT;
893bdbf1 4531 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 4532 goto out;
8b006791 4533 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
4534 if (r)
4535 goto out;
4536 r = -EFAULT;
893bdbf1 4537 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
4538 goto out;
4539 r = 0;
4540 break;
4541 }
d0bfb940
JK
4542 case KVM_SET_GUEST_DEBUG: {
4543 struct kvm_guest_debug dbg;
6aa8b732
AK
4544
4545 r = -EFAULT;
893bdbf1 4546 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 4547 goto out;
d0bfb940 4548 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
4549 break;
4550 }
1961d276
AK
4551 case KVM_SET_SIGNAL_MASK: {
4552 struct kvm_signal_mask __user *sigmask_arg = argp;
4553 struct kvm_signal_mask kvm_sigmask;
4554 sigset_t sigset, *p;
4555
4556 p = NULL;
4557 if (argp) {
4558 r = -EFAULT;
4559 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4560 sizeof(kvm_sigmask)))
1961d276
AK
4561 goto out;
4562 r = -EINVAL;
893bdbf1 4563 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
4564 goto out;
4565 r = -EFAULT;
4566 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 4567 sizeof(sigset)))
1961d276
AK
4568 goto out;
4569 p = &sigset;
4570 }
376d41ff 4571 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
4572 break;
4573 }
b8836737 4574 case KVM_GET_FPU: {
b12ce36a 4575 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4576 r = -ENOMEM;
4577 if (!fpu)
4578 goto out;
4579 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
4580 if (r)
4581 goto out;
4582 r = -EFAULT;
fa3795a7 4583 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
4584 goto out;
4585 r = 0;
4586 break;
4587 }
4588 case KVM_SET_FPU: {
ff5c2c03
SL
4589 fpu = memdup_user(argp, sizeof(*fpu));
4590 if (IS_ERR(fpu)) {
4591 r = PTR_ERR(fpu);
18595411 4592 fpu = NULL;
b8836737 4593 goto out;
ff5c2c03 4594 }
fa3795a7 4595 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
4596 break;
4597 }
ce55c049
JZ
4598 case KVM_GET_STATS_FD: {
4599 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4600 break;
4601 }
bccf2150 4602 default:
313a3dc7 4603 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
4604 }
4605out:
ec7660cc 4606 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
4607 kfree(fpu);
4608 kfree(kvm_sregs);
bccf2150
AK
4609 return r;
4610}
4611
de8e5d74 4612#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
4613static long kvm_vcpu_compat_ioctl(struct file *filp,
4614 unsigned int ioctl, unsigned long arg)
4615{
4616 struct kvm_vcpu *vcpu = filp->private_data;
4617 void __user *argp = compat_ptr(arg);
4618 int r;
4619
f4d31653 4620 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
1dda606c
AG
4621 return -EIO;
4622
4623 switch (ioctl) {
4624 case KVM_SET_SIGNAL_MASK: {
4625 struct kvm_signal_mask __user *sigmask_arg = argp;
4626 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
4627 sigset_t sigset;
4628
4629 if (argp) {
4630 r = -EFAULT;
4631 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4632 sizeof(kvm_sigmask)))
1dda606c
AG
4633 goto out;
4634 r = -EINVAL;
3968cf62 4635 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
4636 goto out;
4637 r = -EFAULT;
1393b4aa
PB
4638 if (get_compat_sigset(&sigset,
4639 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 4640 goto out;
760a9a30
AC
4641 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4642 } else
4643 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
4644 break;
4645 }
4646 default:
4647 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4648 }
4649
4650out:
4651 return r;
4652}
4653#endif
4654
a1cd3f08
CLG
4655static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4656{
4657 struct kvm_device *dev = filp->private_data;
4658
4659 if (dev->ops->mmap)
4660 return dev->ops->mmap(dev, vma);
4661
4662 return -ENODEV;
4663}
4664
852b6d57
SW
4665static int kvm_device_ioctl_attr(struct kvm_device *dev,
4666 int (*accessor)(struct kvm_device *dev,
4667 struct kvm_device_attr *attr),
4668 unsigned long arg)
4669{
4670 struct kvm_device_attr attr;
4671
4672 if (!accessor)
4673 return -EPERM;
4674
4675 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676 return -EFAULT;
4677
4678 return accessor(dev, &attr);
4679}
4680
4681static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4682 unsigned long arg)
4683{
4684 struct kvm_device *dev = filp->private_data;
4685
f4d31653 4686 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
ddba9180
SC
4687 return -EIO;
4688
852b6d57
SW
4689 switch (ioctl) {
4690 case KVM_SET_DEVICE_ATTR:
4691 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4692 case KVM_GET_DEVICE_ATTR:
4693 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4694 case KVM_HAS_DEVICE_ATTR:
4695 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4696 default:
4697 if (dev->ops->ioctl)
4698 return dev->ops->ioctl(dev, ioctl, arg);
4699
4700 return -ENOTTY;
4701 }
4702}
4703
852b6d57
SW
4704static int kvm_device_release(struct inode *inode, struct file *filp)
4705{
4706 struct kvm_device *dev = filp->private_data;
4707 struct kvm *kvm = dev->kvm;
4708
2bde9b3e
CLG
4709 if (dev->ops->release) {
4710 mutex_lock(&kvm->lock);
4711 list_del(&dev->vm_node);
4712 dev->ops->release(dev);
4713 mutex_unlock(&kvm->lock);
4714 }
4715
852b6d57
SW
4716 kvm_put_kvm(kvm);
4717 return 0;
4718}
4719
4720static const struct file_operations kvm_device_fops = {
4721 .unlocked_ioctl = kvm_device_ioctl,
4722 .release = kvm_device_release,
7ddfd3e0 4723 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 4724 .mmap = kvm_device_mmap,
852b6d57
SW
4725};
4726
4727struct kvm_device *kvm_device_from_filp(struct file *filp)
4728{
4729 if (filp->f_op != &kvm_device_fops)
4730 return NULL;
4731
4732 return filp->private_data;
4733}
4734
8538cb22 4735static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 4736#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
4737 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4738 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 4739#endif
d60eacb0
WD
4740};
4741
8538cb22 4742int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
4743{
4744 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4745 return -ENOSPC;
4746
4747 if (kvm_device_ops_table[type] != NULL)
4748 return -EEXIST;
4749
4750 kvm_device_ops_table[type] = ops;
4751 return 0;
4752}
4753
571ee1b6
WL
4754void kvm_unregister_device_ops(u32 type)
4755{
4756 if (kvm_device_ops_table[type] != NULL)
4757 kvm_device_ops_table[type] = NULL;
4758}
4759
852b6d57
SW
4760static int kvm_ioctl_create_device(struct kvm *kvm,
4761 struct kvm_create_device *cd)
4762{
eceb6e1d 4763 const struct kvm_device_ops *ops;
852b6d57
SW
4764 struct kvm_device *dev;
4765 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 4766 int type;
852b6d57
SW
4767 int ret;
4768
d60eacb0
WD
4769 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4770 return -ENODEV;
4771
1d487e9b
PB
4772 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4773 ops = kvm_device_ops_table[type];
d60eacb0 4774 if (ops == NULL)
852b6d57 4775 return -ENODEV;
852b6d57
SW
4776
4777 if (test)
4778 return 0;
4779
b12ce36a 4780 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
4781 if (!dev)
4782 return -ENOMEM;
4783
4784 dev->ops = ops;
4785 dev->kvm = kvm;
852b6d57 4786
a28ebea2 4787 mutex_lock(&kvm->lock);
1d487e9b 4788 ret = ops->create(dev, type);
852b6d57 4789 if (ret < 0) {
a28ebea2 4790 mutex_unlock(&kvm->lock);
852b6d57
SW
4791 kfree(dev);
4792 return ret;
4793 }
a28ebea2
CD
4794 list_add(&dev->vm_node, &kvm->devices);
4795 mutex_unlock(&kvm->lock);
852b6d57 4796
023e9fdd
CD
4797 if (ops->init)
4798 ops->init(dev);
4799
cfa39381 4800 kvm_get_kvm(kvm);
24009b05 4801 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 4802 if (ret < 0) {
149487bd 4803 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
4804 mutex_lock(&kvm->lock);
4805 list_del(&dev->vm_node);
e8bc2427
AK
4806 if (ops->release)
4807 ops->release(dev);
a28ebea2 4808 mutex_unlock(&kvm->lock);
e8bc2427
AK
4809 if (ops->destroy)
4810 ops->destroy(dev);
852b6d57
SW
4811 return ret;
4812 }
4813
852b6d57
SW
4814 cd->fd = ret;
4815 return 0;
4816}
4817
f15ba52b 4818static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
92b591a4
AG
4819{
4820 switch (arg) {
4821 case KVM_CAP_USER_MEMORY:
bb58b90b 4822 case KVM_CAP_USER_MEMORY2:
92b591a4
AG
4823 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4824 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4825 case KVM_CAP_INTERNAL_ERROR_DATA:
4826#ifdef CONFIG_HAVE_KVM_MSI
4827 case KVM_CAP_SIGNAL_MSI:
4828#endif
c5b31cc2 4829#ifdef CONFIG_HAVE_KVM_IRQCHIP
dc9be0fa 4830 case KVM_CAP_IRQFD:
92b591a4 4831#endif
e9ea5069 4832 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4833 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4834 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4835 case KVM_CAP_HALT_POLL:
92b591a4 4836 return 1;
4b4357e0 4837#ifdef CONFIG_KVM_MMIO
30422558
PB
4838 case KVM_CAP_COALESCED_MMIO:
4839 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4840 case KVM_CAP_COALESCED_PIO:
4841 return 1;
30422558 4842#endif
3c9bd400
JZ
4843#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4844 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4845 return KVM_DIRTY_LOG_MANUAL_CAPS;
4846#endif
92b591a4
AG
4847#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4848 case KVM_CAP_IRQ_ROUTING:
4849 return KVM_MAX_IRQ_ROUTES;
f481b069 4850#endif
eed52e43 4851#if KVM_MAX_NR_ADDRESS_SPACES > 1
f481b069 4852 case KVM_CAP_MULTI_ADDRESS_SPACE:
eed52e43
SC
4853 if (kvm)
4854 return kvm_arch_nr_memslot_as_ids(kvm);
4855 return KVM_MAX_NR_ADDRESS_SPACES;
92b591a4 4856#endif
c110ae57
PB
4857 case KVM_CAP_NR_MEMSLOTS:
4858 return KVM_USER_MEM_SLOTS;
fb04a1ed 4859 case KVM_CAP_DIRTY_LOG_RING:
17601bfe
MZ
4860#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4861 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862#else
4863 return 0;
4864#endif
4865 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4866#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
fb04a1ed
PX
4867 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4868#else
4869 return 0;
86bdf3eb
GS
4870#endif
4871#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4872 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
fb04a1ed 4873#endif
ce55c049 4874 case KVM_CAP_BINARY_STATS_FD:
d495f942 4875 case KVM_CAP_SYSTEM_EVENT_DATA:
ce55c049 4876 return 1;
5a475554
CP
4877#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4878 case KVM_CAP_MEMORY_ATTRIBUTES:
4879 return kvm_supported_mem_attributes(kvm);
a7800aa8
SC
4880#endif
4881#ifdef CONFIG_KVM_PRIVATE_MEM
4882 case KVM_CAP_GUEST_MEMFD:
4883 return !kvm || kvm_arch_has_private_mem(kvm);
5a475554 4884#endif
92b591a4
AG
4885 default:
4886 break;
4887 }
4888 return kvm_vm_ioctl_check_extension(kvm, arg);
4889}
4890
fb04a1ed
PX
4891static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4892{
4893 int r;
4894
4895 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4896 return -EINVAL;
4897
4898 /* the size should be power of 2 */
4899 if (!size || (size & (size - 1)))
4900 return -EINVAL;
4901
4902 /* Should be bigger to keep the reserved entries, or a page */
4903 if (size < kvm_dirty_ring_get_rsvd_entries() *
4904 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4905 return -EINVAL;
4906
4907 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4908 sizeof(struct kvm_dirty_gfn))
4909 return -E2BIG;
4910
4911 /* We only allow it to set once */
4912 if (kvm->dirty_ring_size)
4913 return -EINVAL;
4914
4915 mutex_lock(&kvm->lock);
4916
4917 if (kvm->created_vcpus) {
4918 /* We don't allow to change this value after vcpu created */
4919 r = -EINVAL;
4920 } else {
4921 kvm->dirty_ring_size = size;
4922 r = 0;
4923 }
4924
4925 mutex_unlock(&kvm->lock);
4926 return r;
4927}
4928
4929static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4930{
46808a4c 4931 unsigned long i;
fb04a1ed
PX
4932 struct kvm_vcpu *vcpu;
4933 int cleared = 0;
4934
4935 if (!kvm->dirty_ring_size)
4936 return -EINVAL;
4937
4938 mutex_lock(&kvm->slots_lock);
4939
4940 kvm_for_each_vcpu(i, vcpu, kvm)
4941 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4942
4943 mutex_unlock(&kvm->slots_lock);
4944
4945 if (cleared)
4946 kvm_flush_remote_tlbs(kvm);
4947
4948 return cleared;
4949}
4950
e5d83c74
PB
4951int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4952 struct kvm_enable_cap *cap)
4953{
4954 return -EINVAL;
4955}
4956
26f45714 4957bool kvm_are_all_memslots_empty(struct kvm *kvm)
86bdf3eb
GS
4958{
4959 int i;
4960
4961 lockdep_assert_held(&kvm->slots_lock);
4962
eed52e43 4963 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
86bdf3eb
GS
4964 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4965 return false;
4966 }
4967
4968 return true;
4969}
26f45714 4970EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
86bdf3eb 4971
e5d83c74
PB
4972static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4973 struct kvm_enable_cap *cap)
4974{
4975 switch (cap->cap) {
2a31b9db 4976#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4977 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4978 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4979
4980 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4981 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4982
4983 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4984 return -EINVAL;
4985 kvm->manual_dirty_log_protect = cap->args[0];
4986 return 0;
3c9bd400 4987 }
2a31b9db 4988#endif
acd05785
DM
4989 case KVM_CAP_HALT_POLL: {
4990 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4991 return -EINVAL;
4992
4993 kvm->max_halt_poll_ns = cap->args[0];
9eb8ca04
DM
4994
4995 /*
4996 * Ensure kvm->override_halt_poll_ns does not become visible
4997 * before kvm->max_halt_poll_ns.
4998 *
4999 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5000 */
5001 smp_wmb();
5002 kvm->override_halt_poll_ns = true;
5003
acd05785
DM
5004 return 0;
5005 }
fb04a1ed 5006 case KVM_CAP_DIRTY_LOG_RING:
17601bfe 5007 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
7a2726ec
GS
5008 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5009 return -EINVAL;
5010
fb04a1ed 5011 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
86bdf3eb
GS
5012 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5013 int r = -EINVAL;
5014
5015 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5016 !kvm->dirty_ring_size || cap->flags)
5017 return r;
5018
5019 mutex_lock(&kvm->slots_lock);
5020
5021 /*
5022 * For simplicity, allow enabling ring+bitmap if and only if
5023 * there are no memslots, e.g. to ensure all memslots allocate
5024 * a bitmap after the capability is enabled.
5025 */
5026 if (kvm_are_all_memslots_empty(kvm)) {
5027 kvm->dirty_ring_with_bitmap = true;
5028 r = 0;
5029 }
5030
5031 mutex_unlock(&kvm->slots_lock);
5032
5033 return r;
5034 }
e5d83c74
PB
5035 default:
5036 return kvm_vm_ioctl_enable_cap(kvm, cap);
5037 }
5038}
5039
fcfe1bae
JZ
5040static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5041 size_t size, loff_t *offset)
5042{
5043 struct kvm *kvm = file->private_data;
5044
5045 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5046 &kvm_vm_stats_desc[0], &kvm->stat,
5047 sizeof(kvm->stat), user_buffer, size, offset);
5048}
5049
eed3013f
SC
5050static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5051{
5052 struct kvm *kvm = file->private_data;
5053
5054 kvm_put_kvm(kvm);
5055 return 0;
5056}
5057
fcfe1bae
JZ
5058static const struct file_operations kvm_vm_stats_fops = {
5059 .read = kvm_vm_stats_read,
eed3013f 5060 .release = kvm_vm_stats_release,
fcfe1bae
JZ
5061 .llseek = noop_llseek,
5062};
5063
5064static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5065{
5066 int fd;
5067 struct file *file;
5068
5069 fd = get_unused_fd_flags(O_CLOEXEC);
5070 if (fd < 0)
5071 return fd;
5072
5073 file = anon_inode_getfile("kvm-vm-stats",
5074 &kvm_vm_stats_fops, kvm, O_RDONLY);
5075 if (IS_ERR(file)) {
5076 put_unused_fd(fd);
5077 return PTR_ERR(file);
5078 }
eed3013f
SC
5079
5080 kvm_get_kvm(kvm);
5081
fcfe1bae
JZ
5082 file->f_mode |= FMODE_PREAD;
5083 fd_install(fd, file);
5084
5085 return fd;
5086}
5087
bb58b90b
SC
5088#define SANITY_CHECK_MEM_REGION_FIELD(field) \
5089do { \
5090 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5091 offsetof(struct kvm_userspace_memory_region2, field)); \
5092 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5093 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5094} while (0)
5095
bccf2150
AK
5096static long kvm_vm_ioctl(struct file *filp,
5097 unsigned int ioctl, unsigned long arg)
5098{
5099 struct kvm *kvm = filp->private_data;
5100 void __user *argp = (void __user *)arg;
1fe779f8 5101 int r;
bccf2150 5102
f4d31653 5103 if (kvm->mm != current->mm || kvm->vm_dead)
6d4e4c4f 5104 return -EIO;
bccf2150
AK
5105 switch (ioctl) {
5106 case KVM_CREATE_VCPU:
5107 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 5108 break;
e5d83c74
PB
5109 case KVM_ENABLE_CAP: {
5110 struct kvm_enable_cap cap;
5111
5112 r = -EFAULT;
5113 if (copy_from_user(&cap, argp, sizeof(cap)))
5114 goto out;
5115 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5116 break;
5117 }
bb58b90b 5118 case KVM_SET_USER_MEMORY_REGION2:
6fc138d2 5119 case KVM_SET_USER_MEMORY_REGION: {
bb58b90b
SC
5120 struct kvm_userspace_memory_region2 mem;
5121 unsigned long size;
5122
5123 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5124 /*
5125 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5126 * accessed, but avoid leaking kernel memory in case of a bug.
5127 */
5128 memset(&mem, 0, sizeof(mem));
5129 size = sizeof(struct kvm_userspace_memory_region);
5130 } else {
5131 size = sizeof(struct kvm_userspace_memory_region2);
5132 }
5133
5134 /* Ensure the common parts of the two structs are identical. */
5135 SANITY_CHECK_MEM_REGION_FIELD(slot);
5136 SANITY_CHECK_MEM_REGION_FIELD(flags);
5137 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5138 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5139 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
6fc138d2
IE
5140
5141 r = -EFAULT;
bb58b90b
SC
5142 if (copy_from_user(&mem, argp, size))
5143 goto out;
5144
5145 r = -EINVAL;
5146 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5147 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
6fc138d2
IE
5148 goto out;
5149
bb58b90b 5150 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
6aa8b732
AK
5151 break;
5152 }
5153 case KVM_GET_DIRTY_LOG: {
5154 struct kvm_dirty_log log;
5155
5156 r = -EFAULT;
893bdbf1 5157 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 5158 goto out;
2c6f5df9 5159 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
5160 break;
5161 }
2a31b9db
PB
5162#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5163 case KVM_CLEAR_DIRTY_LOG: {
5164 struct kvm_clear_dirty_log log;
5165
5166 r = -EFAULT;
5167 if (copy_from_user(&log, argp, sizeof(log)))
5168 goto out;
5169 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5170 break;
5171 }
5172#endif
4b4357e0 5173#ifdef CONFIG_KVM_MMIO
5f94c174
LV
5174 case KVM_REGISTER_COALESCED_MMIO: {
5175 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 5176
5f94c174 5177 r = -EFAULT;
893bdbf1 5178 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 5179 goto out;
5f94c174 5180 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
5181 break;
5182 }
5183 case KVM_UNREGISTER_COALESCED_MMIO: {
5184 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 5185
5f94c174 5186 r = -EFAULT;
893bdbf1 5187 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 5188 goto out;
5f94c174 5189 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
5190 break;
5191 }
5192#endif
721eecbf
GH
5193 case KVM_IRQFD: {
5194 struct kvm_irqfd data;
5195
5196 r = -EFAULT;
893bdbf1 5197 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 5198 goto out;
d4db2935 5199 r = kvm_irqfd(kvm, &data);
721eecbf
GH
5200 break;
5201 }
d34e6b17
GH
5202 case KVM_IOEVENTFD: {
5203 struct kvm_ioeventfd data;
5204
5205 r = -EFAULT;
893bdbf1 5206 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
5207 goto out;
5208 r = kvm_ioeventfd(kvm, &data);
5209 break;
5210 }
07975ad3
JK
5211#ifdef CONFIG_HAVE_KVM_MSI
5212 case KVM_SIGNAL_MSI: {
5213 struct kvm_msi msi;
5214
5215 r = -EFAULT;
893bdbf1 5216 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
5217 goto out;
5218 r = kvm_send_userspace_msi(kvm, &msi);
5219 break;
5220 }
23d43cf9
CD
5221#endif
5222#ifdef __KVM_HAVE_IRQ_LINE
5223 case KVM_IRQ_LINE_STATUS:
5224 case KVM_IRQ_LINE: {
5225 struct kvm_irq_level irq_event;
5226
5227 r = -EFAULT;
893bdbf1 5228 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
5229 goto out;
5230
aa2fbe6d
YZ
5231 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5232 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
5233 if (r)
5234 goto out;
5235
5236 r = -EFAULT;
5237 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 5238 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
5239 goto out;
5240 }
5241
5242 r = 0;
5243 break;
5244 }
73880c80 5245#endif
aa8d5944
AG
5246#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5247 case KVM_SET_GSI_ROUTING: {
5248 struct kvm_irq_routing routing;
5249 struct kvm_irq_routing __user *urouting;
f8c1b85b 5250 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
5251
5252 r = -EFAULT;
5253 if (copy_from_user(&routing, argp, sizeof(routing)))
5254 goto out;
5255 r = -EINVAL;
5c0aea0e
DH
5256 if (!kvm_arch_can_set_irq_routing(kvm))
5257 goto out;
caf1ff26 5258 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
5259 goto out;
5260 if (routing.flags)
5261 goto out;
f8c1b85b 5262 if (routing.nr) {
f8c1b85b 5263 urouting = argp;
7ec28e26
DE
5264 entries = vmemdup_user(urouting->entries,
5265 array_size(sizeof(*entries),
5266 routing.nr));
5267 if (IS_ERR(entries)) {
5268 r = PTR_ERR(entries);
5269 goto out;
5270 }
f8c1b85b 5271 }
aa8d5944
AG
5272 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5273 routing.flags);
7ec28e26 5274 kvfree(entries);
aa8d5944
AG
5275 break;
5276 }
5277#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5a475554
CP
5278#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5279 case KVM_SET_MEMORY_ATTRIBUTES: {
5280 struct kvm_memory_attributes attrs;
5281
5282 r = -EFAULT;
5283 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5284 goto out;
5285
5286 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5287 break;
5288 }
5289#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
852b6d57
SW
5290 case KVM_CREATE_DEVICE: {
5291 struct kvm_create_device cd;
5292
5293 r = -EFAULT;
5294 if (copy_from_user(&cd, argp, sizeof(cd)))
5295 goto out;
5296
5297 r = kvm_ioctl_create_device(kvm, &cd);
5298 if (r)
5299 goto out;
5300
5301 r = -EFAULT;
5302 if (copy_to_user(argp, &cd, sizeof(cd)))
5303 goto out;
5304
5305 r = 0;
5306 break;
5307 }
92b591a4
AG
5308 case KVM_CHECK_EXTENSION:
5309 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5310 break;
fb04a1ed
PX
5311 case KVM_RESET_DIRTY_RINGS:
5312 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5313 break;
fcfe1bae
JZ
5314 case KVM_GET_STATS_FD:
5315 r = kvm_vm_ioctl_get_stats_fd(kvm);
5316 break;
a7800aa8
SC
5317#ifdef CONFIG_KVM_PRIVATE_MEM
5318 case KVM_CREATE_GUEST_MEMFD: {
5319 struct kvm_create_guest_memfd guest_memfd;
5320
5321 r = -EFAULT;
5322 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5323 goto out;
5324
5325 r = kvm_gmem_create(kvm, &guest_memfd);
5326 break;
5327 }
5328#endif
f17abe9a 5329 default:
1fe779f8 5330 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
5331 }
5332out:
5333 return r;
5334}
5335
de8e5d74 5336#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
5337struct compat_kvm_dirty_log {
5338 __u32 slot;
5339 __u32 padding1;
5340 union {
5341 compat_uptr_t dirty_bitmap; /* one bit per page */
5342 __u64 padding2;
5343 };
5344};
5345
8750f9bb
PB
5346struct compat_kvm_clear_dirty_log {
5347 __u32 slot;
5348 __u32 num_pages;
5349 __u64 first_page;
5350 union {
5351 compat_uptr_t dirty_bitmap; /* one bit per page */
5352 __u64 padding2;
5353 };
5354};
5355
ed51862f
AG
5356long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5357 unsigned long arg)
5358{
5359 return -ENOTTY;
5360}
5361
6ff5894c
AB
5362static long kvm_vm_compat_ioctl(struct file *filp,
5363 unsigned int ioctl, unsigned long arg)
5364{
5365 struct kvm *kvm = filp->private_data;
5366 int r;
5367
f4d31653 5368 if (kvm->mm != current->mm || kvm->vm_dead)
6ff5894c 5369 return -EIO;
ed51862f
AG
5370
5371 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5372 if (r != -ENOTTY)
5373 return r;
5374
6ff5894c 5375 switch (ioctl) {
8750f9bb
PB
5376#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5377 case KVM_CLEAR_DIRTY_LOG: {
5378 struct compat_kvm_clear_dirty_log compat_log;
5379 struct kvm_clear_dirty_log log;
5380
5381 if (copy_from_user(&compat_log, (void __user *)arg,
5382 sizeof(compat_log)))
5383 return -EFAULT;
5384 log.slot = compat_log.slot;
5385 log.num_pages = compat_log.num_pages;
5386 log.first_page = compat_log.first_page;
5387 log.padding2 = compat_log.padding2;
5388 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5389
5390 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5391 break;
5392 }
5393#endif
6ff5894c
AB
5394 case KVM_GET_DIRTY_LOG: {
5395 struct compat_kvm_dirty_log compat_log;
5396 struct kvm_dirty_log log;
5397
6ff5894c
AB
5398 if (copy_from_user(&compat_log, (void __user *)arg,
5399 sizeof(compat_log)))
f6a3b168 5400 return -EFAULT;
6ff5894c
AB
5401 log.slot = compat_log.slot;
5402 log.padding1 = compat_log.padding1;
5403 log.padding2 = compat_log.padding2;
5404 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5405
5406 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
5407 break;
5408 }
5409 default:
5410 r = kvm_vm_ioctl(filp, ioctl, arg);
5411 }
6ff5894c
AB
5412 return r;
5413}
5414#endif
5415
70375c2d 5416static const struct file_operations kvm_vm_fops = {
f17abe9a
AK
5417 .release = kvm_vm_release,
5418 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 5419 .llseek = noop_llseek,
7ddfd3e0 5420 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
5421};
5422
54526d1f
NT
5423bool file_is_kvm(struct file *file)
5424{
5425 return file && file->f_op == &kvm_vm_fops;
5426}
5427EXPORT_SYMBOL_GPL(file_is_kvm);
5428
e08b9637 5429static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 5430{
59f82aad 5431 char fdname[ITOA_MAX_LEN + 1];
20020f4c 5432 int r, fd;
f17abe9a 5433 struct kvm *kvm;
506cfba9 5434 struct file *file;
f17abe9a 5435
20020f4c
OU
5436 fd = get_unused_fd_flags(O_CLOEXEC);
5437 if (fd < 0)
5438 return fd;
5439
59f82aad
OU
5440 snprintf(fdname, sizeof(fdname), "%d", fd);
5441
b74ed7a6 5442 kvm = kvm_create_vm(type, fdname);
20020f4c
OU
5443 if (IS_ERR(kvm)) {
5444 r = PTR_ERR(kvm);
5445 goto put_fd;
5446 }
5447
506cfba9
AV
5448 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5449 if (IS_ERR(file)) {
78588335
ME
5450 r = PTR_ERR(file);
5451 goto put_kvm;
506cfba9 5452 }
536a6f88 5453
525df861
PB
5454 /*
5455 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5456 * already set, with ->release() being kvm_vm_release(). In error
5457 * cases it will be called by the final fput(file) and will take
5458 * care of doing kvm_put_kvm(kvm).
5459 */
286de8f6 5460 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 5461
20020f4c
OU
5462 fd_install(fd, file);
5463 return fd;
78588335
ME
5464
5465put_kvm:
5466 kvm_put_kvm(kvm);
20020f4c
OU
5467put_fd:
5468 put_unused_fd(fd);
78588335 5469 return r;
f17abe9a
AK
5470}
5471
5472static long kvm_dev_ioctl(struct file *filp,
5473 unsigned int ioctl, unsigned long arg)
5474{
f15ba52b 5475 int r = -EINVAL;
f17abe9a
AK
5476
5477 switch (ioctl) {
5478 case KVM_GET_API_VERSION:
f0fe5108
AK
5479 if (arg)
5480 goto out;
f17abe9a
AK
5481 r = KVM_API_VERSION;
5482 break;
5483 case KVM_CREATE_VM:
e08b9637 5484 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 5485 break;
018d00d2 5486 case KVM_CHECK_EXTENSION:
784aa3d7 5487 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 5488 break;
07c45a36 5489 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
5490 if (arg)
5491 goto out;
adb1ff46
AK
5492 r = PAGE_SIZE; /* struct kvm_run */
5493#ifdef CONFIG_X86
5494 r += PAGE_SIZE; /* pio data page */
5f94c174 5495#endif
4b4357e0 5496#ifdef CONFIG_KVM_MMIO
5f94c174 5497 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 5498#endif
07c45a36 5499 break;
6aa8b732 5500 default:
043405e1 5501 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
5502 }
5503out:
5504 return r;
5505}
5506
6aa8b732 5507static struct file_operations kvm_chardev_ops = {
6aa8b732 5508 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 5509 .llseek = noop_llseek,
7ddfd3e0 5510 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
5511};
5512
5513static struct miscdevice kvm_dev = {
bbe4432e 5514 KVM_MINOR,
6aa8b732
AK
5515 "kvm",
5516 &kvm_chardev_ops,
5517};
5518
441f7bfa
SC
5519#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5520__visible bool kvm_rebooting;
5521EXPORT_SYMBOL_GPL(kvm_rebooting);
5522
5523static DEFINE_PER_CPU(bool, hardware_enabled);
5524static int kvm_usage_count;
5525
e6fb7d6e 5526static int __hardware_enable_nolock(void)
1b6c0168 5527{
37d25881 5528 if (__this_cpu_read(hardware_enabled))
e6fb7d6e 5529 return 0;
10474ae8 5530
37d25881 5531 if (kvm_arch_hardware_enable()) {
37d25881
SC
5532 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5533 raw_smp_processor_id());
e6fb7d6e 5534 return -EIO;
10474ae8 5535 }
37d25881
SC
5536
5537 __this_cpu_write(hardware_enabled, true);
e6fb7d6e
IY
5538 return 0;
5539}
5540
5541static void hardware_enable_nolock(void *failed)
5542{
5543 if (__hardware_enable_nolock())
5544 atomic_inc(failed);
1b6c0168
AK
5545}
5546
aaf12a7b 5547static int kvm_online_cpu(unsigned int cpu)
75b7127c 5548{
aaf12a7b
CG
5549 int ret = 0;
5550
5551 /*
5552 * Abort the CPU online process if hardware virtualization cannot
5553 * be enabled. Otherwise running VMs would encounter unrecoverable
5554 * errors when scheduled to this CPU.
5555 */
0bf50497 5556 mutex_lock(&kvm_lock);
e6fb7d6e
IY
5557 if (kvm_usage_count)
5558 ret = __hardware_enable_nolock();
0bf50497 5559 mutex_unlock(&kvm_lock);
aaf12a7b 5560 return ret;
75b7127c
TY
5561}
5562
5563static void hardware_disable_nolock(void *junk)
1b6c0168 5564{
37d25881
SC
5565 /*
5566 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5567 * hardware, not just CPUs that successfully enabled hardware!
5568 */
5569 if (!__this_cpu_read(hardware_enabled))
1b6c0168 5570 return;
37d25881 5571
13a34e06 5572 kvm_arch_hardware_disable();
37d25881
SC
5573
5574 __this_cpu_write(hardware_enabled, false);
1b6c0168
AK
5575}
5576
aaf12a7b 5577static int kvm_offline_cpu(unsigned int cpu)
75b7127c 5578{
0bf50497 5579 mutex_lock(&kvm_lock);
4fa92fb2
PB
5580 if (kvm_usage_count)
5581 hardware_disable_nolock(NULL);
0bf50497 5582 mutex_unlock(&kvm_lock);
8c18b2d2 5583 return 0;
75b7127c
TY
5584}
5585
10474ae8
AG
5586static void hardware_disable_all_nolock(void)
5587{
5588 BUG_ON(!kvm_usage_count);
5589
5590 kvm_usage_count--;
5591 if (!kvm_usage_count)
75b7127c 5592 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
5593}
5594
5595static void hardware_disable_all(void)
5596{
e4aa7f88 5597 cpus_read_lock();
0bf50497 5598 mutex_lock(&kvm_lock);
10474ae8 5599 hardware_disable_all_nolock();
0bf50497 5600 mutex_unlock(&kvm_lock);
e4aa7f88 5601 cpus_read_unlock();
10474ae8
AG
5602}
5603
5604static int hardware_enable_all(void)
5605{
e6fb7d6e 5606 atomic_t failed = ATOMIC_INIT(0);
e0ceec22
SC
5607 int r;
5608
5609 /*
5610 * Do not enable hardware virtualization if the system is going down.
5611 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5612 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5613 * after kvm_reboot() is called. Note, this relies on system_state
5614 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5615 * hook instead of registering a dedicated reboot notifier (the latter
5616 * runs before system_state is updated).
5617 */
5618 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5619 system_state == SYSTEM_RESTART)
5620 return -EBUSY;
10474ae8 5621
e4aa7f88
CG
5622 /*
5623 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5624 * is called, and so on_each_cpu() between them includes the CPU that
5625 * is being onlined. As a result, hardware_enable_nolock() may get
5626 * invoked before kvm_online_cpu(), which also enables hardware if the
5627 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5628 * enable hardware multiple times.
5629 */
5630 cpus_read_lock();
0bf50497 5631 mutex_lock(&kvm_lock);
10474ae8 5632
e0ceec22
SC
5633 r = 0;
5634
10474ae8
AG
5635 kvm_usage_count++;
5636 if (kvm_usage_count == 1) {
e6fb7d6e 5637 on_each_cpu(hardware_enable_nolock, &failed, 1);
10474ae8 5638
e6fb7d6e 5639 if (atomic_read(&failed)) {
10474ae8
AG
5640 hardware_disable_all_nolock();
5641 r = -EBUSY;
5642 }
5643 }
5644
0bf50497 5645 mutex_unlock(&kvm_lock);
e4aa7f88 5646 cpus_read_unlock();
10474ae8
AG
5647
5648 return r;
5649}
5650
6735150b 5651static void kvm_shutdown(void)
9a2b85c6 5652{
8e1c1815 5653 /*
6735150b
SC
5654 * Disable hardware virtualization and set kvm_rebooting to indicate
5655 * that KVM has asynchronously disabled hardware virtualization, i.e.
5656 * that relevant errors and exceptions aren't entirely unexpected.
5657 * Some flavors of hardware virtualization need to be disabled before
5658 * transferring control to firmware (to perform shutdown/reboot), e.g.
5659 * on x86, virtualization can block INIT interrupts, which are used by
5660 * firmware to pull APs back under firmware control. Note, this path
5661 * is used for both shutdown and reboot scenarios, i.e. neither name is
5662 * 100% comprehensive.
8e1c1815 5663 */
1170adc6 5664 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 5665 kvm_rebooting = true;
75b7127c 5666 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
5667}
5668
35774a9f
SC
5669static int kvm_suspend(void)
5670{
5671 /*
5672 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5673 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5674 * is stable. Assert that kvm_lock is not held to ensure the system
5675 * isn't suspended while KVM is enabling hardware. Hardware enabling
5676 * can be preempted, but the task cannot be frozen until it has dropped
5677 * all locks (userspace tasks are frozen via a fake signal).
5678 */
5679 lockdep_assert_not_held(&kvm_lock);
5680 lockdep_assert_irqs_disabled();
5681
5682 if (kvm_usage_count)
5683 hardware_disable_nolock(NULL);
5684 return 0;
5685}
5686
5687static void kvm_resume(void)
5688{
5689 lockdep_assert_not_held(&kvm_lock);
5690 lockdep_assert_irqs_disabled();
5691
5692 if (kvm_usage_count)
5693 WARN_ON_ONCE(__hardware_enable_nolock());
5694}
5695
5696static struct syscore_ops kvm_syscore_ops = {
5697 .suspend = kvm_suspend,
5698 .resume = kvm_resume,
6735150b 5699 .shutdown = kvm_shutdown,
35774a9f 5700};
441f7bfa
SC
5701#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5702static int hardware_enable_all(void)
5703{
5704 return 0;
5705}
5706
5707static void hardware_disable_all(void)
5708{
5709
5710}
5711#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
35774a9f 5712
5ea5ca3c
WW
5713static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5714{
5715 if (dev->ops->destructor)
5716 dev->ops->destructor(dev);
5717}
5718
e93f8a0f 5719static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
5720{
5721 int i;
5722
5723 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 5724 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
5725
5726 kvm_iodevice_destructor(pos);
5727 }
e93f8a0f 5728 kfree(bus);
2eeb2e94
GH
5729}
5730
c21fbff1 5731static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 5732 const struct kvm_io_range *r2)
743eeb0b 5733{
8f4216c7
JW
5734 gpa_t addr1 = r1->addr;
5735 gpa_t addr2 = r2->addr;
5736
5737 if (addr1 < addr2)
743eeb0b 5738 return -1;
8f4216c7
JW
5739
5740 /* If r2->len == 0, match the exact address. If r2->len != 0,
5741 * accept any overlapping write. Any order is acceptable for
5742 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5743 * we process all of them.
5744 */
5745 if (r2->len) {
5746 addr1 += r1->len;
5747 addr2 += r2->len;
5748 }
5749
5750 if (addr1 > addr2)
743eeb0b 5751 return 1;
8f4216c7 5752
743eeb0b
SL
5753 return 0;
5754}
5755
a343c9b7
PB
5756static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5757{
c21fbff1 5758 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
5759}
5760
39369f7a 5761static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
5762 gpa_t addr, int len)
5763{
5764 struct kvm_io_range *range, key;
5765 int off;
5766
5767 key = (struct kvm_io_range) {
5768 .addr = addr,
5769 .len = len,
5770 };
5771
5772 range = bsearch(&key, bus->range, bus->dev_count,
5773 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5774 if (range == NULL)
5775 return -ENOENT;
5776
5777 off = range - bus->range;
5778
c21fbff1 5779 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
5780 off--;
5781
5782 return off;
5783}
5784
e32edf4f 5785static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
5786 struct kvm_io_range *range, const void *val)
5787{
5788 int idx;
5789
5790 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5791 if (idx < 0)
5792 return -EOPNOTSUPP;
5793
5794 while (idx < bus->dev_count &&
c21fbff1 5795 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5796 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5797 range->len, val))
5798 return idx;
5799 idx++;
5800 }
5801
5802 return -EOPNOTSUPP;
5803}
5804
bda9020e 5805/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 5806int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 5807 int len, const void *val)
2eeb2e94 5808{
90d83dc3 5809 struct kvm_io_bus *bus;
743eeb0b 5810 struct kvm_io_range range;
126a5af5 5811 int r;
743eeb0b
SL
5812
5813 range = (struct kvm_io_range) {
5814 .addr = addr,
5815 .len = len,
5816 };
90d83dc3 5817
e32edf4f 5818 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5819 if (!bus)
5820 return -ENOMEM;
e32edf4f 5821 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5822 return r < 0 ? r : 0;
5823}
a2420107 5824EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
5825
5826/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
5827int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5828 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
5829{
5830 struct kvm_io_bus *bus;
5831 struct kvm_io_range range;
5832
5833 range = (struct kvm_io_range) {
5834 .addr = addr,
5835 .len = len,
5836 };
5837
e32edf4f 5838 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5839 if (!bus)
5840 return -ENOMEM;
126a5af5
CH
5841
5842 /* First try the device referenced by cookie. */
5843 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 5844 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 5845 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
5846 val))
5847 return cookie;
5848
5849 /*
5850 * cookie contained garbage; fall back to search and return the
5851 * correct cookie value.
5852 */
e32edf4f 5853 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5854}
5855
e32edf4f
NN
5856static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5857 struct kvm_io_range *range, void *val)
126a5af5
CH
5858{
5859 int idx;
5860
5861 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
5862 if (idx < 0)
5863 return -EOPNOTSUPP;
5864
5865 while (idx < bus->dev_count &&
c21fbff1 5866 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5867 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5868 range->len, val))
5869 return idx;
743eeb0b
SL
5870 idx++;
5871 }
5872
bda9020e
MT
5873 return -EOPNOTSUPP;
5874}
2eeb2e94 5875
bda9020e 5876/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 5877int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 5878 int len, void *val)
bda9020e 5879{
90d83dc3 5880 struct kvm_io_bus *bus;
743eeb0b 5881 struct kvm_io_range range;
126a5af5 5882 int r;
743eeb0b
SL
5883
5884 range = (struct kvm_io_range) {
5885 .addr = addr,
5886 .len = len,
5887 };
e93f8a0f 5888
e32edf4f 5889 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5890 if (!bus)
5891 return -ENOMEM;
e32edf4f 5892 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
5893 return r < 0 ? r : 0;
5894}
743eeb0b 5895
79fac95e 5896/* Caller must hold slots_lock. */
743eeb0b
SL
5897int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5898 int len, struct kvm_io_device *dev)
6c474694 5899{
d4c67a7a 5900 int i;
e93f8a0f 5901 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 5902 struct kvm_io_range range;
090b7aff 5903
4a12f951 5904 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
5905 if (!bus)
5906 return -ENOMEM;
5907
6ea34c9b
AK
5908 /* exclude ioeventfd which is limited by maximum fd */
5909 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 5910 return -ENOSPC;
2eeb2e94 5911
90952cd3 5912 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 5913 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
5914 if (!new_bus)
5915 return -ENOMEM;
d4c67a7a
GH
5916
5917 range = (struct kvm_io_range) {
5918 .addr = addr,
5919 .len = len,
5920 .dev = dev,
5921 };
5922
5923 for (i = 0; i < bus->dev_count; i++)
5924 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5925 break;
5926
5927 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5928 new_bus->dev_count++;
5929 new_bus->range[i] = range;
5930 memcpy(new_bus->range + i + 1, bus->range + i,
5931 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
5932 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5933 synchronize_srcu_expedited(&kvm->srcu);
5934 kfree(bus);
090b7aff
GH
5935
5936 return 0;
5937}
5938
5d3c4c79
SC
5939int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5940 struct kvm_io_device *dev)
090b7aff 5941{
5ea5ca3c 5942 int i;
e93f8a0f 5943 struct kvm_io_bus *new_bus, *bus;
090b7aff 5944
7c896d37
SC
5945 lockdep_assert_held(&kvm->slots_lock);
5946
4a12f951 5947 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 5948 if (!bus)
5d3c4c79 5949 return 0;
df630b8c 5950
7c896d37 5951 for (i = 0; i < bus->dev_count; i++) {
a1300716 5952 if (bus->range[i].dev == dev) {
090b7aff
GH
5953 break;
5954 }
7c896d37 5955 }
e93f8a0f 5956
90db1043 5957 if (i == bus->dev_count)
5d3c4c79 5958 return 0;
a1300716 5959
90952cd3 5960 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 5961 GFP_KERNEL_ACCOUNT);
f6588660 5962 if (new_bus) {
871c433b 5963 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
5964 new_bus->dev_count--;
5965 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 5966 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
5967 }
5968
5969 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5970 synchronize_srcu_expedited(&kvm->srcu);
5971
5ea5ca3c
WW
5972 /*
5973 * If NULL bus is installed, destroy the old bus, including all the
5974 * attached devices. Otherwise, destroy the caller's device only.
5975 */
2ee37574 5976 if (!new_bus) {
90db1043 5977 pr_err("kvm: failed to shrink bus, removing it completely\n");
5ea5ca3c
WW
5978 kvm_io_bus_destroy(bus);
5979 return -ENOMEM;
90db1043 5980 }
a1300716 5981
5ea5ca3c 5982 kvm_iodevice_destructor(dev);
e93f8a0f 5983 kfree(bus);
5ea5ca3c 5984 return 0;
2eeb2e94
GH
5985}
5986
8a39d006
AP
5987struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5988 gpa_t addr)
5989{
5990 struct kvm_io_bus *bus;
5991 int dev_idx, srcu_idx;
5992 struct kvm_io_device *iodev = NULL;
5993
5994 srcu_idx = srcu_read_lock(&kvm->srcu);
5995
5996 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
5997 if (!bus)
5998 goto out_unlock;
8a39d006
AP
5999
6000 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6001 if (dev_idx < 0)
6002 goto out_unlock;
6003
6004 iodev = bus->range[dev_idx].dev;
6005
6006out_unlock:
6007 srcu_read_unlock(&kvm->srcu, srcu_idx);
6008
6009 return iodev;
6010}
6011EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6012
536a6f88
JF
6013static int kvm_debugfs_open(struct inode *inode, struct file *file,
6014 int (*get)(void *, u64 *), int (*set)(void *, u64),
6015 const char *fmt)
6016{
180418e2 6017 int ret;
14aa40a1 6018 struct kvm_stat_data *stat_data = inode->i_private;
536a6f88 6019
605c7130
PX
6020 /*
6021 * The debugfs files are a reference to the kvm struct which
6022 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6023 * avoids the race between open and the removal of the debugfs directory.
536a6f88 6024 */
605c7130 6025 if (!kvm_get_kvm_safe(stat_data->kvm))
536a6f88
JF
6026 return -ENOENT;
6027
180418e2
HW
6028 ret = simple_attr_open(inode, file, get,
6029 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6030 ? set : NULL, fmt);
6031 if (ret)
536a6f88 6032 kvm_put_kvm(stat_data->kvm);
536a6f88 6033
180418e2 6034 return ret;
536a6f88
JF
6035}
6036
6037static int kvm_debugfs_release(struct inode *inode, struct file *file)
6038{
14aa40a1 6039 struct kvm_stat_data *stat_data = inode->i_private;
536a6f88
JF
6040
6041 simple_attr_release(inode, file);
6042 kvm_put_kvm(stat_data->kvm);
6043
6044 return 0;
6045}
6046
09cbcef6 6047static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 6048{
bc9e9e67 6049 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 6050
09cbcef6
MP
6051 return 0;
6052}
6053
6054static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6055{
bc9e9e67 6056 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
6057
6058 return 0;
6059}
6060
09cbcef6 6061static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 6062{
46808a4c 6063 unsigned long i;
09cbcef6 6064 struct kvm_vcpu *vcpu;
ce35ef27 6065
09cbcef6 6066 *val = 0;
ce35ef27 6067
09cbcef6 6068 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 6069 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
6070
6071 return 0;
6072}
6073
09cbcef6 6074static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 6075{
46808a4c 6076 unsigned long i;
09cbcef6 6077 struct kvm_vcpu *vcpu;
536a6f88 6078
09cbcef6 6079 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 6080 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
6081
6082 return 0;
6083}
536a6f88 6084
09cbcef6 6085static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 6086{
09cbcef6 6087 int r = -EFAULT;
14aa40a1 6088 struct kvm_stat_data *stat_data = data;
536a6f88 6089
bc9e9e67 6090 switch (stat_data->kind) {
09cbcef6
MP
6091 case KVM_STAT_VM:
6092 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 6093 stat_data->desc->desc.offset, val);
09cbcef6
MP
6094 break;
6095 case KVM_STAT_VCPU:
6096 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 6097 stat_data->desc->desc.offset, val);
09cbcef6
MP
6098 break;
6099 }
536a6f88 6100
09cbcef6 6101 return r;
536a6f88
JF
6102}
6103
09cbcef6 6104static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 6105{
09cbcef6 6106 int r = -EFAULT;
14aa40a1 6107 struct kvm_stat_data *stat_data = data;
ce35ef27
SJS
6108
6109 if (val)
6110 return -EINVAL;
6111
bc9e9e67 6112 switch (stat_data->kind) {
09cbcef6
MP
6113 case KVM_STAT_VM:
6114 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 6115 stat_data->desc->desc.offset);
09cbcef6
MP
6116 break;
6117 case KVM_STAT_VCPU:
6118 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 6119 stat_data->desc->desc.offset);
09cbcef6
MP
6120 break;
6121 }
ce35ef27 6122
09cbcef6 6123 return r;
ce35ef27
SJS
6124}
6125
09cbcef6 6126static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
6127{
6128 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
6129 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6130 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
6131}
6132
09cbcef6
MP
6133static const struct file_operations stat_fops_per_vm = {
6134 .owner = THIS_MODULE,
6135 .open = kvm_stat_data_open,
536a6f88 6136 .release = kvm_debugfs_release,
09cbcef6
MP
6137 .read = simple_attr_read,
6138 .write = simple_attr_write,
6139 .llseek = no_llseek,
536a6f88
JF
6140};
6141
8b88b099 6142static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
6143{
6144 unsigned offset = (long)_offset;
ba1389b7 6145 struct kvm *kvm;
536a6f88 6146 u64 tmp_val;
ba1389b7 6147
8b88b099 6148 *val = 0;
0d9ce162 6149 mutex_lock(&kvm_lock);
536a6f88 6150 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 6151 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
6152 *val += tmp_val;
6153 }
0d9ce162 6154 mutex_unlock(&kvm_lock);
8b88b099 6155 return 0;
ba1389b7
AK
6156}
6157
ce35ef27
SJS
6158static int vm_stat_clear(void *_offset, u64 val)
6159{
6160 unsigned offset = (long)_offset;
6161 struct kvm *kvm;
ce35ef27
SJS
6162
6163 if (val)
6164 return -EINVAL;
6165
0d9ce162 6166 mutex_lock(&kvm_lock);
ce35ef27 6167 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 6168 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 6169 }
0d9ce162 6170 mutex_unlock(&kvm_lock);
ce35ef27
SJS
6171
6172 return 0;
6173}
6174
6175DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 6176DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 6177
8b88b099 6178static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
6179{
6180 unsigned offset = (long)_offset;
1165f5fe 6181 struct kvm *kvm;
536a6f88 6182 u64 tmp_val;
1165f5fe 6183
8b88b099 6184 *val = 0;
0d9ce162 6185 mutex_lock(&kvm_lock);
536a6f88 6186 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 6187 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
6188 *val += tmp_val;
6189 }
0d9ce162 6190 mutex_unlock(&kvm_lock);
8b88b099 6191 return 0;
1165f5fe
AK
6192}
6193
ce35ef27
SJS
6194static int vcpu_stat_clear(void *_offset, u64 val)
6195{
6196 unsigned offset = (long)_offset;
6197 struct kvm *kvm;
ce35ef27
SJS
6198
6199 if (val)
6200 return -EINVAL;
6201
0d9ce162 6202 mutex_lock(&kvm_lock);
ce35ef27 6203 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 6204 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 6205 }
0d9ce162 6206 mutex_unlock(&kvm_lock);
ce35ef27
SJS
6207
6208 return 0;
6209}
6210
6211DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6212 "%llu\n");
bc9e9e67 6213DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 6214
286de8f6
CI
6215static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6216{
6217 struct kobj_uevent_env *env;
286de8f6
CI
6218 unsigned long long created, active;
6219
6220 if (!kvm_dev.this_device || !kvm)
6221 return;
6222
0d9ce162 6223 mutex_lock(&kvm_lock);
286de8f6
CI
6224 if (type == KVM_EVENT_CREATE_VM) {
6225 kvm_createvm_count++;
6226 kvm_active_vms++;
6227 } else if (type == KVM_EVENT_DESTROY_VM) {
6228 kvm_active_vms--;
6229 }
6230 created = kvm_createvm_count;
6231 active = kvm_active_vms;
0d9ce162 6232 mutex_unlock(&kvm_lock);
286de8f6 6233
b12ce36a 6234 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
6235 if (!env)
6236 return;
6237
6238 add_uevent_var(env, "CREATED=%llu", created);
6239 add_uevent_var(env, "COUNT=%llu", active);
6240
fdeaf7e3 6241 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 6242 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
6243 kvm->userspace_pid = task_pid_nr(current);
6244 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 6245 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
6246 }
6247 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 6248
a44a4cc1 6249 if (!IS_ERR(kvm->debugfs_dentry)) {
b12ce36a 6250 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
6251
6252 if (p) {
6253 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6254 if (!IS_ERR(tmp))
6255 add_uevent_var(env, "STATS_PATH=%s", tmp);
6256 kfree(p);
286de8f6
CI
6257 }
6258 }
6259 /* no need for checks, since we are adding at most only 5 keys */
6260 env->envp[env->envp_idx++] = NULL;
6261 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6262 kfree(env);
286de8f6
CI
6263}
6264
929f45e3 6265static void kvm_init_debug(void)
6aa8b732 6266{
bc9e9e67
JZ
6267 const struct file_operations *fops;
6268 const struct _kvm_stats_desc *pdesc;
6269 int i;
6aa8b732 6270
76f7c879 6271 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 6272
bc9e9e67
JZ
6273 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6274 pdesc = &kvm_vm_stats_desc[i];
6275 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6276 fops = &vm_stat_fops;
6277 else
6278 fops = &vm_stat_readonly_fops;
6279 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6280 kvm_debugfs_dir,
6281 (void *)(long)pdesc->desc.offset, fops);
6282 }
6283
6284 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6285 pdesc = &kvm_vcpu_stats_desc[i];
6286 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6287 fops = &vcpu_stat_fops;
6288 else
6289 fops = &vcpu_stat_readonly_fops;
6290 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6291 kvm_debugfs_dir,
6292 (void *)(long)pdesc->desc.offset, fops);
4f69b680 6293 }
6aa8b732
AK
6294}
6295
15ad7146
AK
6296static inline
6297struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6298{
6299 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6300}
6301
6302static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6303{
6304 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 6305
046ddeed 6306 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 6307 WRITE_ONCE(vcpu->ready, false);
15ad7146 6308
7495e22b 6309 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 6310 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 6311 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
6312}
6313
6314static void kvm_sched_out(struct preempt_notifier *pn,
6315 struct task_struct *next)
6316{
6317 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6318
3ba9f93b 6319 if (current->on_rq) {
046ddeed 6320 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
6321 WRITE_ONCE(vcpu->ready, true);
6322 }
e9b11c17 6323 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
6324 __this_cpu_write(kvm_running_vcpu, NULL);
6325}
6326
6327/**
6328 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
6329 *
6330 * We can disable preemption locally around accessing the per-CPU variable,
6331 * and use the resolved vcpu pointer after enabling preemption again,
6332 * because even if the current thread is migrated to another CPU, reading
6333 * the per-CPU value later will give us the same value as we update the
6334 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
6335 */
6336struct kvm_vcpu *kvm_get_running_vcpu(void)
6337{
1f03b2bc
MZ
6338 struct kvm_vcpu *vcpu;
6339
6340 preempt_disable();
6341 vcpu = __this_cpu_read(kvm_running_vcpu);
6342 preempt_enable();
6343
6344 return vcpu;
7495e22b 6345}
379a3c8e 6346EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
6347
6348/**
6349 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6350 */
6351struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6352{
6353 return &kvm_running_vcpu;
15ad7146
AK
6354}
6355
e1bfc245
SC
6356#ifdef CONFIG_GUEST_PERF_EVENTS
6357static unsigned int kvm_guest_state(void)
6358{
6359 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6360 unsigned int state;
6361
6362 if (!kvm_arch_pmi_in_guest(vcpu))
6363 return 0;
6364
6365 state = PERF_GUEST_ACTIVE;
6366 if (!kvm_arch_vcpu_in_kernel(vcpu))
6367 state |= PERF_GUEST_USER;
6368
6369 return state;
6370}
6371
6372static unsigned long kvm_guest_get_ip(void)
6373{
6374 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6375
6376 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6377 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6378 return 0;
6379
6380 return kvm_arch_vcpu_get_ip(vcpu);
6381}
6382
6383static struct perf_guest_info_callbacks kvm_guest_cbs = {
6384 .state = kvm_guest_state,
6385 .get_ip = kvm_guest_get_ip,
6386 .handle_intel_pt_intr = NULL,
6387};
6388
6389void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6390{
6391 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6392 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6393}
6394void kvm_unregister_perf_callbacks(void)
6395{
6396 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6397}
6398#endif
6399
81a1cf9f 6400int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
f257d6dc 6401{
6aa8b732 6402 int r;
002c7f7c 6403 int cpu;
6aa8b732 6404
441f7bfa 6405#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
aaf12a7b
CG
6406 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6407 kvm_online_cpu, kvm_offline_cpu);
774c47f1 6408 if (r)
37d25881
SC
6409 return r;
6410
35774a9f 6411 register_syscore_ops(&kvm_syscore_ops);
441f7bfa 6412#endif
6aa8b732 6413
c16f862d 6414 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
6415 if (!vcpu_align)
6416 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
6417 kvm_vcpu_cache =
6418 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6419 SLAB_ACCOUNT,
6420 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
6421 offsetofend(struct kvm_vcpu, stats_id)
6422 - offsetof(struct kvm_vcpu, arch),
46515736 6423 NULL);
c16f862d
RR
6424 if (!kvm_vcpu_cache) {
6425 r = -ENOMEM;
9f1a4c00 6426 goto err_vcpu_cache;
c16f862d
RR
6427 }
6428
baff59cc
VK
6429 for_each_possible_cpu(cpu) {
6430 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6431 GFP_KERNEL, cpu_to_node(cpu))) {
6432 r = -ENOMEM;
9f1a4c00 6433 goto err_cpu_kick_mask;
baff59cc
VK
6434 }
6435 }
6436
5910ccf0
SC
6437 r = kvm_irqfd_init();
6438 if (r)
6439 goto err_irqfd;
6440
af585b92
GN
6441 r = kvm_async_pf_init();
6442 if (r)
5910ccf0 6443 goto err_async_pf;
af585b92 6444
6aa8b732
AK
6445 kvm_chardev_ops.owner = module;
6446
15ad7146
AK
6447 kvm_preempt_ops.sched_in = kvm_sched_in;
6448 kvm_preempt_ops.sched_out = kvm_sched_out;
6449
929f45e3 6450 kvm_init_debug();
0ea4ed8e 6451
3c3c29fd 6452 r = kvm_vfio_ops_init();
2b012812
SC
6453 if (WARN_ON_ONCE(r))
6454 goto err_vfio;
6455
a7800aa8
SC
6456 kvm_gmem_init(module);
6457
2b012812
SC
6458 /*
6459 * Registration _must_ be the very last thing done, as this exposes
6460 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6461 */
6462 r = misc_register(&kvm_dev);
6463 if (r) {
6464 pr_err("kvm: misc device register failed\n");
6465 goto err_register;
6466 }
3c3c29fd 6467
c7addb90 6468 return 0;
6aa8b732 6469
2b012812
SC
6470err_register:
6471 kvm_vfio_ops_exit();
6472err_vfio:
af585b92 6473 kvm_async_pf_deinit();
5910ccf0
SC
6474err_async_pf:
6475 kvm_irqfd_exit();
6476err_irqfd:
9f1a4c00 6477err_cpu_kick_mask:
baff59cc
VK
6478 for_each_possible_cpu(cpu)
6479 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 6480 kmem_cache_destroy(kvm_vcpu_cache);
9f1a4c00 6481err_vcpu_cache:
441f7bfa 6482#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
35774a9f 6483 unregister_syscore_ops(&kvm_syscore_ops);
aaf12a7b 6484 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
441f7bfa 6485#endif
6aa8b732
AK
6486 return r;
6487}
cb498ea2 6488EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 6489
cb498ea2 6490void kvm_exit(void)
6aa8b732 6491{
baff59cc
VK
6492 int cpu;
6493
2b012812
SC
6494 /*
6495 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6496 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6497 * to KVM while the module is being stopped.
6498 */
6aa8b732 6499 misc_deregister(&kvm_dev);
2b012812
SC
6500
6501 debugfs_remove_recursive(kvm_debugfs_dir);
baff59cc
VK
6502 for_each_possible_cpu(cpu)
6503 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 6504 kmem_cache_destroy(kvm_vcpu_cache);
73b8dc04 6505 kvm_vfio_ops_exit();
af585b92 6506 kvm_async_pf_deinit();
441f7bfa 6507#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
fb3600cc 6508 unregister_syscore_ops(&kvm_syscore_ops);
aaf12a7b 6509 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
441f7bfa 6510#endif
5910ccf0 6511 kvm_irqfd_exit();
6aa8b732 6512}
cb498ea2 6513EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
6514
6515struct kvm_vm_worker_thread_context {
6516 struct kvm *kvm;
6517 struct task_struct *parent;
6518 struct completion init_done;
6519 kvm_vm_thread_fn_t thread_fn;
6520 uintptr_t data;
6521 int err;
6522};
6523
6524static int kvm_vm_worker_thread(void *context)
6525{
6526 /*
6527 * The init_context is allocated on the stack of the parent thread, so
6528 * we have to locally copy anything that is needed beyond initialization
6529 */
6530 struct kvm_vm_worker_thread_context *init_context = context;
e45cce30 6531 struct task_struct *parent;
c57c8046
JS
6532 struct kvm *kvm = init_context->kvm;
6533 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6534 uintptr_t data = init_context->data;
6535 int err;
6536
6537 err = kthread_park(current);
6538 /* kthread_park(current) is never supposed to return an error */
6539 WARN_ON(err != 0);
6540 if (err)
6541 goto init_complete;
6542
6543 err = cgroup_attach_task_all(init_context->parent, current);
6544 if (err) {
6545 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6546 __func__, err);
6547 goto init_complete;
6548 }
6549
6550 set_user_nice(current, task_nice(init_context->parent));
6551
6552init_complete:
6553 init_context->err = err;
6554 complete(&init_context->init_done);
6555 init_context = NULL;
6556
6557 if (err)
e45cce30 6558 goto out;
c57c8046
JS
6559
6560 /* Wait to be woken up by the spawner before proceeding. */
6561 kthread_parkme();
6562
6563 if (!kthread_should_stop())
6564 err = thread_fn(kvm, data);
6565
e45cce30
VS
6566out:
6567 /*
6568 * Move kthread back to its original cgroup to prevent it lingering in
6569 * the cgroup of the VM process, after the latter finishes its
6570 * execution.
6571 *
6572 * kthread_stop() waits on the 'exited' completion condition which is
6573 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6574 * kthread is removed from the cgroup in the cgroup_exit() which is
6575 * called after the exit_mm(). This causes the kthread_stop() to return
6576 * before the kthread actually quits the cgroup.
6577 */
6578 rcu_read_lock();
6579 parent = rcu_dereference(current->real_parent);
6580 get_task_struct(parent);
6581 rcu_read_unlock();
6582 cgroup_attach_task_all(parent, current);
6583 put_task_struct(parent);
6584
c57c8046
JS
6585 return err;
6586}
6587
6588int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6589 uintptr_t data, const char *name,
6590 struct task_struct **thread_ptr)
6591{
6592 struct kvm_vm_worker_thread_context init_context = {};
6593 struct task_struct *thread;
6594
6595 *thread_ptr = NULL;
6596 init_context.kvm = kvm;
6597 init_context.parent = current;
6598 init_context.thread_fn = thread_fn;
6599 init_context.data = data;
6600 init_completion(&init_context.init_done);
6601
6602 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6603 "%s-%d", name, task_pid_nr(current));
6604 if (IS_ERR(thread))
6605 return PTR_ERR(thread);
6606
6607 /* kthread_run is never supposed to return NULL */
6608 WARN_ON(thread == NULL);
6609
6610 wait_for_completion(&init_context.init_done);
6611
6612 if (!init_context.err)
6613 *thread_ptr = thread;
6614
6615 return init_context.err;
6616}