]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob
f9ba0ac
[thirdparty/kernel/stable.git] /
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,5,6 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Changelog:
33 * 0.01: 05 Oct 2003: First release that compiles without warnings.
34 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35 * Check all PCI BARs for the register window.
36 * udelay added to mii_rw.
37 * 0.03: 06 Oct 2003: Initialize dev->irq.
38 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41 * irq mask updated
42 * 0.07: 14 Oct 2003: Further irq mask updates.
43 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44 * added into irq handler, NULL check for drain_ring.
45 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46 * requested interrupt sources.
47 * 0.10: 20 Oct 2003: First cleanup for release.
48 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49 * MAC Address init fix, set_multicast cleanup.
50 * 0.12: 23 Oct 2003: Cleanups for release.
51 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52 * Set link speed correctly. start rx before starting
53 * tx (nv_start_rx sets the link speed).
54 * 0.14: 25 Oct 2003: Nic dependant irq mask.
55 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56 * open.
57 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58 * increased to 1628 bytes.
59 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60 * the tx length.
61 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63 * addresses, really stop rx if already running
64 * in nv_start_rx, clean up a bit.
65 * 0.20: 07 Dec 2003: alloc fixes
66 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68 * on close.
69 * 0.23: 26 Jan 2004: various small cleanups
70 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71 * 0.25: 09 Mar 2004: wol support
72 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74 * added CK804/MCP04 device IDs, code fixes
75 * for registers, link status and other minor fixes.
76 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
78 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79 * into nv_close, otherwise reenabling for wol can
80 * cause DMA to kfree'd memory.
81 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
82 * capabilities.
83 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
84 * 0.33: 16 May 2005: Support for MCP51 added.
85 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86 * 0.35: 26 Jun 2005: Support for MCP55 added.
87 * 0.36: 28 Jun 2005: Add jumbo frame support.
88 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90 * per-packet flags.
91 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
92 * 0.40: 19 Jul 2005: Add support for mac address change.
93 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94 * of nv_remove
95 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
96 * in the second (and later) nv_open call
97 * 0.43: 10 Aug 2005: Add support for tx checksum.
98 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100 * 0.46: 20 Oct 2005: Add irq optimization modes.
101 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103 * 0.49: 10 Dec 2005: Fix tso for large buffers.
104 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
105 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
107 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109 * 0.55: 22 Mar 2006: Add flow control (pause frame).
110 * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111 * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112 * 0.58: 30 Oct 2006: Added support for sideband management unit.
113 * 0.59: 30 Oct 2006: Added support for recoverable error.
114 * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
115 *
116 * Known bugs:
117 * We suspect that on some hardware no TX done interrupts are generated.
118 * This means recovery from netif_stop_queue only happens if the hw timer
119 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
120 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
121 * If your hardware reliably generates tx done interrupts, then you can remove
122 * DEV_NEED_TIMERIRQ from the driver_data flags.
123 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
124 * superfluous timer interrupts from the nic.
125 */
126 #ifdef CONFIG_FORCEDETH_NAPI
127 #define DRIVERNAPI "-NAPI"
128 #else
129 #define DRIVERNAPI
130 #endif
131 #define FORCEDETH_VERSION "0.61"
132 #define DRV_NAME "forcedeth"
133
134 #include <linux/module.h>
135 #include <linux/types.h>
136 #include <linux/pci.h>
137 #include <linux/interrupt.h>
138 #include <linux/netdevice.h>
139 #include <linux/etherdevice.h>
140 #include <linux/delay.h>
141 #include <linux/spinlock.h>
142 #include <linux/ethtool.h>
143 #include <linux/timer.h>
144 #include <linux/skbuff.h>
145 #include <linux/mii.h>
146 #include <linux/random.h>
147 #include <linux/init.h>
148 #include <linux/if_vlan.h>
149 #include <linux/dma-mapping.h>
150
151 #include <asm/irq.h>
152 #include <asm/io.h>
153 #include <asm/uaccess.h>
154 #include <asm/system.h>
155
156 #if 0
157 #define dprintk printk
158 #else
159 #define dprintk(x...) do { } while (0)
160 #endif
161
162 #define TX_WORK_PER_LOOP 64
163 #define RX_WORK_PER_LOOP 64
164
165 /*
166 * Hardware access:
167 */
168
169 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
170 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
171 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
172 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
173 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
174 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
175 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
176 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
177 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
178 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
179 #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
180 #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
181 #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
182 #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
183 #define DEV_HAS_CORRECT_MACADDR 0x4000 /* device supports correct mac address order */
184
185 enum {
186 NvRegIrqStatus = 0x000,
187 #define NVREG_IRQSTAT_MIIEVENT 0x040
188 #define NVREG_IRQSTAT_MASK 0x81ff
189 NvRegIrqMask = 0x004,
190 #define NVREG_IRQ_RX_ERROR 0x0001
191 #define NVREG_IRQ_RX 0x0002
192 #define NVREG_IRQ_RX_NOBUF 0x0004
193 #define NVREG_IRQ_TX_ERR 0x0008
194 #define NVREG_IRQ_TX_OK 0x0010
195 #define NVREG_IRQ_TIMER 0x0020
196 #define NVREG_IRQ_LINK 0x0040
197 #define NVREG_IRQ_RX_FORCED 0x0080
198 #define NVREG_IRQ_TX_FORCED 0x0100
199 #define NVREG_IRQ_RECOVER_ERROR 0x8000
200 #define NVREG_IRQMASK_THROUGHPUT 0x00df
201 #define NVREG_IRQMASK_CPU 0x0060
202 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
203 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
204 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
205
206 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
207 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
208 NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
209
210 NvRegUnknownSetupReg6 = 0x008,
211 #define NVREG_UNKSETUP6_VAL 3
212
213 /*
214 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
215 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
216 */
217 NvRegPollingInterval = 0x00c,
218 #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
219 #define NVREG_POLL_DEFAULT_CPU 13
220 NvRegMSIMap0 = 0x020,
221 NvRegMSIMap1 = 0x024,
222 NvRegMSIIrqMask = 0x030,
223 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
224 NvRegMisc1 = 0x080,
225 #define NVREG_MISC1_PAUSE_TX 0x01
226 #define NVREG_MISC1_HD 0x02
227 #define NVREG_MISC1_FORCE 0x3b0f3c
228
229 NvRegMacReset = 0x3c,
230 #define NVREG_MAC_RESET_ASSERT 0x0F3
231 NvRegTransmitterControl = 0x084,
232 #define NVREG_XMITCTL_START 0x01
233 #define NVREG_XMITCTL_MGMT_ST 0x40000000
234 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
235 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
236 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
237 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
238 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
239 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
240 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
241 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
242 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
243 NvRegTransmitterStatus = 0x088,
244 #define NVREG_XMITSTAT_BUSY 0x01
245
246 NvRegPacketFilterFlags = 0x8c,
247 #define NVREG_PFF_PAUSE_RX 0x08
248 #define NVREG_PFF_ALWAYS 0x7F0000
249 #define NVREG_PFF_PROMISC 0x80
250 #define NVREG_PFF_MYADDR 0x20
251 #define NVREG_PFF_LOOPBACK 0x10
252
253 NvRegOffloadConfig = 0x90,
254 #define NVREG_OFFLOAD_HOMEPHY 0x601
255 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
256 NvRegReceiverControl = 0x094,
257 #define NVREG_RCVCTL_START 0x01
258 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
259 NvRegReceiverStatus = 0x98,
260 #define NVREG_RCVSTAT_BUSY 0x01
261
262 NvRegRandomSeed = 0x9c,
263 #define NVREG_RNDSEED_MASK 0x00ff
264 #define NVREG_RNDSEED_FORCE 0x7f00
265 #define NVREG_RNDSEED_FORCE2 0x2d00
266 #define NVREG_RNDSEED_FORCE3 0x7400
267
268 NvRegTxDeferral = 0xA0,
269 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
270 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
271 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
272 NvRegRxDeferral = 0xA4,
273 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
274 NvRegMacAddrA = 0xA8,
275 NvRegMacAddrB = 0xAC,
276 NvRegMulticastAddrA = 0xB0,
277 #define NVREG_MCASTADDRA_FORCE 0x01
278 NvRegMulticastAddrB = 0xB4,
279 NvRegMulticastMaskA = 0xB8,
280 NvRegMulticastMaskB = 0xBC,
281
282 NvRegPhyInterface = 0xC0,
283 #define PHY_RGMII 0x10000000
284
285 NvRegTxRingPhysAddr = 0x100,
286 NvRegRxRingPhysAddr = 0x104,
287 NvRegRingSizes = 0x108,
288 #define NVREG_RINGSZ_TXSHIFT 0
289 #define NVREG_RINGSZ_RXSHIFT 16
290 NvRegTransmitPoll = 0x10c,
291 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
292 NvRegLinkSpeed = 0x110,
293 #define NVREG_LINKSPEED_FORCE 0x10000
294 #define NVREG_LINKSPEED_10 1000
295 #define NVREG_LINKSPEED_100 100
296 #define NVREG_LINKSPEED_1000 50
297 #define NVREG_LINKSPEED_MASK (0xFFF)
298 NvRegUnknownSetupReg5 = 0x130,
299 #define NVREG_UNKSETUP5_BIT31 (1<<31)
300 NvRegTxWatermark = 0x13c,
301 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
302 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
303 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
304 NvRegTxRxControl = 0x144,
305 #define NVREG_TXRXCTL_KICK 0x0001
306 #define NVREG_TXRXCTL_BIT1 0x0002
307 #define NVREG_TXRXCTL_BIT2 0x0004
308 #define NVREG_TXRXCTL_IDLE 0x0008
309 #define NVREG_TXRXCTL_RESET 0x0010
310 #define NVREG_TXRXCTL_RXCHECK 0x0400
311 #define NVREG_TXRXCTL_DESC_1 0
312 #define NVREG_TXRXCTL_DESC_2 0x002100
313 #define NVREG_TXRXCTL_DESC_3 0xc02200
314 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
315 #define NVREG_TXRXCTL_VLANINS 0x00080
316 NvRegTxRingPhysAddrHigh = 0x148,
317 NvRegRxRingPhysAddrHigh = 0x14C,
318 NvRegTxPauseFrame = 0x170,
319 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
320 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
321 NvRegMIIStatus = 0x180,
322 #define NVREG_MIISTAT_ERROR 0x0001
323 #define NVREG_MIISTAT_LINKCHANGE 0x0008
324 #define NVREG_MIISTAT_MASK 0x000f
325 #define NVREG_MIISTAT_MASK2 0x000f
326 NvRegMIIMask = 0x184,
327 #define NVREG_MII_LINKCHANGE 0x0008
328
329 NvRegAdapterControl = 0x188,
330 #define NVREG_ADAPTCTL_START 0x02
331 #define NVREG_ADAPTCTL_LINKUP 0x04
332 #define NVREG_ADAPTCTL_PHYVALID 0x40000
333 #define NVREG_ADAPTCTL_RUNNING 0x100000
334 #define NVREG_ADAPTCTL_PHYSHIFT 24
335 NvRegMIISpeed = 0x18c,
336 #define NVREG_MIISPEED_BIT8 (1<<8)
337 #define NVREG_MIIDELAY 5
338 NvRegMIIControl = 0x190,
339 #define NVREG_MIICTL_INUSE 0x08000
340 #define NVREG_MIICTL_WRITE 0x00400
341 #define NVREG_MIICTL_ADDRSHIFT 5
342 NvRegMIIData = 0x194,
343 NvRegWakeUpFlags = 0x200,
344 #define NVREG_WAKEUPFLAGS_VAL 0x7770
345 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
346 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
347 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
348 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
349 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
350 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
351 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
352 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
353 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
354 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
355
356 NvRegPatternCRC = 0x204,
357 NvRegPatternMask = 0x208,
358 NvRegPowerCap = 0x268,
359 #define NVREG_POWERCAP_D3SUPP (1<<30)
360 #define NVREG_POWERCAP_D2SUPP (1<<26)
361 #define NVREG_POWERCAP_D1SUPP (1<<25)
362 NvRegPowerState = 0x26c,
363 #define NVREG_POWERSTATE_POWEREDUP 0x8000
364 #define NVREG_POWERSTATE_VALID 0x0100
365 #define NVREG_POWERSTATE_MASK 0x0003
366 #define NVREG_POWERSTATE_D0 0x0000
367 #define NVREG_POWERSTATE_D1 0x0001
368 #define NVREG_POWERSTATE_D2 0x0002
369 #define NVREG_POWERSTATE_D3 0x0003
370 NvRegTxCnt = 0x280,
371 NvRegTxZeroReXmt = 0x284,
372 NvRegTxOneReXmt = 0x288,
373 NvRegTxManyReXmt = 0x28c,
374 NvRegTxLateCol = 0x290,
375 NvRegTxUnderflow = 0x294,
376 NvRegTxLossCarrier = 0x298,
377 NvRegTxExcessDef = 0x29c,
378 NvRegTxRetryErr = 0x2a0,
379 NvRegRxFrameErr = 0x2a4,
380 NvRegRxExtraByte = 0x2a8,
381 NvRegRxLateCol = 0x2ac,
382 NvRegRxRunt = 0x2b0,
383 NvRegRxFrameTooLong = 0x2b4,
384 NvRegRxOverflow = 0x2b8,
385 NvRegRxFCSErr = 0x2bc,
386 NvRegRxFrameAlignErr = 0x2c0,
387 NvRegRxLenErr = 0x2c4,
388 NvRegRxUnicast = 0x2c8,
389 NvRegRxMulticast = 0x2cc,
390 NvRegRxBroadcast = 0x2d0,
391 NvRegTxDef = 0x2d4,
392 NvRegTxFrame = 0x2d8,
393 NvRegRxCnt = 0x2dc,
394 NvRegTxPause = 0x2e0,
395 NvRegRxPause = 0x2e4,
396 NvRegRxDropFrame = 0x2e8,
397 NvRegVlanControl = 0x300,
398 #define NVREG_VLANCONTROL_ENABLE 0x2000
399 NvRegMSIXMap0 = 0x3e0,
400 NvRegMSIXMap1 = 0x3e4,
401 NvRegMSIXIrqStatus = 0x3f0,
402
403 NvRegPowerState2 = 0x600,
404 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
405 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
406 };
407
408 /* Big endian: should work, but is untested */
409 struct ring_desc {
410 __le32 buf;
411 __le32 flaglen;
412 };
413
414 struct ring_desc_ex {
415 __le32 bufhigh;
416 __le32 buflow;
417 __le32 txvlan;
418 __le32 flaglen;
419 };
420
421 union ring_type {
422 struct ring_desc* orig;
423 struct ring_desc_ex* ex;
424 };
425
426 #define FLAG_MASK_V1 0xffff0000
427 #define FLAG_MASK_V2 0xffffc000
428 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
429 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
430
431 #define NV_TX_LASTPACKET (1<<16)
432 #define NV_TX_RETRYERROR (1<<19)
433 #define NV_TX_FORCED_INTERRUPT (1<<24)
434 #define NV_TX_DEFERRED (1<<26)
435 #define NV_TX_CARRIERLOST (1<<27)
436 #define NV_TX_LATECOLLISION (1<<28)
437 #define NV_TX_UNDERFLOW (1<<29)
438 #define NV_TX_ERROR (1<<30)
439 #define NV_TX_VALID (1<<31)
440
441 #define NV_TX2_LASTPACKET (1<<29)
442 #define NV_TX2_RETRYERROR (1<<18)
443 #define NV_TX2_FORCED_INTERRUPT (1<<30)
444 #define NV_TX2_DEFERRED (1<<25)
445 #define NV_TX2_CARRIERLOST (1<<26)
446 #define NV_TX2_LATECOLLISION (1<<27)
447 #define NV_TX2_UNDERFLOW (1<<28)
448 /* error and valid are the same for both */
449 #define NV_TX2_ERROR (1<<30)
450 #define NV_TX2_VALID (1<<31)
451 #define NV_TX2_TSO (1<<28)
452 #define NV_TX2_TSO_SHIFT 14
453 #define NV_TX2_TSO_MAX_SHIFT 14
454 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
455 #define NV_TX2_CHECKSUM_L3 (1<<27)
456 #define NV_TX2_CHECKSUM_L4 (1<<26)
457
458 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
459
460 #define NV_RX_DESCRIPTORVALID (1<<16)
461 #define NV_RX_MISSEDFRAME (1<<17)
462 #define NV_RX_SUBSTRACT1 (1<<18)
463 #define NV_RX_ERROR1 (1<<23)
464 #define NV_RX_ERROR2 (1<<24)
465 #define NV_RX_ERROR3 (1<<25)
466 #define NV_RX_ERROR4 (1<<26)
467 #define NV_RX_CRCERR (1<<27)
468 #define NV_RX_OVERFLOW (1<<28)
469 #define NV_RX_FRAMINGERR (1<<29)
470 #define NV_RX_ERROR (1<<30)
471 #define NV_RX_AVAIL (1<<31)
472
473 #define NV_RX2_CHECKSUMMASK (0x1C000000)
474 #define NV_RX2_CHECKSUMOK1 (0x10000000)
475 #define NV_RX2_CHECKSUMOK2 (0x14000000)
476 #define NV_RX2_CHECKSUMOK3 (0x18000000)
477 #define NV_RX2_DESCRIPTORVALID (1<<29)
478 #define NV_RX2_SUBSTRACT1 (1<<25)
479 #define NV_RX2_ERROR1 (1<<18)
480 #define NV_RX2_ERROR2 (1<<19)
481 #define NV_RX2_ERROR3 (1<<20)
482 #define NV_RX2_ERROR4 (1<<21)
483 #define NV_RX2_CRCERR (1<<22)
484 #define NV_RX2_OVERFLOW (1<<23)
485 #define NV_RX2_FRAMINGERR (1<<24)
486 /* error and avail are the same for both */
487 #define NV_RX2_ERROR (1<<30)
488 #define NV_RX2_AVAIL (1<<31)
489
490 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
491 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
492
493 /* Miscelaneous hardware related defines: */
494 #define NV_PCI_REGSZ_VER1 0x270
495 #define NV_PCI_REGSZ_VER2 0x2d4
496 #define NV_PCI_REGSZ_VER3 0x604
497
498 /* various timeout delays: all in usec */
499 #define NV_TXRX_RESET_DELAY 4
500 #define NV_TXSTOP_DELAY1 10
501 #define NV_TXSTOP_DELAY1MAX 500000
502 #define NV_TXSTOP_DELAY2 100
503 #define NV_RXSTOP_DELAY1 10
504 #define NV_RXSTOP_DELAY1MAX 500000
505 #define NV_RXSTOP_DELAY2 100
506 #define NV_SETUP5_DELAY 5
507 #define NV_SETUP5_DELAYMAX 50000
508 #define NV_POWERUP_DELAY 5
509 #define NV_POWERUP_DELAYMAX 5000
510 #define NV_MIIBUSY_DELAY 50
511 #define NV_MIIPHY_DELAY 10
512 #define NV_MIIPHY_DELAYMAX 10000
513 #define NV_MAC_RESET_DELAY 64
514
515 #define NV_WAKEUPPATTERNS 5
516 #define NV_WAKEUPMASKENTRIES 4
517
518 /* General driver defaults */
519 #define NV_WATCHDOG_TIMEO (5*HZ)
520
521 #define RX_RING_DEFAULT 128
522 #define TX_RING_DEFAULT 256
523 #define RX_RING_MIN 128
524 #define TX_RING_MIN 64
525 #define RING_MAX_DESC_VER_1 1024
526 #define RING_MAX_DESC_VER_2_3 16384
527
528 /* rx/tx mac addr + type + vlan + align + slack*/
529 #define NV_RX_HEADERS (64)
530 /* even more slack. */
531 #define NV_RX_ALLOC_PAD (64)
532
533 /* maximum mtu size */
534 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
535 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
536
537 #define OOM_REFILL (1+HZ/20)
538 #define POLL_WAIT (1+HZ/100)
539 #define LINK_TIMEOUT (3*HZ)
540 #define STATS_INTERVAL (10*HZ)
541
542 /*
543 * desc_ver values:
544 * The nic supports three different descriptor types:
545 * - DESC_VER_1: Original
546 * - DESC_VER_2: support for jumbo frames.
547 * - DESC_VER_3: 64-bit format.
548 */
549 #define DESC_VER_1 1
550 #define DESC_VER_2 2
551 #define DESC_VER_3 3
552
553 /* PHY defines */
554 #define PHY_OUI_MARVELL 0x5043
555 #define PHY_OUI_CICADA 0x03f1
556 #define PHY_OUI_VITESSE 0x01c1
557 #define PHY_OUI_REALTEK 0x0732
558 #define PHYID1_OUI_MASK 0x03ff
559 #define PHYID1_OUI_SHFT 6
560 #define PHYID2_OUI_MASK 0xfc00
561 #define PHYID2_OUI_SHFT 10
562 #define PHYID2_MODEL_MASK 0x03f0
563 #define PHY_MODEL_MARVELL_E3016 0x220
564 #define PHY_MARVELL_E3016_INITMASK 0x0300
565 #define PHY_CICADA_INIT1 0x0f000
566 #define PHY_CICADA_INIT2 0x0e00
567 #define PHY_CICADA_INIT3 0x01000
568 #define PHY_CICADA_INIT4 0x0200
569 #define PHY_CICADA_INIT5 0x0004
570 #define PHY_CICADA_INIT6 0x02000
571 #define PHY_VITESSE_INIT_REG1 0x1f
572 #define PHY_VITESSE_INIT_REG2 0x10
573 #define PHY_VITESSE_INIT_REG3 0x11
574 #define PHY_VITESSE_INIT_REG4 0x12
575 #define PHY_VITESSE_INIT_MSK1 0xc
576 #define PHY_VITESSE_INIT_MSK2 0x0180
577 #define PHY_VITESSE_INIT1 0x52b5
578 #define PHY_VITESSE_INIT2 0xaf8a
579 #define PHY_VITESSE_INIT3 0x8
580 #define PHY_VITESSE_INIT4 0x8f8a
581 #define PHY_VITESSE_INIT5 0xaf86
582 #define PHY_VITESSE_INIT6 0x8f86
583 #define PHY_VITESSE_INIT7 0xaf82
584 #define PHY_VITESSE_INIT8 0x0100
585 #define PHY_VITESSE_INIT9 0x8f82
586 #define PHY_VITESSE_INIT10 0x0
587 #define PHY_REALTEK_INIT_REG1 0x1f
588 #define PHY_REALTEK_INIT_REG2 0x19
589 #define PHY_REALTEK_INIT_REG3 0x13
590 #define PHY_REALTEK_INIT1 0x0000
591 #define PHY_REALTEK_INIT2 0x8e00
592 #define PHY_REALTEK_INIT3 0x0001
593 #define PHY_REALTEK_INIT4 0xad17
594
595 #define PHY_GIGABIT 0x0100
596
597 #define PHY_TIMEOUT 0x1
598 #define PHY_ERROR 0x2
599
600 #define PHY_100 0x1
601 #define PHY_1000 0x2
602 #define PHY_HALF 0x100
603
604 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
605 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
606 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
607 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
608 #define NV_PAUSEFRAME_RX_REQ 0x0010
609 #define NV_PAUSEFRAME_TX_REQ 0x0020
610 #define NV_PAUSEFRAME_AUTONEG 0x0040
611
612 /* MSI/MSI-X defines */
613 #define NV_MSI_X_MAX_VECTORS 8
614 #define NV_MSI_X_VECTORS_MASK 0x000f
615 #define NV_MSI_CAPABLE 0x0010
616 #define NV_MSI_X_CAPABLE 0x0020
617 #define NV_MSI_ENABLED 0x0040
618 #define NV_MSI_X_ENABLED 0x0080
619
620 #define NV_MSI_X_VECTOR_ALL 0x0
621 #define NV_MSI_X_VECTOR_RX 0x0
622 #define NV_MSI_X_VECTOR_TX 0x1
623 #define NV_MSI_X_VECTOR_OTHER 0x2
624
625 /* statistics */
626 struct nv_ethtool_str {
627 char name[ETH_GSTRING_LEN];
628 };
629
630 static const struct nv_ethtool_str nv_estats_str[] = {
631 { "tx_bytes" },
632 { "tx_zero_rexmt" },
633 { "tx_one_rexmt" },
634 { "tx_many_rexmt" },
635 { "tx_late_collision" },
636 { "tx_fifo_errors" },
637 { "tx_carrier_errors" },
638 { "tx_excess_deferral" },
639 { "tx_retry_error" },
640 { "rx_frame_error" },
641 { "rx_extra_byte" },
642 { "rx_late_collision" },
643 { "rx_runt" },
644 { "rx_frame_too_long" },
645 { "rx_over_errors" },
646 { "rx_crc_errors" },
647 { "rx_frame_align_error" },
648 { "rx_length_error" },
649 { "rx_unicast" },
650 { "rx_multicast" },
651 { "rx_broadcast" },
652 { "rx_packets" },
653 { "rx_errors_total" },
654 { "tx_errors_total" },
655
656 /* version 2 stats */
657 { "tx_deferral" },
658 { "tx_packets" },
659 { "rx_bytes" },
660 { "tx_pause" },
661 { "rx_pause" },
662 { "rx_drop_frame" }
663 };
664
665 struct nv_ethtool_stats {
666 u64 tx_bytes;
667 u64 tx_zero_rexmt;
668 u64 tx_one_rexmt;
669 u64 tx_many_rexmt;
670 u64 tx_late_collision;
671 u64 tx_fifo_errors;
672 u64 tx_carrier_errors;
673 u64 tx_excess_deferral;
674 u64 tx_retry_error;
675 u64 rx_frame_error;
676 u64 rx_extra_byte;
677 u64 rx_late_collision;
678 u64 rx_runt;
679 u64 rx_frame_too_long;
680 u64 rx_over_errors;
681 u64 rx_crc_errors;
682 u64 rx_frame_align_error;
683 u64 rx_length_error;
684 u64 rx_unicast;
685 u64 rx_multicast;
686 u64 rx_broadcast;
687 u64 rx_packets;
688 u64 rx_errors_total;
689 u64 tx_errors_total;
690
691 /* version 2 stats */
692 u64 tx_deferral;
693 u64 tx_packets;
694 u64 rx_bytes;
695 u64 tx_pause;
696 u64 rx_pause;
697 u64 rx_drop_frame;
698 };
699
700 #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
701 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
702
703 /* diagnostics */
704 #define NV_TEST_COUNT_BASE 3
705 #define NV_TEST_COUNT_EXTENDED 4
706
707 static const struct nv_ethtool_str nv_etests_str[] = {
708 { "link (online/offline)" },
709 { "register (offline) " },
710 { "interrupt (offline) " },
711 { "loopback (offline) " }
712 };
713
714 struct register_test {
715 __le32 reg;
716 __le32 mask;
717 };
718
719 static const struct register_test nv_registers_test[] = {
720 { NvRegUnknownSetupReg6, 0x01 },
721 { NvRegMisc1, 0x03c },
722 { NvRegOffloadConfig, 0x03ff },
723 { NvRegMulticastAddrA, 0xffffffff },
724 { NvRegTxWatermark, 0x0ff },
725 { NvRegWakeUpFlags, 0x07777 },
726 { 0,0 }
727 };
728
729 struct nv_skb_map {
730 struct sk_buff *skb;
731 dma_addr_t dma;
732 unsigned int dma_len;
733 };
734
735 /*
736 * SMP locking:
737 * All hardware access under dev->priv->lock, except the performance
738 * critical parts:
739 * - rx is (pseudo-) lockless: it relies on the single-threading provided
740 * by the arch code for interrupts.
741 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
742 * needs dev->priv->lock :-(
743 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
744 */
745
746 /* in dev: base, irq */
747 struct fe_priv {
748 spinlock_t lock;
749
750 struct net_device *dev;
751 struct napi_struct napi;
752
753 /* General data:
754 * Locking: spin_lock(&np->lock); */
755 struct nv_ethtool_stats estats;
756 int in_shutdown;
757 u32 linkspeed;
758 int duplex;
759 int autoneg;
760 int fixed_mode;
761 int phyaddr;
762 int wolenabled;
763 unsigned int phy_oui;
764 unsigned int phy_model;
765 u16 gigabit;
766 int intr_test;
767 int recover_error;
768
769 /* General data: RO fields */
770 dma_addr_t ring_addr;
771 struct pci_dev *pci_dev;
772 u32 orig_mac[2];
773 u32 irqmask;
774 u32 desc_ver;
775 u32 txrxctl_bits;
776 u32 vlanctl_bits;
777 u32 driver_data;
778 u32 register_size;
779 int rx_csum;
780 u32 mac_in_use;
781
782 void __iomem *base;
783
784 /* rx specific fields.
785 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
786 */
787 union ring_type get_rx, put_rx, first_rx, last_rx;
788 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
789 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
790 struct nv_skb_map *rx_skb;
791
792 union ring_type rx_ring;
793 unsigned int rx_buf_sz;
794 unsigned int pkt_limit;
795 struct timer_list oom_kick;
796 struct timer_list nic_poll;
797 struct timer_list stats_poll;
798 u32 nic_poll_irq;
799 int rx_ring_size;
800
801 /* media detection workaround.
802 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
803 */
804 int need_linktimer;
805 unsigned long link_timeout;
806 /*
807 * tx specific fields.
808 */
809 union ring_type get_tx, put_tx, first_tx, last_tx;
810 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
811 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
812 struct nv_skb_map *tx_skb;
813
814 union ring_type tx_ring;
815 u32 tx_flags;
816 int tx_ring_size;
817 int tx_stop;
818
819 /* vlan fields */
820 struct vlan_group *vlangrp;
821
822 /* msi/msi-x fields */
823 u32 msi_flags;
824 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
825
826 /* flow control */
827 u32 pause_flags;
828 };
829
830 /*
831 * Maximum number of loops until we assume that a bit in the irq mask
832 * is stuck. Overridable with module param.
833 */
834 static int max_interrupt_work = 5;
835
836 /*
837 * Optimization can be either throuput mode or cpu mode
838 *
839 * Throughput Mode: Every tx and rx packet will generate an interrupt.
840 * CPU Mode: Interrupts are controlled by a timer.
841 */
842 enum {
843 NV_OPTIMIZATION_MODE_THROUGHPUT,
844 NV_OPTIMIZATION_MODE_CPU
845 };
846 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
847
848 /*
849 * Poll interval for timer irq
850 *
851 * This interval determines how frequent an interrupt is generated.
852 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
853 * Min = 0, and Max = 65535
854 */
855 static int poll_interval = -1;
856
857 /*
858 * MSI interrupts
859 */
860 enum {
861 NV_MSI_INT_DISABLED,
862 NV_MSI_INT_ENABLED
863 };
864 static int msi = NV_MSI_INT_ENABLED;
865
866 /*
867 * MSIX interrupts
868 */
869 enum {
870 NV_MSIX_INT_DISABLED,
871 NV_MSIX_INT_ENABLED
872 };
873 static int msix = NV_MSIX_INT_DISABLED;
874
875 /*
876 * DMA 64bit
877 */
878 enum {
879 NV_DMA_64BIT_DISABLED,
880 NV_DMA_64BIT_ENABLED
881 };
882 static int dma_64bit = NV_DMA_64BIT_ENABLED;
883
884 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
885 {
886 return netdev_priv(dev);
887 }
888
889 static inline u8 __iomem *get_hwbase(struct net_device *dev)
890 {
891 return ((struct fe_priv *)netdev_priv(dev))->base;
892 }
893
894 static inline void pci_push(u8 __iomem *base)
895 {
896 /* force out pending posted writes */
897 readl(base);
898 }
899
900 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
901 {
902 return le32_to_cpu(prd->flaglen)
903 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
904 }
905
906 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
907 {
908 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
909 }
910
911 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
912 int delay, int delaymax, const char *msg)
913 {
914 u8 __iomem *base = get_hwbase(dev);
915
916 pci_push(base);
917 do {
918 udelay(delay);
919 delaymax -= delay;
920 if (delaymax < 0) {
921 if (msg)
922 printk(msg);
923 return 1;
924 }
925 } while ((readl(base + offset) & mask) != target);
926 return 0;
927 }
928
929 #define NV_SETUP_RX_RING 0x01
930 #define NV_SETUP_TX_RING 0x02
931
932 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
933 {
934 struct fe_priv *np = get_nvpriv(dev);
935 u8 __iomem *base = get_hwbase(dev);
936
937 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
938 if (rxtx_flags & NV_SETUP_RX_RING) {
939 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
940 }
941 if (rxtx_flags & NV_SETUP_TX_RING) {
942 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
943 }
944 } else {
945 if (rxtx_flags & NV_SETUP_RX_RING) {
946 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
947 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
948 }
949 if (rxtx_flags & NV_SETUP_TX_RING) {
950 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
951 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
952 }
953 }
954 }
955
956 static void free_rings(struct net_device *dev)
957 {
958 struct fe_priv *np = get_nvpriv(dev);
959
960 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
961 if (np->rx_ring.orig)
962 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
963 np->rx_ring.orig, np->ring_addr);
964 } else {
965 if (np->rx_ring.ex)
966 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
967 np->rx_ring.ex, np->ring_addr);
968 }
969 if (np->rx_skb)
970 kfree(np->rx_skb);
971 if (np->tx_skb)
972 kfree(np->tx_skb);
973 }
974
975 static int using_multi_irqs(struct net_device *dev)
976 {
977 struct fe_priv *np = get_nvpriv(dev);
978
979 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
980 ((np->msi_flags & NV_MSI_X_ENABLED) &&
981 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
982 return 0;
983 else
984 return 1;
985 }
986
987 static void nv_enable_irq(struct net_device *dev)
988 {
989 struct fe_priv *np = get_nvpriv(dev);
990
991 if (!using_multi_irqs(dev)) {
992 if (np->msi_flags & NV_MSI_X_ENABLED)
993 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
994 else
995 enable_irq(np->pci_dev->irq);
996 } else {
997 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
998 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
999 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1000 }
1001 }
1002
1003 static void nv_disable_irq(struct net_device *dev)
1004 {
1005 struct fe_priv *np = get_nvpriv(dev);
1006
1007 if (!using_multi_irqs(dev)) {
1008 if (np->msi_flags & NV_MSI_X_ENABLED)
1009 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1010 else
1011 disable_irq(np->pci_dev->irq);
1012 } else {
1013 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1014 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1015 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1016 }
1017 }
1018
1019 /* In MSIX mode, a write to irqmask behaves as XOR */
1020 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1021 {
1022 u8 __iomem *base = get_hwbase(dev);
1023
1024 writel(mask, base + NvRegIrqMask);
1025 }
1026
1027 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1028 {
1029 struct fe_priv *np = get_nvpriv(dev);
1030 u8 __iomem *base = get_hwbase(dev);
1031
1032 if (np->msi_flags & NV_MSI_X_ENABLED) {
1033 writel(mask, base + NvRegIrqMask);
1034 } else {
1035 if (np->msi_flags & NV_MSI_ENABLED)
1036 writel(0, base + NvRegMSIIrqMask);
1037 writel(0, base + NvRegIrqMask);
1038 }
1039 }
1040
1041 #define MII_READ (-1)
1042 /* mii_rw: read/write a register on the PHY.
1043 *
1044 * Caller must guarantee serialization
1045 */
1046 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1047 {
1048 u8 __iomem *base = get_hwbase(dev);
1049 u32 reg;
1050 int retval;
1051
1052 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1053
1054 reg = readl(base + NvRegMIIControl);
1055 if (reg & NVREG_MIICTL_INUSE) {
1056 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1057 udelay(NV_MIIBUSY_DELAY);
1058 }
1059
1060 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1061 if (value != MII_READ) {
1062 writel(value, base + NvRegMIIData);
1063 reg |= NVREG_MIICTL_WRITE;
1064 }
1065 writel(reg, base + NvRegMIIControl);
1066
1067 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1068 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1069 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1070 dev->name, miireg, addr);
1071 retval = -1;
1072 } else if (value != MII_READ) {
1073 /* it was a write operation - fewer failures are detectable */
1074 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1075 dev->name, value, miireg, addr);
1076 retval = 0;
1077 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1078 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1079 dev->name, miireg, addr);
1080 retval = -1;
1081 } else {
1082 retval = readl(base + NvRegMIIData);
1083 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1084 dev->name, miireg, addr, retval);
1085 }
1086
1087 return retval;
1088 }
1089
1090 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1091 {
1092 struct fe_priv *np = netdev_priv(dev);
1093 u32 miicontrol;
1094 unsigned int tries = 0;
1095
1096 miicontrol = BMCR_RESET | bmcr_setup;
1097 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1098 return -1;
1099 }
1100
1101 /* wait for 500ms */
1102 msleep(500);
1103
1104 /* must wait till reset is deasserted */
1105 while (miicontrol & BMCR_RESET) {
1106 msleep(10);
1107 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1108 /* FIXME: 100 tries seem excessive */
1109 if (tries++ > 100)
1110 return -1;
1111 }
1112 return 0;
1113 }
1114
1115 static int phy_init(struct net_device *dev)
1116 {
1117 struct fe_priv *np = get_nvpriv(dev);
1118 u8 __iomem *base = get_hwbase(dev);
1119 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1120
1121 /* phy errata for E3016 phy */
1122 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1123 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1124 reg &= ~PHY_MARVELL_E3016_INITMASK;
1125 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1126 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1127 return PHY_ERROR;
1128 }
1129 }
1130 if (np->phy_oui == PHY_OUI_REALTEK) {
1131 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1132 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1133 return PHY_ERROR;
1134 }
1135 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1136 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1137 return PHY_ERROR;
1138 }
1139 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1140 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1141 return PHY_ERROR;
1142 }
1143 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1144 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1145 return PHY_ERROR;
1146 }
1147 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1148 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1149 return PHY_ERROR;
1150 }
1151 }
1152
1153 /* set advertise register */
1154 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1155 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1156 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1157 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1158 return PHY_ERROR;
1159 }
1160
1161 /* get phy interface type */
1162 phyinterface = readl(base + NvRegPhyInterface);
1163
1164 /* see if gigabit phy */
1165 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1166 if (mii_status & PHY_GIGABIT) {
1167 np->gigabit = PHY_GIGABIT;
1168 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1169 mii_control_1000 &= ~ADVERTISE_1000HALF;
1170 if (phyinterface & PHY_RGMII)
1171 mii_control_1000 |= ADVERTISE_1000FULL;
1172 else
1173 mii_control_1000 &= ~ADVERTISE_1000FULL;
1174
1175 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1176 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1177 return PHY_ERROR;
1178 }
1179 }
1180 else
1181 np->gigabit = 0;
1182
1183 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1184 mii_control |= BMCR_ANENABLE;
1185
1186 /* reset the phy
1187 * (certain phys need bmcr to be setup with reset)
1188 */
1189 if (phy_reset(dev, mii_control)) {
1190 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1191 return PHY_ERROR;
1192 }
1193
1194 /* phy vendor specific configuration */
1195 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1196 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1197 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1198 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1199 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1200 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1201 return PHY_ERROR;
1202 }
1203 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1204 phy_reserved |= PHY_CICADA_INIT5;
1205 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1206 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1207 return PHY_ERROR;
1208 }
1209 }
1210 if (np->phy_oui == PHY_OUI_CICADA) {
1211 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1212 phy_reserved |= PHY_CICADA_INIT6;
1213 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1214 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1215 return PHY_ERROR;
1216 }
1217 }
1218 if (np->phy_oui == PHY_OUI_VITESSE) {
1219 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1220 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1221 return PHY_ERROR;
1222 }
1223 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1224 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1225 return PHY_ERROR;
1226 }
1227 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1228 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1229 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1230 return PHY_ERROR;
1231 }
1232 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1233 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1234 phy_reserved |= PHY_VITESSE_INIT3;
1235 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1236 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1237 return PHY_ERROR;
1238 }
1239 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1240 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1241 return PHY_ERROR;
1242 }
1243 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1244 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1245 return PHY_ERROR;
1246 }
1247 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1248 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1249 phy_reserved |= PHY_VITESSE_INIT3;
1250 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1251 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1252 return PHY_ERROR;
1253 }
1254 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1255 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1256 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1257 return PHY_ERROR;
1258 }
1259 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1260 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1261 return PHY_ERROR;
1262 }
1263 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1264 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1265 return PHY_ERROR;
1266 }
1267 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1268 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1269 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1270 return PHY_ERROR;
1271 }
1272 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1273 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1274 phy_reserved |= PHY_VITESSE_INIT8;
1275 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1276 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1277 return PHY_ERROR;
1278 }
1279 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1280 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1281 return PHY_ERROR;
1282 }
1283 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1284 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1285 return PHY_ERROR;
1286 }
1287 }
1288 if (np->phy_oui == PHY_OUI_REALTEK) {
1289 /* reset could have cleared these out, set them back */
1290 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1291 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1292 return PHY_ERROR;
1293 }
1294 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1295 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1296 return PHY_ERROR;
1297 }
1298 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1299 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1300 return PHY_ERROR;
1301 }
1302 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1303 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1304 return PHY_ERROR;
1305 }
1306 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1307 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1308 return PHY_ERROR;
1309 }
1310 }
1311
1312 /* some phys clear out pause advertisment on reset, set it back */
1313 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1314
1315 /* restart auto negotiation */
1316 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1317 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1318 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1319 return PHY_ERROR;
1320 }
1321
1322 return 0;
1323 }
1324
1325 static void nv_start_rx(struct net_device *dev)
1326 {
1327 struct fe_priv *np = netdev_priv(dev);
1328 u8 __iomem *base = get_hwbase(dev);
1329 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1330
1331 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1332 /* Already running? Stop it. */
1333 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1334 rx_ctrl &= ~NVREG_RCVCTL_START;
1335 writel(rx_ctrl, base + NvRegReceiverControl);
1336 pci_push(base);
1337 }
1338 writel(np->linkspeed, base + NvRegLinkSpeed);
1339 pci_push(base);
1340 rx_ctrl |= NVREG_RCVCTL_START;
1341 if (np->mac_in_use)
1342 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1343 writel(rx_ctrl, base + NvRegReceiverControl);
1344 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1345 dev->name, np->duplex, np->linkspeed);
1346 pci_push(base);
1347 }
1348
1349 static void nv_stop_rx(struct net_device *dev)
1350 {
1351 struct fe_priv *np = netdev_priv(dev);
1352 u8 __iomem *base = get_hwbase(dev);
1353 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1354
1355 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1356 if (!np->mac_in_use)
1357 rx_ctrl &= ~NVREG_RCVCTL_START;
1358 else
1359 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1360 writel(rx_ctrl, base + NvRegReceiverControl);
1361 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1362 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1363 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1364
1365 udelay(NV_RXSTOP_DELAY2);
1366 if (!np->mac_in_use)
1367 writel(0, base + NvRegLinkSpeed);
1368 }
1369
1370 static void nv_start_tx(struct net_device *dev)
1371 {
1372 struct fe_priv *np = netdev_priv(dev);
1373 u8 __iomem *base = get_hwbase(dev);
1374 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1375
1376 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1377 tx_ctrl |= NVREG_XMITCTL_START;
1378 if (np->mac_in_use)
1379 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1380 writel(tx_ctrl, base + NvRegTransmitterControl);
1381 pci_push(base);
1382 }
1383
1384 static void nv_stop_tx(struct net_device *dev)
1385 {
1386 struct fe_priv *np = netdev_priv(dev);
1387 u8 __iomem *base = get_hwbase(dev);
1388 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1389
1390 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1391 if (!np->mac_in_use)
1392 tx_ctrl &= ~NVREG_XMITCTL_START;
1393 else
1394 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1395 writel(tx_ctrl, base + NvRegTransmitterControl);
1396 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1397 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1398 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1399
1400 udelay(NV_TXSTOP_DELAY2);
1401 if (!np->mac_in_use)
1402 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1403 base + NvRegTransmitPoll);
1404 }
1405
1406 static void nv_txrx_reset(struct net_device *dev)
1407 {
1408 struct fe_priv *np = netdev_priv(dev);
1409 u8 __iomem *base = get_hwbase(dev);
1410
1411 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1412 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1413 pci_push(base);
1414 udelay(NV_TXRX_RESET_DELAY);
1415 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1416 pci_push(base);
1417 }
1418
1419 static void nv_mac_reset(struct net_device *dev)
1420 {
1421 struct fe_priv *np = netdev_priv(dev);
1422 u8 __iomem *base = get_hwbase(dev);
1423
1424 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1425 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1426 pci_push(base);
1427 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1428 pci_push(base);
1429 udelay(NV_MAC_RESET_DELAY);
1430 writel(0, base + NvRegMacReset);
1431 pci_push(base);
1432 udelay(NV_MAC_RESET_DELAY);
1433 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1434 pci_push(base);
1435 }
1436
1437 static void nv_get_hw_stats(struct net_device *dev)
1438 {
1439 struct fe_priv *np = netdev_priv(dev);
1440 u8 __iomem *base = get_hwbase(dev);
1441
1442 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1443 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1444 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1445 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1446 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1447 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1448 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1449 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1450 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1451 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1452 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1453 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1454 np->estats.rx_runt += readl(base + NvRegRxRunt);
1455 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1456 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1457 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1458 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1459 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1460 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1461 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1462 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1463 np->estats.rx_packets =
1464 np->estats.rx_unicast +
1465 np->estats.rx_multicast +
1466 np->estats.rx_broadcast;
1467 np->estats.rx_errors_total =
1468 np->estats.rx_crc_errors +
1469 np->estats.rx_over_errors +
1470 np->estats.rx_frame_error +
1471 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1472 np->estats.rx_late_collision +
1473 np->estats.rx_runt +
1474 np->estats.rx_frame_too_long;
1475 np->estats.tx_errors_total =
1476 np->estats.tx_late_collision +
1477 np->estats.tx_fifo_errors +
1478 np->estats.tx_carrier_errors +
1479 np->estats.tx_excess_deferral +
1480 np->estats.tx_retry_error;
1481
1482 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1483 np->estats.tx_deferral += readl(base + NvRegTxDef);
1484 np->estats.tx_packets += readl(base + NvRegTxFrame);
1485 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1486 np->estats.tx_pause += readl(base + NvRegTxPause);
1487 np->estats.rx_pause += readl(base + NvRegRxPause);
1488 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1489 }
1490 }
1491
1492 /*
1493 * nv_get_stats: dev->get_stats function
1494 * Get latest stats value from the nic.
1495 * Called with read_lock(&dev_base_lock) held for read -
1496 * only synchronized against unregister_netdevice.
1497 */
1498 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1499 {
1500 struct fe_priv *np = netdev_priv(dev);
1501
1502 /* If the nic supports hw counters then retrieve latest values */
1503 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
1504 nv_get_hw_stats(dev);
1505
1506 /* copy to net_device stats */
1507 dev->stats.tx_bytes = np->estats.tx_bytes;
1508 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1509 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1510 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1511 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1512 dev->stats.rx_errors = np->estats.rx_errors_total;
1513 dev->stats.tx_errors = np->estats.tx_errors_total;
1514 }
1515
1516 return &dev->stats;
1517 }
1518
1519 /*
1520 * nv_alloc_rx: fill rx ring entries.
1521 * Return 1 if the allocations for the skbs failed and the
1522 * rx engine is without Available descriptors
1523 */
1524 static int nv_alloc_rx(struct net_device *dev)
1525 {
1526 struct fe_priv *np = netdev_priv(dev);
1527 struct ring_desc* less_rx;
1528
1529 less_rx = np->get_rx.orig;
1530 if (less_rx-- == np->first_rx.orig)
1531 less_rx = np->last_rx.orig;
1532
1533 while (np->put_rx.orig != less_rx) {
1534 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1535 if (skb) {
1536 np->put_rx_ctx->skb = skb;
1537 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1538 skb->data,
1539 skb_tailroom(skb),
1540 PCI_DMA_FROMDEVICE);
1541 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1542 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1543 wmb();
1544 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1545 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1546 np->put_rx.orig = np->first_rx.orig;
1547 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1548 np->put_rx_ctx = np->first_rx_ctx;
1549 } else {
1550 return 1;
1551 }
1552 }
1553 return 0;
1554 }
1555
1556 static int nv_alloc_rx_optimized(struct net_device *dev)
1557 {
1558 struct fe_priv *np = netdev_priv(dev);
1559 struct ring_desc_ex* less_rx;
1560
1561 less_rx = np->get_rx.ex;
1562 if (less_rx-- == np->first_rx.ex)
1563 less_rx = np->last_rx.ex;
1564
1565 while (np->put_rx.ex != less_rx) {
1566 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1567 if (skb) {
1568 np->put_rx_ctx->skb = skb;
1569 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1570 skb->data,
1571 skb_tailroom(skb),
1572 PCI_DMA_FROMDEVICE);
1573 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1574 np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
1575 np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
1576 wmb();
1577 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1578 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1579 np->put_rx.ex = np->first_rx.ex;
1580 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1581 np->put_rx_ctx = np->first_rx_ctx;
1582 } else {
1583 return 1;
1584 }
1585 }
1586 return 0;
1587 }
1588
1589 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1590 #ifdef CONFIG_FORCEDETH_NAPI
1591 static void nv_do_rx_refill(unsigned long data)
1592 {
1593 struct net_device *dev = (struct net_device *) data;
1594 struct fe_priv *np = netdev_priv(dev);
1595
1596 /* Just reschedule NAPI rx processing */
1597 netif_rx_schedule(dev, &np->napi);
1598 }
1599 #else
1600 static void nv_do_rx_refill(unsigned long data)
1601 {
1602 struct net_device *dev = (struct net_device *) data;
1603 struct fe_priv *np = netdev_priv(dev);
1604 int retcode;
1605
1606 if (!using_multi_irqs(dev)) {
1607 if (np->msi_flags & NV_MSI_X_ENABLED)
1608 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1609 else
1610 disable_irq(np->pci_dev->irq);
1611 } else {
1612 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1613 }
1614 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1615 retcode = nv_alloc_rx(dev);
1616 else
1617 retcode = nv_alloc_rx_optimized(dev);
1618 if (retcode) {
1619 spin_lock_irq(&np->lock);
1620 if (!np->in_shutdown)
1621 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1622 spin_unlock_irq(&np->lock);
1623 }
1624 if (!using_multi_irqs(dev)) {
1625 if (np->msi_flags & NV_MSI_X_ENABLED)
1626 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1627 else
1628 enable_irq(np->pci_dev->irq);
1629 } else {
1630 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1631 }
1632 }
1633 #endif
1634
1635 static void nv_init_rx(struct net_device *dev)
1636 {
1637 struct fe_priv *np = netdev_priv(dev);
1638 int i;
1639 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1640 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1641 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1642 else
1643 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1644 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1645 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1646
1647 for (i = 0; i < np->rx_ring_size; i++) {
1648 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1649 np->rx_ring.orig[i].flaglen = 0;
1650 np->rx_ring.orig[i].buf = 0;
1651 } else {
1652 np->rx_ring.ex[i].flaglen = 0;
1653 np->rx_ring.ex[i].txvlan = 0;
1654 np->rx_ring.ex[i].bufhigh = 0;
1655 np->rx_ring.ex[i].buflow = 0;
1656 }
1657 np->rx_skb[i].skb = NULL;
1658 np->rx_skb[i].dma = 0;
1659 }
1660 }
1661
1662 static void nv_init_tx(struct net_device *dev)
1663 {
1664 struct fe_priv *np = netdev_priv(dev);
1665 int i;
1666 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1667 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1668 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1669 else
1670 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1671 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1672 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1673
1674 for (i = 0; i < np->tx_ring_size; i++) {
1675 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1676 np->tx_ring.orig[i].flaglen = 0;
1677 np->tx_ring.orig[i].buf = 0;
1678 } else {
1679 np->tx_ring.ex[i].flaglen = 0;
1680 np->tx_ring.ex[i].txvlan = 0;
1681 np->tx_ring.ex[i].bufhigh = 0;
1682 np->tx_ring.ex[i].buflow = 0;
1683 }
1684 np->tx_skb[i].skb = NULL;
1685 np->tx_skb[i].dma = 0;
1686 }
1687 }
1688
1689 static int nv_init_ring(struct net_device *dev)
1690 {
1691 struct fe_priv *np = netdev_priv(dev);
1692
1693 nv_init_tx(dev);
1694 nv_init_rx(dev);
1695 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1696 return nv_alloc_rx(dev);
1697 else
1698 return nv_alloc_rx_optimized(dev);
1699 }
1700
1701 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1702 {
1703 struct fe_priv *np = netdev_priv(dev);
1704
1705 if (tx_skb->dma) {
1706 pci_unmap_page(np->pci_dev, tx_skb->dma,
1707 tx_skb->dma_len,
1708 PCI_DMA_TODEVICE);
1709 tx_skb->dma = 0;
1710 }
1711 if (tx_skb->skb) {
1712 dev_kfree_skb_any(tx_skb->skb);
1713 tx_skb->skb = NULL;
1714 return 1;
1715 } else {
1716 return 0;
1717 }
1718 }
1719
1720 static void nv_drain_tx(struct net_device *dev)
1721 {
1722 struct fe_priv *np = netdev_priv(dev);
1723 unsigned int i;
1724
1725 for (i = 0; i < np->tx_ring_size; i++) {
1726 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1727 np->tx_ring.orig[i].flaglen = 0;
1728 np->tx_ring.orig[i].buf = 0;
1729 } else {
1730 np->tx_ring.ex[i].flaglen = 0;
1731 np->tx_ring.ex[i].txvlan = 0;
1732 np->tx_ring.ex[i].bufhigh = 0;
1733 np->tx_ring.ex[i].buflow = 0;
1734 }
1735 if (nv_release_txskb(dev, &np->tx_skb[i]))
1736 dev->stats.tx_dropped++;
1737 }
1738 }
1739
1740 static void nv_drain_rx(struct net_device *dev)
1741 {
1742 struct fe_priv *np = netdev_priv(dev);
1743 int i;
1744
1745 for (i = 0; i < np->rx_ring_size; i++) {
1746 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1747 np->rx_ring.orig[i].flaglen = 0;
1748 np->rx_ring.orig[i].buf = 0;
1749 } else {
1750 np->rx_ring.ex[i].flaglen = 0;
1751 np->rx_ring.ex[i].txvlan = 0;
1752 np->rx_ring.ex[i].bufhigh = 0;
1753 np->rx_ring.ex[i].buflow = 0;
1754 }
1755 wmb();
1756 if (np->rx_skb[i].skb) {
1757 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1758 (skb_end_pointer(np->rx_skb[i].skb) -
1759 np->rx_skb[i].skb->data),
1760 PCI_DMA_FROMDEVICE);
1761 dev_kfree_skb(np->rx_skb[i].skb);
1762 np->rx_skb[i].skb = NULL;
1763 }
1764 }
1765 }
1766
1767 static void drain_ring(struct net_device *dev)
1768 {
1769 nv_drain_tx(dev);
1770 nv_drain_rx(dev);
1771 }
1772
1773 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1774 {
1775 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1776 }
1777
1778 /*
1779 * nv_start_xmit: dev->hard_start_xmit function
1780 * Called with netif_tx_lock held.
1781 */
1782 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1783 {
1784 struct fe_priv *np = netdev_priv(dev);
1785 u32 tx_flags = 0;
1786 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1787 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1788 unsigned int i;
1789 u32 offset = 0;
1790 u32 bcnt;
1791 u32 size = skb->len-skb->data_len;
1792 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1793 u32 empty_slots;
1794 struct ring_desc* put_tx;
1795 struct ring_desc* start_tx;
1796 struct ring_desc* prev_tx;
1797 struct nv_skb_map* prev_tx_ctx;
1798
1799 /* add fragments to entries count */
1800 for (i = 0; i < fragments; i++) {
1801 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1802 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1803 }
1804
1805 empty_slots = nv_get_empty_tx_slots(np);
1806 if (unlikely(empty_slots <= entries)) {
1807 spin_lock_irq(&np->lock);
1808 netif_stop_queue(dev);
1809 np->tx_stop = 1;
1810 spin_unlock_irq(&np->lock);
1811 return NETDEV_TX_BUSY;
1812 }
1813
1814 start_tx = put_tx = np->put_tx.orig;
1815
1816 /* setup the header buffer */
1817 do {
1818 prev_tx = put_tx;
1819 prev_tx_ctx = np->put_tx_ctx;
1820 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1821 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1822 PCI_DMA_TODEVICE);
1823 np->put_tx_ctx->dma_len = bcnt;
1824 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1825 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1826
1827 tx_flags = np->tx_flags;
1828 offset += bcnt;
1829 size -= bcnt;
1830 if (unlikely(put_tx++ == np->last_tx.orig))
1831 put_tx = np->first_tx.orig;
1832 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1833 np->put_tx_ctx = np->first_tx_ctx;
1834 } while (size);
1835
1836 /* setup the fragments */
1837 for (i = 0; i < fragments; i++) {
1838 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1839 u32 size = frag->size;
1840 offset = 0;
1841
1842 do {
1843 prev_tx = put_tx;
1844 prev_tx_ctx = np->put_tx_ctx;
1845 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1846 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1847 PCI_DMA_TODEVICE);
1848 np->put_tx_ctx->dma_len = bcnt;
1849 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1850 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1851
1852 offset += bcnt;
1853 size -= bcnt;
1854 if (unlikely(put_tx++ == np->last_tx.orig))
1855 put_tx = np->first_tx.orig;
1856 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1857 np->put_tx_ctx = np->first_tx_ctx;
1858 } while (size);
1859 }
1860
1861 /* set last fragment flag */
1862 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1863
1864 /* save skb in this slot's context area */
1865 prev_tx_ctx->skb = skb;
1866
1867 if (skb_is_gso(skb))
1868 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1869 else
1870 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1871 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1872
1873 spin_lock_irq(&np->lock);
1874
1875 /* set tx flags */
1876 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1877 np->put_tx.orig = put_tx;
1878
1879 spin_unlock_irq(&np->lock);
1880
1881 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1882 dev->name, entries, tx_flags_extra);
1883 {
1884 int j;
1885 for (j=0; j<64; j++) {
1886 if ((j%16) == 0)
1887 dprintk("\n%03x:", j);
1888 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1889 }
1890 dprintk("\n");
1891 }
1892
1893 dev->trans_start = jiffies;
1894 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1895 return NETDEV_TX_OK;
1896 }
1897
1898 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1899 {
1900 struct fe_priv *np = netdev_priv(dev);
1901 u32 tx_flags = 0;
1902 u32 tx_flags_extra;
1903 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1904 unsigned int i;
1905 u32 offset = 0;
1906 u32 bcnt;
1907 u32 size = skb->len-skb->data_len;
1908 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1909 u32 empty_slots;
1910 struct ring_desc_ex* put_tx;
1911 struct ring_desc_ex* start_tx;
1912 struct ring_desc_ex* prev_tx;
1913 struct nv_skb_map* prev_tx_ctx;
1914
1915 /* add fragments to entries count */
1916 for (i = 0; i < fragments; i++) {
1917 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1918 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1919 }
1920
1921 empty_slots = nv_get_empty_tx_slots(np);
1922 if (unlikely(empty_slots <= entries)) {
1923 spin_lock_irq(&np->lock);
1924 netif_stop_queue(dev);
1925 np->tx_stop = 1;
1926 spin_unlock_irq(&np->lock);
1927 return NETDEV_TX_BUSY;
1928 }
1929
1930 start_tx = put_tx = np->put_tx.ex;
1931
1932 /* setup the header buffer */
1933 do {
1934 prev_tx = put_tx;
1935 prev_tx_ctx = np->put_tx_ctx;
1936 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1937 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1938 PCI_DMA_TODEVICE);
1939 np->put_tx_ctx->dma_len = bcnt;
1940 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1941 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1942 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1943
1944 tx_flags = NV_TX2_VALID;
1945 offset += bcnt;
1946 size -= bcnt;
1947 if (unlikely(put_tx++ == np->last_tx.ex))
1948 put_tx = np->first_tx.ex;
1949 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1950 np->put_tx_ctx = np->first_tx_ctx;
1951 } while (size);
1952
1953 /* setup the fragments */
1954 for (i = 0; i < fragments; i++) {
1955 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1956 u32 size = frag->size;
1957 offset = 0;
1958
1959 do {
1960 prev_tx = put_tx;
1961 prev_tx_ctx = np->put_tx_ctx;
1962 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1963 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1964 PCI_DMA_TODEVICE);
1965 np->put_tx_ctx->dma_len = bcnt;
1966 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1967 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1968 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1969
1970 offset += bcnt;
1971 size -= bcnt;
1972 if (unlikely(put_tx++ == np->last_tx.ex))
1973 put_tx = np->first_tx.ex;
1974 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1975 np->put_tx_ctx = np->first_tx_ctx;
1976 } while (size);
1977 }
1978
1979 /* set last fragment flag */
1980 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
1981
1982 /* save skb in this slot's context area */
1983 prev_tx_ctx->skb = skb;
1984
1985 if (skb_is_gso(skb))
1986 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1987 else
1988 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1989 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1990
1991 /* vlan tag */
1992 if (likely(!np->vlangrp)) {
1993 start_tx->txvlan = 0;
1994 } else {
1995 if (vlan_tx_tag_present(skb))
1996 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
1997 else
1998 start_tx->txvlan = 0;
1999 }
2000
2001 spin_lock_irq(&np->lock);
2002
2003 /* set tx flags */
2004 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2005 np->put_tx.ex = put_tx;
2006
2007 spin_unlock_irq(&np->lock);
2008
2009 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2010 dev->name, entries, tx_flags_extra);
2011 {
2012 int j;
2013 for (j=0; j<64; j++) {
2014 if ((j%16) == 0)
2015 dprintk("\n%03x:", j);
2016 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2017 }
2018 dprintk("\n");
2019 }
2020
2021 dev->trans_start = jiffies;
2022 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2023 return NETDEV_TX_OK;
2024 }
2025
2026 /*
2027 * nv_tx_done: check for completed packets, release the skbs.
2028 *
2029 * Caller must own np->lock.
2030 */
2031 static void nv_tx_done(struct net_device *dev)
2032 {
2033 struct fe_priv *np = netdev_priv(dev);
2034 u32 flags;
2035 struct ring_desc* orig_get_tx = np->get_tx.orig;
2036
2037 while ((np->get_tx.orig != np->put_tx.orig) &&
2038 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
2039
2040 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2041 dev->name, flags);
2042
2043 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2044 np->get_tx_ctx->dma_len,
2045 PCI_DMA_TODEVICE);
2046 np->get_tx_ctx->dma = 0;
2047
2048 if (np->desc_ver == DESC_VER_1) {
2049 if (flags & NV_TX_LASTPACKET) {
2050 if (flags & NV_TX_ERROR) {
2051 if (flags & NV_TX_UNDERFLOW)
2052 dev->stats.tx_fifo_errors++;
2053 if (flags & NV_TX_CARRIERLOST)
2054 dev->stats.tx_carrier_errors++;
2055 dev->stats.tx_errors++;
2056 } else {
2057 dev->stats.tx_packets++;
2058 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2059 }
2060 dev_kfree_skb_any(np->get_tx_ctx->skb);
2061 np->get_tx_ctx->skb = NULL;
2062 }
2063 } else {
2064 if (flags & NV_TX2_LASTPACKET) {
2065 if (flags & NV_TX2_ERROR) {
2066 if (flags & NV_TX2_UNDERFLOW)
2067 dev->stats.tx_fifo_errors++;
2068 if (flags & NV_TX2_CARRIERLOST)
2069 dev->stats.tx_carrier_errors++;
2070 dev->stats.tx_errors++;
2071 } else {
2072 dev->stats.tx_packets++;
2073 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2074 }
2075 dev_kfree_skb_any(np->get_tx_ctx->skb);
2076 np->get_tx_ctx->skb = NULL;
2077 }
2078 }
2079 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2080 np->get_tx.orig = np->first_tx.orig;
2081 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2082 np->get_tx_ctx = np->first_tx_ctx;
2083 }
2084 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2085 np->tx_stop = 0;
2086 netif_wake_queue(dev);
2087 }
2088 }
2089
2090 static void nv_tx_done_optimized(struct net_device *dev, int limit)
2091 {
2092 struct fe_priv *np = netdev_priv(dev);
2093 u32 flags;
2094 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2095
2096 while ((np->get_tx.ex != np->put_tx.ex) &&
2097 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2098 (limit-- > 0)) {
2099
2100 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2101 dev->name, flags);
2102
2103 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2104 np->get_tx_ctx->dma_len,
2105 PCI_DMA_TODEVICE);
2106 np->get_tx_ctx->dma = 0;
2107
2108 if (flags & NV_TX2_LASTPACKET) {
2109 if (!(flags & NV_TX2_ERROR))
2110 dev->stats.tx_packets++;
2111 dev_kfree_skb_any(np->get_tx_ctx->skb);
2112 np->get_tx_ctx->skb = NULL;
2113 }
2114 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2115 np->get_tx.ex = np->first_tx.ex;
2116 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2117 np->get_tx_ctx = np->first_tx_ctx;
2118 }
2119 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2120 np->tx_stop = 0;
2121 netif_wake_queue(dev);
2122 }
2123 }
2124
2125 /*
2126 * nv_tx_timeout: dev->tx_timeout function
2127 * Called with netif_tx_lock held.
2128 */
2129 static void nv_tx_timeout(struct net_device *dev)
2130 {
2131 struct fe_priv *np = netdev_priv(dev);
2132 u8 __iomem *base = get_hwbase(dev);
2133 u32 status;
2134
2135 if (np->msi_flags & NV_MSI_X_ENABLED)
2136 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2137 else
2138 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2139
2140 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2141
2142 {
2143 int i;
2144
2145 printk(KERN_INFO "%s: Ring at %lx\n",
2146 dev->name, (unsigned long)np->ring_addr);
2147 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2148 for (i=0;i<=np->register_size;i+= 32) {
2149 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2150 i,
2151 readl(base + i + 0), readl(base + i + 4),
2152 readl(base + i + 8), readl(base + i + 12),
2153 readl(base + i + 16), readl(base + i + 20),
2154 readl(base + i + 24), readl(base + i + 28));
2155 }
2156 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2157 for (i=0;i<np->tx_ring_size;i+= 4) {
2158 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2159 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2160 i,
2161 le32_to_cpu(np->tx_ring.orig[i].buf),
2162 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2163 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2164 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2165 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2166 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2167 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2168 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2169 } else {
2170 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2171 i,
2172 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2173 le32_to_cpu(np->tx_ring.ex[i].buflow),
2174 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2175 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2176 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2177 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2178 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2179 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2180 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2181 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2182 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2183 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2184 }
2185 }
2186 }
2187
2188 spin_lock_irq(&np->lock);
2189
2190 /* 1) stop tx engine */
2191 nv_stop_tx(dev);
2192
2193 /* 2) check that the packets were not sent already: */
2194 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2195 nv_tx_done(dev);
2196 else
2197 nv_tx_done_optimized(dev, np->tx_ring_size);
2198
2199 /* 3) if there are dead entries: clear everything */
2200 if (np->get_tx_ctx != np->put_tx_ctx) {
2201 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2202 nv_drain_tx(dev);
2203 nv_init_tx(dev);
2204 setup_hw_rings(dev, NV_SETUP_TX_RING);
2205 }
2206
2207 netif_wake_queue(dev);
2208
2209 /* 4) restart tx engine */
2210 nv_start_tx(dev);
2211 spin_unlock_irq(&np->lock);
2212 }
2213
2214 /*
2215 * Called when the nic notices a mismatch between the actual data len on the
2216 * wire and the len indicated in the 802 header
2217 */
2218 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2219 {
2220 int hdrlen; /* length of the 802 header */
2221 int protolen; /* length as stored in the proto field */
2222
2223 /* 1) calculate len according to header */
2224 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2225 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2226 hdrlen = VLAN_HLEN;
2227 } else {
2228 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2229 hdrlen = ETH_HLEN;
2230 }
2231 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2232 dev->name, datalen, protolen, hdrlen);
2233 if (protolen > ETH_DATA_LEN)
2234 return datalen; /* Value in proto field not a len, no checks possible */
2235
2236 protolen += hdrlen;
2237 /* consistency checks: */
2238 if (datalen > ETH_ZLEN) {
2239 if (datalen >= protolen) {
2240 /* more data on wire than in 802 header, trim of
2241 * additional data.
2242 */
2243 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2244 dev->name, protolen);
2245 return protolen;
2246 } else {
2247 /* less data on wire than mentioned in header.
2248 * Discard the packet.
2249 */
2250 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2251 dev->name);
2252 return -1;
2253 }
2254 } else {
2255 /* short packet. Accept only if 802 values are also short */
2256 if (protolen > ETH_ZLEN) {
2257 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2258 dev->name);
2259 return -1;
2260 }
2261 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2262 dev->name, datalen);
2263 return datalen;
2264 }
2265 }
2266
2267 static int nv_rx_process(struct net_device *dev, int limit)
2268 {
2269 struct fe_priv *np = netdev_priv(dev);
2270 u32 flags;
2271 int rx_work = 0;
2272 struct sk_buff *skb;
2273 int len;
2274
2275 while((np->get_rx.orig != np->put_rx.orig) &&
2276 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2277 (rx_work < limit)) {
2278
2279 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2280 dev->name, flags);
2281
2282 /*
2283 * the packet is for us - immediately tear down the pci mapping.
2284 * TODO: check if a prefetch of the first cacheline improves
2285 * the performance.
2286 */
2287 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2288 np->get_rx_ctx->dma_len,
2289 PCI_DMA_FROMDEVICE);
2290 skb = np->get_rx_ctx->skb;
2291 np->get_rx_ctx->skb = NULL;
2292
2293 {
2294 int j;
2295 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2296 for (j=0; j<64; j++) {
2297 if ((j%16) == 0)
2298 dprintk("\n%03x:", j);
2299 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2300 }
2301 dprintk("\n");
2302 }
2303 /* look at what we actually got: */
2304 if (np->desc_ver == DESC_VER_1) {
2305 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2306 len = flags & LEN_MASK_V1;
2307 if (unlikely(flags & NV_RX_ERROR)) {
2308 if (flags & NV_RX_ERROR4) {
2309 len = nv_getlen(dev, skb->data, len);
2310 if (len < 0) {
2311 dev->stats.rx_errors++;
2312 dev_kfree_skb(skb);
2313 goto next_pkt;
2314 }
2315 }
2316 /* framing errors are soft errors */
2317 else if (flags & NV_RX_FRAMINGERR) {
2318 if (flags & NV_RX_SUBSTRACT1) {
2319 len--;
2320 }
2321 }
2322 /* the rest are hard errors */
2323 else {
2324 if (flags & NV_RX_MISSEDFRAME)
2325 dev->stats.rx_missed_errors++;
2326 if (flags & NV_RX_CRCERR)
2327 dev->stats.rx_crc_errors++;
2328 if (flags & NV_RX_OVERFLOW)
2329 dev->stats.rx_over_errors++;
2330 dev->stats.rx_errors++;
2331 dev_kfree_skb(skb);
2332 goto next_pkt;
2333 }
2334 }
2335 } else {
2336 dev_kfree_skb(skb);
2337 goto next_pkt;
2338 }
2339 } else {
2340 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2341 len = flags & LEN_MASK_V2;
2342 if (unlikely(flags & NV_RX2_ERROR)) {
2343 if (flags & NV_RX2_ERROR4) {
2344 len = nv_getlen(dev, skb->data, len);
2345 if (len < 0) {
2346 dev->stats.rx_errors++;
2347 dev_kfree_skb(skb);
2348 goto next_pkt;
2349 }
2350 }
2351 /* framing errors are soft errors */
2352 else if (flags & NV_RX2_FRAMINGERR) {
2353 if (flags & NV_RX2_SUBSTRACT1) {
2354 len--;
2355 }
2356 }
2357 /* the rest are hard errors */
2358 else {
2359 if (flags & NV_RX2_CRCERR)
2360 dev->stats.rx_crc_errors++;
2361 if (flags & NV_RX2_OVERFLOW)
2362 dev->stats.rx_over_errors++;
2363 dev->stats.rx_errors++;
2364 dev_kfree_skb(skb);
2365 goto next_pkt;
2366 }
2367 }
2368 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2369 skb->ip_summed = CHECKSUM_UNNECESSARY;
2370 } else {
2371 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2372 (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2373 skb->ip_summed = CHECKSUM_UNNECESSARY;
2374 }
2375 }
2376 } else {
2377 dev_kfree_skb(skb);
2378 goto next_pkt;
2379 }
2380 }
2381 /* got a valid packet - forward it to the network core */
2382 skb_put(skb, len);
2383 skb->protocol = eth_type_trans(skb, dev);
2384 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2385 dev->name, len, skb->protocol);
2386 #ifdef CONFIG_FORCEDETH_NAPI
2387 netif_receive_skb(skb);
2388 #else
2389 netif_rx(skb);
2390 #endif
2391 dev->last_rx = jiffies;
2392 dev->stats.rx_packets++;
2393 dev->stats.rx_bytes += len;
2394 next_pkt:
2395 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2396 np->get_rx.orig = np->first_rx.orig;
2397 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2398 np->get_rx_ctx = np->first_rx_ctx;
2399
2400 rx_work++;
2401 }
2402
2403 return rx_work;
2404 }
2405
2406 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2407 {
2408 struct fe_priv *np = netdev_priv(dev);
2409 u32 flags;
2410 u32 vlanflags = 0;
2411 int rx_work = 0;
2412 struct sk_buff *skb;
2413 int len;
2414
2415 while((np->get_rx.ex != np->put_rx.ex) &&
2416 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2417 (rx_work < limit)) {
2418
2419 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2420 dev->name, flags);
2421
2422 /*
2423 * the packet is for us - immediately tear down the pci mapping.
2424 * TODO: check if a prefetch of the first cacheline improves
2425 * the performance.
2426 */
2427 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2428 np->get_rx_ctx->dma_len,
2429 PCI_DMA_FROMDEVICE);
2430 skb = np->get_rx_ctx->skb;
2431 np->get_rx_ctx->skb = NULL;
2432
2433 {
2434 int j;
2435 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2436 for (j=0; j<64; j++) {
2437 if ((j%16) == 0)
2438 dprintk("\n%03x:", j);
2439 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2440 }
2441 dprintk("\n");
2442 }
2443 /* look at what we actually got: */
2444 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2445 len = flags & LEN_MASK_V2;
2446 if (unlikely(flags & NV_RX2_ERROR)) {
2447 if (flags & NV_RX2_ERROR4) {
2448 len = nv_getlen(dev, skb->data, len);
2449 if (len < 0) {
2450 dev_kfree_skb(skb);
2451 goto next_pkt;
2452 }
2453 }
2454 /* framing errors are soft errors */
2455 else if (flags & NV_RX2_FRAMINGERR) {
2456 if (flags & NV_RX2_SUBSTRACT1) {
2457 len--;
2458 }
2459 }
2460 /* the rest are hard errors */
2461 else {
2462 dev_kfree_skb(skb);
2463 goto next_pkt;
2464 }
2465 }
2466
2467 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2468 skb->ip_summed = CHECKSUM_UNNECESSARY;
2469 } else {
2470 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2471 (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2472 skb->ip_summed = CHECKSUM_UNNECESSARY;
2473 }
2474 }
2475
2476 /* got a valid packet - forward it to the network core */
2477 skb_put(skb, len);
2478 skb->protocol = eth_type_trans(skb, dev);
2479 prefetch(skb->data);
2480
2481 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2482 dev->name, len, skb->protocol);
2483
2484 if (likely(!np->vlangrp)) {
2485 #ifdef CONFIG_FORCEDETH_NAPI
2486 netif_receive_skb(skb);
2487 #else
2488 netif_rx(skb);
2489 #endif
2490 } else {
2491 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2492 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2493 #ifdef CONFIG_FORCEDETH_NAPI
2494 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2495 vlanflags & NV_RX3_VLAN_TAG_MASK);
2496 #else
2497 vlan_hwaccel_rx(skb, np->vlangrp,
2498 vlanflags & NV_RX3_VLAN_TAG_MASK);
2499 #endif
2500 } else {
2501 #ifdef CONFIG_FORCEDETH_NAPI
2502 netif_receive_skb(skb);
2503 #else
2504 netif_rx(skb);
2505 #endif
2506 }
2507 }
2508
2509 dev->last_rx = jiffies;
2510 dev->stats.rx_packets++;
2511 dev->stats.rx_bytes += len;
2512 } else {
2513 dev_kfree_skb(skb);
2514 }
2515 next_pkt:
2516 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2517 np->get_rx.ex = np->first_rx.ex;
2518 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2519 np->get_rx_ctx = np->first_rx_ctx;
2520
2521 rx_work++;
2522 }
2523
2524 return rx_work;
2525 }
2526
2527 static void set_bufsize(struct net_device *dev)
2528 {
2529 struct fe_priv *np = netdev_priv(dev);
2530
2531 if (dev->mtu <= ETH_DATA_LEN)
2532 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2533 else
2534 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2535 }
2536
2537 /*
2538 * nv_change_mtu: dev->change_mtu function
2539 * Called with dev_base_lock held for read.
2540 */
2541 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2542 {
2543 struct fe_priv *np = netdev_priv(dev);
2544 int old_mtu;
2545
2546 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2547 return -EINVAL;
2548
2549 old_mtu = dev->mtu;
2550 dev->mtu = new_mtu;
2551
2552 /* return early if the buffer sizes will not change */
2553 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2554 return 0;
2555 if (old_mtu == new_mtu)
2556 return 0;
2557
2558 /* synchronized against open : rtnl_lock() held by caller */
2559 if (netif_running(dev)) {
2560 u8 __iomem *base = get_hwbase(dev);
2561 /*
2562 * It seems that the nic preloads valid ring entries into an
2563 * internal buffer. The procedure for flushing everything is
2564 * guessed, there is probably a simpler approach.
2565 * Changing the MTU is a rare event, it shouldn't matter.
2566 */
2567 nv_disable_irq(dev);
2568 netif_tx_lock_bh(dev);
2569 spin_lock(&np->lock);
2570 /* stop engines */
2571 nv_stop_rx(dev);
2572 nv_stop_tx(dev);
2573 nv_txrx_reset(dev);
2574 /* drain rx queue */
2575 nv_drain_rx(dev);
2576 nv_drain_tx(dev);
2577 /* reinit driver view of the rx queue */
2578 set_bufsize(dev);
2579 if (nv_init_ring(dev)) {
2580 if (!np->in_shutdown)
2581 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2582 }
2583 /* reinit nic view of the rx queue */
2584 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2585 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2586 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2587 base + NvRegRingSizes);
2588 pci_push(base);
2589 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2590 pci_push(base);
2591
2592 /* restart rx engine */
2593 nv_start_rx(dev);
2594 nv_start_tx(dev);
2595 spin_unlock(&np->lock);
2596 netif_tx_unlock_bh(dev);
2597 nv_enable_irq(dev);
2598 }
2599 return 0;
2600 }
2601
2602 static void nv_copy_mac_to_hw(struct net_device *dev)
2603 {
2604 u8 __iomem *base = get_hwbase(dev);
2605 u32 mac[2];
2606
2607 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2608 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2609 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2610
2611 writel(mac[0], base + NvRegMacAddrA);
2612 writel(mac[1], base + NvRegMacAddrB);
2613 }
2614
2615 /*
2616 * nv_set_mac_address: dev->set_mac_address function
2617 * Called with rtnl_lock() held.
2618 */
2619 static int nv_set_mac_address(struct net_device *dev, void *addr)
2620 {
2621 struct fe_priv *np = netdev_priv(dev);
2622 struct sockaddr *macaddr = (struct sockaddr*)addr;
2623
2624 if (!is_valid_ether_addr(macaddr->sa_data))
2625 return -EADDRNOTAVAIL;
2626
2627 /* synchronized against open : rtnl_lock() held by caller */
2628 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2629
2630 if (netif_running(dev)) {
2631 netif_tx_lock_bh(dev);
2632 spin_lock_irq(&np->lock);
2633
2634 /* stop rx engine */
2635 nv_stop_rx(dev);
2636
2637 /* set mac address */
2638 nv_copy_mac_to_hw(dev);
2639
2640 /* restart rx engine */
2641 nv_start_rx(dev);
2642 spin_unlock_irq(&np->lock);
2643 netif_tx_unlock_bh(dev);
2644 } else {
2645 nv_copy_mac_to_hw(dev);
2646 }
2647 return 0;
2648 }
2649
2650 /*
2651 * nv_set_multicast: dev->set_multicast function
2652 * Called with netif_tx_lock held.
2653 */
2654 static void nv_set_multicast(struct net_device *dev)
2655 {
2656 struct fe_priv *np = netdev_priv(dev);
2657 u8 __iomem *base = get_hwbase(dev);
2658 u32 addr[2];
2659 u32 mask[2];
2660 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2661
2662 memset(addr, 0, sizeof(addr));
2663 memset(mask, 0, sizeof(mask));
2664
2665 if (dev->flags & IFF_PROMISC) {
2666 pff |= NVREG_PFF_PROMISC;
2667 } else {
2668 pff |= NVREG_PFF_MYADDR;
2669
2670 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2671 u32 alwaysOff[2];
2672 u32 alwaysOn[2];
2673
2674 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2675 if (dev->flags & IFF_ALLMULTI) {
2676 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2677 } else {
2678 struct dev_mc_list *walk;
2679
2680 walk = dev->mc_list;
2681 while (walk != NULL) {
2682 u32 a, b;
2683 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2684 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2685 alwaysOn[0] &= a;
2686 alwaysOff[0] &= ~a;
2687 alwaysOn[1] &= b;
2688 alwaysOff[1] &= ~b;
2689 walk = walk->next;
2690 }
2691 }
2692 addr[0] = alwaysOn[0];
2693 addr[1] = alwaysOn[1];
2694 mask[0] = alwaysOn[0] | alwaysOff[0];
2695 mask[1] = alwaysOn[1] | alwaysOff[1];
2696 }
2697 }
2698 addr[0] |= NVREG_MCASTADDRA_FORCE;
2699 pff |= NVREG_PFF_ALWAYS;
2700 spin_lock_irq(&np->lock);
2701 nv_stop_rx(dev);
2702 writel(addr[0], base + NvRegMulticastAddrA);
2703 writel(addr[1], base + NvRegMulticastAddrB);
2704 writel(mask[0], base + NvRegMulticastMaskA);
2705 writel(mask[1], base + NvRegMulticastMaskB);
2706 writel(pff, base + NvRegPacketFilterFlags);
2707 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2708 dev->name);
2709 nv_start_rx(dev);
2710 spin_unlock_irq(&np->lock);
2711 }
2712
2713 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2714 {
2715 struct fe_priv *np = netdev_priv(dev);
2716 u8 __iomem *base = get_hwbase(dev);
2717
2718 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2719
2720 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2721 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2722 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2723 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2724 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2725 } else {
2726 writel(pff, base + NvRegPacketFilterFlags);
2727 }
2728 }
2729 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2730 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2731 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2732 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2733 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2734 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2735 } else {
2736 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2737 writel(regmisc, base + NvRegMisc1);
2738 }
2739 }
2740 }
2741
2742 /**
2743 * nv_update_linkspeed: Setup the MAC according to the link partner
2744 * @dev: Network device to be configured
2745 *
2746 * The function queries the PHY and checks if there is a link partner.
2747 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2748 * set to 10 MBit HD.
2749 *
2750 * The function returns 0 if there is no link partner and 1 if there is
2751 * a good link partner.
2752 */
2753 static int nv_update_linkspeed(struct net_device *dev)
2754 {
2755 struct fe_priv *np = netdev_priv(dev);
2756 u8 __iomem *base = get_hwbase(dev);
2757 int adv = 0;
2758 int lpa = 0;
2759 int adv_lpa, adv_pause, lpa_pause;
2760 int newls = np->linkspeed;
2761 int newdup = np->duplex;
2762 int mii_status;
2763 int retval = 0;
2764 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2765
2766 /* BMSR_LSTATUS is latched, read it twice:
2767 * we want the current value.
2768 */
2769 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2770 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2771
2772 if (!(mii_status & BMSR_LSTATUS)) {
2773 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2774 dev->name);
2775 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2776 newdup = 0;
2777 retval = 0;
2778 goto set_speed;
2779 }
2780
2781 if (np->autoneg == 0) {
2782 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2783 dev->name, np->fixed_mode);
2784 if (np->fixed_mode & LPA_100FULL) {
2785 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2786 newdup = 1;
2787 } else if (np->fixed_mode & LPA_100HALF) {
2788 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2789 newdup = 0;
2790 } else if (np->fixed_mode & LPA_10FULL) {
2791 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2792 newdup = 1;
2793 } else {
2794 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2795 newdup = 0;
2796 }
2797 retval = 1;
2798 goto set_speed;
2799 }
2800 /* check auto negotiation is complete */
2801 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2802 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2803 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2804 newdup = 0;
2805 retval = 0;
2806 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2807 goto set_speed;
2808 }
2809
2810 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2811 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2812 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2813 dev->name, adv, lpa);
2814
2815 retval = 1;
2816 if (np->gigabit == PHY_GIGABIT) {
2817 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2818 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2819
2820 if ((control_1000 & ADVERTISE_1000FULL) &&
2821 (status_1000 & LPA_1000FULL)) {
2822 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2823 dev->name);
2824 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2825 newdup = 1;
2826 goto set_speed;
2827 }
2828 }
2829
2830 /* FIXME: handle parallel detection properly */
2831 adv_lpa = lpa & adv;
2832 if (adv_lpa & LPA_100FULL) {
2833 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2834 newdup = 1;
2835 } else if (adv_lpa & LPA_100HALF) {
2836 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2837 newdup = 0;
2838 } else if (adv_lpa & LPA_10FULL) {
2839 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2840 newdup = 1;
2841 } else if (adv_lpa & LPA_10HALF) {
2842 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2843 newdup = 0;
2844 } else {
2845 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2846 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2847 newdup = 0;
2848 }
2849
2850 set_speed:
2851 if (np->duplex == newdup && np->linkspeed == newls)
2852 return retval;
2853
2854 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2855 dev->name, np->linkspeed, np->duplex, newls, newdup);
2856
2857 np->duplex = newdup;
2858 np->linkspeed = newls;
2859
2860 if (np->gigabit == PHY_GIGABIT) {
2861 phyreg = readl(base + NvRegRandomSeed);
2862 phyreg &= ~(0x3FF00);
2863 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2864 phyreg |= NVREG_RNDSEED_FORCE3;
2865 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2866 phyreg |= NVREG_RNDSEED_FORCE2;
2867 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2868 phyreg |= NVREG_RNDSEED_FORCE;
2869 writel(phyreg, base + NvRegRandomSeed);
2870 }
2871
2872 phyreg = readl(base + NvRegPhyInterface);
2873 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2874 if (np->duplex == 0)
2875 phyreg |= PHY_HALF;
2876 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2877 phyreg |= PHY_100;
2878 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2879 phyreg |= PHY_1000;
2880 writel(phyreg, base + NvRegPhyInterface);
2881
2882 if (phyreg & PHY_RGMII) {
2883 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2884 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2885 else
2886 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2887 } else {
2888 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2889 }
2890 writel(txreg, base + NvRegTxDeferral);
2891
2892 if (np->desc_ver == DESC_VER_1) {
2893 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2894 } else {
2895 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2896 txreg = NVREG_TX_WM_DESC2_3_1000;
2897 else
2898 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2899 }
2900 writel(txreg, base + NvRegTxWatermark);
2901
2902 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2903 base + NvRegMisc1);
2904 pci_push(base);
2905 writel(np->linkspeed, base + NvRegLinkSpeed);
2906 pci_push(base);
2907
2908 pause_flags = 0;
2909 /* setup pause frame */
2910 if (np->duplex != 0) {
2911 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2912 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2913 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2914
2915 switch (adv_pause) {
2916 case ADVERTISE_PAUSE_CAP:
2917 if (lpa_pause & LPA_PAUSE_CAP) {
2918 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2919 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2920 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2921 }
2922 break;
2923 case ADVERTISE_PAUSE_ASYM:
2924 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2925 {
2926 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2927 }
2928 break;
2929 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2930 if (lpa_pause & LPA_PAUSE_CAP)
2931 {
2932 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2933 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2934 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2935 }
2936 if (lpa_pause == LPA_PAUSE_ASYM)
2937 {
2938 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2939 }
2940 break;
2941 }
2942 } else {
2943 pause_flags = np->pause_flags;
2944 }
2945 }
2946 nv_update_pause(dev, pause_flags);
2947
2948 return retval;
2949 }
2950
2951 static void nv_linkchange(struct net_device *dev)
2952 {
2953 if (nv_update_linkspeed(dev)) {
2954 if (!netif_carrier_ok(dev)) {
2955 netif_carrier_on(dev);
2956 printk(KERN_INFO "%s: link up.\n", dev->name);
2957 nv_start_rx(dev);
2958 }
2959 } else {
2960 if (netif_carrier_ok(dev)) {
2961 netif_carrier_off(dev);
2962 printk(KERN_INFO "%s: link down.\n", dev->name);
2963 nv_stop_rx(dev);
2964 }
2965 }
2966 }
2967
2968 static void nv_link_irq(struct net_device *dev)
2969 {
2970 u8 __iomem *base = get_hwbase(dev);
2971 u32 miistat;
2972
2973 miistat = readl(base + NvRegMIIStatus);
2974 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2975 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2976
2977 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2978 nv_linkchange(dev);
2979 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2980 }
2981
2982 static irqreturn_t nv_nic_irq(int foo, void *data)
2983 {
2984 struct net_device *dev = (struct net_device *) data;
2985 struct fe_priv *np = netdev_priv(dev);
2986 u8 __iomem *base = get_hwbase(dev);
2987 u32 events;
2988 int i;
2989
2990 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2991
2992 for (i=0; ; i++) {
2993 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2994 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2995 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2996 } else {
2997 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2998 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2999 }
3000 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3001 if (!(events & np->irqmask))
3002 break;
3003
3004 spin_lock(&np->lock);
3005 nv_tx_done(dev);
3006 spin_unlock(&np->lock);
3007
3008 #ifdef CONFIG_FORCEDETH_NAPI
3009 if (events & NVREG_IRQ_RX_ALL) {
3010 netif_rx_schedule(dev, &np->napi);
3011
3012 /* Disable furthur receive irq's */
3013 spin_lock(&np->lock);
3014 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3015
3016 if (np->msi_flags & NV_MSI_X_ENABLED)
3017 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3018 else
3019 writel(np->irqmask, base + NvRegIrqMask);
3020 spin_unlock(&np->lock);
3021 }
3022 #else
3023 if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
3024 if (unlikely(nv_alloc_rx(dev))) {
3025 spin_lock(&np->lock);
3026 if (!np->in_shutdown)
3027 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3028 spin_unlock(&np->lock);
3029 }
3030 }
3031 #endif
3032 if (unlikely(events & NVREG_IRQ_LINK)) {
3033 spin_lock(&np->lock);
3034 nv_link_irq(dev);
3035 spin_unlock(&np->lock);
3036 }
3037 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3038 spin_lock(&np->lock);
3039 nv_linkchange(dev);
3040 spin_unlock(&np->lock);
3041 np->link_timeout = jiffies + LINK_TIMEOUT;
3042 }
3043 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3044 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3045 dev->name, events);
3046 }
3047 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3048 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3049 dev->name, events);
3050 }
3051 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3052 spin_lock(&np->lock);
3053 /* disable interrupts on the nic */
3054 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3055 writel(0, base + NvRegIrqMask);
3056 else
3057 writel(np->irqmask, base + NvRegIrqMask);
3058 pci_push(base);
3059
3060 if (!np->in_shutdown) {
3061 np->nic_poll_irq = np->irqmask;
3062 np->recover_error = 1;
3063 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3064 }
3065 spin_unlock(&np->lock);
3066 break;
3067 }
3068 if (unlikely(i > max_interrupt_work)) {
3069 spin_lock(&np->lock);
3070 /* disable interrupts on the nic */
3071 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3072 writel(0, base + NvRegIrqMask);
3073 else
3074 writel(np->irqmask, base + NvRegIrqMask);
3075 pci_push(base);
3076
3077 if (!np->in_shutdown) {
3078 np->nic_poll_irq = np->irqmask;
3079 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3080 }
3081 spin_unlock(&np->lock);
3082 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3083 break;
3084 }
3085
3086 }
3087 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3088
3089 return IRQ_RETVAL(i);
3090 }
3091
3092 /**
3093 * All _optimized functions are used to help increase performance
3094 * (reduce CPU and increase throughput). They use descripter version 3,
3095 * compiler directives, and reduce memory accesses.
3096 */
3097 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3098 {
3099 struct net_device *dev = (struct net_device *) data;
3100 struct fe_priv *np = netdev_priv(dev);
3101 u8 __iomem *base = get_hwbase(dev);
3102 u32 events;
3103 int i;
3104
3105 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3106
3107 for (i=0; ; i++) {
3108 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3109 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3110 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3111 } else {
3112 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3113 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3114 }
3115 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3116 if (!(events & np->irqmask))
3117 break;
3118
3119 spin_lock(&np->lock);
3120 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3121 spin_unlock(&np->lock);
3122
3123 #ifdef CONFIG_FORCEDETH_NAPI
3124 if (events & NVREG_IRQ_RX_ALL) {
3125 netif_rx_schedule(dev, &np->napi);
3126
3127 /* Disable furthur receive irq's */
3128 spin_lock(&np->lock);
3129 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3130
3131 if (np->msi_flags & NV_MSI_X_ENABLED)
3132 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3133 else
3134 writel(np->irqmask, base + NvRegIrqMask);
3135 spin_unlock(&np->lock);
3136 }
3137 #else
3138 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3139 if (unlikely(nv_alloc_rx_optimized(dev))) {
3140 spin_lock(&np->lock);
3141 if (!np->in_shutdown)
3142 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3143 spin_unlock(&np->lock);
3144 }
3145 }
3146 #endif
3147 if (unlikely(events & NVREG_IRQ_LINK)) {
3148 spin_lock(&np->lock);
3149 nv_link_irq(dev);
3150 spin_unlock(&np->lock);
3151 }
3152 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3153 spin_lock(&np->lock);
3154 nv_linkchange(dev);
3155 spin_unlock(&np->lock);
3156 np->link_timeout = jiffies + LINK_TIMEOUT;
3157 }
3158 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3159 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3160 dev->name, events);
3161 }
3162 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3163 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3164 dev->name, events);
3165 }
3166 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3167 spin_lock(&np->lock);
3168 /* disable interrupts on the nic */
3169 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3170 writel(0, base + NvRegIrqMask);
3171 else
3172 writel(np->irqmask, base + NvRegIrqMask);
3173 pci_push(base);
3174
3175 if (!np->in_shutdown) {
3176 np->nic_poll_irq = np->irqmask;
3177 np->recover_error = 1;
3178 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3179 }
3180 spin_unlock(&np->lock);
3181 break;
3182 }
3183
3184 if (unlikely(i > max_interrupt_work)) {
3185 spin_lock(&np->lock);
3186 /* disable interrupts on the nic */
3187 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3188 writel(0, base + NvRegIrqMask);
3189 else
3190 writel(np->irqmask, base + NvRegIrqMask);
3191 pci_push(base);
3192
3193 if (!np->in_shutdown) {
3194 np->nic_poll_irq = np->irqmask;
3195 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3196 }
3197 spin_unlock(&np->lock);
3198 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3199 break;
3200 }
3201
3202 }
3203 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3204
3205 return IRQ_RETVAL(i);
3206 }
3207
3208 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3209 {
3210 struct net_device *dev = (struct net_device *) data;
3211 struct fe_priv *np = netdev_priv(dev);
3212 u8 __iomem *base = get_hwbase(dev);
3213 u32 events;
3214 int i;
3215 unsigned long flags;
3216
3217 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3218
3219 for (i=0; ; i++) {
3220 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3221 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3222 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3223 if (!(events & np->irqmask))
3224 break;
3225
3226 spin_lock_irqsave(&np->lock, flags);
3227 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3228 spin_unlock_irqrestore(&np->lock, flags);
3229
3230 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3231 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3232 dev->name, events);
3233 }
3234 if (unlikely(i > max_interrupt_work)) {
3235 spin_lock_irqsave(&np->lock, flags);
3236 /* disable interrupts on the nic */
3237 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3238 pci_push(base);
3239
3240 if (!np->in_shutdown) {
3241 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3242 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3243 }
3244 spin_unlock_irqrestore(&np->lock, flags);
3245 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3246 break;
3247 }
3248
3249 }
3250 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3251
3252 return IRQ_RETVAL(i);
3253 }
3254
3255 #ifdef CONFIG_FORCEDETH_NAPI
3256 static int nv_napi_poll(struct napi_struct *napi, int budget)
3257 {
3258 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3259 struct net_device *dev = np->dev;
3260 u8 __iomem *base = get_hwbase(dev);
3261 unsigned long flags;
3262 int pkts, retcode;
3263
3264 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3265 pkts = nv_rx_process(dev, budget);
3266 retcode = nv_alloc_rx(dev);
3267 } else {
3268 pkts = nv_rx_process_optimized(dev, budget);
3269 retcode = nv_alloc_rx_optimized(dev);
3270 }
3271
3272 if (retcode) {
3273 spin_lock_irqsave(&np->lock, flags);
3274 if (!np->in_shutdown)
3275 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3276 spin_unlock_irqrestore(&np->lock, flags);
3277 }
3278
3279 if (pkts < budget) {
3280 /* re-enable receive interrupts */
3281 spin_lock_irqsave(&np->lock, flags);
3282
3283 __netif_rx_complete(dev, napi);
3284
3285 np->irqmask |= NVREG_IRQ_RX_ALL;
3286 if (np->msi_flags & NV_MSI_X_ENABLED)
3287 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3288 else
3289 writel(np->irqmask, base + NvRegIrqMask);
3290
3291 spin_unlock_irqrestore(&np->lock, flags);
3292 }
3293 return pkts;
3294 }
3295 #endif
3296
3297 #ifdef CONFIG_FORCEDETH_NAPI
3298 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3299 {
3300 struct net_device *dev = (struct net_device *) data;
3301 struct fe_priv *np = netdev_priv(dev);
3302 u8 __iomem *base = get_hwbase(dev);
3303 u32 events;
3304
3305 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3306 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3307
3308 if (events) {
3309 netif_rx_schedule(dev, &np->napi);
3310 /* disable receive interrupts on the nic */
3311 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3312 pci_push(base);
3313 }
3314 return IRQ_HANDLED;
3315 }
3316 #else
3317 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3318 {
3319 struct net_device *dev = (struct net_device *) data;
3320 struct fe_priv *np = netdev_priv(dev);
3321 u8 __iomem *base = get_hwbase(dev);
3322 u32 events;
3323 int i;
3324 unsigned long flags;
3325
3326 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3327
3328 for (i=0; ; i++) {
3329 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3330 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3331 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3332 if (!(events & np->irqmask))
3333 break;
3334
3335 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3336 if (unlikely(nv_alloc_rx_optimized(dev))) {
3337 spin_lock_irqsave(&np->lock, flags);
3338 if (!np->in_shutdown)
3339 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3340 spin_unlock_irqrestore(&np->lock, flags);
3341 }
3342 }
3343
3344 if (unlikely(i > max_interrupt_work)) {
3345 spin_lock_irqsave(&np->lock, flags);
3346 /* disable interrupts on the nic */
3347 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3348 pci_push(base);
3349
3350 if (!np->in_shutdown) {
3351 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3352 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3353 }
3354 spin_unlock_irqrestore(&np->lock, flags);
3355 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3356 break;
3357 }
3358 }
3359 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3360
3361 return IRQ_RETVAL(i);
3362 }
3363 #endif
3364
3365 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3366 {
3367 struct net_device *dev = (struct net_device *) data;
3368 struct fe_priv *np = netdev_priv(dev);
3369 u8 __iomem *base = get_hwbase(dev);
3370 u32 events;
3371 int i;
3372 unsigned long flags;
3373
3374 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3375
3376 for (i=0; ; i++) {
3377 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3378 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3379 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3380 if (!(events & np->irqmask))
3381 break;
3382
3383 /* check tx in case we reached max loop limit in tx isr */
3384 spin_lock_irqsave(&np->lock, flags);
3385 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3386 spin_unlock_irqrestore(&np->lock, flags);
3387
3388 if (events & NVREG_IRQ_LINK) {
3389 spin_lock_irqsave(&np->lock, flags);
3390 nv_link_irq(dev);
3391 spin_unlock_irqrestore(&np->lock, flags);
3392 }
3393 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3394 spin_lock_irqsave(&np->lock, flags);
3395 nv_linkchange(dev);
3396 spin_unlock_irqrestore(&np->lock, flags);
3397 np->link_timeout = jiffies + LINK_TIMEOUT;
3398 }
3399 if (events & NVREG_IRQ_RECOVER_ERROR) {
3400 spin_lock_irq(&np->lock);
3401 /* disable interrupts on the nic */
3402 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3403 pci_push(base);
3404
3405 if (!np->in_shutdown) {
3406 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3407 np->recover_error = 1;
3408 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3409 }
3410 spin_unlock_irq(&np->lock);
3411 break;
3412 }
3413 if (events & (NVREG_IRQ_UNKNOWN)) {
3414 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3415 dev->name, events);
3416 }
3417 if (unlikely(i > max_interrupt_work)) {
3418 spin_lock_irqsave(&np->lock, flags);
3419 /* disable interrupts on the nic */
3420 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3421 pci_push(base);
3422
3423 if (!np->in_shutdown) {
3424 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3425 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3426 }
3427 spin_unlock_irqrestore(&np->lock, flags);
3428 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3429 break;
3430 }
3431
3432 }
3433 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3434
3435 return IRQ_RETVAL(i);
3436 }
3437
3438 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3439 {
3440 struct net_device *dev = (struct net_device *) data;
3441 struct fe_priv *np = netdev_priv(dev);
3442 u8 __iomem *base = get_hwbase(dev);
3443 u32 events;
3444
3445 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3446
3447 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3448 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3449 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3450 } else {
3451 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3452 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3453 }
3454 pci_push(base);
3455 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3456 if (!(events & NVREG_IRQ_TIMER))
3457 return IRQ_RETVAL(0);
3458
3459 spin_lock(&np->lock);
3460 np->intr_test = 1;
3461 spin_unlock(&np->lock);
3462
3463 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3464
3465 return IRQ_RETVAL(1);
3466 }
3467
3468 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3469 {
3470 u8 __iomem *base = get_hwbase(dev);
3471 int i;
3472 u32 msixmap = 0;
3473
3474 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3475 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3476 * the remaining 8 interrupts.
3477 */
3478 for (i = 0; i < 8; i++) {
3479 if ((irqmask >> i) & 0x1) {
3480 msixmap |= vector << (i << 2);
3481 }
3482 }
3483 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3484
3485 msixmap = 0;
3486 for (i = 0; i < 8; i++) {
3487 if ((irqmask >> (i + 8)) & 0x1) {
3488 msixmap |= vector << (i << 2);
3489 }
3490 }
3491 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3492 }
3493
3494 static int nv_request_irq(struct net_device *dev, int intr_test)
3495 {
3496 struct fe_priv *np = get_nvpriv(dev);
3497 u8 __iomem *base = get_hwbase(dev);
3498 int ret = 1;
3499 int i;
3500 irqreturn_t (*handler)(int foo, void *data);
3501
3502 if (intr_test) {
3503 handler = nv_nic_irq_test;
3504 } else {
3505 if (np->desc_ver == DESC_VER_3)
3506 handler = nv_nic_irq_optimized;
3507 else
3508 handler = nv_nic_irq;
3509 }
3510
3511 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3512 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3513 np->msi_x_entry[i].entry = i;
3514 }
3515 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3516 np->msi_flags |= NV_MSI_X_ENABLED;
3517 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3518 /* Request irq for rx handling */
3519 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3520 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3521 pci_disable_msix(np->pci_dev);
3522 np->msi_flags &= ~NV_MSI_X_ENABLED;
3523 goto out_err;
3524 }
3525 /* Request irq for tx handling */
3526 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3527 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3528 pci_disable_msix(np->pci_dev);
3529 np->msi_flags &= ~NV_MSI_X_ENABLED;
3530 goto out_free_rx;
3531 }
3532 /* Request irq for link and timer handling */
3533 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3534 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3535 pci_disable_msix(np->pci_dev);
3536 np->msi_flags &= ~NV_MSI_X_ENABLED;
3537 goto out_free_tx;
3538 }
3539 /* map interrupts to their respective vector */
3540 writel(0, base + NvRegMSIXMap0);
3541 writel(0, base + NvRegMSIXMap1);
3542 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3543 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3544 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3545 } else {
3546 /* Request irq for all interrupts */
3547 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3548 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3549 pci_disable_msix(np->pci_dev);
3550 np->msi_flags &= ~NV_MSI_X_ENABLED;
3551 goto out_err;
3552 }
3553
3554 /* map interrupts to vector 0 */
3555 writel(0, base + NvRegMSIXMap0);
3556 writel(0, base + NvRegMSIXMap1);
3557 }
3558 }
3559 }
3560 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3561 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3562 np->msi_flags |= NV_MSI_ENABLED;
3563 dev->irq = np->pci_dev->irq;
3564 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3565 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3566 pci_disable_msi(np->pci_dev);
3567 np->msi_flags &= ~NV_MSI_ENABLED;
3568 dev->irq = np->pci_dev->irq;
3569 goto out_err;
3570 }
3571
3572 /* map interrupts to vector 0 */
3573 writel(0, base + NvRegMSIMap0);
3574 writel(0, base + NvRegMSIMap1);
3575 /* enable msi vector 0 */
3576 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3577 }
3578 }
3579 if (ret != 0) {
3580 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3581 goto out_err;
3582
3583 }
3584
3585 return 0;
3586 out_free_tx:
3587 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3588 out_free_rx:
3589 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3590 out_err:
3591 return 1;
3592 }
3593
3594 static void nv_free_irq(struct net_device *dev)
3595 {
3596 struct fe_priv *np = get_nvpriv(dev);
3597 int i;
3598
3599 if (np->msi_flags & NV_MSI_X_ENABLED) {
3600 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3601 free_irq(np->msi_x_entry[i].vector, dev);
3602 }
3603 pci_disable_msix(np->pci_dev);
3604 np->msi_flags &= ~NV_MSI_X_ENABLED;
3605 } else {
3606 free_irq(np->pci_dev->irq, dev);
3607 if (np->msi_flags & NV_MSI_ENABLED) {
3608 pci_disable_msi(np->pci_dev);
3609 np->msi_flags &= ~NV_MSI_ENABLED;
3610 }
3611 }
3612 }
3613
3614 static void nv_do_nic_poll(unsigned long data)
3615 {
3616 struct net_device *dev = (struct net_device *) data;
3617 struct fe_priv *np = netdev_priv(dev);
3618 u8 __iomem *base = get_hwbase(dev);
3619 u32 mask = 0;
3620
3621 /*
3622 * First disable irq(s) and then
3623 * reenable interrupts on the nic, we have to do this before calling
3624 * nv_nic_irq because that may decide to do otherwise
3625 */
3626
3627 if (!using_multi_irqs(dev)) {
3628 if (np->msi_flags & NV_MSI_X_ENABLED)
3629 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3630 else
3631 disable_irq_lockdep(np->pci_dev->irq);
3632 mask = np->irqmask;
3633 } else {
3634 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3635 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3636 mask |= NVREG_IRQ_RX_ALL;
3637 }
3638 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3639 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3640 mask |= NVREG_IRQ_TX_ALL;
3641 }
3642 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3643 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3644 mask |= NVREG_IRQ_OTHER;
3645 }
3646 }
3647 np->nic_poll_irq = 0;
3648
3649 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
3650
3651 if (np->recover_error) {
3652 np->recover_error = 0;
3653 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3654 if (netif_running(dev)) {
3655 netif_tx_lock_bh(dev);
3656 spin_lock(&np->lock);
3657 /* stop engines */
3658 nv_stop_rx(dev);
3659 nv_stop_tx(dev);
3660 nv_txrx_reset(dev);
3661 /* drain rx queue */
3662 nv_drain_rx(dev);
3663 nv_drain_tx(dev);
3664 /* reinit driver view of the rx queue */
3665 set_bufsize(dev);
3666 if (nv_init_ring(dev)) {
3667 if (!np->in_shutdown)
3668 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3669 }
3670 /* reinit nic view of the rx queue */
3671 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3672 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3673 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3674 base + NvRegRingSizes);
3675 pci_push(base);
3676 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3677 pci_push(base);
3678
3679 /* restart rx engine */
3680 nv_start_rx(dev);
3681 nv_start_tx(dev);
3682 spin_unlock(&np->lock);
3683 netif_tx_unlock_bh(dev);
3684 }
3685 }
3686
3687
3688 writel(mask, base + NvRegIrqMask);
3689 pci_push(base);
3690
3691 if (!using_multi_irqs(dev)) {
3692 if (np->desc_ver == DESC_VER_3)
3693 nv_nic_irq_optimized(0, dev);
3694 else
3695 nv_nic_irq(0, dev);
3696 if (np->msi_flags & NV_MSI_X_ENABLED)
3697 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3698 else
3699 enable_irq_lockdep(np->pci_dev->irq);
3700 } else {
3701 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3702 nv_nic_irq_rx(0, dev);
3703 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3704 }
3705 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3706 nv_nic_irq_tx(0, dev);
3707 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3708 }
3709 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3710 nv_nic_irq_other(0, dev);
3711 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3712 }
3713 }
3714 }
3715
3716 #ifdef CONFIG_NET_POLL_CONTROLLER
3717 static void nv_poll_controller(struct net_device *dev)
3718 {
3719 nv_do_nic_poll((unsigned long) dev);
3720 }
3721 #endif
3722
3723 static void nv_do_stats_poll(unsigned long data)
3724 {
3725 struct net_device *dev = (struct net_device *) data;
3726 struct fe_priv *np = netdev_priv(dev);
3727
3728 nv_get_hw_stats(dev);
3729
3730 if (!np->in_shutdown)
3731 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3732 }
3733
3734 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3735 {
3736 struct fe_priv *np = netdev_priv(dev);
3737 strcpy(info->driver, DRV_NAME);
3738 strcpy(info->version, FORCEDETH_VERSION);
3739 strcpy(info->bus_info, pci_name(np->pci_dev));
3740 }
3741
3742 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3743 {
3744 struct fe_priv *np = netdev_priv(dev);
3745 wolinfo->supported = WAKE_MAGIC;
3746
3747 spin_lock_irq(&np->lock);
3748 if (np->wolenabled)
3749 wolinfo->wolopts = WAKE_MAGIC;
3750 spin_unlock_irq(&np->lock);
3751 }
3752
3753 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3754 {
3755 struct fe_priv *np = netdev_priv(dev);
3756 u8 __iomem *base = get_hwbase(dev);
3757 u32 flags = 0;
3758
3759 if (wolinfo->wolopts == 0) {
3760 np->wolenabled = 0;
3761 } else if (wolinfo->wolopts & WAKE_MAGIC) {
3762 np->wolenabled = 1;
3763 flags = NVREG_WAKEUPFLAGS_ENABLE;
3764 }
3765 if (netif_running(dev)) {
3766 spin_lock_irq(&np->lock);
3767 writel(flags, base + NvRegWakeUpFlags);
3768 spin_unlock_irq(&np->lock);
3769 }
3770 return 0;
3771 }
3772
3773 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3774 {
3775 struct fe_priv *np = netdev_priv(dev);
3776 int adv;
3777
3778 spin_lock_irq(&np->lock);
3779 ecmd->port = PORT_MII;
3780 if (!netif_running(dev)) {
3781 /* We do not track link speed / duplex setting if the
3782 * interface is disabled. Force a link check */
3783 if (nv_update_linkspeed(dev)) {
3784 if (!netif_carrier_ok(dev))
3785 netif_carrier_on(dev);
3786 } else {
3787 if (netif_carrier_ok(dev))
3788 netif_carrier_off(dev);
3789 }
3790 }
3791
3792 if (netif_carrier_ok(dev)) {
3793 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3794 case NVREG_LINKSPEED_10:
3795 ecmd->speed = SPEED_10;
3796 break;
3797 case NVREG_LINKSPEED_100:
3798 ecmd->speed = SPEED_100;
3799 break;
3800 case NVREG_LINKSPEED_1000:
3801 ecmd->speed = SPEED_1000;
3802 break;
3803 }
3804 ecmd->duplex = DUPLEX_HALF;
3805 if (np->duplex)
3806 ecmd->duplex = DUPLEX_FULL;
3807 } else {
3808 ecmd->speed = -1;
3809 ecmd->duplex = -1;
3810 }
3811
3812 ecmd->autoneg = np->autoneg;
3813
3814 ecmd->advertising = ADVERTISED_MII;
3815 if (np->autoneg) {
3816 ecmd->advertising |= ADVERTISED_Autoneg;
3817 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3818 if (adv & ADVERTISE_10HALF)
3819 ecmd->advertising |= ADVERTISED_10baseT_Half;
3820 if (adv & ADVERTISE_10FULL)
3821 ecmd->advertising |= ADVERTISED_10baseT_Full;
3822 if (adv & ADVERTISE_100HALF)
3823 ecmd->advertising |= ADVERTISED_100baseT_Half;
3824 if (adv & ADVERTISE_100FULL)
3825 ecmd->advertising |= ADVERTISED_100baseT_Full;
3826 if (np->gigabit == PHY_GIGABIT) {
3827 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3828 if (adv & ADVERTISE_1000FULL)
3829 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3830 }
3831 }
3832 ecmd->supported = (SUPPORTED_Autoneg |
3833 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3834 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3835 SUPPORTED_MII);
3836 if (np->gigabit == PHY_GIGABIT)
3837 ecmd->supported |= SUPPORTED_1000baseT_Full;
3838
3839 ecmd->phy_address = np->phyaddr;
3840 ecmd->transceiver = XCVR_EXTERNAL;
3841
3842 /* ignore maxtxpkt, maxrxpkt for now */
3843 spin_unlock_irq(&np->lock);
3844 return 0;
3845 }
3846
3847 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3848 {
3849 struct fe_priv *np = netdev_priv(dev);
3850
3851 if (ecmd->port != PORT_MII)
3852 return -EINVAL;
3853 if (ecmd->transceiver != XCVR_EXTERNAL)
3854 return -EINVAL;
3855 if (ecmd->phy_address != np->phyaddr) {
3856 /* TODO: support switching between multiple phys. Should be
3857 * trivial, but not enabled due to lack of test hardware. */
3858 return -EINVAL;
3859 }
3860 if (ecmd->autoneg == AUTONEG_ENABLE) {
3861 u32 mask;
3862
3863 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3864 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3865 if (np->gigabit == PHY_GIGABIT)
3866 mask |= ADVERTISED_1000baseT_Full;
3867
3868 if ((ecmd->advertising & mask) == 0)
3869 return -EINVAL;
3870
3871 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3872 /* Note: autonegotiation disable, speed 1000 intentionally
3873 * forbidden - noone should need that. */
3874
3875 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3876 return -EINVAL;
3877 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3878 return -EINVAL;
3879 } else {
3880 return -EINVAL;
3881 }
3882
3883 netif_carrier_off(dev);
3884 if (netif_running(dev)) {
3885 nv_disable_irq(dev);
3886 netif_tx_lock_bh(dev);
3887 spin_lock(&np->lock);
3888 /* stop engines */
3889 nv_stop_rx(dev);
3890 nv_stop_tx(dev);
3891 spin_unlock(&np->lock);
3892 netif_tx_unlock_bh(dev);
3893 }
3894
3895 if (ecmd->autoneg == AUTONEG_ENABLE) {
3896 int adv, bmcr;
3897
3898 np->autoneg = 1;
3899
3900 /* advertise only what has been requested */
3901 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3902 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3903 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3904 adv |= ADVERTISE_10HALF;
3905 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3906 adv |= ADVERTISE_10FULL;
3907 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3908 adv |= ADVERTISE_100HALF;
3909 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3910 adv |= ADVERTISE_100FULL;
3911 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3912 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3913 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3914 adv |= ADVERTISE_PAUSE_ASYM;
3915 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3916
3917 if (np->gigabit == PHY_GIGABIT) {
3918 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3919 adv &= ~ADVERTISE_1000FULL;
3920 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3921 adv |= ADVERTISE_1000FULL;
3922 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3923 }
3924
3925 if (netif_running(dev))
3926 printk(KERN_INFO "%s: link down.\n", dev->name);
3927 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3928 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3929 bmcr |= BMCR_ANENABLE;
3930 /* reset the phy in order for settings to stick,
3931 * and cause autoneg to start */
3932 if (phy_reset(dev, bmcr)) {
3933 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3934 return -EINVAL;
3935 }
3936 } else {
3937 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3938 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3939 }
3940 } else {
3941 int adv, bmcr;
3942
3943 np->autoneg = 0;
3944
3945 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3946 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3947 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3948 adv |= ADVERTISE_10HALF;
3949 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3950 adv |= ADVERTISE_10FULL;
3951 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3952 adv |= ADVERTISE_100HALF;
3953 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3954 adv |= ADVERTISE_100FULL;
3955 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3956 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3957 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3958 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3959 }
3960 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3961 adv |= ADVERTISE_PAUSE_ASYM;
3962 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3963 }
3964 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3965 np->fixed_mode = adv;
3966
3967 if (np->gigabit == PHY_GIGABIT) {
3968 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3969 adv &= ~ADVERTISE_1000FULL;
3970 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3971 }
3972
3973 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3974 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3975 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3976 bmcr |= BMCR_FULLDPLX;
3977 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3978 bmcr |= BMCR_SPEED100;
3979 if (np->phy_oui == PHY_OUI_MARVELL) {
3980 /* reset the phy in order for forced mode settings to stick */
3981 if (phy_reset(dev, bmcr)) {
3982 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3983 return -EINVAL;
3984 }
3985 } else {
3986 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3987 if (netif_running(dev)) {
3988 /* Wait a bit and then reconfigure the nic. */
3989 udelay(10);
3990 nv_linkchange(dev);
3991 }
3992 }
3993 }
3994
3995 if (netif_running(dev)) {
3996 nv_start_rx(dev);
3997 nv_start_tx(dev);
3998 nv_enable_irq(dev);
3999 }
4000
4001 return 0;
4002 }
4003
4004 #define FORCEDETH_REGS_VER 1
4005
4006 static int nv_get_regs_len(struct net_device *dev)
4007 {
4008 struct fe_priv *np = netdev_priv(dev);
4009 return np->register_size;
4010 }
4011
4012 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4013 {
4014 struct fe_priv *np = netdev_priv(dev);
4015 u8 __iomem *base = get_hwbase(dev);
4016 u32 *rbuf = buf;
4017 int i;
4018
4019 regs->version = FORCEDETH_REGS_VER;
4020 spin_lock_irq(&np->lock);
4021 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4022 rbuf[i] = readl(base + i*sizeof(u32));
4023 spin_unlock_irq(&np->lock);
4024 }
4025
4026 static int nv_nway_reset(struct net_device *dev)
4027 {
4028 struct fe_priv *np = netdev_priv(dev);
4029 int ret;
4030
4031 if (np->autoneg) {
4032 int bmcr;
4033
4034 netif_carrier_off(dev);
4035 if (netif_running(dev)) {
4036 nv_disable_irq(dev);
4037 netif_tx_lock_bh(dev);
4038 spin_lock(&np->lock);
4039 /* stop engines */
4040 nv_stop_rx(dev);
4041 nv_stop_tx(dev);
4042 spin_unlock(&np->lock);
4043 netif_tx_unlock_bh(dev);
4044 printk(KERN_INFO "%s: link down.\n", dev->name);
4045 }
4046
4047 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4048 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4049 bmcr |= BMCR_ANENABLE;
4050 /* reset the phy in order for settings to stick*/
4051 if (phy_reset(dev, bmcr)) {
4052 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4053 return -EINVAL;
4054 }
4055 } else {
4056 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4057 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4058 }
4059
4060 if (netif_running(dev)) {
4061 nv_start_rx(dev);
4062 nv_start_tx(dev);
4063 nv_enable_irq(dev);
4064 }
4065 ret = 0;
4066 } else {
4067 ret = -EINVAL;
4068 }
4069
4070 return ret;
4071 }
4072
4073 static int nv_set_tso(struct net_device *dev, u32 value)
4074 {
4075 struct fe_priv *np = netdev_priv(dev);
4076
4077 if ((np->driver_data & DEV_HAS_CHECKSUM))
4078 return ethtool_op_set_tso(dev, value);
4079 else
4080 return -EOPNOTSUPP;
4081 }
4082
4083 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4084 {
4085 struct fe_priv *np = netdev_priv(dev);
4086
4087 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4088 ring->rx_mini_max_pending = 0;
4089 ring->rx_jumbo_max_pending = 0;
4090 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4091
4092 ring->rx_pending = np->rx_ring_size;
4093 ring->rx_mini_pending = 0;
4094 ring->rx_jumbo_pending = 0;
4095 ring->tx_pending = np->tx_ring_size;
4096 }
4097
4098 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4099 {
4100 struct fe_priv *np = netdev_priv(dev);
4101 u8 __iomem *base = get_hwbase(dev);
4102 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4103 dma_addr_t ring_addr;
4104
4105 if (ring->rx_pending < RX_RING_MIN ||
4106 ring->tx_pending < TX_RING_MIN ||
4107 ring->rx_mini_pending != 0 ||
4108 ring->rx_jumbo_pending != 0 ||
4109 (np->desc_ver == DESC_VER_1 &&
4110 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4111 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4112 (np->desc_ver != DESC_VER_1 &&
4113 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4114 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4115 return -EINVAL;
4116 }
4117
4118 /* allocate new rings */
4119 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4120 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4121 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4122 &ring_addr);
4123 } else {
4124 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4125 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4126 &ring_addr);
4127 }
4128 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4129 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4130 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4131 /* fall back to old rings */
4132 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4133 if (rxtx_ring)
4134 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4135 rxtx_ring, ring_addr);
4136 } else {
4137 if (rxtx_ring)
4138 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4139 rxtx_ring, ring_addr);
4140 }
4141 if (rx_skbuff)
4142 kfree(rx_skbuff);
4143 if (tx_skbuff)
4144 kfree(tx_skbuff);
4145 goto exit;
4146 }
4147
4148 if (netif_running(dev)) {
4149 nv_disable_irq(dev);
4150 netif_tx_lock_bh(dev);
4151 spin_lock(&np->lock);
4152 /* stop engines */
4153 nv_stop_rx(dev);
4154 nv_stop_tx(dev);
4155 nv_txrx_reset(dev);
4156 /* drain queues */
4157 nv_drain_rx(dev);
4158 nv_drain_tx(dev);
4159 /* delete queues */
4160 free_rings(dev);
4161 }
4162
4163 /* set new values */
4164 np->rx_ring_size = ring->rx_pending;
4165 np->tx_ring_size = ring->tx_pending;
4166 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4167 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4168 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4169 } else {
4170 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4171 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4172 }
4173 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4174 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4175 np->ring_addr = ring_addr;
4176
4177 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4178 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4179
4180 if (netif_running(dev)) {
4181 /* reinit driver view of the queues */
4182 set_bufsize(dev);
4183 if (nv_init_ring(dev)) {
4184 if (!np->in_shutdown)
4185 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4186 }
4187
4188 /* reinit nic view of the queues */
4189 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4190 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4191 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4192 base + NvRegRingSizes);
4193 pci_push(base);
4194 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4195 pci_push(base);
4196
4197 /* restart engines */
4198 nv_start_rx(dev);
4199 nv_start_tx(dev);
4200 spin_unlock(&np->lock);
4201 netif_tx_unlock_bh(dev);
4202 nv_enable_irq(dev);
4203 }
4204 return 0;
4205 exit:
4206 return -ENOMEM;
4207 }
4208
4209 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4210 {
4211 struct fe_priv *np = netdev_priv(dev);
4212
4213 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4214 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4215 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4216 }
4217
4218 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4219 {
4220 struct fe_priv *np = netdev_priv(dev);
4221 int adv, bmcr;
4222
4223 if ((!np->autoneg && np->duplex == 0) ||
4224 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4225 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4226 dev->name);
4227 return -EINVAL;
4228 }
4229 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4230 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4231 return -EINVAL;
4232 }
4233
4234 netif_carrier_off(dev);
4235 if (netif_running(dev)) {
4236 nv_disable_irq(dev);
4237 netif_tx_lock_bh(dev);
4238 spin_lock(&np->lock);
4239 /* stop engines */
4240 nv_stop_rx(dev);
4241 nv_stop_tx(dev);
4242 spin_unlock(&np->lock);
4243 netif_tx_unlock_bh(dev);
4244 }
4245
4246 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4247 if (pause->rx_pause)
4248 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4249 if (pause->tx_pause)
4250 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4251
4252 if (np->autoneg && pause->autoneg) {
4253 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4254
4255 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4256 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4257 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4258 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4259 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4260 adv |= ADVERTISE_PAUSE_ASYM;
4261 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4262
4263 if (netif_running(dev))
4264 printk(KERN_INFO "%s: link down.\n", dev->name);
4265 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4266 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4267 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4268 } else {
4269 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4270 if (pause->rx_pause)
4271 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4272 if (pause->tx_pause)
4273 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4274
4275 if (!netif_running(dev))
4276 nv_update_linkspeed(dev);
4277 else
4278 nv_update_pause(dev, np->pause_flags);
4279 }
4280
4281 if (netif_running(dev)) {
4282 nv_start_rx(dev);
4283 nv_start_tx(dev);
4284 nv_enable_irq(dev);
4285 }
4286 return 0;
4287 }
4288
4289 static u32 nv_get_rx_csum(struct net_device *dev)
4290 {
4291 struct fe_priv *np = netdev_priv(dev);
4292 return (np->rx_csum) != 0;
4293 }
4294
4295 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4296 {
4297 struct fe_priv *np = netdev_priv(dev);
4298 u8 __iomem *base = get_hwbase(dev);
4299 int retcode = 0;
4300
4301 if (np->driver_data & DEV_HAS_CHECKSUM) {
4302 if (data) {
4303 np->rx_csum = 1;
4304 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4305 } else {
4306 np->rx_csum = 0;
4307 /* vlan is dependent on rx checksum offload */
4308 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4309 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4310 }
4311 if (netif_running(dev)) {
4312 spin_lock_irq(&np->lock);
4313 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4314 spin_unlock_irq(&np->lock);
4315 }
4316 } else {
4317 return -EINVAL;
4318 }
4319
4320 return retcode;
4321 }
4322
4323 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4324 {
4325 struct fe_priv *np = netdev_priv(dev);
4326
4327 if (np->driver_data & DEV_HAS_CHECKSUM)
4328 return ethtool_op_set_tx_hw_csum(dev, data);
4329 else
4330 return -EOPNOTSUPP;
4331 }
4332
4333 static int nv_set_sg(struct net_device *dev, u32 data)
4334 {
4335 struct fe_priv *np = netdev_priv(dev);
4336
4337 if (np->driver_data & DEV_HAS_CHECKSUM)
4338 return ethtool_op_set_sg(dev, data);
4339 else
4340 return -EOPNOTSUPP;
4341 }
4342
4343 static int nv_get_sset_count(struct net_device *dev, int sset)
4344 {
4345 struct fe_priv *np = netdev_priv(dev);
4346
4347 switch (sset) {
4348 case ETH_SS_TEST:
4349 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4350 return NV_TEST_COUNT_EXTENDED;
4351 else
4352 return NV_TEST_COUNT_BASE;
4353 case ETH_SS_STATS:
4354 if (np->driver_data & DEV_HAS_STATISTICS_V1)
4355 return NV_DEV_STATISTICS_V1_COUNT;
4356 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4357 return NV_DEV_STATISTICS_V2_COUNT;
4358 else
4359 return 0;
4360 default:
4361 return -EOPNOTSUPP;
4362 }
4363 }
4364
4365 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4366 {
4367 struct fe_priv *np = netdev_priv(dev);
4368
4369 /* update stats */
4370 nv_do_stats_poll((unsigned long)dev);
4371
4372 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4373 }
4374
4375 static int nv_link_test(struct net_device *dev)
4376 {
4377 struct fe_priv *np = netdev_priv(dev);
4378 int mii_status;
4379
4380 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4381 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4382
4383 /* check phy link status */
4384 if (!(mii_status & BMSR_LSTATUS))
4385 return 0;
4386 else
4387 return 1;
4388 }
4389
4390 static int nv_register_test(struct net_device *dev)
4391 {
4392 u8 __iomem *base = get_hwbase(dev);
4393 int i = 0;
4394 u32 orig_read, new_read;
4395
4396 do {
4397 orig_read = readl(base + nv_registers_test[i].reg);
4398
4399 /* xor with mask to toggle bits */
4400 orig_read ^= nv_registers_test[i].mask;
4401
4402 writel(orig_read, base + nv_registers_test[i].reg);
4403
4404 new_read = readl(base + nv_registers_test[i].reg);
4405
4406 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4407 return 0;
4408
4409 /* restore original value */
4410 orig_read ^= nv_registers_test[i].mask;
4411 writel(orig_read, base + nv_registers_test[i].reg);
4412
4413 } while (nv_registers_test[++i].reg != 0);
4414
4415 return 1;
4416 }
4417
4418 static int nv_interrupt_test(struct net_device *dev)
4419 {
4420 struct fe_priv *np = netdev_priv(dev);
4421 u8 __iomem *base = get_hwbase(dev);
4422 int ret = 1;
4423 int testcnt;
4424 u32 save_msi_flags, save_poll_interval = 0;
4425
4426 if (netif_running(dev)) {
4427 /* free current irq */
4428 nv_free_irq(dev);
4429 save_poll_interval = readl(base+NvRegPollingInterval);
4430 }
4431
4432 /* flag to test interrupt handler */
4433 np->intr_test = 0;
4434
4435 /* setup test irq */
4436 save_msi_flags = np->msi_flags;
4437 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4438 np->msi_flags |= 0x001; /* setup 1 vector */
4439 if (nv_request_irq(dev, 1))
4440 return 0;
4441
4442 /* setup timer interrupt */
4443 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4444 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4445
4446 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4447
4448 /* wait for at least one interrupt */
4449 msleep(100);
4450
4451 spin_lock_irq(&np->lock);
4452
4453 /* flag should be set within ISR */
4454 testcnt = np->intr_test;
4455 if (!testcnt)
4456 ret = 2;
4457
4458 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4459 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4460 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4461 else
4462 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4463
4464 spin_unlock_irq(&np->lock);
4465
4466 nv_free_irq(dev);
4467
4468 np->msi_flags = save_msi_flags;
4469
4470 if (netif_running(dev)) {
4471 writel(save_poll_interval, base + NvRegPollingInterval);
4472 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4473 /* restore original irq */
4474 if (nv_request_irq(dev, 0))
4475 return 0;
4476 }
4477
4478 return ret;
4479 }
4480
4481 static int nv_loopback_test(struct net_device *dev)
4482 {
4483 struct fe_priv *np = netdev_priv(dev);
4484 u8 __iomem *base = get_hwbase(dev);
4485 struct sk_buff *tx_skb, *rx_skb;
4486 dma_addr_t test_dma_addr;
4487 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4488 u32 flags;
4489 int len, i, pkt_len;
4490 u8 *pkt_data;
4491 u32 filter_flags = 0;
4492 u32 misc1_flags = 0;
4493 int ret = 1;
4494
4495 if (netif_running(dev)) {
4496 nv_disable_irq(dev);
4497 filter_flags = readl(base + NvRegPacketFilterFlags);
4498 misc1_flags = readl(base + NvRegMisc1);
4499 } else {
4500 nv_txrx_reset(dev);
4501 }
4502
4503 /* reinit driver view of the rx queue */
4504 set_bufsize(dev);
4505 nv_init_ring(dev);
4506
4507 /* setup hardware for loopback */
4508 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4509 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4510
4511 /* reinit nic view of the rx queue */
4512 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4513 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4514 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4515 base + NvRegRingSizes);
4516 pci_push(base);
4517
4518 /* restart rx engine */
4519 nv_start_rx(dev);
4520 nv_start_tx(dev);
4521
4522 /* setup packet for tx */
4523 pkt_len = ETH_DATA_LEN;
4524 tx_skb = dev_alloc_skb(pkt_len);
4525 if (!tx_skb) {
4526 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4527 " of %s\n", dev->name);
4528 ret = 0;
4529 goto out;
4530 }
4531 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4532 skb_tailroom(tx_skb),
4533 PCI_DMA_FROMDEVICE);
4534 pkt_data = skb_put(tx_skb, pkt_len);
4535 for (i = 0; i < pkt_len; i++)
4536 pkt_data[i] = (u8)(i & 0xff);
4537
4538 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4539 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4540 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4541 } else {
4542 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
4543 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
4544 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4545 }
4546 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4547 pci_push(get_hwbase(dev));
4548
4549 msleep(500);
4550
4551 /* check for rx of the packet */
4552 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4553 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4554 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4555
4556 } else {
4557 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4558 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4559 }
4560
4561 if (flags & NV_RX_AVAIL) {
4562 ret = 0;
4563 } else if (np->desc_ver == DESC_VER_1) {
4564 if (flags & NV_RX_ERROR)
4565 ret = 0;
4566 } else {
4567 if (flags & NV_RX2_ERROR) {
4568 ret = 0;
4569 }
4570 }
4571
4572 if (ret) {
4573 if (len != pkt_len) {
4574 ret = 0;
4575 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4576 dev->name, len, pkt_len);
4577 } else {
4578 rx_skb = np->rx_skb[0].skb;
4579 for (i = 0; i < pkt_len; i++) {
4580 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4581 ret = 0;
4582 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4583 dev->name, i);
4584 break;
4585 }
4586 }
4587 }
4588 } else {
4589 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4590 }
4591
4592 pci_unmap_page(np->pci_dev, test_dma_addr,
4593 (skb_end_pointer(tx_skb) - tx_skb->data),
4594 PCI_DMA_TODEVICE);
4595 dev_kfree_skb_any(tx_skb);
4596 out:
4597 /* stop engines */
4598 nv_stop_rx(dev);
4599 nv_stop_tx(dev);
4600 nv_txrx_reset(dev);
4601 /* drain rx queue */
4602 nv_drain_rx(dev);
4603 nv_drain_tx(dev);
4604
4605 if (netif_running(dev)) {
4606 writel(misc1_flags, base + NvRegMisc1);
4607 writel(filter_flags, base + NvRegPacketFilterFlags);
4608 nv_enable_irq(dev);
4609 }
4610
4611 return ret;
4612 }
4613
4614 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4615 {
4616 struct fe_priv *np = netdev_priv(dev);
4617 u8 __iomem *base = get_hwbase(dev);
4618 int result;
4619 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
4620
4621 if (!nv_link_test(dev)) {
4622 test->flags |= ETH_TEST_FL_FAILED;
4623 buffer[0] = 1;
4624 }
4625
4626 if (test->flags & ETH_TEST_FL_OFFLINE) {
4627 if (netif_running(dev)) {
4628 netif_stop_queue(dev);
4629 #ifdef CONFIG_FORCEDETH_NAPI
4630 napi_disable(&np->napi);
4631 #endif
4632 netif_tx_lock_bh(dev);
4633 spin_lock_irq(&np->lock);
4634 nv_disable_hw_interrupts(dev, np->irqmask);
4635 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4636 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4637 } else {
4638 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4639 }
4640 /* stop engines */
4641 nv_stop_rx(dev);
4642 nv_stop_tx(dev);
4643 nv_txrx_reset(dev);
4644 /* drain rx queue */
4645 nv_drain_rx(dev);
4646 nv_drain_tx(dev);
4647 spin_unlock_irq(&np->lock);
4648 netif_tx_unlock_bh(dev);
4649 }
4650
4651 if (!nv_register_test(dev)) {
4652 test->flags |= ETH_TEST_FL_FAILED;
4653 buffer[1] = 1;
4654 }
4655
4656 result = nv_interrupt_test(dev);
4657 if (result != 1) {
4658 test->flags |= ETH_TEST_FL_FAILED;
4659 buffer[2] = 1;
4660 }
4661 if (result == 0) {
4662 /* bail out */
4663 return;
4664 }
4665
4666 if (!nv_loopback_test(dev)) {
4667 test->flags |= ETH_TEST_FL_FAILED;
4668 buffer[3] = 1;
4669 }
4670
4671 if (netif_running(dev)) {
4672 /* reinit driver view of the rx queue */
4673 set_bufsize(dev);
4674 if (nv_init_ring(dev)) {
4675 if (!np->in_shutdown)
4676 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4677 }
4678 /* reinit nic view of the rx queue */
4679 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4680 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4681 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4682 base + NvRegRingSizes);
4683 pci_push(base);
4684 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4685 pci_push(base);
4686 /* restart rx engine */
4687 nv_start_rx(dev);
4688 nv_start_tx(dev);
4689 netif_start_queue(dev);
4690 #ifdef CONFIG_FORCEDETH_NAPI
4691 napi_enable(&np->napi);
4692 #endif
4693 nv_enable_hw_interrupts(dev, np->irqmask);
4694 }
4695 }
4696 }
4697
4698 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4699 {
4700 switch (stringset) {
4701 case ETH_SS_STATS:
4702 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
4703 break;
4704 case ETH_SS_TEST:
4705 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
4706 break;
4707 }
4708 }
4709
4710 static const struct ethtool_ops ops = {
4711 .get_drvinfo = nv_get_drvinfo,
4712 .get_link = ethtool_op_get_link,
4713 .get_wol = nv_get_wol,
4714 .set_wol = nv_set_wol,
4715 .get_settings = nv_get_settings,
4716 .set_settings = nv_set_settings,
4717 .get_regs_len = nv_get_regs_len,
4718 .get_regs = nv_get_regs,
4719 .nway_reset = nv_nway_reset,
4720 .set_tso = nv_set_tso,
4721 .get_ringparam = nv_get_ringparam,
4722 .set_ringparam = nv_set_ringparam,
4723 .get_pauseparam = nv_get_pauseparam,
4724 .set_pauseparam = nv_set_pauseparam,
4725 .get_rx_csum = nv_get_rx_csum,
4726 .set_rx_csum = nv_set_rx_csum,
4727 .set_tx_csum = nv_set_tx_csum,
4728 .set_sg = nv_set_sg,
4729 .get_strings = nv_get_strings,
4730 .get_ethtool_stats = nv_get_ethtool_stats,
4731 .get_sset_count = nv_get_sset_count,
4732 .self_test = nv_self_test,
4733 };
4734
4735 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4736 {
4737 struct fe_priv *np = get_nvpriv(dev);
4738
4739 spin_lock_irq(&np->lock);
4740
4741 /* save vlan group */
4742 np->vlangrp = grp;
4743
4744 if (grp) {
4745 /* enable vlan on MAC */
4746 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4747 } else {
4748 /* disable vlan on MAC */
4749 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4750 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4751 }
4752
4753 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4754
4755 spin_unlock_irq(&np->lock);
4756 }
4757
4758 /* The mgmt unit and driver use a semaphore to access the phy during init */
4759 static int nv_mgmt_acquire_sema(struct net_device *dev)
4760 {
4761 u8 __iomem *base = get_hwbase(dev);
4762 int i;
4763 u32 tx_ctrl, mgmt_sema;
4764
4765 for (i = 0; i < 10; i++) {
4766 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4767 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4768 break;
4769 msleep(500);
4770 }
4771
4772 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4773 return 0;
4774
4775 for (i = 0; i < 2; i++) {
4776 tx_ctrl = readl(base + NvRegTransmitterControl);
4777 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4778 writel(tx_ctrl, base + NvRegTransmitterControl);
4779
4780 /* verify that semaphore was acquired */
4781 tx_ctrl = readl(base + NvRegTransmitterControl);
4782 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4783 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4784 return 1;
4785 else
4786 udelay(50);
4787 }
4788
4789 return 0;
4790 }
4791
4792 static int nv_open(struct net_device *dev)
4793 {
4794 struct fe_priv *np = netdev_priv(dev);
4795 u8 __iomem *base = get_hwbase(dev);
4796 int ret = 1;
4797 int oom, i;
4798
4799 dprintk(KERN_DEBUG "nv_open: begin\n");
4800
4801 /* erase previous misconfiguration */
4802 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4803 nv_mac_reset(dev);
4804 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4805 writel(0, base + NvRegMulticastAddrB);
4806 writel(0, base + NvRegMulticastMaskA);
4807 writel(0, base + NvRegMulticastMaskB);
4808 writel(0, base + NvRegPacketFilterFlags);
4809
4810 writel(0, base + NvRegTransmitterControl);
4811 writel(0, base + NvRegReceiverControl);
4812
4813 writel(0, base + NvRegAdapterControl);
4814
4815 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4816 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
4817
4818 /* initialize descriptor rings */
4819 set_bufsize(dev);
4820 oom = nv_init_ring(dev);
4821
4822 writel(0, base + NvRegLinkSpeed);
4823 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4824 nv_txrx_reset(dev);
4825 writel(0, base + NvRegUnknownSetupReg6);
4826
4827 np->in_shutdown = 0;
4828
4829 /* give hw rings */
4830 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4831 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4832 base + NvRegRingSizes);
4833
4834 writel(np->linkspeed, base + NvRegLinkSpeed);
4835 if (np->desc_ver == DESC_VER_1)
4836 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4837 else
4838 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4839 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4840 writel(np->vlanctl_bits, base + NvRegVlanControl);
4841 pci_push(base);
4842 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4843 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4844 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4845 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4846
4847 writel(0, base + NvRegMIIMask);
4848 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4849 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4850
4851 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4852 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4853 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4854 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4855
4856 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4857 get_random_bytes(&i, sizeof(i));
4858 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4859 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4860 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4861 if (poll_interval == -1) {
4862 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4863 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4864 else
4865 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4866 }
4867 else
4868 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4869 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4870 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4871 base + NvRegAdapterControl);
4872 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4873 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
4874 if (np->wolenabled)
4875 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4876
4877 i = readl(base + NvRegPowerState);
4878 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4879 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4880
4881 pci_push(base);
4882 udelay(10);
4883 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4884
4885 nv_disable_hw_interrupts(dev, np->irqmask);
4886 pci_push(base);
4887 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4888 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4889 pci_push(base);
4890
4891 if (nv_request_irq(dev, 0)) {
4892 goto out_drain;
4893 }
4894
4895 /* ask for interrupts */
4896 nv_enable_hw_interrupts(dev, np->irqmask);
4897
4898 spin_lock_irq(&np->lock);
4899 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4900 writel(0, base + NvRegMulticastAddrB);
4901 writel(0, base + NvRegMulticastMaskA);
4902 writel(0, base + NvRegMulticastMaskB);
4903 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4904 /* One manual link speed update: Interrupts are enabled, future link
4905 * speed changes cause interrupts and are handled by nv_link_irq().
4906 */
4907 {
4908 u32 miistat;
4909 miistat = readl(base + NvRegMIIStatus);
4910 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4911 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4912 }
4913 /* set linkspeed to invalid value, thus force nv_update_linkspeed
4914 * to init hw */
4915 np->linkspeed = 0;
4916 ret = nv_update_linkspeed(dev);
4917 nv_start_rx(dev);
4918 nv_start_tx(dev);
4919 netif_start_queue(dev);
4920 #ifdef CONFIG_FORCEDETH_NAPI
4921 napi_enable(&np->napi);
4922 #endif
4923
4924 if (ret) {
4925 netif_carrier_on(dev);
4926 } else {
4927 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
4928 netif_carrier_off(dev);
4929 }
4930 if (oom)
4931 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4932
4933 /* start statistics timer */
4934 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
4935 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4936
4937 spin_unlock_irq(&np->lock);
4938
4939 return 0;
4940 out_drain:
4941 drain_ring(dev);
4942 return ret;
4943 }
4944
4945 static int nv_close(struct net_device *dev)
4946 {
4947 struct fe_priv *np = netdev_priv(dev);
4948 u8 __iomem *base;
4949
4950 spin_lock_irq(&np->lock);
4951 np->in_shutdown = 1;
4952 spin_unlock_irq(&np->lock);
4953 #ifdef CONFIG_FORCEDETH_NAPI
4954 napi_disable(&np->napi);
4955 #endif
4956 synchronize_irq(np->pci_dev->irq);
4957
4958 del_timer_sync(&np->oom_kick);
4959 del_timer_sync(&np->nic_poll);
4960 del_timer_sync(&np->stats_poll);
4961
4962 netif_stop_queue(dev);
4963 spin_lock_irq(&np->lock);
4964 nv_stop_tx(dev);
4965 nv_stop_rx(dev);
4966 nv_txrx_reset(dev);
4967
4968 /* disable interrupts on the nic or we will lock up */
4969 base = get_hwbase(dev);
4970 nv_disable_hw_interrupts(dev, np->irqmask);
4971 pci_push(base);
4972 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4973
4974 spin_unlock_irq(&np->lock);
4975
4976 nv_free_irq(dev);
4977
4978 drain_ring(dev);
4979
4980 if (np->wolenabled) {
4981 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4982 nv_start_rx(dev);
4983 }
4984
4985 /* FIXME: power down nic */
4986
4987 return 0;
4988 }
4989
4990 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4991 {
4992 struct net_device *dev;
4993 struct fe_priv *np;
4994 unsigned long addr;
4995 u8 __iomem *base;
4996 int err, i;
4997 u32 powerstate, txreg;
4998 u32 phystate_orig = 0, phystate;
4999 int phyinitialized = 0;
5000 DECLARE_MAC_BUF(mac);
5001 static int printed_version;
5002
5003 if (!printed_version++)
5004 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5005 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5006
5007 dev = alloc_etherdev(sizeof(struct fe_priv));
5008 err = -ENOMEM;
5009 if (!dev)
5010 goto out;
5011
5012 np = netdev_priv(dev);
5013 np->dev = dev;
5014 np->pci_dev = pci_dev;
5015 spin_lock_init(&np->lock);
5016 SET_NETDEV_DEV(dev, &pci_dev->dev);
5017
5018 init_timer(&np->oom_kick);
5019 np->oom_kick.data = (unsigned long) dev;
5020 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5021 init_timer(&np->nic_poll);
5022 np->nic_poll.data = (unsigned long) dev;
5023 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5024 init_timer(&np->stats_poll);
5025 np->stats_poll.data = (unsigned long) dev;
5026 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5027
5028 err = pci_enable_device(pci_dev);
5029 if (err)
5030 goto out_free;
5031
5032 pci_set_master(pci_dev);
5033
5034 err = pci_request_regions(pci_dev, DRV_NAME);
5035 if (err < 0)
5036 goto out_disable;
5037
5038 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
5039 np->register_size = NV_PCI_REGSZ_VER3;
5040 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5041 np->register_size = NV_PCI_REGSZ_VER2;
5042 else
5043 np->register_size = NV_PCI_REGSZ_VER1;
5044
5045 err = -EINVAL;
5046 addr = 0;
5047 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5048 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5049 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5050 pci_resource_len(pci_dev, i),
5051 pci_resource_flags(pci_dev, i));
5052 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5053 pci_resource_len(pci_dev, i) >= np->register_size) {
5054 addr = pci_resource_start(pci_dev, i);
5055 break;
5056 }
5057 }
5058 if (i == DEVICE_COUNT_RESOURCE) {
5059 dev_printk(KERN_INFO, &pci_dev->dev,
5060 "Couldn't find register window\n");
5061 goto out_relreg;
5062 }
5063
5064 /* copy of driver data */
5065 np->driver_data = id->driver_data;
5066
5067 /* handle different descriptor versions */
5068 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5069 /* packet format 3: supports 40-bit addressing */
5070 np->desc_ver = DESC_VER_3;
5071 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5072 if (dma_64bit) {
5073 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
5074 dev_printk(KERN_INFO, &pci_dev->dev,
5075 "64-bit DMA failed, using 32-bit addressing\n");
5076 else
5077 dev->features |= NETIF_F_HIGHDMA;
5078 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5079 dev_printk(KERN_INFO, &pci_dev->dev,
5080 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5081 }
5082 }
5083 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5084 /* packet format 2: supports jumbo frames */
5085 np->desc_ver = DESC_VER_2;
5086 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5087 } else {
5088 /* original packet format */
5089 np->desc_ver = DESC_VER_1;
5090 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5091 }
5092
5093 np->pkt_limit = NV_PKTLIMIT_1;
5094 if (id->driver_data & DEV_HAS_LARGEDESC)
5095 np->pkt_limit = NV_PKTLIMIT_2;
5096
5097 if (id->driver_data & DEV_HAS_CHECKSUM) {
5098 np->rx_csum = 1;
5099 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5100 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5101 dev->features |= NETIF_F_TSO;
5102 }
5103
5104 np->vlanctl_bits = 0;
5105 if (id->driver_data & DEV_HAS_VLAN) {
5106 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5107 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5108 dev->vlan_rx_register = nv_vlan_rx_register;
5109 }
5110
5111 np->msi_flags = 0;
5112 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5113 np->msi_flags |= NV_MSI_CAPABLE;
5114 }
5115 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5116 np->msi_flags |= NV_MSI_X_CAPABLE;
5117 }
5118
5119 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5120 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
5121 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5122 }
5123
5124
5125 err = -ENOMEM;
5126 np->base = ioremap(addr, np->register_size);
5127 if (!np->base)
5128 goto out_relreg;
5129 dev->base_addr = (unsigned long)np->base;
5130
5131 dev->irq = pci_dev->irq;
5132
5133 np->rx_ring_size = RX_RING_DEFAULT;
5134 np->tx_ring_size = TX_RING_DEFAULT;
5135
5136 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
5137 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5138 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5139 &np->ring_addr);
5140 if (!np->rx_ring.orig)
5141 goto out_unmap;
5142 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5143 } else {
5144 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5145 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5146 &np->ring_addr);
5147 if (!np->rx_ring.ex)
5148 goto out_unmap;
5149 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5150 }
5151 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5152 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5153 if (!np->rx_skb || !np->tx_skb)
5154 goto out_freering;
5155
5156 dev->open = nv_open;
5157 dev->stop = nv_close;
5158 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
5159 dev->hard_start_xmit = nv_start_xmit;
5160 else
5161 dev->hard_start_xmit = nv_start_xmit_optimized;
5162 dev->get_stats = nv_get_stats;
5163 dev->change_mtu = nv_change_mtu;
5164 dev->set_mac_address = nv_set_mac_address;
5165 dev->set_multicast_list = nv_set_multicast;
5166 #ifdef CONFIG_NET_POLL_CONTROLLER
5167 dev->poll_controller = nv_poll_controller;
5168 #endif
5169 #ifdef CONFIG_FORCEDETH_NAPI
5170 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5171 #endif
5172 SET_ETHTOOL_OPS(dev, &ops);
5173 dev->tx_timeout = nv_tx_timeout;
5174 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5175
5176 pci_set_drvdata(pci_dev, dev);
5177
5178 /* read the mac address */
5179 base = get_hwbase(dev);
5180 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5181 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5182
5183 /* check the workaround bit for correct mac address order */
5184 txreg = readl(base + NvRegTransmitPoll);
5185 if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
5186 (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
5187 /* mac address is already in correct order */
5188 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5189 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5190 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5191 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5192 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5193 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5194 } else {
5195 /* need to reverse mac address to correct order */
5196 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5197 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5198 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5199 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5200 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5201 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5202 /* set permanent address to be correct aswell */
5203 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
5204 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
5205 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
5206 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5207 }
5208 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5209
5210 if (!is_valid_ether_addr(dev->perm_addr)) {
5211 /*
5212 * Bad mac address. At least one bios sets the mac address
5213 * to 01:23:45:67:89:ab
5214 */
5215 dev_printk(KERN_ERR, &pci_dev->dev,
5216 "Invalid Mac address detected: %s\n",
5217 print_mac(mac, dev->dev_addr));
5218 dev_printk(KERN_ERR, &pci_dev->dev,
5219 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5220 dev->dev_addr[0] = 0x00;
5221 dev->dev_addr[1] = 0x00;
5222 dev->dev_addr[2] = 0x6c;
5223 get_random_bytes(&dev->dev_addr[3], 3);
5224 }
5225
5226 dprintk(KERN_DEBUG "%s: MAC Address %s\n",
5227 pci_name(pci_dev), print_mac(mac, dev->dev_addr));
5228
5229 /* set mac address */
5230 nv_copy_mac_to_hw(dev);
5231
5232 /* disable WOL */
5233 writel(0, base + NvRegWakeUpFlags);
5234 np->wolenabled = 0;
5235
5236 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5237
5238 /* take phy and nic out of low power mode */
5239 powerstate = readl(base + NvRegPowerState2);
5240 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5241 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5242 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5243 pci_dev->revision >= 0xA3)
5244 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5245 writel(powerstate, base + NvRegPowerState2);
5246 }
5247
5248 if (np->desc_ver == DESC_VER_1) {
5249 np->tx_flags = NV_TX_VALID;
5250 } else {
5251 np->tx_flags = NV_TX2_VALID;
5252 }
5253 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5254 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5255 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5256 np->msi_flags |= 0x0003;
5257 } else {
5258 np->irqmask = NVREG_IRQMASK_CPU;
5259 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5260 np->msi_flags |= 0x0001;
5261 }
5262
5263 if (id->driver_data & DEV_NEED_TIMERIRQ)
5264 np->irqmask |= NVREG_IRQ_TIMER;
5265 if (id->driver_data & DEV_NEED_LINKTIMER) {
5266 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5267 np->need_linktimer = 1;
5268 np->link_timeout = jiffies + LINK_TIMEOUT;
5269 } else {
5270 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5271 np->need_linktimer = 0;
5272 }
5273
5274 /* clear phy state and temporarily halt phy interrupts */
5275 writel(0, base + NvRegMIIMask);
5276 phystate = readl(base + NvRegAdapterControl);
5277 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5278 phystate_orig = 1;
5279 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5280 writel(phystate, base + NvRegAdapterControl);
5281 }
5282 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
5283
5284 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5285 /* management unit running on the mac? */
5286 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5287 np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5288 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5289 for (i = 0; i < 5000; i++) {
5290 msleep(1);
5291 if (nv_mgmt_acquire_sema(dev)) {
5292 /* management unit setup the phy already? */
5293 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5294 NVREG_XMITCTL_SYNC_PHY_INIT) {
5295 /* phy is inited by mgmt unit */
5296 phyinitialized = 1;
5297 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5298 } else {
5299 /* we need to init the phy */
5300 }
5301 break;
5302 }
5303 }
5304 }
5305 }
5306
5307 /* find a suitable phy */
5308 for (i = 1; i <= 32; i++) {
5309 int id1, id2;
5310 int phyaddr = i & 0x1F;
5311
5312 spin_lock_irq(&np->lock);
5313 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5314 spin_unlock_irq(&np->lock);
5315 if (id1 < 0 || id1 == 0xffff)
5316 continue;
5317 spin_lock_irq(&np->lock);
5318 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5319 spin_unlock_irq(&np->lock);
5320 if (id2 < 0 || id2 == 0xffff)
5321 continue;
5322
5323 np->phy_model = id2 & PHYID2_MODEL_MASK;
5324 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5325 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5326 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5327 pci_name(pci_dev), id1, id2, phyaddr);
5328 np->phyaddr = phyaddr;
5329 np->phy_oui = id1 | id2;
5330 break;
5331 }
5332 if (i == 33) {
5333 dev_printk(KERN_INFO, &pci_dev->dev,
5334 "open: Could not find a valid PHY.\n");
5335 goto out_error;
5336 }
5337
5338 if (!phyinitialized) {
5339 /* reset it */
5340 phy_init(dev);
5341 } else {
5342 /* see if it is a gigabit phy */
5343 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5344 if (mii_status & PHY_GIGABIT) {
5345 np->gigabit = PHY_GIGABIT;
5346 }
5347 }
5348
5349 /* set default link speed settings */
5350 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5351 np->duplex = 0;
5352 np->autoneg = 1;
5353
5354 err = register_netdev(dev);
5355 if (err) {
5356 dev_printk(KERN_INFO, &pci_dev->dev,
5357 "unable to register netdev: %d\n", err);
5358 goto out_error;
5359 }
5360
5361 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
5362 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
5363 dev->name,
5364 np->phy_oui,
5365 np->phyaddr,
5366 dev->dev_addr[0],
5367 dev->dev_addr[1],
5368 dev->dev_addr[2],
5369 dev->dev_addr[3],
5370 dev->dev_addr[4],
5371 dev->dev_addr[5]);
5372
5373 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
5374 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
5375 dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
5376 "csum " : "",
5377 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
5378 "vlan " : "",
5379 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
5380 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
5381 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
5382 np->gigabit == PHY_GIGABIT ? "gbit " : "",
5383 np->need_linktimer ? "lnktim " : "",
5384 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
5385 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
5386 np->desc_ver);
5387
5388 return 0;
5389
5390 out_error:
5391 if (phystate_orig)
5392 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5393 pci_set_drvdata(pci_dev, NULL);
5394 out_freering:
5395 free_rings(dev);
5396 out_unmap:
5397 iounmap(get_hwbase(dev));
5398 out_relreg:
5399 pci_release_regions(pci_dev);
5400 out_disable:
5401 pci_disable_device(pci_dev);
5402 out_free:
5403 free_netdev(dev);
5404 out:
5405 return err;
5406 }
5407
5408 static void __devexit nv_remove(struct pci_dev *pci_dev)
5409 {
5410 struct net_device *dev = pci_get_drvdata(pci_dev);
5411 struct fe_priv *np = netdev_priv(dev);
5412 u8 __iomem *base = get_hwbase(dev);
5413
5414 unregister_netdev(dev);
5415
5416 /* special op: write back the misordered MAC address - otherwise
5417 * the next nv_probe would see a wrong address.
5418 */
5419 writel(np->orig_mac[0], base + NvRegMacAddrA);
5420 writel(np->orig_mac[1], base + NvRegMacAddrB);
5421
5422 /* free all structures */
5423 free_rings(dev);
5424 iounmap(get_hwbase(dev));
5425 pci_release_regions(pci_dev);
5426 pci_disable_device(pci_dev);
5427 free_netdev(dev);
5428 pci_set_drvdata(pci_dev, NULL);
5429 }
5430
5431 #ifdef CONFIG_PM
5432 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5433 {
5434 struct net_device *dev = pci_get_drvdata(pdev);
5435 struct fe_priv *np = netdev_priv(dev);
5436
5437 if (!netif_running(dev))
5438 goto out;
5439
5440 netif_device_detach(dev);
5441
5442 // Gross.
5443 nv_close(dev);
5444
5445 pci_save_state(pdev);
5446 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5447 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5448 out:
5449 return 0;
5450 }
5451
5452 static int nv_resume(struct pci_dev *pdev)
5453 {
5454 struct net_device *dev = pci_get_drvdata(pdev);
5455 int rc = 0;
5456
5457 if (!netif_running(dev))
5458 goto out;
5459
5460 netif_device_attach(dev);
5461
5462 pci_set_power_state(pdev, PCI_D0);
5463 pci_restore_state(pdev);
5464 pci_enable_wake(pdev, PCI_D0, 0);
5465
5466 rc = nv_open(dev);
5467 out:
5468 return rc;
5469 }
5470 #else
5471 #define nv_suspend NULL
5472 #define nv_resume NULL
5473 #endif /* CONFIG_PM */
5474
5475 static struct pci_device_id pci_tbl[] = {
5476 { /* nForce Ethernet Controller */
5477 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
5478 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5479 },
5480 { /* nForce2 Ethernet Controller */
5481 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
5482 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5483 },
5484 { /* nForce3 Ethernet Controller */
5485 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
5486 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5487 },
5488 { /* nForce3 Ethernet Controller */
5489 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
5490 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5491 },
5492 { /* nForce3 Ethernet Controller */
5493 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
5494 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5495 },
5496 { /* nForce3 Ethernet Controller */
5497 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
5498 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5499 },
5500 { /* nForce3 Ethernet Controller */
5501 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
5502 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5503 },
5504 { /* CK804 Ethernet Controller */
5505 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
5506 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5507 },
5508 { /* CK804 Ethernet Controller */
5509 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
5510 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5511 },
5512 { /* MCP04 Ethernet Controller */
5513 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
5514 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5515 },
5516 { /* MCP04 Ethernet Controller */
5517 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
5518 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5519 },
5520 { /* MCP51 Ethernet Controller */
5521 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
5522 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5523 },
5524 { /* MCP51 Ethernet Controller */
5525 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
5526 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5527 },
5528 { /* MCP55 Ethernet Controller */
5529 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
5530 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5531 },
5532 { /* MCP55 Ethernet Controller */
5533 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
5534 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5535 },
5536 { /* MCP61 Ethernet Controller */
5537 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
5538 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5539 },
5540 { /* MCP61 Ethernet Controller */
5541 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
5542 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5543 },
5544 { /* MCP61 Ethernet Controller */
5545 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
5546 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5547 },
5548 { /* MCP61 Ethernet Controller */
5549 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
5550 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5551 },
5552 { /* MCP65 Ethernet Controller */
5553 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
5554 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5555 },
5556 { /* MCP65 Ethernet Controller */
5557 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
5558 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5559 },
5560 { /* MCP65 Ethernet Controller */
5561 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
5562 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5563 },
5564 { /* MCP65 Ethernet Controller */
5565 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
5566 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5567 },
5568 { /* MCP67 Ethernet Controller */
5569 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
5570 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5571 },
5572 { /* MCP67 Ethernet Controller */
5573 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
5574 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5575 },
5576 { /* MCP67 Ethernet Controller */
5577 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
5578 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5579 },
5580 { /* MCP67 Ethernet Controller */
5581 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
5582 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5583 },
5584 { /* MCP73 Ethernet Controller */
5585 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
5586 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5587 },
5588 { /* MCP73 Ethernet Controller */
5589 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
5590 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5591 },
5592 { /* MCP73 Ethernet Controller */
5593 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
5594 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5595 },
5596 { /* MCP73 Ethernet Controller */
5597 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
5598 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5599 },
5600 { /* MCP77 Ethernet Controller */
5601 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
5602 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5603 },
5604 { /* MCP77 Ethernet Controller */
5605 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
5606 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5607 },
5608 { /* MCP77 Ethernet Controller */
5609 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
5610 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5611 },
5612 { /* MCP77 Ethernet Controller */
5613 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
5614 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5615 },
5616 { /* MCP79 Ethernet Controller */
5617 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
5618 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5619 },
5620 { /* MCP79 Ethernet Controller */
5621 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
5622 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5623 },
5624 { /* MCP79 Ethernet Controller */
5625 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
5626 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5627 },
5628 { /* MCP79 Ethernet Controller */
5629 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
5630 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5631 },
5632 {0,},
5633 };
5634
5635 static struct pci_driver driver = {
5636 .name = DRV_NAME,
5637 .id_table = pci_tbl,
5638 .probe = nv_probe,
5639 .remove = __devexit_p(nv_remove),
5640 .suspend = nv_suspend,
5641 .resume = nv_resume,
5642 };
5643
5644 static int __init init_nic(void)
5645 {
5646 return pci_register_driver(&driver);
5647 }
5648
5649 static void __exit exit_nic(void)
5650 {
5651 pci_unregister_driver(&driver);
5652 }
5653
5654 module_param(max_interrupt_work, int, 0);
5655 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
5656 module_param(optimization_mode, int, 0);
5657 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
5658 module_param(poll_interval, int, 0);
5659 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
5660 module_param(msi, int, 0);
5661 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
5662 module_param(msix, int, 0);
5663 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
5664 module_param(dma_64bit, int, 0);
5665 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
5666
5667 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
5668 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
5669 MODULE_LICENSE("GPL");
5670
5671 MODULE_DEVICE_TABLE(pci, pci_tbl);
5672
5673 module_init(init_nic);
5674 module_exit(exit_nic);