]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/arm64/kernel/smp.c
Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / arch / arm64 / kernel / smp.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
08e875c1
CM
2/*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
08e875c1
CM
7 */
8
0f078336 9#include <linux/acpi.h>
f5df2696 10#include <linux/arm_sdei.h>
08e875c1
CM
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
68e21be2 14#include <linux/sched/mm.h>
ef8bd77f 15#include <linux/sched/hotplug.h>
68db0cf1 16#include <linux/sched/task_stack.h>
08e875c1
CM
17#include <linux/interrupt.h>
18#include <linux/cache.h>
19#include <linux/profile.h>
20#include <linux/errno.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/cpu.h>
24#include <linux/smp.h>
25#include <linux/seq_file.h>
26#include <linux/irq.h>
e7932188 27#include <linux/irqchip/arm-gic-v3.h>
08e875c1
CM
28#include <linux/percpu.h>
29#include <linux/clockchips.h>
30#include <linux/completion.h>
31#include <linux/of.h>
eb631bb5 32#include <linux/irq_work.h>
78fd584c 33#include <linux/kexec.h>
08e875c1 34
e039ee4e 35#include <asm/alternative.h>
08e875c1
CM
36#include <asm/atomic.h>
37#include <asm/cacheflush.h>
df857416 38#include <asm/cpu.h>
08e875c1 39#include <asm/cputype.h>
cd1aebf5 40#include <asm/cpu_ops.h>
0fbeb318 41#include <asm/daifflags.h>
08e875c1 42#include <asm/mmu_context.h>
1a2db300 43#include <asm/numa.h>
08e875c1
CM
44#include <asm/pgtable.h>
45#include <asm/pgalloc.h>
46#include <asm/processor.h>
4c7aa002 47#include <asm/smp_plat.h>
08e875c1
CM
48#include <asm/sections.h>
49#include <asm/tlbflush.h>
50#include <asm/ptrace.h>
377bcff9 51#include <asm/virt.h>
08e875c1 52
45ed695a
NP
53#define CREATE_TRACE_POINTS
54#include <trace/events/ipi.h>
55
57c82954
MR
56DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57EXPORT_PER_CPU_SYMBOL(cpu_number);
58
08e875c1
CM
59/*
60 * as from 2.5, kernels no longer have an init_tasks structure
61 * so we need some other way of telling a new secondary core
62 * where to place its SVC stack
63 */
64struct secondary_data secondary_data;
bb905274
SP
65/* Number of CPUs which aren't online, but looping in kernel text. */
66int cpus_stuck_in_kernel;
08e875c1
CM
67
68enum ipi_msg_type {
69 IPI_RESCHEDULE,
70 IPI_CALL_FUNC,
08e875c1 71 IPI_CPU_STOP,
78fd584c 72 IPI_CPU_CRASH_STOP,
1f85008e 73 IPI_TIMER,
eb631bb5 74 IPI_IRQ_WORK,
5e89c55e 75 IPI_WAKEUP
08e875c1
CM
76};
77
bb905274
SP
78#ifdef CONFIG_HOTPLUG_CPU
79static int op_cpu_kill(unsigned int cpu);
80#else
81static inline int op_cpu_kill(unsigned int cpu)
82{
83 return -ENOSYS;
84}
85#endif
86
87
08e875c1
CM
88/*
89 * Boot a secondary CPU, and assign it the specified idle task.
90 * This also gives us the initial stack to use for this CPU.
91 */
b8c6453a 92static int boot_secondary(unsigned int cpu, struct task_struct *idle)
08e875c1 93{
652af899
MR
94 if (cpu_ops[cpu]->cpu_boot)
95 return cpu_ops[cpu]->cpu_boot(cpu);
08e875c1 96
652af899 97 return -EOPNOTSUPP;
08e875c1
CM
98}
99
100static DECLARE_COMPLETION(cpu_running);
101
b8c6453a 102int __cpu_up(unsigned int cpu, struct task_struct *idle)
08e875c1
CM
103{
104 int ret;
bb905274 105 long status;
08e875c1
CM
106
107 /*
108 * We need to tell the secondary core where to find its stack and the
109 * page tables.
110 */
c02433dd 111 secondary_data.task = idle;
34be98f4 112 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
bb905274 113 update_cpu_boot_status(CPU_MMU_OFF);
08e875c1
CM
114 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
115
116 /*
117 * Now bring the CPU into our world.
118 */
119 ret = boot_secondary(cpu, idle);
120 if (ret == 0) {
121 /*
122 * CPU was successfully started, wait for it to come online or
123 * time out.
124 */
125 wait_for_completion_timeout(&cpu_running,
126 msecs_to_jiffies(1000));
127
128 if (!cpu_online(cpu)) {
129 pr_crit("CPU%u: failed to come online\n", cpu);
130 ret = -EIO;
131 }
132 } else {
133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
f357b3a7 134 return ret;
08e875c1
CM
135 }
136
c02433dd 137 secondary_data.task = NULL;
08e875c1 138 secondary_data.stack = NULL;
bb905274
SP
139 status = READ_ONCE(secondary_data.status);
140 if (ret && status) {
141
142 if (status == CPU_MMU_OFF)
143 status = READ_ONCE(__early_cpu_boot_status);
144
66f16a24 145 switch (status & CPU_BOOT_STATUS_MASK) {
bb905274
SP
146 default:
147 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
148 cpu, status);
149 break;
150 case CPU_KILL_ME:
151 if (!op_cpu_kill(cpu)) {
152 pr_crit("CPU%u: died during early boot\n", cpu);
153 break;
154 }
bb905274 155 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
66554739 156 /* Fall through */
bb905274
SP
157 case CPU_STUCK_IN_KERNEL:
158 pr_crit("CPU%u: is stuck in kernel\n", cpu);
66f16a24
WD
159 if (status & CPU_STUCK_REASON_52_BIT_VA)
160 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
161 if (status & CPU_STUCK_REASON_NO_GRAN)
162 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
bb905274
SP
163 cpus_stuck_in_kernel++;
164 break;
165 case CPU_PANIC_KERNEL:
166 panic("CPU%u detected unsupported configuration\n", cpu);
167 }
168 }
08e875c1
CM
169
170 return ret;
171}
172
e7932188
JT
173static void init_gic_priority_masking(void)
174{
175 u32 cpuflags;
176
177 if (WARN_ON(!gic_enable_sre()))
178 return;
179
180 cpuflags = read_sysreg(daif);
181
182 WARN_ON(!(cpuflags & PSR_I_BIT));
183
e1d22385 184 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
e7932188
JT
185}
186
08e875c1
CM
187/*
188 * This is the secondary CPU boot entry. We're using this CPUs
189 * idle thread stack, but a set of temporary page tables.
190 */
b154886f 191asmlinkage notrace void secondary_start_kernel(void)
08e875c1 192{
ccaac162 193 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
08e875c1 194 struct mm_struct *mm = &init_mm;
580efaa7
MR
195 unsigned int cpu;
196
197 cpu = task_cpu(current);
198 set_my_cpu_offset(per_cpu_offset(cpu));
08e875c1 199
08e875c1
CM
200 /*
201 * All kernel threads share the same mm context; grab a
202 * reference and switch to it.
203 */
f1f10076 204 mmgrab(mm);
08e875c1 205 current->active_mm = mm;
08e875c1
CM
206
207 /*
208 * TTBR0 is only used for the identity mapping at this stage. Make it
209 * point to zero page to avoid speculatively fetching new entries.
210 */
9e8e865b 211 cpu_uninstall_idmap();
08e875c1 212
e7932188
JT
213 if (system_uses_irq_prio_masking())
214 init_gic_priority_masking();
215
08e875c1
CM
216 preempt_disable();
217 trace_hardirqs_off();
218
dbb4e152
SP
219 /*
220 * If the system has established the capabilities, make sure
221 * this CPU ticks all of those. If it doesn't, the CPU will
222 * fail to come online.
223 */
c47a1900 224 check_local_cpu_capabilities();
dbb4e152 225
652af899
MR
226 if (cpu_ops[cpu]->cpu_postboot)
227 cpu_ops[cpu]->cpu_postboot();
08e875c1 228
df857416
MR
229 /*
230 * Log the CPU info before it is marked online and might get read.
231 */
232 cpuinfo_store_cpu();
233
7ade67b5
MZ
234 /*
235 * Enable GIC and timers.
236 */
237 notify_cpu_starting(cpu);
238
c18df0ad 239 store_cpu_topology(cpu);
97fd6016 240 numa_add_cpu(cpu);
f6e763b9 241
08e875c1
CM
242 /*
243 * OK, now it's safe to let the boot CPU continue. Wait for
244 * the CPU migration code to notice that the CPU is online
245 * before we continue.
246 */
ccaac162
MR
247 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
248 cpu, (unsigned long)mpidr,
249 read_cpuid_id());
bb905274 250 update_cpu_boot_status(CPU_BOOT_SUCCESS);
08e875c1 251 set_cpu_online(cpu, true);
b3770b32 252 complete(&cpu_running);
08e875c1 253
41bd5b5d 254 local_daif_restore(DAIF_PROCCTX);
53ae3acd 255
08e875c1
CM
256 /*
257 * OK, it's off to the idle thread for us
258 */
fc6d73d6 259 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
08e875c1
CM
260}
261
9327e2c6
MR
262#ifdef CONFIG_HOTPLUG_CPU
263static int op_cpu_disable(unsigned int cpu)
264{
265 /*
266 * If we don't have a cpu_die method, abort before we reach the point
267 * of no return. CPU0 may not have an cpu_ops, so test for it.
268 */
269 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
270 return -EOPNOTSUPP;
271
272 /*
273 * We may need to abort a hot unplug for some other mechanism-specific
274 * reason.
275 */
276 if (cpu_ops[cpu]->cpu_disable)
277 return cpu_ops[cpu]->cpu_disable(cpu);
278
279 return 0;
280}
281
282/*
283 * __cpu_disable runs on the processor to be shutdown.
284 */
285int __cpu_disable(void)
286{
287 unsigned int cpu = smp_processor_id();
288 int ret;
289
290 ret = op_cpu_disable(cpu);
291 if (ret)
292 return ret;
293
7f9545aa
SH
294 remove_cpu_topology(cpu);
295 numa_remove_cpu(cpu);
296
9327e2c6
MR
297 /*
298 * Take this CPU offline. Once we clear this, we can't return,
299 * and we must not schedule until we're ready to give up the cpu.
300 */
301 set_cpu_online(cpu, false);
302
303 /*
304 * OK - migrate IRQs away from this CPU
305 */
217d453d
YY
306 irq_migrate_all_off_this_cpu();
307
9327e2c6
MR
308 return 0;
309}
310
c814ca02
AC
311static int op_cpu_kill(unsigned int cpu)
312{
313 /*
314 * If we have no means of synchronising with the dying CPU, then assume
315 * that it is really dead. We can only wait for an arbitrary length of
316 * time and hope that it's dead, so let's skip the wait and just hope.
317 */
318 if (!cpu_ops[cpu]->cpu_kill)
6b99c68c 319 return 0;
c814ca02
AC
320
321 return cpu_ops[cpu]->cpu_kill(cpu);
322}
323
9327e2c6
MR
324/*
325 * called on the thread which is asking for a CPU to be shutdown -
326 * waits until shutdown has completed, or it is timed out.
327 */
328void __cpu_die(unsigned int cpu)
329{
6b99c68c
MR
330 int err;
331
05981277 332 if (!cpu_wait_death(cpu, 5)) {
9327e2c6
MR
333 pr_crit("CPU%u: cpu didn't die\n", cpu);
334 return;
335 }
336 pr_notice("CPU%u: shutdown\n", cpu);
c814ca02
AC
337
338 /*
339 * Now that the dying CPU is beyond the point of no return w.r.t.
340 * in-kernel synchronisation, try to get the firwmare to help us to
341 * verify that it has really left the kernel before we consider
342 * clobbering anything it might still be using.
343 */
6b99c68c
MR
344 err = op_cpu_kill(cpu);
345 if (err)
346 pr_warn("CPU%d may not have shut down cleanly: %d\n",
347 cpu, err);
9327e2c6
MR
348}
349
350/*
351 * Called from the idle thread for the CPU which has been shutdown.
352 *
9327e2c6
MR
353 */
354void cpu_die(void)
355{
356 unsigned int cpu = smp_processor_id();
357
358 idle_task_exit();
359
0fbeb318 360 local_daif_mask();
9327e2c6
MR
361
362 /* Tell __cpu_die() that this CPU is now safe to dispose of */
05981277 363 (void)cpu_report_death();
9327e2c6
MR
364
365 /*
366 * Actually shutdown the CPU. This must never fail. The specific hotplug
367 * mechanism must perform all required cache maintenance to ensure that
368 * no dirty lines are lost in the process of shutting down the CPU.
369 */
370 cpu_ops[cpu]->cpu_die(cpu);
371
372 BUG();
373}
374#endif
375
fce6361f
SP
376/*
377 * Kill the calling secondary CPU, early in bringup before it is turned
378 * online.
379 */
380void cpu_die_early(void)
381{
382 int cpu = smp_processor_id();
383
384 pr_crit("CPU%d: will not boot\n", cpu);
385
386 /* Mark this CPU absent */
387 set_cpu_present(cpu, 0);
388
389#ifdef CONFIG_HOTPLUG_CPU
bb905274 390 update_cpu_boot_status(CPU_KILL_ME);
fce6361f
SP
391 /* Check if we can park ourselves */
392 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
393 cpu_ops[cpu]->cpu_die(cpu);
394#endif
bb905274 395 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
fce6361f
SP
396
397 cpu_park_loop();
398}
399
377bcff9
JR
400static void __init hyp_mode_check(void)
401{
402 if (is_hyp_mode_available())
403 pr_info("CPU: All CPU(s) started at EL2\n");
404 else if (is_hyp_mode_mismatched())
405 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
406 "CPU: CPUs started in inconsistent modes");
407 else
408 pr_info("CPU: All CPU(s) started at EL1\n");
409}
410
08e875c1
CM
411void __init smp_cpus_done(unsigned int max_cpus)
412{
326b16db 413 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
3a75578e 414 setup_cpu_features();
377bcff9
JR
415 hyp_mode_check();
416 apply_alternatives_all();
5ea5306c 417 mark_linear_text_alias_ro();
08e875c1
CM
418}
419
420void __init smp_prepare_boot_cpu(void)
421{
9113c2aa 422 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
4b998ff1 423 cpuinfo_store_boot_cpu();
0ceb0d56
DT
424
425 /*
426 * We now know enough about the boot CPU to apply the
427 * alternatives that cannot wait until interrupt handling
428 * and/or scheduling is enabled.
429 */
430 apply_boot_alternatives();
e7932188
JT
431
432 /* Conditionally switch to GIC PMR for interrupt masking */
433 if (system_uses_irq_prio_masking())
434 init_gic_priority_masking();
08e875c1
CM
435}
436
0f078336
LP
437static u64 __init of_get_cpu_mpidr(struct device_node *dn)
438{
439 const __be32 *cell;
440 u64 hwid;
441
442 /*
443 * A cpu node with missing "reg" property is
444 * considered invalid to build a cpu_logical_map
445 * entry.
446 */
447 cell = of_get_property(dn, "reg", NULL);
448 if (!cell) {
a270f327 449 pr_err("%pOF: missing reg property\n", dn);
0f078336
LP
450 return INVALID_HWID;
451 }
452
453 hwid = of_read_number(cell, of_n_addr_cells(dn));
454 /*
455 * Non affinity bits must be set to 0 in the DT
456 */
457 if (hwid & ~MPIDR_HWID_BITMASK) {
a270f327 458 pr_err("%pOF: invalid reg property\n", dn);
0f078336
LP
459 return INVALID_HWID;
460 }
461 return hwid;
462}
463
464/*
465 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
466 * entries and check for duplicates. If any is found just ignore the
467 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
468 * matching valid MPIDR values.
469 */
470static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
471{
472 unsigned int i;
473
474 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
475 if (cpu_logical_map(i) == hwid)
476 return true;
477 return false;
478}
479
819a8826
LP
480/*
481 * Initialize cpu operations for a logical cpu and
482 * set it in the possible mask on success
483 */
484static int __init smp_cpu_setup(int cpu)
485{
486 if (cpu_read_ops(cpu))
487 return -ENODEV;
488
489 if (cpu_ops[cpu]->cpu_init(cpu))
490 return -ENODEV;
491
492 set_cpu_possible(cpu, true);
493
494 return 0;
495}
496
0f078336
LP
497static bool bootcpu_valid __initdata;
498static unsigned int cpu_count = 1;
499
500#ifdef CONFIG_ACPI
e0013aed
MR
501static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
502
503struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
504{
505 return &cpu_madt_gicc[cpu];
506}
507
0f078336
LP
508/*
509 * acpi_map_gic_cpu_interface - parse processor MADT entry
510 *
511 * Carry out sanity checks on MADT processor entry and initialize
512 * cpu_logical_map on success
513 */
514static void __init
515acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
516{
517 u64 hwid = processor->arm_mpidr;
518
f9058929
HG
519 if (!(processor->flags & ACPI_MADT_ENABLED)) {
520 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
0f078336
LP
521 return;
522 }
523
f9058929
HG
524 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
525 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
0f078336
LP
526 return;
527 }
528
529 if (is_mpidr_duplicate(cpu_count, hwid)) {
530 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
531 return;
532 }
533
534 /* Check if GICC structure of boot CPU is available in the MADT */
535 if (cpu_logical_map(0) == hwid) {
536 if (bootcpu_valid) {
537 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
538 hwid);
539 return;
540 }
541 bootcpu_valid = true;
e0013aed 542 cpu_madt_gicc[0] = *processor;
0f078336
LP
543 return;
544 }
545
546 if (cpu_count >= NR_CPUS)
547 return;
548
549 /* map the logical cpu id to cpu MPIDR */
550 cpu_logical_map(cpu_count) = hwid;
551
e0013aed
MR
552 cpu_madt_gicc[cpu_count] = *processor;
553
5e89c55e
LP
554 /*
555 * Set-up the ACPI parking protocol cpu entries
556 * while initializing the cpu_logical_map to
557 * avoid parsing MADT entries multiple times for
558 * nothing (ie a valid cpu_logical_map entry should
559 * contain a valid parking protocol data set to
560 * initialize the cpu if the parking protocol is
561 * the only available enable method).
562 */
563 acpi_set_mailbox_entry(cpu_count, processor);
564
0f078336
LP
565 cpu_count++;
566}
567
568static int __init
60574d1e 569acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
0f078336
LP
570 const unsigned long end)
571{
572 struct acpi_madt_generic_interrupt *processor;
573
574 processor = (struct acpi_madt_generic_interrupt *)header;
99e3e3ae 575 if (BAD_MADT_GICC_ENTRY(processor, end))
0f078336
LP
576 return -EINVAL;
577
60574d1e 578 acpi_table_print_madt_entry(&header->common);
0f078336
LP
579
580 acpi_map_gic_cpu_interface(processor);
581
582 return 0;
583}
e1896249
LP
584
585static void __init acpi_parse_and_init_cpus(void)
586{
587 int i;
588
589 /*
590 * do a walk of MADT to determine how many CPUs
591 * we have including disabled CPUs, and get information
592 * we need for SMP init.
593 */
594 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
595 acpi_parse_gic_cpu_interface, 0);
596
597 /*
598 * In ACPI, SMP and CPU NUMA information is provided in separate
599 * static tables, namely the MADT and the SRAT.
600 *
601 * Thus, it is simpler to first create the cpu logical map through
602 * an MADT walk and then map the logical cpus to their node ids
603 * as separate steps.
604 */
605 acpi_map_cpus_to_nodes();
606
607 for (i = 0; i < nr_cpu_ids; i++)
608 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
609}
0f078336 610#else
e1896249 611#define acpi_parse_and_init_cpus(...) do { } while (0)
0f078336
LP
612#endif
613
08e875c1 614/*
4c7aa002
JM
615 * Enumerate the possible CPU set from the device tree and build the
616 * cpu logical map array containing MPIDR values related to logical
617 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
08e875c1 618 */
29b8302b 619static void __init of_parse_and_init_cpus(void)
08e875c1 620{
3d29a9a0 621 struct device_node *dn;
08e875c1 622
de76e70a 623 for_each_of_cpu_node(dn) {
0f078336 624 u64 hwid = of_get_cpu_mpidr(dn);
4c7aa002 625
0f078336 626 if (hwid == INVALID_HWID)
4c7aa002 627 goto next;
4c7aa002 628
0f078336 629 if (is_mpidr_duplicate(cpu_count, hwid)) {
a270f327
RH
630 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
631 dn);
4c7aa002
JM
632 goto next;
633 }
634
4c7aa002
JM
635 /*
636 * The numbering scheme requires that the boot CPU
637 * must be assigned logical id 0. Record it so that
638 * the logical map built from DT is validated and can
639 * be used.
640 */
641 if (hwid == cpu_logical_map(0)) {
642 if (bootcpu_valid) {
a270f327
RH
643 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
644 dn);
4c7aa002
JM
645 goto next;
646 }
647
648 bootcpu_valid = true;
7ba5f605 649 early_map_cpu_to_node(0, of_node_to_nid(dn));
4c7aa002
JM
650
651 /*
652 * cpu_logical_map has already been
653 * initialized and the boot cpu doesn't need
654 * the enable-method so continue without
655 * incrementing cpu.
656 */
657 continue;
658 }
659
0f078336 660 if (cpu_count >= NR_CPUS)
08e875c1
CM
661 goto next;
662
4c7aa002 663 pr_debug("cpu logical map 0x%llx\n", hwid);
0f078336 664 cpu_logical_map(cpu_count) = hwid;
1a2db300
GK
665
666 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
08e875c1 667next:
0f078336 668 cpu_count++;
08e875c1 669 }
0f078336
LP
670}
671
672/*
673 * Enumerate the possible CPU set from the device tree or ACPI and build the
674 * cpu logical map array containing MPIDR values related to logical
675 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
676 */
677void __init smp_init_cpus(void)
678{
679 int i;
680
681 if (acpi_disabled)
682 of_parse_and_init_cpus();
683 else
e1896249 684 acpi_parse_and_init_cpus();
08e875c1 685
50ee91bd 686 if (cpu_count > nr_cpu_ids)
9b130ad5 687 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
50ee91bd 688 cpu_count, nr_cpu_ids);
4c7aa002
JM
689
690 if (!bootcpu_valid) {
0f078336 691 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
4c7aa002
JM
692 return;
693 }
694
695 /*
819a8826
LP
696 * We need to set the cpu_logical_map entries before enabling
697 * the cpus so that cpu processor description entries (DT cpu nodes
698 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
699 * with entries in cpu_logical_map while initializing the cpus.
700 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
4c7aa002 701 */
50ee91bd 702 for (i = 1; i < nr_cpu_ids; i++) {
819a8826
LP
703 if (cpu_logical_map(i) != INVALID_HWID) {
704 if (smp_cpu_setup(i))
705 cpu_logical_map(i) = INVALID_HWID;
706 }
707 }
08e875c1
CM
708}
709
710void __init smp_prepare_cpus(unsigned int max_cpus)
711{
cd1aebf5 712 int err;
44dbcc93 713 unsigned int cpu;
c18df0ad 714 unsigned int this_cpu;
08e875c1 715
f6e763b9
MB
716 init_cpu_topology();
717
c18df0ad
DD
718 this_cpu = smp_processor_id();
719 store_cpu_topology(this_cpu);
720 numa_store_cpu_info(this_cpu);
97fd6016 721 numa_add_cpu(this_cpu);
f6e763b9 722
e75118a7
SP
723 /*
724 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
725 * secondary CPUs present.
726 */
727 if (max_cpus == 0)
728 return;
729
08e875c1
CM
730 /*
731 * Initialise the present map (which describes the set of CPUs
732 * actually populated at the present time) and release the
733 * secondaries from the bootloader.
734 */
735 for_each_possible_cpu(cpu) {
08e875c1 736
57c82954
MR
737 per_cpu(cpu_number, cpu) = cpu;
738
d329de3f
MZ
739 if (cpu == smp_processor_id())
740 continue;
741
cd1aebf5 742 if (!cpu_ops[cpu])
08e875c1
CM
743 continue;
744
cd1aebf5 745 err = cpu_ops[cpu]->cpu_prepare(cpu);
d329de3f
MZ
746 if (err)
747 continue;
08e875c1
CM
748
749 set_cpu_present(cpu, true);
c18df0ad 750 numa_store_cpu_info(cpu);
08e875c1 751 }
08e875c1
CM
752}
753
36310736 754void (*__smp_cross_call)(const struct cpumask *, unsigned int);
08e875c1
CM
755
756void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
757{
45ed695a 758 __smp_cross_call = fn;
08e875c1
CM
759}
760
45ed695a
NP
761static const char *ipi_types[NR_IPI] __tracepoint_string = {
762#define S(x,s) [x] = s
08e875c1
CM
763 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
764 S(IPI_CALL_FUNC, "Function call interrupts"),
08e875c1 765 S(IPI_CPU_STOP, "CPU stop interrupts"),
78fd584c 766 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
1f85008e 767 S(IPI_TIMER, "Timer broadcast interrupts"),
eb631bb5 768 S(IPI_IRQ_WORK, "IRQ work interrupts"),
5e89c55e 769 S(IPI_WAKEUP, "CPU wake-up interrupts"),
08e875c1
CM
770};
771
45ed695a
NP
772static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
773{
774 trace_ipi_raise(target, ipi_types[ipinr]);
775 __smp_cross_call(target, ipinr);
776}
777
08e875c1
CM
778void show_ipi_list(struct seq_file *p, int prec)
779{
780 unsigned int cpu, i;
781
782 for (i = 0; i < NR_IPI; i++) {
45ed695a 783 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
08e875c1 784 prec >= 4 ? " " : "");
67317c26 785 for_each_online_cpu(cpu)
08e875c1
CM
786 seq_printf(p, "%10u ",
787 __get_irq_stat(cpu, ipi_irqs[i]));
788 seq_printf(p, " %s\n", ipi_types[i]);
789 }
790}
791
792u64 smp_irq_stat_cpu(unsigned int cpu)
793{
794 u64 sum = 0;
795 int i;
796
797 for (i = 0; i < NR_IPI; i++)
798 sum += __get_irq_stat(cpu, ipi_irqs[i]);
799
800 return sum;
801}
802
45ed695a
NP
803void arch_send_call_function_ipi_mask(const struct cpumask *mask)
804{
805 smp_cross_call(mask, IPI_CALL_FUNC);
806}
807
808void arch_send_call_function_single_ipi(int cpu)
809{
0aaf0dae 810 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
45ed695a
NP
811}
812
5e89c55e
LP
813#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
814void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
815{
816 smp_cross_call(mask, IPI_WAKEUP);
817}
818#endif
819
45ed695a
NP
820#ifdef CONFIG_IRQ_WORK
821void arch_irq_work_raise(void)
822{
823 if (__smp_cross_call)
824 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
825}
826#endif
827
d914d4d4 828static void local_cpu_stop(void)
08e875c1 829{
d914d4d4 830 set_cpu_online(smp_processor_id(), false);
08e875c1 831
0fbeb318 832 local_daif_mask();
f5df2696 833 sdei_mask_local_cpu();
dccc9da2 834 cpu_park_loop();
08e875c1 835}
08e875c1 836
d914d4d4
AK
837/*
838 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
839 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
840 * CPUs that have already stopped themselves.
841 */
842void panic_smp_self_stop(void)
843{
844 local_cpu_stop();
08e875c1
CM
845}
846
78fd584c
AT
847#ifdef CONFIG_KEXEC_CORE
848static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
849#endif
850
851static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
852{
853#ifdef CONFIG_KEXEC_CORE
854 crash_save_cpu(regs, cpu);
855
856 atomic_dec(&waiting_for_crash_ipi);
857
858 local_irq_disable();
f5df2696 859 sdei_mask_local_cpu();
78fd584c
AT
860
861#ifdef CONFIG_HOTPLUG_CPU
862 if (cpu_ops[cpu]->cpu_die)
863 cpu_ops[cpu]->cpu_die(cpu);
864#endif
865
866 /* just in case */
867 cpu_park_loop();
868#endif
869}
870
08e875c1
CM
871/*
872 * Main handler for inter-processor interrupts
873 */
874void handle_IPI(int ipinr, struct pt_regs *regs)
875{
876 unsigned int cpu = smp_processor_id();
877 struct pt_regs *old_regs = set_irq_regs(regs);
878
45ed695a 879 if ((unsigned)ipinr < NR_IPI) {
be081d9b 880 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
45ed695a
NP
881 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
882 }
08e875c1
CM
883
884 switch (ipinr) {
885 case IPI_RESCHEDULE:
886 scheduler_ipi();
887 break;
888
889 case IPI_CALL_FUNC:
890 irq_enter();
891 generic_smp_call_function_interrupt();
892 irq_exit();
893 break;
894
08e875c1
CM
895 case IPI_CPU_STOP:
896 irq_enter();
d914d4d4 897 local_cpu_stop();
08e875c1
CM
898 irq_exit();
899 break;
900
78fd584c
AT
901 case IPI_CPU_CRASH_STOP:
902 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
903 irq_enter();
904 ipi_cpu_crash_stop(cpu, regs);
905
906 unreachable();
907 }
908 break;
909
1f85008e
LP
910#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
911 case IPI_TIMER:
912 irq_enter();
913 tick_receive_broadcast();
914 irq_exit();
915 break;
916#endif
917
eb631bb5
LB
918#ifdef CONFIG_IRQ_WORK
919 case IPI_IRQ_WORK:
920 irq_enter();
921 irq_work_run();
922 irq_exit();
923 break;
924#endif
925
5e89c55e
LP
926#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
927 case IPI_WAKEUP:
928 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
929 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
930 cpu);
931 break;
932#endif
933
08e875c1
CM
934 default:
935 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
936 break;
937 }
45ed695a
NP
938
939 if ((unsigned)ipinr < NR_IPI)
be081d9b 940 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
08e875c1
CM
941 set_irq_regs(old_regs);
942}
943
944void smp_send_reschedule(int cpu)
945{
946 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
947}
948
1f85008e
LP
949#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
950void tick_broadcast(const struct cpumask *mask)
951{
952 smp_cross_call(mask, IPI_TIMER);
953}
954#endif
955
08e875c1
CM
956void smp_send_stop(void)
957{
958 unsigned long timeout;
959
960 if (num_online_cpus() > 1) {
961 cpumask_t mask;
962
963 cpumask_copy(&mask, cpu_online_mask);
434ed7f4 964 cpumask_clear_cpu(smp_processor_id(), &mask);
08e875c1 965
ef284f5c 966 if (system_state <= SYSTEM_RUNNING)
82611c14 967 pr_crit("SMP: stopping secondary CPUs\n");
08e875c1
CM
968 smp_cross_call(&mask, IPI_CPU_STOP);
969 }
970
971 /* Wait up to one second for other CPUs to stop */
972 timeout = USEC_PER_SEC;
973 while (num_online_cpus() > 1 && timeout--)
974 udelay(1);
975
976 if (num_online_cpus() > 1)
82611c14
JG
977 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
978 cpumask_pr_args(cpu_online_mask));
f5df2696
JM
979
980 sdei_mask_local_cpu();
08e875c1
CM
981}
982
78fd584c 983#ifdef CONFIG_KEXEC_CORE
a88ce63b 984void crash_smp_send_stop(void)
78fd584c 985{
a88ce63b 986 static int cpus_stopped;
78fd584c
AT
987 cpumask_t mask;
988 unsigned long timeout;
989
a88ce63b
HR
990 /*
991 * This function can be called twice in panic path, but obviously
992 * we execute this only once.
993 */
994 if (cpus_stopped)
995 return;
996
997 cpus_stopped = 1;
998
f5df2696
JM
999 if (num_online_cpus() == 1) {
1000 sdei_mask_local_cpu();
78fd584c 1001 return;
f5df2696 1002 }
78fd584c
AT
1003
1004 cpumask_copy(&mask, cpu_online_mask);
1005 cpumask_clear_cpu(smp_processor_id(), &mask);
1006
1007 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1008
1009 pr_crit("SMP: stopping secondary CPUs\n");
1010 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1011
1012 /* Wait up to one second for other CPUs to stop */
1013 timeout = USEC_PER_SEC;
1014 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1015 udelay(1);
1016
1017 if (atomic_read(&waiting_for_crash_ipi) > 0)
1018 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1019 cpumask_pr_args(&mask));
f5df2696
JM
1020
1021 sdei_mask_local_cpu();
78fd584c
AT
1022}
1023
1024bool smp_crash_stop_failed(void)
1025{
1026 return (atomic_read(&waiting_for_crash_ipi) > 0);
1027}
1028#endif
1029
08e875c1
CM
1030/*
1031 * not supported here
1032 */
1033int setup_profiling_timer(unsigned int multiplier)
1034{
1035 return -EINVAL;
1036}
5c492c3f
JM
1037
1038static bool have_cpu_die(void)
1039{
1040#ifdef CONFIG_HOTPLUG_CPU
1041 int any_cpu = raw_smp_processor_id();
1042
335d2c2d 1043 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
5c492c3f
JM
1044 return true;
1045#endif
1046 return false;
1047}
1048
1049bool cpus_are_stuck_in_kernel(void)
1050{
1051 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1052
1053 return !!cpus_stuck_in_kernel || smp_spin_tables;
1054}