]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/x86/kvm/mmu.c
Revert "KVM: x86/mmu: Zap only the relevant pages when removing a memslot"
[thirdparty/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
1d737c8a 19#include "mmu.h"
836a1b3c 20#include "x86.h"
6de4f3ad 21#include "kvm_cache_regs.h"
5f7dde7b 22#include "cpuid.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732
AK
25#include <linux/types.h>
26#include <linux/string.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
1767e931
PG
29#include <linux/moduleparam.h>
30#include <linux/export.h>
448353ca 31#include <linux/swap.h>
05da4558 32#include <linux/hugetlb.h>
2f333bcb 33#include <linux/compiler.h>
bc6678a3 34#include <linux/srcu.h>
5a0e3ad6 35#include <linux/slab.h>
3f07c014 36#include <linux/sched/signal.h>
bf998156 37#include <linux/uaccess.h>
114df303 38#include <linux/hash.h>
f160c7b7 39#include <linux/kern_levels.h>
6aa8b732 40
e495606d 41#include <asm/page.h>
aa2e063a 42#include <asm/pat.h>
e495606d 43#include <asm/cmpxchg.h>
0c55671f 44#include <asm/e820/api.h>
4e542370 45#include <asm/io.h>
13673a90 46#include <asm/vmx.h>
3d0c27ad 47#include <asm/kvm_page_track.h>
1261bfa3 48#include "trace.h"
6aa8b732 49
18552672
JR
50/*
51 * When setting this variable to true it enables Two-Dimensional-Paging
52 * where the hardware walks 2 page tables:
53 * 1. the guest-virtual to guest-physical
54 * 2. while doing 1. it walks guest-physical to host-physical
55 * If the hardware supports that we don't need to do shadow paging.
56 */
2f333bcb 57bool tdp_enabled = false;
18552672 58
8b1fe17c
XG
59enum {
60 AUDIT_PRE_PAGE_FAULT,
61 AUDIT_POST_PAGE_FAULT,
62 AUDIT_PRE_PTE_WRITE,
6903074c
XG
63 AUDIT_POST_PTE_WRITE,
64 AUDIT_PRE_SYNC,
65 AUDIT_POST_SYNC
8b1fe17c 66};
37a7d8b0 67
8b1fe17c 68#undef MMU_DEBUG
37a7d8b0
AK
69
70#ifdef MMU_DEBUG
fa4a2c08
PB
71static bool dbg = 0;
72module_param(dbg, bool, 0644);
37a7d8b0
AK
73
74#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 77#else
37a7d8b0
AK
78#define pgprintk(x...) do { } while (0)
79#define rmap_printk(x...) do { } while (0)
fa4a2c08 80#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 81#endif
6aa8b732 82
957ed9ef
XG
83#define PTE_PREFETCH_NUM 8
84
00763e41 85#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
86#define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
6aa8b732
AK
88#define PT64_LEVEL_BITS 9
89
90#define PT64_LEVEL_SHIFT(level) \
d77c26fc 91 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 92
6aa8b732
AK
93#define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97#define PT32_LEVEL_BITS 10
98
99#define PT32_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 101
e04da980
JR
102#define PT32_LVL_OFFSET_MASK(level) \
103 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
105
106#define PT32_INDEX(address, level)\
107 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
8acc0993
KH
110#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
111#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
112#else
113#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
114#endif
e04da980
JR
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
6aa8b732 128
53166229 129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 131
fe135d2c
AK
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
f160c7b7
JS
137/* The mask for the R/X bits in EPT PTEs */
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
90bb6fc5
AK
141#include <trace/events/kvm.h>
142
49fde340
XG
143#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
144#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 145
135f8c2b
AK
146#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
147
220f773a
TY
148/* make pte_list_desc fit well in cache line */
149#define PTE_LIST_EXT 3
150
9b8ebbdb
PB
151/*
152 * Return values of handle_mmio_page_fault and mmu.page_fault:
153 * RET_PF_RETRY: let CPU fault again on the address.
154 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
155 *
156 * For handle_mmio_page_fault only:
157 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
158 */
159enum {
160 RET_PF_RETRY = 0,
161 RET_PF_EMULATE = 1,
162 RET_PF_INVALID = 2,
163};
164
53c07b18
XG
165struct pte_list_desc {
166 u64 *sptes[PTE_LIST_EXT];
167 struct pte_list_desc *more;
cd4a4e53
AK
168};
169
2d11123a
AK
170struct kvm_shadow_walk_iterator {
171 u64 addr;
172 hpa_t shadow_addr;
2d11123a 173 u64 *sptep;
dd3bfd59 174 int level;
2d11123a
AK
175 unsigned index;
176};
177
9fa72119
JS
178static const union kvm_mmu_page_role mmu_base_role_mask = {
179 .cr0_wp = 1,
47c42e6b 180 .gpte_is_8_bytes = 1,
9fa72119
JS
181 .nxe = 1,
182 .smep_andnot_wp = 1,
183 .smap_andnot_wp = 1,
184 .smm = 1,
185 .guest_mode = 1,
186 .ad_disabled = 1,
187};
188
7eb77e9f
JS
189#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
190 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
191 (_root), (_addr)); \
192 shadow_walk_okay(&(_walker)); \
193 shadow_walk_next(&(_walker)))
194
195#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
196 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
197 shadow_walk_okay(&(_walker)); \
198 shadow_walk_next(&(_walker)))
199
c2a2ac2b
XG
200#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
201 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
202 shadow_walk_okay(&(_walker)) && \
203 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
204 __shadow_walk_next(&(_walker), spte))
205
53c07b18 206static struct kmem_cache *pte_list_desc_cache;
d3d25b04 207static struct kmem_cache *mmu_page_header_cache;
45221ab6 208static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 209
7b52345e
SY
210static u64 __read_mostly shadow_nx_mask;
211static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
212static u64 __read_mostly shadow_user_mask;
213static u64 __read_mostly shadow_accessed_mask;
214static u64 __read_mostly shadow_dirty_mask;
ce88decf 215static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 216static u64 __read_mostly shadow_mmio_value;
ffb128c8 217static u64 __read_mostly shadow_present_mask;
d0ec49d4 218static u64 __read_mostly shadow_me_mask;
ce88decf 219
f160c7b7 220/*
ac8d57e5
PF
221 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
222 * Non-present SPTEs with shadow_acc_track_value set are in place for access
223 * tracking.
f160c7b7
JS
224 */
225static u64 __read_mostly shadow_acc_track_mask;
226static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
227
228/*
229 * The mask/shift to use for saving the original R/X bits when marking the PTE
230 * as not-present for access tracking purposes. We do not save the W bit as the
231 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
232 * restored only when a write is attempted to the page.
233 */
234static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
235 PT64_EPT_EXECUTABLE_MASK;
236static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
237
28a1f3ac
JS
238/*
239 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
240 * to guard against L1TF attacks.
241 */
242static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
243
244/*
245 * The number of high-order 1 bits to use in the mask above.
246 */
247static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
248
daa07cbc
SC
249/*
250 * In some cases, we need to preserve the GFN of a non-present or reserved
251 * SPTE when we usurp the upper five bits of the physical address space to
252 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
253 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
254 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
255 * high and low parts. This mask covers the lower bits of the GFN.
256 */
257static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
258
f3ecb59d
KH
259/*
260 * The number of non-reserved physical address bits irrespective of features
261 * that repurpose legal bits, e.g. MKTME.
262 */
263static u8 __read_mostly shadow_phys_bits;
daa07cbc 264
ce88decf 265static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 266static bool is_executable_pte(u64 spte);
9fa72119
JS
267static union kvm_mmu_page_role
268kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 269
335e192a
PB
270#define CREATE_TRACE_POINTS
271#include "mmutrace.h"
272
40ef75a7
LT
273
274static inline bool kvm_available_flush_tlb_with_range(void)
275{
276 return kvm_x86_ops->tlb_remote_flush_with_range;
277}
278
279static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
280 struct kvm_tlb_range *range)
281{
282 int ret = -ENOTSUPP;
283
284 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
285 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
286
287 if (ret)
288 kvm_flush_remote_tlbs(kvm);
289}
290
291static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
292 u64 start_gfn, u64 pages)
293{
294 struct kvm_tlb_range range;
295
296 range.start_gfn = start_gfn;
297 range.pages = pages;
298
299 kvm_flush_remote_tlbs_with_range(kvm, &range);
300}
301
dcdca5fe 302void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 303{
dcdca5fe
PF
304 BUG_ON((mmio_mask & mmio_value) != mmio_value);
305 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 306 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
307}
308EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
309
ac8d57e5
PF
310static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
311{
312 return sp->role.ad_disabled;
313}
314
315static inline bool spte_ad_enabled(u64 spte)
316{
317 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
318 return !(spte & shadow_acc_track_value);
319}
320
321static inline u64 spte_shadow_accessed_mask(u64 spte)
322{
323 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
324 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
325}
326
327static inline u64 spte_shadow_dirty_mask(u64 spte)
328{
329 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
330 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
331}
332
f160c7b7
JS
333static inline bool is_access_track_spte(u64 spte)
334{
ac8d57e5 335 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
336}
337
f2fd125d 338/*
cae7ed3c
SC
339 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
340 * the memslots generation and is derived as follows:
ee3d1570 341 *
164bf7e5
SC
342 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
343 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 344 *
164bf7e5
SC
345 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
346 * the MMIO generation number, as doing so would require stealing a bit from
347 * the "real" generation number and thus effectively halve the maximum number
348 * of MMIO generations that can be handled before encountering a wrap (which
349 * requires a full MMU zap). The flag is instead explicitly queried when
350 * checking for MMIO spte cache hits.
f2fd125d 351 */
164bf7e5 352#define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
f2fd125d 353
cae7ed3c
SC
354#define MMIO_SPTE_GEN_LOW_START 3
355#define MMIO_SPTE_GEN_LOW_END 11
356#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
357 MMIO_SPTE_GEN_LOW_START)
f2fd125d 358
cae7ed3c
SC
359#define MMIO_SPTE_GEN_HIGH_START 52
360#define MMIO_SPTE_GEN_HIGH_END 61
361#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
362 MMIO_SPTE_GEN_HIGH_START)
5192f9b9 363static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
364{
365 u64 mask;
366
cae7ed3c 367 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
f2fd125d 368
cae7ed3c
SC
369 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
370 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
371 return mask;
372}
373
5192f9b9 374static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 375{
5192f9b9 376 u64 gen;
f2fd125d
XG
377
378 spte &= ~shadow_mmio_mask;
379
cae7ed3c
SC
380 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
381 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
382 return gen;
383}
384
54bf36aa 385static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 386 unsigned access)
ce88decf 387{
cae7ed3c 388 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 389 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 390 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 391
ce88decf 392 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
393 mask |= shadow_mmio_value | access;
394 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
395 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
396 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 397
4771450c
SC
398 page_header(__pa(sptep))->mmio_cached = true;
399
f8f55942 400 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 401 mmu_spte_set(sptep, mask);
ce88decf
XG
402}
403
404static bool is_mmio_spte(u64 spte)
405{
dcdca5fe 406 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
407}
408
409static gfn_t get_mmio_spte_gfn(u64 spte)
410{
daa07cbc 411 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
412
413 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
414 & shadow_nonpresent_or_rsvd_mask;
415
416 return gpa >> PAGE_SHIFT;
ce88decf
XG
417}
418
419static unsigned get_mmio_spte_access(u64 spte)
420{
cae7ed3c 421 u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
f2fd125d 422 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
423}
424
54bf36aa 425static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 426 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
427{
428 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 429 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
430 return true;
431 }
432
433 return false;
434}
c7addb90 435
54bf36aa 436static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 437{
cae7ed3c 438 u64 kvm_gen, spte_gen, gen;
089504c0 439
cae7ed3c
SC
440 gen = kvm_vcpu_memslots(vcpu)->generation;
441 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
442 return false;
089504c0 443
cae7ed3c 444 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
445 spte_gen = get_mmio_spte_generation(spte);
446
447 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
448 return likely(kvm_gen == spte_gen);
f8f55942
XG
449}
450
ce00053b
PF
451/*
452 * Sets the shadow PTE masks used by the MMU.
453 *
454 * Assumptions:
455 * - Setting either @accessed_mask or @dirty_mask requires setting both
456 * - At least one of @accessed_mask or @acc_track_mask must be set
457 */
7b52345e 458void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 459 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 460 u64 acc_track_mask, u64 me_mask)
7b52345e 461{
ce00053b
PF
462 BUG_ON(!dirty_mask != !accessed_mask);
463 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 464 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 465
7b52345e
SY
466 shadow_user_mask = user_mask;
467 shadow_accessed_mask = accessed_mask;
468 shadow_dirty_mask = dirty_mask;
469 shadow_nx_mask = nx_mask;
470 shadow_x_mask = x_mask;
ffb128c8 471 shadow_present_mask = p_mask;
f160c7b7 472 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 473 shadow_me_mask = me_mask;
7b52345e
SY
474}
475EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
476
f3ecb59d
KH
477static u8 kvm_get_shadow_phys_bits(void)
478{
479 /*
480 * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
481 * in CPU detection code, but MKTME treats those reduced bits as
482 * 'keyID' thus they are not reserved bits. Therefore for MKTME
483 * we should still return physical address bits reported by CPUID.
484 */
485 if (!boot_cpu_has(X86_FEATURE_TME) ||
486 WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
487 return boot_cpu_data.x86_phys_bits;
488
489 return cpuid_eax(0x80000008) & 0xff;
490}
491
28a1f3ac 492static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 493{
daa07cbc
SC
494 u8 low_phys_bits;
495
f160c7b7
JS
496 shadow_user_mask = 0;
497 shadow_accessed_mask = 0;
498 shadow_dirty_mask = 0;
499 shadow_nx_mask = 0;
500 shadow_x_mask = 0;
501 shadow_mmio_mask = 0;
502 shadow_present_mask = 0;
503 shadow_acc_track_mask = 0;
28a1f3ac 504
f3ecb59d
KH
505 shadow_phys_bits = kvm_get_shadow_phys_bits();
506
28a1f3ac
JS
507 /*
508 * If the CPU has 46 or less physical address bits, then set an
509 * appropriate mask to guard against L1TF attacks. Otherwise, it is
510 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
511 *
512 * Some Intel CPUs address the L1 cache using more PA bits than are
513 * reported by CPUID. Use the PA width of the L1 cache when possible
514 * to achieve more effective mitigation, e.g. if system RAM overlaps
515 * the most significant bits of legal physical address space.
28a1f3ac 516 */
61455bf2
KH
517 shadow_nonpresent_or_rsvd_mask = 0;
518 low_phys_bits = boot_cpu_data.x86_cache_bits;
519 if (boot_cpu_data.x86_cache_bits <
daa07cbc 520 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 521 shadow_nonpresent_or_rsvd_mask =
61455bf2 522 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 523 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 524 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 525 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
526 } else
527 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
528
daa07cbc
SC
529 shadow_nonpresent_or_rsvd_lower_gfn_mask =
530 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
531}
532
6aa8b732
AK
533static int is_cpuid_PSE36(void)
534{
535 return 1;
536}
537
73b1087e
AK
538static int is_nx(struct kvm_vcpu *vcpu)
539{
f6801dff 540 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
541}
542
c7addb90
AK
543static int is_shadow_present_pte(u64 pte)
544{
f160c7b7 545 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
546}
547
05da4558
MT
548static int is_large_pte(u64 pte)
549{
550 return pte & PT_PAGE_SIZE_MASK;
551}
552
776e6633
MT
553static int is_last_spte(u64 pte, int level)
554{
555 if (level == PT_PAGE_TABLE_LEVEL)
556 return 1;
852e3c19 557 if (is_large_pte(pte))
776e6633
MT
558 return 1;
559 return 0;
560}
561
d3e328f2
JS
562static bool is_executable_pte(u64 spte)
563{
564 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
565}
566
ba049e93 567static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 568{
35149e21 569 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
570}
571
da928521
AK
572static gfn_t pse36_gfn_delta(u32 gpte)
573{
574 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
575
576 return (gpte & PT32_DIR_PSE36_MASK) << shift;
577}
578
603e0651 579#ifdef CONFIG_X86_64
d555c333 580static void __set_spte(u64 *sptep, u64 spte)
e663ee64 581{
b19ee2ff 582 WRITE_ONCE(*sptep, spte);
e663ee64
AK
583}
584
603e0651 585static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 586{
b19ee2ff 587 WRITE_ONCE(*sptep, spte);
603e0651
XG
588}
589
590static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
591{
592 return xchg(sptep, spte);
593}
c2a2ac2b
XG
594
595static u64 __get_spte_lockless(u64 *sptep)
596{
6aa7de05 597 return READ_ONCE(*sptep);
c2a2ac2b 598}
a9221dd5 599#else
603e0651
XG
600union split_spte {
601 struct {
602 u32 spte_low;
603 u32 spte_high;
604 };
605 u64 spte;
606};
a9221dd5 607
c2a2ac2b
XG
608static void count_spte_clear(u64 *sptep, u64 spte)
609{
610 struct kvm_mmu_page *sp = page_header(__pa(sptep));
611
612 if (is_shadow_present_pte(spte))
613 return;
614
615 /* Ensure the spte is completely set before we increase the count */
616 smp_wmb();
617 sp->clear_spte_count++;
618}
619
603e0651
XG
620static void __set_spte(u64 *sptep, u64 spte)
621{
622 union split_spte *ssptep, sspte;
a9221dd5 623
603e0651
XG
624 ssptep = (union split_spte *)sptep;
625 sspte = (union split_spte)spte;
626
627 ssptep->spte_high = sspte.spte_high;
628
629 /*
630 * If we map the spte from nonpresent to present, We should store
631 * the high bits firstly, then set present bit, so cpu can not
632 * fetch this spte while we are setting the spte.
633 */
634 smp_wmb();
635
b19ee2ff 636 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
637}
638
603e0651
XG
639static void __update_clear_spte_fast(u64 *sptep, u64 spte)
640{
641 union split_spte *ssptep, sspte;
642
643 ssptep = (union split_spte *)sptep;
644 sspte = (union split_spte)spte;
645
b19ee2ff 646 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
647
648 /*
649 * If we map the spte from present to nonpresent, we should clear
650 * present bit firstly to avoid vcpu fetch the old high bits.
651 */
652 smp_wmb();
653
654 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 655 count_spte_clear(sptep, spte);
603e0651
XG
656}
657
658static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659{
660 union split_spte *ssptep, sspte, orig;
661
662 ssptep = (union split_spte *)sptep;
663 sspte = (union split_spte)spte;
664
665 /* xchg acts as a barrier before the setting of the high bits */
666 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
667 orig.spte_high = ssptep->spte_high;
668 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 669 count_spte_clear(sptep, spte);
603e0651
XG
670
671 return orig.spte;
672}
c2a2ac2b
XG
673
674/*
675 * The idea using the light way get the spte on x86_32 guest is from
39656e83 676 * gup_get_pte (mm/gup.c).
accaefe0
XG
677 *
678 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
679 * coalesces them and we are running out of the MMU lock. Therefore
680 * we need to protect against in-progress updates of the spte.
681 *
682 * Reading the spte while an update is in progress may get the old value
683 * for the high part of the spte. The race is fine for a present->non-present
684 * change (because the high part of the spte is ignored for non-present spte),
685 * but for a present->present change we must reread the spte.
686 *
687 * All such changes are done in two steps (present->non-present and
688 * non-present->present), hence it is enough to count the number of
689 * present->non-present updates: if it changed while reading the spte,
690 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
691 */
692static u64 __get_spte_lockless(u64 *sptep)
693{
694 struct kvm_mmu_page *sp = page_header(__pa(sptep));
695 union split_spte spte, *orig = (union split_spte *)sptep;
696 int count;
697
698retry:
699 count = sp->clear_spte_count;
700 smp_rmb();
701
702 spte.spte_low = orig->spte_low;
703 smp_rmb();
704
705 spte.spte_high = orig->spte_high;
706 smp_rmb();
707
708 if (unlikely(spte.spte_low != orig->spte_low ||
709 count != sp->clear_spte_count))
710 goto retry;
711
712 return spte.spte;
713}
603e0651
XG
714#endif
715
ea4114bc 716static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 717{
feb3eb70
GN
718 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
719 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
720}
721
8672b721
XG
722static bool spte_has_volatile_bits(u64 spte)
723{
f160c7b7
JS
724 if (!is_shadow_present_pte(spte))
725 return false;
726
c7ba5b48 727 /*
6a6256f9 728 * Always atomically update spte if it can be updated
c7ba5b48
XG
729 * out of mmu-lock, it can ensure dirty bit is not lost,
730 * also, it can help us to get a stable is_writable_pte()
731 * to ensure tlb flush is not missed.
732 */
f160c7b7
JS
733 if (spte_can_locklessly_be_made_writable(spte) ||
734 is_access_track_spte(spte))
c7ba5b48
XG
735 return true;
736
ac8d57e5 737 if (spte_ad_enabled(spte)) {
f160c7b7
JS
738 if ((spte & shadow_accessed_mask) == 0 ||
739 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
740 return true;
741 }
8672b721 742
f160c7b7 743 return false;
8672b721
XG
744}
745
83ef6c81 746static bool is_accessed_spte(u64 spte)
4132779b 747{
ac8d57e5
PF
748 u64 accessed_mask = spte_shadow_accessed_mask(spte);
749
750 return accessed_mask ? spte & accessed_mask
751 : !is_access_track_spte(spte);
4132779b
XG
752}
753
83ef6c81 754static bool is_dirty_spte(u64 spte)
7e71a59b 755{
ac8d57e5
PF
756 u64 dirty_mask = spte_shadow_dirty_mask(spte);
757
758 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
759}
760
1df9f2dc
XG
761/* Rules for using mmu_spte_set:
762 * Set the sptep from nonpresent to present.
763 * Note: the sptep being assigned *must* be either not present
764 * or in a state where the hardware will not attempt to update
765 * the spte.
766 */
767static void mmu_spte_set(u64 *sptep, u64 new_spte)
768{
769 WARN_ON(is_shadow_present_pte(*sptep));
770 __set_spte(sptep, new_spte);
771}
772
f39a058d
JS
773/*
774 * Update the SPTE (excluding the PFN), but do not track changes in its
775 * accessed/dirty status.
1df9f2dc 776 */
f39a058d 777static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 778{
c7ba5b48 779 u64 old_spte = *sptep;
4132779b 780
afd28fe1 781 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 782
6e7d0354
XG
783 if (!is_shadow_present_pte(old_spte)) {
784 mmu_spte_set(sptep, new_spte);
f39a058d 785 return old_spte;
6e7d0354 786 }
4132779b 787
c7ba5b48 788 if (!spte_has_volatile_bits(old_spte))
603e0651 789 __update_clear_spte_fast(sptep, new_spte);
4132779b 790 else
603e0651 791 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 792
83ef6c81
JS
793 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
794
f39a058d
JS
795 return old_spte;
796}
797
798/* Rules for using mmu_spte_update:
799 * Update the state bits, it means the mapped pfn is not changed.
800 *
801 * Whenever we overwrite a writable spte with a read-only one we
802 * should flush remote TLBs. Otherwise rmap_write_protect
803 * will find a read-only spte, even though the writable spte
804 * might be cached on a CPU's TLB, the return value indicates this
805 * case.
806 *
807 * Returns true if the TLB needs to be flushed
808 */
809static bool mmu_spte_update(u64 *sptep, u64 new_spte)
810{
811 bool flush = false;
812 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
813
814 if (!is_shadow_present_pte(old_spte))
815 return false;
816
c7ba5b48
XG
817 /*
818 * For the spte updated out of mmu-lock is safe, since
6a6256f9 819 * we always atomically update it, see the comments in
c7ba5b48
XG
820 * spte_has_volatile_bits().
821 */
ea4114bc 822 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 823 !is_writable_pte(new_spte))
83ef6c81 824 flush = true;
4132779b 825
7e71a59b 826 /*
83ef6c81 827 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
828 * to guarantee consistency between TLB and page tables.
829 */
7e71a59b 830
83ef6c81
JS
831 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
832 flush = true;
4132779b 833 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
834 }
835
836 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
837 flush = true;
4132779b 838 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 839 }
6e7d0354 840
83ef6c81 841 return flush;
b79b93f9
AK
842}
843
1df9f2dc
XG
844/*
845 * Rules for using mmu_spte_clear_track_bits:
846 * It sets the sptep from present to nonpresent, and track the
847 * state bits, it is used to clear the last level sptep.
83ef6c81 848 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
849 */
850static int mmu_spte_clear_track_bits(u64 *sptep)
851{
ba049e93 852 kvm_pfn_t pfn;
1df9f2dc
XG
853 u64 old_spte = *sptep;
854
855 if (!spte_has_volatile_bits(old_spte))
603e0651 856 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 857 else
603e0651 858 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 859
afd28fe1 860 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
861 return 0;
862
863 pfn = spte_to_pfn(old_spte);
86fde74c
XG
864
865 /*
866 * KVM does not hold the refcount of the page used by
867 * kvm mmu, before reclaiming the page, we should
868 * unmap it from mmu first.
869 */
bf4bea8e 870 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 871
83ef6c81 872 if (is_accessed_spte(old_spte))
1df9f2dc 873 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
874
875 if (is_dirty_spte(old_spte))
1df9f2dc 876 kvm_set_pfn_dirty(pfn);
83ef6c81 877
1df9f2dc
XG
878 return 1;
879}
880
881/*
882 * Rules for using mmu_spte_clear_no_track:
883 * Directly clear spte without caring the state bits of sptep,
884 * it is used to set the upper level spte.
885 */
886static void mmu_spte_clear_no_track(u64 *sptep)
887{
603e0651 888 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
889}
890
c2a2ac2b
XG
891static u64 mmu_spte_get_lockless(u64 *sptep)
892{
893 return __get_spte_lockless(sptep);
894}
895
f160c7b7
JS
896static u64 mark_spte_for_access_track(u64 spte)
897{
ac8d57e5 898 if (spte_ad_enabled(spte))
f160c7b7
JS
899 return spte & ~shadow_accessed_mask;
900
ac8d57e5 901 if (is_access_track_spte(spte))
f160c7b7
JS
902 return spte;
903
904 /*
20d65236
JS
905 * Making an Access Tracking PTE will result in removal of write access
906 * from the PTE. So, verify that we will be able to restore the write
907 * access in the fast page fault path later on.
f160c7b7
JS
908 */
909 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
910 !spte_can_locklessly_be_made_writable(spte),
911 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
912
913 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
914 shadow_acc_track_saved_bits_shift),
915 "kvm: Access Tracking saved bit locations are not zero\n");
916
917 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
918 shadow_acc_track_saved_bits_shift;
919 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
920
921 return spte;
922}
923
d3e328f2
JS
924/* Restore an acc-track PTE back to a regular PTE */
925static u64 restore_acc_track_spte(u64 spte)
926{
927 u64 new_spte = spte;
928 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
929 & shadow_acc_track_saved_bits_mask;
930
ac8d57e5 931 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
932 WARN_ON_ONCE(!is_access_track_spte(spte));
933
934 new_spte &= ~shadow_acc_track_mask;
935 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
936 shadow_acc_track_saved_bits_shift);
937 new_spte |= saved_bits;
938
939 return new_spte;
940}
941
f160c7b7
JS
942/* Returns the Accessed status of the PTE and resets it at the same time. */
943static bool mmu_spte_age(u64 *sptep)
944{
945 u64 spte = mmu_spte_get_lockless(sptep);
946
947 if (!is_accessed_spte(spte))
948 return false;
949
ac8d57e5 950 if (spte_ad_enabled(spte)) {
f160c7b7
JS
951 clear_bit((ffs(shadow_accessed_mask) - 1),
952 (unsigned long *)sptep);
953 } else {
954 /*
955 * Capture the dirty status of the page, so that it doesn't get
956 * lost when the SPTE is marked for access tracking.
957 */
958 if (is_writable_pte(spte))
959 kvm_set_pfn_dirty(spte_to_pfn(spte));
960
961 spte = mark_spte_for_access_track(spte);
962 mmu_spte_update_no_track(sptep, spte);
963 }
964
965 return true;
966}
967
c2a2ac2b
XG
968static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
969{
c142786c
AK
970 /*
971 * Prevent page table teardown by making any free-er wait during
972 * kvm_flush_remote_tlbs() IPI to all active vcpus.
973 */
974 local_irq_disable();
36ca7e0a 975
c142786c
AK
976 /*
977 * Make sure a following spte read is not reordered ahead of the write
978 * to vcpu->mode.
979 */
36ca7e0a 980 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
981}
982
983static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
984{
c142786c
AK
985 /*
986 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 987 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
988 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
989 */
36ca7e0a 990 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 991 local_irq_enable();
c2a2ac2b
XG
992}
993
e2dec939 994static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 995 struct kmem_cache *base_cache, int min)
714b93da
AK
996{
997 void *obj;
998
999 if (cache->nobjs >= min)
e2dec939 1000 return 0;
714b93da 1001 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1002 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1003 if (!obj)
daefb794 1004 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1005 cache->objects[cache->nobjs++] = obj;
1006 }
e2dec939 1007 return 0;
714b93da
AK
1008}
1009
f759e2b4
XG
1010static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1011{
1012 return cache->nobjs;
1013}
1014
e8ad9a70
XG
1015static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1016 struct kmem_cache *cache)
714b93da
AK
1017{
1018 while (mc->nobjs)
e8ad9a70 1019 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1020}
1021
c1158e63 1022static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1023 int min)
c1158e63 1024{
842f22ed 1025 void *page;
c1158e63
AK
1026
1027 if (cache->nobjs >= min)
1028 return 0;
1029 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1030 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1031 if (!page)
daefb794 1032 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1033 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1034 }
1035 return 0;
1036}
1037
1038static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1039{
1040 while (mc->nobjs)
c4d198d5 1041 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1042}
1043
2e3e5882 1044static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1045{
e2dec939
AK
1046 int r;
1047
53c07b18 1048 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1049 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1050 if (r)
1051 goto out;
ad312c7c 1052 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1053 if (r)
1054 goto out;
ad312c7c 1055 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1056 mmu_page_header_cache, 4);
e2dec939
AK
1057out:
1058 return r;
714b93da
AK
1059}
1060
1061static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1062{
53c07b18
XG
1063 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1064 pte_list_desc_cache);
ad312c7c 1065 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1066 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1067 mmu_page_header_cache);
714b93da
AK
1068}
1069
80feb89a 1070static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1071{
1072 void *p;
1073
1074 BUG_ON(!mc->nobjs);
1075 p = mc->objects[--mc->nobjs];
714b93da
AK
1076 return p;
1077}
1078
53c07b18 1079static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1080{
80feb89a 1081 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1082}
1083
53c07b18 1084static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1085{
53c07b18 1086 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1087}
1088
2032a93d
LJ
1089static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1090{
1091 if (!sp->role.direct)
1092 return sp->gfns[index];
1093
1094 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1095}
1096
1097static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1098{
e9f2a760 1099 if (!sp->role.direct) {
2032a93d 1100 sp->gfns[index] = gfn;
e9f2a760
PB
1101 return;
1102 }
1103
1104 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1105 pr_err_ratelimited("gfn mismatch under direct page %llx "
1106 "(expected %llx, got %llx)\n",
1107 sp->gfn,
1108 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1109}
1110
05da4558 1111/*
d4dbf470
TY
1112 * Return the pointer to the large page information for a given gfn,
1113 * handling slots that are not large page aligned.
05da4558 1114 */
d4dbf470
TY
1115static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1116 struct kvm_memory_slot *slot,
1117 int level)
05da4558
MT
1118{
1119 unsigned long idx;
1120
fb03cb6f 1121 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1122 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1123}
1124
547ffaed
XG
1125static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1126 gfn_t gfn, int count)
1127{
1128 struct kvm_lpage_info *linfo;
1129 int i;
1130
1131 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1132 linfo = lpage_info_slot(gfn, slot, i);
1133 linfo->disallow_lpage += count;
1134 WARN_ON(linfo->disallow_lpage < 0);
1135 }
1136}
1137
1138void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1139{
1140 update_gfn_disallow_lpage_count(slot, gfn, 1);
1141}
1142
1143void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1144{
1145 update_gfn_disallow_lpage_count(slot, gfn, -1);
1146}
1147
3ed1a478 1148static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1149{
699023e2 1150 struct kvm_memslots *slots;
d25797b2 1151 struct kvm_memory_slot *slot;
3ed1a478 1152 gfn_t gfn;
05da4558 1153
56ca57f9 1154 kvm->arch.indirect_shadow_pages++;
3ed1a478 1155 gfn = sp->gfn;
699023e2
PB
1156 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1157 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1158
1159 /* the non-leaf shadow pages are keeping readonly. */
1160 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1161 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1162 KVM_PAGE_TRACK_WRITE);
1163
547ffaed 1164 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1165}
1166
3ed1a478 1167static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1168{
699023e2 1169 struct kvm_memslots *slots;
d25797b2 1170 struct kvm_memory_slot *slot;
3ed1a478 1171 gfn_t gfn;
05da4558 1172
56ca57f9 1173 kvm->arch.indirect_shadow_pages--;
3ed1a478 1174 gfn = sp->gfn;
699023e2
PB
1175 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1176 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1177 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1178 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1179 KVM_PAGE_TRACK_WRITE);
1180
547ffaed 1181 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1182}
1183
92f94f1e
XG
1184static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1185 struct kvm_memory_slot *slot)
05da4558 1186{
d4dbf470 1187 struct kvm_lpage_info *linfo;
05da4558
MT
1188
1189 if (slot) {
d4dbf470 1190 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1191 return !!linfo->disallow_lpage;
05da4558
MT
1192 }
1193
92f94f1e 1194 return true;
05da4558
MT
1195}
1196
92f94f1e
XG
1197static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1198 int level)
5225fdf8
TY
1199{
1200 struct kvm_memory_slot *slot;
1201
1202 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1203 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1204}
1205
d25797b2 1206static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1207{
8f0b1ab6 1208 unsigned long page_size;
d25797b2 1209 int i, ret = 0;
05da4558 1210
8f0b1ab6 1211 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1212
8a3d08f1 1213 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1214 if (page_size >= KVM_HPAGE_SIZE(i))
1215 ret = i;
1216 else
1217 break;
1218 }
1219
4c2155ce 1220 return ret;
05da4558
MT
1221}
1222
d8aacf5d
TY
1223static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1224 bool no_dirty_log)
1225{
1226 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1227 return false;
1228 if (no_dirty_log && slot->dirty_bitmap)
1229 return false;
1230
1231 return true;
1232}
1233
5d163b1c
XG
1234static struct kvm_memory_slot *
1235gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1236 bool no_dirty_log)
05da4558
MT
1237{
1238 struct kvm_memory_slot *slot;
5d163b1c 1239
54bf36aa 1240 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1241 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1242 slot = NULL;
1243
1244 return slot;
1245}
1246
fd136902
TY
1247static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1248 bool *force_pt_level)
936a5fe6
AA
1249{
1250 int host_level, level, max_level;
d8aacf5d
TY
1251 struct kvm_memory_slot *slot;
1252
8c85ac1c
TY
1253 if (unlikely(*force_pt_level))
1254 return PT_PAGE_TABLE_LEVEL;
05da4558 1255
8c85ac1c
TY
1256 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1257 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1258 if (unlikely(*force_pt_level))
1259 return PT_PAGE_TABLE_LEVEL;
1260
d25797b2
JR
1261 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1262
1263 if (host_level == PT_PAGE_TABLE_LEVEL)
1264 return host_level;
1265
55dd98c3 1266 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1267
1268 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1269 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1270 break;
d25797b2
JR
1271
1272 return level - 1;
05da4558
MT
1273}
1274
290fc38d 1275/*
018aabb5 1276 * About rmap_head encoding:
cd4a4e53 1277 *
018aabb5
TY
1278 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1279 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1280 * pte_list_desc containing more mappings.
018aabb5
TY
1281 */
1282
1283/*
1284 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1285 */
53c07b18 1286static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1287 struct kvm_rmap_head *rmap_head)
cd4a4e53 1288{
53c07b18 1289 struct pte_list_desc *desc;
53a27b39 1290 int i, count = 0;
cd4a4e53 1291
018aabb5 1292 if (!rmap_head->val) {
53c07b18 1293 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1294 rmap_head->val = (unsigned long)spte;
1295 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1296 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1297 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1298 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1299 desc->sptes[1] = spte;
018aabb5 1300 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1301 ++count;
cd4a4e53 1302 } else {
53c07b18 1303 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1304 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1305 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1306 desc = desc->more;
53c07b18 1307 count += PTE_LIST_EXT;
53a27b39 1308 }
53c07b18
XG
1309 if (desc->sptes[PTE_LIST_EXT-1]) {
1310 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1311 desc = desc->more;
1312 }
d555c333 1313 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1314 ++count;
d555c333 1315 desc->sptes[i] = spte;
cd4a4e53 1316 }
53a27b39 1317 return count;
cd4a4e53
AK
1318}
1319
53c07b18 1320static void
018aabb5
TY
1321pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1322 struct pte_list_desc *desc, int i,
1323 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1324{
1325 int j;
1326
53c07b18 1327 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1328 ;
d555c333
AK
1329 desc->sptes[i] = desc->sptes[j];
1330 desc->sptes[j] = NULL;
cd4a4e53
AK
1331 if (j != 0)
1332 return;
1333 if (!prev_desc && !desc->more)
018aabb5 1334 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1335 else
1336 if (prev_desc)
1337 prev_desc->more = desc->more;
1338 else
018aabb5 1339 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1340 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1341}
1342
8daf3462 1343static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1344{
53c07b18
XG
1345 struct pte_list_desc *desc;
1346 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1347 int i;
1348
018aabb5 1349 if (!rmap_head->val) {
8daf3462 1350 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1351 BUG();
018aabb5 1352 } else if (!(rmap_head->val & 1)) {
8daf3462 1353 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1354 if ((u64 *)rmap_head->val != spte) {
8daf3462 1355 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1356 BUG();
1357 }
018aabb5 1358 rmap_head->val = 0;
cd4a4e53 1359 } else {
8daf3462 1360 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1361 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1362 prev_desc = NULL;
1363 while (desc) {
018aabb5 1364 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1365 if (desc->sptes[i] == spte) {
018aabb5
TY
1366 pte_list_desc_remove_entry(rmap_head,
1367 desc, i, prev_desc);
cd4a4e53
AK
1368 return;
1369 }
018aabb5 1370 }
cd4a4e53
AK
1371 prev_desc = desc;
1372 desc = desc->more;
1373 }
8daf3462 1374 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1375 BUG();
1376 }
1377}
1378
e7912386
WY
1379static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1380{
1381 mmu_spte_clear_track_bits(sptep);
1382 __pte_list_remove(sptep, rmap_head);
1383}
1384
018aabb5
TY
1385static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1386 struct kvm_memory_slot *slot)
53c07b18 1387{
77d11309 1388 unsigned long idx;
53c07b18 1389
77d11309 1390 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1391 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1392}
1393
018aabb5
TY
1394static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1395 struct kvm_mmu_page *sp)
9b9b1492 1396{
699023e2 1397 struct kvm_memslots *slots;
9b9b1492
TY
1398 struct kvm_memory_slot *slot;
1399
699023e2
PB
1400 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1401 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1402 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1403}
1404
f759e2b4
XG
1405static bool rmap_can_add(struct kvm_vcpu *vcpu)
1406{
1407 struct kvm_mmu_memory_cache *cache;
1408
1409 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1410 return mmu_memory_cache_free_objects(cache);
1411}
1412
53c07b18
XG
1413static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1414{
1415 struct kvm_mmu_page *sp;
018aabb5 1416 struct kvm_rmap_head *rmap_head;
53c07b18 1417
53c07b18
XG
1418 sp = page_header(__pa(spte));
1419 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1420 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1421 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1422}
1423
53c07b18
XG
1424static void rmap_remove(struct kvm *kvm, u64 *spte)
1425{
1426 struct kvm_mmu_page *sp;
1427 gfn_t gfn;
018aabb5 1428 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1429
1430 sp = page_header(__pa(spte));
1431 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1432 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1433 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1434}
1435
1e3f42f0
TY
1436/*
1437 * Used by the following functions to iterate through the sptes linked by a
1438 * rmap. All fields are private and not assumed to be used outside.
1439 */
1440struct rmap_iterator {
1441 /* private fields */
1442 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1443 int pos; /* index of the sptep */
1444};
1445
1446/*
1447 * Iteration must be started by this function. This should also be used after
1448 * removing/dropping sptes from the rmap link because in such cases the
1449 * information in the itererator may not be valid.
1450 *
1451 * Returns sptep if found, NULL otherwise.
1452 */
018aabb5
TY
1453static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1454 struct rmap_iterator *iter)
1e3f42f0 1455{
77fbbbd2
TY
1456 u64 *sptep;
1457
018aabb5 1458 if (!rmap_head->val)
1e3f42f0
TY
1459 return NULL;
1460
018aabb5 1461 if (!(rmap_head->val & 1)) {
1e3f42f0 1462 iter->desc = NULL;
77fbbbd2
TY
1463 sptep = (u64 *)rmap_head->val;
1464 goto out;
1e3f42f0
TY
1465 }
1466
018aabb5 1467 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1468 iter->pos = 0;
77fbbbd2
TY
1469 sptep = iter->desc->sptes[iter->pos];
1470out:
1471 BUG_ON(!is_shadow_present_pte(*sptep));
1472 return sptep;
1e3f42f0
TY
1473}
1474
1475/*
1476 * Must be used with a valid iterator: e.g. after rmap_get_first().
1477 *
1478 * Returns sptep if found, NULL otherwise.
1479 */
1480static u64 *rmap_get_next(struct rmap_iterator *iter)
1481{
77fbbbd2
TY
1482 u64 *sptep;
1483
1e3f42f0
TY
1484 if (iter->desc) {
1485 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1486 ++iter->pos;
1487 sptep = iter->desc->sptes[iter->pos];
1488 if (sptep)
77fbbbd2 1489 goto out;
1e3f42f0
TY
1490 }
1491
1492 iter->desc = iter->desc->more;
1493
1494 if (iter->desc) {
1495 iter->pos = 0;
1496 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1497 sptep = iter->desc->sptes[iter->pos];
1498 goto out;
1e3f42f0
TY
1499 }
1500 }
1501
1502 return NULL;
77fbbbd2
TY
1503out:
1504 BUG_ON(!is_shadow_present_pte(*sptep));
1505 return sptep;
1e3f42f0
TY
1506}
1507
018aabb5
TY
1508#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1509 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1510 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1511
c3707958 1512static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1513{
1df9f2dc 1514 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1515 rmap_remove(kvm, sptep);
be38d276
AK
1516}
1517
8e22f955
XG
1518
1519static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1520{
1521 if (is_large_pte(*sptep)) {
1522 WARN_ON(page_header(__pa(sptep))->role.level ==
1523 PT_PAGE_TABLE_LEVEL);
1524 drop_spte(kvm, sptep);
1525 --kvm->stat.lpages;
1526 return true;
1527 }
1528
1529 return false;
1530}
1531
1532static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1533{
c3134ce2
LT
1534 if (__drop_large_spte(vcpu->kvm, sptep)) {
1535 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1536
1537 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1538 KVM_PAGES_PER_HPAGE(sp->role.level));
1539 }
8e22f955
XG
1540}
1541
1542/*
49fde340 1543 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1544 * spte write-protection is caused by protecting shadow page table.
49fde340 1545 *
b4619660 1546 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1547 * protection:
1548 * - for dirty logging, the spte can be set to writable at anytime if
1549 * its dirty bitmap is properly set.
1550 * - for spte protection, the spte can be writable only after unsync-ing
1551 * shadow page.
8e22f955 1552 *
c126d94f 1553 * Return true if tlb need be flushed.
8e22f955 1554 */
c4f138b4 1555static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1556{
1557 u64 spte = *sptep;
1558
49fde340 1559 if (!is_writable_pte(spte) &&
ea4114bc 1560 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1561 return false;
1562
1563 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1564
49fde340
XG
1565 if (pt_protect)
1566 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1567 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1568
c126d94f 1569 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1570}
1571
018aabb5
TY
1572static bool __rmap_write_protect(struct kvm *kvm,
1573 struct kvm_rmap_head *rmap_head,
245c3912 1574 bool pt_protect)
98348e95 1575{
1e3f42f0
TY
1576 u64 *sptep;
1577 struct rmap_iterator iter;
d13bc5b5 1578 bool flush = false;
374cbac0 1579
018aabb5 1580 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1581 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1582
d13bc5b5 1583 return flush;
a0ed4607
TY
1584}
1585
c4f138b4 1586static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1587{
1588 u64 spte = *sptep;
1589
1590 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1591
1592 spte &= ~shadow_dirty_mask;
1593
1594 return mmu_spte_update(sptep, spte);
1595}
1596
ac8d57e5
PF
1597static bool wrprot_ad_disabled_spte(u64 *sptep)
1598{
1599 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1600 (unsigned long *)sptep);
1601 if (was_writable)
1602 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1603
1604 return was_writable;
1605}
1606
1607/*
1608 * Gets the GFN ready for another round of dirty logging by clearing the
1609 * - D bit on ad-enabled SPTEs, and
1610 * - W bit on ad-disabled SPTEs.
1611 * Returns true iff any D or W bits were cleared.
1612 */
018aabb5 1613static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1614{
1615 u64 *sptep;
1616 struct rmap_iterator iter;
1617 bool flush = false;
1618
018aabb5 1619 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1620 if (spte_ad_enabled(*sptep))
1621 flush |= spte_clear_dirty(sptep);
1622 else
1623 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1624
1625 return flush;
1626}
1627
c4f138b4 1628static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1629{
1630 u64 spte = *sptep;
1631
1632 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1633
1634 spte |= shadow_dirty_mask;
1635
1636 return mmu_spte_update(sptep, spte);
1637}
1638
018aabb5 1639static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1640{
1641 u64 *sptep;
1642 struct rmap_iterator iter;
1643 bool flush = false;
1644
018aabb5 1645 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1646 if (spte_ad_enabled(*sptep))
1647 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1648
1649 return flush;
1650}
1651
5dc99b23 1652/**
3b0f1d01 1653 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1654 * @kvm: kvm instance
1655 * @slot: slot to protect
1656 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1657 * @mask: indicates which pages we should protect
1658 *
1659 * Used when we do not need to care about huge page mappings: e.g. during dirty
1660 * logging we do not have any such mappings.
1661 */
3b0f1d01 1662static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1663 struct kvm_memory_slot *slot,
1664 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1665{
018aabb5 1666 struct kvm_rmap_head *rmap_head;
a0ed4607 1667
5dc99b23 1668 while (mask) {
018aabb5
TY
1669 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1670 PT_PAGE_TABLE_LEVEL, slot);
1671 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1672
5dc99b23
TY
1673 /* clear the first set bit */
1674 mask &= mask - 1;
1675 }
374cbac0
AK
1676}
1677
f4b4b180 1678/**
ac8d57e5
PF
1679 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1680 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1681 * @kvm: kvm instance
1682 * @slot: slot to clear D-bit
1683 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1684 * @mask: indicates which pages we should clear D-bit
1685 *
1686 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1687 */
1688void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1689 struct kvm_memory_slot *slot,
1690 gfn_t gfn_offset, unsigned long mask)
1691{
018aabb5 1692 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1693
1694 while (mask) {
018aabb5
TY
1695 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1696 PT_PAGE_TABLE_LEVEL, slot);
1697 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1698
1699 /* clear the first set bit */
1700 mask &= mask - 1;
1701 }
1702}
1703EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1704
3b0f1d01
KH
1705/**
1706 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1707 * PT level pages.
1708 *
1709 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1710 * enable dirty logging for them.
1711 *
1712 * Used when we do not need to care about huge page mappings: e.g. during dirty
1713 * logging we do not have any such mappings.
1714 */
1715void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1716 struct kvm_memory_slot *slot,
1717 gfn_t gfn_offset, unsigned long mask)
1718{
88178fd4
KH
1719 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1720 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1721 mask);
1722 else
1723 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1724}
1725
bab4165e
BD
1726/**
1727 * kvm_arch_write_log_dirty - emulate dirty page logging
1728 * @vcpu: Guest mode vcpu
1729 *
1730 * Emulate arch specific page modification logging for the
1731 * nested hypervisor
1732 */
1733int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1734{
1735 if (kvm_x86_ops->write_log_dirty)
1736 return kvm_x86_ops->write_log_dirty(vcpu);
1737
1738 return 0;
1739}
1740
aeecee2e
XG
1741bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1742 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1743{
018aabb5 1744 struct kvm_rmap_head *rmap_head;
5dc99b23 1745 int i;
2f84569f 1746 bool write_protected = false;
95d4c16c 1747
8a3d08f1 1748 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1749 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1750 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1751 }
1752
1753 return write_protected;
95d4c16c
TY
1754}
1755
aeecee2e
XG
1756static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1757{
1758 struct kvm_memory_slot *slot;
1759
1760 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1761 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1762}
1763
018aabb5 1764static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1765{
1e3f42f0
TY
1766 u64 *sptep;
1767 struct rmap_iterator iter;
6a49f85c 1768 bool flush = false;
e930bffe 1769
018aabb5 1770 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1771 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1772
e7912386 1773 pte_list_remove(rmap_head, sptep);
6a49f85c 1774 flush = true;
e930bffe 1775 }
1e3f42f0 1776
6a49f85c
XG
1777 return flush;
1778}
1779
018aabb5 1780static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1781 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1782 unsigned long data)
1783{
018aabb5 1784 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1785}
1786
018aabb5 1787static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1788 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1789 unsigned long data)
3da0dd43 1790{
1e3f42f0
TY
1791 u64 *sptep;
1792 struct rmap_iterator iter;
3da0dd43 1793 int need_flush = 0;
1e3f42f0 1794 u64 new_spte;
3da0dd43 1795 pte_t *ptep = (pte_t *)data;
ba049e93 1796 kvm_pfn_t new_pfn;
3da0dd43
IE
1797
1798 WARN_ON(pte_huge(*ptep));
1799 new_pfn = pte_pfn(*ptep);
1e3f42f0 1800
0d536790 1801restart:
018aabb5 1802 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1803 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1804 sptep, *sptep, gfn, level);
1e3f42f0 1805
3da0dd43 1806 need_flush = 1;
1e3f42f0 1807
3da0dd43 1808 if (pte_write(*ptep)) {
e7912386 1809 pte_list_remove(rmap_head, sptep);
0d536790 1810 goto restart;
3da0dd43 1811 } else {
1e3f42f0 1812 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1813 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1814
1815 new_spte &= ~PT_WRITABLE_MASK;
1816 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1817
1818 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1819
1820 mmu_spte_clear_track_bits(sptep);
1821 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1822 }
1823 }
1e3f42f0 1824
3cc5ea94
LT
1825 if (need_flush && kvm_available_flush_tlb_with_range()) {
1826 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1827 return 0;
1828 }
1829
0cf853c5 1830 return need_flush;
3da0dd43
IE
1831}
1832
6ce1f4e2
XG
1833struct slot_rmap_walk_iterator {
1834 /* input fields. */
1835 struct kvm_memory_slot *slot;
1836 gfn_t start_gfn;
1837 gfn_t end_gfn;
1838 int start_level;
1839 int end_level;
1840
1841 /* output fields. */
1842 gfn_t gfn;
018aabb5 1843 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1844 int level;
1845
1846 /* private field. */
018aabb5 1847 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1848};
1849
1850static void
1851rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1852{
1853 iterator->level = level;
1854 iterator->gfn = iterator->start_gfn;
1855 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1856 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1857 iterator->slot);
1858}
1859
1860static void
1861slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1862 struct kvm_memory_slot *slot, int start_level,
1863 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1864{
1865 iterator->slot = slot;
1866 iterator->start_level = start_level;
1867 iterator->end_level = end_level;
1868 iterator->start_gfn = start_gfn;
1869 iterator->end_gfn = end_gfn;
1870
1871 rmap_walk_init_level(iterator, iterator->start_level);
1872}
1873
1874static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1875{
1876 return !!iterator->rmap;
1877}
1878
1879static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1880{
1881 if (++iterator->rmap <= iterator->end_rmap) {
1882 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1883 return;
1884 }
1885
1886 if (++iterator->level > iterator->end_level) {
1887 iterator->rmap = NULL;
1888 return;
1889 }
1890
1891 rmap_walk_init_level(iterator, iterator->level);
1892}
1893
1894#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1895 _start_gfn, _end_gfn, _iter_) \
1896 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1897 _end_level_, _start_gfn, _end_gfn); \
1898 slot_rmap_walk_okay(_iter_); \
1899 slot_rmap_walk_next(_iter_))
1900
84504ef3
TY
1901static int kvm_handle_hva_range(struct kvm *kvm,
1902 unsigned long start,
1903 unsigned long end,
1904 unsigned long data,
1905 int (*handler)(struct kvm *kvm,
018aabb5 1906 struct kvm_rmap_head *rmap_head,
048212d0 1907 struct kvm_memory_slot *slot,
8a9522d2
ALC
1908 gfn_t gfn,
1909 int level,
84504ef3 1910 unsigned long data))
e930bffe 1911{
bc6678a3 1912 struct kvm_memslots *slots;
be6ba0f0 1913 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1914 struct slot_rmap_walk_iterator iterator;
1915 int ret = 0;
9da0e4d5 1916 int i;
bc6678a3 1917
9da0e4d5
PB
1918 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1919 slots = __kvm_memslots(kvm, i);
1920 kvm_for_each_memslot(memslot, slots) {
1921 unsigned long hva_start, hva_end;
1922 gfn_t gfn_start, gfn_end;
e930bffe 1923
9da0e4d5
PB
1924 hva_start = max(start, memslot->userspace_addr);
1925 hva_end = min(end, memslot->userspace_addr +
1926 (memslot->npages << PAGE_SHIFT));
1927 if (hva_start >= hva_end)
1928 continue;
1929 /*
1930 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1931 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1932 */
1933 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1934 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1935
1936 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1937 PT_MAX_HUGEPAGE_LEVEL,
1938 gfn_start, gfn_end - 1,
1939 &iterator)
1940 ret |= handler(kvm, iterator.rmap, memslot,
1941 iterator.gfn, iterator.level, data);
1942 }
e930bffe
AA
1943 }
1944
f395302e 1945 return ret;
e930bffe
AA
1946}
1947
84504ef3
TY
1948static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1949 unsigned long data,
018aabb5
TY
1950 int (*handler)(struct kvm *kvm,
1951 struct kvm_rmap_head *rmap_head,
048212d0 1952 struct kvm_memory_slot *slot,
8a9522d2 1953 gfn_t gfn, int level,
84504ef3
TY
1954 unsigned long data))
1955{
1956 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1957}
1958
b3ae2096
TY
1959int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1960{
1961 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1962}
1963
748c0e31 1964int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1965{
0cf853c5 1966 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1967}
1968
018aabb5 1969static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1970 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1971 unsigned long data)
e930bffe 1972{
1e3f42f0 1973 u64 *sptep;
79f702a6 1974 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1975 int young = 0;
1976
f160c7b7
JS
1977 for_each_rmap_spte(rmap_head, &iter, sptep)
1978 young |= mmu_spte_age(sptep);
0d536790 1979
8a9522d2 1980 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1981 return young;
1982}
1983
018aabb5 1984static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1985 struct kvm_memory_slot *slot, gfn_t gfn,
1986 int level, unsigned long data)
8ee53820 1987{
1e3f42f0
TY
1988 u64 *sptep;
1989 struct rmap_iterator iter;
8ee53820 1990
83ef6c81
JS
1991 for_each_rmap_spte(rmap_head, &iter, sptep)
1992 if (is_accessed_spte(*sptep))
1993 return 1;
83ef6c81 1994 return 0;
8ee53820
AA
1995}
1996
53a27b39
MT
1997#define RMAP_RECYCLE_THRESHOLD 1000
1998
852e3c19 1999static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 2000{
018aabb5 2001 struct kvm_rmap_head *rmap_head;
852e3c19
JR
2002 struct kvm_mmu_page *sp;
2003
2004 sp = page_header(__pa(spte));
53a27b39 2005
018aabb5 2006 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2007
018aabb5 2008 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2009 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2010 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2011}
2012
57128468 2013int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2014{
57128468 2015 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2016}
2017
8ee53820
AA
2018int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2019{
2020 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2021}
2022
d6c69ee9 2023#ifdef MMU_DEBUG
47ad8e68 2024static int is_empty_shadow_page(u64 *spt)
6aa8b732 2025{
139bdb2d
AK
2026 u64 *pos;
2027 u64 *end;
2028
47ad8e68 2029 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2030 if (is_shadow_present_pte(*pos)) {
b8688d51 2031 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2032 pos, *pos);
6aa8b732 2033 return 0;
139bdb2d 2034 }
6aa8b732
AK
2035 return 1;
2036}
d6c69ee9 2037#endif
6aa8b732 2038
45221ab6
DH
2039/*
2040 * This value is the sum of all of the kvm instances's
2041 * kvm->arch.n_used_mmu_pages values. We need a global,
2042 * aggregate version in order to make the slab shrinker
2043 * faster
2044 */
bc8a3d89 2045static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2046{
2047 kvm->arch.n_used_mmu_pages += nr;
2048 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2049}
2050
834be0d8 2051static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2052{
fa4a2c08 2053 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2054 hlist_del(&sp->hash_link);
bd4c86ea
XG
2055 list_del(&sp->link);
2056 free_page((unsigned long)sp->spt);
834be0d8
GN
2057 if (!sp->role.direct)
2058 free_page((unsigned long)sp->gfns);
e8ad9a70 2059 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2060}
2061
cea0f0e7
AK
2062static unsigned kvm_page_table_hashfn(gfn_t gfn)
2063{
114df303 2064 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2065}
2066
714b93da 2067static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2068 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2069{
cea0f0e7
AK
2070 if (!parent_pte)
2071 return;
cea0f0e7 2072
67052b35 2073 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2074}
2075
4db35314 2076static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2077 u64 *parent_pte)
2078{
8daf3462 2079 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2080}
2081
bcdd9a93
XG
2082static void drop_parent_pte(struct kvm_mmu_page *sp,
2083 u64 *parent_pte)
2084{
2085 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2086 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2087}
2088
47005792 2089static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2090{
67052b35 2091 struct kvm_mmu_page *sp;
7ddca7e4 2092
80feb89a
TY
2093 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2094 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2095 if (!direct)
80feb89a 2096 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
2097 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2098 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2099 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2100 return sp;
ad8cfbe3
MT
2101}
2102
67052b35 2103static void mark_unsync(u64 *spte);
1047df1f 2104static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2105{
74c4e63a
TY
2106 u64 *sptep;
2107 struct rmap_iterator iter;
2108
2109 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2110 mark_unsync(sptep);
2111 }
0074ff63
MT
2112}
2113
67052b35 2114static void mark_unsync(u64 *spte)
0074ff63 2115{
67052b35 2116 struct kvm_mmu_page *sp;
1047df1f 2117 unsigned int index;
0074ff63 2118
67052b35 2119 sp = page_header(__pa(spte));
1047df1f
XG
2120 index = spte - sp->spt;
2121 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2122 return;
1047df1f 2123 if (sp->unsync_children++)
0074ff63 2124 return;
1047df1f 2125 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2126}
2127
e8bc217a 2128static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2129 struct kvm_mmu_page *sp)
e8bc217a 2130{
1f50f1b3 2131 return 0;
e8bc217a
MT
2132}
2133
7eb77e9f 2134static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2135{
2136}
2137
0f53b5b1
XG
2138static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2139 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2140 const void *pte)
0f53b5b1
XG
2141{
2142 WARN_ON(1);
2143}
2144
60c8aec6
MT
2145#define KVM_PAGE_ARRAY_NR 16
2146
2147struct kvm_mmu_pages {
2148 struct mmu_page_and_offset {
2149 struct kvm_mmu_page *sp;
2150 unsigned int idx;
2151 } page[KVM_PAGE_ARRAY_NR];
2152 unsigned int nr;
2153};
2154
cded19f3
HE
2155static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2156 int idx)
4731d4c7 2157{
60c8aec6 2158 int i;
4731d4c7 2159
60c8aec6
MT
2160 if (sp->unsync)
2161 for (i=0; i < pvec->nr; i++)
2162 if (pvec->page[i].sp == sp)
2163 return 0;
2164
2165 pvec->page[pvec->nr].sp = sp;
2166 pvec->page[pvec->nr].idx = idx;
2167 pvec->nr++;
2168 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2169}
2170
fd951457
TY
2171static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2172{
2173 --sp->unsync_children;
2174 WARN_ON((int)sp->unsync_children < 0);
2175 __clear_bit(idx, sp->unsync_child_bitmap);
2176}
2177
60c8aec6
MT
2178static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2179 struct kvm_mmu_pages *pvec)
2180{
2181 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2182
37178b8b 2183 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2184 struct kvm_mmu_page *child;
4731d4c7
MT
2185 u64 ent = sp->spt[i];
2186
fd951457
TY
2187 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2188 clear_unsync_child_bit(sp, i);
2189 continue;
2190 }
7a8f1a74
XG
2191
2192 child = page_header(ent & PT64_BASE_ADDR_MASK);
2193
2194 if (child->unsync_children) {
2195 if (mmu_pages_add(pvec, child, i))
2196 return -ENOSPC;
2197
2198 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2199 if (!ret) {
2200 clear_unsync_child_bit(sp, i);
2201 continue;
2202 } else if (ret > 0) {
7a8f1a74 2203 nr_unsync_leaf += ret;
fd951457 2204 } else
7a8f1a74
XG
2205 return ret;
2206 } else if (child->unsync) {
2207 nr_unsync_leaf++;
2208 if (mmu_pages_add(pvec, child, i))
2209 return -ENOSPC;
2210 } else
fd951457 2211 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2212 }
2213
60c8aec6
MT
2214 return nr_unsync_leaf;
2215}
2216
e23d3fef
XG
2217#define INVALID_INDEX (-1)
2218
60c8aec6
MT
2219static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2220 struct kvm_mmu_pages *pvec)
2221{
0a47cd85 2222 pvec->nr = 0;
60c8aec6
MT
2223 if (!sp->unsync_children)
2224 return 0;
2225
e23d3fef 2226 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2227 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2228}
2229
4731d4c7
MT
2230static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2231{
2232 WARN_ON(!sp->unsync);
5e1b3ddb 2233 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2234 sp->unsync = 0;
2235 --kvm->stat.mmu_unsync;
2236}
2237
83cdb568
SC
2238static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2239 struct list_head *invalid_list);
7775834a
XG
2240static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2241 struct list_head *invalid_list);
4731d4c7 2242
47c42e6b 2243
f3414bc7 2244#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2245 hlist_for_each_entry(_sp, \
2246 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
ea145aac 2247 if ((_sp)->role.invalid) { \
f3414bc7 2248 } else
1044b030
TY
2249
2250#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2251 for_each_valid_sp(_kvm, _sp, _gfn) \
2252 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2253
47c42e6b
SC
2254static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2255{
2256 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2257}
2258
f918b443 2259/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2260static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2261 struct list_head *invalid_list)
4731d4c7 2262{
47c42e6b
SC
2263 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2264 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2265 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2266 return false;
4731d4c7
MT
2267 }
2268
1f50f1b3 2269 return true;
4731d4c7
MT
2270}
2271
a2113634
SC
2272static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2273 struct list_head *invalid_list,
2274 bool remote_flush)
2275{
cfd32acf 2276 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2277 return false;
2278
2279 if (!list_empty(invalid_list))
2280 kvm_mmu_commit_zap_page(kvm, invalid_list);
2281 else
2282 kvm_flush_remote_tlbs(kvm);
2283 return true;
2284}
2285
35a70510
PB
2286static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2287 struct list_head *invalid_list,
2288 bool remote_flush, bool local_flush)
1d9dc7e0 2289{
a2113634 2290 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2291 return;
d98ba053 2292
a2113634 2293 if (local_flush)
35a70510 2294 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2295}
2296
e37fa785
XG
2297#ifdef CONFIG_KVM_MMU_AUDIT
2298#include "mmu_audit.c"
2299#else
2300static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2301static void mmu_audit_disable(void) { }
2302#endif
2303
1f50f1b3 2304static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2305 struct list_head *invalid_list)
1d9dc7e0 2306{
9a43c5d9
PB
2307 kvm_unlink_unsync_page(vcpu->kvm, sp);
2308 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2309}
2310
9f1a122f 2311/* @gfn should be write-protected at the call site */
2a74003a
PB
2312static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2313 struct list_head *invalid_list)
9f1a122f 2314{
9f1a122f 2315 struct kvm_mmu_page *s;
2a74003a 2316 bool ret = false;
9f1a122f 2317
b67bfe0d 2318 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2319 if (!s->unsync)
9f1a122f
XG
2320 continue;
2321
2322 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2323 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2324 }
2325
2a74003a 2326 return ret;
9f1a122f
XG
2327}
2328
60c8aec6 2329struct mmu_page_path {
2a7266a8
YZ
2330 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2331 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2332};
2333
60c8aec6 2334#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2335 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2336 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2337 i = mmu_pages_next(&pvec, &parents, i))
2338
cded19f3
HE
2339static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2340 struct mmu_page_path *parents,
2341 int i)
60c8aec6
MT
2342{
2343 int n;
2344
2345 for (n = i+1; n < pvec->nr; n++) {
2346 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2347 unsigned idx = pvec->page[n].idx;
2348 int level = sp->role.level;
60c8aec6 2349
0a47cd85
PB
2350 parents->idx[level-1] = idx;
2351 if (level == PT_PAGE_TABLE_LEVEL)
2352 break;
60c8aec6 2353
0a47cd85 2354 parents->parent[level-2] = sp;
60c8aec6
MT
2355 }
2356
2357 return n;
2358}
2359
0a47cd85
PB
2360static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2361 struct mmu_page_path *parents)
2362{
2363 struct kvm_mmu_page *sp;
2364 int level;
2365
2366 if (pvec->nr == 0)
2367 return 0;
2368
e23d3fef
XG
2369 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2370
0a47cd85
PB
2371 sp = pvec->page[0].sp;
2372 level = sp->role.level;
2373 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2374
2375 parents->parent[level-2] = sp;
2376
2377 /* Also set up a sentinel. Further entries in pvec are all
2378 * children of sp, so this element is never overwritten.
2379 */
2380 parents->parent[level-1] = NULL;
2381 return mmu_pages_next(pvec, parents, 0);
2382}
2383
cded19f3 2384static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2385{
60c8aec6
MT
2386 struct kvm_mmu_page *sp;
2387 unsigned int level = 0;
2388
2389 do {
2390 unsigned int idx = parents->idx[level];
60c8aec6
MT
2391 sp = parents->parent[level];
2392 if (!sp)
2393 return;
2394
e23d3fef 2395 WARN_ON(idx == INVALID_INDEX);
fd951457 2396 clear_unsync_child_bit(sp, idx);
60c8aec6 2397 level++;
0a47cd85 2398 } while (!sp->unsync_children);
60c8aec6 2399}
4731d4c7 2400
60c8aec6
MT
2401static void mmu_sync_children(struct kvm_vcpu *vcpu,
2402 struct kvm_mmu_page *parent)
2403{
2404 int i;
2405 struct kvm_mmu_page *sp;
2406 struct mmu_page_path parents;
2407 struct kvm_mmu_pages pages;
d98ba053 2408 LIST_HEAD(invalid_list);
50c9e6f3 2409 bool flush = false;
60c8aec6 2410
60c8aec6 2411 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2412 bool protected = false;
b1a36821
MT
2413
2414 for_each_sp(pages, sp, parents, i)
54bf36aa 2415 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2416
50c9e6f3 2417 if (protected) {
b1a36821 2418 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2419 flush = false;
2420 }
b1a36821 2421
60c8aec6 2422 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2423 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2424 mmu_pages_clear_parents(&parents);
2425 }
50c9e6f3
PB
2426 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2427 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2428 cond_resched_lock(&vcpu->kvm->mmu_lock);
2429 flush = false;
2430 }
60c8aec6 2431 }
50c9e6f3
PB
2432
2433 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2434}
2435
a30f47cb
XG
2436static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2437{
e5691a81 2438 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2439}
2440
2441static void clear_sp_write_flooding_count(u64 *spte)
2442{
2443 struct kvm_mmu_page *sp = page_header(__pa(spte));
2444
2445 __clear_sp_write_flooding_count(sp);
2446}
2447
cea0f0e7
AK
2448static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2449 gfn_t gfn,
2450 gva_t gaddr,
2451 unsigned level,
f6e2c02b 2452 int direct,
bb11c6c9 2453 unsigned access)
cea0f0e7
AK
2454{
2455 union kvm_mmu_page_role role;
cea0f0e7 2456 unsigned quadrant;
9f1a122f 2457 struct kvm_mmu_page *sp;
9f1a122f 2458 bool need_sync = false;
2a74003a 2459 bool flush = false;
f3414bc7 2460 int collisions = 0;
2a74003a 2461 LIST_HEAD(invalid_list);
cea0f0e7 2462
36d9594d 2463 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2464 role.level = level;
f6e2c02b 2465 role.direct = direct;
84b0c8c6 2466 if (role.direct)
47c42e6b 2467 role.gpte_is_8_bytes = true;
41074d07 2468 role.access = access;
44dd3ffa
VK
2469 if (!vcpu->arch.mmu->direct_map
2470 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2471 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2472 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2473 role.quadrant = quadrant;
2474 }
f3414bc7
DM
2475 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2476 if (sp->gfn != gfn) {
2477 collisions++;
2478 continue;
2479 }
2480
7ae680eb
XG
2481 if (!need_sync && sp->unsync)
2482 need_sync = true;
4731d4c7 2483
7ae680eb
XG
2484 if (sp->role.word != role.word)
2485 continue;
4731d4c7 2486
2a74003a
PB
2487 if (sp->unsync) {
2488 /* The page is good, but __kvm_sync_page might still end
2489 * up zapping it. If so, break in order to rebuild it.
2490 */
2491 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2492 break;
2493
2494 WARN_ON(!list_empty(&invalid_list));
2495 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2496 }
e02aa901 2497
98bba238 2498 if (sp->unsync_children)
a8eeb04a 2499 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2500
a30f47cb 2501 __clear_sp_write_flooding_count(sp);
7ae680eb 2502 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2503 goto out;
7ae680eb 2504 }
47005792 2505
dfc5aa00 2506 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2507
2508 sp = kvm_mmu_alloc_page(vcpu, direct);
2509
4db35314
AK
2510 sp->gfn = gfn;
2511 sp->role = role;
7ae680eb
XG
2512 hlist_add_head(&sp->hash_link,
2513 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2514 if (!direct) {
56ca57f9
XG
2515 /*
2516 * we should do write protection before syncing pages
2517 * otherwise the content of the synced shadow page may
2518 * be inconsistent with guest page table.
2519 */
2520 account_shadowed(vcpu->kvm, sp);
2521 if (level == PT_PAGE_TABLE_LEVEL &&
2522 rmap_write_protect(vcpu, gfn))
c3134ce2 2523 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2524
9f1a122f 2525 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2526 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2527 }
77492664 2528 clear_page(sp->spt);
f691fe1d 2529 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2530
2531 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2532out:
2533 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2534 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2535 return sp;
cea0f0e7
AK
2536}
2537
7eb77e9f
JS
2538static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2539 struct kvm_vcpu *vcpu, hpa_t root,
2540 u64 addr)
2d11123a
AK
2541{
2542 iterator->addr = addr;
7eb77e9f 2543 iterator->shadow_addr = root;
44dd3ffa 2544 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2545
2a7266a8 2546 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2547 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2548 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2549 --iterator->level;
2550
2d11123a 2551 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2552 /*
2553 * prev_root is currently only used for 64-bit hosts. So only
2554 * the active root_hpa is valid here.
2555 */
44dd3ffa 2556 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2557
2d11123a 2558 iterator->shadow_addr
44dd3ffa 2559 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2560 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2561 --iterator->level;
2562 if (!iterator->shadow_addr)
2563 iterator->level = 0;
2564 }
2565}
2566
7eb77e9f
JS
2567static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2568 struct kvm_vcpu *vcpu, u64 addr)
2569{
44dd3ffa 2570 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2571 addr);
2572}
2573
2d11123a
AK
2574static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2575{
2576 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2577 return false;
4d88954d 2578
2d11123a
AK
2579 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2580 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2581 return true;
2582}
2583
c2a2ac2b
XG
2584static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2585 u64 spte)
2d11123a 2586{
c2a2ac2b 2587 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2588 iterator->level = 0;
2589 return;
2590 }
2591
c2a2ac2b 2592 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2593 --iterator->level;
2594}
2595
c2a2ac2b
XG
2596static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2597{
bb606a9b 2598 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2599}
2600
98bba238
TY
2601static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2602 struct kvm_mmu_page *sp)
32ef26a3
AK
2603{
2604 u64 spte;
2605
ffb128c8 2606 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2607
ffb128c8 2608 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2609 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2610
2611 if (sp_ad_disabled(sp))
2612 spte |= shadow_acc_track_value;
2613 else
2614 spte |= shadow_accessed_mask;
24db2734 2615
1df9f2dc 2616 mmu_spte_set(sptep, spte);
98bba238
TY
2617
2618 mmu_page_add_parent_pte(vcpu, sp, sptep);
2619
2620 if (sp->unsync_children || sp->unsync)
2621 mark_unsync(sptep);
32ef26a3
AK
2622}
2623
a357bd22
AK
2624static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2625 unsigned direct_access)
2626{
2627 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2628 struct kvm_mmu_page *child;
2629
2630 /*
2631 * For the direct sp, if the guest pte's dirty bit
2632 * changed form clean to dirty, it will corrupt the
2633 * sp's access: allow writable in the read-only sp,
2634 * so we should update the spte at this point to get
2635 * a new sp with the correct access.
2636 */
2637 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2638 if (child->role.access == direct_access)
2639 return;
2640
bcdd9a93 2641 drop_parent_pte(child, sptep);
c3134ce2 2642 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2643 }
2644}
2645
505aef8f 2646static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2647 u64 *spte)
2648{
2649 u64 pte;
2650 struct kvm_mmu_page *child;
2651
2652 pte = *spte;
2653 if (is_shadow_present_pte(pte)) {
505aef8f 2654 if (is_last_spte(pte, sp->role.level)) {
c3707958 2655 drop_spte(kvm, spte);
505aef8f
XG
2656 if (is_large_pte(pte))
2657 --kvm->stat.lpages;
2658 } else {
38e3b2b2 2659 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2660 drop_parent_pte(child, spte);
38e3b2b2 2661 }
505aef8f
XG
2662 return true;
2663 }
2664
2665 if (is_mmio_spte(pte))
ce88decf 2666 mmu_spte_clear_no_track(spte);
c3707958 2667
505aef8f 2668 return false;
38e3b2b2
XG
2669}
2670
90cb0529 2671static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2672 struct kvm_mmu_page *sp)
a436036b 2673{
697fe2e2 2674 unsigned i;
697fe2e2 2675
38e3b2b2
XG
2676 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2677 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2678}
2679
31aa2b44 2680static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2681{
1e3f42f0
TY
2682 u64 *sptep;
2683 struct rmap_iterator iter;
a436036b 2684
018aabb5 2685 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2686 drop_parent_pte(sp, sptep);
31aa2b44
AK
2687}
2688
60c8aec6 2689static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2690 struct kvm_mmu_page *parent,
2691 struct list_head *invalid_list)
4731d4c7 2692{
60c8aec6
MT
2693 int i, zapped = 0;
2694 struct mmu_page_path parents;
2695 struct kvm_mmu_pages pages;
4731d4c7 2696
60c8aec6 2697 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2698 return 0;
60c8aec6 2699
60c8aec6
MT
2700 while (mmu_unsync_walk(parent, &pages)) {
2701 struct kvm_mmu_page *sp;
2702
2703 for_each_sp(pages, sp, parents, i) {
7775834a 2704 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2705 mmu_pages_clear_parents(&parents);
77662e00 2706 zapped++;
60c8aec6 2707 }
60c8aec6
MT
2708 }
2709
2710 return zapped;
4731d4c7
MT
2711}
2712
83cdb568
SC
2713static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2714 struct kvm_mmu_page *sp,
2715 struct list_head *invalid_list,
2716 int *nr_zapped)
31aa2b44 2717{
83cdb568 2718 bool list_unstable;
f691fe1d 2719
7775834a 2720 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2721 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2722 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2723 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2724 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2725
83cdb568
SC
2726 /* Zapping children means active_mmu_pages has become unstable. */
2727 list_unstable = *nr_zapped;
2728
f6e2c02b 2729 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2730 unaccount_shadowed(kvm, sp);
5304b8d3 2731
4731d4c7
MT
2732 if (sp->unsync)
2733 kvm_unlink_unsync_page(kvm, sp);
4db35314 2734 if (!sp->root_count) {
54a4f023 2735 /* Count self */
83cdb568 2736 (*nr_zapped)++;
7775834a 2737 list_move(&sp->link, invalid_list);
aa6bd187 2738 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2739 } else {
5b5c6a5a 2740 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2741
5ff05683 2742 if (!sp->role.invalid)
05988d72 2743 kvm_reload_remote_mmus(kvm);
2e53d63a 2744 }
7775834a
XG
2745
2746 sp->role.invalid = 1;
83cdb568
SC
2747 return list_unstable;
2748}
2749
2750static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2751 struct list_head *invalid_list)
2752{
2753 int nr_zapped;
2754
2755 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2756 return nr_zapped;
a436036b
AK
2757}
2758
7775834a
XG
2759static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2760 struct list_head *invalid_list)
2761{
945315b9 2762 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2763
2764 if (list_empty(invalid_list))
2765 return;
2766
c142786c 2767 /*
9753f529
LT
2768 * We need to make sure everyone sees our modifications to
2769 * the page tables and see changes to vcpu->mode here. The barrier
2770 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2771 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2772 *
2773 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2774 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2775 */
2776 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2777
945315b9 2778 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2779 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2780 kvm_mmu_free_page(sp);
945315b9 2781 }
7775834a
XG
2782}
2783
5da59607
TY
2784static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2785 struct list_head *invalid_list)
2786{
2787 struct kvm_mmu_page *sp;
2788
2789 if (list_empty(&kvm->arch.active_mmu_pages))
2790 return false;
2791
d74c0e6b
GT
2792 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2793 struct kvm_mmu_page, link);
42bcbebf 2794 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2795}
2796
82ce2c96
IE
2797/*
2798 * Changing the number of mmu pages allocated to the vm
49d5ca26 2799 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2800 */
bc8a3d89 2801void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2802{
d98ba053 2803 LIST_HEAD(invalid_list);
82ce2c96 2804
b34cb590
TY
2805 spin_lock(&kvm->mmu_lock);
2806
49d5ca26 2807 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2808 /* Need to free some mmu pages to achieve the goal. */
2809 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2810 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2811 break;
82ce2c96 2812
aa6bd187 2813 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2814 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2815 }
82ce2c96 2816
49d5ca26 2817 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2818
2819 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2820}
2821
1cb3f3ae 2822int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2823{
4db35314 2824 struct kvm_mmu_page *sp;
d98ba053 2825 LIST_HEAD(invalid_list);
a436036b
AK
2826 int r;
2827
9ad17b10 2828 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2829 r = 0;
1cb3f3ae 2830 spin_lock(&kvm->mmu_lock);
b67bfe0d 2831 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2832 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2833 sp->role.word);
2834 r = 1;
f41d335a 2835 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2836 }
d98ba053 2837 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2838 spin_unlock(&kvm->mmu_lock);
2839
a436036b 2840 return r;
cea0f0e7 2841}
1cb3f3ae 2842EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2843
5c520e90 2844static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2845{
2846 trace_kvm_mmu_unsync_page(sp);
2847 ++vcpu->kvm->stat.mmu_unsync;
2848 sp->unsync = 1;
2849
2850 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2851}
2852
3d0c27ad
XG
2853static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2854 bool can_unsync)
4731d4c7 2855{
5c520e90 2856 struct kvm_mmu_page *sp;
4731d4c7 2857
3d0c27ad
XG
2858 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2859 return true;
9cf5cf5a 2860
5c520e90 2861 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2862 if (!can_unsync)
3d0c27ad 2863 return true;
36a2e677 2864
5c520e90
XG
2865 if (sp->unsync)
2866 continue;
9cf5cf5a 2867
5c520e90
XG
2868 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2869 kvm_unsync_page(vcpu, sp);
4731d4c7 2870 }
3d0c27ad 2871
578e1c4d
JS
2872 /*
2873 * We need to ensure that the marking of unsync pages is visible
2874 * before the SPTE is updated to allow writes because
2875 * kvm_mmu_sync_roots() checks the unsync flags without holding
2876 * the MMU lock and so can race with this. If the SPTE was updated
2877 * before the page had been marked as unsync-ed, something like the
2878 * following could happen:
2879 *
2880 * CPU 1 CPU 2
2881 * ---------------------------------------------------------------------
2882 * 1.2 Host updates SPTE
2883 * to be writable
2884 * 2.1 Guest writes a GPTE for GVA X.
2885 * (GPTE being in the guest page table shadowed
2886 * by the SP from CPU 1.)
2887 * This reads SPTE during the page table walk.
2888 * Since SPTE.W is read as 1, there is no
2889 * fault.
2890 *
2891 * 2.2 Guest issues TLB flush.
2892 * That causes a VM Exit.
2893 *
2894 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2895 * Since it is false, so it just returns.
2896 *
2897 * 2.4 Guest accesses GVA X.
2898 * Since the mapping in the SP was not updated,
2899 * so the old mapping for GVA X incorrectly
2900 * gets used.
2901 * 1.1 Host marks SP
2902 * as unsync
2903 * (sp->unsync = true)
2904 *
2905 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2906 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2907 * pairs with this write barrier.
2908 */
2909 smp_wmb();
2910
3d0c27ad 2911 return false;
4731d4c7
MT
2912}
2913
ba049e93 2914static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2915{
2916 if (pfn_valid(pfn))
aa2e063a
HZ
2917 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2918 /*
2919 * Some reserved pages, such as those from NVDIMM
2920 * DAX devices, are not for MMIO, and can be mapped
2921 * with cached memory type for better performance.
2922 * However, the above check misconceives those pages
2923 * as MMIO, and results in KVM mapping them with UC
2924 * memory type, which would hurt the performance.
2925 * Therefore, we check the host memory type in addition
2926 * and only treat UC/UC-/WC pages as MMIO.
2927 */
2928 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2929
0c55671f
KA
2930 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2931 pfn_to_hpa(pfn + 1) - 1,
2932 E820_TYPE_RAM);
d1fe9219
PB
2933}
2934
5ce4786f
JS
2935/* Bits which may be returned by set_spte() */
2936#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2937#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2938
d555c333 2939static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2940 unsigned pte_access, int level,
ba049e93 2941 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2942 bool can_unsync, bool host_writable)
1c4f1fd6 2943{
ffb128c8 2944 u64 spte = 0;
1e73f9dd 2945 int ret = 0;
ac8d57e5 2946 struct kvm_mmu_page *sp;
64d4d521 2947
54bf36aa 2948 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2949 return 0;
2950
ac8d57e5
PF
2951 sp = page_header(__pa(sptep));
2952 if (sp_ad_disabled(sp))
2953 spte |= shadow_acc_track_value;
2954
d95c5568
BD
2955 /*
2956 * For the EPT case, shadow_present_mask is 0 if hardware
2957 * supports exec-only page table entries. In that case,
2958 * ACC_USER_MASK and shadow_user_mask are used to represent
2959 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2960 */
ffb128c8 2961 spte |= shadow_present_mask;
947da538 2962 if (!speculative)
ac8d57e5 2963 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2964
7b52345e
SY
2965 if (pte_access & ACC_EXEC_MASK)
2966 spte |= shadow_x_mask;
2967 else
2968 spte |= shadow_nx_mask;
49fde340 2969
1c4f1fd6 2970 if (pte_access & ACC_USER_MASK)
7b52345e 2971 spte |= shadow_user_mask;
49fde340 2972
852e3c19 2973 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2974 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2975 if (tdp_enabled)
4b12f0de 2976 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2977 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2978
9bdbba13 2979 if (host_writable)
1403283a 2980 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2981 else
2982 pte_access &= ~ACC_WRITE_MASK;
1403283a 2983
daaf216c
TL
2984 if (!kvm_is_mmio_pfn(pfn))
2985 spte |= shadow_me_mask;
2986
35149e21 2987 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2988
c2288505 2989 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2990
c2193463 2991 /*
7751babd
XG
2992 * Other vcpu creates new sp in the window between
2993 * mapping_level() and acquiring mmu-lock. We can
2994 * allow guest to retry the access, the mapping can
2995 * be fixed if guest refault.
c2193463 2996 */
852e3c19 2997 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2998 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2999 goto done;
38187c83 3000
49fde340 3001 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3002
ecc5589f
MT
3003 /*
3004 * Optimization: for pte sync, if spte was writable the hash
3005 * lookup is unnecessary (and expensive). Write protection
3006 * is responsibility of mmu_get_page / kvm_sync_page.
3007 * Same reasoning can be applied to dirty page accounting.
3008 */
8dae4445 3009 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3010 goto set_pte;
3011
4731d4c7 3012 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3013 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3014 __func__, gfn);
5ce4786f 3015 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3016 pte_access &= ~ACC_WRITE_MASK;
49fde340 3017 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3018 }
3019 }
3020
9b51a630 3021 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3022 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3023 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3024 }
1c4f1fd6 3025
f160c7b7
JS
3026 if (speculative)
3027 spte = mark_spte_for_access_track(spte);
3028
38187c83 3029set_pte:
6e7d0354 3030 if (mmu_spte_update(sptep, spte))
5ce4786f 3031 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 3032done:
1e73f9dd
MT
3033 return ret;
3034}
3035
9b8ebbdb
PB
3036static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3037 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3038 bool speculative, bool host_writable)
1e73f9dd
MT
3039{
3040 int was_rmapped = 0;
53a27b39 3041 int rmap_count;
5ce4786f 3042 int set_spte_ret;
9b8ebbdb 3043 int ret = RET_PF_RETRY;
c2a4eadf 3044 bool flush = false;
1e73f9dd 3045
f7616203
XG
3046 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3047 *sptep, write_fault, gfn);
1e73f9dd 3048
afd28fe1 3049 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3050 /*
3051 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3052 * the parent of the now unreachable PTE.
3053 */
852e3c19
JR
3054 if (level > PT_PAGE_TABLE_LEVEL &&
3055 !is_large_pte(*sptep)) {
1e73f9dd 3056 struct kvm_mmu_page *child;
d555c333 3057 u64 pte = *sptep;
1e73f9dd
MT
3058
3059 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3060 drop_parent_pte(child, sptep);
c2a4eadf 3061 flush = true;
d555c333 3062 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3063 pgprintk("hfn old %llx new %llx\n",
d555c333 3064 spte_to_pfn(*sptep), pfn);
c3707958 3065 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3066 flush = true;
6bed6b9e
JR
3067 } else
3068 was_rmapped = 1;
1e73f9dd 3069 }
852e3c19 3070
5ce4786f
JS
3071 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3072 speculative, true, host_writable);
3073 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3074 if (write_fault)
9b8ebbdb 3075 ret = RET_PF_EMULATE;
77c3913b 3076 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3077 }
c3134ce2 3078
c2a4eadf 3079 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3080 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3081 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3082
029499b4 3083 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3084 ret = RET_PF_EMULATE;
ce88decf 3085
d555c333 3086 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3087 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3088 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3089 ++vcpu->kvm->stat.lpages;
3090
ffb61bb3 3091 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3092 if (!was_rmapped) {
3093 rmap_count = rmap_add(vcpu, sptep, gfn);
3094 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3095 rmap_recycle(vcpu, sptep, gfn);
3096 }
1c4f1fd6 3097 }
cb9aaa30 3098
9b8ebbdb 3099 return ret;
1c4f1fd6
AK
3100}
3101
ba049e93 3102static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3103 bool no_dirty_log)
3104{
3105 struct kvm_memory_slot *slot;
957ed9ef 3106
5d163b1c 3107 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3108 if (!slot)
6c8ee57b 3109 return KVM_PFN_ERR_FAULT;
957ed9ef 3110
037d92dc 3111 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3112}
3113
3114static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3115 struct kvm_mmu_page *sp,
3116 u64 *start, u64 *end)
3117{
3118 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3119 struct kvm_memory_slot *slot;
957ed9ef
XG
3120 unsigned access = sp->role.access;
3121 int i, ret;
3122 gfn_t gfn;
3123
3124 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3125 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3126 if (!slot)
957ed9ef
XG
3127 return -1;
3128
d9ef13c2 3129 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3130 if (ret <= 0)
3131 return -1;
3132
43fdcda9 3133 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3134 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3135 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3136 put_page(pages[i]);
3137 }
957ed9ef
XG
3138
3139 return 0;
3140}
3141
3142static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3143 struct kvm_mmu_page *sp, u64 *sptep)
3144{
3145 u64 *spte, *start = NULL;
3146 int i;
3147
3148 WARN_ON(!sp->role.direct);
3149
3150 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3151 spte = sp->spt + i;
3152
3153 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3154 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3155 if (!start)
3156 continue;
3157 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3158 break;
3159 start = NULL;
3160 } else if (!start)
3161 start = spte;
3162 }
3163}
3164
3165static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3166{
3167 struct kvm_mmu_page *sp;
3168
ac8d57e5
PF
3169 sp = page_header(__pa(sptep));
3170
957ed9ef 3171 /*
ac8d57e5
PF
3172 * Without accessed bits, there's no way to distinguish between
3173 * actually accessed translations and prefetched, so disable pte
3174 * prefetch if accessed bits aren't available.
957ed9ef 3175 */
ac8d57e5 3176 if (sp_ad_disabled(sp))
957ed9ef
XG
3177 return;
3178
957ed9ef
XG
3179 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3180 return;
3181
3182 __direct_pte_prefetch(vcpu, sp, sptep);
3183}
3184
3fcf2d1b
PB
3185static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3186 int map_writable, int level, kvm_pfn_t pfn,
3187 bool prefault)
140754bc 3188{
3fcf2d1b 3189 struct kvm_shadow_walk_iterator it;
140754bc 3190 struct kvm_mmu_page *sp;
3fcf2d1b
PB
3191 int ret;
3192 gfn_t gfn = gpa >> PAGE_SHIFT;
3193 gfn_t base_gfn = gfn;
6aa8b732 3194
44dd3ffa 3195 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3fcf2d1b 3196 return RET_PF_RETRY;
989c6b34 3197
335e192a 3198 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b
PB
3199 for_each_shadow_entry(vcpu, gpa, it) {
3200 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3201 if (it.level == level)
9f652d21 3202 break;
6aa8b732 3203
3fcf2d1b
PB
3204 drop_large_spte(vcpu, it.sptep);
3205 if (!is_shadow_present_pte(*it.sptep)) {
3206 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3207 it.level - 1, true, ACC_ALL);
c9fa0b3b 3208
3fcf2d1b 3209 link_shadow_page(vcpu, it.sptep, sp);
9f652d21
AK
3210 }
3211 }
3fcf2d1b
PB
3212
3213 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3214 write, level, base_gfn, pfn, prefault,
3215 map_writable);
3216 direct_pte_prefetch(vcpu, it.sptep);
3217 ++vcpu->stat.pf_fixed;
3218 return ret;
6aa8b732
AK
3219}
3220
77db5cbd 3221static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3222{
585a8b9b 3223 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3224}
3225
ba049e93 3226static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3227{
4d8b81ab
XG
3228 /*
3229 * Do not cache the mmio info caused by writing the readonly gfn
3230 * into the spte otherwise read access on readonly gfn also can
3231 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3232 */
3233 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3234 return RET_PF_EMULATE;
4d8b81ab 3235
e6c1502b 3236 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3237 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3238 return RET_PF_RETRY;
d7c55201 3239 }
edba23e5 3240
2c151b25 3241 return -EFAULT;
bf998156
HY
3242}
3243
936a5fe6 3244static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
d679b326 3245 gfn_t gfn, kvm_pfn_t *pfnp,
ba049e93 3246 int *levelp)
936a5fe6 3247{
ba049e93 3248 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3249 int level = *levelp;
3250
3251 /*
3252 * Check if it's a transparent hugepage. If this would be an
3253 * hugetlbfs page, level wouldn't be set to
3254 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3255 * here.
3256 */
bf4bea8e 3257 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3258 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3259 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3260 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3261 unsigned long mask;
3262 /*
3263 * mmu_notifier_retry was successful and we hold the
3264 * mmu_lock here, so the pmd can't become splitting
3265 * from under us, and in turn
3266 * __split_huge_page_refcount() can't run from under
3267 * us and we can safely transfer the refcount from
3268 * PG_tail to PG_head as we switch the pfn to tail to
3269 * head.
3270 */
3271 *levelp = level = PT_DIRECTORY_LEVEL;
3272 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3273 VM_BUG_ON((gfn & mask) != (pfn & mask));
3274 if (pfn & mask) {
936a5fe6
AA
3275 kvm_release_pfn_clean(pfn);
3276 pfn &= ~mask;
c3586667 3277 kvm_get_pfn(pfn);
936a5fe6
AA
3278 *pfnp = pfn;
3279 }
3280 }
3281}
3282
d7c55201 3283static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3284 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3285{
d7c55201 3286 /* The pfn is invalid, report the error! */
81c52c56 3287 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3288 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3289 return true;
d7c55201
XG
3290 }
3291
ce88decf 3292 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3293 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3294
798e88b3 3295 return false;
d7c55201
XG
3296}
3297
e5552fd2 3298static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3299{
1c118b82
XG
3300 /*
3301 * Do not fix the mmio spte with invalid generation number which
3302 * need to be updated by slow page fault path.
3303 */
3304 if (unlikely(error_code & PFERR_RSVD_MASK))
3305 return false;
3306
f160c7b7
JS
3307 /* See if the page fault is due to an NX violation */
3308 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3309 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3310 return false;
3311
c7ba5b48 3312 /*
f160c7b7
JS
3313 * #PF can be fast if:
3314 * 1. The shadow page table entry is not present, which could mean that
3315 * the fault is potentially caused by access tracking (if enabled).
3316 * 2. The shadow page table entry is present and the fault
3317 * is caused by write-protect, that means we just need change the W
3318 * bit of the spte which can be done out of mmu-lock.
3319 *
3320 * However, if access tracking is disabled we know that a non-present
3321 * page must be a genuine page fault where we have to create a new SPTE.
3322 * So, if access tracking is disabled, we return true only for write
3323 * accesses to a present page.
c7ba5b48 3324 */
c7ba5b48 3325
f160c7b7
JS
3326 return shadow_acc_track_mask != 0 ||
3327 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3328 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3329}
3330
97dceba2
JS
3331/*
3332 * Returns true if the SPTE was fixed successfully. Otherwise,
3333 * someone else modified the SPTE from its original value.
3334 */
c7ba5b48 3335static bool
92a476cb 3336fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3337 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3338{
c7ba5b48
XG
3339 gfn_t gfn;
3340
3341 WARN_ON(!sp->role.direct);
3342
9b51a630
KH
3343 /*
3344 * Theoretically we could also set dirty bit (and flush TLB) here in
3345 * order to eliminate unnecessary PML logging. See comments in
3346 * set_spte. But fast_page_fault is very unlikely to happen with PML
3347 * enabled, so we do not do this. This might result in the same GPA
3348 * to be logged in PML buffer again when the write really happens, and
3349 * eventually to be called by mark_page_dirty twice. But it's also no
3350 * harm. This also avoids the TLB flush needed after setting dirty bit
3351 * so non-PML cases won't be impacted.
3352 *
3353 * Compare with set_spte where instead shadow_dirty_mask is set.
3354 */
f160c7b7 3355 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3356 return false;
3357
d3e328f2 3358 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3359 /*
3360 * The gfn of direct spte is stable since it is
3361 * calculated by sp->gfn.
3362 */
3363 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3364 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3365 }
c7ba5b48
XG
3366
3367 return true;
3368}
3369
d3e328f2
JS
3370static bool is_access_allowed(u32 fault_err_code, u64 spte)
3371{
3372 if (fault_err_code & PFERR_FETCH_MASK)
3373 return is_executable_pte(spte);
3374
3375 if (fault_err_code & PFERR_WRITE_MASK)
3376 return is_writable_pte(spte);
3377
3378 /* Fault was on Read access */
3379 return spte & PT_PRESENT_MASK;
3380}
3381
c7ba5b48
XG
3382/*
3383 * Return value:
3384 * - true: let the vcpu to access on the same address again.
3385 * - false: let the real page fault path to fix it.
3386 */
3387static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3388 u32 error_code)
3389{
3390 struct kvm_shadow_walk_iterator iterator;
92a476cb 3391 struct kvm_mmu_page *sp;
97dceba2 3392 bool fault_handled = false;
c7ba5b48 3393 u64 spte = 0ull;
97dceba2 3394 uint retry_count = 0;
c7ba5b48 3395
44dd3ffa 3396 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3397 return false;
3398
e5552fd2 3399 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3400 return false;
3401
3402 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3403
97dceba2 3404 do {
d3e328f2 3405 u64 new_spte;
c7ba5b48 3406
d162f30a
JS
3407 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3408 if (!is_shadow_present_pte(spte) ||
3409 iterator.level < level)
3410 break;
3411
97dceba2
JS
3412 sp = page_header(__pa(iterator.sptep));
3413 if (!is_last_spte(spte, sp->role.level))
3414 break;
c7ba5b48 3415
97dceba2 3416 /*
f160c7b7
JS
3417 * Check whether the memory access that caused the fault would
3418 * still cause it if it were to be performed right now. If not,
3419 * then this is a spurious fault caused by TLB lazily flushed,
3420 * or some other CPU has already fixed the PTE after the
3421 * current CPU took the fault.
97dceba2
JS
3422 *
3423 * Need not check the access of upper level table entries since
3424 * they are always ACC_ALL.
3425 */
d3e328f2
JS
3426 if (is_access_allowed(error_code, spte)) {
3427 fault_handled = true;
3428 break;
3429 }
f160c7b7 3430
d3e328f2
JS
3431 new_spte = spte;
3432
3433 if (is_access_track_spte(spte))
3434 new_spte = restore_acc_track_spte(new_spte);
3435
3436 /*
3437 * Currently, to simplify the code, write-protection can
3438 * be removed in the fast path only if the SPTE was
3439 * write-protected for dirty-logging or access tracking.
3440 */
3441 if ((error_code & PFERR_WRITE_MASK) &&
3442 spte_can_locklessly_be_made_writable(spte))
3443 {
3444 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3445
3446 /*
d3e328f2
JS
3447 * Do not fix write-permission on the large spte. Since
3448 * we only dirty the first page into the dirty-bitmap in
3449 * fast_pf_fix_direct_spte(), other pages are missed
3450 * if its slot has dirty logging enabled.
3451 *
3452 * Instead, we let the slow page fault path create a
3453 * normal spte to fix the access.
3454 *
3455 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3456 */
d3e328f2 3457 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3458 break;
97dceba2 3459 }
c7ba5b48 3460
f160c7b7 3461 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3462 if (new_spte == spte ||
3463 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3464 break;
3465
3466 /*
3467 * Currently, fast page fault only works for direct mapping
3468 * since the gfn is not stable for indirect shadow page. See
2f5947df 3469 * Documentation/virt/kvm/locking.txt to get more detail.
97dceba2
JS
3470 */
3471 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3472 iterator.sptep, spte,
d3e328f2 3473 new_spte);
97dceba2
JS
3474 if (fault_handled)
3475 break;
3476
3477 if (++retry_count > 4) {
3478 printk_once(KERN_WARNING
3479 "kvm: Fast #PF retrying more than 4 times.\n");
3480 break;
3481 }
3482
97dceba2 3483 } while (true);
c126d94f 3484
a72faf25 3485 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3486 spte, fault_handled);
c7ba5b48
XG
3487 walk_shadow_page_lockless_end(vcpu);
3488
97dceba2 3489 return fault_handled;
c7ba5b48
XG
3490}
3491
78b2c54a 3492static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3493 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3494static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3495
c7ba5b48
XG
3496static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3497 gfn_t gfn, bool prefault)
10589a46
MT
3498{
3499 int r;
852e3c19 3500 int level;
fd136902 3501 bool force_pt_level = false;
ba049e93 3502 kvm_pfn_t pfn;
e930bffe 3503 unsigned long mmu_seq;
c7ba5b48 3504 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3505
fd136902 3506 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3507 if (likely(!force_pt_level)) {
936a5fe6
AA
3508 /*
3509 * This path builds a PAE pagetable - so we can map
3510 * 2mb pages at maximum. Therefore check if the level
3511 * is larger than that.
3512 */
3513 if (level > PT_DIRECTORY_LEVEL)
3514 level = PT_DIRECTORY_LEVEL;
852e3c19 3515
936a5fe6 3516 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3517 }
05da4558 3518
c7ba5b48 3519 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3520 return RET_PF_RETRY;
c7ba5b48 3521
e930bffe 3522 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3523 smp_rmb();
060c2abe 3524
78b2c54a 3525 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3526 return RET_PF_RETRY;
aaee2c94 3527
d7c55201
XG
3528 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3529 return r;
d196e343 3530
43fdcda9 3531 r = RET_PF_RETRY;
aaee2c94 3532 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3533 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3534 goto out_unlock;
26eeb53c
WL
3535 if (make_mmu_pages_available(vcpu) < 0)
3536 goto out_unlock;
936a5fe6 3537 if (likely(!force_pt_level))
d679b326 3538 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3fcf2d1b 3539 r = __direct_map(vcpu, v, write, map_writable, level, pfn, prefault);
e930bffe
AA
3540out_unlock:
3541 spin_unlock(&vcpu->kvm->mmu_lock);
3542 kvm_release_pfn_clean(pfn);
43fdcda9 3543 return r;
10589a46
MT
3544}
3545
74b566e6
JS
3546static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3547 struct list_head *invalid_list)
17ac10ad 3548{
4db35314 3549 struct kvm_mmu_page *sp;
17ac10ad 3550
74b566e6 3551 if (!VALID_PAGE(*root_hpa))
7b53aa56 3552 return;
35af577a 3553
74b566e6
JS
3554 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3555 --sp->root_count;
3556 if (!sp->root_count && sp->role.invalid)
3557 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3558
74b566e6
JS
3559 *root_hpa = INVALID_PAGE;
3560}
3561
08fb59d8 3562/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3563void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3564 ulong roots_to_free)
74b566e6
JS
3565{
3566 int i;
3567 LIST_HEAD(invalid_list);
08fb59d8 3568 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3569
b94742c9 3570 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3571
08fb59d8 3572 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3573 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3574 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3575 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3576 VALID_PAGE(mmu->prev_roots[i].hpa))
3577 break;
3578
3579 if (i == KVM_MMU_NUM_PREV_ROOTS)
3580 return;
3581 }
35af577a
GN
3582
3583 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3584
b94742c9
JS
3585 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3586 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3587 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3588 &invalid_list);
7c390d35 3589
08fb59d8
JS
3590 if (free_active_root) {
3591 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3592 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3593 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3594 &invalid_list);
3595 } else {
3596 for (i = 0; i < 4; ++i)
3597 if (mmu->pae_root[i] != 0)
3598 mmu_free_root_page(vcpu->kvm,
3599 &mmu->pae_root[i],
3600 &invalid_list);
3601 mmu->root_hpa = INVALID_PAGE;
3602 }
ad7dc69a 3603 mmu->root_cr3 = 0;
17ac10ad 3604 }
74b566e6 3605
d98ba053 3606 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3607 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3608}
74b566e6 3609EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3610
8986ecc0
MT
3611static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3612{
3613 int ret = 0;
3614
3615 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3616 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3617 ret = 1;
3618 }
3619
3620 return ret;
3621}
3622
651dd37a
JR
3623static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3624{
3625 struct kvm_mmu_page *sp;
7ebaf15e 3626 unsigned i;
651dd37a 3627
44dd3ffa 3628 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3629 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3630 if(make_mmu_pages_available(vcpu) < 0) {
3631 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3632 return -ENOSPC;
26eeb53c 3633 }
855feb67 3634 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3635 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3636 ++sp->root_count;
3637 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3638 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3639 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3640 for (i = 0; i < 4; ++i) {
44dd3ffa 3641 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3642
fa4a2c08 3643 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3644 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3645 if (make_mmu_pages_available(vcpu) < 0) {
3646 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3647 return -ENOSPC;
26eeb53c 3648 }
649497d1 3649 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3650 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3651 root = __pa(sp->spt);
3652 ++sp->root_count;
3653 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3654 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3655 }
44dd3ffa 3656 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3657 } else
3658 BUG();
ad7dc69a 3659 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
651dd37a
JR
3660
3661 return 0;
3662}
3663
3664static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3665{
4db35314 3666 struct kvm_mmu_page *sp;
81407ca5 3667 u64 pdptr, pm_mask;
ad7dc69a 3668 gfn_t root_gfn, root_cr3;
81407ca5 3669 int i;
3bb65a22 3670
ad7dc69a
VK
3671 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3672 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3673
651dd37a
JR
3674 if (mmu_check_root(vcpu, root_gfn))
3675 return 1;
3676
3677 /*
3678 * Do we shadow a long mode page table? If so we need to
3679 * write-protect the guests page table root.
3680 */
44dd3ffa
VK
3681 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3682 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3683
fa4a2c08 3684 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3685
8facbbff 3686 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3687 if (make_mmu_pages_available(vcpu) < 0) {
3688 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3689 return -ENOSPC;
26eeb53c 3690 }
855feb67 3691 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3692 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3693 root = __pa(sp->spt);
3694 ++sp->root_count;
8facbbff 3695 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3696 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3697 goto set_root_cr3;
17ac10ad 3698 }
f87f9288 3699
651dd37a
JR
3700 /*
3701 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3702 * or a PAE 3-level page table. In either case we need to be aware that
3703 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3704 */
81407ca5 3705 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3706 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3707 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3708
17ac10ad 3709 for (i = 0; i < 4; ++i) {
44dd3ffa 3710 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3711
fa4a2c08 3712 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3713 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3714 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3715 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3716 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3717 continue;
3718 }
6de4f3ad 3719 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3720 if (mmu_check_root(vcpu, root_gfn))
3721 return 1;
5a7388c2 3722 }
8facbbff 3723 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3724 if (make_mmu_pages_available(vcpu) < 0) {
3725 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3726 return -ENOSPC;
26eeb53c 3727 }
bb11c6c9
TY
3728 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3729 0, ACC_ALL);
4db35314
AK
3730 root = __pa(sp->spt);
3731 ++sp->root_count;
8facbbff
AK
3732 spin_unlock(&vcpu->kvm->mmu_lock);
3733
44dd3ffa 3734 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3735 }
44dd3ffa 3736 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3737
3738 /*
3739 * If we shadow a 32 bit page table with a long mode page
3740 * table we enter this path.
3741 */
44dd3ffa
VK
3742 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3743 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3744 /*
3745 * The additional page necessary for this is only
3746 * allocated on demand.
3747 */
3748
3749 u64 *lm_root;
3750
254272ce 3751 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3752 if (lm_root == NULL)
3753 return 1;
3754
44dd3ffa 3755 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3756
44dd3ffa 3757 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3758 }
3759
44dd3ffa 3760 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3761 }
3762
ad7dc69a
VK
3763set_root_cr3:
3764 vcpu->arch.mmu->root_cr3 = root_cr3;
3765
8986ecc0 3766 return 0;
17ac10ad
AK
3767}
3768
651dd37a
JR
3769static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3770{
44dd3ffa 3771 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3772 return mmu_alloc_direct_roots(vcpu);
3773 else
3774 return mmu_alloc_shadow_roots(vcpu);
3775}
3776
578e1c4d 3777void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3778{
3779 int i;
3780 struct kvm_mmu_page *sp;
3781
44dd3ffa 3782 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3783 return;
3784
44dd3ffa 3785 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3786 return;
6903074c 3787
56f17dd3 3788 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3789
44dd3ffa
VK
3790 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3791 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3792 sp = page_header(root);
578e1c4d
JS
3793
3794 /*
3795 * Even if another CPU was marking the SP as unsync-ed
3796 * simultaneously, any guest page table changes are not
3797 * guaranteed to be visible anyway until this VCPU issues a TLB
3798 * flush strictly after those changes are made. We only need to
3799 * ensure that the other CPU sets these flags before any actual
3800 * changes to the page tables are made. The comments in
3801 * mmu_need_write_protect() describe what could go wrong if this
3802 * requirement isn't satisfied.
3803 */
3804 if (!smp_load_acquire(&sp->unsync) &&
3805 !smp_load_acquire(&sp->unsync_children))
3806 return;
3807
3808 spin_lock(&vcpu->kvm->mmu_lock);
3809 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3810
0ba73cda 3811 mmu_sync_children(vcpu, sp);
578e1c4d 3812
0375f7fa 3813 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3814 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3815 return;
3816 }
578e1c4d
JS
3817
3818 spin_lock(&vcpu->kvm->mmu_lock);
3819 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3820
0ba73cda 3821 for (i = 0; i < 4; ++i) {
44dd3ffa 3822 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3823
8986ecc0 3824 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3825 root &= PT64_BASE_ADDR_MASK;
3826 sp = page_header(root);
3827 mmu_sync_children(vcpu, sp);
3828 }
3829 }
0ba73cda 3830
578e1c4d 3831 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3832 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3833}
bfd0a56b 3834EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3835
1871c602 3836static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3837 u32 access, struct x86_exception *exception)
6aa8b732 3838{
ab9ae313
AK
3839 if (exception)
3840 exception->error_code = 0;
6aa8b732
AK
3841 return vaddr;
3842}
3843
6539e738 3844static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3845 u32 access,
3846 struct x86_exception *exception)
6539e738 3847{
ab9ae313
AK
3848 if (exception)
3849 exception->error_code = 0;
54987b7a 3850 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3851}
3852
d625b155
XG
3853static bool
3854__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3855{
3856 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3857
3858 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3859 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3860}
3861
3862static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3863{
3864 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3865}
3866
3867static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3868{
3869 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3870}
3871
ded58749 3872static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3873{
9034e6e8
PB
3874 /*
3875 * A nested guest cannot use the MMIO cache if it is using nested
3876 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3877 */
3878 if (mmu_is_nested(vcpu))
3879 return false;
3880
ce88decf
XG
3881 if (direct)
3882 return vcpu_match_mmio_gpa(vcpu, addr);
3883
3884 return vcpu_match_mmio_gva(vcpu, addr);
3885}
3886
47ab8751
XG
3887/* return true if reserved bit is detected on spte. */
3888static bool
3889walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3890{
3891 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3892 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3893 int root, leaf;
3894 bool reserved = false;
ce88decf 3895
44dd3ffa 3896 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3897 goto exit;
37f6a4e2 3898
ce88decf 3899 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3900
29ecd660
PB
3901 for (shadow_walk_init(&iterator, vcpu, addr),
3902 leaf = root = iterator.level;
47ab8751
XG
3903 shadow_walk_okay(&iterator);
3904 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3905 spte = mmu_spte_get_lockless(iterator.sptep);
3906
3907 sptes[leaf - 1] = spte;
29ecd660 3908 leaf--;
47ab8751 3909
ce88decf
XG
3910 if (!is_shadow_present_pte(spte))
3911 break;
47ab8751 3912
44dd3ffa 3913 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3914 iterator.level);
47ab8751
XG
3915 }
3916
ce88decf
XG
3917 walk_shadow_page_lockless_end(vcpu);
3918
47ab8751
XG
3919 if (reserved) {
3920 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3921 __func__, addr);
29ecd660 3922 while (root > leaf) {
47ab8751
XG
3923 pr_err("------ spte 0x%llx level %d.\n",
3924 sptes[root - 1], root);
3925 root--;
3926 }
3927 }
3928exit:
3929 *sptep = spte;
3930 return reserved;
ce88decf
XG
3931}
3932
e08d26f0 3933static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3934{
3935 u64 spte;
47ab8751 3936 bool reserved;
ce88decf 3937
ded58749 3938 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3939 return RET_PF_EMULATE;
ce88decf 3940
47ab8751 3941 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3942 if (WARN_ON(reserved))
9b8ebbdb 3943 return -EINVAL;
ce88decf
XG
3944
3945 if (is_mmio_spte(spte)) {
3946 gfn_t gfn = get_mmio_spte_gfn(spte);
3947 unsigned access = get_mmio_spte_access(spte);
3948
54bf36aa 3949 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3950 return RET_PF_INVALID;
f8f55942 3951
ce88decf
XG
3952 if (direct)
3953 addr = 0;
4f022648
XG
3954
3955 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3956 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3957 return RET_PF_EMULATE;
ce88decf
XG
3958 }
3959
ce88decf
XG
3960 /*
3961 * If the page table is zapped by other cpus, let CPU fault again on
3962 * the address.
3963 */
9b8ebbdb 3964 return RET_PF_RETRY;
ce88decf 3965}
ce88decf 3966
3d0c27ad
XG
3967static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3968 u32 error_code, gfn_t gfn)
3969{
3970 if (unlikely(error_code & PFERR_RSVD_MASK))
3971 return false;
3972
3973 if (!(error_code & PFERR_PRESENT_MASK) ||
3974 !(error_code & PFERR_WRITE_MASK))
3975 return false;
3976
3977 /*
3978 * guest is writing the page which is write tracked which can
3979 * not be fixed by page fault handler.
3980 */
3981 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3982 return true;
3983
3984 return false;
3985}
3986
e5691a81
XG
3987static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3988{
3989 struct kvm_shadow_walk_iterator iterator;
3990 u64 spte;
3991
44dd3ffa 3992 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3993 return;
3994
3995 walk_shadow_page_lockless_begin(vcpu);
3996 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3997 clear_sp_write_flooding_count(iterator.sptep);
3998 if (!is_shadow_present_pte(spte))
3999 break;
4000 }
4001 walk_shadow_page_lockless_end(vcpu);
4002}
4003
6aa8b732 4004static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 4005 u32 error_code, bool prefault)
6aa8b732 4006{
3d0c27ad 4007 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 4008 int r;
6aa8b732 4009
b8688d51 4010 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 4011
3d0c27ad 4012 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4013 return RET_PF_EMULATE;
ce88decf 4014
e2dec939
AK
4015 r = mmu_topup_memory_caches(vcpu);
4016 if (r)
4017 return r;
714b93da 4018
44dd3ffa 4019 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 4020
6aa8b732 4021
e833240f 4022 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 4023 error_code, gfn, prefault);
6aa8b732
AK
4024}
4025
7e1fbeac 4026static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
4027{
4028 struct kvm_arch_async_pf arch;
fb67e14f 4029
7c90705b 4030 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4031 arch.gfn = gfn;
44dd3ffa
VK
4032 arch.direct_map = vcpu->arch.mmu->direct_map;
4033 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 4034
54bf36aa 4035 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4036}
4037
78b2c54a 4038static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 4039 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 4040{
3520469d 4041 struct kvm_memory_slot *slot;
af585b92
GN
4042 bool async;
4043
3a2936de
JM
4044 /*
4045 * Don't expose private memslots to L2.
4046 */
4047 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4048 *pfn = KVM_PFN_NOSLOT;
4049 return false;
4050 }
4051
54bf36aa 4052 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4053 async = false;
4054 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4055 if (!async)
4056 return false; /* *pfn has correct page already */
4057
9bc1f09f 4058 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 4059 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
4060 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4061 trace_kvm_async_pf_doublefault(gva, gfn);
4062 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4063 return true;
4064 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4065 return true;
4066 }
4067
3520469d 4068 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4069 return false;
4070}
4071
1261bfa3 4072int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4073 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4074{
4075 int r = 1;
4076
c595ceee 4077 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4078 switch (vcpu->arch.apf.host_apf_reason) {
4079 default:
4080 trace_kvm_page_fault(fault_address, error_code);
4081
d0006530 4082 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4083 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4084 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4085 insn_len);
4086 break;
4087 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4088 vcpu->arch.apf.host_apf_reason = 0;
4089 local_irq_disable();
a2b7861b 4090 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4091 local_irq_enable();
4092 break;
4093 case KVM_PV_REASON_PAGE_READY:
4094 vcpu->arch.apf.host_apf_reason = 0;
4095 local_irq_disable();
4096 kvm_async_pf_task_wake(fault_address);
4097 local_irq_enable();
4098 break;
4099 }
4100 return r;
4101}
4102EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4103
6a39bbc5
XG
4104static bool
4105check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4106{
4107 int page_num = KVM_PAGES_PER_HPAGE(level);
4108
4109 gfn &= ~(page_num - 1);
4110
4111 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4112}
4113
56028d08 4114static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4115 bool prefault)
fb72d167 4116{
ba049e93 4117 kvm_pfn_t pfn;
fb72d167 4118 int r;
852e3c19 4119 int level;
cd1872f0 4120 bool force_pt_level;
05da4558 4121 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4122 unsigned long mmu_seq;
612819c3
MT
4123 int write = error_code & PFERR_WRITE_MASK;
4124 bool map_writable;
fb72d167 4125
44dd3ffa 4126 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4127
3d0c27ad 4128 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4129 return RET_PF_EMULATE;
ce88decf 4130
fb72d167
JR
4131 r = mmu_topup_memory_caches(vcpu);
4132 if (r)
4133 return r;
4134
fd136902
TY
4135 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4136 PT_DIRECTORY_LEVEL);
4137 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4138 if (likely(!force_pt_level)) {
6a39bbc5
XG
4139 if (level > PT_DIRECTORY_LEVEL &&
4140 !check_hugepage_cache_consistency(vcpu, gfn, level))
4141 level = PT_DIRECTORY_LEVEL;
936a5fe6 4142 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4143 }
852e3c19 4144
c7ba5b48 4145 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4146 return RET_PF_RETRY;
c7ba5b48 4147
e930bffe 4148 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4149 smp_rmb();
af585b92 4150
78b2c54a 4151 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4152 return RET_PF_RETRY;
af585b92 4153
d7c55201
XG
4154 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4155 return r;
4156
43fdcda9 4157 r = RET_PF_RETRY;
fb72d167 4158 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4159 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4160 goto out_unlock;
26eeb53c
WL
4161 if (make_mmu_pages_available(vcpu) < 0)
4162 goto out_unlock;
936a5fe6 4163 if (likely(!force_pt_level))
d679b326 4164 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3fcf2d1b 4165 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, prefault);
e930bffe
AA
4166out_unlock:
4167 spin_unlock(&vcpu->kvm->mmu_lock);
4168 kvm_release_pfn_clean(pfn);
43fdcda9 4169 return r;
fb72d167
JR
4170}
4171
8a3c1a33
PB
4172static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4173 struct kvm_mmu *context)
6aa8b732 4174{
6aa8b732 4175 context->page_fault = nonpaging_page_fault;
6aa8b732 4176 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4177 context->sync_page = nonpaging_sync_page;
a7052897 4178 context->invlpg = nonpaging_invlpg;
0f53b5b1 4179 context->update_pte = nonpaging_update_pte;
cea0f0e7 4180 context->root_level = 0;
6aa8b732 4181 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4182 context->direct_map = true;
2d48a985 4183 context->nx = false;
6aa8b732
AK
4184}
4185
b94742c9
JS
4186/*
4187 * Find out if a previously cached root matching the new CR3/role is available.
4188 * The current root is also inserted into the cache.
4189 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4190 * returned.
4191 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4192 * false is returned. This root should now be freed by the caller.
4193 */
4194static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4195 union kvm_mmu_page_role new_role)
4196{
4197 uint i;
4198 struct kvm_mmu_root_info root;
44dd3ffa 4199 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4200
ad7dc69a 4201 root.cr3 = mmu->root_cr3;
b94742c9
JS
4202 root.hpa = mmu->root_hpa;
4203
4204 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4205 swap(root, mmu->prev_roots[i]);
4206
4207 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4208 page_header(root.hpa) != NULL &&
4209 new_role.word == page_header(root.hpa)->role.word)
4210 break;
4211 }
4212
4213 mmu->root_hpa = root.hpa;
ad7dc69a 4214 mmu->root_cr3 = root.cr3;
b94742c9
JS
4215
4216 return i < KVM_MMU_NUM_PREV_ROOTS;
4217}
4218
0aab33e4 4219static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4220 union kvm_mmu_page_role new_role,
4221 bool skip_tlb_flush)
6aa8b732 4222{
44dd3ffa 4223 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4224
4225 /*
4226 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4227 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4228 * later if necessary.
4229 */
4230 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4231 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4232 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4233 return false;
4234
b94742c9 4235 if (cached_root_available(vcpu, new_cr3, new_role)) {
0aab33e4 4236 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4237 if (!skip_tlb_flush) {
4238 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4239 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4240 }
4241
4242 /*
4243 * The last MMIO access's GVA and GPA are cached in the
4244 * VCPU. When switching to a new CR3, that GVA->GPA
4245 * mapping may no longer be valid. So clear any cached
4246 * MMIO info even when we don't need to sync the shadow
4247 * page tables.
4248 */
4249 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4250
7c390d35
JS
4251 __clear_sp_write_flooding_count(
4252 page_header(mmu->root_hpa));
4253
7c390d35
JS
4254 return true;
4255 }
4256 }
4257
4258 return false;
6aa8b732
AK
4259}
4260
0aab33e4 4261static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4262 union kvm_mmu_page_role new_role,
4263 bool skip_tlb_flush)
6aa8b732 4264{
ade61e28 4265 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4266 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4267 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4268}
4269
ade61e28 4270void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4271{
ade61e28
JS
4272 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4273 skip_tlb_flush);
0aab33e4 4274}
50c28f21 4275EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4276
5777ed34
JR
4277static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4278{
9f8fe504 4279 return kvm_read_cr3(vcpu);
5777ed34
JR
4280}
4281
6389ee94
AK
4282static void inject_page_fault(struct kvm_vcpu *vcpu,
4283 struct x86_exception *fault)
6aa8b732 4284{
44dd3ffa 4285 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4286}
4287
54bf36aa 4288static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4289 unsigned access, int *nr_present)
ce88decf
XG
4290{
4291 if (unlikely(is_mmio_spte(*sptep))) {
4292 if (gfn != get_mmio_spte_gfn(*sptep)) {
4293 mmu_spte_clear_no_track(sptep);
4294 return true;
4295 }
4296
4297 (*nr_present)++;
54bf36aa 4298 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4299 return true;
4300 }
4301
4302 return false;
4303}
4304
6bb69c9b
PB
4305static inline bool is_last_gpte(struct kvm_mmu *mmu,
4306 unsigned level, unsigned gpte)
6fd01b71 4307{
6bb69c9b
PB
4308 /*
4309 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4310 * If it is clear, there are no large pages at this level, so clear
4311 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4312 */
4313 gpte &= level - mmu->last_nonleaf_level;
4314
829ee279
LP
4315 /*
4316 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4317 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4318 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4319 */
4320 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4321
6bb69c9b 4322 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4323}
4324
37406aaa
NHE
4325#define PTTYPE_EPT 18 /* arbitrary */
4326#define PTTYPE PTTYPE_EPT
4327#include "paging_tmpl.h"
4328#undef PTTYPE
4329
6aa8b732
AK
4330#define PTTYPE 64
4331#include "paging_tmpl.h"
4332#undef PTTYPE
4333
4334#define PTTYPE 32
4335#include "paging_tmpl.h"
4336#undef PTTYPE
4337
6dc98b86
XG
4338static void
4339__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4340 struct rsvd_bits_validate *rsvd_check,
4341 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4342 bool pse, bool amd)
82725b20 4343{
82725b20 4344 u64 exb_bit_rsvd = 0;
5f7dde7b 4345 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4346 u64 nonleaf_bit8_rsvd = 0;
82725b20 4347
a0a64f50 4348 rsvd_check->bad_mt_xwr = 0;
25d92081 4349
6dc98b86 4350 if (!nx)
82725b20 4351 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4352 if (!gbpages)
5f7dde7b 4353 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4354
4355 /*
4356 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4357 * leaf entries) on AMD CPUs only.
4358 */
6fec2144 4359 if (amd)
a0c0feb5
PB
4360 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4361
6dc98b86 4362 switch (level) {
82725b20
DE
4363 case PT32_ROOT_LEVEL:
4364 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4365 rsvd_check->rsvd_bits_mask[0][1] = 0;
4366 rsvd_check->rsvd_bits_mask[0][0] = 0;
4367 rsvd_check->rsvd_bits_mask[1][0] =
4368 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4369
6dc98b86 4370 if (!pse) {
a0a64f50 4371 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4372 break;
4373 }
4374
82725b20
DE
4375 if (is_cpuid_PSE36())
4376 /* 36bits PSE 4MB page */
a0a64f50 4377 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4378 else
4379 /* 32 bits PSE 4MB page */
a0a64f50 4380 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4381 break;
4382 case PT32E_ROOT_LEVEL:
a0a64f50 4383 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4384 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4385 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4386 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4387 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4388 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4389 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4390 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4391 rsvd_bits(maxphyaddr, 62) |
4392 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4393 rsvd_check->rsvd_bits_mask[1][0] =
4394 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4395 break;
855feb67
YZ
4396 case PT64_ROOT_5LEVEL:
4397 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4398 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4399 rsvd_bits(maxphyaddr, 51);
4400 rsvd_check->rsvd_bits_mask[1][4] =
4401 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4402 /* fall through */
2a7266a8 4403 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4404 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4405 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4406 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4407 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4408 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4409 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4410 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4411 rsvd_bits(maxphyaddr, 51);
4412 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4413 rsvd_bits(maxphyaddr, 51);
4414 rsvd_check->rsvd_bits_mask[1][3] =
4415 rsvd_check->rsvd_bits_mask[0][3];
4416 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4417 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4418 rsvd_bits(13, 29);
a0a64f50 4419 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4420 rsvd_bits(maxphyaddr, 51) |
4421 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4422 rsvd_check->rsvd_bits_mask[1][0] =
4423 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4424 break;
4425 }
4426}
4427
6dc98b86
XG
4428static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4429 struct kvm_mmu *context)
4430{
4431 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4432 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4433 context->nx,
4434 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4435 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4436}
4437
81b8eebb
XG
4438static void
4439__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4440 int maxphyaddr, bool execonly)
25d92081 4441{
951f9fd7 4442 u64 bad_mt_xwr;
25d92081 4443
855feb67
YZ
4444 rsvd_check->rsvd_bits_mask[0][4] =
4445 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4446 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4447 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4448 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4449 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4450 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4451 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4452 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4453
4454 /* large page */
855feb67 4455 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4456 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4457 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4458 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4459 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4460 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4461 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4462
951f9fd7
PB
4463 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4464 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4465 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4466 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4467 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4468 if (!execonly) {
4469 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4470 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4471 }
951f9fd7 4472 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4473}
4474
81b8eebb
XG
4475static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4476 struct kvm_mmu *context, bool execonly)
4477{
4478 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4479 cpuid_maxphyaddr(vcpu), execonly);
4480}
4481
c258b62b
XG
4482/*
4483 * the page table on host is the shadow page table for the page
4484 * table in guest or amd nested guest, its mmu features completely
4485 * follow the features in guest.
4486 */
4487void
4488reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4489{
36d9594d
VK
4490 bool uses_nx = context->nx ||
4491 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4492 struct rsvd_bits_validate *shadow_zero_check;
4493 int i;
5f0b8199 4494
6fec2144
PB
4495 /*
4496 * Passing "true" to the last argument is okay; it adds a check
4497 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4498 */
ea2800dd
BS
4499 shadow_zero_check = &context->shadow_zero_check;
4500 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4501 shadow_phys_bits,
5f0b8199 4502 context->shadow_root_level, uses_nx,
d6321d49
RK
4503 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4504 is_pse(vcpu), true);
ea2800dd
BS
4505
4506 if (!shadow_me_mask)
4507 return;
4508
4509 for (i = context->shadow_root_level; --i >= 0;) {
4510 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4511 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4512 }
4513
c258b62b
XG
4514}
4515EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4516
6fec2144
PB
4517static inline bool boot_cpu_is_amd(void)
4518{
4519 WARN_ON_ONCE(!tdp_enabled);
4520 return shadow_x_mask == 0;
4521}
4522
c258b62b
XG
4523/*
4524 * the direct page table on host, use as much mmu features as
4525 * possible, however, kvm currently does not do execution-protection.
4526 */
4527static void
4528reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4529 struct kvm_mmu *context)
4530{
ea2800dd
BS
4531 struct rsvd_bits_validate *shadow_zero_check;
4532 int i;
4533
4534 shadow_zero_check = &context->shadow_zero_check;
4535
6fec2144 4536 if (boot_cpu_is_amd())
ea2800dd 4537 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4538 shadow_phys_bits,
c258b62b 4539 context->shadow_root_level, false,
b8291adc
BP
4540 boot_cpu_has(X86_FEATURE_GBPAGES),
4541 true, true);
c258b62b 4542 else
ea2800dd 4543 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4544 shadow_phys_bits,
c258b62b
XG
4545 false);
4546
ea2800dd
BS
4547 if (!shadow_me_mask)
4548 return;
4549
4550 for (i = context->shadow_root_level; --i >= 0;) {
4551 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4552 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4553 }
c258b62b
XG
4554}
4555
4556/*
4557 * as the comments in reset_shadow_zero_bits_mask() except it
4558 * is the shadow page table for intel nested guest.
4559 */
4560static void
4561reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4562 struct kvm_mmu *context, bool execonly)
4563{
4564 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4565 shadow_phys_bits, execonly);
c258b62b
XG
4566}
4567
09f037aa
PB
4568#define BYTE_MASK(access) \
4569 ((1 & (access) ? 2 : 0) | \
4570 (2 & (access) ? 4 : 0) | \
4571 (3 & (access) ? 8 : 0) | \
4572 (4 & (access) ? 16 : 0) | \
4573 (5 & (access) ? 32 : 0) | \
4574 (6 & (access) ? 64 : 0) | \
4575 (7 & (access) ? 128 : 0))
4576
4577
edc90b7d
XG
4578static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4579 struct kvm_mmu *mmu, bool ept)
97d64b78 4580{
09f037aa
PB
4581 unsigned byte;
4582
4583 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4584 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4585 const u8 u = BYTE_MASK(ACC_USER_MASK);
4586
4587 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4588 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4589 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4590
97d64b78 4591 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4592 unsigned pfec = byte << 1;
4593
97ec8c06 4594 /*
09f037aa
PB
4595 * Each "*f" variable has a 1 bit for each UWX value
4596 * that causes a fault with the given PFEC.
97ec8c06 4597 */
97d64b78 4598
09f037aa 4599 /* Faults from writes to non-writable pages */
a6a6d3b1 4600 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4601 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4602 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4603 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4604 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4605 /* Faults from kernel mode fetches of user pages */
4606 u8 smepf = 0;
4607 /* Faults from kernel mode accesses of user pages */
4608 u8 smapf = 0;
4609
4610 if (!ept) {
4611 /* Faults from kernel mode accesses to user pages */
4612 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4613
4614 /* Not really needed: !nx will cause pte.nx to fault */
4615 if (!mmu->nx)
4616 ff = 0;
4617
4618 /* Allow supervisor writes if !cr0.wp */
4619 if (!cr0_wp)
4620 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4621
4622 /* Disallow supervisor fetches of user code if cr4.smep */
4623 if (cr4_smep)
4624 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4625
4626 /*
4627 * SMAP:kernel-mode data accesses from user-mode
4628 * mappings should fault. A fault is considered
4629 * as a SMAP violation if all of the following
39337ad1 4630 * conditions are true:
09f037aa
PB
4631 * - X86_CR4_SMAP is set in CR4
4632 * - A user page is accessed
4633 * - The access is not a fetch
4634 * - Page fault in kernel mode
4635 * - if CPL = 3 or X86_EFLAGS_AC is clear
4636 *
4637 * Here, we cover the first three conditions.
4638 * The fourth is computed dynamically in permission_fault();
4639 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4640 * *not* subject to SMAP restrictions.
4641 */
4642 if (cr4_smap)
4643 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4644 }
09f037aa
PB
4645
4646 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4647 }
4648}
4649
2d344105
HH
4650/*
4651* PKU is an additional mechanism by which the paging controls access to
4652* user-mode addresses based on the value in the PKRU register. Protection
4653* key violations are reported through a bit in the page fault error code.
4654* Unlike other bits of the error code, the PK bit is not known at the
4655* call site of e.g. gva_to_gpa; it must be computed directly in
4656* permission_fault based on two bits of PKRU, on some machine state (CR4,
4657* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4658*
4659* In particular the following conditions come from the error code, the
4660* page tables and the machine state:
4661* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4662* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4663* - PK is always zero if U=0 in the page tables
4664* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4665*
4666* The PKRU bitmask caches the result of these four conditions. The error
4667* code (minus the P bit) and the page table's U bit form an index into the
4668* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4669* with the two bits of the PKRU register corresponding to the protection key.
4670* For the first three conditions above the bits will be 00, thus masking
4671* away both AD and WD. For all reads or if the last condition holds, WD
4672* only will be masked away.
4673*/
4674static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4675 bool ept)
4676{
4677 unsigned bit;
4678 bool wp;
4679
4680 if (ept) {
4681 mmu->pkru_mask = 0;
4682 return;
4683 }
4684
4685 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4686 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4687 mmu->pkru_mask = 0;
4688 return;
4689 }
4690
4691 wp = is_write_protection(vcpu);
4692
4693 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4694 unsigned pfec, pkey_bits;
4695 bool check_pkey, check_write, ff, uf, wf, pte_user;
4696
4697 pfec = bit << 1;
4698 ff = pfec & PFERR_FETCH_MASK;
4699 uf = pfec & PFERR_USER_MASK;
4700 wf = pfec & PFERR_WRITE_MASK;
4701
4702 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4703 pte_user = pfec & PFERR_RSVD_MASK;
4704
4705 /*
4706 * Only need to check the access which is not an
4707 * instruction fetch and is to a user page.
4708 */
4709 check_pkey = (!ff && pte_user);
4710 /*
4711 * write access is controlled by PKRU if it is a
4712 * user access or CR0.WP = 1.
4713 */
4714 check_write = check_pkey && wf && (uf || wp);
4715
4716 /* PKRU.AD stops both read and write access. */
4717 pkey_bits = !!check_pkey;
4718 /* PKRU.WD stops write access. */
4719 pkey_bits |= (!!check_write) << 1;
4720
4721 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4722 }
4723}
4724
6bb69c9b 4725static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4726{
6bb69c9b
PB
4727 unsigned root_level = mmu->root_level;
4728
4729 mmu->last_nonleaf_level = root_level;
4730 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4731 mmu->last_nonleaf_level++;
6fd01b71
AK
4732}
4733
8a3c1a33
PB
4734static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4735 struct kvm_mmu *context,
4736 int level)
6aa8b732 4737{
2d48a985 4738 context->nx = is_nx(vcpu);
4d6931c3 4739 context->root_level = level;
2d48a985 4740
4d6931c3 4741 reset_rsvds_bits_mask(vcpu, context);
25d92081 4742 update_permission_bitmask(vcpu, context, false);
2d344105 4743 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4744 update_last_nonleaf_level(vcpu, context);
6aa8b732 4745
fa4a2c08 4746 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4747 context->page_fault = paging64_page_fault;
6aa8b732 4748 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4749 context->sync_page = paging64_sync_page;
a7052897 4750 context->invlpg = paging64_invlpg;
0f53b5b1 4751 context->update_pte = paging64_update_pte;
17ac10ad 4752 context->shadow_root_level = level;
c5a78f2b 4753 context->direct_map = false;
6aa8b732
AK
4754}
4755
8a3c1a33
PB
4756static void paging64_init_context(struct kvm_vcpu *vcpu,
4757 struct kvm_mmu *context)
17ac10ad 4758{
855feb67
YZ
4759 int root_level = is_la57_mode(vcpu) ?
4760 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4761
4762 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4763}
4764
8a3c1a33
PB
4765static void paging32_init_context(struct kvm_vcpu *vcpu,
4766 struct kvm_mmu *context)
6aa8b732 4767{
2d48a985 4768 context->nx = false;
4d6931c3 4769 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4770
4d6931c3 4771 reset_rsvds_bits_mask(vcpu, context);
25d92081 4772 update_permission_bitmask(vcpu, context, false);
2d344105 4773 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4774 update_last_nonleaf_level(vcpu, context);
6aa8b732 4775
6aa8b732 4776 context->page_fault = paging32_page_fault;
6aa8b732 4777 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4778 context->sync_page = paging32_sync_page;
a7052897 4779 context->invlpg = paging32_invlpg;
0f53b5b1 4780 context->update_pte = paging32_update_pte;
6aa8b732 4781 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4782 context->direct_map = false;
6aa8b732
AK
4783}
4784
8a3c1a33
PB
4785static void paging32E_init_context(struct kvm_vcpu *vcpu,
4786 struct kvm_mmu *context)
6aa8b732 4787{
8a3c1a33 4788 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4789}
4790
a336282d
VK
4791static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4792{
4793 union kvm_mmu_extended_role ext = {0};
4794
7dcd5755 4795 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4796 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4797 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4798 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4799 ext.cr4_pse = !!is_pse(vcpu);
4800 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4801 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
de3ccd26 4802 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4803
4804 ext.valid = 1;
4805
4806 return ext;
4807}
4808
7dcd5755
VK
4809static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4810 bool base_only)
4811{
4812 union kvm_mmu_role role = {0};
4813
4814 role.base.access = ACC_ALL;
4815 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4816 role.base.cr0_wp = is_write_protection(vcpu);
4817 role.base.smm = is_smm(vcpu);
4818 role.base.guest_mode = is_guest_mode(vcpu);
4819
4820 if (base_only)
4821 return role;
4822
4823 role.ext = kvm_calc_mmu_role_ext(vcpu);
4824
4825 return role;
4826}
4827
4828static union kvm_mmu_role
4829kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4830{
7dcd5755 4831 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4832
7dcd5755
VK
4833 role.base.ad_disabled = (shadow_accessed_mask == 0);
4834 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4835 role.base.direct = true;
47c42e6b 4836 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4837
4838 return role;
4839}
4840
8a3c1a33 4841static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4842{
44dd3ffa 4843 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4844 union kvm_mmu_role new_role =
4845 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4846
7dcd5755
VK
4847 new_role.base.word &= mmu_base_role_mask.word;
4848 if (new_role.as_u64 == context->mmu_role.as_u64)
4849 return;
4850
4851 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4852 context->page_fault = tdp_page_fault;
e8bc217a 4853 context->sync_page = nonpaging_sync_page;
a7052897 4854 context->invlpg = nonpaging_invlpg;
0f53b5b1 4855 context->update_pte = nonpaging_update_pte;
855feb67 4856 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4857 context->direct_map = true;
1c97f0a0 4858 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4859 context->get_cr3 = get_cr3;
e4e517b4 4860 context->get_pdptr = kvm_pdptr_read;
cb659db8 4861 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4862
4863 if (!is_paging(vcpu)) {
2d48a985 4864 context->nx = false;
fb72d167
JR
4865 context->gva_to_gpa = nonpaging_gva_to_gpa;
4866 context->root_level = 0;
4867 } else if (is_long_mode(vcpu)) {
2d48a985 4868 context->nx = is_nx(vcpu);
855feb67
YZ
4869 context->root_level = is_la57_mode(vcpu) ?
4870 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4871 reset_rsvds_bits_mask(vcpu, context);
4872 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4873 } else if (is_pae(vcpu)) {
2d48a985 4874 context->nx = is_nx(vcpu);
fb72d167 4875 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4876 reset_rsvds_bits_mask(vcpu, context);
4877 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4878 } else {
2d48a985 4879 context->nx = false;
fb72d167 4880 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4881 reset_rsvds_bits_mask(vcpu, context);
4882 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4883 }
4884
25d92081 4885 update_permission_bitmask(vcpu, context, false);
2d344105 4886 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4887 update_last_nonleaf_level(vcpu, context);
c258b62b 4888 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4889}
4890
7dcd5755
VK
4891static union kvm_mmu_role
4892kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4893{
4894 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4895
4896 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4897 !is_write_protection(vcpu);
4898 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4899 !is_write_protection(vcpu);
4900 role.base.direct = !is_paging(vcpu);
47c42e6b 4901 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4902
4903 if (!is_long_mode(vcpu))
7dcd5755 4904 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4905 else if (is_la57_mode(vcpu))
7dcd5755 4906 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4907 else
7dcd5755 4908 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4909
4910 return role;
4911}
4912
4913void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4914{
44dd3ffa 4915 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4916 union kvm_mmu_role new_role =
4917 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4918
4919 new_role.base.word &= mmu_base_role_mask.word;
4920 if (new_role.as_u64 == context->mmu_role.as_u64)
4921 return;
6aa8b732
AK
4922
4923 if (!is_paging(vcpu))
8a3c1a33 4924 nonpaging_init_context(vcpu, context);
a9058ecd 4925 else if (is_long_mode(vcpu))
8a3c1a33 4926 paging64_init_context(vcpu, context);
6aa8b732 4927 else if (is_pae(vcpu))
8a3c1a33 4928 paging32E_init_context(vcpu, context);
6aa8b732 4929 else
8a3c1a33 4930 paging32_init_context(vcpu, context);
a770f6f2 4931
7dcd5755 4932 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4933 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4934}
4935EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4936
a336282d
VK
4937static union kvm_mmu_role
4938kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4939 bool execonly)
9fa72119 4940{
552c69b1 4941 union kvm_mmu_role role = {0};
14c07ad8 4942
47c42e6b
SC
4943 /* SMM flag is inherited from root_mmu */
4944 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4945
a336282d 4946 role.base.level = PT64_ROOT_4LEVEL;
47c42e6b 4947 role.base.gpte_is_8_bytes = true;
a336282d
VK
4948 role.base.direct = false;
4949 role.base.ad_disabled = !accessed_dirty;
4950 role.base.guest_mode = true;
4951 role.base.access = ACC_ALL;
9fa72119 4952
47c42e6b
SC
4953 /*
4954 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4955 * SMAP variation to denote shadow EPT entries.
4956 */
4957 role.base.cr0_wp = true;
4958 role.base.smap_andnot_wp = true;
4959
552c69b1 4960 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4961 role.ext.execonly = execonly;
9fa72119
JS
4962
4963 return role;
4964}
4965
ae1e2d10 4966void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4967 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4968{
44dd3ffa 4969 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4970 union kvm_mmu_role new_role =
4971 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4972 execonly);
4973
4974 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4975
4976 new_role.base.word &= mmu_base_role_mask.word;
4977 if (new_role.as_u64 == context->mmu_role.as_u64)
4978 return;
ad896af0 4979
855feb67 4980 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4981
4982 context->nx = true;
ae1e2d10 4983 context->ept_ad = accessed_dirty;
155a97a3
NHE
4984 context->page_fault = ept_page_fault;
4985 context->gva_to_gpa = ept_gva_to_gpa;
4986 context->sync_page = ept_sync_page;
4987 context->invlpg = ept_invlpg;
4988 context->update_pte = ept_update_pte;
855feb67 4989 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4990 context->direct_map = false;
a336282d 4991 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4992
155a97a3 4993 update_permission_bitmask(vcpu, context, true);
2d344105 4994 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4995 update_last_nonleaf_level(vcpu, context);
155a97a3 4996 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4997 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4998}
4999EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5000
8a3c1a33 5001static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5002{
44dd3ffa 5003 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5004
5005 kvm_init_shadow_mmu(vcpu);
5006 context->set_cr3 = kvm_x86_ops->set_cr3;
5007 context->get_cr3 = get_cr3;
5008 context->get_pdptr = kvm_pdptr_read;
5009 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5010}
5011
8a3c1a33 5012static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5013{
bf627a92 5014 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5015 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5016
bf627a92
VK
5017 new_role.base.word &= mmu_base_role_mask.word;
5018 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5019 return;
5020
5021 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 5022 g_context->get_cr3 = get_cr3;
e4e517b4 5023 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5024 g_context->inject_page_fault = kvm_inject_page_fault;
5025
5026 /*
44dd3ffa 5027 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5028 * L1's nested page tables (e.g. EPT12). The nested translation
5029 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5030 * L2's page tables as the first level of translation and L1's
5031 * nested page tables as the second level of translation. Basically
5032 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5033 */
5034 if (!is_paging(vcpu)) {
2d48a985 5035 g_context->nx = false;
02f59dc9
JR
5036 g_context->root_level = 0;
5037 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5038 } else if (is_long_mode(vcpu)) {
2d48a985 5039 g_context->nx = is_nx(vcpu);
855feb67
YZ
5040 g_context->root_level = is_la57_mode(vcpu) ?
5041 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5042 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5043 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5044 } else if (is_pae(vcpu)) {
2d48a985 5045 g_context->nx = is_nx(vcpu);
02f59dc9 5046 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5047 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5048 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5049 } else {
2d48a985 5050 g_context->nx = false;
02f59dc9 5051 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5052 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5053 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5054 }
5055
25d92081 5056 update_permission_bitmask(vcpu, g_context, false);
2d344105 5057 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5058 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5059}
5060
1c53da3f 5061void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5062{
1c53da3f 5063 if (reset_roots) {
b94742c9
JS
5064 uint i;
5065
44dd3ffa 5066 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5067
5068 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5069 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5070 }
5071
02f59dc9 5072 if (mmu_is_nested(vcpu))
e0c6db3e 5073 init_kvm_nested_mmu(vcpu);
02f59dc9 5074 else if (tdp_enabled)
e0c6db3e 5075 init_kvm_tdp_mmu(vcpu);
fb72d167 5076 else
e0c6db3e 5077 init_kvm_softmmu(vcpu);
fb72d167 5078}
1c53da3f 5079EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5080
9fa72119
JS
5081static union kvm_mmu_page_role
5082kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5083{
7dcd5755
VK
5084 union kvm_mmu_role role;
5085
9fa72119 5086 if (tdp_enabled)
7dcd5755 5087 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5088 else
7dcd5755
VK
5089 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5090
5091 return role.base;
9fa72119 5092}
fb72d167 5093
8a3c1a33 5094void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5095{
95f93af4 5096 kvm_mmu_unload(vcpu);
1c53da3f 5097 kvm_init_mmu(vcpu, true);
17c3ba9d 5098}
8668a3c4 5099EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5100
5101int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5102{
714b93da
AK
5103 int r;
5104
e2dec939 5105 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5106 if (r)
5107 goto out;
8986ecc0 5108 r = mmu_alloc_roots(vcpu);
e2858b4a 5109 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5110 if (r)
5111 goto out;
6e42782f 5112 kvm_mmu_load_cr3(vcpu);
afe828d1 5113 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5114out:
5115 return r;
6aa8b732 5116}
17c3ba9d
AK
5117EXPORT_SYMBOL_GPL(kvm_mmu_load);
5118
5119void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5120{
14c07ad8
VK
5121 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5122 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5123 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5124 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5125}
4b16184c 5126EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5127
0028425f 5128static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5129 struct kvm_mmu_page *sp, u64 *spte,
5130 const void *new)
0028425f 5131{
30945387 5132 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5133 ++vcpu->kvm->stat.mmu_pde_zapped;
5134 return;
30945387 5135 }
0028425f 5136
4cee5764 5137 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5138 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5139}
5140
79539cec
AK
5141static bool need_remote_flush(u64 old, u64 new)
5142{
5143 if (!is_shadow_present_pte(old))
5144 return false;
5145 if (!is_shadow_present_pte(new))
5146 return true;
5147 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5148 return true;
53166229
GN
5149 old ^= shadow_nx_mask;
5150 new ^= shadow_nx_mask;
79539cec
AK
5151 return (old & ~new & PT64_PERM_MASK) != 0;
5152}
5153
889e5cbc 5154static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5155 int *bytes)
da4a00f0 5156{
0e0fee5c 5157 u64 gentry = 0;
889e5cbc 5158 int r;
72016f3a 5159
72016f3a
AK
5160 /*
5161 * Assume that the pte write on a page table of the same type
49b26e26
XG
5162 * as the current vcpu paging mode since we update the sptes only
5163 * when they have the same mode.
72016f3a 5164 */
889e5cbc 5165 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5166 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5167 *gpa &= ~(gpa_t)7;
5168 *bytes = 8;
08e850c6
AK
5169 }
5170
0e0fee5c
JS
5171 if (*bytes == 4 || *bytes == 8) {
5172 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5173 if (r)
5174 gentry = 0;
72016f3a
AK
5175 }
5176
889e5cbc
XG
5177 return gentry;
5178}
5179
5180/*
5181 * If we're seeing too many writes to a page, it may no longer be a page table,
5182 * or we may be forking, in which case it is better to unmap the page.
5183 */
a138fe75 5184static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5185{
a30f47cb
XG
5186 /*
5187 * Skip write-flooding detected for the sp whose level is 1, because
5188 * it can become unsync, then the guest page is not write-protected.
5189 */
f71fa31f 5190 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5191 return false;
3246af0e 5192
e5691a81
XG
5193 atomic_inc(&sp->write_flooding_count);
5194 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5195}
5196
5197/*
5198 * Misaligned accesses are too much trouble to fix up; also, they usually
5199 * indicate a page is not used as a page table.
5200 */
5201static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5202 int bytes)
5203{
5204 unsigned offset, pte_size, misaligned;
5205
5206 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5207 gpa, bytes, sp->role.word);
5208
5209 offset = offset_in_page(gpa);
47c42e6b 5210 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5211
5212 /*
5213 * Sometimes, the OS only writes the last one bytes to update status
5214 * bits, for example, in linux, andb instruction is used in clear_bit().
5215 */
5216 if (!(offset & (pte_size - 1)) && bytes == 1)
5217 return false;
5218
889e5cbc
XG
5219 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5220 misaligned |= bytes < 4;
5221
5222 return misaligned;
5223}
5224
5225static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5226{
5227 unsigned page_offset, quadrant;
5228 u64 *spte;
5229 int level;
5230
5231 page_offset = offset_in_page(gpa);
5232 level = sp->role.level;
5233 *nspte = 1;
47c42e6b 5234 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5235 page_offset <<= 1; /* 32->64 */
5236 /*
5237 * A 32-bit pde maps 4MB while the shadow pdes map
5238 * only 2MB. So we need to double the offset again
5239 * and zap two pdes instead of one.
5240 */
5241 if (level == PT32_ROOT_LEVEL) {
5242 page_offset &= ~7; /* kill rounding error */
5243 page_offset <<= 1;
5244 *nspte = 2;
5245 }
5246 quadrant = page_offset >> PAGE_SHIFT;
5247 page_offset &= ~PAGE_MASK;
5248 if (quadrant != sp->role.quadrant)
5249 return NULL;
5250 }
5251
5252 spte = &sp->spt[page_offset / sizeof(*spte)];
5253 return spte;
5254}
5255
13d268ca 5256static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5257 const u8 *new, int bytes,
5258 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5259{
5260 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5261 struct kvm_mmu_page *sp;
889e5cbc
XG
5262 LIST_HEAD(invalid_list);
5263 u64 entry, gentry, *spte;
5264 int npte;
b8c67b7a 5265 bool remote_flush, local_flush;
889e5cbc
XG
5266
5267 /*
5268 * If we don't have indirect shadow pages, it means no page is
5269 * write-protected, so we can exit simply.
5270 */
6aa7de05 5271 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5272 return;
5273
b8c67b7a 5274 remote_flush = local_flush = false;
889e5cbc
XG
5275
5276 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5277
889e5cbc
XG
5278 /*
5279 * No need to care whether allocation memory is successful
5280 * or not since pte prefetch is skiped if it does not have
5281 * enough objects in the cache.
5282 */
5283 mmu_topup_memory_caches(vcpu);
5284
5285 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5286
5287 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5288
889e5cbc 5289 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5290 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5291
b67bfe0d 5292 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5293 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5294 detect_write_flooding(sp)) {
b8c67b7a 5295 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5296 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5297 continue;
5298 }
889e5cbc
XG
5299
5300 spte = get_written_sptes(sp, gpa, &npte);
5301 if (!spte)
5302 continue;
5303
0671a8e7 5304 local_flush = true;
ac1b714e 5305 while (npte--) {
36d9594d
VK
5306 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5307
79539cec 5308 entry = *spte;
38e3b2b2 5309 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5310 if (gentry &&
36d9594d 5311 !((sp->role.word ^ base_role)
9fa72119 5312 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5313 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5314 if (need_remote_flush(entry, *spte))
0671a8e7 5315 remote_flush = true;
ac1b714e 5316 ++spte;
9b7a0325 5317 }
9b7a0325 5318 }
b8c67b7a 5319 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5320 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5321 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5322}
5323
a436036b
AK
5324int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5325{
10589a46
MT
5326 gpa_t gpa;
5327 int r;
a436036b 5328
44dd3ffa 5329 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5330 return 0;
5331
1871c602 5332 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5333
10589a46 5334 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5335
10589a46 5336 return r;
a436036b 5337}
577bdc49 5338EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5339
26eeb53c 5340static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5341{
d98ba053 5342 LIST_HEAD(invalid_list);
103ad25a 5343
81f4f76b 5344 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5345 return 0;
81f4f76b 5346
5da59607
TY
5347 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5348 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5349 break;
ebeace86 5350
4cee5764 5351 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5352 }
aa6bd187 5353 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5354
5355 if (!kvm_mmu_available_pages(vcpu->kvm))
5356 return -ENOSPC;
5357 return 0;
ebeace86 5358}
ebeace86 5359
14727754 5360int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5361 void *insn, int insn_len)
3067714c 5362{
472faffa 5363 int r, emulation_type = 0;
3067714c 5364 enum emulation_result er;
44dd3ffa 5365 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5366
618232e2 5367 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5368 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5369 vcpu->arch.gpa_available = true;
5370 vcpu->arch.gpa_val = cr2;
5371 }
3067714c 5372
9b8ebbdb 5373 r = RET_PF_INVALID;
e9ee956e
TY
5374 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5375 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5376 if (r == RET_PF_EMULATE)
e9ee956e 5377 goto emulate;
e9ee956e 5378 }
3067714c 5379
9b8ebbdb 5380 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5381 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5382 lower_32_bits(error_code),
5383 false);
9b8ebbdb
PB
5384 WARN_ON(r == RET_PF_INVALID);
5385 }
5386
5387 if (r == RET_PF_RETRY)
5388 return 1;
3067714c 5389 if (r < 0)
e9ee956e 5390 return r;
3067714c 5391
14727754
TL
5392 /*
5393 * Before emulating the instruction, check if the error code
5394 * was due to a RO violation while translating the guest page.
5395 * This can occur when using nested virtualization with nested
5396 * paging in both guests. If true, we simply unprotect the page
5397 * and resume the guest.
14727754 5398 */
44dd3ffa 5399 if (vcpu->arch.mmu->direct_map &&
eebed243 5400 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5401 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5402 return 1;
5403 }
5404
472faffa
SC
5405 /*
5406 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5407 * optimistically try to just unprotect the page and let the processor
5408 * re-execute the instruction that caused the page fault. Do not allow
5409 * retrying MMIO emulation, as it's not only pointless but could also
5410 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5411 * faulting on the non-existent MMIO address. Retrying an instruction
5412 * from a nested guest is also pointless and dangerous as we are only
5413 * explicitly shadowing L1's page tables, i.e. unprotecting something
5414 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5415 */
6c3dfeb6 5416 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5417 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5418emulate:
00b10fe1
BS
5419 /*
5420 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5421 * This can happen if a guest gets a page-fault on data access but the HW
5422 * table walker is not able to read the instruction page (e.g instruction
5423 * page is not present in memory). In those cases we simply restart the
05d5a486 5424 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5425 */
05d5a486
SB
5426 if (unlikely(insn && !insn_len)) {
5427 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5428 return 1;
5429 }
00b10fe1 5430
1cb3f3ae 5431 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5432
5433 switch (er) {
5434 case EMULATE_DONE:
5435 return 1;
ac0a48c3 5436 case EMULATE_USER_EXIT:
3067714c 5437 ++vcpu->stat.mmio_exits;
6d77dbfc 5438 /* fall through */
3067714c 5439 case EMULATE_FAIL:
3f5d18a9 5440 return 0;
3067714c
AK
5441 default:
5442 BUG();
5443 }
3067714c
AK
5444}
5445EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5446
a7052897
MT
5447void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5448{
44dd3ffa 5449 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5450 int i;
7eb77e9f 5451
faff8758
JS
5452 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5453 if (is_noncanonical_address(gva, vcpu))
5454 return;
5455
7eb77e9f 5456 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5457
5458 /*
5459 * INVLPG is required to invalidate any global mappings for the VA,
5460 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5461 * of work to determine whether any of the prev_root mappings of the VA
5462 * is marked global, or to just sync it blindly, so we might as well
5463 * just always sync it.
956bf353 5464 *
b94742c9
JS
5465 * Mappings not reachable via the current cr3 or the prev_roots will be
5466 * synced when switching to that cr3, so nothing needs to be done here
5467 * for them.
956bf353 5468 */
b94742c9
JS
5469 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5470 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5471 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5472
faff8758 5473 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5474 ++vcpu->stat.invlpg;
5475}
5476EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5477
eb4b248e
JS
5478void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5479{
44dd3ffa 5480 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5481 bool tlb_flush = false;
b94742c9 5482 uint i;
eb4b248e
JS
5483
5484 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5485 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5486 tlb_flush = true;
eb4b248e
JS
5487 }
5488
b94742c9
JS
5489 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5490 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5491 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5492 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5493 tlb_flush = true;
5494 }
956bf353 5495 }
ade61e28 5496
faff8758
JS
5497 if (tlb_flush)
5498 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5499
eb4b248e
JS
5500 ++vcpu->stat.invlpg;
5501
5502 /*
b94742c9
JS
5503 * Mappings not reachable via the current cr3 or the prev_roots will be
5504 * synced when switching to that cr3, so nothing needs to be done here
5505 * for them.
eb4b248e
JS
5506 */
5507}
5508EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5509
18552672
JR
5510void kvm_enable_tdp(void)
5511{
5512 tdp_enabled = true;
5513}
5514EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5515
5f4cb662
JR
5516void kvm_disable_tdp(void)
5517{
5518 tdp_enabled = false;
5519}
5520EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5521
85875a13
SC
5522
5523/* The return value indicates if tlb flush on all vcpus is needed. */
5524typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5525
5526/* The caller should hold mmu-lock before calling this function. */
5527static __always_inline bool
5528slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5529 slot_level_handler fn, int start_level, int end_level,
5530 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5531{
5532 struct slot_rmap_walk_iterator iterator;
5533 bool flush = false;
5534
5535 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5536 end_gfn, &iterator) {
5537 if (iterator.rmap)
5538 flush |= fn(kvm, iterator.rmap);
5539
5540 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5541 if (flush && lock_flush_tlb) {
f285c633
BG
5542 kvm_flush_remote_tlbs_with_address(kvm,
5543 start_gfn,
5544 iterator.gfn - start_gfn + 1);
85875a13
SC
5545 flush = false;
5546 }
5547 cond_resched_lock(&kvm->mmu_lock);
5548 }
5549 }
5550
5551 if (flush && lock_flush_tlb) {
f285c633
BG
5552 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5553 end_gfn - start_gfn + 1);
85875a13
SC
5554 flush = false;
5555 }
5556
5557 return flush;
5558}
5559
5560static __always_inline bool
5561slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5562 slot_level_handler fn, int start_level, int end_level,
5563 bool lock_flush_tlb)
5564{
5565 return slot_handle_level_range(kvm, memslot, fn, start_level,
5566 end_level, memslot->base_gfn,
5567 memslot->base_gfn + memslot->npages - 1,
5568 lock_flush_tlb);
5569}
5570
5571static __always_inline bool
5572slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5573 slot_level_handler fn, bool lock_flush_tlb)
5574{
5575 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5576 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5577}
5578
5579static __always_inline bool
5580slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5581 slot_level_handler fn, bool lock_flush_tlb)
5582{
5583 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5584 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5585}
5586
5587static __always_inline bool
5588slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5589 slot_level_handler fn, bool lock_flush_tlb)
5590{
5591 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5592 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5593}
5594
6aa8b732
AK
5595static void free_mmu_pages(struct kvm_vcpu *vcpu)
5596{
44dd3ffa
VK
5597 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5598 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5599}
5600
5601static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5602{
17ac10ad 5603 struct page *page;
6aa8b732
AK
5604 int i;
5605
17ac10ad 5606 /*
b6b80c78
SC
5607 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5608 * while the PDP table is a per-vCPU construct that's allocated at MMU
5609 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5610 * x86_64. Therefore we need to allocate the PDP table in the first
5611 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5612 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5613 * skip allocating the PDP table.
17ac10ad 5614 */
b6b80c78
SC
5615 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5616 return 0;
5617
254272ce 5618 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5619 if (!page)
d7fa6ab2
WY
5620 return -ENOMEM;
5621
44dd3ffa 5622 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5623 for (i = 0; i < 4; ++i)
44dd3ffa 5624 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5625
6aa8b732 5626 return 0;
6aa8b732
AK
5627}
5628
8018c27b 5629int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5630{
b94742c9
JS
5631 uint i;
5632
44dd3ffa
VK
5633 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5634 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5635
44dd3ffa 5636 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5637 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5638 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5639 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5640 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5641
14c07ad8 5642 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5643 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5644 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5645 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5646 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5647
14c07ad8 5648 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b 5649 return alloc_mmu_pages(vcpu);
6aa8b732
AK
5650}
5651
b5f5fdca 5652static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5653 struct kvm_memory_slot *slot,
5654 struct kvm_page_track_notifier_node *node)
b5f5fdca 5655{
d012a06a 5656 kvm_mmu_zap_all(kvm);
1bad2b2a
XG
5657}
5658
13d268ca 5659void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5660{
13d268ca 5661 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5662
13d268ca 5663 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5664 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5665 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5666}
5667
13d268ca 5668void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5669{
13d268ca 5670 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5671
13d268ca 5672 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5673}
5674
efdfe536
XG
5675void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5676{
5677 struct kvm_memslots *slots;
5678 struct kvm_memory_slot *memslot;
9da0e4d5 5679 int i;
efdfe536
XG
5680
5681 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5682 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5683 slots = __kvm_memslots(kvm, i);
5684 kvm_for_each_memslot(memslot, slots) {
5685 gfn_t start, end;
5686
5687 start = max(gfn_start, memslot->base_gfn);
5688 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5689 if (start >= end)
5690 continue;
efdfe536 5691
92da008f
BG
5692 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5693 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5694 start, end - 1, true);
9da0e4d5 5695 }
efdfe536
XG
5696 }
5697
5698 spin_unlock(&kvm->mmu_lock);
5699}
5700
018aabb5
TY
5701static bool slot_rmap_write_protect(struct kvm *kvm,
5702 struct kvm_rmap_head *rmap_head)
d77aa73c 5703{
018aabb5 5704 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5705}
5706
1c91cad4
KH
5707void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5708 struct kvm_memory_slot *memslot)
6aa8b732 5709{
d77aa73c 5710 bool flush;
6aa8b732 5711
9d1beefb 5712 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5713 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5714 false);
9d1beefb 5715 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5716
5717 /*
5718 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5719 * which do tlb flush out of mmu-lock should be serialized by
5720 * kvm->slots_lock otherwise tlb flush would be missed.
5721 */
5722 lockdep_assert_held(&kvm->slots_lock);
5723
5724 /*
5725 * We can flush all the TLBs out of the mmu lock without TLB
5726 * corruption since we just change the spte from writable to
5727 * readonly so that we only need to care the case of changing
5728 * spte from present to present (changing the spte from present
5729 * to nonpresent will flush all the TLBs immediately), in other
5730 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5731 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5732 * instead of PT_WRITABLE_MASK, that means it does not depend
5733 * on PT_WRITABLE_MASK anymore.
5734 */
d91ffee9 5735 if (flush)
c3134ce2
LT
5736 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5737 memslot->npages);
6aa8b732 5738}
37a7d8b0 5739
3ea3b7fa 5740static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5741 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5742{
5743 u64 *sptep;
5744 struct rmap_iterator iter;
5745 int need_tlb_flush = 0;
ba049e93 5746 kvm_pfn_t pfn;
3ea3b7fa
WL
5747 struct kvm_mmu_page *sp;
5748
0d536790 5749restart:
018aabb5 5750 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5751 sp = page_header(__pa(sptep));
5752 pfn = spte_to_pfn(*sptep);
5753
5754 /*
decf6333
XG
5755 * We cannot do huge page mapping for indirect shadow pages,
5756 * which are found on the last rmap (level = 1) when not using
5757 * tdp; such shadow pages are synced with the page table in
5758 * the guest, and the guest page table is using 4K page size
5759 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5760 */
5761 if (sp->role.direct &&
5762 !kvm_is_reserved_pfn(pfn) &&
127393fb 5763 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5764 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5765
5766 if (kvm_available_flush_tlb_with_range())
5767 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5768 KVM_PAGES_PER_HPAGE(sp->role.level));
5769 else
5770 need_tlb_flush = 1;
5771
0d536790
XG
5772 goto restart;
5773 }
3ea3b7fa
WL
5774 }
5775
5776 return need_tlb_flush;
5777}
5778
5779void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5780 const struct kvm_memory_slot *memslot)
3ea3b7fa 5781{
f36f3f28 5782 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5783 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5784 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5785 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5786 spin_unlock(&kvm->mmu_lock);
5787}
5788
f4b4b180
KH
5789void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5790 struct kvm_memory_slot *memslot)
5791{
d77aa73c 5792 bool flush;
f4b4b180
KH
5793
5794 spin_lock(&kvm->mmu_lock);
d77aa73c 5795 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5796 spin_unlock(&kvm->mmu_lock);
5797
5798 lockdep_assert_held(&kvm->slots_lock);
5799
5800 /*
5801 * It's also safe to flush TLBs out of mmu lock here as currently this
5802 * function is only used for dirty logging, in which case flushing TLB
5803 * out of mmu lock also guarantees no dirty pages will be lost in
5804 * dirty_bitmap.
5805 */
5806 if (flush)
c3134ce2
LT
5807 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5808 memslot->npages);
f4b4b180
KH
5809}
5810EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5811
5812void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5813 struct kvm_memory_slot *memslot)
5814{
d77aa73c 5815 bool flush;
f4b4b180
KH
5816
5817 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5818 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5819 false);
f4b4b180
KH
5820 spin_unlock(&kvm->mmu_lock);
5821
5822 /* see kvm_mmu_slot_remove_write_access */
5823 lockdep_assert_held(&kvm->slots_lock);
5824
5825 if (flush)
c3134ce2
LT
5826 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5827 memslot->npages);
f4b4b180
KH
5828}
5829EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5830
5831void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5832 struct kvm_memory_slot *memslot)
5833{
d77aa73c 5834 bool flush;
f4b4b180
KH
5835
5836 spin_lock(&kvm->mmu_lock);
d77aa73c 5837 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5838 spin_unlock(&kvm->mmu_lock);
5839
5840 lockdep_assert_held(&kvm->slots_lock);
5841
5842 /* see kvm_mmu_slot_leaf_clear_dirty */
5843 if (flush)
c3134ce2
LT
5844 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5845 memslot->npages);
f4b4b180
KH
5846}
5847EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5848
8ab3c471 5849static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
5304b8d3
XG
5850{
5851 struct kvm_mmu_page *sp, *node;
7390de1e 5852 LIST_HEAD(invalid_list);
83cdb568 5853 int ign;
5304b8d3 5854
7390de1e 5855 spin_lock(&kvm->mmu_lock);
5304b8d3 5856restart:
8a674adc 5857 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 5858 if (mmio_only && !sp->mmio_cached)
5304b8d3 5859 continue;
8ab3c471 5860 if (sp->role.invalid && sp->root_count)
4771450c 5861 continue;
24efe61f 5862 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
8ab3c471 5863 WARN_ON_ONCE(mmio_only);
5304b8d3
XG
5864 goto restart;
5865 }
24efe61f 5866 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5867 goto restart;
5868 }
5869
4771450c 5870 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
5871 spin_unlock(&kvm->mmu_lock);
5872}
5873
8ab3c471 5874void kvm_mmu_zap_all(struct kvm *kvm)
365c8868 5875{
8ab3c471 5876 return __kvm_mmu_zap_all(kvm, false);
365c8868
XG
5877}
5878
15248258 5879void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5880{
164bf7e5 5881 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5882
164bf7e5 5883 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5884
f8f55942 5885 /*
e1359e2b
SC
5886 * Generation numbers are incremented in multiples of the number of
5887 * address spaces in order to provide unique generations across all
5888 * address spaces. Strip what is effectively the address space
5889 * modifier prior to checking for a wrap of the MMIO generation so
5890 * that a wrap in any address space is detected.
5891 */
5892 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5893
f8f55942 5894 /*
e1359e2b 5895 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5896 * zap all shadow pages.
f8f55942 5897 */
e1359e2b 5898 if (unlikely(gen == 0)) {
ae0f5499 5899 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
8ab3c471 5900 __kvm_mmu_zap_all(kvm, true);
7a2e8aaf 5901 }
f8f55942
XG
5902}
5903
70534a73
DC
5904static unsigned long
5905mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5906{
5907 struct kvm *kvm;
1495f230 5908 int nr_to_scan = sc->nr_to_scan;
70534a73 5909 unsigned long freed = 0;
3ee16c81 5910
0d9ce162 5911 mutex_lock(&kvm_lock);
3ee16c81
IE
5912
5913 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5914 int idx;
d98ba053 5915 LIST_HEAD(invalid_list);
3ee16c81 5916
35f2d16b
TY
5917 /*
5918 * Never scan more than sc->nr_to_scan VM instances.
5919 * Will not hit this condition practically since we do not try
5920 * to shrink more than one VM and it is very unlikely to see
5921 * !n_used_mmu_pages so many times.
5922 */
5923 if (!nr_to_scan--)
5924 break;
19526396
GN
5925 /*
5926 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5927 * here. We may skip a VM instance errorneosly, but we do not
5928 * want to shrink a VM that only started to populate its MMU
5929 * anyway.
5930 */
52d5dedc 5931 if (!kvm->arch.n_used_mmu_pages)
19526396 5932 continue;
19526396 5933
f656ce01 5934 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5935 spin_lock(&kvm->mmu_lock);
3ee16c81 5936
70534a73
DC
5937 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5938 freed++;
d98ba053 5939 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5940
3ee16c81 5941 spin_unlock(&kvm->mmu_lock);
f656ce01 5942 srcu_read_unlock(&kvm->srcu, idx);
19526396 5943
70534a73
DC
5944 /*
5945 * unfair on small ones
5946 * per-vm shrinkers cry out
5947 * sadness comes quickly
5948 */
19526396
GN
5949 list_move_tail(&kvm->vm_list, &vm_list);
5950 break;
3ee16c81 5951 }
3ee16c81 5952
0d9ce162 5953 mutex_unlock(&kvm_lock);
70534a73 5954 return freed;
70534a73
DC
5955}
5956
5957static unsigned long
5958mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5959{
45221ab6 5960 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5961}
5962
5963static struct shrinker mmu_shrinker = {
70534a73
DC
5964 .count_objects = mmu_shrink_count,
5965 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5966 .seeks = DEFAULT_SEEKS * 10,
5967};
5968
2ddfd20e 5969static void mmu_destroy_caches(void)
b5a33a75 5970{
c1bd743e
TH
5971 kmem_cache_destroy(pte_list_desc_cache);
5972 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5973}
5974
7b6f8a06
KH
5975static void kvm_set_mmio_spte_mask(void)
5976{
5977 u64 mask;
7b6f8a06
KH
5978
5979 /*
5980 * Set the reserved bits and the present bit of an paging-structure
5981 * entry to generate page fault with PFER.RSV = 1.
5982 */
5983
5984 /*
5985 * Mask the uppermost physical address bit, which would be reserved as
5986 * long as the supported physical address width is less than 52.
5987 */
5988 mask = 1ull << 51;
5989
5990 /* Set the present bit. */
5991 mask |= 1ull;
5992
5993 /*
5994 * If reserved bit is not supported, clear the present bit to disable
5995 * mmio page fault.
5996 */
f3ecb59d 5997 if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
7b6f8a06
KH
5998 mask &= ~1ull;
5999
6000 kvm_mmu_set_mmio_spte_mask(mask, mask);
6001}
6002
b5a33a75
AK
6003int kvm_mmu_module_init(void)
6004{
ab271bd4
AB
6005 int ret = -ENOMEM;
6006
36d9594d
VK
6007 /*
6008 * MMU roles use union aliasing which is, generally speaking, an
6009 * undefined behavior. However, we supposedly know how compilers behave
6010 * and the current status quo is unlikely to change. Guardians below are
6011 * supposed to let us know if the assumption becomes false.
6012 */
6013 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6014 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6015 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6016
28a1f3ac 6017 kvm_mmu_reset_all_pte_masks();
f160c7b7 6018
7b6f8a06
KH
6019 kvm_set_mmio_spte_mask();
6020
53c07b18
XG
6021 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6022 sizeof(struct pte_list_desc),
46bea48a 6023 0, SLAB_ACCOUNT, NULL);
53c07b18 6024 if (!pte_list_desc_cache)
ab271bd4 6025 goto out;
b5a33a75 6026
d3d25b04
AK
6027 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6028 sizeof(struct kvm_mmu_page),
46bea48a 6029 0, SLAB_ACCOUNT, NULL);
d3d25b04 6030 if (!mmu_page_header_cache)
ab271bd4 6031 goto out;
d3d25b04 6032
908c7f19 6033 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6034 goto out;
45bf21a8 6035
ab271bd4
AB
6036 ret = register_shrinker(&mmu_shrinker);
6037 if (ret)
6038 goto out;
3ee16c81 6039
b5a33a75
AK
6040 return 0;
6041
ab271bd4 6042out:
3ee16c81 6043 mmu_destroy_caches();
ab271bd4 6044 return ret;
b5a33a75
AK
6045}
6046
3ad82a7e 6047/*
39337ad1 6048 * Calculate mmu pages needed for kvm.
3ad82a7e 6049 */
bc8a3d89 6050unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6051{
bc8a3d89
BG
6052 unsigned long nr_mmu_pages;
6053 unsigned long nr_pages = 0;
bc6678a3 6054 struct kvm_memslots *slots;
be6ba0f0 6055 struct kvm_memory_slot *memslot;
9da0e4d5 6056 int i;
3ad82a7e 6057
9da0e4d5
PB
6058 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6059 slots = __kvm_memslots(kvm, i);
90d83dc3 6060
9da0e4d5
PB
6061 kvm_for_each_memslot(memslot, slots)
6062 nr_pages += memslot->npages;
6063 }
3ad82a7e
ZX
6064
6065 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6066 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6067
6068 return nr_mmu_pages;
6069}
6070
c42fffe3
XG
6071void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6072{
95f93af4 6073 kvm_mmu_unload(vcpu);
c42fffe3
XG
6074 free_mmu_pages(vcpu);
6075 mmu_free_memory_caches(vcpu);
b034cf01
XG
6076}
6077
b034cf01
XG
6078void kvm_mmu_module_exit(void)
6079{
6080 mmu_destroy_caches();
6081 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6082 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6083 mmu_audit_disable();
6084}