]> git.ipfire.org Git - thirdparty/linux.git/blame - arch/x86/mm/tlb.c
x86/mm: Rework lazy TLB to track the actual loaded mm
[thirdparty/linux.git] / arch / x86 / mm / tlb.c
CommitLineData
c048fdfe
GC
1#include <linux/init.h>
2
3#include <linux/mm.h>
c048fdfe
GC
4#include <linux/spinlock.h>
5#include <linux/smp.h>
c048fdfe 6#include <linux/interrupt.h>
4b599fed 7#include <linux/export.h>
93296720 8#include <linux/cpu.h>
c048fdfe 9
c048fdfe 10#include <asm/tlbflush.h>
c048fdfe 11#include <asm/mmu_context.h>
350f8f56 12#include <asm/cache.h>
6dd01bed 13#include <asm/apic.h>
bdbcdd48 14#include <asm/uv/uv.h>
3df3212f 15#include <linux/debugfs.h>
5af5573e 16
c048fdfe 17/*
ce4a4e56 18 * TLB flushing, formerly SMP-only
c048fdfe
GC
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
52aec330 28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
c048fdfe
GC
29 */
30
c048fdfe
GC
31void leave_mm(int cpu)
32{
3d28ebce
AL
33 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
34
35 /*
36 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
37 * If so, our callers still expect us to flush the TLB, but there
38 * aren't any user TLB entries in init_mm to worry about.
39 *
40 * This needs to happen before any other sanity checks due to
41 * intel_idle's shenanigans.
42 */
43 if (loaded_mm == &init_mm)
44 return;
45
c6ae41e7 46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
c048fdfe 47 BUG();
3d28ebce
AL
48
49 switch_mm(NULL, &init_mm, NULL);
c048fdfe
GC
50}
51EXPORT_SYMBOL_GPL(leave_mm);
52
69c0319a
AL
53void switch_mm(struct mm_struct *prev, struct mm_struct *next,
54 struct task_struct *tsk)
078194f8
AL
55{
56 unsigned long flags;
57
58 local_irq_save(flags);
59 switch_mm_irqs_off(prev, next, tsk);
60 local_irq_restore(flags);
61}
62
63void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
64 struct task_struct *tsk)
69c0319a
AL
65{
66 unsigned cpu = smp_processor_id();
3d28ebce 67 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
69c0319a 68
3d28ebce
AL
69 /*
70 * NB: The scheduler will call us with prev == next when
71 * switching from lazy TLB mode to normal mode if active_mm
72 * isn't changing. When this happens, there is no guarantee
73 * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
74 *
75 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
76 */
e37e43a4 77
3d28ebce 78 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
e37e43a4 79
3d28ebce
AL
80 if (real_prev == next) {
81 /*
82 * There's nothing to do: we always keep the per-mm control
83 * regs in sync with cpu_tlbstate.loaded_mm. Just
84 * sanity-check mm_cpumask.
85 */
86 if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
87 cpumask_set_cpu(cpu, mm_cpumask(next));
88 return;
89 }
69c0319a 90
3d28ebce 91 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
69c0319a 92 /*
3d28ebce
AL
93 * If our current stack is in vmalloc space and isn't
94 * mapped in the new pgd, we'll double-fault. Forcibly
95 * map it.
69c0319a 96 */
3d28ebce 97 unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
69c0319a 98
3d28ebce 99 pgd_t *pgd = next->pgd + stack_pgd_index;
69c0319a 100
3d28ebce
AL
101 if (unlikely(pgd_none(*pgd)))
102 set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
103 }
69c0319a 104
3d28ebce
AL
105 this_cpu_write(cpu_tlbstate.loaded_mm, next);
106
107 WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
108 cpumask_set_cpu(cpu, mm_cpumask(next));
109
110 /*
111 * Re-load page tables.
112 *
113 * This logic has an ordering constraint:
114 *
115 * CPU 0: Write to a PTE for 'next'
116 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
117 * CPU 1: set bit 1 in next's mm_cpumask
118 * CPU 1: load from the PTE that CPU 0 writes (implicit)
119 *
120 * We need to prevent an outcome in which CPU 1 observes
121 * the new PTE value and CPU 0 observes bit 1 clear in
122 * mm_cpumask. (If that occurs, then the IPI will never
123 * be sent, and CPU 0's TLB will contain a stale entry.)
124 *
125 * The bad outcome can occur if either CPU's load is
126 * reordered before that CPU's store, so both CPUs must
127 * execute full barriers to prevent this from happening.
128 *
129 * Thus, switch_mm needs a full barrier between the
130 * store to mm_cpumask and any operation that could load
131 * from next->pgd. TLB fills are special and can happen
132 * due to instruction fetches or for no reason at all,
133 * and neither LOCK nor MFENCE orders them.
134 * Fortunately, load_cr3() is serializing and gives the
135 * ordering guarantee we need.
136 */
137 load_cr3(next->pgd);
138
139 /*
140 * This gets called via leave_mm() in the idle path where RCU
141 * functions differently. Tracing normally uses RCU, so we have to
142 * call the tracepoint specially here.
143 */
144 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
145
146 /* Stop flush ipis for the previous mm */
147 WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
148 real_prev != &init_mm);
149 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
150
151 /* Load per-mm CR4 state */
152 load_mm_cr4(next);
69c0319a
AL
153
154#ifdef CONFIG_MODIFY_LDT_SYSCALL
3d28ebce
AL
155 /*
156 * Load the LDT, if the LDT is different.
157 *
158 * It's possible that prev->context.ldt doesn't match
159 * the LDT register. This can happen if leave_mm(prev)
160 * was called and then modify_ldt changed
161 * prev->context.ldt but suppressed an IPI to this CPU.
162 * In this case, prev->context.ldt != NULL, because we
163 * never set context.ldt to NULL while the mm still
164 * exists. That means that next->context.ldt !=
165 * prev->context.ldt, because mms never share an LDT.
166 */
167 if (unlikely(real_prev->context.ldt != next->context.ldt))
168 load_mm_ldt(next);
69c0319a 169#endif
69c0319a
AL
170}
171
c048fdfe 172/*
c048fdfe
GC
173 * The flush IPI assumes that a thread switch happens in this order:
174 * [cpu0: the cpu that switches]
175 * 1) switch_mm() either 1a) or 1b)
176 * 1a) thread switch to a different mm
52aec330
AS
177 * 1a1) set cpu_tlbstate to TLBSTATE_OK
178 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
179 * if cpu0 was in lazy tlb mode.
180 * 1a2) update cpu active_mm
c048fdfe 181 * Now cpu0 accepts tlb flushes for the new mm.
52aec330 182 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
c048fdfe
GC
183 * Now the other cpus will send tlb flush ipis.
184 * 1a4) change cr3.
52aec330
AS
185 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
186 * Stop ipi delivery for the old mm. This is not synchronized with
187 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
188 * mm, and in the worst case we perform a superfluous tlb flush.
c048fdfe 189 * 1b) thread switch without mm change
52aec330
AS
190 * cpu active_mm is correct, cpu0 already handles flush ipis.
191 * 1b1) set cpu_tlbstate to TLBSTATE_OK
c048fdfe
GC
192 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
193 * Atomically set the bit [other cpus will start sending flush ipis],
194 * and test the bit.
195 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
196 * 2) switch %%esp, ie current
197 *
198 * The interrupt must handle 2 special cases:
199 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
200 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
201 * runs in kernel space, the cpu could load tlb entries for user space
202 * pages.
203 *
52aec330 204 * The good news is that cpu_tlbstate is local to each cpu, no
c048fdfe
GC
205 * write/read ordering problems.
206 */
207
454bbad9
AL
208static void flush_tlb_func_common(const struct flush_tlb_info *f,
209 bool local, enum tlb_flush_reason reason)
c048fdfe 210{
b3b90e5a 211 if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) {
52aec330 212 leave_mm(smp_processor_id());
b3b90e5a
AL
213 return;
214 }
c048fdfe 215
a2055abe 216 if (f->end == TLB_FLUSH_ALL) {
b3b90e5a 217 local_flush_tlb();
454bbad9
AL
218 if (local)
219 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
220 trace_tlb_flush(reason, TLB_FLUSH_ALL);
b3b90e5a
AL
221 } else {
222 unsigned long addr;
223 unsigned long nr_pages =
a2055abe
AL
224 (f->end - f->start) / PAGE_SIZE;
225 addr = f->start;
226 while (addr < f->end) {
b3b90e5a
AL
227 __flush_tlb_single(addr);
228 addr += PAGE_SIZE;
229 }
454bbad9
AL
230 if (local)
231 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
232 trace_tlb_flush(reason, nr_pages);
b3b90e5a 233 }
c048fdfe
GC
234}
235
454bbad9
AL
236static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
237{
238 const struct flush_tlb_info *f = info;
239
240 flush_tlb_func_common(f, true, reason);
241}
242
243static void flush_tlb_func_remote(void *info)
244{
245 const struct flush_tlb_info *f = info;
246
247 inc_irq_stat(irq_tlb_count);
248
3d28ebce 249 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
454bbad9
AL
250 return;
251
252 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
253 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
254}
255
4595f962 256void native_flush_tlb_others(const struct cpumask *cpumask,
a2055abe 257 const struct flush_tlb_info *info)
4595f962 258{
ec659934 259 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
a2055abe 260 if (info->end == TLB_FLUSH_ALL)
18c98243
NA
261 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
262 else
263 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
a2055abe 264 (info->end - info->start) >> PAGE_SHIFT);
18c98243 265
4595f962 266 if (is_uv_system()) {
bdbcdd48 267 unsigned int cpu;
0e21990a 268
25542c64 269 cpu = smp_processor_id();
a2055abe 270 cpumask = uv_flush_tlb_others(cpumask, info);
bdbcdd48 271 if (cpumask)
454bbad9 272 smp_call_function_many(cpumask, flush_tlb_func_remote,
a2055abe 273 (void *)info, 1);
0e21990a 274 return;
4595f962 275 }
454bbad9 276 smp_call_function_many(cpumask, flush_tlb_func_remote,
a2055abe 277 (void *)info, 1);
c048fdfe 278}
c048fdfe 279
a5102476
DH
280/*
281 * See Documentation/x86/tlb.txt for details. We choose 33
282 * because it is large enough to cover the vast majority (at
283 * least 95%) of allocations, and is small enough that we are
284 * confident it will not cause too much overhead. Each single
285 * flush is about 100 ns, so this caps the maximum overhead at
286 * _about_ 3,000 ns.
287 *
288 * This is in units of pages.
289 */
86426851 290static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
e9f4e0a9 291
611ae8e3
AS
292void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
293 unsigned long end, unsigned long vmflag)
294{
454bbad9 295 int cpu;
ce27374f 296
454bbad9
AL
297 struct flush_tlb_info info = {
298 .mm = mm,
299 };
ce27374f 300
454bbad9 301 cpu = get_cpu();
71b3c126 302
454bbad9
AL
303 /* Synchronize with switch_mm. */
304 smp_mb();
71b3c126 305
454bbad9
AL
306 /* Should we flush just the requested range? */
307 if ((end != TLB_FLUSH_ALL) &&
308 !(vmflag & VM_HUGETLB) &&
309 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
310 info.start = start;
311 info.end = end;
9824cf97 312 } else {
a2055abe
AL
313 info.start = 0UL;
314 info.end = TLB_FLUSH_ALL;
4995ab9c 315 }
454bbad9 316
3d28ebce 317 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm))
454bbad9
AL
318 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
319 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
a2055abe 320 flush_tlb_others(mm_cpumask(mm), &info);
454bbad9 321 put_cpu();
c048fdfe
GC
322}
323
a2055abe 324
c048fdfe
GC
325static void do_flush_tlb_all(void *info)
326{
ec659934 327 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
c048fdfe 328 __flush_tlb_all();
c6ae41e7 329 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
3f8afb77 330 leave_mm(smp_processor_id());
c048fdfe
GC
331}
332
333void flush_tlb_all(void)
334{
ec659934 335 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
15c8b6c1 336 on_each_cpu(do_flush_tlb_all, NULL, 1);
c048fdfe 337}
3df3212f 338
effee4b9
AS
339static void do_kernel_range_flush(void *info)
340{
341 struct flush_tlb_info *f = info;
342 unsigned long addr;
343
344 /* flush range by one by one 'invlpg' */
a2055abe 345 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
effee4b9
AS
346 __flush_tlb_single(addr);
347}
348
349void flush_tlb_kernel_range(unsigned long start, unsigned long end)
350{
effee4b9
AS
351
352 /* Balance as user space task's flush, a bit conservative */
e9f4e0a9
DH
353 if (end == TLB_FLUSH_ALL ||
354 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
effee4b9 355 on_each_cpu(do_flush_tlb_all, NULL, 1);
e9f4e0a9
DH
356 } else {
357 struct flush_tlb_info info;
a2055abe
AL
358 info.start = start;
359 info.end = end;
effee4b9
AS
360 on_each_cpu(do_kernel_range_flush, &info, 1);
361 }
362}
2d040a1c 363
e73ad5ff
AL
364void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
365{
a2055abe
AL
366 struct flush_tlb_info info = {
367 .mm = NULL,
368 .start = 0UL,
369 .end = TLB_FLUSH_ALL,
370 };
371
e73ad5ff
AL
372 int cpu = get_cpu();
373
3f79e4c7
AL
374 if (cpumask_test_cpu(cpu, &batch->cpumask))
375 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
e73ad5ff 376 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
a2055abe 377 flush_tlb_others(&batch->cpumask, &info);
e73ad5ff
AL
378 cpumask_clear(&batch->cpumask);
379
380 put_cpu();
381}
382
2d040a1c
DH
383static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
384 size_t count, loff_t *ppos)
385{
386 char buf[32];
387 unsigned int len;
388
389 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
390 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
391}
392
393static ssize_t tlbflush_write_file(struct file *file,
394 const char __user *user_buf, size_t count, loff_t *ppos)
395{
396 char buf[32];
397 ssize_t len;
398 int ceiling;
399
400 len = min(count, sizeof(buf) - 1);
401 if (copy_from_user(buf, user_buf, len))
402 return -EFAULT;
403
404 buf[len] = '\0';
405 if (kstrtoint(buf, 0, &ceiling))
406 return -EINVAL;
407
408 if (ceiling < 0)
409 return -EINVAL;
410
411 tlb_single_page_flush_ceiling = ceiling;
412 return count;
413}
414
415static const struct file_operations fops_tlbflush = {
416 .read = tlbflush_read_file,
417 .write = tlbflush_write_file,
418 .llseek = default_llseek,
419};
420
421static int __init create_tlb_single_page_flush_ceiling(void)
422{
423 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
424 arch_debugfs_dir, NULL, &fops_tlbflush);
425 return 0;
426}
427late_initcall(create_tlb_single_page_flush_ceiling);