]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Allocate a common scratch page
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
59b449d5 38#include "intel_workarounds.h"
465c403c 39#include "i915_gemfs.h"
6b5e90f5 40#include <linux/dma-fence-array.h>
fe3288b5 41#include <linux/kthread.h>
c13d87ea 42#include <linux/reservation.h>
5949eac4 43#include <linux/shmem_fs.h>
5a0e3ad6 44#include <linux/slab.h>
20e4933c 45#include <linux/stop_machine.h>
673a394b 46#include <linux/swap.h>
79e53945 47#include <linux/pci.h>
1286ff73 48#include <linux/dma-buf.h>
673a394b 49
fbbd37b3 50static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 51
2c22569b
CW
52static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53{
e27ab73d 54 if (obj->cache_dirty)
b50a5371
AS
55 return false;
56
b8f55be6 57 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
58 return true;
59
bd3d2252 60 return obj->pin_global; /* currently in use by HW, keep flushed */
2c22569b
CW
61}
62
4f1959ee 63static int
bb6dc8d9 64insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
65 struct drm_mm_node *node, u32 size)
66{
67 memset(node, 0, sizeof(*node));
82ad6443 68 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
4e64e553
CW
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
4f1959ee
AS
72}
73
74static void
75remove_mappable_node(struct drm_mm_node *node)
76{
77 drm_mm_remove_node(node);
78}
79
73aa808f
CW
80/* some bookkeeping */
81static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 82 u64 size)
73aa808f 83{
c20e8355 84 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
c20e8355 87 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88}
89
90static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 91 u64 size)
73aa808f 92{
c20e8355 93 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
c20e8355 96 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97}
98
21dd3734 99static int
33196ded 100i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 101{
30dbf0c0
CW
102 int ret;
103
4c7d62c6
CW
104 might_sleep();
105
0a6759c6
DV
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
1f83fee0 111 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 112 !i915_reset_backoff(error),
b52992c0 113 I915_RESET_TIMEOUT);
0a6759c6
DV
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
30dbf0c0 118 return ret;
d98c52cf
CW
119 } else {
120 return 0;
0a6759c6 121 }
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
fac5e23e 126 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
127 int ret;
128
33196ded 129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
e4d2006f
CW
140static u32 __i915_gem_park(struct drm_i915_private *i915)
141{
4dfacb0b
CW
142 GEM_TRACE("\n");
143
e4d2006f
CW
144 lockdep_assert_held(&i915->drm.struct_mutex);
145 GEM_BUG_ON(i915->gt.active_requests);
643b450a 146 GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
e4d2006f
CW
147
148 if (!i915->gt.awake)
149 return I915_EPOCH_INVALID;
150
151 GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153 /*
154 * Be paranoid and flush a concurrent interrupt to make sure
155 * we don't reactivate any irq tasklets after parking.
156 *
157 * FIXME: Note that even though we have waited for execlists to be idle,
158 * there may still be an in-flight interrupt even though the CSB
159 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 * is completed before we continue, but it doesn't prevent the HW from
161 * raising a spurious interrupt later. To complete the shield we should
162 * coordinate disabling the CS irq with flushing the interrupts.
163 */
164 synchronize_irq(i915->drm.irq);
165
166 intel_engines_park(i915);
a89d1f92 167 i915_timelines_park(i915);
e4d2006f
CW
168
169 i915_pmu_gt_parked(i915);
3365e226 170 i915_vma_parked(i915);
e4d2006f
CW
171
172 i915->gt.awake = false;
173
174 if (INTEL_GEN(i915) >= 6)
175 gen6_rps_idle(i915);
176
177 intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179 intel_runtime_pm_put(i915);
180
181 return i915->gt.epoch;
182}
183
184void i915_gem_park(struct drm_i915_private *i915)
185{
4dfacb0b
CW
186 GEM_TRACE("\n");
187
e4d2006f
CW
188 lockdep_assert_held(&i915->drm.struct_mutex);
189 GEM_BUG_ON(i915->gt.active_requests);
190
191 if (!i915->gt.awake)
192 return;
193
194 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196}
197
198void i915_gem_unpark(struct drm_i915_private *i915)
199{
4dfacb0b
CW
200 GEM_TRACE("\n");
201
e4d2006f
CW
202 lockdep_assert_held(&i915->drm.struct_mutex);
203 GEM_BUG_ON(!i915->gt.active_requests);
204
205 if (i915->gt.awake)
206 return;
207
208 intel_runtime_pm_get_noresume(i915);
209
210 /*
211 * It seems that the DMC likes to transition between the DC states a lot
212 * when there are no connected displays (no active power domains) during
213 * command submission.
214 *
215 * This activity has negative impact on the performance of the chip with
216 * huge latencies observed in the interrupt handler and elsewhere.
217 *
218 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 * GT activity, preventing any DC state transitions.
220 */
221 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223 i915->gt.awake = true;
224 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 i915->gt.epoch = 1;
226
227 intel_enable_gt_powersave(i915);
228 i915_update_gfx_val(i915);
229 if (INTEL_GEN(i915) >= 6)
230 gen6_rps_busy(i915);
231 i915_pmu_gt_unparked(i915);
232
233 intel_engines_unpark(i915);
234
235 i915_queue_hangcheck(i915);
236
237 queue_delayed_work(i915->wq,
238 &i915->gt.retire_work,
239 round_jiffies_up_relative(HZ));
240}
241
5a125c3c
EA
242int
243i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 244 struct drm_file *file)
5a125c3c 245{
72e96d64 246 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 247 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 248 struct drm_i915_gem_get_aperture *args = data;
ca1543be 249 struct i915_vma *vma;
ff8f7975 250 u64 pinned;
5a125c3c 251
82ad6443 252 pinned = ggtt->vm.reserved;
73aa808f 253 mutex_lock(&dev->struct_mutex);
82ad6443 254 list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
20dfbde4 255 if (i915_vma_is_pinned(vma))
ca1543be 256 pinned += vma->node.size;
82ad6443 257 list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
20dfbde4 258 if (i915_vma_is_pinned(vma))
ca1543be 259 pinned += vma->node.size;
73aa808f 260 mutex_unlock(&dev->struct_mutex);
5a125c3c 261
82ad6443 262 args->aper_size = ggtt->vm.total;
0206e353 263 args->aper_available_size = args->aper_size - pinned;
6299f992 264
5a125c3c
EA
265 return 0;
266}
267
b91b09ee 268static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 269{
93c76a3d 270 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 271 drm_dma_handle_t *phys;
6a2c4232
CW
272 struct sg_table *st;
273 struct scatterlist *sg;
dbb4351b 274 char *vaddr;
6a2c4232 275 int i;
b91b09ee 276 int err;
00731155 277
6a2c4232 278 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
b91b09ee 279 return -EINVAL;
6a2c4232 280
dbb4351b
CW
281 /* Always aligning to the object size, allows a single allocation
282 * to handle all possible callers, and given typical object sizes,
283 * the alignment of the buddy allocation will naturally match.
284 */
285 phys = drm_pci_alloc(obj->base.dev,
750fae23 286 roundup_pow_of_two(obj->base.size),
dbb4351b
CW
287 roundup_pow_of_two(obj->base.size));
288 if (!phys)
b91b09ee 289 return -ENOMEM;
dbb4351b
CW
290
291 vaddr = phys->vaddr;
6a2c4232
CW
292 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 struct page *page;
294 char *src;
295
296 page = shmem_read_mapping_page(mapping, i);
dbb4351b 297 if (IS_ERR(page)) {
b91b09ee 298 err = PTR_ERR(page);
dbb4351b
CW
299 goto err_phys;
300 }
6a2c4232
CW
301
302 src = kmap_atomic(page);
303 memcpy(vaddr, src, PAGE_SIZE);
304 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 kunmap_atomic(src);
306
09cbfeaf 307 put_page(page);
6a2c4232
CW
308 vaddr += PAGE_SIZE;
309 }
310
c033666a 311 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
312
313 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b 314 if (!st) {
b91b09ee 315 err = -ENOMEM;
dbb4351b
CW
316 goto err_phys;
317 }
6a2c4232
CW
318
319 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 kfree(st);
b91b09ee 321 err = -ENOMEM;
dbb4351b 322 goto err_phys;
6a2c4232
CW
323 }
324
325 sg = st->sgl;
326 sg->offset = 0;
327 sg->length = obj->base.size;
00731155 328
dbb4351b 329 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
330 sg_dma_len(sg) = obj->base.size;
331
dbb4351b 332 obj->phys_handle = phys;
b91b09ee 333
a5c08166 334 __i915_gem_object_set_pages(obj, st, sg->length);
b91b09ee
MA
335
336 return 0;
dbb4351b
CW
337
338err_phys:
339 drm_pci_free(obj->base.dev, phys);
b91b09ee
MA
340
341 return err;
6a2c4232
CW
342}
343
e27ab73d
CW
344static void __start_cpu_write(struct drm_i915_gem_object *obj)
345{
c0a51fd0
CK
346 obj->read_domains = I915_GEM_DOMAIN_CPU;
347 obj->write_domain = I915_GEM_DOMAIN_CPU;
e27ab73d
CW
348 if (cpu_write_needs_clflush(obj))
349 obj->cache_dirty = true;
350}
351
6a2c4232 352static void
2b3c8317 353__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
354 struct sg_table *pages,
355 bool needs_clflush)
6a2c4232 356{
a4f5ea64 357 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 358
a4f5ea64
CW
359 if (obj->mm.madv == I915_MADV_DONTNEED)
360 obj->mm.dirty = false;
6a2c4232 361
e5facdf9 362 if (needs_clflush &&
c0a51fd0 363 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 364 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 365 drm_clflush_sg(pages);
03ac84f1 366
e27ab73d 367 __start_cpu_write(obj);
03ac84f1
CW
368}
369
370static void
371i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 struct sg_table *pages)
373{
e5facdf9 374 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 375
a4f5ea64 376 if (obj->mm.dirty) {
93c76a3d 377 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 378 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
379 int i;
380
381 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
382 struct page *page;
383 char *dst;
384
385 page = shmem_read_mapping_page(mapping, i);
386 if (IS_ERR(page))
387 continue;
388
389 dst = kmap_atomic(page);
390 drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 memcpy(dst, vaddr, PAGE_SIZE);
392 kunmap_atomic(dst);
393
394 set_page_dirty(page);
a4f5ea64 395 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 396 mark_page_accessed(page);
09cbfeaf 397 put_page(page);
00731155
CW
398 vaddr += PAGE_SIZE;
399 }
a4f5ea64 400 obj->mm.dirty = false;
00731155
CW
401 }
402
03ac84f1
CW
403 sg_free_table(pages);
404 kfree(pages);
dbb4351b
CW
405
406 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
407}
408
409static void
410i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411{
a4f5ea64 412 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
413}
414
415static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 .get_pages = i915_gem_object_get_pages_phys,
417 .put_pages = i915_gem_object_put_pages_phys,
418 .release = i915_gem_object_release_phys,
419};
420
581ab1fe
CW
421static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
35a9611c 423int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
424{
425 struct i915_vma *vma;
426 LIST_HEAD(still_in_list);
02bef8f9
CW
427 int ret;
428
429 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 430
02bef8f9
CW
431 /* Closed vma are removed from the obj->vma_list - but they may
432 * still have an active binding on the object. To remove those we
433 * must wait for all rendering to complete to the object (as unbinding
434 * must anyway), and retire the requests.
aa653a68 435 */
5888fc9e 436 ret = i915_gem_object_set_to_cpu_domain(obj, false);
02bef8f9
CW
437 if (ret)
438 return ret;
439
aa653a68
CW
440 while ((vma = list_first_entry_or_null(&obj->vma_list,
441 struct i915_vma,
442 obj_link))) {
443 list_move_tail(&vma->obj_link, &still_in_list);
444 ret = i915_vma_unbind(vma);
445 if (ret)
446 break;
447 }
448 list_splice(&still_in_list, &obj->vma_list);
449
450 return ret;
451}
452
e95433c7
CW
453static long
454i915_gem_object_wait_fence(struct dma_fence *fence,
455 unsigned int flags,
456 long timeout,
562d9bae 457 struct intel_rps_client *rps_client)
00e60f26 458{
e61e0f51 459 struct i915_request *rq;
00e60f26 460
e95433c7 461 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 462
e95433c7
CW
463 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 return timeout;
465
466 if (!dma_fence_is_i915(fence))
467 return dma_fence_wait_timeout(fence,
468 flags & I915_WAIT_INTERRUPTIBLE,
469 timeout);
470
471 rq = to_request(fence);
e61e0f51 472 if (i915_request_completed(rq))
e95433c7
CW
473 goto out;
474
e9af4ea2
CW
475 /*
476 * This client is about to stall waiting for the GPU. In many cases
e95433c7
CW
477 * this is undesirable and limits the throughput of the system, as
478 * many clients cannot continue processing user input/output whilst
479 * blocked. RPS autotuning may take tens of milliseconds to respond
480 * to the GPU load and thus incurs additional latency for the client.
481 * We can circumvent that by promoting the GPU frequency to maximum
482 * before we wait. This makes the GPU throttle up much more quickly
483 * (good for benchmarks and user experience, e.g. window animations),
484 * but at a cost of spending more power processing the workload
485 * (bad for battery). Not all clients even want their results
486 * immediately and for them we should just let the GPU select its own
487 * frequency to maximise efficiency. To prevent a single client from
488 * forcing the clocks too high for the whole system, we only allow
489 * each client to waitboost once in a busy period.
490 */
e61e0f51 491 if (rps_client && !i915_request_started(rq)) {
e95433c7 492 if (INTEL_GEN(rq->i915) >= 6)
562d9bae 493 gen6_rps_boost(rq, rps_client);
00e60f26
CW
494 }
495
e61e0f51 496 timeout = i915_request_wait(rq, flags, timeout);
e95433c7
CW
497
498out:
e61e0f51
CW
499 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 i915_request_retire_upto(rq);
e95433c7 501
e95433c7
CW
502 return timeout;
503}
504
505static long
506i915_gem_object_wait_reservation(struct reservation_object *resv,
507 unsigned int flags,
508 long timeout,
562d9bae 509 struct intel_rps_client *rps_client)
e95433c7 510{
e54ca977 511 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 512 struct dma_fence *excl;
e54ca977 513 bool prune_fences = false;
e95433c7
CW
514
515 if (flags & I915_WAIT_ALL) {
516 struct dma_fence **shared;
517 unsigned int count, i;
00e60f26
CW
518 int ret;
519
e95433c7
CW
520 ret = reservation_object_get_fences_rcu(resv,
521 &excl, &count, &shared);
00e60f26
CW
522 if (ret)
523 return ret;
00e60f26 524
e95433c7
CW
525 for (i = 0; i < count; i++) {
526 timeout = i915_gem_object_wait_fence(shared[i],
527 flags, timeout,
562d9bae 528 rps_client);
d892e939 529 if (timeout < 0)
e95433c7 530 break;
00e60f26 531
e95433c7
CW
532 dma_fence_put(shared[i]);
533 }
534
535 for (; i < count; i++)
536 dma_fence_put(shared[i]);
537 kfree(shared);
e54ca977 538
fa73055b
CW
539 /*
540 * If both shared fences and an exclusive fence exist,
541 * then by construction the shared fences must be later
542 * than the exclusive fence. If we successfully wait for
543 * all the shared fences, we know that the exclusive fence
544 * must all be signaled. If all the shared fences are
545 * signaled, we can prune the array and recover the
546 * floating references on the fences/requests.
547 */
e54ca977 548 prune_fences = count && timeout >= 0;
e95433c7
CW
549 } else {
550 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
551 }
552
fa73055b 553 if (excl && timeout >= 0)
562d9bae
SAK
554 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 rps_client);
e95433c7
CW
556
557 dma_fence_put(excl);
558
fa73055b
CW
559 /*
560 * Opportunistically prune the fences iff we know they have *all* been
03d1cac6
CW
561 * signaled and that the reservation object has not been changed (i.e.
562 * no new fences have been added).
563 */
e54ca977 564 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
565 if (reservation_object_trylock(resv)) {
566 if (!__read_seqcount_retry(&resv->seq, seq))
567 reservation_object_add_excl_fence(resv, NULL);
568 reservation_object_unlock(resv);
569 }
e54ca977
CW
570 }
571
e95433c7 572 return timeout;
00e60f26
CW
573}
574
b7268c5e
CW
575static void __fence_set_priority(struct dma_fence *fence,
576 const struct i915_sched_attr *attr)
6b5e90f5 577{
e61e0f51 578 struct i915_request *rq;
6b5e90f5
CW
579 struct intel_engine_cs *engine;
580
c218ee03 581 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
6b5e90f5
CW
582 return;
583
584 rq = to_request(fence);
585 engine = rq->engine;
6b5e90f5 586
4f6d8fcf
CW
587 local_bh_disable();
588 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
47650db0 589 if (engine->schedule)
b7268c5e 590 engine->schedule(rq, attr);
47650db0 591 rcu_read_unlock();
4f6d8fcf 592 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
6b5e90f5
CW
593}
594
b7268c5e
CW
595static void fence_set_priority(struct dma_fence *fence,
596 const struct i915_sched_attr *attr)
6b5e90f5
CW
597{
598 /* Recurse once into a fence-array */
599 if (dma_fence_is_array(fence)) {
600 struct dma_fence_array *array = to_dma_fence_array(fence);
601 int i;
602
603 for (i = 0; i < array->num_fences; i++)
b7268c5e 604 __fence_set_priority(array->fences[i], attr);
6b5e90f5 605 } else {
b7268c5e 606 __fence_set_priority(fence, attr);
6b5e90f5
CW
607 }
608}
609
610int
611i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 unsigned int flags,
b7268c5e 613 const struct i915_sched_attr *attr)
6b5e90f5
CW
614{
615 struct dma_fence *excl;
616
617 if (flags & I915_WAIT_ALL) {
618 struct dma_fence **shared;
619 unsigned int count, i;
620 int ret;
621
622 ret = reservation_object_get_fences_rcu(obj->resv,
623 &excl, &count, &shared);
624 if (ret)
625 return ret;
626
627 for (i = 0; i < count; i++) {
b7268c5e 628 fence_set_priority(shared[i], attr);
6b5e90f5
CW
629 dma_fence_put(shared[i]);
630 }
631
632 kfree(shared);
633 } else {
634 excl = reservation_object_get_excl_rcu(obj->resv);
635 }
636
637 if (excl) {
b7268c5e 638 fence_set_priority(excl, attr);
6b5e90f5
CW
639 dma_fence_put(excl);
640 }
641 return 0;
642}
643
e95433c7
CW
644/**
645 * Waits for rendering to the object to be completed
646 * @obj: i915 gem object
647 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648 * @timeout: how long to wait
a0a8b1cf 649 * @rps_client: client (user process) to charge for any waitboosting
00e60f26 650 */
e95433c7
CW
651int
652i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 unsigned int flags,
654 long timeout,
562d9bae 655 struct intel_rps_client *rps_client)
00e60f26 656{
e95433c7
CW
657 might_sleep();
658#if IS_ENABLED(CONFIG_LOCKDEP)
659 GEM_BUG_ON(debug_locks &&
660 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 !!(flags & I915_WAIT_LOCKED));
662#endif
663 GEM_BUG_ON(timeout < 0);
00e60f26 664
d07f0e59
CW
665 timeout = i915_gem_object_wait_reservation(obj->resv,
666 flags, timeout,
562d9bae 667 rps_client);
e95433c7 668 return timeout < 0 ? timeout : 0;
00e60f26
CW
669}
670
671static struct intel_rps_client *to_rps_client(struct drm_file *file)
672{
673 struct drm_i915_file_private *fpriv = file->driver_priv;
674
562d9bae 675 return &fpriv->rps_client;
00e60f26
CW
676}
677
00731155
CW
678static int
679i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pwrite *args,
03ac84f1 681 struct drm_file *file)
00731155 682{
00731155 683 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 684 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
685
686 /* We manually control the domain here and pretend that it
687 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 */
77a0d1ca 689 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
690 if (copy_from_user(vaddr, user_data, args->size))
691 return -EFAULT;
00731155 692
6a2c4232 693 drm_clflush_virt_range(vaddr, args->size);
10466d2a 694 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 695
d59b21ec 696 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 697 return 0;
00731155
CW
698}
699
187685cb 700void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 701{
efab6d8d 702 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
703}
704
705void i915_gem_object_free(struct drm_i915_gem_object *obj)
706{
fac5e23e 707 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 708 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
709}
710
ff72145b
DA
711static int
712i915_gem_create(struct drm_file *file,
12d79d78 713 struct drm_i915_private *dev_priv,
ff72145b
DA
714 uint64_t size,
715 uint32_t *handle_p)
673a394b 716{
05394f39 717 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
718 int ret;
719 u32 handle;
673a394b 720
ff72145b 721 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
722 if (size == 0)
723 return -EINVAL;
673a394b
EA
724
725 /* Allocate the new object */
12d79d78 726 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
727 if (IS_ERR(obj))
728 return PTR_ERR(obj);
673a394b 729
05394f39 730 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 731 /* drop reference from allocate - handle holds it now */
f0cd5182 732 i915_gem_object_put(obj);
d861e338
DV
733 if (ret)
734 return ret;
202f2fef 735
ff72145b 736 *handle_p = handle;
673a394b
EA
737 return 0;
738}
739
ff72145b
DA
740int
741i915_gem_dumb_create(struct drm_file *file,
742 struct drm_device *dev,
743 struct drm_mode_create_dumb *args)
744{
745 /* have to work out size/pitch and return them */
de45eaf7 746 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 747 args->size = args->pitch * args->height;
12d79d78 748 return i915_gem_create(file, to_i915(dev),
da6b51d0 749 args->size, &args->handle);
ff72145b
DA
750}
751
e27ab73d
CW
752static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753{
754 return !(obj->cache_level == I915_CACHE_NONE ||
755 obj->cache_level == I915_CACHE_WT);
756}
757
ff72145b
DA
758/**
759 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
760 * @dev: drm device pointer
761 * @data: ioctl data blob
762 * @file: drm file pointer
ff72145b
DA
763 */
764int
765i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 struct drm_file *file)
767{
12d79d78 768 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 769 struct drm_i915_gem_create *args = data;
63ed2cb2 770
12d79d78 771 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 772
12d79d78 773 return i915_gem_create(file, dev_priv,
da6b51d0 774 args->size, &args->handle);
ff72145b
DA
775}
776
ef74921b
CW
777static inline enum fb_op_origin
778fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779{
780 return (domain == I915_GEM_DOMAIN_GTT ?
781 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782}
783
7125397b 784void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
ef74921b 785{
7125397b
CW
786 /*
787 * No actual flushing is required for the GTT write domain for reads
788 * from the GTT domain. Writes to it "immediately" go to main memory
789 * as far as we know, so there's no chipset flush. It also doesn't
790 * land in the GPU render cache.
ef74921b
CW
791 *
792 * However, we do have to enforce the order so that all writes through
793 * the GTT land before any writes to the device, such as updates to
794 * the GATT itself.
795 *
796 * We also have to wait a bit for the writes to land from the GTT.
797 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 * timing. This issue has only been observed when switching quickly
799 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 * and it appears to only affect discrete GTT blocks (i.e. on LLC
7125397b
CW
801 * system agents we cannot reproduce this behaviour, until Cannonlake
802 * that was!).
ef74921b 803 */
7125397b 804
900ccf30
CW
805 wmb();
806
807 if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 return;
809
a8bd3b88 810 i915_gem_chipset_flush(dev_priv);
ef74921b 811
7125397b
CW
812 intel_runtime_pm_get(dev_priv);
813 spin_lock_irq(&dev_priv->uncore.lock);
814
815 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817 spin_unlock_irq(&dev_priv->uncore.lock);
818 intel_runtime_pm_put(dev_priv);
819}
820
821static void
822flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823{
824 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 struct i915_vma *vma;
826
c0a51fd0 827 if (!(obj->write_domain & flush_domains))
7125397b
CW
828 return;
829
c0a51fd0 830 switch (obj->write_domain) {
ef74921b 831 case I915_GEM_DOMAIN_GTT:
7125397b 832 i915_gem_flush_ggtt_writes(dev_priv);
ef74921b
CW
833
834 intel_fb_obj_flush(obj,
835 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
7125397b 836
e2189dd0 837 for_each_ggtt_vma(vma, obj) {
7125397b
CW
838 if (vma->iomap)
839 continue;
840
841 i915_vma_unset_ggtt_write(vma);
842 }
ef74921b
CW
843 break;
844
add00e6d
CW
845 case I915_GEM_DOMAIN_WC:
846 wmb();
847 break;
848
ef74921b
CW
849 case I915_GEM_DOMAIN_CPU:
850 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 break;
e27ab73d
CW
852
853 case I915_GEM_DOMAIN_RENDER:
854 if (gpu_write_needs_clflush(obj))
855 obj->cache_dirty = true;
856 break;
ef74921b
CW
857 }
858
c0a51fd0 859 obj->write_domain = 0;
ef74921b
CW
860}
861
8461d226
DV
862static inline int
863__copy_to_user_swizzled(char __user *cpu_vaddr,
864 const char *gpu_vaddr, int gpu_offset,
865 int length)
866{
867 int ret, cpu_offset = 0;
868
869 while (length > 0) {
870 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 int this_length = min(cacheline_end - gpu_offset, length);
872 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 gpu_vaddr + swizzled_gpu_offset,
876 this_length);
877 if (ret)
878 return ret + length;
879
880 cpu_offset += this_length;
881 gpu_offset += this_length;
882 length -= this_length;
883 }
884
885 return 0;
886}
887
8c59967c 888static inline int
4f0c7cfb
BW
889__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 const char __user *cpu_vaddr,
8c59967c
DV
891 int length)
892{
893 int ret, cpu_offset = 0;
894
895 while (length > 0) {
896 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 int this_length = min(cacheline_end - gpu_offset, length);
898 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 cpu_vaddr + cpu_offset,
902 this_length);
903 if (ret)
904 return ret + length;
905
906 cpu_offset += this_length;
907 gpu_offset += this_length;
908 length -= this_length;
909 }
910
911 return 0;
912}
913
4c914c0c
BV
914/*
915 * Pins the specified object's pages and synchronizes the object with
916 * GPU accesses. Sets needs_clflush to non-zero if the caller should
917 * flush the object from the CPU cache.
918 */
919int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 920 unsigned int *needs_clflush)
4c914c0c
BV
921{
922 int ret;
923
e95433c7 924 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 925
e95433c7 926 *needs_clflush = 0;
43394c7d
CW
927 if (!i915_gem_object_has_struct_page(obj))
928 return -ENODEV;
4c914c0c 929
e95433c7
CW
930 ret = i915_gem_object_wait(obj,
931 I915_WAIT_INTERRUPTIBLE |
932 I915_WAIT_LOCKED,
933 MAX_SCHEDULE_TIMEOUT,
934 NULL);
c13d87ea
CW
935 if (ret)
936 return ret;
937
a4f5ea64 938 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
939 if (ret)
940 return ret;
941
b8f55be6
CW
942 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
944 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 if (ret)
946 goto err_unpin;
947 else
948 goto out;
949 }
950
ef74921b 951 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 952
43394c7d
CW
953 /* If we're not in the cpu read domain, set ourself into the gtt
954 * read domain and manually flush cachelines (if required). This
955 * optimizes for the case when the gpu will dirty the data
956 * anyway again before the next pread happens.
957 */
e27ab73d 958 if (!obj->cache_dirty &&
c0a51fd0 959 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 960 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 961
7f5f95d8 962out:
9764951e 963 /* return with the pages pinned */
43394c7d 964 return 0;
9764951e
CW
965
966err_unpin:
967 i915_gem_object_unpin_pages(obj);
968 return ret;
43394c7d
CW
969}
970
971int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 unsigned int *needs_clflush)
973{
974 int ret;
975
e95433c7
CW
976 lockdep_assert_held(&obj->base.dev->struct_mutex);
977
43394c7d
CW
978 *needs_clflush = 0;
979 if (!i915_gem_object_has_struct_page(obj))
980 return -ENODEV;
981
e95433c7
CW
982 ret = i915_gem_object_wait(obj,
983 I915_WAIT_INTERRUPTIBLE |
984 I915_WAIT_LOCKED |
985 I915_WAIT_ALL,
986 MAX_SCHEDULE_TIMEOUT,
987 NULL);
43394c7d
CW
988 if (ret)
989 return ret;
990
a4f5ea64 991 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
992 if (ret)
993 return ret;
994
b8f55be6
CW
995 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
997 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 if (ret)
999 goto err_unpin;
1000 else
1001 goto out;
1002 }
1003
ef74921b 1004 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 1005
43394c7d
CW
1006 /* If we're not in the cpu write domain, set ourself into the
1007 * gtt write domain and manually flush cachelines (as required).
1008 * This optimizes for the case when the gpu will use the data
1009 * right away and we therefore have to clflush anyway.
1010 */
e27ab73d 1011 if (!obj->cache_dirty) {
7f5f95d8 1012 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 1013
e27ab73d
CW
1014 /*
1015 * Same trick applies to invalidate partially written
1016 * cachelines read before writing.
1017 */
c0a51fd0 1018 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
e27ab73d
CW
1019 *needs_clflush |= CLFLUSH_BEFORE;
1020 }
43394c7d 1021
7f5f95d8 1022out:
43394c7d 1023 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 1024 obj->mm.dirty = true;
9764951e 1025 /* return with the pages pinned */
43394c7d 1026 return 0;
9764951e
CW
1027
1028err_unpin:
1029 i915_gem_object_unpin_pages(obj);
1030 return ret;
4c914c0c
BV
1031}
1032
23c18c71
DV
1033static void
1034shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 bool swizzled)
1036{
e7e58eb5 1037 if (unlikely(swizzled)) {
23c18c71
DV
1038 unsigned long start = (unsigned long) addr;
1039 unsigned long end = (unsigned long) addr + length;
1040
1041 /* For swizzling simply ensure that we always flush both
1042 * channels. Lame, but simple and it works. Swizzled
1043 * pwrite/pread is far from a hotpath - current userspace
1044 * doesn't use it at all. */
1045 start = round_down(start, 128);
1046 end = round_up(end, 128);
1047
1048 drm_clflush_virt_range((void *)start, end - start);
1049 } else {
1050 drm_clflush_virt_range(addr, length);
1051 }
1052
1053}
1054
d174bd64
DV
1055/* Only difference to the fast-path function is that this can handle bit17
1056 * and uses non-atomic copy and kmap functions. */
1057static int
bb6dc8d9 1058shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
1059 char __user *user_data,
1060 bool page_do_bit17_swizzling, bool needs_clflush)
1061{
1062 char *vaddr;
1063 int ret;
1064
1065 vaddr = kmap(page);
1066 if (needs_clflush)
bb6dc8d9 1067 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1068 page_do_bit17_swizzling);
d174bd64
DV
1069
1070 if (page_do_bit17_swizzling)
bb6dc8d9 1071 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 1072 else
bb6dc8d9 1073 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
1074 kunmap(page);
1075
f60d7f0c 1076 return ret ? - EFAULT : 0;
d174bd64
DV
1077}
1078
bb6dc8d9
CW
1079static int
1080shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 bool page_do_bit17_swizzling, bool needs_clflush)
1082{
1083 int ret;
1084
1085 ret = -ENODEV;
1086 if (!page_do_bit17_swizzling) {
1087 char *vaddr = kmap_atomic(page);
1088
1089 if (needs_clflush)
1090 drm_clflush_virt_range(vaddr + offset, length);
1091 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 kunmap_atomic(vaddr);
1093 }
1094 if (ret == 0)
1095 return 0;
1096
1097 return shmem_pread_slow(page, offset, length, user_data,
1098 page_do_bit17_swizzling, needs_clflush);
1099}
1100
1101static int
1102i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 struct drm_i915_gem_pread *args)
1104{
1105 char __user *user_data;
1106 u64 remain;
1107 unsigned int obj_do_bit17_swizzling;
1108 unsigned int needs_clflush;
1109 unsigned int idx, offset;
1110 int ret;
1111
1112 obj_do_bit17_swizzling = 0;
1113 if (i915_gem_object_needs_bit17_swizzle(obj))
1114 obj_do_bit17_swizzling = BIT(17);
1115
1116 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 if (ret)
1118 return ret;
1119
1120 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 mutex_unlock(&obj->base.dev->struct_mutex);
1122 if (ret)
1123 return ret;
1124
1125 remain = args->size;
1126 user_data = u64_to_user_ptr(args->data_ptr);
1127 offset = offset_in_page(args->offset);
1128 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 struct page *page = i915_gem_object_get_page(obj, idx);
ab0d6a14 1130 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
bb6dc8d9
CW
1131
1132 ret = shmem_pread(page, offset, length, user_data,
1133 page_to_phys(page) & obj_do_bit17_swizzling,
1134 needs_clflush);
1135 if (ret)
1136 break;
1137
1138 remain -= length;
1139 user_data += length;
1140 offset = 0;
1141 }
1142
1143 i915_gem_obj_finish_shmem_access(obj);
1144 return ret;
1145}
1146
1147static inline bool
1148gtt_user_read(struct io_mapping *mapping,
1149 loff_t base, int offset,
1150 char __user *user_data, int length)
b50a5371 1151{
afe722be 1152 void __iomem *vaddr;
bb6dc8d9 1153 unsigned long unwritten;
b50a5371 1154
b50a5371 1155 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1156 vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 unwritten = __copy_to_user_inatomic(user_data,
1158 (void __force *)vaddr + offset,
1159 length);
bb6dc8d9
CW
1160 io_mapping_unmap_atomic(vaddr);
1161 if (unwritten) {
afe722be
VS
1162 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 unwritten = copy_to_user(user_data,
1164 (void __force *)vaddr + offset,
1165 length);
bb6dc8d9
CW
1166 io_mapping_unmap(vaddr);
1167 }
b50a5371
AS
1168 return unwritten;
1169}
1170
1171static int
bb6dc8d9
CW
1172i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 const struct drm_i915_gem_pread *args)
b50a5371 1174{
bb6dc8d9
CW
1175 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1177 struct drm_mm_node node;
bb6dc8d9
CW
1178 struct i915_vma *vma;
1179 void __user *user_data;
1180 u64 remain, offset;
b50a5371
AS
1181 int ret;
1182
bb6dc8d9
CW
1183 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 if (ret)
1185 return ret;
1186
1187 intel_runtime_pm_get(i915);
1188 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1189 PIN_MAPPABLE |
1190 PIN_NONFAULT |
1191 PIN_NONBLOCK);
18034584
CW
1192 if (!IS_ERR(vma)) {
1193 node.start = i915_ggtt_offset(vma);
1194 node.allocated = false;
49ef5294 1195 ret = i915_vma_put_fence(vma);
18034584
CW
1196 if (ret) {
1197 i915_vma_unpin(vma);
1198 vma = ERR_PTR(ret);
1199 }
1200 }
058d88c4 1201 if (IS_ERR(vma)) {
bb6dc8d9 1202 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1203 if (ret)
bb6dc8d9
CW
1204 goto out_unlock;
1205 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1206 }
1207
1208 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 if (ret)
1210 goto out_unpin;
1211
bb6dc8d9 1212 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1213
bb6dc8d9
CW
1214 user_data = u64_to_user_ptr(args->data_ptr);
1215 remain = args->size;
1216 offset = args->offset;
b50a5371
AS
1217
1218 while (remain > 0) {
1219 /* Operation in this page
1220 *
1221 * page_base = page offset within aperture
1222 * page_offset = offset within page
1223 * page_length = bytes to copy for this page
1224 */
1225 u32 page_base = node.start;
1226 unsigned page_offset = offset_in_page(offset);
1227 unsigned page_length = PAGE_SIZE - page_offset;
1228 page_length = remain < page_length ? remain : page_length;
1229 if (node.allocated) {
1230 wmb();
82ad6443
CW
1231 ggtt->vm.insert_page(&ggtt->vm,
1232 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1234 wmb();
1235 } else {
1236 page_base += offset & PAGE_MASK;
1237 }
bb6dc8d9 1238
73ebd503 1239 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
bb6dc8d9 1240 user_data, page_length)) {
b50a5371
AS
1241 ret = -EFAULT;
1242 break;
1243 }
1244
1245 remain -= page_length;
1246 user_data += page_length;
1247 offset += page_length;
1248 }
1249
bb6dc8d9 1250 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1251out_unpin:
1252 if (node.allocated) {
1253 wmb();
82ad6443 1254 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
b50a5371
AS
1255 remove_mappable_node(&node);
1256 } else {
058d88c4 1257 i915_vma_unpin(vma);
b50a5371 1258 }
bb6dc8d9
CW
1259out_unlock:
1260 intel_runtime_pm_put(i915);
1261 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1262
eb01459f
EA
1263 return ret;
1264}
1265
673a394b
EA
1266/**
1267 * Reads data from the object referenced by handle.
14bb2c11
TU
1268 * @dev: drm device pointer
1269 * @data: ioctl data blob
1270 * @file: drm file pointer
673a394b
EA
1271 *
1272 * On error, the contents of *data are undefined.
1273 */
1274int
1275i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1276 struct drm_file *file)
673a394b
EA
1277{
1278 struct drm_i915_gem_pread *args = data;
05394f39 1279 struct drm_i915_gem_object *obj;
bb6dc8d9 1280 int ret;
673a394b 1281
51311d0a
CW
1282 if (args->size == 0)
1283 return 0;
1284
1285 if (!access_ok(VERIFY_WRITE,
3ed605bc 1286 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1287 args->size))
1288 return -EFAULT;
1289
03ac0642 1290 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1291 if (!obj)
1292 return -ENOENT;
673a394b 1293
7dcd2499 1294 /* Bounds check source. */
966d5bf5 1295 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1296 ret = -EINVAL;
bb6dc8d9 1297 goto out;
ce9d419d
CW
1298 }
1299
db53a302
CW
1300 trace_i915_gem_object_pread(obj, args->offset, args->size);
1301
e95433c7
CW
1302 ret = i915_gem_object_wait(obj,
1303 I915_WAIT_INTERRUPTIBLE,
1304 MAX_SCHEDULE_TIMEOUT,
1305 to_rps_client(file));
258a5ede 1306 if (ret)
bb6dc8d9 1307 goto out;
258a5ede 1308
bb6dc8d9 1309 ret = i915_gem_object_pin_pages(obj);
258a5ede 1310 if (ret)
bb6dc8d9 1311 goto out;
673a394b 1312
bb6dc8d9 1313 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1314 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1315 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1316
bb6dc8d9
CW
1317 i915_gem_object_unpin_pages(obj);
1318out:
f0cd5182 1319 i915_gem_object_put(obj);
eb01459f 1320 return ret;
673a394b
EA
1321}
1322
0839ccb8
KP
1323/* This is the fast write path which cannot handle
1324 * page faults in the source data
9b7530cc 1325 */
0839ccb8 1326
fe115628
CW
1327static inline bool
1328ggtt_write(struct io_mapping *mapping,
1329 loff_t base, int offset,
1330 char __user *user_data, int length)
9b7530cc 1331{
afe722be 1332 void __iomem *vaddr;
0839ccb8 1333 unsigned long unwritten;
9b7530cc 1334
4f0c7cfb 1335 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1336 vaddr = io_mapping_map_atomic_wc(mapping, base);
1337 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
0839ccb8 1338 user_data, length);
fe115628
CW
1339 io_mapping_unmap_atomic(vaddr);
1340 if (unwritten) {
afe722be
VS
1341 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342 unwritten = copy_from_user((void __force *)vaddr + offset,
1343 user_data, length);
fe115628
CW
1344 io_mapping_unmap(vaddr);
1345 }
bb6dc8d9 1346
bb6dc8d9
CW
1347 return unwritten;
1348}
1349
3de09aa3
EA
1350/**
1351 * This is the fast pwrite path, where we copy the data directly from the
1352 * user into the GTT, uncached.
fe115628 1353 * @obj: i915 GEM object
14bb2c11 1354 * @args: pwrite arguments structure
3de09aa3 1355 */
673a394b 1356static int
fe115628
CW
1357i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358 const struct drm_i915_gem_pwrite *args)
673a394b 1359{
fe115628 1360 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1361 struct i915_ggtt *ggtt = &i915->ggtt;
1362 struct drm_mm_node node;
fe115628
CW
1363 struct i915_vma *vma;
1364 u64 remain, offset;
1365 void __user *user_data;
4f1959ee 1366 int ret;
b50a5371 1367
fe115628
CW
1368 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369 if (ret)
1370 return ret;
935aaa69 1371
8bd81815
CW
1372 if (i915_gem_object_has_struct_page(obj)) {
1373 /*
1374 * Avoid waking the device up if we can fallback, as
1375 * waking/resuming is very slow (worst-case 10-100 ms
1376 * depending on PCI sleeps and our own resume time).
1377 * This easily dwarfs any performance advantage from
1378 * using the cache bypass of indirect GGTT access.
1379 */
1380 if (!intel_runtime_pm_get_if_in_use(i915)) {
1381 ret = -EFAULT;
1382 goto out_unlock;
1383 }
1384 } else {
1385 /* No backing pages, no fallback, we must force GGTT access */
1386 intel_runtime_pm_get(i915);
1387 }
1388
058d88c4 1389 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1390 PIN_MAPPABLE |
1391 PIN_NONFAULT |
1392 PIN_NONBLOCK);
18034584
CW
1393 if (!IS_ERR(vma)) {
1394 node.start = i915_ggtt_offset(vma);
1395 node.allocated = false;
49ef5294 1396 ret = i915_vma_put_fence(vma);
18034584
CW
1397 if (ret) {
1398 i915_vma_unpin(vma);
1399 vma = ERR_PTR(ret);
1400 }
1401 }
058d88c4 1402 if (IS_ERR(vma)) {
bb6dc8d9 1403 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1404 if (ret)
8bd81815 1405 goto out_rpm;
fe115628 1406 GEM_BUG_ON(!node.allocated);
4f1959ee 1407 }
935aaa69
DV
1408
1409 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410 if (ret)
1411 goto out_unpin;
1412
fe115628
CW
1413 mutex_unlock(&i915->drm.struct_mutex);
1414
b19482d7 1415 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1416
4f1959ee
AS
1417 user_data = u64_to_user_ptr(args->data_ptr);
1418 offset = args->offset;
1419 remain = args->size;
1420 while (remain) {
673a394b
EA
1421 /* Operation in this page
1422 *
0839ccb8
KP
1423 * page_base = page offset within aperture
1424 * page_offset = offset within page
1425 * page_length = bytes to copy for this page
673a394b 1426 */
4f1959ee 1427 u32 page_base = node.start;
bb6dc8d9
CW
1428 unsigned int page_offset = offset_in_page(offset);
1429 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1430 page_length = remain < page_length ? remain : page_length;
1431 if (node.allocated) {
1432 wmb(); /* flush the write before we modify the GGTT */
82ad6443
CW
1433 ggtt->vm.insert_page(&ggtt->vm,
1434 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435 node.start, I915_CACHE_NONE, 0);
4f1959ee
AS
1436 wmb(); /* flush modifications to the GGTT (insert_page) */
1437 } else {
1438 page_base += offset & PAGE_MASK;
1439 }
0839ccb8 1440 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1441 * source page isn't available. Return the error and we'll
1442 * retry in the slow path.
b50a5371
AS
1443 * If the object is non-shmem backed, we retry again with the
1444 * path that handles page fault.
0839ccb8 1445 */
73ebd503 1446 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
fe115628
CW
1447 user_data, page_length)) {
1448 ret = -EFAULT;
1449 break;
935aaa69 1450 }
673a394b 1451
0839ccb8
KP
1452 remain -= page_length;
1453 user_data += page_length;
1454 offset += page_length;
673a394b 1455 }
d59b21ec 1456 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1457
1458 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1459out_unpin:
4f1959ee
AS
1460 if (node.allocated) {
1461 wmb();
82ad6443 1462 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
4f1959ee
AS
1463 remove_mappable_node(&node);
1464 } else {
058d88c4 1465 i915_vma_unpin(vma);
4f1959ee 1466 }
8bd81815 1467out_rpm:
9c870d03 1468 intel_runtime_pm_put(i915);
8bd81815 1469out_unlock:
fe115628 1470 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1471 return ret;
673a394b
EA
1472}
1473
3043c60c 1474static int
fe115628 1475shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1476 char __user *user_data,
1477 bool page_do_bit17_swizzling,
1478 bool needs_clflush_before,
1479 bool needs_clflush_after)
673a394b 1480{
d174bd64
DV
1481 char *vaddr;
1482 int ret;
e5281ccd 1483
d174bd64 1484 vaddr = kmap(page);
e7e58eb5 1485 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1486 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1487 page_do_bit17_swizzling);
d174bd64 1488 if (page_do_bit17_swizzling)
fe115628
CW
1489 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490 length);
d174bd64 1491 else
fe115628 1492 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1493 if (needs_clflush_after)
fe115628 1494 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1495 page_do_bit17_swizzling);
d174bd64 1496 kunmap(page);
40123c1f 1497
755d2218 1498 return ret ? -EFAULT : 0;
40123c1f
EA
1499}
1500
fe115628
CW
1501/* Per-page copy function for the shmem pwrite fastpath.
1502 * Flushes invalid cachelines before writing to the target if
1503 * needs_clflush_before is set and flushes out any written cachelines after
1504 * writing if needs_clflush is set.
1505 */
40123c1f 1506static int
fe115628
CW
1507shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508 bool page_do_bit17_swizzling,
1509 bool needs_clflush_before,
1510 bool needs_clflush_after)
40123c1f 1511{
fe115628
CW
1512 int ret;
1513
1514 ret = -ENODEV;
1515 if (!page_do_bit17_swizzling) {
1516 char *vaddr = kmap_atomic(page);
1517
1518 if (needs_clflush_before)
1519 drm_clflush_virt_range(vaddr + offset, len);
1520 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521 if (needs_clflush_after)
1522 drm_clflush_virt_range(vaddr + offset, len);
1523
1524 kunmap_atomic(vaddr);
1525 }
1526 if (ret == 0)
1527 return ret;
1528
1529 return shmem_pwrite_slow(page, offset, len, user_data,
1530 page_do_bit17_swizzling,
1531 needs_clflush_before,
1532 needs_clflush_after);
1533}
1534
1535static int
1536i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537 const struct drm_i915_gem_pwrite *args)
1538{
1539 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540 void __user *user_data;
1541 u64 remain;
1542 unsigned int obj_do_bit17_swizzling;
1543 unsigned int partial_cacheline_write;
43394c7d 1544 unsigned int needs_clflush;
fe115628
CW
1545 unsigned int offset, idx;
1546 int ret;
40123c1f 1547
fe115628 1548 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1549 if (ret)
1550 return ret;
1551
fe115628
CW
1552 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553 mutex_unlock(&i915->drm.struct_mutex);
1554 if (ret)
1555 return ret;
673a394b 1556
fe115628
CW
1557 obj_do_bit17_swizzling = 0;
1558 if (i915_gem_object_needs_bit17_swizzle(obj))
1559 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1560
fe115628
CW
1561 /* If we don't overwrite a cacheline completely we need to be
1562 * careful to have up-to-date data by first clflushing. Don't
1563 * overcomplicate things and flush the entire patch.
1564 */
1565 partial_cacheline_write = 0;
1566 if (needs_clflush & CLFLUSH_BEFORE)
1567 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1568
fe115628
CW
1569 user_data = u64_to_user_ptr(args->data_ptr);
1570 remain = args->size;
1571 offset = offset_in_page(args->offset);
1572 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573 struct page *page = i915_gem_object_get_page(obj, idx);
ab0d6a14 1574 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
755d2218 1575
fe115628
CW
1576 ret = shmem_pwrite(page, offset, length, user_data,
1577 page_to_phys(page) & obj_do_bit17_swizzling,
1578 (offset | length) & partial_cacheline_write,
1579 needs_clflush & CLFLUSH_AFTER);
755d2218 1580 if (ret)
fe115628 1581 break;
755d2218 1582
fe115628
CW
1583 remain -= length;
1584 user_data += length;
1585 offset = 0;
8c59967c 1586 }
673a394b 1587
d59b21ec 1588 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1589 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1590 return ret;
673a394b
EA
1591}
1592
1593/**
1594 * Writes data to the object referenced by handle.
14bb2c11
TU
1595 * @dev: drm device
1596 * @data: ioctl data blob
1597 * @file: drm file
673a394b
EA
1598 *
1599 * On error, the contents of the buffer that were to be modified are undefined.
1600 */
1601int
1602i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1603 struct drm_file *file)
673a394b
EA
1604{
1605 struct drm_i915_gem_pwrite *args = data;
05394f39 1606 struct drm_i915_gem_object *obj;
51311d0a
CW
1607 int ret;
1608
1609 if (args->size == 0)
1610 return 0;
1611
1612 if (!access_ok(VERIFY_READ,
3ed605bc 1613 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1614 args->size))
1615 return -EFAULT;
1616
03ac0642 1617 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1618 if (!obj)
1619 return -ENOENT;
673a394b 1620
7dcd2499 1621 /* Bounds check destination. */
966d5bf5 1622 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1623 ret = -EINVAL;
258a5ede 1624 goto err;
ce9d419d
CW
1625 }
1626
f8c1cce3
CW
1627 /* Writes not allowed into this read-only object */
1628 if (i915_gem_object_is_readonly(obj)) {
1629 ret = -EINVAL;
1630 goto err;
1631 }
1632
db53a302
CW
1633 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634
7c55e2c5
CW
1635 ret = -ENODEV;
1636 if (obj->ops->pwrite)
1637 ret = obj->ops->pwrite(obj, args);
1638 if (ret != -ENODEV)
1639 goto err;
1640
e95433c7
CW
1641 ret = i915_gem_object_wait(obj,
1642 I915_WAIT_INTERRUPTIBLE |
1643 I915_WAIT_ALL,
1644 MAX_SCHEDULE_TIMEOUT,
1645 to_rps_client(file));
258a5ede
CW
1646 if (ret)
1647 goto err;
1648
fe115628 1649 ret = i915_gem_object_pin_pages(obj);
258a5ede 1650 if (ret)
fe115628 1651 goto err;
258a5ede 1652
935aaa69 1653 ret = -EFAULT;
673a394b
EA
1654 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1655 * it would end up going through the fenced access, and we'll get
1656 * different detiling behavior between reading and writing.
1657 * pread/pwrite currently are reading and writing from the CPU
1658 * perspective, requiring manual detiling by the client.
1659 */
6eae0059 1660 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1661 cpu_write_needs_clflush(obj))
935aaa69
DV
1662 /* Note that the gtt paths might fail with non-page-backed user
1663 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1664 * textures). Fallback to the shmem path in that case.
1665 */
fe115628 1666 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1667
d1054ee4 1668 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1669 if (obj->phys_handle)
1670 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1671 else
fe115628 1672 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1673 }
5c0480f2 1674
fe115628 1675 i915_gem_object_unpin_pages(obj);
258a5ede 1676err:
f0cd5182 1677 i915_gem_object_put(obj);
258a5ede 1678 return ret;
673a394b
EA
1679}
1680
40e62d5d
CW
1681static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682{
1683 struct drm_i915_private *i915;
1684 struct list_head *list;
1685 struct i915_vma *vma;
1686
f2123818
CW
1687 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688
e2189dd0 1689 for_each_ggtt_vma(vma, obj) {
40e62d5d
CW
1690 if (i915_vma_is_active(vma))
1691 continue;
1692
1693 if (!drm_mm_node_allocated(&vma->node))
1694 continue;
1695
1696 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697 }
1698
1699 i915 = to_i915(obj->base.dev);
f2123818 1700 spin_lock(&i915->mm.obj_lock);
40e62d5d 1701 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
f2123818
CW
1702 list_move_tail(&obj->mm.link, list);
1703 spin_unlock(&i915->mm.obj_lock);
40e62d5d
CW
1704}
1705
673a394b 1706/**
2ef7eeaa
EA
1707 * Called when user space prepares to use an object with the CPU, either
1708 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1709 * @dev: drm device
1710 * @data: ioctl data blob
1711 * @file: drm file
673a394b
EA
1712 */
1713int
1714i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1715 struct drm_file *file)
673a394b
EA
1716{
1717 struct drm_i915_gem_set_domain *args = data;
05394f39 1718 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1719 uint32_t read_domains = args->read_domains;
1720 uint32_t write_domain = args->write_domain;
40e62d5d 1721 int err;
673a394b 1722
2ef7eeaa 1723 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1724 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1725 return -EINVAL;
1726
1727 /* Having something in the write domain implies it's in the read
1728 * domain, and only that read domain. Enforce that in the request.
1729 */
1730 if (write_domain != 0 && read_domains != write_domain)
1731 return -EINVAL;
1732
03ac0642 1733 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1734 if (!obj)
1735 return -ENOENT;
673a394b 1736
3236f57a
CW
1737 /* Try to flush the object off the GPU without holding the lock.
1738 * We will repeat the flush holding the lock in the normal manner
1739 * to catch cases where we are gazumped.
1740 */
40e62d5d 1741 err = i915_gem_object_wait(obj,
e95433c7
CW
1742 I915_WAIT_INTERRUPTIBLE |
1743 (write_domain ? I915_WAIT_ALL : 0),
1744 MAX_SCHEDULE_TIMEOUT,
1745 to_rps_client(file));
40e62d5d 1746 if (err)
f0cd5182 1747 goto out;
b8f9096d 1748
a03f395a
TZ
1749 /*
1750 * Proxy objects do not control access to the backing storage, ergo
1751 * they cannot be used as a means to manipulate the cache domain
1752 * tracking for that backing storage. The proxy object is always
1753 * considered to be outside of any cache domain.
1754 */
1755 if (i915_gem_object_is_proxy(obj)) {
1756 err = -ENXIO;
1757 goto out;
1758 }
1759
1760 /*
1761 * Flush and acquire obj->pages so that we are coherent through
40e62d5d
CW
1762 * direct access in memory with previous cached writes through
1763 * shmemfs and that our cache domain tracking remains valid.
1764 * For example, if the obj->filp was moved to swap without us
1765 * being notified and releasing the pages, we would mistakenly
1766 * continue to assume that the obj remained out of the CPU cached
1767 * domain.
1768 */
1769 err = i915_gem_object_pin_pages(obj);
1770 if (err)
f0cd5182 1771 goto out;
40e62d5d
CW
1772
1773 err = i915_mutex_lock_interruptible(dev);
1774 if (err)
f0cd5182 1775 goto out_unpin;
3236f57a 1776
e22d8e3c
CW
1777 if (read_domains & I915_GEM_DOMAIN_WC)
1778 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1779 else if (read_domains & I915_GEM_DOMAIN_GTT)
1780 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1781 else
e22d8e3c 1782 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1783
40e62d5d
CW
1784 /* And bump the LRU for this access */
1785 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1786
673a394b 1787 mutex_unlock(&dev->struct_mutex);
b8f9096d 1788
40e62d5d 1789 if (write_domain != 0)
ef74921b
CW
1790 intel_fb_obj_invalidate(obj,
1791 fb_write_origin(obj, write_domain));
40e62d5d 1792
f0cd5182 1793out_unpin:
40e62d5d 1794 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1795out:
1796 i915_gem_object_put(obj);
40e62d5d 1797 return err;
673a394b
EA
1798}
1799
1800/**
1801 * Called when user space has done writes to this buffer
14bb2c11
TU
1802 * @dev: drm device
1803 * @data: ioctl data blob
1804 * @file: drm file
673a394b
EA
1805 */
1806int
1807i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1808 struct drm_file *file)
673a394b
EA
1809{
1810 struct drm_i915_gem_sw_finish *args = data;
05394f39 1811 struct drm_i915_gem_object *obj;
1d7cfea1 1812
03ac0642 1813 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1814 if (!obj)
1815 return -ENOENT;
673a394b 1816
a03f395a
TZ
1817 /*
1818 * Proxy objects are barred from CPU access, so there is no
1819 * need to ban sw_finish as it is a nop.
1820 */
1821
673a394b 1822 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1823 i915_gem_object_flush_if_display(obj);
f0cd5182 1824 i915_gem_object_put(obj);
5a97bcc6
CW
1825
1826 return 0;
673a394b
EA
1827}
1828
1829/**
14bb2c11
TU
1830 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1831 * it is mapped to.
1832 * @dev: drm device
1833 * @data: ioctl data blob
1834 * @file: drm file
673a394b
EA
1835 *
1836 * While the mapping holds a reference on the contents of the object, it doesn't
1837 * imply a ref on the object itself.
34367381
DV
1838 *
1839 * IMPORTANT:
1840 *
1841 * DRM driver writers who look a this function as an example for how to do GEM
1842 * mmap support, please don't implement mmap support like here. The modern way
1843 * to implement DRM mmap support is with an mmap offset ioctl (like
1844 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1845 * That way debug tooling like valgrind will understand what's going on, hiding
1846 * the mmap call in a driver private ioctl will break that. The i915 driver only
1847 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1848 */
1849int
1850i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1851 struct drm_file *file)
673a394b
EA
1852{
1853 struct drm_i915_gem_mmap *args = data;
03ac0642 1854 struct drm_i915_gem_object *obj;
673a394b
EA
1855 unsigned long addr;
1856
1816f923
AG
1857 if (args->flags & ~(I915_MMAP_WC))
1858 return -EINVAL;
1859
568a58e5 1860 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1861 return -ENODEV;
1862
03ac0642
CW
1863 obj = i915_gem_object_lookup(file, args->handle);
1864 if (!obj)
bf79cb91 1865 return -ENOENT;
673a394b 1866
1286ff73
DV
1867 /* prime objects have no backing filp to GEM mmap
1868 * pages from.
1869 */
03ac0642 1870 if (!obj->base.filp) {
f0cd5182 1871 i915_gem_object_put(obj);
274b2462 1872 return -ENXIO;
1286ff73
DV
1873 }
1874
03ac0642 1875 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1876 PROT_READ | PROT_WRITE, MAP_SHARED,
1877 args->offset);
1816f923
AG
1878 if (args->flags & I915_MMAP_WC) {
1879 struct mm_struct *mm = current->mm;
1880 struct vm_area_struct *vma;
1881
80a89a5e 1882 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1883 i915_gem_object_put(obj);
80a89a5e
MH
1884 return -EINTR;
1885 }
1816f923
AG
1886 vma = find_vma(mm, addr);
1887 if (vma)
1888 vma->vm_page_prot =
1889 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1890 else
1891 addr = -ENOMEM;
1892 up_write(&mm->mmap_sem);
aeecc969
CW
1893
1894 /* This may race, but that's ok, it only gets set */
50349247 1895 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1896 }
f0cd5182 1897 i915_gem_object_put(obj);
673a394b
EA
1898 if (IS_ERR((void *)addr))
1899 return addr;
1900
1901 args->addr_ptr = (uint64_t) addr;
1902
1903 return 0;
1904}
1905
d899aceb 1906static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
03af84fe 1907{
6649a0b6 1908 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1909}
1910
4cc69075
CW
1911/**
1912 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1913 *
1914 * A history of the GTT mmap interface:
1915 *
1916 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1917 * aligned and suitable for fencing, and still fit into the available
1918 * mappable space left by the pinned display objects. A classic problem
1919 * we called the page-fault-of-doom where we would ping-pong between
1920 * two objects that could not fit inside the GTT and so the memcpy
1921 * would page one object in at the expense of the other between every
1922 * single byte.
1923 *
1924 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1925 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1926 * object is too large for the available space (or simply too large
1927 * for the mappable aperture!), a view is created instead and faulted
1928 * into userspace. (This view is aligned and sized appropriately for
1929 * fenced access.)
1930 *
e22d8e3c
CW
1931 * 2 - Recognise WC as a separate cache domain so that we can flush the
1932 * delayed writes via GTT before performing direct access via WC.
1933 *
4cc69075
CW
1934 * Restrictions:
1935 *
1936 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1937 * hangs on some architectures, corruption on others. An attempt to service
1938 * a GTT page fault from a snoopable object will generate a SIGBUS.
1939 *
1940 * * the object must be able to fit into RAM (physical memory, though no
1941 * limited to the mappable aperture).
1942 *
1943 *
1944 * Caveats:
1945 *
1946 * * a new GTT page fault will synchronize rendering from the GPU and flush
1947 * all data to system memory. Subsequent access will not be synchronized.
1948 *
1949 * * all mappings are revoked on runtime device suspend.
1950 *
1951 * * there are only 8, 16 or 32 fence registers to share between all users
1952 * (older machines require fence register for display and blitter access
1953 * as well). Contention of the fence registers will cause the previous users
1954 * to be unmapped and any new access will generate new page faults.
1955 *
1956 * * running out of memory while servicing a fault may generate a SIGBUS,
1957 * rather than the expected SIGSEGV.
1958 */
1959int i915_gem_mmap_gtt_version(void)
1960{
e22d8e3c 1961 return 2;
4cc69075
CW
1962}
1963
2d4281bb 1964static inline struct i915_ggtt_view
d899aceb 1965compute_partial_view(const struct drm_i915_gem_object *obj,
2d4281bb
CW
1966 pgoff_t page_offset,
1967 unsigned int chunk)
1968{
1969 struct i915_ggtt_view view;
1970
1971 if (i915_gem_object_is_tiled(obj))
1972 chunk = roundup(chunk, tile_row_pages(obj));
1973
2d4281bb 1974 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1975 view.partial.offset = rounddown(page_offset, chunk);
1976 view.partial.size =
2d4281bb 1977 min_t(unsigned int, chunk,
8bab1193 1978 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1979
1980 /* If the partial covers the entire object, just create a normal VMA. */
1981 if (chunk >= obj->base.size >> PAGE_SHIFT)
1982 view.type = I915_GGTT_VIEW_NORMAL;
1983
1984 return view;
1985}
1986
de151cf6
JB
1987/**
1988 * i915_gem_fault - fault a page into the GTT
d9072a3e 1989 * @vmf: fault info
de151cf6
JB
1990 *
1991 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1992 * from userspace. The fault handler takes care of binding the object to
1993 * the GTT (if needed), allocating and programming a fence register (again,
1994 * only if needed based on whether the old reg is still valid or the object
1995 * is tiled) and inserting a new PTE into the faulting process.
1996 *
1997 * Note that the faulting process may involve evicting existing objects
1998 * from the GTT and/or fence registers to make room. So performance may
1999 * suffer if the GTT working set is large or there are few fence registers
2000 * left.
4cc69075
CW
2001 *
2002 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2003 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 2004 */
52137010 2005vm_fault_t i915_gem_fault(struct vm_fault *vmf)
de151cf6 2006{
420980ca 2007#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
11bac800 2008 struct vm_area_struct *area = vmf->vma;
058d88c4 2009 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 2010 struct drm_device *dev = obj->base.dev;
72e96d64
JL
2011 struct drm_i915_private *dev_priv = to_i915(dev);
2012 struct i915_ggtt *ggtt = &dev_priv->ggtt;
aae7c06b 2013 bool write = area->vm_flags & VM_WRITE;
058d88c4 2014 struct i915_vma *vma;
de151cf6 2015 pgoff_t page_offset;
b8f9096d 2016 int ret;
f65c9168 2017
3e977ac6
CW
2018 /* Sanity check that we allow writing into this object */
2019 if (i915_gem_object_is_readonly(obj) && write)
2020 return VM_FAULT_SIGBUS;
2021
de151cf6 2022 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 2023 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 2024
db53a302
CW
2025 trace_i915_gem_object_fault(obj, page_offset, true, write);
2026
6e4930f6 2027 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 2028 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
2029 * repeat the flush holding the lock in the normal manner to catch cases
2030 * where we are gazumped.
2031 */
e95433c7
CW
2032 ret = i915_gem_object_wait(obj,
2033 I915_WAIT_INTERRUPTIBLE,
2034 MAX_SCHEDULE_TIMEOUT,
2035 NULL);
6e4930f6 2036 if (ret)
b8f9096d
CW
2037 goto err;
2038
40e62d5d
CW
2039 ret = i915_gem_object_pin_pages(obj);
2040 if (ret)
2041 goto err;
2042
b8f9096d
CW
2043 intel_runtime_pm_get(dev_priv);
2044
2045 ret = i915_mutex_lock_interruptible(dev);
2046 if (ret)
2047 goto err_rpm;
6e4930f6 2048
eb119bd6 2049 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 2050 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 2051 ret = -EFAULT;
b8f9096d 2052 goto err_unlock;
eb119bd6
CW
2053 }
2054
82118877 2055
a61007a8 2056 /* Now pin it into the GTT as needed */
7e7367d3
CW
2057 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2058 PIN_MAPPABLE |
2059 PIN_NONBLOCK |
2060 PIN_NONFAULT);
a61007a8 2061 if (IS_ERR(vma)) {
a61007a8 2062 /* Use a partial view if it is bigger than available space */
2d4281bb 2063 struct i915_ggtt_view view =
8201c1fa 2064 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
7e7367d3 2065 unsigned int flags;
aa136d9d 2066
7e7367d3
CW
2067 flags = PIN_MAPPABLE;
2068 if (view.type == I915_GGTT_VIEW_NORMAL)
2069 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2070
2071 /*
2072 * Userspace is now writing through an untracked VMA, abandon
50349247
CW
2073 * all hope that the hardware is able to track future writes.
2074 */
2075 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2076
7e7367d3
CW
2077 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2078 if (IS_ERR(vma) && !view.type) {
2079 flags = PIN_MAPPABLE;
2080 view.type = I915_GGTT_VIEW_PARTIAL;
2081 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2082 }
a61007a8 2083 }
058d88c4
CW
2084 if (IS_ERR(vma)) {
2085 ret = PTR_ERR(vma);
b8f9096d 2086 goto err_unlock;
058d88c4 2087 }
4a684a41 2088
c9839303
CW
2089 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2090 if (ret)
b8f9096d 2091 goto err_unpin;
74898d7e 2092
3bd40735 2093 ret = i915_vma_pin_fence(vma);
d9e86c0e 2094 if (ret)
b8f9096d 2095 goto err_unpin;
7d1c4804 2096
b90b91d8 2097 /* Finally, remap it using the new GTT offset */
c58305af 2098 ret = remap_io_mapping(area,
8bab1193 2099 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
73ebd503 2100 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
c58305af 2101 min_t(u64, vma->size, area->vm_end - area->vm_start),
73ebd503 2102 &ggtt->iomap);
a65adaf8
CW
2103 if (ret)
2104 goto err_fence;
a61007a8 2105
a65adaf8
CW
2106 /* Mark as being mmapped into userspace for later revocation */
2107 assert_rpm_wakelock_held(dev_priv);
2108 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2109 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2110 GEM_BUG_ON(!obj->userfault_count);
2111
7125397b
CW
2112 i915_vma_set_ggtt_write(vma);
2113
a65adaf8 2114err_fence:
3bd40735 2115 i915_vma_unpin_fence(vma);
b8f9096d 2116err_unpin:
058d88c4 2117 __i915_vma_unpin(vma);
b8f9096d 2118err_unlock:
de151cf6 2119 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
2120err_rpm:
2121 intel_runtime_pm_put(dev_priv);
40e62d5d 2122 i915_gem_object_unpin_pages(obj);
b8f9096d 2123err:
de151cf6 2124 switch (ret) {
d9bc7e9f 2125 case -EIO:
2232f031
DV
2126 /*
2127 * We eat errors when the gpu is terminally wedged to avoid
2128 * userspace unduly crashing (gl has no provisions for mmaps to
2129 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2130 * and so needs to be reported.
2131 */
52137010
CW
2132 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2133 return VM_FAULT_SIGBUS;
f0d759f0 2134 /* else: fall through */
045e769a 2135 case -EAGAIN:
571c608d
DV
2136 /*
2137 * EAGAIN means the gpu is hung and we'll wait for the error
2138 * handler to reset everything when re-faulting in
2139 * i915_mutex_lock_interruptible.
d9bc7e9f 2140 */
c715089f
CW
2141 case 0:
2142 case -ERESTARTSYS:
bed636ab 2143 case -EINTR:
e79e0fe3
DR
2144 case -EBUSY:
2145 /*
2146 * EBUSY is ok: this just means that another thread
2147 * already did the job.
2148 */
52137010 2149 return VM_FAULT_NOPAGE;
de151cf6 2150 case -ENOMEM:
52137010 2151 return VM_FAULT_OOM;
a7c2e1aa 2152 case -ENOSPC:
45d67817 2153 case -EFAULT:
52137010 2154 return VM_FAULT_SIGBUS;
de151cf6 2155 default:
a7c2e1aa 2156 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
52137010 2157 return VM_FAULT_SIGBUS;
de151cf6
JB
2158 }
2159}
2160
a65adaf8
CW
2161static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2162{
2163 struct i915_vma *vma;
2164
2165 GEM_BUG_ON(!obj->userfault_count);
2166
2167 obj->userfault_count = 0;
2168 list_del(&obj->userfault_link);
2169 drm_vma_node_unmap(&obj->base.vma_node,
2170 obj->base.dev->anon_inode->i_mapping);
2171
e2189dd0 2172 for_each_ggtt_vma(vma, obj)
a65adaf8 2173 i915_vma_unset_userfault(vma);
a65adaf8
CW
2174}
2175
901782b2
CW
2176/**
2177 * i915_gem_release_mmap - remove physical page mappings
2178 * @obj: obj in question
2179 *
af901ca1 2180 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2181 * relinquish ownership of the pages back to the system.
2182 *
2183 * It is vital that we remove the page mapping if we have mapped a tiled
2184 * object through the GTT and then lose the fence register due to
2185 * resource pressure. Similarly if the object has been moved out of the
2186 * aperture, than pages mapped into userspace must be revoked. Removing the
2187 * mapping will then trigger a page fault on the next user access, allowing
2188 * fixup by i915_gem_fault().
2189 */
d05ca301 2190void
05394f39 2191i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2192{
275f039d 2193 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2194
349f2ccf
CW
2195 /* Serialisation between user GTT access and our code depends upon
2196 * revoking the CPU's PTE whilst the mutex is held. The next user
2197 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2198 *
2199 * Note that RPM complicates somewhat by adding an additional
2200 * requirement that operations to the GGTT be made holding the RPM
2201 * wakeref.
349f2ccf 2202 */
275f039d 2203 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2204 intel_runtime_pm_get(i915);
349f2ccf 2205
a65adaf8 2206 if (!obj->userfault_count)
9c870d03 2207 goto out;
901782b2 2208
a65adaf8 2209 __i915_gem_object_release_mmap(obj);
349f2ccf
CW
2210
2211 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2212 * memory transactions from userspace before we return. The TLB
2213 * flushing implied above by changing the PTE above *should* be
2214 * sufficient, an extra barrier here just provides us with a bit
2215 * of paranoid documentation about our requirement to serialise
2216 * memory writes before touching registers / GSM.
2217 */
2218 wmb();
9c870d03
CW
2219
2220out:
2221 intel_runtime_pm_put(i915);
901782b2
CW
2222}
2223
7c108fd8 2224void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2225{
3594a3e2 2226 struct drm_i915_gem_object *obj, *on;
7c108fd8 2227 int i;
eedd10f4 2228
3594a3e2
CW
2229 /*
2230 * Only called during RPM suspend. All users of the userfault_list
2231 * must be holding an RPM wakeref to ensure that this can not
2232 * run concurrently with themselves (and use the struct_mutex for
2233 * protection between themselves).
2234 */
275f039d 2235
3594a3e2 2236 list_for_each_entry_safe(obj, on,
a65adaf8
CW
2237 &dev_priv->mm.userfault_list, userfault_link)
2238 __i915_gem_object_release_mmap(obj);
7c108fd8
CW
2239
2240 /* The fence will be lost when the device powers down. If any were
2241 * in use by hardware (i.e. they are pinned), we should not be powering
2242 * down! All other fences will be reacquired by the user upon waking.
2243 */
2244 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2245 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2246
e0ec3ec6
CW
2247 /* Ideally we want to assert that the fence register is not
2248 * live at this point (i.e. that no piece of code will be
2249 * trying to write through fence + GTT, as that both violates
2250 * our tracking of activity and associated locking/barriers,
2251 * but also is illegal given that the hw is powered down).
2252 *
2253 * Previously we used reg->pin_count as a "liveness" indicator.
2254 * That is not sufficient, and we need a more fine-grained
2255 * tool if we want to have a sanity check here.
2256 */
7c108fd8
CW
2257
2258 if (!reg->vma)
2259 continue;
2260
a65adaf8 2261 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
7c108fd8
CW
2262 reg->dirty = true;
2263 }
eedd10f4
CW
2264}
2265
d8cb5086
CW
2266static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2267{
fac5e23e 2268 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2269 int err;
da494d7c 2270
f3f6184c 2271 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2272 if (likely(!err))
f3f6184c 2273 return 0;
d8cb5086 2274
b42a13d9
CW
2275 /* Attempt to reap some mmap space from dead objects */
2276 do {
ec625fb9
CW
2277 err = i915_gem_wait_for_idle(dev_priv,
2278 I915_WAIT_INTERRUPTIBLE,
2279 MAX_SCHEDULE_TIMEOUT);
b42a13d9
CW
2280 if (err)
2281 break;
f3f6184c 2282
b42a13d9 2283 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2284 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2285 if (!err)
2286 break;
2287
2288 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2289
f3f6184c 2290 return err;
d8cb5086
CW
2291}
2292
2293static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2294{
d8cb5086
CW
2295 drm_gem_free_mmap_offset(&obj->base);
2296}
2297
da6b51d0 2298int
ff72145b
DA
2299i915_gem_mmap_gtt(struct drm_file *file,
2300 struct drm_device *dev,
da6b51d0 2301 uint32_t handle,
ff72145b 2302 uint64_t *offset)
de151cf6 2303{
05394f39 2304 struct drm_i915_gem_object *obj;
de151cf6
JB
2305 int ret;
2306
03ac0642 2307 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2308 if (!obj)
2309 return -ENOENT;
ab18282d 2310
d8cb5086 2311 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2312 if (ret == 0)
2313 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2314
f0cd5182 2315 i915_gem_object_put(obj);
1d7cfea1 2316 return ret;
de151cf6
JB
2317}
2318
ff72145b
DA
2319/**
2320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2321 * @dev: DRM device
2322 * @data: GTT mapping ioctl data
2323 * @file: GEM object info
2324 *
2325 * Simply returns the fake offset to userspace so it can mmap it.
2326 * The mmap call will end up in drm_gem_mmap(), which will set things
2327 * up so we can get faults in the handler above.
2328 *
2329 * The fault handler will take care of binding the object into the GTT
2330 * (since it may have been evicted to make room for something), allocating
2331 * a fence register, and mapping the appropriate aperture address into
2332 * userspace.
2333 */
2334int
2335i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2336 struct drm_file *file)
2337{
2338 struct drm_i915_gem_mmap_gtt *args = data;
2339
da6b51d0 2340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2341}
2342
225067ee
DV
2343/* Immediately discard the backing storage */
2344static void
2345i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2346{
4d6294bf 2347 i915_gem_object_free_mmap_offset(obj);
1286ff73 2348
4d6294bf
CW
2349 if (obj->base.filp == NULL)
2350 return;
e5281ccd 2351
225067ee
DV
2352 /* Our goal here is to return as much of the memory as
2353 * is possible back to the system as we are called from OOM.
2354 * To do this we must instruct the shmfs to drop all of its
2355 * backing pages, *now*.
2356 */
5537252b 2357 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2358 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2359 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2360}
e5281ccd 2361
5537252b 2362/* Try to discard unwanted pages */
03ac84f1 2363void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2364{
5537252b
CW
2365 struct address_space *mapping;
2366
1233e2db 2367 lockdep_assert_held(&obj->mm.lock);
f1fa4f44 2368 GEM_BUG_ON(i915_gem_object_has_pages(obj));
1233e2db 2369
a4f5ea64 2370 switch (obj->mm.madv) {
5537252b
CW
2371 case I915_MADV_DONTNEED:
2372 i915_gem_object_truncate(obj);
2373 case __I915_MADV_PURGED:
2374 return;
2375 }
2376
2377 if (obj->base.filp == NULL)
2378 return;
2379
93c76a3d 2380 mapping = obj->base.filp->f_mapping,
5537252b 2381 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2382}
2383
5cdf5881 2384static void
03ac84f1
CW
2385i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2386 struct sg_table *pages)
673a394b 2387{
85d1225e
DG
2388 struct sgt_iter sgt_iter;
2389 struct page *page;
1286ff73 2390
e5facdf9 2391 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2392
03ac84f1 2393 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2394
6dacfd2f 2395 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2396 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2397
03ac84f1 2398 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2399 if (obj->mm.dirty)
9da3da66 2400 set_page_dirty(page);
3ef94daa 2401
a4f5ea64 2402 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2403 mark_page_accessed(page);
3ef94daa 2404
09cbfeaf 2405 put_page(page);
3ef94daa 2406 }
a4f5ea64 2407 obj->mm.dirty = false;
673a394b 2408
03ac84f1
CW
2409 sg_free_table(pages);
2410 kfree(pages);
37e680a1 2411}
6c085a72 2412
96d77634
CW
2413static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2414{
2415 struct radix_tree_iter iter;
c23aa71b 2416 void __rcu **slot;
96d77634 2417
bea6e987 2418 rcu_read_lock();
a4f5ea64
CW
2419 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2420 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
bea6e987 2421 rcu_read_unlock();
96d77634
CW
2422}
2423
acd1c1e6
CW
2424static struct sg_table *
2425__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
37e680a1 2426{
f2123818 2427 struct drm_i915_private *i915 = to_i915(obj->base.dev);
03ac84f1 2428 struct sg_table *pages;
37e680a1 2429
03ac84f1 2430 pages = fetch_and_zero(&obj->mm.pages);
acd1c1e6
CW
2431 if (!pages)
2432 return NULL;
a2165e31 2433
f2123818
CW
2434 spin_lock(&i915->mm.obj_lock);
2435 list_del(&obj->mm.link);
2436 spin_unlock(&i915->mm.obj_lock);
2437
a4f5ea64 2438 if (obj->mm.mapping) {
4b30cb23
CW
2439 void *ptr;
2440
0ce81788 2441 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2442 if (is_vmalloc_addr(ptr))
2443 vunmap(ptr);
fb8621d3 2444 else
4b30cb23
CW
2445 kunmap(kmap_to_page(ptr));
2446
a4f5ea64 2447 obj->mm.mapping = NULL;
0a798eb9
CW
2448 }
2449
96d77634 2450 __i915_gem_object_reset_page_iter(obj);
acd1c1e6
CW
2451 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2452
2453 return pages;
2454}
96d77634 2455
acd1c1e6
CW
2456void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2457 enum i915_mm_subclass subclass)
2458{
2459 struct sg_table *pages;
2460
2461 if (i915_gem_object_has_pinned_pages(obj))
2462 return;
2463
2464 GEM_BUG_ON(obj->bind_count);
2465 if (!i915_gem_object_has_pages(obj))
2466 return;
2467
2468 /* May be called by shrinker from within get_pages() (on another bo) */
2469 mutex_lock_nested(&obj->mm.lock, subclass);
2470 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2471 goto unlock;
2472
2473 /*
2474 * ->put_pages might need to allocate memory for the bit17 swizzle
2475 * array, hence protect them from being reaped by removing them from gtt
2476 * lists early.
2477 */
2478 pages = __i915_gem_object_unset_pages(obj);
4e5462ee
CW
2479 if (!IS_ERR(pages))
2480 obj->ops->put_pages(obj, pages);
2481
1233e2db
CW
2482unlock:
2483 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2484}
2485
935a2f77 2486static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2487{
2488 struct sg_table new_st;
2489 struct scatterlist *sg, *new_sg;
2490 unsigned int i;
2491
2492 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2493 return false;
0c40ce13 2494
8bfc478f 2495 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2496 return false;
0c40ce13
TU
2497
2498 new_sg = new_st.sgl;
2499 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2500 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
c6d22ab6
MA
2501 sg_dma_address(new_sg) = sg_dma_address(sg);
2502 sg_dma_len(new_sg) = sg_dma_len(sg);
2503
0c40ce13
TU
2504 new_sg = sg_next(new_sg);
2505 }
c2dc6cc9 2506 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2507
2508 sg_free_table(orig_st);
2509
2510 *orig_st = new_st;
935a2f77 2511 return true;
0c40ce13
TU
2512}
2513
b91b09ee 2514static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2515{
fac5e23e 2516 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2517 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2518 unsigned long i;
e5281ccd 2519 struct address_space *mapping;
9da3da66
CW
2520 struct sg_table *st;
2521 struct scatterlist *sg;
85d1225e 2522 struct sgt_iter sgt_iter;
e5281ccd 2523 struct page *page;
90797e6d 2524 unsigned long last_pfn = 0; /* suppress gcc warning */
5602452e 2525 unsigned int max_segment = i915_sg_segment_size();
84e8978e 2526 unsigned int sg_page_sizes;
4846bf0c 2527 gfp_t noreclaim;
e2273302 2528 int ret;
e5281ccd 2529
e0ff7a7c
CW
2530 /*
2531 * Assert that the object is not currently in any GPU domain. As it
6c085a72
CW
2532 * wasn't in the GTT, there shouldn't be any way it could have been in
2533 * a GPU cache
2534 */
c0a51fd0
CK
2535 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2536 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2537
e0ff7a7c
CW
2538 /*
2539 * If there's no chance of allocating enough pages for the whole
2540 * object, bail early.
2541 */
2542 if (page_count > totalram_pages)
2543 return -ENOMEM;
2544
9da3da66
CW
2545 st = kmalloc(sizeof(*st), GFP_KERNEL);
2546 if (st == NULL)
b91b09ee 2547 return -ENOMEM;
9da3da66 2548
d766ef53 2549rebuild_st:
9da3da66 2550 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2551 kfree(st);
b91b09ee 2552 return -ENOMEM;
9da3da66 2553 }
e5281ccd 2554
e0ff7a7c
CW
2555 /*
2556 * Get the list of pages out of our struct file. They'll be pinned
9da3da66
CW
2557 * at this point until we release them.
2558 *
2559 * Fail silently without starting the shrinker
2560 */
93c76a3d 2561 mapping = obj->base.filp->f_mapping;
0f6ab55d 2562 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2563 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2564
90797e6d
ID
2565 sg = st->sgl;
2566 st->nents = 0;
84e8978e 2567 sg_page_sizes = 0;
90797e6d 2568 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2569 const unsigned int shrink[] = {
2570 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2571 0,
2572 }, *s = shrink;
2573 gfp_t gfp = noreclaim;
2574
2575 do {
6c085a72 2576 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2577 if (likely(!IS_ERR(page)))
2578 break;
2579
2580 if (!*s) {
2581 ret = PTR_ERR(page);
2582 goto err_sg;
2583 }
2584
912d572d 2585 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2586 cond_resched();
24f8e00a 2587
e0ff7a7c
CW
2588 /*
2589 * We've tried hard to allocate the memory by reaping
6c085a72
CW
2590 * our own buffer, now let the real VM do its job and
2591 * go down in flames if truly OOM.
24f8e00a
CW
2592 *
2593 * However, since graphics tend to be disposable,
2594 * defer the oom here by reporting the ENOMEM back
2595 * to userspace.
6c085a72 2596 */
4846bf0c
CW
2597 if (!*s) {
2598 /* reclaim and warn, but no oom */
2599 gfp = mapping_gfp_mask(mapping);
eaf41801 2600
e0ff7a7c
CW
2601 /*
2602 * Our bo are always dirty and so we require
eaf41801
CW
2603 * kswapd to reclaim our pages (direct reclaim
2604 * does not effectively begin pageout of our
2605 * buffers on its own). However, direct reclaim
2606 * only waits for kswapd when under allocation
2607 * congestion. So as a result __GFP_RECLAIM is
2608 * unreliable and fails to actually reclaim our
2609 * dirty pages -- unless you try over and over
2610 * again with !__GFP_NORETRY. However, we still
2611 * want to fail this allocation rather than
2612 * trigger the out-of-memory killer and for
dbb32956 2613 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2614 */
dbb32956 2615 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2616 }
4846bf0c
CW
2617 } while (1);
2618
871dfbd6
CW
2619 if (!i ||
2620 sg->length >= max_segment ||
2621 page_to_pfn(page) != last_pfn + 1) {
a5c08166 2622 if (i) {
84e8978e 2623 sg_page_sizes |= sg->length;
90797e6d 2624 sg = sg_next(sg);
a5c08166 2625 }
90797e6d
ID
2626 st->nents++;
2627 sg_set_page(sg, page, PAGE_SIZE, 0);
2628 } else {
2629 sg->length += PAGE_SIZE;
2630 }
2631 last_pfn = page_to_pfn(page);
3bbbe706
DV
2632
2633 /* Check that the i965g/gm workaround works. */
2634 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2635 }
a5c08166 2636 if (sg) { /* loop terminated early; short sg table */
84e8978e 2637 sg_page_sizes |= sg->length;
426729dc 2638 sg_mark_end(sg);
a5c08166 2639 }
74ce6b6c 2640
0c40ce13
TU
2641 /* Trim unused sg entries to avoid wasting memory. */
2642 i915_sg_trim(st);
2643
03ac84f1 2644 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53 2645 if (ret) {
e0ff7a7c
CW
2646 /*
2647 * DMA remapping failed? One possible cause is that
d766ef53
CW
2648 * it could not reserve enough large entries, asking
2649 * for PAGE_SIZE chunks instead may be helpful.
2650 */
2651 if (max_segment > PAGE_SIZE) {
2652 for_each_sgt_page(page, sgt_iter, st)
2653 put_page(page);
2654 sg_free_table(st);
2655
2656 max_segment = PAGE_SIZE;
2657 goto rebuild_st;
2658 } else {
2659 dev_warn(&dev_priv->drm.pdev->dev,
2660 "Failed to DMA remap %lu pages\n",
2661 page_count);
2662 goto err_pages;
2663 }
2664 }
e2273302 2665
6dacfd2f 2666 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2667 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2668
84e8978e 2669 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee
MA
2670
2671 return 0;
e5281ccd 2672
b17993b7 2673err_sg:
90797e6d 2674 sg_mark_end(sg);
b17993b7 2675err_pages:
85d1225e
DG
2676 for_each_sgt_page(page, sgt_iter, st)
2677 put_page(page);
9da3da66
CW
2678 sg_free_table(st);
2679 kfree(st);
0820baf3 2680
e0ff7a7c
CW
2681 /*
2682 * shmemfs first checks if there is enough memory to allocate the page
0820baf3
CW
2683 * and reports ENOSPC should there be insufficient, along with the usual
2684 * ENOMEM for a genuine allocation failure.
2685 *
2686 * We use ENOSPC in our driver to mean that we have run out of aperture
2687 * space and so want to translate the error from shmemfs back to our
2688 * usual understanding of ENOMEM.
2689 */
e2273302
ID
2690 if (ret == -ENOSPC)
2691 ret = -ENOMEM;
2692
b91b09ee 2693 return ret;
03ac84f1
CW
2694}
2695
2696void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
a5c08166 2697 struct sg_table *pages,
84e8978e 2698 unsigned int sg_page_sizes)
03ac84f1 2699{
a5c08166
MA
2700 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2701 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2702 int i;
2703
1233e2db 2704 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2705
2706 obj->mm.get_page.sg_pos = pages->sgl;
2707 obj->mm.get_page.sg_idx = 0;
2708
2709 obj->mm.pages = pages;
2c3a3f44
CW
2710
2711 if (i915_gem_object_is_tiled(obj) &&
f2123818 2712 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2c3a3f44
CW
2713 GEM_BUG_ON(obj->mm.quirked);
2714 __i915_gem_object_pin_pages(obj);
2715 obj->mm.quirked = true;
2716 }
a5c08166 2717
84e8978e
MA
2718 GEM_BUG_ON(!sg_page_sizes);
2719 obj->mm.page_sizes.phys = sg_page_sizes;
a5c08166
MA
2720
2721 /*
84e8978e
MA
2722 * Calculate the supported page-sizes which fit into the given
2723 * sg_page_sizes. This will give us the page-sizes which we may be able
2724 * to use opportunistically when later inserting into the GTT. For
2725 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2726 * 64K or 4K pages, although in practice this will depend on a number of
2727 * other factors.
a5c08166
MA
2728 */
2729 obj->mm.page_sizes.sg = 0;
2730 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2731 if (obj->mm.page_sizes.phys & ~0u << i)
2732 obj->mm.page_sizes.sg |= BIT(i);
2733 }
a5c08166 2734 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
f2123818
CW
2735
2736 spin_lock(&i915->mm.obj_lock);
2737 list_add(&obj->mm.link, &i915->mm.unbound_list);
2738 spin_unlock(&i915->mm.obj_lock);
03ac84f1
CW
2739}
2740
2741static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2742{
b91b09ee 2743 int err;
03ac84f1
CW
2744
2745 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2746 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2747 return -EFAULT;
2748 }
2749
b91b09ee 2750 err = obj->ops->get_pages(obj);
b65a9b98 2751 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
03ac84f1 2752
b91b09ee 2753 return err;
673a394b
EA
2754}
2755
37e680a1 2756/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2757 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2758 * multiple times before they are released by a single call to
1233e2db 2759 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2760 * either as a result of memory pressure (reaping pages under the shrinker)
2761 * or as the object is itself released.
2762 */
a4f5ea64 2763int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2764{
03ac84f1 2765 int err;
37e680a1 2766
1233e2db
CW
2767 err = mutex_lock_interruptible(&obj->mm.lock);
2768 if (err)
2769 return err;
4c7d62c6 2770
f1fa4f44 2771 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2772 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2773
2c3a3f44
CW
2774 err = ____i915_gem_object_get_pages(obj);
2775 if (err)
2776 goto unlock;
37e680a1 2777
2c3a3f44
CW
2778 smp_mb__before_atomic();
2779 }
2780 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2781
1233e2db
CW
2782unlock:
2783 mutex_unlock(&obj->mm.lock);
03ac84f1 2784 return err;
673a394b
EA
2785}
2786
dd6034c6 2787/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2788static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2789 enum i915_map_type type)
dd6034c6
DG
2790{
2791 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2792 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2793 struct sgt_iter sgt_iter;
2794 struct page *page;
b338fa47
DG
2795 struct page *stack_pages[32];
2796 struct page **pages = stack_pages;
dd6034c6 2797 unsigned long i = 0;
d31d7cb1 2798 pgprot_t pgprot;
dd6034c6
DG
2799 void *addr;
2800
2801 /* A single page can always be kmapped */
d31d7cb1 2802 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2803 return kmap(sg_page(sgt->sgl));
2804
b338fa47
DG
2805 if (n_pages > ARRAY_SIZE(stack_pages)) {
2806 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2807 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2808 if (!pages)
2809 return NULL;
2810 }
dd6034c6 2811
85d1225e
DG
2812 for_each_sgt_page(page, sgt_iter, sgt)
2813 pages[i++] = page;
dd6034c6
DG
2814
2815 /* Check that we have the expected number of pages */
2816 GEM_BUG_ON(i != n_pages);
2817
d31d7cb1 2818 switch (type) {
a575c676
CW
2819 default:
2820 MISSING_CASE(type);
2821 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2822 case I915_MAP_WB:
2823 pgprot = PAGE_KERNEL;
2824 break;
2825 case I915_MAP_WC:
2826 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2827 break;
2828 }
2829 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2830
b338fa47 2831 if (pages != stack_pages)
2098105e 2832 kvfree(pages);
dd6034c6
DG
2833
2834 return addr;
2835}
2836
2837/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2838void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2839 enum i915_map_type type)
0a798eb9 2840{
d31d7cb1
CW
2841 enum i915_map_type has_type;
2842 bool pinned;
2843 void *ptr;
0a798eb9
CW
2844 int ret;
2845
a03f395a
TZ
2846 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2847 return ERR_PTR(-ENXIO);
0a798eb9 2848
1233e2db 2849 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2850 if (ret)
2851 return ERR_PTR(ret);
2852
a575c676
CW
2853 pinned = !(type & I915_MAP_OVERRIDE);
2854 type &= ~I915_MAP_OVERRIDE;
2855
1233e2db 2856 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
f1fa4f44 2857 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2858 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2859
2c3a3f44
CW
2860 ret = ____i915_gem_object_get_pages(obj);
2861 if (ret)
2862 goto err_unlock;
1233e2db 2863
2c3a3f44
CW
2864 smp_mb__before_atomic();
2865 }
2866 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2867 pinned = false;
2868 }
f1fa4f44 2869 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
0a798eb9 2870
0ce81788 2871 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2872 if (ptr && has_type != type) {
2873 if (pinned) {
2874 ret = -EBUSY;
1233e2db 2875 goto err_unpin;
0a798eb9 2876 }
d31d7cb1
CW
2877
2878 if (is_vmalloc_addr(ptr))
2879 vunmap(ptr);
2880 else
2881 kunmap(kmap_to_page(ptr));
2882
a4f5ea64 2883 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2884 }
2885
d31d7cb1
CW
2886 if (!ptr) {
2887 ptr = i915_gem_object_map(obj, type);
2888 if (!ptr) {
2889 ret = -ENOMEM;
1233e2db 2890 goto err_unpin;
d31d7cb1
CW
2891 }
2892
0ce81788 2893 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2894 }
2895
1233e2db
CW
2896out_unlock:
2897 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2898 return ptr;
2899
1233e2db
CW
2900err_unpin:
2901 atomic_dec(&obj->mm.pages_pin_count);
2902err_unlock:
2903 ptr = ERR_PTR(ret);
2904 goto out_unlock;
0a798eb9
CW
2905}
2906
7c55e2c5
CW
2907static int
2908i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2909 const struct drm_i915_gem_pwrite *arg)
2910{
2911 struct address_space *mapping = obj->base.filp->f_mapping;
2912 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2913 u64 remain, offset;
2914 unsigned int pg;
2915
2916 /* Before we instantiate/pin the backing store for our use, we
2917 * can prepopulate the shmemfs filp efficiently using a write into
2918 * the pagecache. We avoid the penalty of instantiating all the
2919 * pages, important if the user is just writing to a few and never
2920 * uses the object on the GPU, and using a direct write into shmemfs
2921 * allows it to avoid the cost of retrieving a page (either swapin
2922 * or clearing-before-use) before it is overwritten.
2923 */
f1fa4f44 2924 if (i915_gem_object_has_pages(obj))
7c55e2c5
CW
2925 return -ENODEV;
2926
a6d65e45
CW
2927 if (obj->mm.madv != I915_MADV_WILLNEED)
2928 return -EFAULT;
2929
7c55e2c5
CW
2930 /* Before the pages are instantiated the object is treated as being
2931 * in the CPU domain. The pages will be clflushed as required before
2932 * use, and we can freely write into the pages directly. If userspace
2933 * races pwrite with any other operation; corruption will ensue -
2934 * that is userspace's prerogative!
2935 */
2936
2937 remain = arg->size;
2938 offset = arg->offset;
2939 pg = offset_in_page(offset);
2940
2941 do {
2942 unsigned int len, unwritten;
2943 struct page *page;
2944 void *data, *vaddr;
2945 int err;
2946
2947 len = PAGE_SIZE - pg;
2948 if (len > remain)
2949 len = remain;
2950
2951 err = pagecache_write_begin(obj->base.filp, mapping,
2952 offset, len, 0,
2953 &page, &data);
2954 if (err < 0)
2955 return err;
2956
2957 vaddr = kmap(page);
2958 unwritten = copy_from_user(vaddr + pg, user_data, len);
2959 kunmap(page);
2960
2961 err = pagecache_write_end(obj->base.filp, mapping,
2962 offset, len, len - unwritten,
2963 page, data);
2964 if (err < 0)
2965 return err;
2966
2967 if (unwritten)
2968 return -EFAULT;
2969
2970 remain -= len;
2971 user_data += len;
2972 offset += len;
2973 pg = 0;
2974 } while (remain);
2975
2976 return 0;
2977}
2978
14921f3c
MK
2979static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2980 const struct i915_gem_context *ctx)
2981{
2982 unsigned int score;
2983 unsigned long prev_hang;
2984
2985 if (i915_gem_context_is_banned(ctx))
2986 score = I915_CLIENT_SCORE_CONTEXT_BAN;
2987 else
2988 score = 0;
2989
2990 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2991 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2992 score += I915_CLIENT_SCORE_HANG_FAST;
2993
2994 if (score) {
2995 atomic_add(score, &file_priv->ban_score);
2996
2997 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2998 ctx->name, score,
2999 atomic_read(&file_priv->ban_score));
3000 }
3001}
3002
e5e1fc47 3003static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 3004{
14921f3c
MK
3005 unsigned int score;
3006 bool banned, bannable;
b083a087 3007
77b25a97 3008 atomic_inc(&ctx->guilty_count);
b083a087 3009
14921f3c
MK
3010 bannable = i915_gem_context_is_bannable(ctx);
3011 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3012 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
24eae08d 3013
14921f3c
MK
3014 /* Cool contexts don't accumulate client ban score */
3015 if (!bannable)
b083a087
MK
3016 return;
3017
bcc2661e
CW
3018 if (banned) {
3019 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3020 ctx->name, atomic_read(&ctx->guilty_count),
3021 score);
14921f3c 3022 i915_gem_context_set_banned(ctx);
bcc2661e 3023 }
14921f3c
MK
3024
3025 if (!IS_ERR_OR_NULL(ctx->file_priv))
3026 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
e5e1fc47
MK
3027}
3028
3029static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3030{
77b25a97 3031 atomic_inc(&ctx->active_count);
aa60c664
MK
3032}
3033
e61e0f51 3034struct i915_request *
0bc40be8 3035i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 3036{
e61e0f51 3037 struct i915_request *request, *active = NULL;
754c9fd5 3038 unsigned long flags;
4db080f9 3039
cc7cc534
CW
3040 /*
3041 * We are called by the error capture, reset and to dump engine
3042 * state at random points in time. In particular, note that neither is
3043 * crucially ordered with an interrupt. After a hang, the GPU is dead
3044 * and we assume that no more writes can happen (we waited long enough
3045 * for all writes that were in transaction to be flushed) - adding an
f69a02c9
CW
3046 * extra delay for a recent interrupt is pointless. Hence, we do
3047 * not need an engine->irq_seqno_barrier() before the seqno reads.
cc7cc534
CW
3048 * At all other times, we must assume the GPU is still running, but
3049 * we only care about the snapshot of this moment.
f69a02c9 3050 */
a89d1f92
CW
3051 spin_lock_irqsave(&engine->timeline.lock, flags);
3052 list_for_each_entry(request, &engine->timeline.requests, link) {
e61e0f51 3053 if (__i915_request_completed(request, request->global_seqno))
4db080f9 3054 continue;
aa60c664 3055
754c9fd5
CW
3056 active = request;
3057 break;
4db080f9 3058 }
a89d1f92 3059 spin_unlock_irqrestore(&engine->timeline.lock, flags);
b6b0fac0 3060
754c9fd5 3061 return active;
b6b0fac0
MK
3062}
3063
a1ef70e1
MT
3064/*
3065 * Ensure irq handler finishes, and not run again.
3066 * Also return the active request so that we only search for it once.
3067 */
e61e0f51 3068struct i915_request *
a1ef70e1
MT
3069i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3070{
5adfb772 3071 struct i915_request *request;
a1ef70e1 3072
1749d90f
CW
3073 /*
3074 * During the reset sequence, we must prevent the engine from
3075 * entering RC6. As the context state is undefined until we restart
3076 * the engine, if it does enter RC6 during the reset, the state
3077 * written to the powercontext is undefined and so we may lose
3078 * GPU state upon resume, i.e. fail to restart after a reset.
3079 */
3080 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3081
5adfb772 3082 request = engine->reset.prepare(engine);
d1d1ebf4
CW
3083 if (request && request->fence.error == -EIO)
3084 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
3085
3086 return request;
3087}
3088
0e178aef 3089int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
3090{
3091 struct intel_engine_cs *engine;
e61e0f51 3092 struct i915_request *request;
4c965543 3093 enum intel_engine_id id;
0e178aef 3094 int err = 0;
4c965543 3095
0e178aef 3096 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
3097 request = i915_gem_reset_prepare_engine(engine);
3098 if (IS_ERR(request)) {
3099 err = PTR_ERR(request);
3100 continue;
0e178aef 3101 }
c64992e0
MT
3102
3103 engine->hangcheck.active_request = request;
0e178aef
CW
3104 }
3105
4c965543 3106 i915_gem_revoke_fences(dev_priv);
c37d5728 3107 intel_uc_sanitize(dev_priv);
0e178aef
CW
3108
3109 return err;
4c965543
CW
3110}
3111
e61e0f51 3112static void engine_skip_context(struct i915_request *request)
36193acd
MK
3113{
3114 struct intel_engine_cs *engine = request->engine;
4e0d64db 3115 struct i915_gem_context *hung_ctx = request->gem_context;
a89d1f92 3116 struct i915_timeline *timeline = request->timeline;
36193acd
MK
3117 unsigned long flags;
3118
a89d1f92 3119 GEM_BUG_ON(timeline == &engine->timeline);
36193acd 3120
a89d1f92 3121 spin_lock_irqsave(&engine->timeline.lock, flags);
890fd185 3122 spin_lock(&timeline->lock);
36193acd 3123
a89d1f92 3124 list_for_each_entry_continue(request, &engine->timeline.requests, link)
4e0d64db 3125 if (request->gem_context == hung_ctx)
6dd7526f 3126 i915_request_skip(request, -EIO);
36193acd
MK
3127
3128 list_for_each_entry(request, &timeline->requests, link)
6dd7526f 3129 i915_request_skip(request, -EIO);
36193acd
MK
3130
3131 spin_unlock(&timeline->lock);
a89d1f92 3132 spin_unlock_irqrestore(&engine->timeline.lock, flags);
36193acd
MK
3133}
3134
d1d1ebf4 3135/* Returns the request if it was guilty of the hang */
e61e0f51 3136static struct i915_request *
d1d1ebf4 3137i915_gem_reset_request(struct intel_engine_cs *engine,
bba0869b
CW
3138 struct i915_request *request,
3139 bool stalled)
61da5362 3140{
71895a08
MK
3141 /* The guilty request will get skipped on a hung engine.
3142 *
3143 * Users of client default contexts do not rely on logical
3144 * state preserved between batches so it is safe to execute
3145 * queued requests following the hang. Non default contexts
3146 * rely on preserved state, so skipping a batch loses the
3147 * evolution of the state and it needs to be considered corrupted.
3148 * Executing more queued batches on top of corrupted state is
3149 * risky. But we take the risk by trying to advance through
3150 * the queued requests in order to make the client behaviour
3151 * more predictable around resets, by not throwing away random
3152 * amount of batches it has prepared for execution. Sophisticated
3153 * clients can use gem_reset_stats_ioctl and dma fence status
3154 * (exported via sync_file info ioctl on explicit fences) to observe
3155 * when it loses the context state and should rebuild accordingly.
3156 *
3157 * The context ban, and ultimately the client ban, mechanism are safety
3158 * valves if client submission ends up resulting in nothing more than
3159 * subsequent hangs.
3160 */
3161
bba0869b
CW
3162 if (i915_request_completed(request)) {
3163 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3164 engine->name, request->global_seqno,
3165 request->fence.context, request->fence.seqno,
3166 intel_engine_get_seqno(engine));
3167 stalled = false;
3168 }
3169
3170 if (stalled) {
4e0d64db 3171 i915_gem_context_mark_guilty(request->gem_context);
6dd7526f 3172 i915_request_skip(request, -EIO);
d1d1ebf4
CW
3173
3174 /* If this context is now banned, skip all pending requests. */
4e0d64db 3175 if (i915_gem_context_is_banned(request->gem_context))
d1d1ebf4 3176 engine_skip_context(request);
61da5362 3177 } else {
d1d1ebf4
CW
3178 /*
3179 * Since this is not the hung engine, it may have advanced
3180 * since the hang declaration. Double check by refinding
3181 * the active request at the time of the reset.
3182 */
3183 request = i915_gem_find_active_request(engine);
3184 if (request) {
042ed2db
CW
3185 unsigned long flags;
3186
4e0d64db 3187 i915_gem_context_mark_innocent(request->gem_context);
d1d1ebf4
CW
3188 dma_fence_set_error(&request->fence, -EAGAIN);
3189
3190 /* Rewind the engine to replay the incomplete rq */
042ed2db 3191 spin_lock_irqsave(&engine->timeline.lock, flags);
d1d1ebf4 3192 request = list_prev_entry(request, link);
a89d1f92 3193 if (&request->link == &engine->timeline.requests)
d1d1ebf4 3194 request = NULL;
042ed2db 3195 spin_unlock_irqrestore(&engine->timeline.lock, flags);
d1d1ebf4 3196 }
61da5362
MK
3197 }
3198
d1d1ebf4 3199 return request;
61da5362
MK
3200}
3201
a1ef70e1 3202void i915_gem_reset_engine(struct intel_engine_cs *engine,
bba0869b
CW
3203 struct i915_request *request,
3204 bool stalled)
b6b0fac0 3205{
fcb1de54
CW
3206 /*
3207 * Make sure this write is visible before we re-enable the interrupt
3208 * handlers on another CPU, as tasklet_enable() resolves to just
3209 * a compiler barrier which is insufficient for our purpose here.
3210 */
3211 smp_store_mb(engine->irq_posted, 0);
ed454f2c 3212
d1d1ebf4 3213 if (request)
bba0869b 3214 request = i915_gem_reset_request(engine, request, stalled);
d1d1ebf4 3215
821ed7df 3216 /* Setup the CS to resume from the breadcrumb of the hung request */
5adfb772 3217 engine->reset.reset(engine, request);
4db080f9 3218}
aa60c664 3219
d0667e9c
CW
3220void i915_gem_reset(struct drm_i915_private *dev_priv,
3221 unsigned int stalled_mask)
4db080f9 3222{
821ed7df 3223 struct intel_engine_cs *engine;
3b3f1650 3224 enum intel_engine_id id;
608c1a52 3225
4c7d62c6
CW
3226 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3227
e61e0f51 3228 i915_retire_requests(dev_priv);
821ed7df 3229
2ae55738 3230 for_each_engine(engine, dev_priv, id) {
1fc44d9b 3231 struct intel_context *ce;
2ae55738 3232
bba0869b
CW
3233 i915_gem_reset_engine(engine,
3234 engine->hangcheck.active_request,
d0667e9c 3235 stalled_mask & ENGINE_MASK(id));
1fc44d9b
CW
3236 ce = fetch_and_zero(&engine->last_retired_context);
3237 if (ce)
3238 intel_context_unpin(ce);
7b6da818
CW
3239
3240 /*
3241 * Ostensibily, we always want a context loaded for powersaving,
3242 * so if the engine is idle after the reset, send a request
3243 * to load our scratch kernel_context.
3244 *
3245 * More mysteriously, if we leave the engine idle after a reset,
3246 * the next userspace batch may hang, with what appears to be
3247 * an incoherent read by the CS (presumably stale TLB). An
3248 * empty request appears sufficient to paper over the glitch.
3249 */
01b8fdc5 3250 if (intel_engine_is_idle(engine)) {
e61e0f51 3251 struct i915_request *rq;
7b6da818 3252
e61e0f51
CW
3253 rq = i915_request_alloc(engine,
3254 dev_priv->kernel_context);
7b6da818 3255 if (!IS_ERR(rq))
697b9a87 3256 i915_request_add(rq);
7b6da818 3257 }
2ae55738 3258 }
821ed7df 3259
4362f4f6 3260 i915_gem_restore_fences(dev_priv);
821ed7df
CW
3261}
3262
a1ef70e1
MT
3263void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3264{
5adfb772
CW
3265 engine->reset.finish(engine);
3266
1749d90f 3267 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
a1ef70e1
MT
3268}
3269
d8027093
CW
3270void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3271{
1f7b847d
CW
3272 struct intel_engine_cs *engine;
3273 enum intel_engine_id id;
3274
d8027093 3275 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3276
fe3288b5 3277 for_each_engine(engine, dev_priv, id) {
c64992e0 3278 engine->hangcheck.active_request = NULL;
a1ef70e1 3279 i915_gem_reset_finish_engine(engine);
fe3288b5 3280 }
d8027093
CW
3281}
3282
e61e0f51 3283static void nop_submit_request(struct i915_request *request)
af7a8ffa 3284{
d9b13c4d
CW
3285 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3286 request->engine->name,
3287 request->fence.context, request->fence.seqno);
af7a8ffa
DV
3288 dma_fence_set_error(&request->fence, -EIO);
3289
e61e0f51 3290 i915_request_submit(request);
af7a8ffa
DV
3291}
3292
e61e0f51 3293static void nop_complete_submit_request(struct i915_request *request)
821ed7df 3294{
8d550824
CW
3295 unsigned long flags;
3296
d9b13c4d
CW
3297 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3298 request->engine->name,
3299 request->fence.context, request->fence.seqno);
3cd9442f 3300 dma_fence_set_error(&request->fence, -EIO);
8d550824 3301
a89d1f92 3302 spin_lock_irqsave(&request->engine->timeline.lock, flags);
e61e0f51 3303 __i915_request_submit(request);
3dcf93f7 3304 intel_engine_init_global_seqno(request->engine, request->global_seqno);
a89d1f92 3305 spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
821ed7df
CW
3306}
3307
af7a8ffa 3308void i915_gem_set_wedged(struct drm_i915_private *i915)
821ed7df 3309{
af7a8ffa
DV
3310 struct intel_engine_cs *engine;
3311 enum intel_engine_id id;
3312
d9b13c4d
CW
3313 GEM_TRACE("start\n");
3314
7f961d79 3315 if (GEM_SHOW_DEBUG()) {
559e040f
CW
3316 struct drm_printer p = drm_debug_printer(__func__);
3317
3318 for_each_engine(engine, i915, id)
3319 intel_engine_dump(engine, &p, "%s\n", engine->name);
3320 }
3321
3970c65c
CW
3322 if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3323 goto out;
0d73e7a0 3324
af7a8ffa
DV
3325 /*
3326 * First, stop submission to hw, but do not yet complete requests by
3327 * rolling the global seqno forward (since this would complete requests
3328 * for which we haven't set the fence error to EIO yet).
3329 */
963ddd63
CW
3330 for_each_engine(engine, i915, id) {
3331 i915_gem_reset_prepare_engine(engine);
47650db0 3332
af7a8ffa 3333 engine->submit_request = nop_submit_request;
47650db0 3334 engine->schedule = NULL;
963ddd63 3335 }
47650db0 3336 i915->caps.scheduler = 0;
af7a8ffa 3337
ac697ae8 3338 /* Even if the GPU reset fails, it should still stop the engines */
ec5b65a9
CW
3339 if (INTEL_GEN(i915) >= 5)
3340 intel_gpu_reset(i915, ALL_ENGINES);
ac697ae8 3341
af7a8ffa
DV
3342 /*
3343 * Make sure no one is running the old callback before we proceed with
3344 * cancelling requests and resetting the completion tracking. Otherwise
3345 * we might submit a request to the hardware which never completes.
20e4933c 3346 */
af7a8ffa 3347 synchronize_rcu();
70c2a24d 3348
af7a8ffa
DV
3349 for_each_engine(engine, i915, id) {
3350 /* Mark all executing requests as skipped */
3351 engine->cancel_requests(engine);
5e32d748 3352
af7a8ffa
DV
3353 /*
3354 * Only once we've force-cancelled all in-flight requests can we
3355 * start to complete all requests.
3356 */
3357 engine->submit_request = nop_complete_submit_request;
3358 }
3359
3360 /*
3361 * Make sure no request can slip through without getting completed by
3362 * either this call here to intel_engine_init_global_seqno, or the one
3363 * in nop_complete_submit_request.
5e32d748 3364 */
af7a8ffa 3365 synchronize_rcu();
673a394b 3366
af7a8ffa
DV
3367 for_each_engine(engine, i915, id) {
3368 unsigned long flags;
673a394b 3369
0d73e7a0
CW
3370 /*
3371 * Mark all pending requests as complete so that any concurrent
af7a8ffa
DV
3372 * (lockless) lookup doesn't try and wait upon the request as we
3373 * reset it.
3374 */
a89d1f92 3375 spin_lock_irqsave(&engine->timeline.lock, flags);
af7a8ffa
DV
3376 intel_engine_init_global_seqno(engine,
3377 intel_engine_last_submit(engine));
a89d1f92 3378 spin_unlock_irqrestore(&engine->timeline.lock, flags);
963ddd63
CW
3379
3380 i915_gem_reset_finish_engine(engine);
af7a8ffa 3381 }
20e4933c 3382
3970c65c 3383out:
d9b13c4d
CW
3384 GEM_TRACE("end\n");
3385
3d7adbbf 3386 wake_up_all(&i915->gpu_error.reset_queue);
673a394b
EA
3387}
3388
2e8f9d32
CW
3389bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3390{
a89d1f92 3391 struct i915_timeline *tl;
2e8f9d32
CW
3392
3393 lockdep_assert_held(&i915->drm.struct_mutex);
3394 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3395 return true;
3396
d9b13c4d
CW
3397 GEM_TRACE("start\n");
3398
2d4ecace
CW
3399 /*
3400 * Before unwedging, make sure that all pending operations
2e8f9d32
CW
3401 * are flushed and errored out - we may have requests waiting upon
3402 * third party fences. We marked all inflight requests as EIO, and
3403 * every execbuf since returned EIO, for consistency we want all
3404 * the currently pending requests to also be marked as EIO, which
3405 * is done inside our nop_submit_request - and so we must wait.
3406 *
3407 * No more can be submitted until we reset the wedged bit.
3408 */
3409 list_for_each_entry(tl, &i915->gt.timelines, link) {
a89d1f92 3410 struct i915_request *rq;
2e8f9d32 3411
a89d1f92
CW
3412 rq = i915_gem_active_peek(&tl->last_request,
3413 &i915->drm.struct_mutex);
3414 if (!rq)
3415 continue;
2e8f9d32 3416
a89d1f92
CW
3417 /*
3418 * We can't use our normal waiter as we want to
3419 * avoid recursively trying to handle the current
3420 * reset. The basic dma_fence_default_wait() installs
3421 * a callback for dma_fence_signal(), which is
3422 * triggered by our nop handler (indirectly, the
3423 * callback enables the signaler thread which is
3424 * woken by the nop_submit_request() advancing the seqno
3425 * and when the seqno passes the fence, the signaler
3426 * then signals the fence waking us up).
3427 */
3428 if (dma_fence_default_wait(&rq->fence, true,
3429 MAX_SCHEDULE_TIMEOUT) < 0)
3430 return false;
2e8f9d32 3431 }
2d4ecace
CW
3432 i915_retire_requests(i915);
3433 GEM_BUG_ON(i915->gt.active_requests);
2e8f9d32 3434
8db601f0
CW
3435 if (!intel_gpu_reset(i915, ALL_ENGINES))
3436 intel_engines_sanitize(i915);
3437
2d4ecace
CW
3438 /*
3439 * Undo nop_submit_request. We prevent all new i915 requests from
2e8f9d32
CW
3440 * being queued (by disallowing execbuf whilst wedged) so having
3441 * waited for all active requests above, we know the system is idle
3442 * and do not have to worry about a thread being inside
3443 * engine->submit_request() as we swap over. So unlike installing
3444 * the nop_submit_request on reset, we can do this from normal
3445 * context and do not require stop_machine().
3446 */
3447 intel_engines_reset_default_submission(i915);
36703e79 3448 i915_gem_contexts_lost(i915);
2e8f9d32 3449
d9b13c4d
CW
3450 GEM_TRACE("end\n");
3451
2e8f9d32
CW
3452 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3453 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3454
3455 return true;
3456}
3457
75ef9da2 3458static void
673a394b
EA
3459i915_gem_retire_work_handler(struct work_struct *work)
3460{
b29c19b6 3461 struct drm_i915_private *dev_priv =
67d97da3 3462 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3463 struct drm_device *dev = &dev_priv->drm;
673a394b 3464
891b48cf 3465 /* Come back later if the device is busy... */
b29c19b6 3466 if (mutex_trylock(&dev->struct_mutex)) {
e61e0f51 3467 i915_retire_requests(dev_priv);
b29c19b6 3468 mutex_unlock(&dev->struct_mutex);
673a394b 3469 }
67d97da3 3470
88923048
CW
3471 /*
3472 * Keep the retire handler running until we are finally idle.
67d97da3
CW
3473 * We do not need to do this test under locking as in the worst-case
3474 * we queue the retire worker once too often.
3475 */
88923048 3476 if (READ_ONCE(dev_priv->gt.awake))
67d97da3
CW
3477 queue_delayed_work(dev_priv->wq,
3478 &dev_priv->gt.retire_work,
bcb45086 3479 round_jiffies_up_relative(HZ));
b29c19b6 3480}
0a58705b 3481
84a10749
CW
3482static void shrink_caches(struct drm_i915_private *i915)
3483{
3484 /*
3485 * kmem_cache_shrink() discards empty slabs and reorders partially
3486 * filled slabs to prioritise allocating from the mostly full slabs,
3487 * with the aim of reducing fragmentation.
3488 */
3489 kmem_cache_shrink(i915->priorities);
3490 kmem_cache_shrink(i915->dependencies);
3491 kmem_cache_shrink(i915->requests);
3492 kmem_cache_shrink(i915->luts);
3493 kmem_cache_shrink(i915->vmas);
3494 kmem_cache_shrink(i915->objects);
3495}
3496
3497struct sleep_rcu_work {
3498 union {
3499 struct rcu_head rcu;
3500 struct work_struct work;
3501 };
3502 struct drm_i915_private *i915;
3503 unsigned int epoch;
3504};
3505
3506static inline bool
3507same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3508{
3509 /*
3510 * There is a small chance that the epoch wrapped since we started
3511 * sleeping. If we assume that epoch is at least a u32, then it will
3512 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3513 */
3514 return epoch == READ_ONCE(i915->gt.epoch);
3515}
3516
3517static void __sleep_work(struct work_struct *work)
3518{
3519 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3520 struct drm_i915_private *i915 = s->i915;
3521 unsigned int epoch = s->epoch;
3522
3523 kfree(s);
3524 if (same_epoch(i915, epoch))
3525 shrink_caches(i915);
3526}
3527
3528static void __sleep_rcu(struct rcu_head *rcu)
3529{
3530 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3531 struct drm_i915_private *i915 = s->i915;
3532
3533 if (same_epoch(i915, s->epoch)) {
3534 INIT_WORK(&s->work, __sleep_work);
3535 queue_work(i915->wq, &s->work);
3536 } else {
3537 kfree(s);
3538 }
3539}
3540
5427f207
CW
3541static inline bool
3542new_requests_since_last_retire(const struct drm_i915_private *i915)
3543{
3544 return (READ_ONCE(i915->gt.active_requests) ||
3545 work_pending(&i915->gt.idle_work.work));
3546}
3547
1934f5de
CW
3548static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3549{
3550 struct intel_engine_cs *engine;
3551 enum intel_engine_id id;
3552
3553 if (i915_terminally_wedged(&i915->gpu_error))
3554 return;
3555
3556 GEM_BUG_ON(i915->gt.active_requests);
3557 for_each_engine(engine, i915, id) {
3558 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3559 GEM_BUG_ON(engine->last_retired_context !=
3560 to_intel_context(i915->kernel_context, engine));
3561 }
3562}
3563
b29c19b6
CW
3564static void
3565i915_gem_idle_work_handler(struct work_struct *work)
3566{
3567 struct drm_i915_private *dev_priv =
67d97da3 3568 container_of(work, typeof(*dev_priv), gt.idle_work.work);
84a10749 3569 unsigned int epoch = I915_EPOCH_INVALID;
67d97da3
CW
3570 bool rearm_hangcheck;
3571
3572 if (!READ_ONCE(dev_priv->gt.awake))
3573 return;
3574
4dfacb0b
CW
3575 if (READ_ONCE(dev_priv->gt.active_requests))
3576 return;
3577
3578 /*
3579 * Flush out the last user context, leaving only the pinned
3580 * kernel context resident. When we are idling on the kernel_context,
3581 * no more new requests (with a context switch) are emitted and we
3582 * can finally rest. A consequence is that the idle work handler is
3583 * always called at least twice before idling (and if the system is
3584 * idle that implies a round trip through the retire worker).
3585 */
3586 mutex_lock(&dev_priv->drm.struct_mutex);
3587 i915_gem_switch_to_kernel_context(dev_priv);
3588 mutex_unlock(&dev_priv->drm.struct_mutex);
3589
3590 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3591 READ_ONCE(dev_priv->gt.active_requests));
3592
0cb5670b
ID
3593 /*
3594 * Wait for last execlists context complete, but bail out in case a
ffed7bd2
CW
3595 * new request is submitted. As we don't trust the hardware, we
3596 * continue on if the wait times out. This is necessary to allow
3597 * the machine to suspend even if the hardware dies, and we will
3598 * try to recover in resume (after depriving the hardware of power,
3599 * it may be in a better mmod).
0cb5670b 3600 */
ffed7bd2
CW
3601 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3602 intel_engines_are_idle(dev_priv),
3603 I915_IDLE_ENGINES_TIMEOUT * 1000,
3604 10, 500);
67d97da3
CW
3605
3606 rearm_hangcheck =
3607 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3608
5427f207 3609 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
67d97da3
CW
3610 /* Currently busy, come back later */
3611 mod_delayed_work(dev_priv->wq,
3612 &dev_priv->gt.idle_work,
3613 msecs_to_jiffies(50));
3614 goto out_rearm;
3615 }
3616
93c97dc1
ID
3617 /*
3618 * New request retired after this work handler started, extend active
3619 * period until next instance of the work.
3620 */
5427f207 3621 if (new_requests_since_last_retire(dev_priv))
67d97da3 3622 goto out_unlock;
b29c19b6 3623
e4d2006f 3624 epoch = __i915_gem_park(dev_priv);
35c94185 3625
1934f5de
CW
3626 assert_kernel_context_is_current(dev_priv);
3627
67d97da3 3628 rearm_hangcheck = false;
67d97da3 3629out_unlock:
5427f207 3630 mutex_unlock(&dev_priv->drm.struct_mutex);
b29c19b6 3631
67d97da3
CW
3632out_rearm:
3633 if (rearm_hangcheck) {
3634 GEM_BUG_ON(!dev_priv->gt.awake);
3635 i915_queue_hangcheck(dev_priv);
35c94185 3636 }
84a10749
CW
3637
3638 /*
3639 * When we are idle, it is an opportune time to reap our caches.
3640 * However, we have many objects that utilise RCU and the ordered
3641 * i915->wq that this work is executing on. To try and flush any
3642 * pending frees now we are idle, we first wait for an RCU grace
3643 * period, and then queue a task (that will run last on the wq) to
3644 * shrink and re-optimize the caches.
3645 */
3646 if (same_epoch(dev_priv, epoch)) {
3647 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3648 if (s) {
3649 s->i915 = dev_priv;
3650 s->epoch = epoch;
3651 call_rcu(&s->rcu, __sleep_rcu);
3652 }
3653 }
673a394b
EA
3654}
3655
b1f788c6
CW
3656void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3657{
d1b48c1e 3658 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3659 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3660 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3661 struct i915_lut_handle *lut, *ln;
b1f788c6 3662
d1b48c1e
CW
3663 mutex_lock(&i915->drm.struct_mutex);
3664
3665 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3666 struct i915_gem_context *ctx = lut->ctx;
3667 struct i915_vma *vma;
3668
432295d7 3669 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
d1b48c1e
CW
3670 if (ctx->file_priv != fpriv)
3671 continue;
3672
3673 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3ffff017
CW
3674 GEM_BUG_ON(vma->obj != obj);
3675
3676 /* We allow the process to have multiple handles to the same
3677 * vma, in the same fd namespace, by virtue of flink/open.
3678 */
3679 GEM_BUG_ON(!vma->open_count);
3680 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3681 i915_vma_close(vma);
f8a7fde4 3682
d1b48c1e
CW
3683 list_del(&lut->obj_link);
3684 list_del(&lut->ctx_link);
4ff4b44c 3685
d1b48c1e
CW
3686 kmem_cache_free(i915->luts, lut);
3687 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3688 }
d1b48c1e
CW
3689
3690 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3691}
3692
e95433c7
CW
3693static unsigned long to_wait_timeout(s64 timeout_ns)
3694{
3695 if (timeout_ns < 0)
3696 return MAX_SCHEDULE_TIMEOUT;
3697
3698 if (timeout_ns == 0)
3699 return 0;
3700
3701 return nsecs_to_jiffies_timeout(timeout_ns);
3702}
3703
23ba4fd0
BW
3704/**
3705 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3706 * @dev: drm device pointer
3707 * @data: ioctl data blob
3708 * @file: drm file pointer
23ba4fd0
BW
3709 *
3710 * Returns 0 if successful, else an error is returned with the remaining time in
3711 * the timeout parameter.
3712 * -ETIME: object is still busy after timeout
3713 * -ERESTARTSYS: signal interrupted the wait
3714 * -ENONENT: object doesn't exist
3715 * Also possible, but rare:
b8050148 3716 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3717 * -ENOMEM: damn
3718 * -ENODEV: Internal IRQ fail
3719 * -E?: The add request failed
3720 *
3721 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3722 * non-zero timeout parameter the wait ioctl will wait for the given number of
3723 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3724 * without holding struct_mutex the object may become re-busied before this
3725 * function completes. A similar but shorter * race condition exists in the busy
3726 * ioctl
3727 */
3728int
3729i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3730{
3731 struct drm_i915_gem_wait *args = data;
3732 struct drm_i915_gem_object *obj;
e95433c7
CW
3733 ktime_t start;
3734 long ret;
23ba4fd0 3735
11b5d511
DV
3736 if (args->flags != 0)
3737 return -EINVAL;
3738
03ac0642 3739 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3740 if (!obj)
23ba4fd0 3741 return -ENOENT;
23ba4fd0 3742
e95433c7
CW
3743 start = ktime_get();
3744
3745 ret = i915_gem_object_wait(obj,
3746 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3747 to_wait_timeout(args->timeout_ns),
3748 to_rps_client(file));
3749
3750 if (args->timeout_ns > 0) {
3751 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3752 if (args->timeout_ns < 0)
3753 args->timeout_ns = 0;
c1d2061b
CW
3754
3755 /*
3756 * Apparently ktime isn't accurate enough and occasionally has a
3757 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3758 * things up to make the test happy. We allow up to 1 jiffy.
3759 *
3760 * This is a regression from the timespec->ktime conversion.
3761 */
3762 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3763 args->timeout_ns = 0;
b8050148
CW
3764
3765 /* Asked to wait beyond the jiffie/scheduler precision? */
3766 if (ret == -ETIME && args->timeout_ns)
3767 ret = -EAGAIN;
b4716185
CW
3768 }
3769
f0cd5182 3770 i915_gem_object_put(obj);
ff865885 3771 return ret;
23ba4fd0
BW
3772}
3773
ec625fb9
CW
3774static long wait_for_timeline(struct i915_timeline *tl,
3775 unsigned int flags, long timeout)
4df2faf4 3776{
0606035f 3777 struct i915_request *rq;
0606035f
CW
3778
3779 rq = i915_gem_active_get_unlocked(&tl->last_request);
3780 if (!rq)
ec625fb9 3781 return timeout;
0606035f
CW
3782
3783 /*
3784 * "Race-to-idle".
3785 *
3786 * Switching to the kernel context is often used a synchronous
3787 * step prior to idling, e.g. in suspend for flushing all
3788 * current operations to memory before sleeping. These we
3789 * want to complete as quickly as possible to avoid prolonged
3790 * stalls, so allow the gpu to boost to maximum clocks.
3791 */
3792 if (flags & I915_WAIT_FOR_IDLE_BOOST)
3793 gen6_rps_boost(rq, NULL);
3794
ec625fb9 3795 timeout = i915_request_wait(rq, flags, timeout);
0606035f
CW
3796 i915_request_put(rq);
3797
ec625fb9 3798 return timeout;
73cb9701
CW
3799}
3800
25112b64
CW
3801static int wait_for_engines(struct drm_i915_private *i915)
3802{
ee42c00e 3803 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
59e4b19d
CW
3804 dev_err(i915->drm.dev,
3805 "Failed to idle engines, declaring wedged!\n");
629820fc 3806 GEM_TRACE_DUMP();
cad9946c
CW
3807 i915_gem_set_wedged(i915);
3808 return -EIO;
25112b64
CW
3809 }
3810
3811 return 0;
3812}
3813
ec625fb9
CW
3814int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3815 unsigned int flags, long timeout)
73cb9701 3816{
ec625fb9
CW
3817 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3818 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3819 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
09a4c02e 3820
863e9fde
CW
3821 /* If the device is asleep, we have no requests outstanding */
3822 if (!READ_ONCE(i915->gt.awake))
3823 return 0;
3824
9caa34aa 3825 if (flags & I915_WAIT_LOCKED) {
a89d1f92
CW
3826 struct i915_timeline *tl;
3827 int err;
9caa34aa
CW
3828
3829 lockdep_assert_held(&i915->drm.struct_mutex);
3830
3831 list_for_each_entry(tl, &i915->gt.timelines, link) {
ec625fb9
CW
3832 timeout = wait_for_timeline(tl, flags, timeout);
3833 if (timeout < 0)
3834 return timeout;
9caa34aa 3835 }
c1e63f6d
CW
3836 if (GEM_SHOW_DEBUG() && !timeout) {
3837 /* Presume that timeout was non-zero to begin with! */
3838 dev_warn(&i915->drm.pdev->dev,
3839 "Missed idle-completion interrupt!\n");
3840 GEM_TRACE_DUMP();
3841 }
a61b47f6
CW
3842
3843 err = wait_for_engines(i915);
3844 if (err)
3845 return err;
3846
e61e0f51 3847 i915_retire_requests(i915);
09a4c02e 3848 GEM_BUG_ON(i915->gt.active_requests);
9caa34aa 3849 } else {
a89d1f92
CW
3850 struct intel_engine_cs *engine;
3851 enum intel_engine_id id;
4df2faf4 3852
a89d1f92 3853 for_each_engine(engine, i915, id) {
ec625fb9
CW
3854 struct i915_timeline *tl = &engine->timeline;
3855
3856 timeout = wait_for_timeline(tl, flags, timeout);
3857 if (timeout < 0)
3858 return timeout;
a89d1f92 3859 }
a89d1f92 3860 }
a61b47f6
CW
3861
3862 return 0;
4df2faf4
DV
3863}
3864
5a97bcc6
CW
3865static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3866{
e27ab73d
CW
3867 /*
3868 * We manually flush the CPU domain so that we can override and
3869 * force the flush for the display, and perform it asyncrhonously.
3870 */
3871 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3872 if (obj->cache_dirty)
3873 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
c0a51fd0 3874 obj->write_domain = 0;
5a97bcc6
CW
3875}
3876
3877void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3878{
bd3d2252 3879 if (!READ_ONCE(obj->pin_global))
5a97bcc6
CW
3880 return;
3881
3882 mutex_lock(&obj->base.dev->struct_mutex);
3883 __i915_gem_object_flush_for_display(obj);
3884 mutex_unlock(&obj->base.dev->struct_mutex);
3885}
3886
e22d8e3c
CW
3887/**
3888 * Moves a single object to the WC read, and possibly write domain.
3889 * @obj: object to act on
3890 * @write: ask for write access or read only
3891 *
3892 * This function returns when the move is complete, including waiting on
3893 * flushes to occur.
3894 */
3895int
3896i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3897{
3898 int ret;
3899
3900 lockdep_assert_held(&obj->base.dev->struct_mutex);
3901
3902 ret = i915_gem_object_wait(obj,
3903 I915_WAIT_INTERRUPTIBLE |
3904 I915_WAIT_LOCKED |
3905 (write ? I915_WAIT_ALL : 0),
3906 MAX_SCHEDULE_TIMEOUT,
3907 NULL);
3908 if (ret)
3909 return ret;
3910
c0a51fd0 3911 if (obj->write_domain == I915_GEM_DOMAIN_WC)
e22d8e3c
CW
3912 return 0;
3913
3914 /* Flush and acquire obj->pages so that we are coherent through
3915 * direct access in memory with previous cached writes through
3916 * shmemfs and that our cache domain tracking remains valid.
3917 * For example, if the obj->filp was moved to swap without us
3918 * being notified and releasing the pages, we would mistakenly
3919 * continue to assume that the obj remained out of the CPU cached
3920 * domain.
3921 */
3922 ret = i915_gem_object_pin_pages(obj);
3923 if (ret)
3924 return ret;
3925
3926 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3927
3928 /* Serialise direct access to this object with the barriers for
3929 * coherent writes from the GPU, by effectively invalidating the
3930 * WC domain upon first access.
3931 */
c0a51fd0 3932 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
e22d8e3c
CW
3933 mb();
3934
3935 /* It should now be out of any other write domains, and we can update
3936 * the domain values for our changes.
3937 */
c0a51fd0
CK
3938 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3939 obj->read_domains |= I915_GEM_DOMAIN_WC;
e22d8e3c 3940 if (write) {
c0a51fd0
CK
3941 obj->read_domains = I915_GEM_DOMAIN_WC;
3942 obj->write_domain = I915_GEM_DOMAIN_WC;
e22d8e3c
CW
3943 obj->mm.dirty = true;
3944 }
3945
3946 i915_gem_object_unpin_pages(obj);
3947 return 0;
3948}
3949
2ef7eeaa
EA
3950/**
3951 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3952 * @obj: object to act on
3953 * @write: ask for write access or read only
2ef7eeaa
EA
3954 *
3955 * This function returns when the move is complete, including waiting on
3956 * flushes to occur.
3957 */
79e53945 3958int
2021746e 3959i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3960{
e47c68e9 3961 int ret;
2ef7eeaa 3962
e95433c7 3963 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3964
e95433c7
CW
3965 ret = i915_gem_object_wait(obj,
3966 I915_WAIT_INTERRUPTIBLE |
3967 I915_WAIT_LOCKED |
3968 (write ? I915_WAIT_ALL : 0),
3969 MAX_SCHEDULE_TIMEOUT,
3970 NULL);
88241785
CW
3971 if (ret)
3972 return ret;
3973
c0a51fd0 3974 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
c13d87ea
CW
3975 return 0;
3976
43566ded
CW
3977 /* Flush and acquire obj->pages so that we are coherent through
3978 * direct access in memory with previous cached writes through
3979 * shmemfs and that our cache domain tracking remains valid.
3980 * For example, if the obj->filp was moved to swap without us
3981 * being notified and releasing the pages, we would mistakenly
3982 * continue to assume that the obj remained out of the CPU cached
3983 * domain.
3984 */
a4f5ea64 3985 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3986 if (ret)
3987 return ret;
3988
ef74921b 3989 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3990
d0a57789
CW
3991 /* Serialise direct access to this object with the barriers for
3992 * coherent writes from the GPU, by effectively invalidating the
3993 * GTT domain upon first access.
3994 */
c0a51fd0 3995 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
d0a57789
CW
3996 mb();
3997
e47c68e9
EA
3998 /* It should now be out of any other write domains, and we can update
3999 * the domain values for our changes.
4000 */
c0a51fd0
CK
4001 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4002 obj->read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 4003 if (write) {
c0a51fd0
CK
4004 obj->read_domains = I915_GEM_DOMAIN_GTT;
4005 obj->write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 4006 obj->mm.dirty = true;
2ef7eeaa
EA
4007 }
4008
a4f5ea64 4009 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
4010 return 0;
4011}
4012
ef55f92a
CW
4013/**
4014 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
4015 * @obj: object to act on
4016 * @cache_level: new cache level to set for the object
ef55f92a
CW
4017 *
4018 * After this function returns, the object will be in the new cache-level
4019 * across all GTT and the contents of the backing storage will be coherent,
4020 * with respect to the new cache-level. In order to keep the backing storage
4021 * coherent for all users, we only allow a single cache level to be set
4022 * globally on the object and prevent it from being changed whilst the
4023 * hardware is reading from the object. That is if the object is currently
4024 * on the scanout it will be set to uncached (or equivalent display
4025 * cache coherency) and all non-MOCS GPU access will also be uncached so
4026 * that all direct access to the scanout remains coherent.
4027 */
e4ffd173
CW
4028int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4029 enum i915_cache_level cache_level)
4030{
aa653a68 4031 struct i915_vma *vma;
a6a7cc4b 4032 int ret;
e4ffd173 4033
4c7d62c6
CW
4034 lockdep_assert_held(&obj->base.dev->struct_mutex);
4035
e4ffd173 4036 if (obj->cache_level == cache_level)
a6a7cc4b 4037 return 0;
e4ffd173 4038
ef55f92a
CW
4039 /* Inspect the list of currently bound VMA and unbind any that would
4040 * be invalid given the new cache-level. This is principally to
4041 * catch the issue of the CS prefetch crossing page boundaries and
4042 * reading an invalid PTE on older architectures.
4043 */
aa653a68
CW
4044restart:
4045 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4046 if (!drm_mm_node_allocated(&vma->node))
4047 continue;
4048
20dfbde4 4049 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
4050 DRM_DEBUG("can not change the cache level of pinned objects\n");
4051 return -EBUSY;
4052 }
4053
010e3e68
CW
4054 if (!i915_vma_is_closed(vma) &&
4055 i915_gem_valid_gtt_space(vma, cache_level))
aa653a68
CW
4056 continue;
4057
4058 ret = i915_vma_unbind(vma);
4059 if (ret)
4060 return ret;
4061
4062 /* As unbinding may affect other elements in the
4063 * obj->vma_list (due to side-effects from retiring
4064 * an active vma), play safe and restart the iterator.
4065 */
4066 goto restart;
42d6ab48
CW
4067 }
4068
ef55f92a
CW
4069 /* We can reuse the existing drm_mm nodes but need to change the
4070 * cache-level on the PTE. We could simply unbind them all and
4071 * rebind with the correct cache-level on next use. However since
4072 * we already have a valid slot, dma mapping, pages etc, we may as
4073 * rewrite the PTE in the belief that doing so tramples upon less
4074 * state and so involves less work.
4075 */
15717de2 4076 if (obj->bind_count) {
ef55f92a
CW
4077 /* Before we change the PTE, the GPU must not be accessing it.
4078 * If we wait upon the object, we know that all the bound
4079 * VMA are no longer active.
4080 */
e95433c7
CW
4081 ret = i915_gem_object_wait(obj,
4082 I915_WAIT_INTERRUPTIBLE |
4083 I915_WAIT_LOCKED |
4084 I915_WAIT_ALL,
4085 MAX_SCHEDULE_TIMEOUT,
4086 NULL);
e4ffd173
CW
4087 if (ret)
4088 return ret;
4089
0031fb96
TU
4090 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4091 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
4092 /* Access to snoopable pages through the GTT is
4093 * incoherent and on some machines causes a hard
4094 * lockup. Relinquish the CPU mmaping to force
4095 * userspace to refault in the pages and we can
4096 * then double check if the GTT mapping is still
4097 * valid for that pointer access.
4098 */
4099 i915_gem_release_mmap(obj);
4100
4101 /* As we no longer need a fence for GTT access,
4102 * we can relinquish it now (and so prevent having
4103 * to steal a fence from someone else on the next
4104 * fence request). Note GPU activity would have
4105 * dropped the fence as all snoopable access is
4106 * supposed to be linear.
4107 */
e2189dd0 4108 for_each_ggtt_vma(vma, obj) {
49ef5294
CW
4109 ret = i915_vma_put_fence(vma);
4110 if (ret)
4111 return ret;
4112 }
ef55f92a
CW
4113 } else {
4114 /* We either have incoherent backing store and
4115 * so no GTT access or the architecture is fully
4116 * coherent. In such cases, existing GTT mmaps
4117 * ignore the cache bit in the PTE and we can
4118 * rewrite it without confusing the GPU or having
4119 * to force userspace to fault back in its mmaps.
4120 */
e4ffd173
CW
4121 }
4122
1c7f4bca 4123 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4124 if (!drm_mm_node_allocated(&vma->node))
4125 continue;
4126
4127 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4128 if (ret)
4129 return ret;
4130 }
e4ffd173
CW
4131 }
4132
1c7f4bca 4133 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 4134 vma->node.color = cache_level;
b8f55be6 4135 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4136 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 4137
e4ffd173
CW
4138 return 0;
4139}
4140
199adf40
BW
4141int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4142 struct drm_file *file)
e6994aee 4143{
199adf40 4144 struct drm_i915_gem_caching *args = data;
e6994aee 4145 struct drm_i915_gem_object *obj;
fbbd37b3 4146 int err = 0;
e6994aee 4147
fbbd37b3
CW
4148 rcu_read_lock();
4149 obj = i915_gem_object_lookup_rcu(file, args->handle);
4150 if (!obj) {
4151 err = -ENOENT;
4152 goto out;
4153 }
e6994aee 4154
651d794f
CW
4155 switch (obj->cache_level) {
4156 case I915_CACHE_LLC:
4157 case I915_CACHE_L3_LLC:
4158 args->caching = I915_CACHING_CACHED;
4159 break;
4160
4257d3ba
CW
4161 case I915_CACHE_WT:
4162 args->caching = I915_CACHING_DISPLAY;
4163 break;
4164
651d794f
CW
4165 default:
4166 args->caching = I915_CACHING_NONE;
4167 break;
4168 }
fbbd37b3
CW
4169out:
4170 rcu_read_unlock();
4171 return err;
e6994aee
CW
4172}
4173
199adf40
BW
4174int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4175 struct drm_file *file)
e6994aee 4176{
9c870d03 4177 struct drm_i915_private *i915 = to_i915(dev);
199adf40 4178 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4179 struct drm_i915_gem_object *obj;
4180 enum i915_cache_level level;
d65415df 4181 int ret = 0;
e6994aee 4182
199adf40
BW
4183 switch (args->caching) {
4184 case I915_CACHING_NONE:
e6994aee
CW
4185 level = I915_CACHE_NONE;
4186 break;
199adf40 4187 case I915_CACHING_CACHED:
e5756c10
ID
4188 /*
4189 * Due to a HW issue on BXT A stepping, GPU stores via a
4190 * snooped mapping may leave stale data in a corresponding CPU
4191 * cacheline, whereas normally such cachelines would get
4192 * invalidated.
4193 */
9c870d03 4194 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
4195 return -ENODEV;
4196
e6994aee
CW
4197 level = I915_CACHE_LLC;
4198 break;
4257d3ba 4199 case I915_CACHING_DISPLAY:
9c870d03 4200 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 4201 break;
e6994aee
CW
4202 default:
4203 return -EINVAL;
4204 }
4205
d65415df
CW
4206 obj = i915_gem_object_lookup(file, args->handle);
4207 if (!obj)
4208 return -ENOENT;
4209
a03f395a
TZ
4210 /*
4211 * The caching mode of proxy object is handled by its generator, and
4212 * not allowed to be changed by userspace.
4213 */
4214 if (i915_gem_object_is_proxy(obj)) {
4215 ret = -ENXIO;
4216 goto out;
4217 }
4218
d65415df
CW
4219 if (obj->cache_level == level)
4220 goto out;
4221
4222 ret = i915_gem_object_wait(obj,
4223 I915_WAIT_INTERRUPTIBLE,
4224 MAX_SCHEDULE_TIMEOUT,
4225 to_rps_client(file));
3bc2913e 4226 if (ret)
d65415df 4227 goto out;
3bc2913e 4228
d65415df
CW
4229 ret = i915_mutex_lock_interruptible(dev);
4230 if (ret)
4231 goto out;
e6994aee
CW
4232
4233 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 4234 mutex_unlock(&dev->struct_mutex);
d65415df
CW
4235
4236out:
4237 i915_gem_object_put(obj);
e6994aee
CW
4238 return ret;
4239}
4240
b9241ea3 4241/*
07bcd99b
DP
4242 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4243 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4244 * (for pageflips). We only flush the caches while preparing the buffer for
4245 * display, the callers are responsible for frontbuffer flush.
b9241ea3 4246 */
058d88c4 4247struct i915_vma *
2da3b9b9
CW
4248i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4249 u32 alignment,
5935485f
CW
4250 const struct i915_ggtt_view *view,
4251 unsigned int flags)
b9241ea3 4252{
058d88c4 4253 struct i915_vma *vma;
b9241ea3
ZW
4254 int ret;
4255
4c7d62c6
CW
4256 lockdep_assert_held(&obj->base.dev->struct_mutex);
4257
bd3d2252 4258 /* Mark the global pin early so that we account for the
cc98b413
CW
4259 * display coherency whilst setting up the cache domains.
4260 */
bd3d2252 4261 obj->pin_global++;
cc98b413 4262
a7ef0640
EA
4263 /* The display engine is not coherent with the LLC cache on gen6. As
4264 * a result, we make sure that the pinning that is about to occur is
4265 * done with uncached PTEs. This is lowest common denominator for all
4266 * chipsets.
4267 *
4268 * However for gen6+, we could do better by using the GFDT bit instead
4269 * of uncaching, which would allow us to flush all the LLC-cached data
4270 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4271 */
651d794f 4272 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
4273 HAS_WT(to_i915(obj->base.dev)) ?
4274 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
4275 if (ret) {
4276 vma = ERR_PTR(ret);
bd3d2252 4277 goto err_unpin_global;
058d88c4 4278 }
a7ef0640 4279
2da3b9b9
CW
4280 /* As the user may map the buffer once pinned in the display plane
4281 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
4282 * always use map_and_fenceable for all scanout buffers. However,
4283 * it may simply be too big to fit into mappable, in which case
4284 * put it anyway and hope that userspace can cope (but always first
4285 * try to preserve the existing ABI).
2da3b9b9 4286 */
2efb813d 4287 vma = ERR_PTR(-ENOSPC);
5935485f
CW
4288 if ((flags & PIN_MAPPABLE) == 0 &&
4289 (!view || view->type == I915_GGTT_VIEW_NORMAL))
2efb813d 4290 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
5935485f
CW
4291 flags |
4292 PIN_MAPPABLE |
4293 PIN_NONBLOCK);
4294 if (IS_ERR(vma))
767a222e 4295 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
058d88c4 4296 if (IS_ERR(vma))
bd3d2252 4297 goto err_unpin_global;
2da3b9b9 4298
d8923dcf
CW
4299 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4300
5a97bcc6 4301 __i915_gem_object_flush_for_display(obj);
b118c1e3 4302
2da3b9b9
CW
4303 /* It should now be out of any other write domains, and we can update
4304 * the domain values for our changes.
4305 */
c0a51fd0 4306 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 4307
058d88c4 4308 return vma;
cc98b413 4309
bd3d2252
CW
4310err_unpin_global:
4311 obj->pin_global--;
058d88c4 4312 return vma;
cc98b413
CW
4313}
4314
4315void
058d88c4 4316i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 4317{
49d73912 4318 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 4319
bd3d2252 4320 if (WARN_ON(vma->obj->pin_global == 0))
8a0c39b1
TU
4321 return;
4322
bd3d2252 4323 if (--vma->obj->pin_global == 0)
f51455d4 4324 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 4325
383d5823 4326 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 4327 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 4328
058d88c4 4329 i915_vma_unpin(vma);
b9241ea3
ZW
4330}
4331
e47c68e9
EA
4332/**
4333 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
4334 * @obj: object to act on
4335 * @write: requesting write or read-only access
e47c68e9
EA
4336 *
4337 * This function returns when the move is complete, including waiting on
4338 * flushes to occur.
4339 */
dabdfe02 4340int
919926ae 4341i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4342{
e47c68e9
EA
4343 int ret;
4344
e95433c7 4345 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 4346
e95433c7
CW
4347 ret = i915_gem_object_wait(obj,
4348 I915_WAIT_INTERRUPTIBLE |
4349 I915_WAIT_LOCKED |
4350 (write ? I915_WAIT_ALL : 0),
4351 MAX_SCHEDULE_TIMEOUT,
4352 NULL);
88241785
CW
4353 if (ret)
4354 return ret;
4355
ef74921b 4356 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 4357
e47c68e9 4358 /* Flush the CPU cache if it's still invalid. */
c0a51fd0 4359 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 4360 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
c0a51fd0 4361 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4362 }
4363
4364 /* It should now be out of any other write domains, and we can update
4365 * the domain values for our changes.
4366 */
c0a51fd0 4367 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
4368
4369 /* If we're writing through the CPU, then the GPU read domains will
4370 * need to be invalidated at next use.
4371 */
e27ab73d
CW
4372 if (write)
4373 __start_cpu_write(obj);
2ef7eeaa
EA
4374
4375 return 0;
4376}
4377
673a394b
EA
4378/* Throttle our rendering by waiting until the ring has completed our requests
4379 * emitted over 20 msec ago.
4380 *
b962442e
EA
4381 * Note that if we were to use the current jiffies each time around the loop,
4382 * we wouldn't escape the function with any frames outstanding if the time to
4383 * render a frame was over 20ms.
4384 *
673a394b
EA
4385 * This should get us reasonable parallelism between CPU and GPU but also
4386 * relatively low latency when blocking on a particular request to finish.
4387 */
40a5f0de 4388static int
f787a5f5 4389i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4390{
fac5e23e 4391 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4392 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4393 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
e61e0f51 4394 struct i915_request *request, *target = NULL;
e95433c7 4395 long ret;
93533c29 4396
f4457ae7
CW
4397 /* ABI: return -EIO if already wedged */
4398 if (i915_terminally_wedged(&dev_priv->gpu_error))
4399 return -EIO;
e110e8d6 4400
1c25595f 4401 spin_lock(&file_priv->mm.lock);
c8659efa 4402 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
4403 if (time_after_eq(request->emitted_jiffies, recent_enough))
4404 break;
40a5f0de 4405
c8659efa
CW
4406 if (target) {
4407 list_del(&target->client_link);
4408 target->file_priv = NULL;
4409 }
fcfa423c 4410
54fb2411 4411 target = request;
b962442e 4412 }
ff865885 4413 if (target)
e61e0f51 4414 i915_request_get(target);
1c25595f 4415 spin_unlock(&file_priv->mm.lock);
40a5f0de 4416
54fb2411 4417 if (target == NULL)
f787a5f5 4418 return 0;
2bc43b5c 4419
e61e0f51 4420 ret = i915_request_wait(target,
e95433c7
CW
4421 I915_WAIT_INTERRUPTIBLE,
4422 MAX_SCHEDULE_TIMEOUT);
e61e0f51 4423 i915_request_put(target);
ff865885 4424
e95433c7 4425 return ret < 0 ? ret : 0;
40a5f0de
EA
4426}
4427
058d88c4 4428struct i915_vma *
ec7adb6e
JL
4429i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4430 const struct i915_ggtt_view *view,
91b2db6f 4431 u64 size,
2ffffd0f
CW
4432 u64 alignment,
4433 u64 flags)
ec7adb6e 4434{
ad16d2ed 4435 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
82ad6443 4436 struct i915_address_space *vm = &dev_priv->ggtt.vm;
59bfa124
CW
4437 struct i915_vma *vma;
4438 int ret;
72e96d64 4439
4c7d62c6
CW
4440 lockdep_assert_held(&obj->base.dev->struct_mutex);
4441
ac87a6fd
CW
4442 if (flags & PIN_MAPPABLE &&
4443 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
43ae70d9
CW
4444 /* If the required space is larger than the available
4445 * aperture, we will not able to find a slot for the
4446 * object and unbinding the object now will be in
4447 * vain. Worse, doing so may cause us to ping-pong
4448 * the object in and out of the Global GTT and
4449 * waste a lot of cycles under the mutex.
4450 */
4451 if (obj->base.size > dev_priv->ggtt.mappable_end)
4452 return ERR_PTR(-E2BIG);
4453
4454 /* If NONBLOCK is set the caller is optimistically
4455 * trying to cache the full object within the mappable
4456 * aperture, and *must* have a fallback in place for
4457 * situations where we cannot bind the object. We
4458 * can be a little more lax here and use the fallback
4459 * more often to avoid costly migrations of ourselves
4460 * and other objects within the aperture.
4461 *
4462 * Half-the-aperture is used as a simple heuristic.
4463 * More interesting would to do search for a free
4464 * block prior to making the commitment to unbind.
4465 * That caters for the self-harm case, and with a
4466 * little more heuristics (e.g. NOFAULT, NOEVICT)
4467 * we could try to minimise harm to others.
4468 */
4469 if (flags & PIN_NONBLOCK &&
4470 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4471 return ERR_PTR(-ENOSPC);
4472 }
4473
718659a6 4474 vma = i915_vma_instance(obj, vm, view);
e0216b76 4475 if (unlikely(IS_ERR(vma)))
058d88c4 4476 return vma;
59bfa124
CW
4477
4478 if (i915_vma_misplaced(vma, size, alignment, flags)) {
43ae70d9
CW
4479 if (flags & PIN_NONBLOCK) {
4480 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4481 return ERR_PTR(-ENOSPC);
59bfa124 4482
43ae70d9 4483 if (flags & PIN_MAPPABLE &&
944397f0 4484 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4485 return ERR_PTR(-ENOSPC);
4486 }
4487
59bfa124
CW
4488 WARN(i915_vma_is_pinned(vma),
4489 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4490 " offset=%08x, req.alignment=%llx,"
4491 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4492 i915_ggtt_offset(vma), alignment,
59bfa124 4493 !!(flags & PIN_MAPPABLE),
05a20d09 4494 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4495 ret = i915_vma_unbind(vma);
4496 if (ret)
058d88c4 4497 return ERR_PTR(ret);
59bfa124
CW
4498 }
4499
058d88c4
CW
4500 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4501 if (ret)
4502 return ERR_PTR(ret);
ec7adb6e 4503
058d88c4 4504 return vma;
673a394b
EA
4505}
4506
edf6b76f 4507static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4508{
4509 /* Note that we could alias engines in the execbuf API, but
4510 * that would be very unwise as it prevents userspace from
4511 * fine control over engine selection. Ahem.
4512 *
4513 * This should be something like EXEC_MAX_ENGINE instead of
4514 * I915_NUM_ENGINES.
4515 */
4516 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4517 return 0x10000 << id;
4518}
4519
4520static __always_inline unsigned int __busy_write_id(unsigned int id)
4521{
70cb472c
CW
4522 /* The uABI guarantees an active writer is also amongst the read
4523 * engines. This would be true if we accessed the activity tracking
4524 * under the lock, but as we perform the lookup of the object and
4525 * its activity locklessly we can not guarantee that the last_write
4526 * being active implies that we have set the same engine flag from
4527 * last_read - hence we always set both read and write busy for
4528 * last_write.
4529 */
4530 return id | __busy_read_flag(id);
3fdc13c7
CW
4531}
4532
edf6b76f 4533static __always_inline unsigned int
d07f0e59 4534__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4535 unsigned int (*flag)(unsigned int id))
4536{
e61e0f51 4537 struct i915_request *rq;
3fdc13c7 4538
d07f0e59
CW
4539 /* We have to check the current hw status of the fence as the uABI
4540 * guarantees forward progress. We could rely on the idle worker
4541 * to eventually flush us, but to minimise latency just ask the
4542 * hardware.
1255501d 4543 *
d07f0e59 4544 * Note we only report on the status of native fences.
1255501d 4545 */
d07f0e59
CW
4546 if (!dma_fence_is_i915(fence))
4547 return 0;
4548
4549 /* opencode to_request() in order to avoid const warnings */
e61e0f51
CW
4550 rq = container_of(fence, struct i915_request, fence);
4551 if (i915_request_completed(rq))
d07f0e59
CW
4552 return 0;
4553
1d39f281 4554 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4555}
4556
edf6b76f 4557static __always_inline unsigned int
d07f0e59 4558busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4559{
d07f0e59 4560 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4561}
4562
edf6b76f 4563static __always_inline unsigned int
d07f0e59 4564busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4565{
d07f0e59
CW
4566 if (!fence)
4567 return 0;
4568
4569 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4570}
4571
673a394b
EA
4572int
4573i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4574 struct drm_file *file)
673a394b
EA
4575{
4576 struct drm_i915_gem_busy *args = data;
05394f39 4577 struct drm_i915_gem_object *obj;
d07f0e59
CW
4578 struct reservation_object_list *list;
4579 unsigned int seq;
fbbd37b3 4580 int err;
673a394b 4581
d07f0e59 4582 err = -ENOENT;
fbbd37b3
CW
4583 rcu_read_lock();
4584 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4585 if (!obj)
fbbd37b3 4586 goto out;
d1b851fc 4587
d07f0e59
CW
4588 /* A discrepancy here is that we do not report the status of
4589 * non-i915 fences, i.e. even though we may report the object as idle,
4590 * a call to set-domain may still stall waiting for foreign rendering.
4591 * This also means that wait-ioctl may report an object as busy,
4592 * where busy-ioctl considers it idle.
4593 *
4594 * We trade the ability to warn of foreign fences to report on which
4595 * i915 engines are active for the object.
4596 *
4597 * Alternatively, we can trade that extra information on read/write
4598 * activity with
4599 * args->busy =
4600 * !reservation_object_test_signaled_rcu(obj->resv, true);
4601 * to report the overall busyness. This is what the wait-ioctl does.
4602 *
4603 */
4604retry:
4605 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4606
d07f0e59
CW
4607 /* Translate the exclusive fence to the READ *and* WRITE engine */
4608 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4609
d07f0e59
CW
4610 /* Translate shared fences to READ set of engines */
4611 list = rcu_dereference(obj->resv->fence);
4612 if (list) {
4613 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4614
d07f0e59
CW
4615 for (i = 0; i < shared_count; ++i) {
4616 struct dma_fence *fence =
4617 rcu_dereference(list->shared[i]);
4618
4619 args->busy |= busy_check_reader(fence);
4620 }
426960be 4621 }
673a394b 4622
d07f0e59
CW
4623 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4624 goto retry;
4625
4626 err = 0;
fbbd37b3
CW
4627out:
4628 rcu_read_unlock();
4629 return err;
673a394b
EA
4630}
4631
4632int
4633i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4634 struct drm_file *file_priv)
4635{
0206e353 4636 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4637}
4638
3ef94daa
CW
4639int
4640i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4641 struct drm_file *file_priv)
4642{
fac5e23e 4643 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4644 struct drm_i915_gem_madvise *args = data;
05394f39 4645 struct drm_i915_gem_object *obj;
1233e2db 4646 int err;
3ef94daa
CW
4647
4648 switch (args->madv) {
4649 case I915_MADV_DONTNEED:
4650 case I915_MADV_WILLNEED:
4651 break;
4652 default:
4653 return -EINVAL;
4654 }
4655
03ac0642 4656 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4657 if (!obj)
4658 return -ENOENT;
4659
4660 err = mutex_lock_interruptible(&obj->mm.lock);
4661 if (err)
4662 goto out;
3ef94daa 4663
f1fa4f44 4664 if (i915_gem_object_has_pages(obj) &&
3e510a8e 4665 i915_gem_object_is_tiled(obj) &&
656bfa3a 4666 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4667 if (obj->mm.madv == I915_MADV_WILLNEED) {
4668 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4669 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4670 obj->mm.quirked = false;
4671 }
4672 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4673 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4674 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4675 obj->mm.quirked = true;
4676 }
656bfa3a
DV
4677 }
4678
a4f5ea64
CW
4679 if (obj->mm.madv != __I915_MADV_PURGED)
4680 obj->mm.madv = args->madv;
3ef94daa 4681
6c085a72 4682 /* if the object is no longer attached, discard its backing storage */
f1fa4f44
CW
4683 if (obj->mm.madv == I915_MADV_DONTNEED &&
4684 !i915_gem_object_has_pages(obj))
2d7ef395
CW
4685 i915_gem_object_truncate(obj);
4686
a4f5ea64 4687 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4688 mutex_unlock(&obj->mm.lock);
bb6baf76 4689
1233e2db 4690out:
f8c417cd 4691 i915_gem_object_put(obj);
1233e2db 4692 return err;
3ef94daa
CW
4693}
4694
5b8c8aec 4695static void
e61e0f51 4696frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
5b8c8aec
CW
4697{
4698 struct drm_i915_gem_object *obj =
4699 container_of(active, typeof(*obj), frontbuffer_write);
4700
d59b21ec 4701 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4702}
4703
37e680a1
CW
4704void i915_gem_object_init(struct drm_i915_gem_object *obj,
4705 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4706{
1233e2db
CW
4707 mutex_init(&obj->mm.lock);
4708
2f633156 4709 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4710 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4711 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4712
37e680a1
CW
4713 obj->ops = ops;
4714
d07f0e59
CW
4715 reservation_object_init(&obj->__builtin_resv);
4716 obj->resv = &obj->__builtin_resv;
4717
50349247 4718 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4719 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4720
4721 obj->mm.madv = I915_MADV_WILLNEED;
4722 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4723 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4724
f19ec8cb 4725 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4726}
4727
37e680a1 4728static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4729 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4730 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4731
37e680a1
CW
4732 .get_pages = i915_gem_object_get_pages_gtt,
4733 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4734
4735 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4736};
4737
465c403c
MA
4738static int i915_gem_object_create_shmem(struct drm_device *dev,
4739 struct drm_gem_object *obj,
4740 size_t size)
4741{
4742 struct drm_i915_private *i915 = to_i915(dev);
4743 unsigned long flags = VM_NORESERVE;
4744 struct file *filp;
4745
4746 drm_gem_private_object_init(dev, obj, size);
4747
4748 if (i915->mm.gemfs)
4749 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4750 flags);
4751 else
4752 filp = shmem_file_setup("i915", size, flags);
4753
4754 if (IS_ERR(filp))
4755 return PTR_ERR(filp);
4756
4757 obj->filp = filp;
4758
4759 return 0;
4760}
4761
b4bcbe2a 4762struct drm_i915_gem_object *
12d79d78 4763i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4764{
c397b908 4765 struct drm_i915_gem_object *obj;
5949eac4 4766 struct address_space *mapping;
b8f55be6 4767 unsigned int cache_level;
1a240d4d 4768 gfp_t mask;
fe3db79b 4769 int ret;
ac52bc56 4770
b4bcbe2a
CW
4771 /* There is a prevalence of the assumption that we fit the object's
4772 * page count inside a 32bit _signed_ variable. Let's document this and
4773 * catch if we ever need to fix it. In the meantime, if you do spot
4774 * such a local variable, please consider fixing!
4775 */
7a3ee5de 4776 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4777 return ERR_PTR(-E2BIG);
4778
4779 if (overflows_type(size, obj->base.size))
4780 return ERR_PTR(-E2BIG);
4781
187685cb 4782 obj = i915_gem_object_alloc(dev_priv);
c397b908 4783 if (obj == NULL)
fe3db79b 4784 return ERR_PTR(-ENOMEM);
673a394b 4785
465c403c 4786 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4787 if (ret)
4788 goto fail;
673a394b 4789
bed1ea95 4790 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4791 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4792 /* 965gm cannot relocate objects above 4GiB. */
4793 mask &= ~__GFP_HIGHMEM;
4794 mask |= __GFP_DMA32;
4795 }
4796
93c76a3d 4797 mapping = obj->base.filp->f_mapping;
bed1ea95 4798 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4799 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4800
37e680a1 4801 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4802
c0a51fd0
CK
4803 obj->write_domain = I915_GEM_DOMAIN_CPU;
4804 obj->read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4805
b8f55be6 4806 if (HAS_LLC(dev_priv))
3d29b842 4807 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4808 * cache) for about a 10% performance improvement
4809 * compared to uncached. Graphics requests other than
4810 * display scanout are coherent with the CPU in
4811 * accessing this cache. This means in this mode we
4812 * don't need to clflush on the CPU side, and on the
4813 * GPU side we only need to flush internal caches to
4814 * get data visible to the CPU.
4815 *
4816 * However, we maintain the display planes as UC, and so
4817 * need to rebind when first used as such.
4818 */
b8f55be6
CW
4819 cache_level = I915_CACHE_LLC;
4820 else
4821 cache_level = I915_CACHE_NONE;
a1871112 4822
b8f55be6 4823 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4824
d861e338
DV
4825 trace_i915_gem_object_create(obj);
4826
05394f39 4827 return obj;
fe3db79b
CW
4828
4829fail:
4830 i915_gem_object_free(obj);
fe3db79b 4831 return ERR_PTR(ret);
c397b908
DV
4832}
4833
340fbd8c
CW
4834static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4835{
4836 /* If we are the last user of the backing storage (be it shmemfs
4837 * pages or stolen etc), we know that the pages are going to be
4838 * immediately released. In this case, we can then skip copying
4839 * back the contents from the GPU.
4840 */
4841
a4f5ea64 4842 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4843 return false;
4844
4845 if (obj->base.filp == NULL)
4846 return true;
4847
4848 /* At first glance, this looks racy, but then again so would be
4849 * userspace racing mmap against close. However, the first external
4850 * reference to the filp can only be obtained through the
4851 * i915_gem_mmap_ioctl() which safeguards us against the user
4852 * acquiring such a reference whilst we are in the middle of
4853 * freeing the object.
4854 */
4855 return atomic_long_read(&obj->base.filp->f_count) == 1;
4856}
4857
fbbd37b3
CW
4858static void __i915_gem_free_objects(struct drm_i915_private *i915,
4859 struct llist_node *freed)
673a394b 4860{
fbbd37b3 4861 struct drm_i915_gem_object *obj, *on;
673a394b 4862
fbbd37b3 4863 intel_runtime_pm_get(i915);
cc731f5a 4864 llist_for_each_entry_safe(obj, on, freed, freed) {
fbbd37b3
CW
4865 struct i915_vma *vma, *vn;
4866
4867 trace_i915_gem_object_destroy(obj);
4868
cc731f5a
CW
4869 mutex_lock(&i915->drm.struct_mutex);
4870
fbbd37b3
CW
4871 GEM_BUG_ON(i915_gem_object_is_active(obj));
4872 list_for_each_entry_safe(vma, vn,
4873 &obj->vma_list, obj_link) {
fbbd37b3
CW
4874 GEM_BUG_ON(i915_vma_is_active(vma));
4875 vma->flags &= ~I915_VMA_PIN_MASK;
3365e226 4876 i915_vma_destroy(vma);
fbbd37b3 4877 }
db6c2b41
CW
4878 GEM_BUG_ON(!list_empty(&obj->vma_list));
4879 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4880
f2123818
CW
4881 /* This serializes freeing with the shrinker. Since the free
4882 * is delayed, first by RCU then by the workqueue, we want the
4883 * shrinker to be able to free pages of unreferenced objects,
4884 * or else we may oom whilst there are plenty of deferred
4885 * freed objects.
4886 */
4887 if (i915_gem_object_has_pages(obj)) {
4888 spin_lock(&i915->mm.obj_lock);
4889 list_del_init(&obj->mm.link);
4890 spin_unlock(&i915->mm.obj_lock);
4891 }
4892
cc731f5a 4893 mutex_unlock(&i915->drm.struct_mutex);
fbbd37b3 4894
fbbd37b3 4895 GEM_BUG_ON(obj->bind_count);
a65adaf8 4896 GEM_BUG_ON(obj->userfault_count);
fbbd37b3 4897 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
67b48040 4898 GEM_BUG_ON(!list_empty(&obj->lut_list));
fbbd37b3
CW
4899
4900 if (obj->ops->release)
4901 obj->ops->release(obj);
f65c9168 4902
fbbd37b3
CW
4903 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4904 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4905 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
f1fa4f44 4906 GEM_BUG_ON(i915_gem_object_has_pages(obj));
fbbd37b3
CW
4907
4908 if (obj->base.import_attach)
4909 drm_prime_gem_destroy(&obj->base, NULL);
4910
d07f0e59 4911 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4912 drm_gem_object_release(&obj->base);
4913 i915_gem_info_remove_obj(i915, obj->base.size);
4914
4915 kfree(obj->bit_17);
4916 i915_gem_object_free(obj);
cc731f5a 4917
c9c70471
CW
4918 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4919 atomic_dec(&i915->mm.free_count);
4920
cc731f5a
CW
4921 if (on)
4922 cond_resched();
fbbd37b3 4923 }
cc731f5a 4924 intel_runtime_pm_put(i915);
fbbd37b3
CW
4925}
4926
4927static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4928{
4929 struct llist_node *freed;
4930
87701b4b
CW
4931 /* Free the oldest, most stale object to keep the free_list short */
4932 freed = NULL;
4933 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4934 /* Only one consumer of llist_del_first() allowed */
4935 spin_lock(&i915->mm.free_lock);
4936 freed = llist_del_first(&i915->mm.free_list);
4937 spin_unlock(&i915->mm.free_lock);
4938 }
4939 if (unlikely(freed)) {
4940 freed->next = NULL;
fbbd37b3 4941 __i915_gem_free_objects(i915, freed);
87701b4b 4942 }
fbbd37b3
CW
4943}
4944
4945static void __i915_gem_free_work(struct work_struct *work)
4946{
4947 struct drm_i915_private *i915 =
4948 container_of(work, struct drm_i915_private, mm.free_work);
4949 struct llist_node *freed;
26e12f89 4950
2ef1e729
CW
4951 /*
4952 * All file-owned VMA should have been released by this point through
b1f788c6
CW
4953 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4954 * However, the object may also be bound into the global GTT (e.g.
4955 * older GPUs without per-process support, or for direct access through
4956 * the GTT either for the user or for scanout). Those VMA still need to
4957 * unbound now.
4958 */
1488fc08 4959
f991c492 4960 spin_lock(&i915->mm.free_lock);
5ad08be7 4961 while ((freed = llist_del_all(&i915->mm.free_list))) {
f991c492
CW
4962 spin_unlock(&i915->mm.free_lock);
4963
fbbd37b3 4964 __i915_gem_free_objects(i915, freed);
5ad08be7 4965 if (need_resched())
f991c492
CW
4966 return;
4967
4968 spin_lock(&i915->mm.free_lock);
5ad08be7 4969 }
f991c492 4970 spin_unlock(&i915->mm.free_lock);
fbbd37b3 4971}
a071fa00 4972
fbbd37b3
CW
4973static void __i915_gem_free_object_rcu(struct rcu_head *head)
4974{
4975 struct drm_i915_gem_object *obj =
4976 container_of(head, typeof(*obj), rcu);
4977 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4978
2ef1e729
CW
4979 /*
4980 * Since we require blocking on struct_mutex to unbind the freed
4981 * object from the GPU before releasing resources back to the
4982 * system, we can not do that directly from the RCU callback (which may
4983 * be a softirq context), but must instead then defer that work onto a
4984 * kthread. We use the RCU callback rather than move the freed object
4985 * directly onto the work queue so that we can mix between using the
4986 * worker and performing frees directly from subsequent allocations for
4987 * crude but effective memory throttling.
fbbd37b3
CW
4988 */
4989 if (llist_add(&obj->freed, &i915->mm.free_list))
beacbd16 4990 queue_work(i915->wq, &i915->mm.free_work);
fbbd37b3 4991}
656bfa3a 4992
fbbd37b3
CW
4993void i915_gem_free_object(struct drm_gem_object *gem_obj)
4994{
4995 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4996
bc0629a7
CW
4997 if (obj->mm.quirked)
4998 __i915_gem_object_unpin_pages(obj);
4999
340fbd8c 5000 if (discard_backing_storage(obj))
a4f5ea64 5001 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 5002
2ef1e729
CW
5003 /*
5004 * Before we free the object, make sure any pure RCU-only
fbbd37b3
CW
5005 * read-side critical sections are complete, e.g.
5006 * i915_gem_busy_ioctl(). For the corresponding synchronized
5007 * lookup see i915_gem_object_lookup_rcu().
5008 */
c9c70471 5009 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
fbbd37b3 5010 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
5011}
5012
f8a7fde4
CW
5013void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5014{
5015 lockdep_assert_held(&obj->base.dev->struct_mutex);
5016
d1b48c1e
CW
5017 if (!i915_gem_object_has_active_reference(obj) &&
5018 i915_gem_object_is_active(obj))
f8a7fde4
CW
5019 i915_gem_object_set_active_reference(obj);
5020 else
5021 i915_gem_object_put(obj);
5022}
5023
24145517
CW
5024void i915_gem_sanitize(struct drm_i915_private *i915)
5025{
4fdd5b4e 5026 int err;
c3160da9
CW
5027
5028 GEM_TRACE("\n");
5029
4dfacb0b 5030 mutex_lock(&i915->drm.struct_mutex);
c3160da9
CW
5031
5032 intel_runtime_pm_get(i915);
5033 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5034
5035 /*
5036 * As we have just resumed the machine and woken the device up from
5037 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5038 * back to defaults, recovering from whatever wedged state we left it
5039 * in and so worth trying to use the device once more.
5040 */
4dfacb0b 5041 if (i915_terminally_wedged(&i915->gpu_error))
f36325f3 5042 i915_gem_unset_wedged(i915);
f36325f3 5043
24145517
CW
5044 /*
5045 * If we inherit context state from the BIOS or earlier occupants
5046 * of the GPU, the GPU may be in an inconsistent state when we
5047 * try to take over. The only way to remove the earlier state
5048 * is by resetting. However, resetting on earlier gen is tricky as
5049 * it may impact the display and we are uncertain about the stability
ea117b8d 5050 * of the reset, so this could be applied to even earlier gen.
24145517 5051 */
4fdd5b4e 5052 err = -ENODEV;
ce1599a4 5053 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4fdd5b4e
CW
5054 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5055 if (!err)
5056 intel_engines_sanitize(i915);
c3160da9
CW
5057
5058 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5059 intel_runtime_pm_put(i915);
5060
4dfacb0b
CW
5061 i915_gem_contexts_lost(i915);
5062 mutex_unlock(&i915->drm.struct_mutex);
24145517
CW
5063}
5064
bf06112f 5065int i915_gem_suspend(struct drm_i915_private *i915)
29105ccc 5066{
dcff85c8 5067 int ret;
28dfe52a 5068
09a4c02e
CW
5069 GEM_TRACE("\n");
5070
bf06112f
CW
5071 intel_runtime_pm_get(i915);
5072 intel_suspend_gt_powersave(i915);
54b4f68f 5073
bf06112f 5074 mutex_lock(&i915->drm.struct_mutex);
5ab57c70 5075
bf06112f
CW
5076 /*
5077 * We have to flush all the executing contexts to main memory so
5ab57c70
CW
5078 * that they can saved in the hibernation image. To ensure the last
5079 * context image is coherent, we have to switch away from it. That
bf06112f 5080 * leaves the i915->kernel_context still active when
5ab57c70
CW
5081 * we actually suspend, and its image in memory may not match the GPU
5082 * state. Fortunately, the kernel_context is disposable and we do
5083 * not rely on its state.
5084 */
bf06112f
CW
5085 if (!i915_terminally_wedged(&i915->gpu_error)) {
5086 ret = i915_gem_switch_to_kernel_context(i915);
ecf73eb2
CW
5087 if (ret)
5088 goto err_unlock;
5ab57c70 5089
bf06112f 5090 ret = i915_gem_wait_for_idle(i915,
ecf73eb2 5091 I915_WAIT_INTERRUPTIBLE |
0606035f 5092 I915_WAIT_LOCKED |
ec625fb9
CW
5093 I915_WAIT_FOR_IDLE_BOOST,
5094 MAX_SCHEDULE_TIMEOUT);
ecf73eb2
CW
5095 if (ret && ret != -EIO)
5096 goto err_unlock;
f7403347 5097
bf06112f 5098 assert_kernel_context_is_current(i915);
ecf73eb2 5099 }
01f8f33e
CW
5100 i915_retire_requests(i915); /* ensure we flush after wedging */
5101
bf06112f 5102 mutex_unlock(&i915->drm.struct_mutex);
45c5f202 5103
bf06112f 5104 intel_uc_suspend(i915);
63987bfe 5105
bf06112f
CW
5106 cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5107 cancel_delayed_work_sync(&i915->gt.retire_work);
bdeb9785 5108
bf06112f
CW
5109 /*
5110 * As the idle_work is rearming if it detects a race, play safe and
bdeb9785
CW
5111 * repeat the flush until it is definitely idle.
5112 */
bf06112f 5113 drain_delayed_work(&i915->gt.idle_work);
bdeb9785 5114
bf06112f
CW
5115 /*
5116 * Assert that we successfully flushed all the work and
bdcf120b
CW
5117 * reset the GPU back to its idle, low power state.
5118 */
bf06112f
CW
5119 WARN_ON(i915->gt.awake);
5120 if (WARN_ON(!intel_engines_are_idle(i915)))
5121 i915_gem_set_wedged(i915); /* no hope, discard everything */
bdcf120b 5122
bf06112f 5123 intel_runtime_pm_put(i915);
ec92ad00
CW
5124 return 0;
5125
5126err_unlock:
bf06112f
CW
5127 mutex_unlock(&i915->drm.struct_mutex);
5128 intel_runtime_pm_put(i915);
ec92ad00
CW
5129 return ret;
5130}
5131
5132void i915_gem_suspend_late(struct drm_i915_private *i915)
5133{
9776f472
CW
5134 struct drm_i915_gem_object *obj;
5135 struct list_head *phases[] = {
5136 &i915->mm.unbound_list,
5137 &i915->mm.bound_list,
5138 NULL
5139 }, **phase;
5140
1c777c5d
ID
5141 /*
5142 * Neither the BIOS, ourselves or any other kernel
5143 * expects the system to be in execlists mode on startup,
5144 * so we need to reset the GPU back to legacy mode. And the only
5145 * known way to disable logical contexts is through a GPU reset.
5146 *
5147 * So in order to leave the system in a known default configuration,
5148 * always reset the GPU upon unload and suspend. Afterwards we then
5149 * clean up the GEM state tracking, flushing off the requests and
5150 * leaving the system in a known idle state.
5151 *
5152 * Note that is of the upmost importance that the GPU is idle and
5153 * all stray writes are flushed *before* we dismantle the backing
5154 * storage for the pinned objects.
5155 *
5156 * However, since we are uncertain that resetting the GPU on older
5157 * machines is a good idea, we don't - just in case it leaves the
5158 * machine in an unusable condition.
5159 */
1c777c5d 5160
9776f472
CW
5161 mutex_lock(&i915->drm.struct_mutex);
5162 for (phase = phases; *phase; phase++) {
5163 list_for_each_entry(obj, *phase, mm.link)
5164 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5165 }
5166 mutex_unlock(&i915->drm.struct_mutex);
5167
ec92ad00
CW
5168 intel_uc_sanitize(i915);
5169 i915_gem_sanitize(i915);
673a394b
EA
5170}
5171
37cd3300 5172void i915_gem_resume(struct drm_i915_private *i915)
5ab57c70 5173{
4dfacb0b
CW
5174 GEM_TRACE("\n");
5175
37cd3300 5176 WARN_ON(i915->gt.awake);
5ab57c70 5177
37cd3300
CW
5178 mutex_lock(&i915->drm.struct_mutex);
5179 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
31ab49ab 5180
37cd3300
CW
5181 i915_gem_restore_gtt_mappings(i915);
5182 i915_gem_restore_fences(i915);
5ab57c70 5183
6ca9a2be
CW
5184 /*
5185 * As we didn't flush the kernel context before suspend, we cannot
5ab57c70
CW
5186 * guarantee that the context image is complete. So let's just reset
5187 * it and start again.
5188 */
37cd3300 5189 i915->gt.resume(i915);
5ab57c70 5190
37cd3300
CW
5191 if (i915_gem_init_hw(i915))
5192 goto err_wedged;
5193
7cfca4af 5194 intel_uc_resume(i915);
7469c62c 5195
37cd3300
CW
5196 /* Always reload a context for powersaving. */
5197 if (i915_gem_switch_to_kernel_context(i915))
5198 goto err_wedged;
5199
5200out_unlock:
5201 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5202 mutex_unlock(&i915->drm.struct_mutex);
5203 return;
5204
5205err_wedged:
6ca9a2be
CW
5206 if (!i915_terminally_wedged(&i915->gpu_error)) {
5207 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5208 i915_gem_set_wedged(i915);
5209 }
37cd3300 5210 goto out_unlock;
5ab57c70
CW
5211}
5212
c6be607a 5213void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 5214{
c6be607a 5215 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
5216 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5217 return;
5218
5219 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5220 DISP_TILE_SURFACE_SWIZZLING);
5221
5db94019 5222 if (IS_GEN5(dev_priv))
11782b02
DV
5223 return;
5224
f691e2f4 5225 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 5226 if (IS_GEN6(dev_priv))
6b26c86d 5227 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 5228 else if (IS_GEN7(dev_priv))
6b26c86d 5229 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 5230 else if (IS_GEN8(dev_priv))
31a5336e 5231 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
5232 else
5233 BUG();
f691e2f4 5234}
e21af88d 5235
50a0bc90 5236static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 5237{
81e7f200
VS
5238 I915_WRITE(RING_CTL(base), 0);
5239 I915_WRITE(RING_HEAD(base), 0);
5240 I915_WRITE(RING_TAIL(base), 0);
5241 I915_WRITE(RING_START(base), 0);
5242}
5243
50a0bc90 5244static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 5245{
50a0bc90
TU
5246 if (IS_I830(dev_priv)) {
5247 init_unused_ring(dev_priv, PRB1_BASE);
5248 init_unused_ring(dev_priv, SRB0_BASE);
5249 init_unused_ring(dev_priv, SRB1_BASE);
5250 init_unused_ring(dev_priv, SRB2_BASE);
5251 init_unused_ring(dev_priv, SRB3_BASE);
5252 } else if (IS_GEN2(dev_priv)) {
5253 init_unused_ring(dev_priv, SRB0_BASE);
5254 init_unused_ring(dev_priv, SRB1_BASE);
5255 } else if (IS_GEN3(dev_priv)) {
5256 init_unused_ring(dev_priv, PRB1_BASE);
5257 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
5258 }
5259}
5260
20a8a74a 5261static int __i915_gem_restart_engines(void *data)
4fc7c971 5262{
20a8a74a 5263 struct drm_i915_private *i915 = data;
e2f80391 5264 struct intel_engine_cs *engine;
3b3f1650 5265 enum intel_engine_id id;
20a8a74a
CW
5266 int err;
5267
5268 for_each_engine(engine, i915, id) {
5269 err = engine->init_hw(engine);
8177e112
CW
5270 if (err) {
5271 DRM_ERROR("Failed to restart %s (%d)\n",
5272 engine->name, err);
20a8a74a 5273 return err;
8177e112 5274 }
20a8a74a
CW
5275 }
5276
5277 return 0;
5278}
5279
5280int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5281{
d200cda6 5282 int ret;
4fc7c971 5283
de867c20
CW
5284 dev_priv->gt.last_init_time = ktime_get();
5285
5e4f5189
CW
5286 /* Double layer security blanket, see i915_gem_init() */
5287 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5288
0031fb96 5289 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 5290 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5291
772c2a51 5292 if (IS_HASWELL(dev_priv))
50a0bc90 5293 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 5294 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5295
6e266956 5296 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 5297 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
5298 u32 temp = I915_READ(GEN7_MSG_CTL);
5299 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5300 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 5301 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
5302 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5303 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5304 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5305 }
88a2b2a3
BW
5306 }
5307
00936779 5308 intel_gt_apply_workarounds(dev_priv);
59b449d5 5309
c6be607a 5310 i915_gem_init_swizzling(dev_priv);
4fc7c971 5311
d5abdfda
DV
5312 /*
5313 * At least 830 can leave some of the unused rings
5314 * "active" (ie. head != tail) after resume which
5315 * will prevent c3 entry. Makes sure all unused rings
5316 * are totally idle.
5317 */
50a0bc90 5318 init_unused_rings(dev_priv);
d5abdfda 5319
ed54c1a1 5320 BUG_ON(!dev_priv->kernel_context);
6f74b36b
CW
5321 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5322 ret = -EIO;
5323 goto out;
5324 }
90638cc1 5325
c6be607a 5326 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88 5327 if (ret) {
8177e112 5328 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4ad2fd88
JH
5329 goto out;
5330 }
5331
f08e2035
JL
5332 ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5333 if (ret) {
5334 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5335 goto out;
5336 }
5337
9bdc3573
MW
5338 /* We can't enable contexts until all firmware is loaded */
5339 ret = intel_uc_init_hw(dev_priv);
8177e112
CW
5340 if (ret) {
5341 DRM_ERROR("Enabling uc failed (%d)\n", ret);
9bdc3573 5342 goto out;
8177e112 5343 }
9bdc3573 5344
bf9e8429 5345 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 5346
136109c6
CW
5347 /* Only when the HW is re-initialised, can we replay the requests */
5348 ret = __i915_gem_restart_engines(dev_priv);
b96f6ebf
MW
5349 if (ret)
5350 goto cleanup_uc;
60c0a66e 5351
5e4f5189 5352 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60c0a66e
MW
5353
5354 return 0;
b96f6ebf
MW
5355
5356cleanup_uc:
5357 intel_uc_fini_hw(dev_priv);
60c0a66e
MW
5358out:
5359 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5360
5361 return ret;
8187a2b7
ZN
5362}
5363
d2b4b979
CW
5364static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5365{
5366 struct i915_gem_context *ctx;
5367 struct intel_engine_cs *engine;
5368 enum intel_engine_id id;
5369 int err;
5370
5371 /*
5372 * As we reset the gpu during very early sanitisation, the current
5373 * register state on the GPU should reflect its defaults values.
5374 * We load a context onto the hw (with restore-inhibit), then switch
5375 * over to a second context to save that default register state. We
5376 * can then prime every new context with that state so they all start
5377 * from the same default HW values.
5378 */
5379
5380 ctx = i915_gem_context_create_kernel(i915, 0);
5381 if (IS_ERR(ctx))
5382 return PTR_ERR(ctx);
5383
5384 for_each_engine(engine, i915, id) {
e61e0f51 5385 struct i915_request *rq;
d2b4b979 5386
e61e0f51 5387 rq = i915_request_alloc(engine, ctx);
d2b4b979
CW
5388 if (IS_ERR(rq)) {
5389 err = PTR_ERR(rq);
5390 goto out_ctx;
5391 }
5392
3fef5cda 5393 err = 0;
d2b4b979
CW
5394 if (engine->init_context)
5395 err = engine->init_context(rq);
5396
697b9a87 5397 i915_request_add(rq);
d2b4b979
CW
5398 if (err)
5399 goto err_active;
5400 }
5401
5402 err = i915_gem_switch_to_kernel_context(i915);
5403 if (err)
5404 goto err_active;
5405
2621cefa
CW
5406 if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5407 i915_gem_set_wedged(i915);
5408 err = -EIO; /* Caller will declare us wedged */
d2b4b979 5409 goto err_active;
2621cefa 5410 }
d2b4b979
CW
5411
5412 assert_kernel_context_is_current(i915);
5413
8e1cb32d
CW
5414 /*
5415 * Immediately park the GPU so that we enable powersaving and
5416 * treat it as idle. The next time we issue a request, we will
5417 * unpark and start using the engine->pinned_default_state, otherwise
5418 * it is in limbo and an early reset may fail.
5419 */
5420 __i915_gem_park(i915);
5421
d2b4b979
CW
5422 for_each_engine(engine, i915, id) {
5423 struct i915_vma *state;
37d7c9cc 5424 void *vaddr;
d2b4b979 5425
666424ab 5426 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
d2b4b979 5427
ab82a063 5428 state = to_intel_context(ctx, engine)->state;
d2b4b979
CW
5429 if (!state)
5430 continue;
5431
5432 /*
5433 * As we will hold a reference to the logical state, it will
5434 * not be torn down with the context, and importantly the
5435 * object will hold onto its vma (making it possible for a
5436 * stray GTT write to corrupt our defaults). Unmap the vma
5437 * from the GTT to prevent such accidents and reclaim the
5438 * space.
5439 */
5440 err = i915_vma_unbind(state);
5441 if (err)
5442 goto err_active;
5443
5444 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5445 if (err)
5446 goto err_active;
5447
5448 engine->default_state = i915_gem_object_get(state->obj);
37d7c9cc
CW
5449
5450 /* Check we can acquire the image of the context state */
5451 vaddr = i915_gem_object_pin_map(engine->default_state,
666424ab 5452 I915_MAP_FORCE_WB);
37d7c9cc
CW
5453 if (IS_ERR(vaddr)) {
5454 err = PTR_ERR(vaddr);
5455 goto err_active;
5456 }
5457
5458 i915_gem_object_unpin_map(engine->default_state);
d2b4b979
CW
5459 }
5460
5461 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5462 unsigned int found = intel_engines_has_context_isolation(i915);
5463
5464 /*
5465 * Make sure that classes with multiple engine instances all
5466 * share the same basic configuration.
5467 */
5468 for_each_engine(engine, i915, id) {
5469 unsigned int bit = BIT(engine->uabi_class);
5470 unsigned int expected = engine->default_state ? bit : 0;
5471
5472 if ((found & bit) != expected) {
5473 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5474 engine->uabi_class, engine->name);
5475 }
5476 }
5477 }
5478
5479out_ctx:
5480 i915_gem_context_set_closed(ctx);
5481 i915_gem_context_put(ctx);
5482 return err;
5483
5484err_active:
5485 /*
5486 * If we have to abandon now, we expect the engines to be idle
5487 * and ready to be torn-down. First try to flush any remaining
5488 * request, ensure we are pointing at the kernel context and
5489 * then remove it.
5490 */
5491 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5492 goto out_ctx;
5493
ec625fb9
CW
5494 if (WARN_ON(i915_gem_wait_for_idle(i915,
5495 I915_WAIT_LOCKED,
5496 MAX_SCHEDULE_TIMEOUT)))
d2b4b979
CW
5497 goto out_ctx;
5498
5499 i915_gem_contexts_lost(i915);
5500 goto out_ctx;
5501}
5502
fe78742d
CW
5503static int
5504i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5505{
5506 struct drm_i915_gem_object *obj;
5507 struct i915_vma *vma;
5508 int ret;
5509
5510 obj = i915_gem_object_create_stolen(i915, size);
5511 if (!obj)
5512 obj = i915_gem_object_create_internal(i915, size);
5513 if (IS_ERR(obj)) {
5514 DRM_ERROR("Failed to allocate scratch page\n");
5515 return PTR_ERR(obj);
5516 }
5517
5518 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5519 if (IS_ERR(vma)) {
5520 ret = PTR_ERR(vma);
5521 goto err_unref;
5522 }
5523
5524 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5525 if (ret)
5526 goto err_unref;
5527
5528 i915->gt.scratch = vma;
5529 return 0;
5530
5531err_unref:
5532 i915_gem_object_put(obj);
5533 return ret;
5534}
5535
5536static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5537{
5538 i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5539}
5540
bf9e8429 5541int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 5542{
1070a42b
CW
5543 int ret;
5544
52b2416c
CD
5545 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5546 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
da9fe3f3
MA
5547 mkwrite_device_info(dev_priv)->page_sizes =
5548 I915_GTT_PAGE_SIZE_4K;
5549
94312828 5550 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 5551
fb5c551a 5552 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
821ed7df 5553 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 5554 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
fb5c551a
CW
5555 } else {
5556 dev_priv->gt.resume = intel_legacy_submission_resume;
5557 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
a83014d3
OM
5558 }
5559
ee48700d
CW
5560 ret = i915_gem_init_userptr(dev_priv);
5561 if (ret)
5562 return ret;
5563
f7dc0157 5564 ret = intel_uc_init_misc(dev_priv);
6b0478fb
JL
5565 if (ret)
5566 return ret;
5567
f7dc0157 5568 ret = intel_wopcm_init(&dev_priv->wopcm);
3176ff49 5569 if (ret)
f7dc0157 5570 goto err_uc_misc;
3176ff49 5571
5e4f5189
CW
5572 /* This is just a security blanket to placate dragons.
5573 * On some systems, we very sporadically observe that the first TLBs
5574 * used by the CS may be stale, despite us poking the TLB reset. If
5575 * we hold the forcewake during initialisation these problems
5576 * just magically go away.
5577 */
ee48700d 5578 mutex_lock(&dev_priv->drm.struct_mutex);
5e4f5189
CW
5579 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5580
f6b9d5ca 5581 ret = i915_gem_init_ggtt(dev_priv);
6ca9a2be
CW
5582 if (ret) {
5583 GEM_BUG_ON(ret == -EIO);
5584 goto err_unlock;
5585 }
d62b4892 5586
fe78742d
CW
5587 ret = i915_gem_init_scratch(dev_priv,
5588 IS_GEN2(dev_priv) ? SZ_256K : PAGE_SIZE);
6ca9a2be
CW
5589 if (ret) {
5590 GEM_BUG_ON(ret == -EIO);
5591 goto err_ggtt;
5592 }
2fa48d8d 5593
fe78742d
CW
5594 ret = i915_gem_contexts_init(dev_priv);
5595 if (ret) {
5596 GEM_BUG_ON(ret == -EIO);
5597 goto err_scratch;
5598 }
5599
bf9e8429 5600 ret = intel_engines_init(dev_priv);
6ca9a2be
CW
5601 if (ret) {
5602 GEM_BUG_ON(ret == -EIO);
5603 goto err_context;
5604 }
2fa48d8d 5605
f58d13d5
CW
5606 intel_init_gt_powersave(dev_priv);
5607
61b5c158 5608 ret = intel_uc_init(dev_priv);
cc6a818a 5609 if (ret)
6ca9a2be 5610 goto err_pm;
cc6a818a 5611
61b5c158
MW
5612 ret = i915_gem_init_hw(dev_priv);
5613 if (ret)
5614 goto err_uc_init;
5615
cc6a818a
CW
5616 /*
5617 * Despite its name intel_init_clock_gating applies both display
5618 * clock gating workarounds; GT mmio workarounds and the occasional
5619 * GT power context workaround. Worse, sometimes it includes a context
5620 * register workaround which we need to apply before we record the
5621 * default HW state for all contexts.
5622 *
5623 * FIXME: break up the workarounds and apply them at the right time!
5624 */
5625 intel_init_clock_gating(dev_priv);
5626
d2b4b979 5627 ret = __intel_engines_record_defaults(dev_priv);
6ca9a2be
CW
5628 if (ret)
5629 goto err_init_hw;
5630
5631 if (i915_inject_load_failure()) {
5632 ret = -ENODEV;
5633 goto err_init_hw;
5634 }
5635
5636 if (i915_inject_load_failure()) {
5637 ret = -EIO;
5638 goto err_init_hw;
5639 }
5640
5641 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5642 mutex_unlock(&dev_priv->drm.struct_mutex);
5643
5644 return 0;
5645
5646 /*
5647 * Unwinding is complicated by that we want to handle -EIO to mean
5648 * disable GPU submission but keep KMS alive. We want to mark the
5649 * HW as irrevisibly wedged, but keep enough state around that the
5650 * driver doesn't explode during runtime.
5651 */
5652err_init_hw:
8571a05a
CW
5653 mutex_unlock(&dev_priv->drm.struct_mutex);
5654
5655 WARN_ON(i915_gem_suspend(dev_priv));
5656 i915_gem_suspend_late(dev_priv);
5657
8bcf9f70
CW
5658 i915_gem_drain_workqueue(dev_priv);
5659
8571a05a 5660 mutex_lock(&dev_priv->drm.struct_mutex);
6ca9a2be 5661 intel_uc_fini_hw(dev_priv);
61b5c158
MW
5662err_uc_init:
5663 intel_uc_fini(dev_priv);
6ca9a2be
CW
5664err_pm:
5665 if (ret != -EIO) {
5666 intel_cleanup_gt_powersave(dev_priv);
5667 i915_gem_cleanup_engines(dev_priv);
5668 }
5669err_context:
5670 if (ret != -EIO)
5671 i915_gem_contexts_fini(dev_priv);
fe78742d
CW
5672err_scratch:
5673 i915_gem_fini_scratch(dev_priv);
6ca9a2be
CW
5674err_ggtt:
5675err_unlock:
5676 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5677 mutex_unlock(&dev_priv->drm.struct_mutex);
5678
f7dc0157 5679err_uc_misc:
70deeadd 5680 intel_uc_fini_misc(dev_priv);
da943b5a 5681
6ca9a2be
CW
5682 if (ret != -EIO)
5683 i915_gem_cleanup_userptr(dev_priv);
5684
60990320 5685 if (ret == -EIO) {
7ed43df7
CW
5686 mutex_lock(&dev_priv->drm.struct_mutex);
5687
6ca9a2be
CW
5688 /*
5689 * Allow engine initialisation to fail by marking the GPU as
60990320
CW
5690 * wedged. But we only want to do this where the GPU is angry,
5691 * for all other failure, such as an allocation failure, bail.
5692 */
6f74b36b 5693 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
51c18bf7
CW
5694 i915_load_error(dev_priv,
5695 "Failed to initialize GPU, declaring it wedged!\n");
6f74b36b
CW
5696 i915_gem_set_wedged(dev_priv);
5697 }
7ed43df7
CW
5698
5699 /* Minimal basic recovery for KMS */
5700 ret = i915_ggtt_enable_hw(dev_priv);
5701 i915_gem_restore_gtt_mappings(dev_priv);
5702 i915_gem_restore_fences(dev_priv);
5703 intel_init_clock_gating(dev_priv);
5704
5705 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b
CW
5706 }
5707
6ca9a2be 5708 i915_gem_drain_freed_objects(dev_priv);
60990320 5709 return ret;
1070a42b
CW
5710}
5711
8979187a
MW
5712void i915_gem_fini(struct drm_i915_private *dev_priv)
5713{
5714 i915_gem_suspend_late(dev_priv);
30b71084 5715 intel_disable_gt_powersave(dev_priv);
8979187a
MW
5716
5717 /* Flush any outstanding unpin_work. */
5718 i915_gem_drain_workqueue(dev_priv);
5719
5720 mutex_lock(&dev_priv->drm.struct_mutex);
5721 intel_uc_fini_hw(dev_priv);
5722 intel_uc_fini(dev_priv);
5723 i915_gem_cleanup_engines(dev_priv);
5724 i915_gem_contexts_fini(dev_priv);
fe78742d 5725 i915_gem_fini_scratch(dev_priv);
8979187a
MW
5726 mutex_unlock(&dev_priv->drm.struct_mutex);
5727
00936779
TU
5728 intel_wa_list_free(&dev_priv->gt_wa_list);
5729
30b71084
CW
5730 intel_cleanup_gt_powersave(dev_priv);
5731
8979187a
MW
5732 intel_uc_fini_misc(dev_priv);
5733 i915_gem_cleanup_userptr(dev_priv);
5734
5735 i915_gem_drain_freed_objects(dev_priv);
5736
5737 WARN_ON(!list_empty(&dev_priv->contexts.list));
5738}
5739
24145517
CW
5740void i915_gem_init_mmio(struct drm_i915_private *i915)
5741{
5742 i915_gem_sanitize(i915);
5743}
5744
8187a2b7 5745void
cb15d9f8 5746i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 5747{
e2f80391 5748 struct intel_engine_cs *engine;
3b3f1650 5749 enum intel_engine_id id;
8187a2b7 5750
3b3f1650 5751 for_each_engine(engine, dev_priv, id)
117897f4 5752 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
5753}
5754
40ae4e16
ID
5755void
5756i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5757{
49ef5294 5758 int i;
40ae4e16 5759
c56b89f1 5760 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
40ae4e16
ID
5761 !IS_CHERRYVIEW(dev_priv))
5762 dev_priv->num_fence_regs = 32;
c56b89f1 5763 else if (INTEL_GEN(dev_priv) >= 4 ||
73f67aa8
JN
5764 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5765 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
5766 dev_priv->num_fence_regs = 16;
5767 else
5768 dev_priv->num_fence_regs = 8;
5769
c033666a 5770 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5771 dev_priv->num_fence_regs =
5772 I915_READ(vgtif_reg(avail_rs.fence_num));
5773
5774 /* Initialize fence registers to zero */
49ef5294
CW
5775 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5776 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5777
5778 fence->i915 = dev_priv;
5779 fence->id = i;
5780 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5781 }
4362f4f6 5782 i915_gem_restore_fences(dev_priv);
40ae4e16 5783
4362f4f6 5784 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
5785}
5786
9c52d1c8
CW
5787static void i915_gem_init__mm(struct drm_i915_private *i915)
5788{
5789 spin_lock_init(&i915->mm.object_stat_lock);
5790 spin_lock_init(&i915->mm.obj_lock);
5791 spin_lock_init(&i915->mm.free_lock);
5792
5793 init_llist_head(&i915->mm.free_list);
5794
5795 INIT_LIST_HEAD(&i915->mm.unbound_list);
5796 INIT_LIST_HEAD(&i915->mm.bound_list);
5797 INIT_LIST_HEAD(&i915->mm.fence_list);
5798 INIT_LIST_HEAD(&i915->mm.userfault_list);
5799
5800 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5801}
5802
a0de908d 5803int i915_gem_init_early(struct drm_i915_private *dev_priv)
673a394b 5804{
a933568e 5805 int err = -ENOMEM;
42dcedd4 5806
a933568e
TU
5807 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5808 if (!dev_priv->objects)
73cb9701 5809 goto err_out;
73cb9701 5810
a933568e
TU
5811 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5812 if (!dev_priv->vmas)
73cb9701 5813 goto err_objects;
73cb9701 5814
d1b48c1e
CW
5815 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5816 if (!dev_priv->luts)
5817 goto err_vmas;
5818
e61e0f51 5819 dev_priv->requests = KMEM_CACHE(i915_request,
a933568e
TU
5820 SLAB_HWCACHE_ALIGN |
5821 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 5822 SLAB_TYPESAFE_BY_RCU);
a933568e 5823 if (!dev_priv->requests)
d1b48c1e 5824 goto err_luts;
73cb9701 5825
52e54209
CW
5826 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5827 SLAB_HWCACHE_ALIGN |
5828 SLAB_RECLAIM_ACCOUNT);
5829 if (!dev_priv->dependencies)
5830 goto err_requests;
5831
c5cf9a91
CW
5832 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5833 if (!dev_priv->priorities)
5834 goto err_dependencies;
5835
73cb9701 5836 INIT_LIST_HEAD(&dev_priv->gt.timelines);
643b450a 5837 INIT_LIST_HEAD(&dev_priv->gt.active_rings);
3365e226 5838 INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
643b450a 5839
9c52d1c8 5840 i915_gem_init__mm(dev_priv);
f2123818 5841
67d97da3 5842 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5843 i915_gem_retire_work_handler);
67d97da3 5844 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5845 i915_gem_idle_work_handler);
1f15b76f 5846 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5847 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5848
6f633402
JL
5849 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5850
b5add959 5851 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701 5852
465c403c
MA
5853 err = i915_gemfs_init(dev_priv);
5854 if (err)
5855 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5856
73cb9701
CW
5857 return 0;
5858
52e54209
CW
5859err_dependencies:
5860 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
5861err_requests:
5862 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
5863err_luts:
5864 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
5865err_vmas:
5866 kmem_cache_destroy(dev_priv->vmas);
5867err_objects:
5868 kmem_cache_destroy(dev_priv->objects);
5869err_out:
5870 return err;
673a394b 5871}
71acb5eb 5872
a0de908d 5873void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
d64aa096 5874{
c4d4c1c6 5875 i915_gem_drain_freed_objects(dev_priv);
c9c70471
CW
5876 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5877 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
c4d4c1c6 5878 WARN_ON(dev_priv->mm.object_count);
ea84aa77 5879 WARN_ON(!list_empty(&dev_priv->gt.timelines));
ea84aa77 5880
c5cf9a91 5881 kmem_cache_destroy(dev_priv->priorities);
52e54209 5882 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 5883 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 5884 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
5885 kmem_cache_destroy(dev_priv->vmas);
5886 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
5887
5888 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5889 rcu_barrier();
465c403c
MA
5890
5891 i915_gemfs_fini(dev_priv);
d64aa096
ID
5892}
5893
6a800eab
CW
5894int i915_gem_freeze(struct drm_i915_private *dev_priv)
5895{
d0aa301a
CW
5896 /* Discard all purgeable objects, let userspace recover those as
5897 * required after resuming.
5898 */
6a800eab 5899 i915_gem_shrink_all(dev_priv);
6a800eab 5900
6a800eab
CW
5901 return 0;
5902}
5903
95c778da 5904int i915_gem_freeze_late(struct drm_i915_private *i915)
461fb99c
CW
5905{
5906 struct drm_i915_gem_object *obj;
7aab2d53 5907 struct list_head *phases[] = {
95c778da
CW
5908 &i915->mm.unbound_list,
5909 &i915->mm.bound_list,
7aab2d53 5910 NULL
95c778da 5911 }, **phase;
461fb99c 5912
95c778da
CW
5913 /*
5914 * Called just before we write the hibernation image.
461fb99c
CW
5915 *
5916 * We need to update the domain tracking to reflect that the CPU
5917 * will be accessing all the pages to create and restore from the
5918 * hibernation, and so upon restoration those pages will be in the
5919 * CPU domain.
5920 *
5921 * To make sure the hibernation image contains the latest state,
5922 * we update that state just before writing out the image.
7aab2d53
CW
5923 *
5924 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5925 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5926 */
5927
95c778da
CW
5928 i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5929 i915_gem_drain_freed_objects(i915);
461fb99c 5930
95c778da
CW
5931 mutex_lock(&i915->drm.struct_mutex);
5932 for (phase = phases; *phase; phase++) {
5933 list_for_each_entry(obj, *phase, mm.link)
5934 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
461fb99c 5935 }
95c778da 5936 mutex_unlock(&i915->drm.struct_mutex);
461fb99c
CW
5937
5938 return 0;
5939}
5940
f787a5f5 5941void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5942{
f787a5f5 5943 struct drm_i915_file_private *file_priv = file->driver_priv;
e61e0f51 5944 struct i915_request *request;
b962442e
EA
5945
5946 /* Clean up our request list when the client is going away, so that
5947 * later retire_requests won't dereference our soon-to-be-gone
5948 * file_priv.
5949 */
1c25595f 5950 spin_lock(&file_priv->mm.lock);
c8659efa 5951 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5952 request->file_priv = NULL;
1c25595f 5953 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5954}
5955
829a0af2 5956int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5957{
5958 struct drm_i915_file_private *file_priv;
e422b888 5959 int ret;
b29c19b6 5960
c4c29d7b 5961 DRM_DEBUG("\n");
b29c19b6
CW
5962
5963 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5964 if (!file_priv)
5965 return -ENOMEM;
5966
5967 file->driver_priv = file_priv;
829a0af2 5968 file_priv->dev_priv = i915;
ab0e7ff9 5969 file_priv->file = file;
b29c19b6
CW
5970
5971 spin_lock_init(&file_priv->mm.lock);
5972 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5973
c80ff16e 5974 file_priv->bsd_engine = -1;
14921f3c 5975 file_priv->hang_timestamp = jiffies;
de1add36 5976
829a0af2 5977 ret = i915_gem_context_open(i915, file);
e422b888
BW
5978 if (ret)
5979 kfree(file_priv);
b29c19b6 5980
e422b888 5981 return ret;
b29c19b6
CW
5982}
5983
b680c37a
DV
5984/**
5985 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5986 * @old: current GEM buffer for the frontbuffer slots
5987 * @new: new GEM buffer for the frontbuffer slots
5988 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5989 *
5990 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5991 * from @old and setting them in @new. Both @old and @new can be NULL.
5992 */
a071fa00
DV
5993void i915_gem_track_fb(struct drm_i915_gem_object *old,
5994 struct drm_i915_gem_object *new,
5995 unsigned frontbuffer_bits)
5996{
faf5bf0a
CW
5997 /* Control of individual bits within the mask are guarded by
5998 * the owning plane->mutex, i.e. we can never see concurrent
5999 * manipulation of individual bits. But since the bitfield as a whole
6000 * is updated using RMW, we need to use atomics in order to update
6001 * the bits.
6002 */
6003 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
6004 sizeof(atomic_t) * BITS_PER_BYTE);
6005
a071fa00 6006 if (old) {
faf5bf0a
CW
6007 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6008 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
6009 }
6010
6011 if (new) {
faf5bf0a
CW
6012 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6013 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
6014 }
6015}
6016
ea70299d
DG
6017/* Allocate a new GEM object and fill it with the supplied data */
6018struct drm_i915_gem_object *
12d79d78 6019i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
6020 const void *data, size_t size)
6021{
6022 struct drm_i915_gem_object *obj;
be062fa4
CW
6023 struct file *file;
6024 size_t offset;
6025 int err;
ea70299d 6026
12d79d78 6027 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 6028 if (IS_ERR(obj))
ea70299d
DG
6029 return obj;
6030
c0a51fd0 6031 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 6032
be062fa4
CW
6033 file = obj->base.filp;
6034 offset = 0;
6035 do {
6036 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6037 struct page *page;
6038 void *pgdata, *vaddr;
ea70299d 6039
be062fa4
CW
6040 err = pagecache_write_begin(file, file->f_mapping,
6041 offset, len, 0,
6042 &page, &pgdata);
6043 if (err < 0)
6044 goto fail;
ea70299d 6045
be062fa4
CW
6046 vaddr = kmap(page);
6047 memcpy(vaddr, data, len);
6048 kunmap(page);
6049
6050 err = pagecache_write_end(file, file->f_mapping,
6051 offset, len, len,
6052 page, pgdata);
6053 if (err < 0)
6054 goto fail;
6055
6056 size -= len;
6057 data += len;
6058 offset += len;
6059 } while (size);
ea70299d
DG
6060
6061 return obj;
6062
6063fail:
f8c417cd 6064 i915_gem_object_put(obj);
be062fa4 6065 return ERR_PTR(err);
ea70299d 6066}
96d77634
CW
6067
6068struct scatterlist *
6069i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6070 unsigned int n,
6071 unsigned int *offset)
6072{
a4f5ea64 6073 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
6074 struct scatterlist *sg;
6075 unsigned int idx, count;
6076
6077 might_sleep();
6078 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 6079 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
6080
6081 /* As we iterate forward through the sg, we record each entry in a
6082 * radixtree for quick repeated (backwards) lookups. If we have seen
6083 * this index previously, we will have an entry for it.
6084 *
6085 * Initial lookup is O(N), but this is amortized to O(1) for
6086 * sequential page access (where each new request is consecutive
6087 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6088 * i.e. O(1) with a large constant!
6089 */
6090 if (n < READ_ONCE(iter->sg_idx))
6091 goto lookup;
6092
6093 mutex_lock(&iter->lock);
6094
6095 /* We prefer to reuse the last sg so that repeated lookup of this
6096 * (or the subsequent) sg are fast - comparing against the last
6097 * sg is faster than going through the radixtree.
6098 */
6099
6100 sg = iter->sg_pos;
6101 idx = iter->sg_idx;
6102 count = __sg_page_count(sg);
6103
6104 while (idx + count <= n) {
3159f943
MW
6105 void *entry;
6106 unsigned long i;
96d77634
CW
6107 int ret;
6108
6109 /* If we cannot allocate and insert this entry, or the
6110 * individual pages from this range, cancel updating the
6111 * sg_idx so that on this lookup we are forced to linearly
6112 * scan onwards, but on future lookups we will try the
6113 * insertion again (in which case we need to be careful of
6114 * the error return reporting that we have already inserted
6115 * this index).
6116 */
6117 ret = radix_tree_insert(&iter->radix, idx, sg);
6118 if (ret && ret != -EEXIST)
6119 goto scan;
6120
3159f943 6121 entry = xa_mk_value(idx);
96d77634 6122 for (i = 1; i < count; i++) {
3159f943 6123 ret = radix_tree_insert(&iter->radix, idx + i, entry);
96d77634
CW
6124 if (ret && ret != -EEXIST)
6125 goto scan;
6126 }
6127
6128 idx += count;
6129 sg = ____sg_next(sg);
6130 count = __sg_page_count(sg);
6131 }
6132
6133scan:
6134 iter->sg_pos = sg;
6135 iter->sg_idx = idx;
6136
6137 mutex_unlock(&iter->lock);
6138
6139 if (unlikely(n < idx)) /* insertion completed by another thread */
6140 goto lookup;
6141
6142 /* In case we failed to insert the entry into the radixtree, we need
6143 * to look beyond the current sg.
6144 */
6145 while (idx + count <= n) {
6146 idx += count;
6147 sg = ____sg_next(sg);
6148 count = __sg_page_count(sg);
6149 }
6150
6151 *offset = n - idx;
6152 return sg;
6153
6154lookup:
6155 rcu_read_lock();
6156
6157 sg = radix_tree_lookup(&iter->radix, n);
6158 GEM_BUG_ON(!sg);
6159
6160 /* If this index is in the middle of multi-page sg entry,
3159f943 6161 * the radix tree will contain a value entry that points
96d77634
CW
6162 * to the start of that range. We will return the pointer to
6163 * the base page and the offset of this page within the
6164 * sg entry's range.
6165 */
6166 *offset = 0;
3159f943
MW
6167 if (unlikely(xa_is_value(sg))) {
6168 unsigned long base = xa_to_value(sg);
96d77634
CW
6169
6170 sg = radix_tree_lookup(&iter->radix, base);
6171 GEM_BUG_ON(!sg);
6172
6173 *offset = n - base;
6174 }
6175
6176 rcu_read_unlock();
6177
6178 return sg;
6179}
6180
6181struct page *
6182i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6183{
6184 struct scatterlist *sg;
6185 unsigned int offset;
6186
6187 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6188
6189 sg = i915_gem_object_get_sg(obj, n, &offset);
6190 return nth_page(sg_page(sg), offset);
6191}
6192
6193/* Like i915_gem_object_get_page(), but mark the returned page dirty */
6194struct page *
6195i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6196 unsigned int n)
6197{
6198 struct page *page;
6199
6200 page = i915_gem_object_get_page(obj, n);
a4f5ea64 6201 if (!obj->mm.dirty)
96d77634
CW
6202 set_page_dirty(page);
6203
6204 return page;
6205}
6206
6207dma_addr_t
6208i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6209 unsigned long n)
6210{
6211 struct scatterlist *sg;
6212 unsigned int offset;
6213
6214 sg = i915_gem_object_get_sg(obj, n, &offset);
6215 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6216}
935a2f77 6217
8eeb7906
CW
6218int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6219{
6220 struct sg_table *pages;
6221 int err;
6222
6223 if (align > obj->base.size)
6224 return -EINVAL;
6225
6226 if (obj->ops == &i915_gem_phys_ops)
6227 return 0;
6228
6229 if (obj->ops != &i915_gem_object_ops)
6230 return -EINVAL;
6231
6232 err = i915_gem_object_unbind(obj);
6233 if (err)
6234 return err;
6235
6236 mutex_lock(&obj->mm.lock);
6237
6238 if (obj->mm.madv != I915_MADV_WILLNEED) {
6239 err = -EFAULT;
6240 goto err_unlock;
6241 }
6242
6243 if (obj->mm.quirked) {
6244 err = -EFAULT;
6245 goto err_unlock;
6246 }
6247
6248 if (obj->mm.mapping) {
6249 err = -EBUSY;
6250 goto err_unlock;
6251 }
6252
acd1c1e6 6253 pages = __i915_gem_object_unset_pages(obj);
f2123818 6254
8eeb7906
CW
6255 obj->ops = &i915_gem_phys_ops;
6256
8fb6a5df 6257 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
6258 if (err)
6259 goto err_xfer;
6260
6261 /* Perma-pin (until release) the physical set of pages */
6262 __i915_gem_object_pin_pages(obj);
6263
6264 if (!IS_ERR_OR_NULL(pages))
6265 i915_gem_object_ops.put_pages(obj, pages);
6266 mutex_unlock(&obj->mm.lock);
6267 return 0;
6268
6269err_xfer:
6270 obj->ops = &i915_gem_object_ops;
acd1c1e6
CW
6271 if (!IS_ERR_OR_NULL(pages)) {
6272 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6273
6274 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6275 }
8eeb7906
CW
6276err_unlock:
6277 mutex_unlock(&obj->mm.lock);
6278 return err;
6279}
6280
935a2f77
CW
6281#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6282#include "selftests/scatterlist.c"
66d9cb5d 6283#include "selftests/mock_gem_device.c"
44653988 6284#include "selftests/huge_gem_object.c"
4049866f 6285#include "selftests/huge_pages.c"
8335fd65 6286#include "selftests/i915_gem_object.c"
17059450 6287#include "selftests/i915_gem_coherency.c"
3f51b7e1 6288#include "selftests/i915_gem.c"
935a2f77 6289#endif