]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/mfd/db8500-prcmu.c
Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
0376148f 1// SPDX-License-Identifier: GPL-2.0-only
e3726fcf 2/*
adef9cf5
PG
3 * DB8500 PRCM Unit driver
4 *
e0befb23
MP
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
e3726fcf 7 *
e0befb23
MP
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11 *
e0befb23 12 * U8500 PRCM Unit interface driver
e3726fcf 13 */
adef9cf5
PG
14#include <linux/init.h>
15#include <linux/export.h>
3df57bcf
MN
16#include <linux/kernel.h>
17#include <linux/delay.h>
e3726fcf
LW
18#include <linux/errno.h>
19#include <linux/err.h>
3df57bcf 20#include <linux/spinlock.h>
e3726fcf 21#include <linux/io.h>
3df57bcf 22#include <linux/slab.h>
e3726fcf
LW
23#include <linux/mutex.h>
24#include <linux/completion.h>
3df57bcf 25#include <linux/irq.h>
e3726fcf
LW
26#include <linux/jiffies.h>
27#include <linux/bitops.h>
3df57bcf 28#include <linux/fs.h>
d98a5384 29#include <linux/of.h>
f864c46a 30#include <linux/of_irq.h>
3df57bcf
MN
31#include <linux/platform_device.h>
32#include <linux/uaccess.h>
33#include <linux/mfd/core.h>
73180f85 34#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 35#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
36#include <linux/regulator/db8500-prcmu.h>
37#include <linux/regulator/machine.h>
b3aac62b 38#include <linux/platform_data/ux500_wdt.h>
55b175d7 39#include <linux/platform_data/db8500_thermal.h>
73180f85 40#include "dbx500-prcmu-regs.h"
3df57bcf 41
3df57bcf
MN
42/* Index of different voltages to be used when accessing AVSData */
43#define PRCM_AVS_BASE 0x2FC
44#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
45#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
46#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
47#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
48#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
49#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
50#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
51#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
52#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
53#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
54#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
55#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
56#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57
58#define PRCM_AVS_VOLTAGE 0
59#define PRCM_AVS_VOLTAGE_MASK 0x3f
60#define PRCM_AVS_ISSLOWSTARTUP 6
61#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
62#define PRCM_AVS_ISMODEENABLE 7
63#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64
65#define PRCM_BOOT_STATUS 0xFFF
66#define PRCM_ROMCODE_A2P 0xFFE
67#define PRCM_ROMCODE_P2A 0xFFD
68#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69
70#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
73#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
74#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
75#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
76#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
77#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
78#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
79#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80
81/* Req Mailboxes */
82#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
83#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
84#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
85#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
86#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
87#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88
89/* Ack Mailboxes */
90#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
91#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97/* Mailbox 0 headers */
98#define MB0H_POWER_STATE_TRANS 0
99#define MB0H_CONFIG_WAKEUPS_EXE 1
100#define MB0H_READ_WAKEUP_ACK 3
101#define MB0H_CONFIG_WAKEUPS_SLEEP 4
102
103#define MB0H_WAKEUP_EXE 2
104#define MB0H_WAKEUP_SLEEP 5
105
106/* Mailbox 0 REQs */
107#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
108#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
109#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
110#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
111#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
112#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113
114/* Mailbox 0 ACKs */
115#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
116#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
117#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
118#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
119#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
120#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
121#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123/* Mailbox 1 headers */
124#define MB1H_ARM_APE_OPP 0x0
125#define MB1H_RESET_MODEM 0x2
126#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 129#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
130
131/* Mailbox 1 Requests */
132#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
133#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 134#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
135#define PLL_SOC0_OFF 0x1
136#define PLL_SOC0_ON 0x2
a592c2e2
MN
137#define PLL_SOC1_OFF 0x4
138#define PLL_SOC1_ON 0x8
3df57bcf
MN
139
140/* Mailbox 1 ACKs */
141#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
142#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
143#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145
146/* Mailbox 2 headers */
147#define MB2H_DPS 0x0
148#define MB2H_AUTO_PWR 0x1
149
150/* Mailbox 2 REQs */
151#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
152#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
153#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
154#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
155#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
156#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
157#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
158#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
159#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
160#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161
162/* Mailbox 2 ACKs */
163#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164#define HWACC_PWR_ST_OK 0xFE
165
166/* Mailbox 3 headers */
167#define MB3H_ANC 0x0
168#define MB3H_SIDETONE 0x1
169#define MB3H_SYSCLK 0xE
170
171/* Mailbox 3 Requests */
172#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
173#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
174#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
175#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
176#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
177#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179
180/* Mailbox 4 headers */
181#define MB4H_DDR_INIT 0x0
182#define MB4H_MEM_ST 0x1
183#define MB4H_HOTDOG 0x12
184#define MB4H_HOTMON 0x13
185#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
186#define MB4H_A9WDOG_CONF 0x16
187#define MB4H_A9WDOG_EN 0x17
188#define MB4H_A9WDOG_DIS 0x18
189#define MB4H_A9WDOG_LOAD 0x19
190#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
191
192/* Mailbox 4 Requests */
193#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
194#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
195#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
196#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
198#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
199#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
200#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
201#define HOTMON_CONFIG_LOW BIT(0)
202#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
203#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
204#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
205#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
206#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
207#define A9WDOG_AUTO_OFF_EN BIT(7)
208#define A9WDOG_AUTO_OFF_DIS 0
209#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
210
211/* Mailbox 5 Requests */
212#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
213#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
214#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
215#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
7a4f2609
LW
216#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
3df57bcf
MN
218#define PRCMU_I2C_STOP_EN BIT(3)
219
220/* Mailbox 5 ACKs */
221#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
223#define I2C_WR_OK 0x1
224#define I2C_RD_OK 0x2
225
226#define NUM_MB 8
227#define MBOX_BIT BIT
228#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229
230/*
231 * Wakeups/IRQs
232 */
233
234#define WAKEUP_BIT_RTC BIT(0)
235#define WAKEUP_BIT_RTT0 BIT(1)
236#define WAKEUP_BIT_RTT1 BIT(2)
237#define WAKEUP_BIT_HSI0 BIT(3)
238#define WAKEUP_BIT_HSI1 BIT(4)
239#define WAKEUP_BIT_CA_WAKE BIT(5)
240#define WAKEUP_BIT_USB BIT(6)
241#define WAKEUP_BIT_ABB BIT(7)
242#define WAKEUP_BIT_ABB_FIFO BIT(8)
243#define WAKEUP_BIT_SYSCLK_OK BIT(9)
244#define WAKEUP_BIT_CA_SLEEP BIT(10)
245#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247#define WAKEUP_BIT_ANC_OK BIT(13)
248#define WAKEUP_BIT_SW_ERROR BIT(14)
249#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250#define WAKEUP_BIT_ARM BIT(17)
251#define WAKEUP_BIT_HOTMON_LOW BIT(18)
252#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254#define WAKEUP_BIT_GPIO0 BIT(23)
255#define WAKEUP_BIT_GPIO1 BIT(24)
256#define WAKEUP_BIT_GPIO2 BIT(25)
257#define WAKEUP_BIT_GPIO3 BIT(26)
258#define WAKEUP_BIT_GPIO4 BIT(27)
259#define WAKEUP_BIT_GPIO5 BIT(28)
260#define WAKEUP_BIT_GPIO6 BIT(29)
261#define WAKEUP_BIT_GPIO7 BIT(30)
262#define WAKEUP_BIT_GPIO8 BIT(31)
263
b58d12fe
MN
264static struct {
265 bool valid;
266 struct prcmu_fw_version version;
267} fw_info;
268
f3f1f0a1
LJ
269static struct irq_domain *db8500_irq_domain;
270
3df57bcf
MN
271/*
272 * This vector maps irq numbers to the bits in the bit field used in
273 * communication with the PRCMU firmware.
274 *
275 * The reason for having this is to keep the irq numbers contiguous even though
276 * the bits in the bit field are not. (The bits also have a tendency to move
277 * around, to further complicate matters.)
278 */
55b175d7 279#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
3df57bcf 280#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
55b175d7
AB
281
282#define IRQ_PRCMU_RTC 0
283#define IRQ_PRCMU_RTT0 1
284#define IRQ_PRCMU_RTT1 2
285#define IRQ_PRCMU_HSI0 3
286#define IRQ_PRCMU_HSI1 4
287#define IRQ_PRCMU_CA_WAKE 5
288#define IRQ_PRCMU_USB 6
289#define IRQ_PRCMU_ABB 7
290#define IRQ_PRCMU_ABB_FIFO 8
291#define IRQ_PRCMU_ARM 9
292#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293#define IRQ_PRCMU_GPIO0 11
294#define IRQ_PRCMU_GPIO1 12
295#define IRQ_PRCMU_GPIO2 13
296#define IRQ_PRCMU_GPIO3 14
297#define IRQ_PRCMU_GPIO4 15
298#define IRQ_PRCMU_GPIO5 16
299#define IRQ_PRCMU_GPIO6 17
300#define IRQ_PRCMU_GPIO7 18
301#define IRQ_PRCMU_GPIO8 19
302#define IRQ_PRCMU_CA_SLEEP 20
303#define IRQ_PRCMU_HOTMON_LOW 21
304#define IRQ_PRCMU_HOTMON_HIGH 22
305#define NUM_PRCMU_WAKEUPS 23
306
3df57bcf
MN
307static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308 IRQ_ENTRY(RTC),
309 IRQ_ENTRY(RTT0),
310 IRQ_ENTRY(RTT1),
311 IRQ_ENTRY(HSI0),
312 IRQ_ENTRY(HSI1),
313 IRQ_ENTRY(CA_WAKE),
314 IRQ_ENTRY(USB),
315 IRQ_ENTRY(ABB),
316 IRQ_ENTRY(ABB_FIFO),
317 IRQ_ENTRY(CA_SLEEP),
318 IRQ_ENTRY(ARM),
319 IRQ_ENTRY(HOTMON_LOW),
320 IRQ_ENTRY(HOTMON_HIGH),
321 IRQ_ENTRY(MODEM_SW_RESET_REQ),
322 IRQ_ENTRY(GPIO0),
323 IRQ_ENTRY(GPIO1),
324 IRQ_ENTRY(GPIO2),
325 IRQ_ENTRY(GPIO3),
326 IRQ_ENTRY(GPIO4),
327 IRQ_ENTRY(GPIO5),
328 IRQ_ENTRY(GPIO6),
329 IRQ_ENTRY(GPIO7),
330 IRQ_ENTRY(GPIO8)
331};
332
333#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336 WAKEUP_ENTRY(RTC),
337 WAKEUP_ENTRY(RTT0),
338 WAKEUP_ENTRY(RTT1),
339 WAKEUP_ENTRY(HSI0),
340 WAKEUP_ENTRY(HSI1),
341 WAKEUP_ENTRY(USB),
342 WAKEUP_ENTRY(ABB),
343 WAKEUP_ENTRY(ABB_FIFO),
344 WAKEUP_ENTRY(ARM)
345};
346
347/*
348 * mb0_transfer - state needed for mailbox 0 communication.
349 * @lock: The transaction lock.
350 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
351 * the request data.
352 * @mask_work: Work structure used for (un)masking wakeup interrupts.
353 * @req: Request data that need to persist between requests.
354 */
355static struct {
356 spinlock_t lock;
357 spinlock_t dbb_irqs_lock;
358 struct work_struct mask_work;
359 struct mutex ac_wake_lock;
360 struct completion ac_wake_work;
361 struct {
362 u32 dbb_irqs;
363 u32 dbb_wakeups;
364 u32 abb_events;
365 } req;
366} mb0_transfer;
367
368/*
369 * mb1_transfer - state needed for mailbox 1 communication.
370 * @lock: The transaction lock.
371 * @work: The transaction completion structure.
4d64d2e3 372 * @ape_opp: The current APE OPP.
3df57bcf
MN
373 * @ack: Reply ("acknowledge") data.
374 */
375static struct {
376 struct mutex lock;
377 struct completion work;
4d64d2e3 378 u8 ape_opp;
3df57bcf
MN
379 struct {
380 u8 header;
381 u8 arm_opp;
382 u8 ape_opp;
383 u8 ape_voltage_status;
384 } ack;
385} mb1_transfer;
386
387/*
388 * mb2_transfer - state needed for mailbox 2 communication.
389 * @lock: The transaction lock.
390 * @work: The transaction completion structure.
391 * @auto_pm_lock: The autonomous power management configuration lock.
392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393 * @req: Request data that need to persist between requests.
394 * @ack: Reply ("acknowledge") data.
395 */
396static struct {
397 struct mutex lock;
398 struct completion work;
399 spinlock_t auto_pm_lock;
400 bool auto_pm_enabled;
401 struct {
402 u8 status;
403 } ack;
404} mb2_transfer;
405
406/*
407 * mb3_transfer - state needed for mailbox 3 communication.
408 * @lock: The request lock.
409 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
410 * @sysclk_work: Work structure used for sysclk requests.
411 */
412static struct {
413 spinlock_t lock;
414 struct mutex sysclk_lock;
415 struct completion sysclk_work;
416} mb3_transfer;
417
418/*
419 * mb4_transfer - state needed for mailbox 4 communication.
420 * @lock: The transaction lock.
421 * @work: The transaction completion structure.
422 */
423static struct {
424 struct mutex lock;
425 struct completion work;
426} mb4_transfer;
427
428/*
429 * mb5_transfer - state needed for mailbox 5 communication.
430 * @lock: The transaction lock.
431 * @work: The transaction completion structure.
432 * @ack: Reply ("acknowledge") data.
433 */
434static struct {
435 struct mutex lock;
436 struct completion work;
437 struct {
438 u8 status;
439 u8 value;
440 } ack;
441} mb5_transfer;
442
443static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444
445/* Spinlocks */
b4a6dbd5 446static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 447static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
448
449/* Global var to runtime determine TCDM base for v2 or v1 */
450static __iomem void *tcdm_base;
b047d981 451static __iomem void *prcmu_base;
3df57bcf
MN
452
453struct clk_mgt {
b047d981 454 u32 offset;
3df57bcf 455 u32 pllsw;
6b6fae2b
MN
456 int branch;
457 bool clk38div;
458};
459
460enum {
461 PLL_RAW,
462 PLL_FIX,
463 PLL_DIV
3df57bcf
MN
464};
465
466static DEFINE_SPINLOCK(clk_mgt_lock);
467
6b6fae2b
MN
468#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
6746f232 470static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
471 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500};
501
502struct dsiclk {
503 u32 divsel_mask;
504 u32 divsel_shift;
505 u32 divsel;
506};
507
508static struct dsiclk dsiclk[2] = {
509 {
510 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513 },
514 {
515 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518 }
519};
520
521struct dsiescclk {
522 u32 en;
523 u32 div_mask;
524 u32 div_shift;
525};
526
527static struct dsiescclk dsiescclk[3] = {
528 {
529 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532 },
533 {
534 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537 },
538 {
539 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542 }
3df57bcf
MN
543};
544
20aee5b6 545
3df57bcf
MN
546/*
547* Used by MCDE to setup all necessary PRCMU registers
548*/
549#define PRCMU_RESET_DSIPLL 0x00004000
550#define PRCMU_UNCLAMP_DSIPLL 0x00400800
551
552#define PRCMU_CLK_PLL_DIV_SHIFT 0
553#define PRCMU_CLK_PLL_SW_SHIFT 5
554#define PRCMU_CLK_38 (1 << 9)
555#define PRCMU_CLK_38_SRC (1 << 10)
556#define PRCMU_CLK_38_DIV (1 << 11)
557
558/* PLLDIV=12, PLLSW=4 (PLLDDR) */
559#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
560
3df57bcf
MN
561/* DPI 50000000 Hz */
562#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
563 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
564#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
565
566/* D=101, N=1, R=4, SELDIV2=0 */
567#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
568
3df57bcf
MN
569#define PRCMU_ENABLE_PLLDSI 0x00000001
570#define PRCMU_DISABLE_PLLDSI 0x00000000
571#define PRCMU_RELEASE_RESET_DSS 0x0000400C
572#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
573/* ESC clk, div0=1, div1=1, div2=3 */
574#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
575#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
576#define PRCMU_DSI_RESET_SW 0x00000007
577
578#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
579
73180f85 580int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
581{
582 int i;
3df57bcf
MN
583
584 /* Clear DSIPLL_RESETN */
c553b3ca 585 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 586 /* Unclamp DSIPLL in/out */
c553b3ca 587 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 588
3df57bcf 589 /* Set DSI PLL FREQ */
c72fe851 590 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 591 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 592 /* Enable Escape clocks */
c553b3ca 593 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
594
595 /* Start DSI PLL */
c553b3ca 596 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 597 /* Reset DSI PLL */
c553b3ca 598 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 599 for (i = 0; i < 10; i++) {
c553b3ca 600 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
601 == PRCMU_PLLDSI_LOCKP_LOCKED)
602 break;
603 udelay(100);
604 }
605 /* Set DSIPLL_RESETN */
c553b3ca 606 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
607 return 0;
608}
609
73180f85 610int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
611{
612 /* Disable dsi pll */
c553b3ca 613 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 614 /* Disable escapeclock */
c553b3ca 615 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
616 return 0;
617}
618
73180f85 619int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
620{
621 unsigned long flags;
3df57bcf
MN
622
623 spin_lock_irqsave(&clk_mgt_lock, flags);
624
625 /* Grab the HW semaphore. */
c553b3ca 626 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
627 cpu_relax();
628
b047d981
LW
629 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
630 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
631 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
3df57bcf
MN
632
633 /* Release the HW semaphore. */
c553b3ca 634 writel(0, PRCM_SEM);
3df57bcf
MN
635
636 spin_unlock_irqrestore(&clk_mgt_lock, flags);
637
638 return 0;
639}
640
b4a6dbd5
MN
641u32 db8500_prcmu_read(unsigned int reg)
642{
b047d981 643 return readl(prcmu_base + reg);
b4a6dbd5
MN
644}
645
646void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 647{
3df57bcf
MN
648 unsigned long flags;
649
b4a6dbd5 650 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 651 writel(value, (prcmu_base + reg));
b4a6dbd5 652 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
653}
654
b4a6dbd5 655void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 656{
b4a6dbd5 657 u32 val;
3df57bcf
MN
658 unsigned long flags;
659
b4a6dbd5 660 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 661 val = readl(prcmu_base + reg);
b4a6dbd5 662 val = ((val & ~mask) | (value & mask));
b047d981 663 writel(val, (prcmu_base + reg));
b4a6dbd5 664 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
665}
666
b58d12fe
MN
667struct prcmu_fw_version *prcmu_get_fw_version(void)
668{
669 return fw_info.valid ? &fw_info.version : NULL;
670}
671
3df57bcf
MN
672bool prcmu_has_arm_maxopp(void)
673{
674 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
675 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
676}
677
3df57bcf
MN
678/**
679 * prcmu_set_rc_a2p - This function is used to run few power state sequences
680 * @val: Value to be set, i.e. transition requested
681 * Returns: 0 on success, -EINVAL on invalid argument
682 *
683 * This function is used to run the following power state sequences -
684 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
685 */
686int prcmu_set_rc_a2p(enum romcode_write val)
687{
688 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
689 return -EINVAL;
690 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
691 return 0;
692}
693
694/**
695 * prcmu_get_rc_p2a - This function is used to get power state sequences
696 * Returns: the power transition that has last happened
697 *
698 * This function can return the following transitions-
699 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
700 */
701enum romcode_read prcmu_get_rc_p2a(void)
702{
703 return readb(tcdm_base + PRCM_ROMCODE_P2A);
704}
705
706/**
707 * prcmu_get_current_mode - Return the current XP70 power mode
708 * Returns: Returns the current AP(ARM) power mode: init,
709 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
710 */
711enum ap_pwrst prcmu_get_xp70_current_state(void)
712{
713 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
714}
715
716/**
717 * prcmu_config_clkout - Configure one of the programmable clock outputs.
718 * @clkout: The CLKOUT number (0 or 1).
719 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
720 * @div: The divider to be applied.
721 *
722 * Configures one of the programmable clock outputs (CLKOUTs).
723 * @div should be in the range [1,63] to request a configuration, or 0 to
724 * inform that the configuration is no longer requested.
725 */
726int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
727{
728 static int requests[2];
729 int r = 0;
730 unsigned long flags;
731 u32 val;
732 u32 bits;
733 u32 mask;
734 u32 div_mask;
735
736 BUG_ON(clkout > 1);
737 BUG_ON(div > 63);
738 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
739
740 if (!div && !requests[clkout])
741 return -EINVAL;
742
a7e46317 743 if (clkout == 0) {
3df57bcf
MN
744 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
745 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
746 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
747 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
a7e46317 748 } else {
3df57bcf
MN
749 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
750 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
751 PRCM_CLKOCR_CLK1TYPE);
752 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
753 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
3df57bcf
MN
754 }
755 bits &= mask;
756
757 spin_lock_irqsave(&clkout_lock, flags);
758
c553b3ca 759 val = readl(PRCM_CLKOCR);
3df57bcf
MN
760 if (val & div_mask) {
761 if (div) {
762 if ((val & mask) != bits) {
763 r = -EBUSY;
764 goto unlock_and_return;
765 }
766 } else {
767 if ((val & mask & ~div_mask) != bits) {
768 r = -EINVAL;
769 goto unlock_and_return;
770 }
771 }
772 }
c553b3ca 773 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
774 requests[clkout] += (div ? 1 : -1);
775
776unlock_and_return:
777 spin_unlock_irqrestore(&clkout_lock, flags);
778
779 return r;
780}
781
73180f85 782int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
783{
784 unsigned long flags;
785
786 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
787
788 spin_lock_irqsave(&mb0_transfer.lock, flags);
789
c553b3ca 790 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
791 cpu_relax();
792
793 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
794 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
795 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
796 writeb((keep_ulp_clk ? 1 : 0),
797 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
798 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 799 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
800
801 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
802
803 return 0;
804}
805
4d64d2e3
MN
806u8 db8500_prcmu_get_power_state_result(void)
807{
808 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
809}
810
3df57bcf
MN
811/* This function should only be called while mb0_transfer.lock is held. */
812static void config_wakeups(void)
813{
814 const u8 header[2] = {
815 MB0H_CONFIG_WAKEUPS_EXE,
816 MB0H_CONFIG_WAKEUPS_SLEEP
817 };
818 static u32 last_dbb_events;
819 static u32 last_abb_events;
820 u32 dbb_events;
821 u32 abb_events;
822 unsigned int i;
823
824 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
825 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
826
827 abb_events = mb0_transfer.req.abb_events;
828
829 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
830 return;
831
832 for (i = 0; i < 2; i++) {
c553b3ca 833 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
834 cpu_relax();
835 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
836 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
837 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 838 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
839 }
840 last_dbb_events = dbb_events;
841 last_abb_events = abb_events;
842}
843
73180f85 844void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
845{
846 unsigned long flags;
847 u32 bits;
848 int i;
849
850 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
851
852 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
853 if (wakeups & BIT(i))
854 bits |= prcmu_wakeup_bit[i];
855 }
856
857 spin_lock_irqsave(&mb0_transfer.lock, flags);
858
859 mb0_transfer.req.dbb_wakeups = bits;
860 config_wakeups();
861
862 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
863}
864
73180f85 865void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
866{
867 unsigned long flags;
868
869 spin_lock_irqsave(&mb0_transfer.lock, flags);
870
871 mb0_transfer.req.abb_events = abb_events;
872 config_wakeups();
873
874 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
875}
876
73180f85 877void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
878{
879 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
880 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
881 else
882 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
883}
884
885/**
73180f85 886 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
887 * @opp: The new ARM operating point to which transition is to be made
888 * Returns: 0 on success, non-zero on failure
889 *
890 * This function sets the the operating point of the ARM.
891 */
73180f85 892int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
893{
894 int r;
895
896 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
897 return -EINVAL;
898
899 r = 0;
900
901 mutex_lock(&mb1_transfer.lock);
902
c553b3ca 903 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
904 cpu_relax();
905
906 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
907 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
908 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
909
c553b3ca 910 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
911 wait_for_completion(&mb1_transfer.work);
912
913 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
914 (mb1_transfer.ack.arm_opp != opp))
915 r = -EIO;
916
917 mutex_unlock(&mb1_transfer.lock);
918
919 return r;
920}
921
922/**
73180f85 923 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
924 *
925 * Returns: the current ARM OPP
926 */
73180f85 927int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
928{
929 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
930}
931
932/**
0508901c 933 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
934 *
935 * Returns: the current DDR OPP
936 */
0508901c 937int db8500_prcmu_get_ddr_opp(void)
3df57bcf 938{
c553b3ca 939 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
940}
941
4d64d2e3
MN
942/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
943static void request_even_slower_clocks(bool enable)
944{
b047d981 945 u32 clock_reg[] = {
4d64d2e3
MN
946 PRCM_ACLK_MGT,
947 PRCM_DMACLK_MGT
948 };
949 unsigned long flags;
950 unsigned int i;
951
952 spin_lock_irqsave(&clk_mgt_lock, flags);
953
954 /* Grab the HW semaphore. */
955 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
956 cpu_relax();
957
958 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
959 u32 val;
960 u32 div;
961
b047d981 962 val = readl(prcmu_base + clock_reg[i]);
4d64d2e3
MN
963 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
964 if (enable) {
965 if ((div <= 1) || (div > 15)) {
966 pr_err("prcmu: Bad clock divider %d in %s\n",
967 div, __func__);
968 goto unlock_and_return;
969 }
970 div <<= 1;
971 } else {
972 if (div <= 2)
973 goto unlock_and_return;
974 div >>= 1;
975 }
976 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
977 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
b047d981 978 writel(val, prcmu_base + clock_reg[i]);
4d64d2e3
MN
979 }
980
981unlock_and_return:
982 /* Release the HW semaphore. */
983 writel(0, PRCM_SEM);
984
985 spin_unlock_irqrestore(&clk_mgt_lock, flags);
986}
987
3df57bcf 988/**
0508901c 989 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
990 * @opp: The new APE operating point to which transition is to be made
991 * Returns: 0 on success, non-zero on failure
992 *
993 * This function sets the operating point of the APE.
994 */
0508901c 995int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
996{
997 int r = 0;
998
4d64d2e3
MN
999 if (opp == mb1_transfer.ape_opp)
1000 return 0;
1001
3df57bcf
MN
1002 mutex_lock(&mb1_transfer.lock);
1003
4d64d2e3
MN
1004 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1005 request_even_slower_clocks(false);
1006
1007 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1008 goto skip_message;
1009
c553b3ca 1010 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1011 cpu_relax();
1012
1013 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1014 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1015 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1016 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1017
c553b3ca 1018 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1019 wait_for_completion(&mb1_transfer.work);
1020
1021 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1022 (mb1_transfer.ack.ape_opp != opp))
1023 r = -EIO;
1024
4d64d2e3
MN
1025skip_message:
1026 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1027 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1028 request_even_slower_clocks(true);
1029 if (!r)
1030 mb1_transfer.ape_opp = opp;
1031
3df57bcf
MN
1032 mutex_unlock(&mb1_transfer.lock);
1033
1034 return r;
1035}
1036
1037/**
0508901c 1038 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1039 *
1040 * Returns: the current APE OPP
1041 */
0508901c 1042int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1043{
1044 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1045}
1046
1047/**
686f871b 1048 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1049 * @enable: true to request the higher voltage, false to drop a request.
1050 *
1051 * Calls to this function to enable and disable requests must be balanced.
1052 */
686f871b 1053int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1054{
1055 int r = 0;
1056 u8 header;
1057 static unsigned int requests;
1058
1059 mutex_lock(&mb1_transfer.lock);
1060
1061 if (enable) {
1062 if (0 != requests++)
1063 goto unlock_and_return;
1064 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1065 } else {
1066 if (requests == 0) {
1067 r = -EIO;
1068 goto unlock_and_return;
1069 } else if (1 != requests--) {
1070 goto unlock_and_return;
1071 }
1072 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1073 }
1074
c553b3ca 1075 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1076 cpu_relax();
1077
1078 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1079
c553b3ca 1080 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1081 wait_for_completion(&mb1_transfer.work);
1082
1083 if ((mb1_transfer.ack.header != header) ||
1084 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1085 r = -EIO;
1086
1087unlock_and_return:
1088 mutex_unlock(&mb1_transfer.lock);
1089
1090 return r;
1091}
1092
1093/**
1094 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1095 *
1096 * This function releases the power state requirements of a USB wakeup.
1097 */
1098int prcmu_release_usb_wakeup_state(void)
1099{
1100 int r = 0;
1101
1102 mutex_lock(&mb1_transfer.lock);
1103
c553b3ca 1104 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1105 cpu_relax();
1106
1107 writeb(MB1H_RELEASE_USB_WAKEUP,
1108 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109
c553b3ca 1110 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1111 wait_for_completion(&mb1_transfer.work);
1112
1113 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1114 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1115 r = -EIO;
1116
1117 mutex_unlock(&mb1_transfer.lock);
1118
1119 return r;
1120}
1121
0837bb72
MN
1122static int request_pll(u8 clock, bool enable)
1123{
1124 int r = 0;
1125
6b6fae2b
MN
1126 if (clock == PRCMU_PLLSOC0)
1127 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1128 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1129 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1130 else
1131 return -EINVAL;
1132
1133 mutex_lock(&mb1_transfer.lock);
1134
1135 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1136 cpu_relax();
1137
1138 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1140
1141 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1142 wait_for_completion(&mb1_transfer.work);
1143
1144 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1145 r = -EIO;
1146
1147 mutex_unlock(&mb1_transfer.lock);
1148
1149 return r;
1150}
1151
3df57bcf 1152/**
73180f85 1153 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1154 * @epod_id: The EPOD to set
1155 * @epod_state: The new EPOD state
1156 *
1157 * This function sets the state of a EPOD (power domain). It may not be called
1158 * from interrupt context.
1159 */
73180f85 1160int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1161{
1162 int r = 0;
1163 bool ram_retention = false;
1164 int i;
1165
1166 /* check argument */
1167 BUG_ON(epod_id >= NUM_EPOD_ID);
1168
1169 /* set flag if retention is possible */
1170 switch (epod_id) {
1171 case EPOD_ID_SVAMMDSP:
1172 case EPOD_ID_SIAMMDSP:
1173 case EPOD_ID_ESRAM12:
1174 case EPOD_ID_ESRAM34:
1175 ram_retention = true;
1176 break;
1177 }
1178
1179 /* check argument */
1180 BUG_ON(epod_state > EPOD_STATE_ON);
1181 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1182
1183 /* get lock */
1184 mutex_lock(&mb2_transfer.lock);
1185
1186 /* wait for mailbox */
c553b3ca 1187 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1188 cpu_relax();
1189
1190 /* fill in mailbox */
1191 for (i = 0; i < NUM_EPOD_ID; i++)
1192 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1193 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1194
1195 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1196
c553b3ca 1197 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1198
1199 /*
1200 * The current firmware version does not handle errors correctly,
1201 * and we cannot recover if there is an error.
1202 * This is expected to change when the firmware is updated.
1203 */
1204 if (!wait_for_completion_timeout(&mb2_transfer.work,
1205 msecs_to_jiffies(20000))) {
1206 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1207 __func__);
1208 r = -EIO;
1209 goto unlock_and_return;
1210 }
1211
1212 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1213 r = -EIO;
1214
1215unlock_and_return:
1216 mutex_unlock(&mb2_transfer.lock);
1217 return r;
1218}
1219
1220/**
1221 * prcmu_configure_auto_pm - Configure autonomous power management.
1222 * @sleep: Configuration for ApSleep.
1223 * @idle: Configuration for ApIdle.
1224 */
1225void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1226 struct prcmu_auto_pm_config *idle)
1227{
1228 u32 sleep_cfg;
1229 u32 idle_cfg;
1230 unsigned long flags;
e3726fcf 1231
3df57bcf 1232 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1233
3df57bcf
MN
1234 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1235 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1236 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1237 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1238 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1239 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1240
3df57bcf
MN
1241 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1242 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1243 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1244 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1245 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1246 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1247
3df57bcf 1248 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1249
3df57bcf
MN
1250 /*
1251 * The autonomous power management configuration is done through
1252 * fields in mailbox 2, but these fields are only used as shared
1253 * variables - i.e. there is no need to send a message.
1254 */
1255 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1256 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1257
3df57bcf
MN
1258 mb2_transfer.auto_pm_enabled =
1259 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1262 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1263
3df57bcf
MN
1264 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1265}
1266EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1267
3df57bcf
MN
1268bool prcmu_is_auto_pm_enabled(void)
1269{
1270 return mb2_transfer.auto_pm_enabled;
1271}
e0befb23 1272
3df57bcf
MN
1273static int request_sysclk(bool enable)
1274{
1275 int r;
1276 unsigned long flags;
e3726fcf 1277
3df57bcf 1278 r = 0;
e3726fcf 1279
3df57bcf 1280 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1281
3df57bcf 1282 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1283
c553b3ca 1284 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1285 cpu_relax();
e0befb23 1286
3df57bcf 1287 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1288
3df57bcf 1289 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1290 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1291
3df57bcf
MN
1292 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1293
1294 /*
1295 * The firmware only sends an ACK if we want to enable the
1296 * SysClk, and it succeeds.
1297 */
1298 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1299 msecs_to_jiffies(20000))) {
1300 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1301 __func__);
1302 r = -EIO;
1303 }
1304
1305 mutex_unlock(&mb3_transfer.sysclk_lock);
1306
1307 return r;
1308}
1309
1310static int request_timclk(bool enable)
1311{
1312 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1313
1314 if (!enable)
1315 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1316 writel(val, PRCM_TCR);
3df57bcf
MN
1317
1318 return 0;
1319}
1320
6b6fae2b 1321static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1322{
1323 u32 val;
1324 unsigned long flags;
1325
1326 spin_lock_irqsave(&clk_mgt_lock, flags);
1327
1328 /* Grab the HW semaphore. */
c553b3ca 1329 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1330 cpu_relax();
1331
b047d981 1332 val = readl(prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1333 if (enable) {
1334 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1335 } else {
1336 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1337 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1338 }
b047d981 1339 writel(val, prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1340
1341 /* Release the HW semaphore. */
c553b3ca 1342 writel(0, PRCM_SEM);
3df57bcf
MN
1343
1344 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1345
1346 return 0;
1347}
1348
0837bb72
MN
1349static int request_sga_clock(u8 clock, bool enable)
1350{
1351 u32 val;
1352 int ret;
1353
1354 if (enable) {
1355 val = readl(PRCM_CGATING_BYPASS);
1356 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1357 }
1358
6b6fae2b 1359 ret = request_clock(clock, enable);
0837bb72
MN
1360
1361 if (!ret && !enable) {
1362 val = readl(PRCM_CGATING_BYPASS);
1363 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1364 }
1365
1366 return ret;
1367}
1368
6b6fae2b
MN
1369static inline bool plldsi_locked(void)
1370{
1371 return (readl(PRCM_PLLDSI_LOCKP) &
1372 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1373 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1374 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1375 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1376}
1377
1378static int request_plldsi(bool enable)
1379{
1380 int r = 0;
1381 u32 val;
1382
1383 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1384 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1385 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1386
1387 val = readl(PRCM_PLLDSI_ENABLE);
1388 if (enable)
1389 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1390 else
1391 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1392 writel(val, PRCM_PLLDSI_ENABLE);
1393
1394 if (enable) {
1395 unsigned int i;
1396 bool locked = plldsi_locked();
1397
1398 for (i = 10; !locked && (i > 0); --i) {
1399 udelay(100);
1400 locked = plldsi_locked();
1401 }
1402 if (locked) {
1403 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1404 PRCM_APE_RESETN_SET);
1405 } else {
1406 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1407 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1408 PRCM_MMIP_LS_CLAMP_SET);
1409 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1410 writel(val, PRCM_PLLDSI_ENABLE);
1411 r = -EAGAIN;
1412 }
1413 } else {
1414 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1415 }
1416 return r;
1417}
1418
1419static int request_dsiclk(u8 n, bool enable)
1420{
1421 u32 val;
1422
1423 val = readl(PRCM_DSI_PLLOUT_SEL);
1424 val &= ~dsiclk[n].divsel_mask;
1425 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1426 dsiclk[n].divsel_shift);
1427 writel(val, PRCM_DSI_PLLOUT_SEL);
1428 return 0;
1429}
1430
1431static int request_dsiescclk(u8 n, bool enable)
1432{
1433 u32 val;
1434
1435 val = readl(PRCM_DSITVCLK_DIV);
1436 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1437 writel(val, PRCM_DSITVCLK_DIV);
1438 return 0;
1439}
1440
3df57bcf 1441/**
73180f85 1442 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1443 * @clock: The clock for which the request is made.
1444 * @enable: Whether the clock should be enabled (true) or disabled (false).
1445 *
1446 * This function should only be used by the clock implementation.
1447 * Do not use it from any other place!
1448 */
73180f85 1449int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1450{
6b6fae2b 1451 if (clock == PRCMU_SGACLK)
0837bb72 1452 return request_sga_clock(clock, enable);
6b6fae2b
MN
1453 else if (clock < PRCMU_NUM_REG_CLOCKS)
1454 return request_clock(clock, enable);
1455 else if (clock == PRCMU_TIMCLK)
3df57bcf 1456 return request_timclk(enable);
6b6fae2b
MN
1457 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1458 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1459 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1460 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1461 else if (clock == PRCMU_PLLDSI)
1462 return request_plldsi(enable);
1463 else if (clock == PRCMU_SYSCLK)
3df57bcf 1464 return request_sysclk(enable);
6b6fae2b 1465 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1466 return request_pll(clock, enable);
6b6fae2b
MN
1467 else
1468 return -EINVAL;
1469}
1470
1471static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1472 int branch)
1473{
1474 u64 rate;
1475 u32 val;
1476 u32 d;
1477 u32 div = 1;
1478
1479 val = readl(reg);
1480
1481 rate = src_rate;
1482 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1483
1484 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1485 if (d > 1)
1486 div *= d;
1487
1488 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1489 if (d > 1)
1490 div *= d;
1491
1492 if (val & PRCM_PLL_FREQ_SELDIV2)
1493 div *= 2;
1494
1495 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1496 (val & PRCM_PLL_FREQ_DIV2EN) &&
1497 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1498 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1499 (reg == PRCM_PLLDDR_FREQ))))
1500 div *= 2;
1501
1502 (void)do_div(rate, div);
1503
1504 return (unsigned long)rate;
1505}
1506
1507#define ROOT_CLOCK_RATE 38400000
1508
1509static unsigned long clock_rate(u8 clock)
1510{
1511 u32 val;
1512 u32 pllsw;
1513 unsigned long rate = ROOT_CLOCK_RATE;
1514
b047d981 1515 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1516
1517 if (val & PRCM_CLK_MGT_CLK38) {
1518 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1519 rate /= 2;
1520 return rate;
1521 }
1522
1523 val |= clk_mgt[clock].pllsw;
1524 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1525
1526 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1527 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1528 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1529 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1530 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1531 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1532 else
1533 return 0;
1534
1535 if ((clock == PRCMU_SGACLK) &&
1536 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1537 u64 r = (rate * 10);
1538
1539 (void)do_div(r, 25);
1540 return (unsigned long)r;
1541 }
1542 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1543 if (val)
1544 return rate / val;
1545 else
1546 return 0;
1547}
20aee5b6 1548
b2302c87 1549static unsigned long armss_rate(void)
20aee5b6
MJ
1550{
1551 u32 r;
1552 unsigned long rate;
1553
1554 r = readl(PRCM_ARM_CHGCLKREQ);
1555
1556 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1557 /* External ARMCLKFIX clock */
1558
1559 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1560
1561 /* Check PRCM_ARM_CHGCLKREQ divider */
1562 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1563 rate /= 2;
1564
1565 /* Check PRCM_ARMCLKFIX_MGT divider */
1566 r = readl(PRCM_ARMCLKFIX_MGT);
1567 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1568 rate /= r;
1569
1570 } else {/* ARM PLL */
1571 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1572 }
1573
b2302c87 1574 return rate;
20aee5b6 1575}
6b6fae2b
MN
1576
1577static unsigned long dsiclk_rate(u8 n)
1578{
1579 u32 divsel;
1580 u32 div = 1;
1581
1582 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1583 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1584
1585 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1586 divsel = dsiclk[n].divsel;
e9d7b4b5
UH
1587 else
1588 dsiclk[n].divsel = divsel;
6b6fae2b
MN
1589
1590 switch (divsel) {
1591 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1592 div *= 2;
795952d9 1593 /* Fall through */
6b6fae2b
MN
1594 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1595 div *= 2;
795952d9 1596 /* Fall through */
6b6fae2b
MN
1597 case PRCM_DSI_PLLOUT_SEL_PHI:
1598 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1599 PLL_RAW) / div;
e62ccf3a 1600 default:
6b6fae2b 1601 return 0;
e62ccf3a 1602 }
6b6fae2b
MN
1603}
1604
1605static unsigned long dsiescclk_rate(u8 n)
1606{
1607 u32 div;
1608
1609 div = readl(PRCM_DSITVCLK_DIV);
1610 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1611 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1612}
1613
1614unsigned long prcmu_clock_rate(u8 clock)
1615{
e62ccf3a 1616 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1617 return clock_rate(clock);
1618 else if (clock == PRCMU_TIMCLK)
1619 return ROOT_CLOCK_RATE / 16;
1620 else if (clock == PRCMU_SYSCLK)
1621 return ROOT_CLOCK_RATE;
1622 else if (clock == PRCMU_PLLSOC0)
1623 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1624 else if (clock == PRCMU_PLLSOC1)
1625 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1626 else if (clock == PRCMU_ARMSS)
1627 return armss_rate();
6b6fae2b
MN
1628 else if (clock == PRCMU_PLLDDR)
1629 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1630 else if (clock == PRCMU_PLLDSI)
1631 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1632 PLL_RAW);
1633 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1634 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1635 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1636 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1637 else
1638 return 0;
1639}
1640
1641static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1642{
1643 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1644 return ROOT_CLOCK_RATE;
1645 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1646 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1647 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1648 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1649 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1650 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1651 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1652 else
1653 return 0;
1654}
1655
1656static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1657{
1658 u32 div;
1659
1660 div = (src_rate / rate);
1661 if (div == 0)
1662 return 1;
1663 if (rate < (src_rate / div))
1664 div++;
1665 return div;
1666}
1667
1668static long round_clock_rate(u8 clock, unsigned long rate)
1669{
1670 u32 val;
1671 u32 div;
1672 unsigned long src_rate;
1673 long rounded_rate;
1674
b047d981 1675 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1676 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1677 clk_mgt[clock].branch);
1678 div = clock_divider(src_rate, rate);
1679 if (val & PRCM_CLK_MGT_CLK38) {
1680 if (clk_mgt[clock].clk38div) {
1681 if (div > 2)
1682 div = 2;
1683 } else {
1684 div = 1;
1685 }
1686 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1687 u64 r = (src_rate * 10);
1688
1689 (void)do_div(r, 25);
1690 if (r <= rate)
1691 return (unsigned long)r;
1692 }
1693 rounded_rate = (src_rate / min(div, (u32)31));
1694
1695 return rounded_rate;
1696}
1697
836a1e25
LW
1698static const unsigned long armss_freqs[] = {
1699 200000000,
1700 400000000,
1701 800000000,
1702 998400000
b2302c87
UH
1703};
1704
1705static long round_armss_rate(unsigned long rate)
1706{
836a1e25
LW
1707 unsigned long freq = 0;
1708 int i;
b2302c87
UH
1709
1710 /* Find the corresponding arm opp from the cpufreq table. */
836a1e25
LW
1711 for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1712 freq = armss_freqs[i];
1713 if (rate <= freq)
b2302c87 1714 break;
b2302c87
UH
1715 }
1716
1717 /* Return the last valid value, even if a match was not found. */
836a1e25 1718 return freq;
b2302c87
UH
1719}
1720
6b6fae2b
MN
1721#define MIN_PLL_VCO_RATE 600000000ULL
1722#define MAX_PLL_VCO_RATE 1680640000ULL
1723
1724static long round_plldsi_rate(unsigned long rate)
1725{
1726 long rounded_rate = 0;
1727 unsigned long src_rate;
1728 unsigned long rem;
1729 u32 r;
1730
1731 src_rate = clock_rate(PRCMU_HDMICLK);
1732 rem = rate;
1733
1734 for (r = 7; (rem > 0) && (r > 0); r--) {
1735 u64 d;
1736
1737 d = (r * rate);
1738 (void)do_div(d, src_rate);
1739 if (d < 6)
1740 d = 6;
1741 else if (d > 255)
1742 d = 255;
1743 d *= src_rate;
1744 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1745 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1746 continue;
1747 (void)do_div(d, r);
1748 if (rate < d) {
1749 if (rounded_rate == 0)
1750 rounded_rate = (long)d;
1751 break;
1752 }
1753 if ((rate - d) < rem) {
1754 rem = (rate - d);
1755 rounded_rate = (long)d;
1756 }
1757 }
1758 return rounded_rate;
1759}
1760
1761static long round_dsiclk_rate(unsigned long rate)
1762{
1763 u32 div;
1764 unsigned long src_rate;
1765 long rounded_rate;
1766
1767 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1768 PLL_RAW);
1769 div = clock_divider(src_rate, rate);
1770 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1771
1772 return rounded_rate;
1773}
1774
1775static long round_dsiescclk_rate(unsigned long rate)
1776{
1777 u32 div;
1778 unsigned long src_rate;
1779 long rounded_rate;
1780
1781 src_rate = clock_rate(PRCMU_TVCLK);
1782 div = clock_divider(src_rate, rate);
1783 rounded_rate = (src_rate / min(div, (u32)255));
1784
1785 return rounded_rate;
1786}
1787
1788long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1789{
1790 if (clock < PRCMU_NUM_REG_CLOCKS)
1791 return round_clock_rate(clock, rate);
b2302c87
UH
1792 else if (clock == PRCMU_ARMSS)
1793 return round_armss_rate(rate);
6b6fae2b
MN
1794 else if (clock == PRCMU_PLLDSI)
1795 return round_plldsi_rate(rate);
1796 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1797 return round_dsiclk_rate(rate);
1798 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1799 return round_dsiescclk_rate(rate);
1800 else
1801 return (long)prcmu_clock_rate(clock);
1802}
1803
1804static void set_clock_rate(u8 clock, unsigned long rate)
1805{
1806 u32 val;
1807 u32 div;
1808 unsigned long src_rate;
1809 unsigned long flags;
1810
1811 spin_lock_irqsave(&clk_mgt_lock, flags);
1812
1813 /* Grab the HW semaphore. */
1814 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1815 cpu_relax();
1816
b047d981 1817 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1818 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1819 clk_mgt[clock].branch);
1820 div = clock_divider(src_rate, rate);
1821 if (val & PRCM_CLK_MGT_CLK38) {
1822 if (clk_mgt[clock].clk38div) {
1823 if (div > 1)
1824 val |= PRCM_CLK_MGT_CLK38DIV;
1825 else
1826 val &= ~PRCM_CLK_MGT_CLK38DIV;
1827 }
1828 } else if (clock == PRCMU_SGACLK) {
1829 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1830 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1831 if (div == 3) {
1832 u64 r = (src_rate * 10);
1833
1834 (void)do_div(r, 25);
1835 if (r <= rate) {
1836 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1837 div = 0;
1838 }
1839 }
1840 val |= min(div, (u32)31);
1841 } else {
1842 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1843 val |= min(div, (u32)31);
1844 }
b047d981 1845 writel(val, prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1846
1847 /* Release the HW semaphore. */
1848 writel(0, PRCM_SEM);
1849
1850 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1851}
1852
b2302c87
UH
1853static int set_armss_rate(unsigned long rate)
1854{
836a1e25
LW
1855 unsigned long freq;
1856 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1857 int i;
b2302c87
UH
1858
1859 /* Find the corresponding arm opp from the cpufreq table. */
836a1e25
LW
1860 for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1861 freq = armss_freqs[i];
1862 if (rate == freq)
b2302c87 1863 break;
836a1e25 1864 }
b2302c87 1865
836a1e25 1866 if (rate != freq)
b2302c87
UH
1867 return -EINVAL;
1868
1869 /* Set the new arm opp. */
836a1e25
LW
1870 pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1871 return db8500_prcmu_set_arm_opp(opps[i]);
b2302c87
UH
1872}
1873
6b6fae2b
MN
1874static int set_plldsi_rate(unsigned long rate)
1875{
1876 unsigned long src_rate;
1877 unsigned long rem;
1878 u32 pll_freq = 0;
1879 u32 r;
1880
1881 src_rate = clock_rate(PRCMU_HDMICLK);
1882 rem = rate;
1883
1884 for (r = 7; (rem > 0) && (r > 0); r--) {
1885 u64 d;
1886 u64 hwrate;
1887
1888 d = (r * rate);
1889 (void)do_div(d, src_rate);
1890 if (d < 6)
1891 d = 6;
1892 else if (d > 255)
1893 d = 255;
1894 hwrate = (d * src_rate);
1895 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1896 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1897 continue;
1898 (void)do_div(hwrate, r);
1899 if (rate < hwrate) {
1900 if (pll_freq == 0)
1901 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1902 (r << PRCM_PLL_FREQ_R_SHIFT));
1903 break;
1904 }
1905 if ((rate - hwrate) < rem) {
1906 rem = (rate - hwrate);
1907 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1908 (r << PRCM_PLL_FREQ_R_SHIFT));
1909 }
1910 }
1911 if (pll_freq == 0)
1912 return -EINVAL;
1913
1914 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1915 writel(pll_freq, PRCM_PLLDSI_FREQ);
1916
1917 return 0;
1918}
1919
1920static void set_dsiclk_rate(u8 n, unsigned long rate)
1921{
1922 u32 val;
1923 u32 div;
1924
1925 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1926 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1927
1928 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1929 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1930 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1931
1932 val = readl(PRCM_DSI_PLLOUT_SEL);
1933 val &= ~dsiclk[n].divsel_mask;
1934 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1935 writel(val, PRCM_DSI_PLLOUT_SEL);
1936}
1937
1938static void set_dsiescclk_rate(u8 n, unsigned long rate)
1939{
1940 u32 val;
1941 u32 div;
1942
1943 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1944 val = readl(PRCM_DSITVCLK_DIV);
1945 val &= ~dsiescclk[n].div_mask;
1946 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1947 writel(val, PRCM_DSITVCLK_DIV);
1948}
1949
1950int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1951{
1952 if (clock < PRCMU_NUM_REG_CLOCKS)
1953 set_clock_rate(clock, rate);
b2302c87
UH
1954 else if (clock == PRCMU_ARMSS)
1955 return set_armss_rate(rate);
6b6fae2b
MN
1956 else if (clock == PRCMU_PLLDSI)
1957 return set_plldsi_rate(rate);
1958 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1959 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1960 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1961 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1962 return 0;
3df57bcf
MN
1963}
1964
73180f85 1965int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
1966{
1967 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1968 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1969 return -EINVAL;
1970
1971 mutex_lock(&mb4_transfer.lock);
1972
c553b3ca 1973 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1974 cpu_relax();
1975
1976 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1978 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1979 writeb(DDR_PWR_STATE_ON,
1980 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1981 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1982
c553b3ca 1983 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1984 wait_for_completion(&mb4_transfer.work);
1985
1986 mutex_unlock(&mb4_transfer.lock);
1987
1988 return 0;
1989}
1990
0508901c 1991int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
1992{
1993 mutex_lock(&mb4_transfer.lock);
1994
c553b3ca 1995 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1996 cpu_relax();
1997
1998 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1999 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2000
c553b3ca 2001 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2002 wait_for_completion(&mb4_transfer.work);
2003
2004 mutex_unlock(&mb4_transfer.lock);
2005
2006 return 0;
2007}
2008
0508901c 2009int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2010{
2011 mutex_lock(&mb4_transfer.lock);
2012
c553b3ca 2013 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2014 cpu_relax();
2015
2016 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2017 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2018 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2019 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2020 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2021
c553b3ca 2022 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2023 wait_for_completion(&mb4_transfer.work);
2024
2025 mutex_unlock(&mb4_transfer.lock);
2026
2027 return 0;
2028}
26716ce1 2029EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
3df57bcf
MN
2030
2031static int config_hot_period(u16 val)
2032{
2033 mutex_lock(&mb4_transfer.lock);
2034
c553b3ca 2035 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2036 cpu_relax();
2037
2038 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2039 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040
c553b3ca 2041 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2042 wait_for_completion(&mb4_transfer.work);
2043
2044 mutex_unlock(&mb4_transfer.lock);
2045
2046 return 0;
2047}
2048
0508901c 2049int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2050{
2051 if (cycles32k == 0xFFFF)
2052 return -EINVAL;
2053
2054 return config_hot_period(cycles32k);
2055}
26716ce1 2056EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
3df57bcf 2057
0508901c 2058int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2059{
2060 return config_hot_period(0xFFFF);
2061}
26716ce1 2062EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
3df57bcf 2063
84165b80
JA
2064static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2065{
2066
2067 mutex_lock(&mb4_transfer.lock);
2068
2069 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2070 cpu_relax();
2071
2072 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2073 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2074 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2075 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2076
2077 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2078
2079 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2080 wait_for_completion(&mb4_transfer.work);
2081
2082 mutex_unlock(&mb4_transfer.lock);
2083
2084 return 0;
2085
2086}
2087
0508901c 2088int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2089{
2090 BUG_ON(num == 0 || num > 0xf);
2091 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2092 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2093 A9WDOG_AUTO_OFF_DIS);
2094}
6f8cfa99 2095EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
84165b80 2096
0508901c 2097int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2098{
2099 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2100}
6f8cfa99 2101EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
84165b80 2102
0508901c 2103int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2104{
2105 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2106}
6f8cfa99 2107EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
84165b80 2108
0508901c 2109int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2110{
2111 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112}
6f8cfa99 2113EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
84165b80
JA
2114
2115/*
2116 * timeout is 28 bit, in ms.
2117 */
0508901c 2118int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2119{
84165b80
JA
2120 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2121 (id & A9WDOG_ID_MASK) |
2122 /*
2123 * Put the lowest 28 bits of timeout at
2124 * offset 4. Four first bits are used for id.
2125 */
2126 (u8)((timeout << 4) & 0xf0),
2127 (u8)((timeout >> 4) & 0xff),
2128 (u8)((timeout >> 12) & 0xff),
2129 (u8)((timeout >> 20) & 0xff));
2130}
6f8cfa99 2131EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
84165b80 2132
e3726fcf
LW
2133/**
2134 * prcmu_abb_read() - Read register value(s) from the ABB.
2135 * @slave: The I2C slave address.
2136 * @reg: The (start) register address.
2137 * @value: The read out value(s).
2138 * @size: The number of registers to read.
2139 *
2140 * Reads register value(s) from the ABB.
2141 * @size has to be 1 for the current firmware version.
2142 */
2143int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2144{
2145 int r;
2146
2147 if (size != 1)
2148 return -EINVAL;
2149
3df57bcf 2150 mutex_lock(&mb5_transfer.lock);
e3726fcf 2151
c553b3ca 2152 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2153 cpu_relax();
2154
3c3e4898 2155 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2156 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2157 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2158 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2159 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2160
c553b3ca 2161 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2162
e3726fcf 2163 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2164 msecs_to_jiffies(20000))) {
2165 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2166 __func__);
e3726fcf 2167 r = -EIO;
3df57bcf
MN
2168 } else {
2169 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2170 }
3df57bcf 2171
e3726fcf
LW
2172 if (!r)
2173 *value = mb5_transfer.ack.value;
2174
e3726fcf 2175 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2176
e3726fcf
LW
2177 return r;
2178}
e3726fcf
LW
2179
2180/**
3c3e4898 2181 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2182 * @slave: The I2C slave address.
2183 * @reg: The (start) register address.
2184 * @value: The value(s) to write.
3c3e4898 2185 * @mask: The mask(s) to use.
e3726fcf
LW
2186 * @size: The number of registers to write.
2187 *
3c3e4898
MN
2188 * Writes masked register value(s) to the ABB.
2189 * For each @value, only the bits set to 1 in the corresponding @mask
2190 * will be written. The other bits are not changed.
e3726fcf
LW
2191 * @size has to be 1 for the current firmware version.
2192 */
3c3e4898 2193int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2194{
2195 int r;
2196
2197 if (size != 1)
2198 return -EINVAL;
2199
3df57bcf 2200 mutex_lock(&mb5_transfer.lock);
e3726fcf 2201
c553b3ca 2202 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2203 cpu_relax();
2204
3c3e4898 2205 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2206 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2207 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2208 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2209 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2210
c553b3ca 2211 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2212
e3726fcf 2213 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2214 msecs_to_jiffies(20000))) {
2215 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2216 __func__);
e3726fcf 2217 r = -EIO;
3df57bcf
MN
2218 } else {
2219 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2220 }
e3726fcf 2221
e3726fcf 2222 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2223
e3726fcf
LW
2224 return r;
2225}
e3726fcf 2226
3c3e4898
MN
2227/**
2228 * prcmu_abb_write() - Write register value(s) to the ABB.
2229 * @slave: The I2C slave address.
2230 * @reg: The (start) register address.
2231 * @value: The value(s) to write.
2232 * @size: The number of registers to write.
2233 *
2234 * Writes register value(s) to the ABB.
2235 * @size has to be 1 for the current firmware version.
2236 */
2237int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2238{
2239 u8 mask = ~0;
2240
2241 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2242}
2243
3df57bcf
MN
2244/**
2245 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2246 */
5261e101 2247int prcmu_ac_wake_req(void)
e0befb23 2248{
3df57bcf 2249 u32 val;
5261e101 2250 int ret = 0;
e0befb23 2251
3df57bcf 2252 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2253
c553b3ca 2254 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2255 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2256 goto unlock_and_return;
e0befb23 2257
3df57bcf 2258 atomic_set(&ac_wake_req_state, 1);
e0befb23 2259
5261e101
AM
2260 /*
2261 * Force Modem Wake-up before hostaccess_req ping-pong.
2262 * It prevents Modem to enter in Sleep while acking the hostaccess
2263 * request. The 31us delay has been calculated by HWI.
2264 */
2265 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2266 writel(val, PRCM_HOSTACCESS_REQ);
2267
2268 udelay(31);
2269
2270 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2271 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2272
3df57bcf 2273 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2274 msecs_to_jiffies(5000))) {
57265bc1 2275 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2276 __func__);
5261e101 2277 ret = -EFAULT;
3df57bcf 2278 }
e0befb23 2279
3df57bcf
MN
2280unlock_and_return:
2281 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2282 return ret;
e0befb23
MP
2283}
2284
2285/**
3df57bcf 2286 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2287 */
ffb01160 2288void prcmu_ac_sleep_req(void)
e0befb23 2289{
3df57bcf
MN
2290 u32 val;
2291
2292 mutex_lock(&mb0_transfer.ac_wake_lock);
2293
c553b3ca 2294 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2295 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2296 goto unlock_and_return;
2297
2298 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2299 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2300
2301 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2302 msecs_to_jiffies(5000))) {
57265bc1 2303 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2304 __func__);
2305 }
2306
2307 atomic_set(&ac_wake_req_state, 0);
2308
2309unlock_and_return:
2310 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2311}
e0befb23 2312
73180f85 2313bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2314{
3df57bcf 2315 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2316}
e0befb23
MP
2317
2318/**
73180f85 2319 * db8500_prcmu_system_reset - System reset
e0befb23 2320 *
73180f85 2321 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2322 * fires interrupt to fw
e0befb23 2323 */
73180f85 2324void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2325{
3df57bcf 2326 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2327 writel(1, PRCM_APE_SOFTRST);
e0befb23 2328}
e0befb23 2329
597045de
SR
2330/**
2331 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2332 *
2333 * Retrieves the reset reason code stored by prcmu_system_reset() before
2334 * last restart.
2335 */
2336u16 db8500_prcmu_get_reset_code(void)
2337{
2338 return readw(tcdm_base + PRCM_SW_RST_REASON);
2339}
2340
e0befb23 2341/**
0508901c 2342 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2343 */
0508901c 2344void db8500_prcmu_modem_reset(void)
e0befb23 2345{
3df57bcf
MN
2346 mutex_lock(&mb1_transfer.lock);
2347
c553b3ca 2348 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2349 cpu_relax();
2350
2351 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2352 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2353 wait_for_completion(&mb1_transfer.work);
2354
2355 /*
2356 * No need to check return from PRCMU as modem should go in reset state
2357 * This state is already managed by upper layer
2358 */
2359
2360 mutex_unlock(&mb1_transfer.lock);
e0befb23 2361}
e0befb23 2362
3df57bcf 2363static void ack_dbb_wakeup(void)
e0befb23 2364{
3df57bcf
MN
2365 unsigned long flags;
2366
2367 spin_lock_irqsave(&mb0_transfer.lock, flags);
2368
c553b3ca 2369 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2370 cpu_relax();
2371
2372 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2373 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2374
2375 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2376}
e0befb23 2377
3df57bcf 2378static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2379{
81d30eda 2380 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
3df57bcf 2381 header, n);
e0befb23
MP
2382}
2383
3df57bcf 2384static bool read_mailbox_0(void)
e3726fcf 2385{
3df57bcf
MN
2386 bool r;
2387 u32 ev;
2388 unsigned int n;
2389 u8 header;
2390
2391 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2392 switch (header) {
2393 case MB0H_WAKEUP_EXE:
2394 case MB0H_WAKEUP_SLEEP:
2395 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2396 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2397 else
2398 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2399
2400 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2401 complete(&mb0_transfer.ac_wake_work);
2402 if (ev & WAKEUP_BIT_SYSCLK_OK)
2403 complete(&mb3_transfer.sysclk_work);
2404
2405 ev &= mb0_transfer.req.dbb_irqs;
2406
2407 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2408 if (ev & prcmu_irq_bit[n])
89d9b1c9 2409 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
3df57bcf
MN
2410 }
2411 r = true;
2412 break;
2413 default:
2414 print_unknown_header_warning(0, header);
2415 r = false;
2416 break;
2417 }
c553b3ca 2418 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2419 return r;
e3726fcf
LW
2420}
2421
3df57bcf 2422static bool read_mailbox_1(void)
e3726fcf 2423{
3df57bcf
MN
2424 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2425 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2426 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2427 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2428 PRCM_ACK_MB1_CURRENT_APE_OPP);
2429 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2430 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2431 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2432 complete(&mb1_transfer.work);
3df57bcf 2433 return false;
e3726fcf
LW
2434}
2435
3df57bcf 2436static bool read_mailbox_2(void)
e3726fcf 2437{
3df57bcf 2438 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2439 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2440 complete(&mb2_transfer.work);
2441 return false;
e3726fcf
LW
2442}
2443
3df57bcf 2444static bool read_mailbox_3(void)
e3726fcf 2445{
c553b3ca 2446 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2447 return false;
e3726fcf
LW
2448}
2449
3df57bcf 2450static bool read_mailbox_4(void)
e3726fcf 2451{
3df57bcf
MN
2452 u8 header;
2453 bool do_complete = true;
2454
2455 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2456 switch (header) {
2457 case MB4H_MEM_ST:
2458 case MB4H_HOTDOG:
2459 case MB4H_HOTMON:
2460 case MB4H_HOT_PERIOD:
a592c2e2
MN
2461 case MB4H_A9WDOG_CONF:
2462 case MB4H_A9WDOG_EN:
2463 case MB4H_A9WDOG_DIS:
2464 case MB4H_A9WDOG_LOAD:
2465 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2466 break;
2467 default:
2468 print_unknown_header_warning(4, header);
2469 do_complete = false;
2470 break;
2471 }
2472
c553b3ca 2473 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2474
2475 if (do_complete)
2476 complete(&mb4_transfer.work);
2477
2478 return false;
e3726fcf
LW
2479}
2480
3df57bcf 2481static bool read_mailbox_5(void)
e3726fcf 2482{
3df57bcf
MN
2483 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2484 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2485 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2486 complete(&mb5_transfer.work);
3df57bcf 2487 return false;
e3726fcf
LW
2488}
2489
3df57bcf 2490static bool read_mailbox_6(void)
e3726fcf 2491{
c553b3ca 2492 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2493 return false;
e3726fcf
LW
2494}
2495
3df57bcf 2496static bool read_mailbox_7(void)
e3726fcf 2497{
c553b3ca 2498 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2499 return false;
e3726fcf
LW
2500}
2501
3df57bcf 2502static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2503 read_mailbox_0,
2504 read_mailbox_1,
2505 read_mailbox_2,
2506 read_mailbox_3,
2507 read_mailbox_4,
2508 read_mailbox_5,
2509 read_mailbox_6,
2510 read_mailbox_7
2511};
2512
2513static irqreturn_t prcmu_irq_handler(int irq, void *data)
2514{
2515 u32 bits;
2516 u8 n;
3df57bcf 2517 irqreturn_t r;
e3726fcf 2518
c553b3ca 2519 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2520 if (unlikely(!bits))
2521 return IRQ_NONE;
2522
3df57bcf 2523 r = IRQ_HANDLED;
e3726fcf
LW
2524 for (n = 0; bits; n++) {
2525 if (bits & MBOX_BIT(n)) {
2526 bits -= MBOX_BIT(n);
3df57bcf
MN
2527 if (read_mailbox[n]())
2528 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2529 }
2530 }
3df57bcf
MN
2531 return r;
2532}
2533
2534static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2535{
2536 ack_dbb_wakeup();
e3726fcf
LW
2537 return IRQ_HANDLED;
2538}
2539
3df57bcf
MN
2540static void prcmu_mask_work(struct work_struct *work)
2541{
2542 unsigned long flags;
2543
2544 spin_lock_irqsave(&mb0_transfer.lock, flags);
2545
2546 config_wakeups();
2547
2548 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2549}
2550
2551static void prcmu_irq_mask(struct irq_data *d)
2552{
2553 unsigned long flags;
2554
2555 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2556
f3f1f0a1 2557 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2558
2559 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2560
2561 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2562 schedule_work(&mb0_transfer.mask_work);
2563}
2564
2565static void prcmu_irq_unmask(struct irq_data *d)
2566{
2567 unsigned long flags;
2568
2569 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2570
f3f1f0a1 2571 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2572
2573 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2574
2575 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2576 schedule_work(&mb0_transfer.mask_work);
2577}
2578
2579static void noop(struct irq_data *d)
2580{
2581}
2582
2583static struct irq_chip prcmu_irq_chip = {
2584 .name = "prcmu",
2585 .irq_disable = prcmu_irq_mask,
2586 .irq_ack = noop,
2587 .irq_mask = prcmu_irq_mask,
2588 .irq_unmask = prcmu_irq_unmask,
2589};
2590
a3888f62 2591static char *fw_project_name(u32 project)
b58d12fe
MN
2592{
2593 switch (project) {
2594 case PRCMU_FW_PROJECT_U8500:
2595 return "U8500";
05ec260e
LW
2596 case PRCMU_FW_PROJECT_U8400:
2597 return "U8400";
b58d12fe
MN
2598 case PRCMU_FW_PROJECT_U9500:
2599 return "U9500";
05ec260e
LW
2600 case PRCMU_FW_PROJECT_U8500_MBB:
2601 return "U8500 MBB";
2602 case PRCMU_FW_PROJECT_U8500_C1:
2603 return "U8500 C1";
2604 case PRCMU_FW_PROJECT_U8500_C2:
2605 return "U8500 C2";
2606 case PRCMU_FW_PROJECT_U8500_C3:
2607 return "U8500 C3";
2608 case PRCMU_FW_PROJECT_U8500_C4:
2609 return "U8500 C4";
2610 case PRCMU_FW_PROJECT_U9500_MBL:
2611 return "U9500 MBL";
2612 case PRCMU_FW_PROJECT_U8500_MBL:
2613 return "U8500 MBL";
2614 case PRCMU_FW_PROJECT_U8500_MBL2:
2615 return "U8500 MBL2";
5f96a1a6 2616 case PRCMU_FW_PROJECT_U8520:
05ec260e 2617 return "U8520 MBL";
1927ddf6
BJ
2618 case PRCMU_FW_PROJECT_U8420:
2619 return "U8420";
05ec260e
LW
2620 case PRCMU_FW_PROJECT_U9540:
2621 return "U9540";
2622 case PRCMU_FW_PROJECT_A9420:
2623 return "A9420";
2624 case PRCMU_FW_PROJECT_L8540:
2625 return "L8540";
2626 case PRCMU_FW_PROJECT_L8580:
2627 return "L8580";
b58d12fe
MN
2628 default:
2629 return "Unknown";
2630 }
2631}
2632
f3f1f0a1
LJ
2633static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2634 irq_hw_number_t hwirq)
2635{
2636 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2637 handle_simple_irq);
f3f1f0a1
LJ
2638
2639 return 0;
2640}
2641
7ce7b26f 2642static const struct irq_domain_ops db8500_irq_ops = {
89d9b1c9
LW
2643 .map = db8500_irq_map,
2644 .xlate = irq_domain_xlate_twocell,
f3f1f0a1
LJ
2645};
2646
f864c46a 2647static int db8500_irq_init(struct device_node *np)
f3f1f0a1 2648{
89d9b1c9 2649 int i;
a7238e43 2650
a7238e43 2651 db8500_irq_domain = irq_domain_add_simple(
f864c46a 2652 np, NUM_PRCMU_WAKEUPS, 0,
a7238e43 2653 &db8500_irq_ops, NULL);
f3f1f0a1
LJ
2654
2655 if (!db8500_irq_domain) {
2656 pr_err("Failed to create irqdomain\n");
2657 return -ENOSYS;
2658 }
2659
89d9b1c9
LW
2660 /* All wakeups will be used, so create mappings for all */
2661 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2662 irq_create_mapping(db8500_irq_domain, i);
2663
f3f1f0a1
LJ
2664 return 0;
2665}
2666
05ec260e
LW
2667static void dbx500_fw_version_init(struct platform_device *pdev,
2668 u32 version_offset)
fcbd458e 2669{
05ec260e
LW
2670 struct resource *res;
2671 void __iomem *tcpm_base;
741cdecf 2672 u32 version;
3df57bcf 2673
05ec260e
LW
2674 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2675 "prcmu-tcpm");
2676 if (!res) {
2677 dev_err(&pdev->dev,
2678 "Error: no prcmu tcpm memory region provided\n");
2679 return;
2680 }
2681 tcpm_base = ioremap(res->start, resource_size(res));
741cdecf
LJ
2682 if (!tcpm_base) {
2683 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2684 return;
fcbd458e 2685 }
741cdecf
LJ
2686
2687 version = readl(tcpm_base + version_offset);
2688 fw_info.version.project = (version & 0xFF);
2689 fw_info.version.api_version = (version >> 8) & 0xFF;
2690 fw_info.version.func_version = (version >> 16) & 0xFF;
2691 fw_info.version.errata = (version >> 24) & 0xFF;
2692 strncpy(fw_info.version.project_name,
2693 fw_project_name(fw_info.version.project),
2694 PRCMU_FW_PROJECT_NAME_LEN);
2695 fw_info.valid = true;
2696 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2697 fw_info.version.project_name,
2698 fw_info.version.project,
2699 fw_info.version.api_version,
2700 fw_info.version.func_version,
2701 fw_info.version.errata);
2702 iounmap(tcpm_base);
05ec260e 2703}
e0befb23 2704
9a47a8dc 2705void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
05ec260e 2706{
9a47a8dc
LW
2707 /*
2708 * This is a temporary remap to bring up the clocks. It is
2709 * subsequently replaces with a real remap. After the merge of
2710 * the mailbox subsystem all of this early code goes away, and the
2711 * clock driver can probe independently. An early initcall will
2712 * still be needed, but it can be diverted into drivers/clk/ux500.
2713 */
2714 prcmu_base = ioremap(phy_base, size);
2715 if (!prcmu_base)
2716 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2717
3df57bcf
MN
2718 spin_lock_init(&mb0_transfer.lock);
2719 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2720 mutex_init(&mb0_transfer.ac_wake_lock);
2721 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2722 mutex_init(&mb1_transfer.lock);
2723 init_completion(&mb1_transfer.work);
4d64d2e3 2724 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2725 mutex_init(&mb2_transfer.lock);
2726 init_completion(&mb2_transfer.work);
2727 spin_lock_init(&mb2_transfer.auto_pm_lock);
2728 spin_lock_init(&mb3_transfer.lock);
2729 mutex_init(&mb3_transfer.sysclk_lock);
2730 init_completion(&mb3_transfer.sysclk_work);
2731 mutex_init(&mb4_transfer.lock);
2732 init_completion(&mb4_transfer.work);
e3726fcf
LW
2733 mutex_init(&mb5_transfer.lock);
2734 init_completion(&mb5_transfer.work);
2735
3df57bcf 2736 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
3df57bcf
MN
2737}
2738
a3888f62 2739static void init_prcm_registers(void)
d65e12d7
MN
2740{
2741 u32 val;
2742
2743 val = readl(PRCM_A9PL_FORCE_CLKEN);
2744 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2745 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2746 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2747}
2748
1032fbfd
BJ
2749/*
2750 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2751 */
2752static struct regulator_consumer_supply db8500_vape_consumers[] = {
2753 REGULATOR_SUPPLY("v-ape", NULL),
2754 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2755 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2756 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2757 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2758 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2759 /* "v-mmc" changed to "vcore" in the mainline kernel */
2760 REGULATOR_SUPPLY("vcore", "sdi0"),
2761 REGULATOR_SUPPLY("vcore", "sdi1"),
2762 REGULATOR_SUPPLY("vcore", "sdi2"),
2763 REGULATOR_SUPPLY("vcore", "sdi3"),
2764 REGULATOR_SUPPLY("vcore", "sdi4"),
2765 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2766 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2767 /* "v-uart" changed to "vcore" in the mainline kernel */
2768 REGULATOR_SUPPLY("vcore", "uart0"),
2769 REGULATOR_SUPPLY("vcore", "uart1"),
2770 REGULATOR_SUPPLY("vcore", "uart2"),
2771 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2772 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2773 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2774};
2775
2776static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2777 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2778 /* AV8100 regulator */
2779 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2780};
2781
2782static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2783 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2784 REGULATOR_SUPPLY("vsupply", "mcde"),
2785};
2786
2787/* SVA MMDSP regulator switch */
2788static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2789 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2790};
2791
2792/* SVA pipe regulator switch */
2793static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2794 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2795};
2796
2797/* SIA MMDSP regulator switch */
2798static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2799 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2800};
2801
2802/* SIA pipe regulator switch */
2803static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2804 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2805};
2806
2807static struct regulator_consumer_supply db8500_sga_consumers[] = {
2808 REGULATOR_SUPPLY("v-mali", NULL),
2809};
2810
2811/* ESRAM1 and 2 regulator switch */
2812static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2813 REGULATOR_SUPPLY("esram12", "cm_control"),
2814};
2815
2816/* ESRAM3 and 4 regulator switch */
2817static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2818 REGULATOR_SUPPLY("v-esram34", "mcde"),
2819 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2820 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2821};
2822
2823static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2824 [DB8500_REGULATOR_VAPE] = {
2825 .constraints = {
2826 .name = "db8500-vape",
2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2828 .always_on = true,
1032fbfd
BJ
2829 },
2830 .consumer_supplies = db8500_vape_consumers,
2831 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2832 },
2833 [DB8500_REGULATOR_VARM] = {
2834 .constraints = {
2835 .name = "db8500-varm",
2836 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2837 },
2838 },
2839 [DB8500_REGULATOR_VMODEM] = {
2840 .constraints = {
2841 .name = "db8500-vmodem",
2842 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2843 },
2844 },
2845 [DB8500_REGULATOR_VPLL] = {
2846 .constraints = {
2847 .name = "db8500-vpll",
2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 },
2850 },
2851 [DB8500_REGULATOR_VSMPS1] = {
2852 .constraints = {
2853 .name = "db8500-vsmps1",
2854 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855 },
2856 },
2857 [DB8500_REGULATOR_VSMPS2] = {
2858 .constraints = {
2859 .name = "db8500-vsmps2",
2860 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861 },
2862 .consumer_supplies = db8500_vsmps2_consumers,
2863 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2864 },
2865 [DB8500_REGULATOR_VSMPS3] = {
2866 .constraints = {
2867 .name = "db8500-vsmps3",
2868 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869 },
2870 },
2871 [DB8500_REGULATOR_VRF1] = {
2872 .constraints = {
2873 .name = "db8500-vrf1",
2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875 },
2876 },
2877 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2878 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2879 .constraints = {
2880 .name = "db8500-sva-mmdsp",
2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 },
624e87c2
BJ
2883 .consumer_supplies = db8500_svammdsp_consumers,
2884 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2885 },
2886 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2887 .constraints = {
2888 /* "ret" means "retention" */
2889 .name = "db8500-sva-mmdsp-ret",
2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 },
2892 },
2893 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2894 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2895 .constraints = {
2896 .name = "db8500-sva-pipe",
2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 },
624e87c2
BJ
2899 .consumer_supplies = db8500_svapipe_consumers,
2900 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2901 },
2902 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2903 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2904 .constraints = {
2905 .name = "db8500-sia-mmdsp",
2906 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907 },
624e87c2
BJ
2908 .consumer_supplies = db8500_siammdsp_consumers,
2909 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2910 },
2911 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2912 .constraints = {
2913 .name = "db8500-sia-mmdsp-ret",
2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 },
2916 },
2917 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2918 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2919 .constraints = {
2920 .name = "db8500-sia-pipe",
2921 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922 },
624e87c2
BJ
2923 .consumer_supplies = db8500_siapipe_consumers,
2924 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2925 },
2926 [DB8500_REGULATOR_SWITCH_SGA] = {
2927 .supply_regulator = "db8500-vape",
2928 .constraints = {
2929 .name = "db8500-sga",
2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 },
624e87c2
BJ
2932 .consumer_supplies = db8500_sga_consumers,
2933 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2934
1032fbfd
BJ
2935 },
2936 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2937 .supply_regulator = "db8500-vape",
2938 .constraints = {
2939 .name = "db8500-b2r2-mcde",
2940 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941 },
2942 .consumer_supplies = db8500_b2r2_mcde_consumers,
2943 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2944 },
2945 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2946 /*
2947 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2948 * no need to hold Vape
2949 */
1032fbfd
BJ
2950 .constraints = {
2951 .name = "db8500-esram12",
2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 },
624e87c2
BJ
2954 .consumer_supplies = db8500_esram12_consumers,
2955 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2956 },
2957 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2958 .constraints = {
2959 .name = "db8500-esram12-ret",
2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 },
2962 },
2963 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2964 /*
2965 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2966 * no need to hold Vape
2967 */
1032fbfd
BJ
2968 .constraints = {
2969 .name = "db8500-esram34",
2970 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2971 },
624e87c2
BJ
2972 .consumer_supplies = db8500_esram34_consumers,
2973 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2974 },
2975 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2976 .constraints = {
2977 .name = "db8500-esram34-ret",
2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979 },
2980 },
2981};
2982
b3aac62b
FB
2983static struct ux500_wdt_data db8500_wdt_pdata = {
2984 .timeout = 600, /* 10 minutes */
2985 .has_28_bits_resolution = true,
2986};
55b175d7
AB
2987/*
2988 * Thermal Sensor
2989 */
2990
2991static struct resource db8500_thsens_resources[] = {
2992 {
2993 .name = "IRQ_HOTMON_LOW",
2994 .start = IRQ_PRCMU_HOTMON_LOW,
2995 .end = IRQ_PRCMU_HOTMON_LOW,
2996 .flags = IORESOURCE_IRQ,
2997 },
2998 {
2999 .name = "IRQ_HOTMON_HIGH",
3000 .start = IRQ_PRCMU_HOTMON_HIGH,
3001 .end = IRQ_PRCMU_HOTMON_HIGH,
3002 .flags = IORESOURCE_IRQ,
3003 },
3004};
3005
3006static struct db8500_thsens_platform_data db8500_thsens_data = {
3007 .trip_points[0] = {
3008 .temp = 70000,
3009 .type = THERMAL_TRIP_ACTIVE,
3010 .cdev_name = {
3011 [0] = "thermal-cpufreq-0",
3012 },
3013 },
3014 .trip_points[1] = {
3015 .temp = 75000,
3016 .type = THERMAL_TRIP_ACTIVE,
3017 .cdev_name = {
3018 [0] = "thermal-cpufreq-0",
3019 },
3020 },
3021 .trip_points[2] = {
3022 .temp = 80000,
3023 .type = THERMAL_TRIP_ACTIVE,
3024 .cdev_name = {
3025 [0] = "thermal-cpufreq-0",
3026 },
3027 },
3028 .trip_points[3] = {
3029 .temp = 85000,
3030 .type = THERMAL_TRIP_CRITICAL,
3031 },
3032 .num_trips = 4,
3033};
b3aac62b 3034
5ac98553 3035static const struct mfd_cell common_prcmu_devs[] = {
d98a5384
LJ
3036 {
3037 .name = "ux500_wdt",
3038 .platform_data = &db8500_wdt_pdata,
3039 .pdata_size = sizeof(db8500_wdt_pdata),
3040 .id = -1,
3041 },
3042};
3043
5ac98553 3044static const struct mfd_cell db8500_prcmu_devs[] = {
3df57bcf
MN
3045 {
3046 .name = "db8500-prcmu-regulators",
5d90322b 3047 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3048 .platform_data = &db8500_regulators,
3049 .pdata_size = sizeof(db8500_regulators),
3df57bcf 3050 },
8025395f
LW
3051 {
3052 .name = "cpuidle-dbx500",
3053 .of_compatible = "stericsson,cpuidle-dbx500",
3054 },
6d11d135 3055 {
55b175d7
AB
3056 .name = "db8500-thermal",
3057 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3058 .resources = db8500_thsens_resources,
3059 .platform_data = &db8500_thsens_data,
a3ef0deb 3060 .pdata_size = sizeof(db8500_thsens_data),
6d11d135 3061 },
3df57bcf
MN
3062};
3063
4e657946 3064static int db8500_prcmu_register_ab8500(struct device *parent)
55b175d7 3065{
f864c46a
LW
3066 struct device_node *np;
3067 struct resource ab8500_resource;
5785a97e 3068 const struct mfd_cell ab8500_cell = {
55b175d7
AB
3069 .name = "ab8500-core",
3070 .of_compatible = "stericsson,ab8500",
3071 .id = AB8500_VERSION_AB8500,
55b175d7
AB
3072 .resources = &ab8500_resource,
3073 .num_resources = 1,
3074 };
3075
f864c46a
LW
3076 if (!parent->of_node)
3077 return -ENODEV;
3078
3079 /* Look up the device node, sneak the IRQ out of it */
3080 for_each_child_of_node(parent->of_node, np) {
3081 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3082 break;
3083 }
3084 if (!np) {
3085 dev_info(parent, "could not find AB8500 node in the device tree\n");
3086 return -ENODEV;
3087 }
3088 of_irq_to_resource_table(np, &ab8500_resource, 1);
3089
55b175d7
AB
3090 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3091}
3092
3df57bcf
MN
3093/**
3094 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3095 *
3096 */
f791be49 3097static int db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3098{
ca7edd16 3099 struct device_node *np = pdev->dev.of_node;
55b175d7 3100 int irq = 0, err = 0;
05ec260e 3101 struct resource *res;
3df57bcf 3102
b047d981
LW
3103 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3104 if (!res) {
3105 dev_err(&pdev->dev, "no prcmu memory region provided\n");
6bdf891a 3106 return -EINVAL;
b047d981
LW
3107 }
3108 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3109 if (!prcmu_base) {
3110 dev_err(&pdev->dev,
3111 "failed to ioremap prcmu register memory\n");
6bdf891a 3112 return -ENOMEM;
b047d981 3113 }
0508901c 3114 init_prcm_registers();
4e657946 3115 dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
05ec260e
LW
3116 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3117 if (!res) {
3118 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
6bdf891a 3119 return -EINVAL;
05ec260e
LW
3120 }
3121 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3122 resource_size(res));
51a7e02b
PG
3123 if (!tcdm_base) {
3124 dev_err(&pdev->dev,
3125 "failed to ioremap prcmu-tcdm register memory\n");
6bdf891a 3126 return -ENOMEM;
51a7e02b 3127 }
05ec260e 3128
e3726fcf 3129 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3130 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3131
05ec260e
LW
3132 irq = platform_get_irq(pdev, 0);
3133 if (irq <= 0) {
3134 dev_err(&pdev->dev, "no prcmu irq provided\n");
6bdf891a 3135 return irq;
05ec260e 3136 }
ca7edd16
LJ
3137
3138 err = request_threaded_irq(irq, prcmu_irq_handler,
3139 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3140 if (err < 0) {
3141 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
6bdf891a 3142 return err;
3df57bcf
MN
3143 }
3144
f864c46a 3145 db8500_irq_init(np);
3a8e39c9 3146
7a4f2609 3147 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3df57bcf 3148
d98a5384
LJ
3149 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3150 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
5d90322b
LJ
3151 if (err) {
3152 pr_err("prcmu: Failed to add subdevices\n");
3153 return err;
ca7edd16 3154 }
e3726fcf 3155
d98a5384
LJ
3156 /* TODO: Remove restriction when clk definitions are available. */
3157 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3158 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3159 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3160 db8500_irq_domain);
3161 if (err) {
3162 mfd_remove_devices(&pdev->dev);
3163 pr_err("prcmu: Failed to add subdevices\n");
6bdf891a 3164 return err;
d98a5384
LJ
3165 }
3166 }
3167
4e657946 3168 err = db8500_prcmu_register_ab8500(&pdev->dev);
55b175d7
AB
3169 if (err) {
3170 mfd_remove_devices(&pdev->dev);
3171 pr_err("prcmu: Failed to add ab8500 subdevice\n");
6bdf891a 3172 return err;
55b175d7
AB
3173 }
3174
ca7edd16 3175 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3176 return err;
3177}
3c144762
LJ
3178static const struct of_device_id db8500_prcmu_match[] = {
3179 { .compatible = "stericsson,db8500-prcmu"},
3180 { },
3181};
3df57bcf
MN
3182
3183static struct platform_driver db8500_prcmu_driver = {
3184 .driver = {
3185 .name = "db8500-prcmu",
3c144762 3186 .of_match_table = db8500_prcmu_match,
3df57bcf 3187 },
9fc63f67 3188 .probe = db8500_prcmu_probe,
3df57bcf
MN
3189};
3190
3191static int __init db8500_prcmu_init(void)
3192{
9fc63f67 3193 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf 3194}
a661aca4 3195core_initcall(db8500_prcmu_init);