]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/can/spi/mcp251x.c
Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / drivers / net / can / spi / mcp251x.c
CommitLineData
35e62ae8 1// SPDX-License-Identifier: GPL-2.0-only
e0000163 2/*
35b7fa4d 3 * CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
e0000163
CP
4 *
5 * MCP2510 support and bug fixes by Christian Pellegrin
6 * <chripell@evolware.org>
7 *
8 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
9 *
10 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
11 * Written under contract by:
12 * Chris Elston, Katalix Systems, Ltd.
13 *
14 * Based on Microchip MCP251x CAN controller driver written by
15 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
16 *
17 * Based on CAN bus driver for the CCAN controller written by
18 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
19 * - Simon Kallweit, intefo AG
20 * Copyright 2007
21 *
e0000163
CP
22 * Your platform definition file should specify something like:
23 *
24 * static struct mcp251x_platform_data mcp251x_info = {
25 * .oscillator_frequency = 8000000,
e0000163
CP
26 * };
27 *
28 * static struct spi_board_info spi_board_info[] = {
29 * {
f1f8c6cb 30 * .modalias = "mcp2510",
35b7fa4d 31 * // "mcp2515" or "mcp25625" depending on your controller
e0000163
CP
32 * .platform_data = &mcp251x_info,
33 * .irq = IRQ_EINT13,
34 * .max_speed_hz = 2*1000*1000,
35 * .chip_select = 2,
36 * },
37 * };
38 *
39 * Please see mcp251x.h for a description of the fields in
40 * struct mcp251x_platform_data.
e0000163
CP
41 */
42
e0000163
CP
43#include <linux/can/core.h>
44#include <linux/can/dev.h>
eb072a9b 45#include <linux/can/led.h>
e0000163 46#include <linux/can/platform/mcp251x.h>
66606aaf 47#include <linux/clk.h>
e0000163
CP
48#include <linux/completion.h>
49#include <linux/delay.h>
50#include <linux/device.h>
51#include <linux/dma-mapping.h>
52#include <linux/freezer.h>
53#include <linux/interrupt.h>
54#include <linux/io.h>
55#include <linux/kernel.h>
56#include <linux/module.h>
57#include <linux/netdevice.h>
66606aaf
AS
58#include <linux/of.h>
59#include <linux/of_device.h>
e0000163 60#include <linux/platform_device.h>
5a0e3ad6 61#include <linux/slab.h>
e0000163
CP
62#include <linux/spi/spi.h>
63#include <linux/uaccess.h>
1ddff7da 64#include <linux/regulator/consumer.h>
e0000163
CP
65
66/* SPI interface instruction set */
67#define INSTRUCTION_WRITE 0x02
68#define INSTRUCTION_READ 0x03
69#define INSTRUCTION_BIT_MODIFY 0x05
70#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
71#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
72#define INSTRUCTION_RESET 0xC0
cab32f39
BL
73#define RTS_TXB0 0x01
74#define RTS_TXB1 0x02
75#define RTS_TXB2 0x04
76#define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
77
e0000163
CP
78
79/* MPC251x registers */
80#define CANSTAT 0x0e
81#define CANCTRL 0x0f
82# define CANCTRL_REQOP_MASK 0xe0
83# define CANCTRL_REQOP_CONF 0x80
84# define CANCTRL_REQOP_LISTEN_ONLY 0x60
85# define CANCTRL_REQOP_LOOPBACK 0x40
86# define CANCTRL_REQOP_SLEEP 0x20
87# define CANCTRL_REQOP_NORMAL 0x00
88# define CANCTRL_OSM 0x08
89# define CANCTRL_ABAT 0x10
90#define TEC 0x1c
91#define REC 0x1d
92#define CNF1 0x2a
93# define CNF1_SJW_SHIFT 6
94#define CNF2 0x29
95# define CNF2_BTLMODE 0x80
96# define CNF2_SAM 0x40
97# define CNF2_PS1_SHIFT 3
98#define CNF3 0x28
99# define CNF3_SOF 0x08
100# define CNF3_WAKFIL 0x04
101# define CNF3_PHSEG2_MASK 0x07
102#define CANINTE 0x2b
103# define CANINTE_MERRE 0x80
104# define CANINTE_WAKIE 0x40
105# define CANINTE_ERRIE 0x20
106# define CANINTE_TX2IE 0x10
107# define CANINTE_TX1IE 0x08
108# define CANINTE_TX0IE 0x04
109# define CANINTE_RX1IE 0x02
110# define CANINTE_RX0IE 0x01
111#define CANINTF 0x2c
112# define CANINTF_MERRF 0x80
113# define CANINTF_WAKIF 0x40
114# define CANINTF_ERRIF 0x20
115# define CANINTF_TX2IF 0x10
116# define CANINTF_TX1IF 0x08
117# define CANINTF_TX0IF 0x04
118# define CANINTF_RX1IF 0x02
119# define CANINTF_RX0IF 0x01
5601b2df
MKB
120# define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
121# define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
122# define CANINTF_ERR (CANINTF_ERRIF)
e0000163
CP
123#define EFLG 0x2d
124# define EFLG_EWARN 0x01
125# define EFLG_RXWAR 0x02
126# define EFLG_TXWAR 0x04
127# define EFLG_RXEP 0x08
128# define EFLG_TXEP 0x10
129# define EFLG_TXBO 0x20
130# define EFLG_RX0OVR 0x40
131# define EFLG_RX1OVR 0x80
132#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
133# define TXBCTRL_ABTF 0x40
134# define TXBCTRL_MLOA 0x20
135# define TXBCTRL_TXERR 0x10
136# define TXBCTRL_TXREQ 0x08
137#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
138# define SIDH_SHIFT 3
139#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
140# define SIDL_SID_MASK 7
141# define SIDL_SID_SHIFT 5
142# define SIDL_EXIDE_SHIFT 3
143# define SIDL_EID_SHIFT 16
144# define SIDL_EID_MASK 3
145#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
146#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
147#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
148# define DLC_RTR_SHIFT 6
149#define TXBCTRL_OFF 0
150#define TXBSIDH_OFF 1
151#define TXBSIDL_OFF 2
152#define TXBEID8_OFF 3
153#define TXBEID0_OFF 4
154#define TXBDLC_OFF 5
155#define TXBDAT_OFF 6
156#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
157# define RXBCTRL_BUKT 0x04
158# define RXBCTRL_RXM0 0x20
159# define RXBCTRL_RXM1 0x40
160#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
161# define RXBSIDH_SHIFT 3
162#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
163# define RXBSIDL_IDE 0x08
b9958a95 164# define RXBSIDL_SRR 0x10
e0000163
CP
165# define RXBSIDL_EID 3
166# define RXBSIDL_SHIFT 5
167#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
168#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
169#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
170# define RXBDLC_LEN_MASK 0x0f
171# define RXBDLC_RTR 0x40
172#define RXBCTRL_OFF 0
173#define RXBSIDH_OFF 1
174#define RXBSIDL_OFF 2
175#define RXBEID8_OFF 3
176#define RXBEID0_OFF 4
177#define RXBDLC_OFF 5
178#define RXBDAT_OFF 6
3d5db5e1
TK
179#define RXFSID(n) ((n < 3) ? 0 : 4)
180#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
181#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
182#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
183#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
bf66f373
CP
184#define RXMSIDH(n) ((n) * 4 + 0x20)
185#define RXMSIDL(n) ((n) * 4 + 0x21)
186#define RXMEID8(n) ((n) * 4 + 0x22)
187#define RXMEID0(n) ((n) * 4 + 0x23)
e0000163
CP
188
189#define GET_BYTE(val, byte) \
190 (((val) >> ((byte) * 8)) & 0xff)
191#define SET_BYTE(val, byte) \
192 (((val) & 0xff) << ((byte) * 8))
193
194/*
195 * Buffer size required for the largest SPI transfer (i.e., reading a
196 * frame)
197 */
198#define CAN_FRAME_MAX_DATA_LEN 8
199#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
200#define CAN_FRAME_MAX_BITS 128
201
202#define TX_ECHO_SKB_MAX 1
203
ff06d611
AS
204#define MCP251X_OST_DELAY_MS (5)
205
e0000163
CP
206#define DEVICE_NAME "mcp251x"
207
208static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
d61e4038 209module_param(mcp251x_enable_dma, int, 0444);
e0000163
CP
210MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
211
194b9a4c 212static const struct can_bittiming_const mcp251x_bittiming_const = {
e0000163
CP
213 .name = DEVICE_NAME,
214 .tseg1_min = 3,
215 .tseg1_max = 16,
216 .tseg2_min = 2,
217 .tseg2_max = 8,
218 .sjw_max = 4,
219 .brp_min = 1,
220 .brp_max = 64,
221 .brp_inc = 1,
222};
223
f1f8c6cb
MKB
224enum mcp251x_model {
225 CAN_MCP251X_MCP2510 = 0x2510,
226 CAN_MCP251X_MCP2515 = 0x2515,
35b7fa4d 227 CAN_MCP251X_MCP25625 = 0x25625,
f1f8c6cb
MKB
228};
229
e0000163
CP
230struct mcp251x_priv {
231 struct can_priv can;
232 struct net_device *net;
233 struct spi_device *spi;
f1f8c6cb 234 enum mcp251x_model model;
e0000163 235
bf66f373
CP
236 struct mutex mcp_lock; /* SPI device lock */
237
e0000163
CP
238 u8 *spi_tx_buf;
239 u8 *spi_rx_buf;
240 dma_addr_t spi_tx_dma;
241 dma_addr_t spi_rx_dma;
242
243 struct sk_buff *tx_skb;
244 int tx_len;
bf66f373 245
e0000163
CP
246 struct workqueue_struct *wq;
247 struct work_struct tx_work;
bf66f373
CP
248 struct work_struct restart_work;
249
e0000163
CP
250 int force_quit;
251 int after_suspend;
252#define AFTER_SUSPEND_UP 1
253#define AFTER_SUSPEND_DOWN 2
254#define AFTER_SUSPEND_POWER 4
255#define AFTER_SUSPEND_RESTART 8
256 int restart_tx;
1ddff7da
AS
257 struct regulator *power;
258 struct regulator *transceiver;
66606aaf 259 struct clk *clk;
e0000163
CP
260};
261
beab675c
MKB
262#define MCP251X_IS(_model) \
263static inline int mcp251x_is_##_model(struct spi_device *spi) \
264{ \
fce5c293 265 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
beab675c
MKB
266 return priv->model == CAN_MCP251X_MCP##_model; \
267}
268
269MCP251X_IS(2510);
beab675c 270
e0000163
CP
271static void mcp251x_clean(struct net_device *net)
272{
273 struct mcp251x_priv *priv = netdev_priv(net);
274
bf66f373
CP
275 if (priv->tx_skb || priv->tx_len)
276 net->stats.tx_errors++;
e0000163
CP
277 if (priv->tx_skb)
278 dev_kfree_skb(priv->tx_skb);
279 if (priv->tx_len)
280 can_free_echo_skb(priv->net, 0);
281 priv->tx_skb = NULL;
282 priv->tx_len = 0;
283}
284
285/*
286 * Note about handling of error return of mcp251x_spi_trans: accessing
287 * registers via SPI is not really different conceptually than using
288 * normal I/O assembler instructions, although it's much more
289 * complicated from a practical POV. So it's not advisable to always
290 * check the return value of this function. Imagine that every
291 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
292 * error();", it would be a great mess (well there are some situation
293 * when exception handling C++ like could be useful after all). So we
294 * just check that transfers are OK at the beginning of our
295 * conversation with the chip and to avoid doing really nasty things
296 * (like injecting bogus packets in the network stack).
297 */
298static int mcp251x_spi_trans(struct spi_device *spi, int len)
299{
fce5c293 300 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
301 struct spi_transfer t = {
302 .tx_buf = priv->spi_tx_buf,
303 .rx_buf = priv->spi_rx_buf,
304 .len = len,
305 .cs_change = 0,
306 };
307 struct spi_message m;
308 int ret;
309
310 spi_message_init(&m);
311
312 if (mcp251x_enable_dma) {
313 t.tx_dma = priv->spi_tx_dma;
314 t.rx_dma = priv->spi_rx_dma;
315 m.is_dma_mapped = 1;
316 }
317
318 spi_message_add_tail(&t, &m);
319
320 ret = spi_sync(spi, &m);
321 if (ret)
322 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
323 return ret;
324}
325
326static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
327{
fce5c293 328 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
329 u8 val = 0;
330
e0000163
CP
331 priv->spi_tx_buf[0] = INSTRUCTION_READ;
332 priv->spi_tx_buf[1] = reg;
333
334 mcp251x_spi_trans(spi, 3);
335 val = priv->spi_rx_buf[2];
336
e0000163
CP
337 return val;
338}
339
f3a3ed31
SH
340static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
341 uint8_t *v1, uint8_t *v2)
342{
fce5c293 343 struct mcp251x_priv *priv = spi_get_drvdata(spi);
f3a3ed31
SH
344
345 priv->spi_tx_buf[0] = INSTRUCTION_READ;
346 priv->spi_tx_buf[1] = reg;
347
348 mcp251x_spi_trans(spi, 4);
349
350 *v1 = priv->spi_rx_buf[2];
351 *v2 = priv->spi_rx_buf[3];
352}
353
e0000163
CP
354static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
355{
fce5c293 356 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 357
e0000163
CP
358 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
359 priv->spi_tx_buf[1] = reg;
360 priv->spi_tx_buf[2] = val;
361
362 mcp251x_spi_trans(spi, 3);
e0000163
CP
363}
364
365static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
366 u8 mask, uint8_t val)
367{
fce5c293 368 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 369
e0000163
CP
370 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
371 priv->spi_tx_buf[1] = reg;
372 priv->spi_tx_buf[2] = mask;
373 priv->spi_tx_buf[3] = val;
374
375 mcp251x_spi_trans(spi, 4);
e0000163
CP
376}
377
378static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
379 int len, int tx_buf_idx)
380{
fce5c293 381 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 382
beab675c 383 if (mcp251x_is_2510(spi)) {
e0000163
CP
384 int i;
385
386 for (i = 1; i < TXBDAT_OFF + len; i++)
387 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
388 buf[i]);
389 } else {
e0000163
CP
390 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
391 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
e0000163
CP
392 }
393}
394
395static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
396 int tx_buf_idx)
397{
fce5c293 398 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
399 u32 sid, eid, exide, rtr;
400 u8 buf[SPI_TRANSFER_BUF_LEN];
401
402 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
403 if (exide)
404 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
405 else
406 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
407 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
408 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
409
410 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
411 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
412 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
413 (exide << SIDL_EXIDE_SHIFT) |
414 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
415 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
416 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
417 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
418 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
419 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
cab32f39
BL
420
421 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
422 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
423 mcp251x_spi_trans(priv->spi, 1);
e0000163
CP
424}
425
426static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
427 int buf_idx)
428{
fce5c293 429 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 430
beab675c 431 if (mcp251x_is_2510(spi)) {
e0000163
CP
432 int i, len;
433
434 for (i = 1; i < RXBDAT_OFF; i++)
435 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
c7cd606f
OH
436
437 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
438 for (; i < (RXBDAT_OFF + len); i++)
439 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
440 } else {
e0000163
CP
441 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
442 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
443 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
e0000163
CP
444 }
445}
446
447static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
448{
fce5c293 449 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
450 struct sk_buff *skb;
451 struct can_frame *frame;
452 u8 buf[SPI_TRANSFER_BUF_LEN];
453
454 skb = alloc_can_skb(priv->net, &frame);
455 if (!skb) {
456 dev_err(&spi->dev, "cannot allocate RX skb\n");
457 priv->net->stats.rx_dropped++;
458 return;
459 }
460
461 mcp251x_hw_rx_frame(spi, buf, buf_idx);
462 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
463 /* Extended ID format */
464 frame->can_id = CAN_EFF_FLAG;
465 frame->can_id |=
466 /* Extended ID part */
467 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
468 SET_BYTE(buf[RXBEID8_OFF], 1) |
469 SET_BYTE(buf[RXBEID0_OFF], 0) |
470 /* Standard ID part */
471 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
472 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
473 /* Remote transmission request */
474 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
475 frame->can_id |= CAN_RTR_FLAG;
476 } else {
477 /* Standard ID format */
478 frame->can_id =
479 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
480 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
b9958a95
MKB
481 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
482 frame->can_id |= CAN_RTR_FLAG;
e0000163
CP
483 }
484 /* Data length */
c7cd606f 485 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
486 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
487
488 priv->net->stats.rx_packets++;
489 priv->net->stats.rx_bytes += frame->can_dlc;
eb072a9b
FB
490
491 can_led_event(priv->net, CAN_LED_EVENT_RX);
492
57d3c7b0 493 netif_rx_ni(skb);
e0000163
CP
494}
495
496static void mcp251x_hw_sleep(struct spi_device *spi)
497{
498 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
499}
500
e0000163
CP
501static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
502 struct net_device *net)
503{
504 struct mcp251x_priv *priv = netdev_priv(net);
505 struct spi_device *spi = priv->spi;
506
507 if (priv->tx_skb || priv->tx_len) {
508 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
e0000163
CP
509 return NETDEV_TX_BUSY;
510 }
511
3ccd4c61 512 if (can_dropped_invalid_skb(net, skb))
e0000163 513 return NETDEV_TX_OK;
e0000163
CP
514
515 netif_stop_queue(net);
516 priv->tx_skb = skb;
e0000163
CP
517 queue_work(priv->wq, &priv->tx_work);
518
519 return NETDEV_TX_OK;
520}
521
522static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
523{
524 struct mcp251x_priv *priv = netdev_priv(net);
525
526 switch (mode) {
527 case CAN_MODE_START:
bf66f373 528 mcp251x_clean(net);
e0000163
CP
529 /* We have to delay work since SPI I/O may sleep */
530 priv->can.state = CAN_STATE_ERROR_ACTIVE;
531 priv->restart_tx = 1;
532 if (priv->can.restart_ms == 0)
533 priv->after_suspend = AFTER_SUSPEND_RESTART;
bf66f373 534 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
535 break;
536 default:
537 return -EOPNOTSUPP;
538 }
539
540 return 0;
541}
542
bf66f373 543static int mcp251x_set_normal_mode(struct spi_device *spi)
e0000163 544{
fce5c293 545 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
546 unsigned long timeout;
547
548 /* Enable interrupts */
549 mcp251x_write_reg(spi, CANINTE,
550 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
bf66f373 551 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
e0000163
CP
552
553 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
554 /* Put device into loopback mode */
555 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
ad72c347
CP
556 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
557 /* Put device into listen-only mode */
558 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
e0000163
CP
559 } else {
560 /* Put device into normal mode */
bf66f373 561 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
e0000163
CP
562
563 /* Wait for the device to enter normal mode */
564 timeout = jiffies + HZ;
565 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
566 schedule();
567 if (time_after(jiffies, timeout)) {
568 dev_err(&spi->dev, "MCP251x didn't"
569 " enter in normal mode\n");
bf66f373 570 return -EBUSY;
e0000163
CP
571 }
572 }
573 }
574 priv->can.state = CAN_STATE_ERROR_ACTIVE;
bf66f373 575 return 0;
e0000163
CP
576}
577
578static int mcp251x_do_set_bittiming(struct net_device *net)
579{
580 struct mcp251x_priv *priv = netdev_priv(net);
581 struct can_bittiming *bt = &priv->can.bittiming;
582 struct spi_device *spi = priv->spi;
583
584 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
585 (bt->brp - 1));
586 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
587 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
588 CNF2_SAM : 0) |
589 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
590 (bt->prop_seg - 1));
591 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
592 (bt->phase_seg2 - 1));
1e6cacdb
AS
593 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
594 mcp251x_read_reg(spi, CNF1),
595 mcp251x_read_reg(spi, CNF2),
596 mcp251x_read_reg(spi, CNF3));
e0000163
CP
597
598 return 0;
599}
600
aa681722 601static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
e0000163 602{
615534bc 603 mcp251x_do_set_bittiming(net);
e0000163 604
bf66f373
CP
605 mcp251x_write_reg(spi, RXBCTRL(0),
606 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
607 mcp251x_write_reg(spi, RXBCTRL(1),
608 RXBCTRL_RXM0 | RXBCTRL_RXM1);
e0000163
CP
609 return 0;
610}
611
bf66f373 612static int mcp251x_hw_reset(struct spi_device *spi)
e0000163 613{
fce5c293 614 struct mcp251x_priv *priv = spi_get_drvdata(spi);
ff06d611 615 u8 reg;
e0000163 616 int ret;
ff06d611
AS
617
618 /* Wait for oscillator startup timer after power up */
619 mdelay(MCP251X_OST_DELAY_MS);
e0000163
CP
620
621 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
ff06d611
AS
622 ret = mcp251x_spi_trans(spi, 1);
623 if (ret)
624 return ret;
625
626 /* Wait for oscillator startup timer after reset */
627 mdelay(MCP251X_OST_DELAY_MS);
35b7fa4d 628
ff06d611
AS
629 reg = mcp251x_read_reg(spi, CANSTAT);
630 if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
631 return -ENODEV;
bf66f373 632
bf66f373 633 return 0;
e0000163
CP
634}
635
636static int mcp251x_hw_probe(struct spi_device *spi)
637{
ee967fff
AS
638 u8 ctrl;
639 int ret;
640
641 ret = mcp251x_hw_reset(spi);
642 if (ret)
643 return ret;
e0000163 644
ee967fff 645 ctrl = mcp251x_read_reg(spi, CANCTRL);
e0000163 646
ee967fff 647 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
e0000163 648
ee967fff
AS
649 /* Check for power up default value */
650 if ((ctrl & 0x17) != 0x07)
651 return -ENODEV;
e0000163 652
ee967fff 653 return 0;
e0000163
CP
654}
655
1ddff7da
AS
656static int mcp251x_power_enable(struct regulator *reg, int enable)
657{
76aeec83 658 if (IS_ERR_OR_NULL(reg))
1ddff7da
AS
659 return 0;
660
661 if (enable)
662 return regulator_enable(reg);
663 else
664 return regulator_disable(reg);
665}
666
e0000163
CP
667static int mcp251x_stop(struct net_device *net)
668{
669 struct mcp251x_priv *priv = netdev_priv(net);
670 struct spi_device *spi = priv->spi;
e0000163
CP
671
672 close_candev(net);
673
bf66f373
CP
674 priv->force_quit = 1;
675 free_irq(spi->irq, priv);
676 destroy_workqueue(priv->wq);
677 priv->wq = NULL;
678
679 mutex_lock(&priv->mcp_lock);
680
e0000163
CP
681 /* Disable and clear pending interrupts */
682 mcp251x_write_reg(spi, CANINTE, 0x00);
683 mcp251x_write_reg(spi, CANINTF, 0x00);
684
e0000163 685 mcp251x_write_reg(spi, TXBCTRL(0), 0);
bf66f373 686 mcp251x_clean(net);
e0000163
CP
687
688 mcp251x_hw_sleep(spi);
689
1ddff7da 690 mcp251x_power_enable(priv->transceiver, 0);
e0000163
CP
691
692 priv->can.state = CAN_STATE_STOPPED;
693
bf66f373
CP
694 mutex_unlock(&priv->mcp_lock);
695
eb072a9b
FB
696 can_led_event(net, CAN_LED_EVENT_STOP);
697
e0000163
CP
698 return 0;
699}
700
bf66f373
CP
701static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
702{
703 struct sk_buff *skb;
704 struct can_frame *frame;
705
706 skb = alloc_can_err_skb(net, &frame);
707 if (skb) {
612eef4f 708 frame->can_id |= can_id;
bf66f373 709 frame->data[1] = data1;
57d3c7b0 710 netif_rx_ni(skb);
bf66f373 711 } else {
aabdfd6a 712 netdev_err(net, "cannot allocate error skb\n");
bf66f373
CP
713 }
714}
715
e0000163
CP
716static void mcp251x_tx_work_handler(struct work_struct *ws)
717{
718 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
719 tx_work);
720 struct spi_device *spi = priv->spi;
721 struct net_device *net = priv->net;
722 struct can_frame *frame;
723
bf66f373 724 mutex_lock(&priv->mcp_lock);
e0000163 725 if (priv->tx_skb) {
e0000163
CP
726 if (priv->can.state == CAN_STATE_BUS_OFF) {
727 mcp251x_clean(net);
bf66f373
CP
728 } else {
729 frame = (struct can_frame *)priv->tx_skb->data;
730
731 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
732 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
733 mcp251x_hw_tx(spi, frame, 0);
734 priv->tx_len = 1 + frame->can_dlc;
735 can_put_echo_skb(priv->tx_skb, net, 0);
736 priv->tx_skb = NULL;
e0000163 737 }
e0000163 738 }
bf66f373 739 mutex_unlock(&priv->mcp_lock);
e0000163
CP
740}
741
bf66f373 742static void mcp251x_restart_work_handler(struct work_struct *ws)
e0000163
CP
743{
744 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
bf66f373 745 restart_work);
e0000163
CP
746 struct spi_device *spi = priv->spi;
747 struct net_device *net = priv->net;
e0000163 748
bf66f373 749 mutex_lock(&priv->mcp_lock);
e0000163 750 if (priv->after_suspend) {
e0000163 751 mcp251x_hw_reset(spi);
aa681722 752 mcp251x_setup(net, spi);
e0000163
CP
753 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
754 mcp251x_set_normal_mode(spi);
755 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
756 netif_device_attach(net);
bf66f373 757 mcp251x_clean(net);
e0000163 758 mcp251x_set_normal_mode(spi);
bf66f373 759 netif_wake_queue(net);
e0000163
CP
760 } else {
761 mcp251x_hw_sleep(spi);
762 }
763 priv->after_suspend = 0;
bf66f373 764 priv->force_quit = 0;
e0000163
CP
765 }
766
bf66f373
CP
767 if (priv->restart_tx) {
768 priv->restart_tx = 0;
769 mcp251x_write_reg(spi, TXBCTRL(0), 0);
770 mcp251x_clean(net);
771 netif_wake_queue(net);
772 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
773 }
774 mutex_unlock(&priv->mcp_lock);
775}
e0000163 776
bf66f373
CP
777static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
778{
779 struct mcp251x_priv *priv = dev_id;
780 struct spi_device *spi = priv->spi;
781 struct net_device *net = priv->net;
e0000163 782
bf66f373
CP
783 mutex_lock(&priv->mcp_lock);
784 while (!priv->force_quit) {
785 enum can_state new_state;
f3a3ed31 786 u8 intf, eflag;
d3cd1565 787 u8 clear_intf = 0;
bf66f373 788 int can_id = 0, data1 = 0;
e0000163 789
f3a3ed31
SH
790 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
791
5601b2df
MKB
792 /* mask out flags we don't care about */
793 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
794
d3cd1565 795 /* receive buffer 0 */
bf66f373
CP
796 if (intf & CANINTF_RX0IF) {
797 mcp251x_hw_rx(spi, 0);
35b7fa4d
SN
798 /* Free one buffer ASAP
799 * (The MCP2515/25625 does this automatically.)
9c473fc3
MKB
800 */
801 if (mcp251x_is_2510(spi))
802 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
e0000163
CP
803 }
804
d3cd1565
MKB
805 /* receive buffer 1 */
806 if (intf & CANINTF_RX1IF) {
bf66f373 807 mcp251x_hw_rx(spi, 1);
35b7fa4d 808 /* The MCP2515/25625 does this automatically. */
9c473fc3
MKB
809 if (mcp251x_is_2510(spi))
810 clear_intf |= CANINTF_RX1IF;
d3cd1565 811 }
e0000163 812
d3cd1565 813 /* any error or tx interrupt we need to clear? */
5601b2df
MKB
814 if (intf & (CANINTF_ERR | CANINTF_TX))
815 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
d3cd1565
MKB
816 if (clear_intf)
817 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
e0000163 818
d694b06c 819 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
7e15de3a 820 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
bf66f373 821
e0000163
CP
822 /* Update can state */
823 if (eflag & EFLG_TXBO) {
824 new_state = CAN_STATE_BUS_OFF;
825 can_id |= CAN_ERR_BUSOFF;
826 } else if (eflag & EFLG_TXEP) {
827 new_state = CAN_STATE_ERROR_PASSIVE;
828 can_id |= CAN_ERR_CRTL;
829 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
830 } else if (eflag & EFLG_RXEP) {
831 new_state = CAN_STATE_ERROR_PASSIVE;
832 can_id |= CAN_ERR_CRTL;
833 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
834 } else if (eflag & EFLG_TXWAR) {
835 new_state = CAN_STATE_ERROR_WARNING;
836 can_id |= CAN_ERR_CRTL;
837 data1 |= CAN_ERR_CRTL_TX_WARNING;
838 } else if (eflag & EFLG_RXWAR) {
839 new_state = CAN_STATE_ERROR_WARNING;
840 can_id |= CAN_ERR_CRTL;
841 data1 |= CAN_ERR_CRTL_RX_WARNING;
842 } else {
843 new_state = CAN_STATE_ERROR_ACTIVE;
844 }
845
846 /* Update can state statistics */
847 switch (priv->can.state) {
848 case CAN_STATE_ERROR_ACTIVE:
849 if (new_state >= CAN_STATE_ERROR_WARNING &&
850 new_state <= CAN_STATE_BUS_OFF)
851 priv->can.can_stats.error_warning++;
5a8dadbc
GS
852 /* fall through */
853 case CAN_STATE_ERROR_WARNING:
e0000163
CP
854 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
855 new_state <= CAN_STATE_BUS_OFF)
856 priv->can.can_stats.error_passive++;
857 break;
858 default:
859 break;
860 }
861 priv->can.state = new_state;
862
bf66f373
CP
863 if (intf & CANINTF_ERRIF) {
864 /* Handle overflow counters */
865 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
711e4d6e 866 if (eflag & EFLG_RX0OVR) {
bf66f373 867 net->stats.rx_over_errors++;
711e4d6e
SH
868 net->stats.rx_errors++;
869 }
870 if (eflag & EFLG_RX1OVR) {
bf66f373 871 net->stats.rx_over_errors++;
711e4d6e
SH
872 net->stats.rx_errors++;
873 }
bf66f373
CP
874 can_id |= CAN_ERR_CRTL;
875 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
e0000163 876 }
bf66f373 877 mcp251x_error_skb(net, can_id, data1);
e0000163
CP
878 }
879
880 if (priv->can.state == CAN_STATE_BUS_OFF) {
881 if (priv->can.restart_ms == 0) {
bf66f373 882 priv->force_quit = 1;
be38a6f9 883 priv->can.can_stats.bus_off++;
e0000163
CP
884 can_bus_off(net);
885 mcp251x_hw_sleep(spi);
bf66f373 886 break;
e0000163
CP
887 }
888 }
889
890 if (intf == 0)
891 break;
892
5601b2df 893 if (intf & CANINTF_TX) {
e0000163
CP
894 net->stats.tx_packets++;
895 net->stats.tx_bytes += priv->tx_len - 1;
eb072a9b 896 can_led_event(net, CAN_LED_EVENT_TX);
e0000163
CP
897 if (priv->tx_len) {
898 can_get_echo_skb(net, 0);
899 priv->tx_len = 0;
900 }
901 netif_wake_queue(net);
902 }
903
bf66f373
CP
904 }
905 mutex_unlock(&priv->mcp_lock);
906 return IRQ_HANDLED;
907}
e0000163 908
bf66f373
CP
909static int mcp251x_open(struct net_device *net)
910{
911 struct mcp251x_priv *priv = netdev_priv(net);
912 struct spi_device *spi = priv->spi;
ae5d589e 913 unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
bf66f373
CP
914 int ret;
915
916 ret = open_candev(net);
917 if (ret) {
918 dev_err(&spi->dev, "unable to set initial baudrate!\n");
919 return ret;
920 }
921
922 mutex_lock(&priv->mcp_lock);
1ddff7da 923 mcp251x_power_enable(priv->transceiver, 1);
bf66f373
CP
924
925 priv->force_quit = 0;
926 priv->tx_skb = NULL;
927 priv->tx_len = 0;
928
929 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
e1dfefeb 930 flags | IRQF_ONESHOT, DEVICE_NAME, priv);
bf66f373
CP
931 if (ret) {
932 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
375f7558 933 goto out_close;
bf66f373
CP
934 }
935
b6fd3aba
AKC
936 priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
937 0);
375f7558
WH
938 if (!priv->wq) {
939 ret = -ENOMEM;
940 goto out_clean;
941 }
bf66f373
CP
942 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
943 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
944
945 ret = mcp251x_hw_reset(spi);
375f7558
WH
946 if (ret)
947 goto out_free_wq;
aa681722 948 ret = mcp251x_setup(net, spi);
375f7558
WH
949 if (ret)
950 goto out_free_wq;
bf66f373 951 ret = mcp251x_set_normal_mode(spi);
375f7558
WH
952 if (ret)
953 goto out_free_wq;
eb072a9b
FB
954
955 can_led_event(net, CAN_LED_EVENT_OPEN);
956
bf66f373 957 netif_wake_queue(net);
375f7558 958 mutex_unlock(&priv->mcp_lock);
bf66f373 959
375f7558
WH
960 return 0;
961
962out_free_wq:
963 destroy_workqueue(priv->wq);
964out_clean:
965 free_irq(spi->irq, priv);
966 mcp251x_hw_sleep(spi);
967out_close:
968 mcp251x_power_enable(priv->transceiver, 0);
969 close_candev(net);
bf66f373
CP
970 mutex_unlock(&priv->mcp_lock);
971 return ret;
e0000163
CP
972}
973
974static const struct net_device_ops mcp251x_netdev_ops = {
975 .ndo_open = mcp251x_open,
976 .ndo_stop = mcp251x_stop,
977 .ndo_start_xmit = mcp251x_hard_start_xmit,
c971fa2a 978 .ndo_change_mtu = can_change_mtu,
e0000163
CP
979};
980
66606aaf
AS
981static const struct of_device_id mcp251x_of_match[] = {
982 {
983 .compatible = "microchip,mcp2510",
984 .data = (void *)CAN_MCP251X_MCP2510,
985 },
986 {
987 .compatible = "microchip,mcp2515",
988 .data = (void *)CAN_MCP251X_MCP2515,
989 },
35b7fa4d
SN
990 {
991 .compatible = "microchip,mcp25625",
992 .data = (void *)CAN_MCP251X_MCP25625,
993 },
66606aaf
AS
994 { }
995};
996MODULE_DEVICE_TABLE(of, mcp251x_of_match);
997
998static const struct spi_device_id mcp251x_id_table[] = {
999 {
1000 .name = "mcp2510",
1001 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1002 },
1003 {
1004 .name = "mcp2515",
1005 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1006 },
35b7fa4d
SN
1007 {
1008 .name = "mcp25625",
1009 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP25625,
1010 },
66606aaf
AS
1011 { }
1012};
1013MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1014
3c8ac0f2 1015static int mcp251x_can_probe(struct spi_device *spi)
e0000163 1016{
66606aaf
AS
1017 const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1018 &spi->dev);
1019 struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
e0000163
CP
1020 struct net_device *net;
1021 struct mcp251x_priv *priv;
66606aaf 1022 struct clk *clk;
31473c28 1023 int freq, ret;
66606aaf
AS
1024
1025 clk = devm_clk_get(&spi->dev, NULL);
1026 if (IS_ERR(clk)) {
1027 if (pdata)
1028 freq = pdata->oscillator_frequency;
1029 else
1030 return PTR_ERR(clk);
1031 } else {
1032 freq = clk_get_rate(clk);
1033 }
e0000163 1034
66606aaf
AS
1035 /* Sanity check */
1036 if (freq < 1000000 || freq > 25000000)
1037 return -ERANGE;
e0000163
CP
1038
1039 /* Allocate can/net device */
1040 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
66606aaf
AS
1041 if (!net)
1042 return -ENOMEM;
1043
1044 if (!IS_ERR(clk)) {
1045 ret = clk_prepare_enable(clk);
1046 if (ret)
1047 goto out_free;
e0000163
CP
1048 }
1049
1050 net->netdev_ops = &mcp251x_netdev_ops;
1051 net->flags |= IFF_ECHO;
1052
1053 priv = netdev_priv(net);
1054 priv->can.bittiming_const = &mcp251x_bittiming_const;
1055 priv->can.do_set_mode = mcp251x_do_set_mode;
66606aaf 1056 priv->can.clock.freq = freq / 2;
ad72c347
CP
1057 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1058 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
66606aaf
AS
1059 if (of_id)
1060 priv->model = (enum mcp251x_model)of_id->data;
1061 else
1062 priv->model = spi_get_device_id(spi)->driver_data;
e0000163 1063 priv->net = net;
66606aaf 1064 priv->clk = clk;
1ddff7da 1065
31473c28
AS
1066 spi_set_drvdata(spi, priv);
1067
1068 /* Configure the SPI bus */
1069 spi->bits_per_word = 8;
1070 if (mcp251x_is_2510(spi))
1071 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1072 else
1073 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1074 ret = spi_setup(spi);
1075 if (ret)
1076 goto out_clk;
1077
69da3f2a
SA
1078 priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1079 priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1ddff7da
AS
1080 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1081 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1082 ret = -EPROBE_DEFER;
66606aaf 1083 goto out_clk;
1ddff7da
AS
1084 }
1085
1086 ret = mcp251x_power_enable(priv->power, 1);
1087 if (ret)
66606aaf 1088 goto out_clk;
1ddff7da 1089
e0000163 1090 priv->spi = spi;
bf66f373 1091 mutex_init(&priv->mcp_lock);
e0000163
CP
1092
1093 /* If requested, allocate DMA buffers */
1094 if (mcp251x_enable_dma) {
1095 spi->dev.coherent_dma_mask = ~0;
1096
1097 /*
1098 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1099 * that much and share it between Tx and Rx DMA buffers.
1100 */
3a73aeff
HS
1101 priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
1102 PAGE_SIZE,
1103 &priv->spi_tx_dma,
1104 GFP_DMA);
e0000163
CP
1105
1106 if (priv->spi_tx_buf) {
c2fd03a0 1107 priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
e0000163
CP
1108 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1109 (PAGE_SIZE / 2));
1110 } else {
1111 /* Fall back to non-DMA */
1112 mcp251x_enable_dma = 0;
1113 }
1114 }
1115
1116 /* Allocate non-DMA buffers */
1117 if (!mcp251x_enable_dma) {
21629e1a
AS
1118 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1119 GFP_KERNEL);
e0000163
CP
1120 if (!priv->spi_tx_buf) {
1121 ret = -ENOMEM;
21629e1a 1122 goto error_probe;
e0000163 1123 }
21629e1a
AS
1124 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1125 GFP_KERNEL);
ce739b47 1126 if (!priv->spi_rx_buf) {
e0000163 1127 ret = -ENOMEM;
21629e1a 1128 goto error_probe;
e0000163
CP
1129 }
1130 }
1131
e0000163
CP
1132 SET_NETDEV_DEV(net, &spi->dev);
1133
bf66f373 1134 /* Here is OK to not lock the MCP, no one knows about it yet */
ee967fff 1135 ret = mcp251x_hw_probe(spi);
b63f69d0
ES
1136 if (ret) {
1137 if (ret == -ENODEV)
1138 dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n", priv->model);
e0000163 1139 goto error_probe;
b63f69d0 1140 }
ee967fff 1141
e0000163
CP
1142 mcp251x_hw_sleep(spi);
1143
e0000163 1144 ret = register_candev(net);
eb072a9b
FB
1145 if (ret)
1146 goto error_probe;
1147
1148 devm_can_led_init(net);
1149
b63f69d0 1150 netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
ee967fff 1151 return 0;
eb072a9b 1152
e0000163 1153error_probe:
1ddff7da 1154 mcp251x_power_enable(priv->power, 0);
66606aaf
AS
1155
1156out_clk:
1157 if (!IS_ERR(clk))
1158 clk_disable_unprepare(clk);
1159
1160out_free:
1ddff7da 1161 free_candev(net);
66606aaf 1162
b63f69d0 1163 dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
e0000163
CP
1164 return ret;
1165}
1166
3c8ac0f2 1167static int mcp251x_can_remove(struct spi_device *spi)
e0000163 1168{
fce5c293 1169 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1170 struct net_device *net = priv->net;
1171
1172 unregister_candev(net);
e0000163 1173
1ddff7da
AS
1174 mcp251x_power_enable(priv->power, 0);
1175
66606aaf
AS
1176 if (!IS_ERR(priv->clk))
1177 clk_disable_unprepare(priv->clk);
1178
1ddff7da 1179 free_candev(net);
e0000163
CP
1180
1181 return 0;
1182}
1183
f16a4210 1184static int __maybe_unused mcp251x_can_suspend(struct device *dev)
e0000163 1185{
612b2a97 1186 struct spi_device *spi = to_spi_device(dev);
fce5c293 1187 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1188 struct net_device *net = priv->net;
1189
bf66f373
CP
1190 priv->force_quit = 1;
1191 disable_irq(spi->irq);
1192 /*
1193 * Note: at this point neither IST nor workqueues are running.
1194 * open/stop cannot be called anyway so locking is not needed
1195 */
e0000163
CP
1196 if (netif_running(net)) {
1197 netif_device_detach(net);
1198
1199 mcp251x_hw_sleep(spi);
1ddff7da 1200 mcp251x_power_enable(priv->transceiver, 0);
e0000163
CP
1201 priv->after_suspend = AFTER_SUSPEND_UP;
1202 } else {
1203 priv->after_suspend = AFTER_SUSPEND_DOWN;
1204 }
1205
76aeec83 1206 if (!IS_ERR_OR_NULL(priv->power)) {
1ddff7da 1207 regulator_disable(priv->power);
e0000163
CP
1208 priv->after_suspend |= AFTER_SUSPEND_POWER;
1209 }
1210
1211 return 0;
1212}
1213
f16a4210 1214static int __maybe_unused mcp251x_can_resume(struct device *dev)
e0000163 1215{
612b2a97 1216 struct spi_device *spi = to_spi_device(dev);
fce5c293 1217 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 1218
25b401c1 1219 if (priv->after_suspend & AFTER_SUSPEND_POWER)
1ddff7da 1220 mcp251x_power_enable(priv->power, 1);
25b401c1
SA
1221
1222 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1223 mcp251x_power_enable(priv->transceiver, 1);
bf66f373 1224 queue_work(priv->wq, &priv->restart_work);
e0000163 1225 } else {
25b401c1 1226 priv->after_suspend = 0;
e0000163 1227 }
25b401c1 1228
bf66f373
CP
1229 priv->force_quit = 0;
1230 enable_irq(spi->irq);
e0000163
CP
1231 return 0;
1232}
612b2a97
LPC
1233
1234static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1235 mcp251x_can_resume);
e0000163
CP
1236
1237static struct spi_driver mcp251x_can_driver = {
1238 .driver = {
1239 .name = DEVICE_NAME,
66606aaf 1240 .of_match_table = mcp251x_of_match,
4fcc999e 1241 .pm = &mcp251x_can_pm_ops,
e0000163 1242 },
e446630c 1243 .id_table = mcp251x_id_table,
e0000163 1244 .probe = mcp251x_can_probe,
3c8ac0f2 1245 .remove = mcp251x_can_remove,
e0000163 1246};
01b88070 1247module_spi_driver(mcp251x_can_driver);
e0000163
CP
1248
1249MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1250 "Christian Pellegrin <chripell@evolware.org>");
35b7fa4d 1251MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
e0000163 1252MODULE_LICENSE("GPL v2");