]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/ethernet/xilinx/xilinx_axienet_main.c
Merge branch 'for-5.1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis...
[thirdparty/linux.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
CommitLineData
8a3b7a25
DB
1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
59a54f30
MS
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
8a3b7a25
DB
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
8a3b7a25
DB
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of_mdio.h>
da90e380 28#include <linux/of_net.h>
8a3b7a25 29#include <linux/of_platform.h>
9d5e8ec6 30#include <linux/of_irq.h>
8a3b7a25
DB
31#include <linux/of_address.h>
32#include <linux/skbuff.h>
33#include <linux/spinlock.h>
34#include <linux/phy.h>
35#include <linux/mii.h>
36#include <linux/ethtool.h>
37
38#include "xilinx_axienet.h"
39
40/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
41#define TX_BD_NUM 64
42#define RX_BD_NUM 128
43
44/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
45#define DRIVER_NAME "xaxienet"
46#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
47#define DRIVER_VERSION "1.00a"
48
49#define AXIENET_REGS_N 32
50
51/* Match table for of_platform binding */
74847f23 52static const struct of_device_id axienet_of_match[] = {
8a3b7a25
DB
53 { .compatible = "xlnx,axi-ethernet-1.00.a", },
54 { .compatible = "xlnx,axi-ethernet-1.01.a", },
55 { .compatible = "xlnx,axi-ethernet-2.01.a", },
56 {},
57};
58
59MODULE_DEVICE_TABLE(of, axienet_of_match);
60
61/* Option table for setting up Axi Ethernet hardware options */
62static struct axienet_option axienet_options[] = {
63 /* Turn on jumbo packet support for both Rx and Tx */
64 {
65 .opt = XAE_OPTION_JUMBO,
66 .reg = XAE_TC_OFFSET,
67 .m_or = XAE_TC_JUM_MASK,
68 }, {
69 .opt = XAE_OPTION_JUMBO,
70 .reg = XAE_RCW1_OFFSET,
71 .m_or = XAE_RCW1_JUM_MASK,
72 }, { /* Turn on VLAN packet support for both Rx and Tx */
73 .opt = XAE_OPTION_VLAN,
74 .reg = XAE_TC_OFFSET,
75 .m_or = XAE_TC_VLAN_MASK,
76 }, {
77 .opt = XAE_OPTION_VLAN,
78 .reg = XAE_RCW1_OFFSET,
79 .m_or = XAE_RCW1_VLAN_MASK,
80 }, { /* Turn on FCS stripping on receive packets */
81 .opt = XAE_OPTION_FCS_STRIP,
82 .reg = XAE_RCW1_OFFSET,
83 .m_or = XAE_RCW1_FCS_MASK,
84 }, { /* Turn on FCS insertion on transmit packets */
85 .opt = XAE_OPTION_FCS_INSERT,
86 .reg = XAE_TC_OFFSET,
87 .m_or = XAE_TC_FCS_MASK,
88 }, { /* Turn off length/type field checking on receive packets */
89 .opt = XAE_OPTION_LENTYPE_ERR,
90 .reg = XAE_RCW1_OFFSET,
91 .m_or = XAE_RCW1_LT_DIS_MASK,
92 }, { /* Turn on Rx flow control */
93 .opt = XAE_OPTION_FLOW_CONTROL,
94 .reg = XAE_FCC_OFFSET,
95 .m_or = XAE_FCC_FCRX_MASK,
96 }, { /* Turn on Tx flow control */
97 .opt = XAE_OPTION_FLOW_CONTROL,
98 .reg = XAE_FCC_OFFSET,
99 .m_or = XAE_FCC_FCTX_MASK,
100 }, { /* Turn on promiscuous frame filtering */
101 .opt = XAE_OPTION_PROMISC,
102 .reg = XAE_FMI_OFFSET,
103 .m_or = XAE_FMI_PM_MASK,
104 }, { /* Enable transmitter */
105 .opt = XAE_OPTION_TXEN,
106 .reg = XAE_TC_OFFSET,
107 .m_or = XAE_TC_TX_MASK,
108 }, { /* Enable receiver */
109 .opt = XAE_OPTION_RXEN,
110 .reg = XAE_RCW1_OFFSET,
111 .m_or = XAE_RCW1_RX_MASK,
112 },
113 {}
114};
115
116/**
117 * axienet_dma_in32 - Memory mapped Axi DMA register read
118 * @lp: Pointer to axienet local structure
119 * @reg: Address offset from the base address of the Axi DMA core
120 *
b0d081c5 121 * Return: The contents of the Axi DMA register
8a3b7a25
DB
122 *
123 * This function returns the contents of the corresponding Axi DMA register.
124 */
125static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
126{
127 return in_be32(lp->dma_regs + reg);
128}
129
130/**
131 * axienet_dma_out32 - Memory mapped Axi DMA register write.
132 * @lp: Pointer to axienet local structure
133 * @reg: Address offset from the base address of the Axi DMA core
134 * @value: Value to be written into the Axi DMA register
135 *
136 * This function writes the desired value into the corresponding Axi DMA
137 * register.
138 */
139static inline void axienet_dma_out32(struct axienet_local *lp,
140 off_t reg, u32 value)
141{
142 out_be32((lp->dma_regs + reg), value);
143}
144
145/**
146 * axienet_dma_bd_release - Release buffer descriptor rings
147 * @ndev: Pointer to the net_device structure
148 *
149 * This function is used to release the descriptors allocated in
150 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
151 * driver stop api is called.
152 */
153static void axienet_dma_bd_release(struct net_device *ndev)
154{
155 int i;
156 struct axienet_local *lp = netdev_priv(ndev);
157
158 for (i = 0; i < RX_BD_NUM; i++) {
159 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
160 lp->max_frm_size, DMA_FROM_DEVICE);
161 dev_kfree_skb((struct sk_buff *)
162 (lp->rx_bd_v[i].sw_id_offset));
163 }
164
165 if (lp->rx_bd_v) {
166 dma_free_coherent(ndev->dev.parent,
167 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
168 lp->rx_bd_v,
169 lp->rx_bd_p);
170 }
171 if (lp->tx_bd_v) {
172 dma_free_coherent(ndev->dev.parent,
173 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
174 lp->tx_bd_v,
175 lp->tx_bd_p);
176 }
177}
178
179/**
180 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
181 * @ndev: Pointer to the net_device structure
182 *
b0d081c5 183 * Return: 0, on success -ENOMEM, on failure
8a3b7a25
DB
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
195
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
200
850a7503 201 /* Allocate the Tx and Rx buffer descriptors. */
750afb08
LC
202 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
203 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
204 &lp->tx_bd_p, GFP_KERNEL);
d0320f75 205 if (!lp->tx_bd_v)
8a3b7a25 206 goto out;
8a3b7a25 207
750afb08
LC
208 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
209 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
210 &lp->rx_bd_p, GFP_KERNEL);
d0320f75 211 if (!lp->rx_bd_v)
8a3b7a25 212 goto out;
8a3b7a25 213
8a3b7a25
DB
214 for (i = 0; i < TX_BD_NUM; i++) {
215 lp->tx_bd_v[i].next = lp->tx_bd_p +
216 sizeof(*lp->tx_bd_v) *
217 ((i + 1) % TX_BD_NUM);
218 }
219
8a3b7a25
DB
220 for (i = 0; i < RX_BD_NUM; i++) {
221 lp->rx_bd_v[i].next = lp->rx_bd_p +
222 sizeof(*lp->rx_bd_v) *
223 ((i + 1) % RX_BD_NUM);
224
225 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 226 if (!skb)
8a3b7a25 227 goto out;
8a3b7a25
DB
228
229 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
230 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
231 skb->data,
232 lp->max_frm_size,
233 DMA_FROM_DEVICE);
234 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
235 }
236
237 /* Start updating the Rx channel control register */
238 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
239 /* Update the interrupt coalesce count */
240 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
241 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
242 /* Update the delay timer count */
243 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
244 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
245 /* Enable coalesce, delay timer and error interrupts */
246 cr |= XAXIDMA_IRQ_ALL_MASK;
247 /* Write to the Rx channel control register */
248 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
249
250 /* Start updating the Tx channel control register */
251 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
252 /* Update the interrupt coalesce count */
253 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
254 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
255 /* Update the delay timer count */
256 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
257 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
258 /* Enable coalesce, delay timer and error interrupts */
259 cr |= XAXIDMA_IRQ_ALL_MASK;
260 /* Write to the Tx channel control register */
261 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
262
263 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
264 * halted state. This will make the Rx side ready for reception.
265 */
8a3b7a25
DB
266 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
267 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
268 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
269 cr | XAXIDMA_CR_RUNSTOP_MASK);
270 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
271 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
272
273 /* Write to the RS (Run-stop) bit in the Tx channel control register.
274 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
275 * tail pointer register that the Tx channel will start transmitting.
276 */
8a3b7a25
DB
277 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 cr | XAXIDMA_CR_RUNSTOP_MASK);
281
282 return 0;
283out:
284 axienet_dma_bd_release(ndev);
285 return -ENOMEM;
286}
287
288/**
289 * axienet_set_mac_address - Write the MAC address
290 * @ndev: Pointer to the net_device structure
291 * @address: 6 byte Address to be written as MAC address
292 *
293 * This function is called to initialize the MAC address of the Axi Ethernet
294 * core. It writes to the UAW0 and UAW1 registers of the core.
295 */
da90e380
TK
296static void axienet_set_mac_address(struct net_device *ndev,
297 const void *address)
8a3b7a25
DB
298{
299 struct axienet_local *lp = netdev_priv(ndev);
300
301 if (address)
302 memcpy(ndev->dev_addr, address, ETH_ALEN);
303 if (!is_valid_ether_addr(ndev->dev_addr))
452349c3 304 eth_hw_addr_random(ndev);
8a3b7a25
DB
305
306 /* Set up unicast MAC address filter set its mac address */
307 axienet_iow(lp, XAE_UAW0_OFFSET,
308 (ndev->dev_addr[0]) |
309 (ndev->dev_addr[1] << 8) |
310 (ndev->dev_addr[2] << 16) |
311 (ndev->dev_addr[3] << 24));
312 axienet_iow(lp, XAE_UAW1_OFFSET,
313 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
314 ~XAE_UAW1_UNICASTADDR_MASK) |
315 (ndev->dev_addr[4] |
316 (ndev->dev_addr[5] << 8))));
317}
318
319/**
320 * netdev_set_mac_address - Write the MAC address (from outside the driver)
321 * @ndev: Pointer to the net_device structure
322 * @p: 6 byte Address to be written as MAC address
323 *
b0d081c5 324 * Return: 0 for all conditions. Presently, there is no failure case.
8a3b7a25
DB
325 *
326 * This function is called to initialize the MAC address of the Axi Ethernet
327 * core. It calls the core specific axienet_set_mac_address. This is the
328 * function that goes into net_device_ops structure entry ndo_set_mac_address.
329 */
330static int netdev_set_mac_address(struct net_device *ndev, void *p)
331{
332 struct sockaddr *addr = p;
333 axienet_set_mac_address(ndev, addr->sa_data);
334 return 0;
335}
336
337/**
338 * axienet_set_multicast_list - Prepare the multicast table
339 * @ndev: Pointer to the net_device structure
340 *
341 * This function is called to initialize the multicast table during
342 * initialization. The Axi Ethernet basic multicast support has a four-entry
343 * multicast table which is initialized here. Additionally this function
344 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
345 * means whenever the multicast table entries need to be updated this
346 * function gets called.
347 */
348static void axienet_set_multicast_list(struct net_device *ndev)
349{
350 int i;
351 u32 reg, af0reg, af1reg;
352 struct axienet_local *lp = netdev_priv(ndev);
353
354 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
355 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
356 /* We must make the kernel realize we had to move into
357 * promiscuous mode. If it was a promiscuous mode request
850a7503
MS
358 * the flag is already set. If not we set it.
359 */
8a3b7a25
DB
360 ndev->flags |= IFF_PROMISC;
361 reg = axienet_ior(lp, XAE_FMI_OFFSET);
362 reg |= XAE_FMI_PM_MASK;
363 axienet_iow(lp, XAE_FMI_OFFSET, reg);
364 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
365 } else if (!netdev_mc_empty(ndev)) {
366 struct netdev_hw_addr *ha;
367
368 i = 0;
369 netdev_for_each_mc_addr(ha, ndev) {
370 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
371 break;
372
373 af0reg = (ha->addr[0]);
374 af0reg |= (ha->addr[1] << 8);
375 af0reg |= (ha->addr[2] << 16);
376 af0reg |= (ha->addr[3] << 24);
377
378 af1reg = (ha->addr[4]);
379 af1reg |= (ha->addr[5] << 8);
380
381 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
382 reg |= i;
383
384 axienet_iow(lp, XAE_FMI_OFFSET, reg);
385 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
386 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
387 i++;
388 }
389 } else {
390 reg = axienet_ior(lp, XAE_FMI_OFFSET);
391 reg &= ~XAE_FMI_PM_MASK;
392
393 axienet_iow(lp, XAE_FMI_OFFSET, reg);
394
395 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
396 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
397 reg |= i;
398
399 axienet_iow(lp, XAE_FMI_OFFSET, reg);
400 axienet_iow(lp, XAE_AF0_OFFSET, 0);
401 axienet_iow(lp, XAE_AF1_OFFSET, 0);
402 }
403
404 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
405 }
406}
407
408/**
409 * axienet_setoptions - Set an Axi Ethernet option
410 * @ndev: Pointer to the net_device structure
411 * @options: Option to be enabled/disabled
412 *
413 * The Axi Ethernet core has multiple features which can be selectively turned
414 * on or off. The typical options could be jumbo frame option, basic VLAN
415 * option, promiscuous mode option etc. This function is used to set or clear
416 * these options in the Axi Ethernet hardware. This is done through
417 * axienet_option structure .
418 */
419static void axienet_setoptions(struct net_device *ndev, u32 options)
420{
421 int reg;
422 struct axienet_local *lp = netdev_priv(ndev);
423 struct axienet_option *tp = &axienet_options[0];
424
425 while (tp->opt) {
426 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
427 if (options & tp->opt)
428 reg |= tp->m_or;
429 axienet_iow(lp, tp->reg, reg);
430 tp++;
431 }
432
433 lp->options |= options;
434}
435
5852e93d 436static void __axienet_device_reset(struct axienet_local *lp, off_t offset)
8a3b7a25
DB
437{
438 u32 timeout;
439 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
440 * process of Axi DMA takes a while to complete as all pending
441 * commands/transfers will be flushed or completed during this
850a7503
MS
442 * reset process.
443 */
8a3b7a25
DB
444 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
445 timeout = DELAY_OF_ONE_MILLISEC;
446 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
447 udelay(1);
448 if (--timeout == 0) {
c81a97b5
ST
449 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
450 __func__);
8a3b7a25
DB
451 break;
452 }
453 }
454}
455
456/**
457 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
458 * @ndev: Pointer to the net_device structure
459 *
460 * This function is called to reset and initialize the Axi Ethernet core. This
461 * is typically called during initialization. It does a reset of the Axi DMA
462 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
463 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
464 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
465 * core.
466 */
467static void axienet_device_reset(struct net_device *ndev)
468{
469 u32 axienet_status;
470 struct axienet_local *lp = netdev_priv(ndev);
471
5852e93d
TK
472 __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
473 __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
8a3b7a25
DB
474
475 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
f080a8c3 476 lp->options |= XAE_OPTION_VLAN;
8a3b7a25
DB
477 lp->options &= (~XAE_OPTION_JUMBO);
478
479 if ((ndev->mtu > XAE_MTU) &&
f080a8c3
ST
480 (ndev->mtu <= XAE_JUMBO_MTU)) {
481 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
482 XAE_TRL_SIZE;
483
484 if (lp->max_frm_size <= lp->rxmem)
485 lp->options |= XAE_OPTION_JUMBO;
8a3b7a25
DB
486 }
487
488 if (axienet_dma_bd_init(ndev)) {
c81a97b5
ST
489 netdev_err(ndev, "%s: descriptor allocation failed\n",
490 __func__);
8a3b7a25
DB
491 }
492
493 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
494 axienet_status &= ~XAE_RCW1_RX_MASK;
495 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
496
497 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
498 if (axienet_status & XAE_INT_RXRJECT_MASK)
499 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
500
501 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
502
503 /* Sync default options with HW but leave receiver and
850a7503
MS
504 * transmitter disabled.
505 */
8a3b7a25
DB
506 axienet_setoptions(ndev, lp->options &
507 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
508 axienet_set_mac_address(ndev, NULL);
509 axienet_set_multicast_list(ndev);
510 axienet_setoptions(ndev, lp->options);
511
860e9538 512 netif_trans_update(ndev);
8a3b7a25
DB
513}
514
515/**
516 * axienet_adjust_link - Adjust the PHY link speed/duplex.
517 * @ndev: Pointer to the net_device structure
518 *
519 * This function is called to change the speed and duplex setting after
520 * auto negotiation is done by the PHY. This is the function that gets
521 * registered with the PHY interface through the "of_phy_connect" call.
522 */
523static void axienet_adjust_link(struct net_device *ndev)
524{
525 u32 emmc_reg;
526 u32 link_state;
527 u32 setspeed = 1;
528 struct axienet_local *lp = netdev_priv(ndev);
b1b7dcff 529 struct phy_device *phy = ndev->phydev;
8a3b7a25
DB
530
531 link_state = phy->speed | (phy->duplex << 1) | phy->link;
532 if (lp->last_link != link_state) {
533 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
ee06b172 534 if (lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX)
8a3b7a25
DB
535 setspeed = 0;
536 } else {
537 if ((phy->speed == SPEED_1000) &&
ee06b172 538 (lp->phy_mode == PHY_INTERFACE_MODE_MII))
8a3b7a25
DB
539 setspeed = 0;
540 }
541
542 if (setspeed == 1) {
543 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
544 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
545
546 switch (phy->speed) {
547 case SPEED_1000:
548 emmc_reg |= XAE_EMMC_LINKSPD_1000;
549 break;
550 case SPEED_100:
551 emmc_reg |= XAE_EMMC_LINKSPD_100;
552 break;
553 case SPEED_10:
554 emmc_reg |= XAE_EMMC_LINKSPD_10;
555 break;
556 default:
557 dev_err(&ndev->dev, "Speed other than 10, 100 "
558 "or 1Gbps is not supported\n");
559 break;
560 }
561
562 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
563 lp->last_link = link_state;
564 phy_print_status(phy);
565 } else {
c81a97b5
ST
566 netdev_err(ndev,
567 "Error setting Axi Ethernet mac speed\n");
8a3b7a25
DB
568 }
569 }
570}
571
572/**
573 * axienet_start_xmit_done - Invoked once a transmit is completed by the
574 * Axi DMA Tx channel.
575 * @ndev: Pointer to the net_device structure
576 *
577 * This function is invoked from the Axi DMA Tx isr to notify the completion
578 * of transmit operation. It clears fields in the corresponding Tx BDs and
579 * unmaps the corresponding buffer so that CPU can regain ownership of the
580 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
581 * required.
582 */
583static void axienet_start_xmit_done(struct net_device *ndev)
584{
585 u32 size = 0;
586 u32 packets = 0;
587 struct axienet_local *lp = netdev_priv(ndev);
588 struct axidma_bd *cur_p;
589 unsigned int status = 0;
590
591 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
592 status = cur_p->status;
593 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
594 dma_unmap_single(ndev->dev.parent, cur_p->phys,
595 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
596 DMA_TO_DEVICE);
597 if (cur_p->app4)
d1441d47 598 dev_consume_skb_irq((struct sk_buff *)cur_p->app4);
8a3b7a25
DB
599 /*cur_p->phys = 0;*/
600 cur_p->app0 = 0;
601 cur_p->app1 = 0;
602 cur_p->app2 = 0;
603 cur_p->app4 = 0;
604 cur_p->status = 0;
605
606 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
607 packets++;
608
91ff37ff
MS
609 ++lp->tx_bd_ci;
610 lp->tx_bd_ci %= TX_BD_NUM;
8a3b7a25
DB
611 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
612 status = cur_p->status;
613 }
614
615 ndev->stats.tx_packets += packets;
616 ndev->stats.tx_bytes += size;
617 netif_wake_queue(ndev);
618}
619
620/**
621 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
622 * @lp: Pointer to the axienet_local structure
623 * @num_frag: The number of BDs to check for
624 *
b0d081c5 625 * Return: 0, on success
8a3b7a25
DB
626 * NETDEV_TX_BUSY, if any of the descriptors are not free
627 *
628 * This function is invoked before BDs are allocated and transmission starts.
629 * This function returns 0 if a BD or group of BDs can be allocated for
630 * transmission. If the BD or any of the BDs are not free the function
631 * returns a busy status. This is invoked from axienet_start_xmit.
632 */
633static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
634 int num_frag)
635{
636 struct axidma_bd *cur_p;
637 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
638 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
639 return NETDEV_TX_BUSY;
640 return 0;
641}
642
643/**
644 * axienet_start_xmit - Starts the transmission.
645 * @skb: sk_buff pointer that contains data to be Txed.
646 * @ndev: Pointer to net_device structure.
647 *
b0d081c5 648 * Return: NETDEV_TX_OK, on success
8a3b7a25
DB
649 * NETDEV_TX_BUSY, if any of the descriptors are not free
650 *
651 * This function is invoked from upper layers to initiate transmission. The
652 * function uses the next available free BDs and populates their fields to
653 * start the transmission. Additionally if checksum offloading is supported,
654 * it populates AXI Stream Control fields with appropriate values.
655 */
81255af8
Y
656static netdev_tx_t
657axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
8a3b7a25
DB
658{
659 u32 ii;
660 u32 num_frag;
661 u32 csum_start_off;
662 u32 csum_index_off;
663 skb_frag_t *frag;
664 dma_addr_t tail_p;
665 struct axienet_local *lp = netdev_priv(ndev);
666 struct axidma_bd *cur_p;
667
668 num_frag = skb_shinfo(skb)->nr_frags;
669 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
670
671 if (axienet_check_tx_bd_space(lp, num_frag)) {
672 if (!netif_queue_stopped(ndev))
673 netif_stop_queue(ndev);
674 return NETDEV_TX_BUSY;
675 }
676
677 if (skb->ip_summed == CHECKSUM_PARTIAL) {
678 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
679 /* Tx Full Checksum Offload Enabled */
680 cur_p->app0 |= 2;
681 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
682 csum_start_off = skb_transport_offset(skb);
683 csum_index_off = csum_start_off + skb->csum_offset;
684 /* Tx Partial Checksum Offload Enabled */
685 cur_p->app0 |= 1;
686 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
687 }
688 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
689 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
690 }
691
692 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
693 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
694 skb_headlen(skb), DMA_TO_DEVICE);
695
696 for (ii = 0; ii < num_frag; ii++) {
91ff37ff
MS
697 ++lp->tx_bd_tail;
698 lp->tx_bd_tail %= TX_BD_NUM;
8a3b7a25
DB
699 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
700 frag = &skb_shinfo(skb)->frags[ii];
701 cur_p->phys = dma_map_single(ndev->dev.parent,
702 skb_frag_address(frag),
703 skb_frag_size(frag),
704 DMA_TO_DEVICE);
705 cur_p->cntrl = skb_frag_size(frag);
706 }
707
708 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
709 cur_p->app4 = (unsigned long)skb;
710
711 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
712 /* Start the transfer */
713 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
91ff37ff
MS
714 ++lp->tx_bd_tail;
715 lp->tx_bd_tail %= TX_BD_NUM;
8a3b7a25
DB
716
717 return NETDEV_TX_OK;
718}
719
720/**
721 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
722 * BD processing.
723 * @ndev: Pointer to net_device structure.
724 *
725 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
726 * does minimal processing and invokes "netif_rx" to complete further
727 * processing.
728 */
729static void axienet_recv(struct net_device *ndev)
730{
731 u32 length;
732 u32 csumstatus;
733 u32 size = 0;
734 u32 packets = 0;
38e96b35 735 dma_addr_t tail_p = 0;
8a3b7a25
DB
736 struct axienet_local *lp = netdev_priv(ndev);
737 struct sk_buff *skb, *new_skb;
738 struct axidma_bd *cur_p;
739
8a3b7a25
DB
740 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
741
742 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
38e96b35 743 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
8a3b7a25
DB
744 skb = (struct sk_buff *) (cur_p->sw_id_offset);
745 length = cur_p->app4 & 0x0000FFFF;
746
747 dma_unmap_single(ndev->dev.parent, cur_p->phys,
748 lp->max_frm_size,
749 DMA_FROM_DEVICE);
750
751 skb_put(skb, length);
752 skb->protocol = eth_type_trans(skb, ndev);
753 /*skb_checksum_none_assert(skb);*/
754 skb->ip_summed = CHECKSUM_NONE;
755
756 /* if we're doing Rx csum offload, set it up */
757 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
758 csumstatus = (cur_p->app2 &
759 XAE_FULL_CSUM_STATUS_MASK) >> 3;
760 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
761 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
762 skb->ip_summed = CHECKSUM_UNNECESSARY;
763 }
764 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
ceffc4ac 765 skb->protocol == htons(ETH_P_IP) &&
8a3b7a25
DB
766 skb->len > 64) {
767 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
768 skb->ip_summed = CHECKSUM_COMPLETE;
769 }
770
771 netif_rx(skb);
772
773 size += length;
774 packets++;
775
776 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 777 if (!new_skb)
8a3b7a25 778 return;
720a43ef 779
8a3b7a25
DB
780 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
781 lp->max_frm_size,
782 DMA_FROM_DEVICE);
783 cur_p->cntrl = lp->max_frm_size;
784 cur_p->status = 0;
785 cur_p->sw_id_offset = (u32) new_skb;
786
91ff37ff
MS
787 ++lp->rx_bd_ci;
788 lp->rx_bd_ci %= RX_BD_NUM;
8a3b7a25
DB
789 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
790 }
791
792 ndev->stats.rx_packets += packets;
793 ndev->stats.rx_bytes += size;
794
38e96b35
PC
795 if (tail_p)
796 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
8a3b7a25
DB
797}
798
799/**
800 * axienet_tx_irq - Tx Done Isr.
801 * @irq: irq number
802 * @_ndev: net_device pointer
803 *
b0d081c5 804 * Return: IRQ_HANDLED for all cases.
8a3b7a25
DB
805 *
806 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
807 * to complete the BD processing.
808 */
809static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
810{
811 u32 cr;
812 unsigned int status;
813 struct net_device *ndev = _ndev;
814 struct axienet_local *lp = netdev_priv(ndev);
815
816 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
817 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 818 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
819 axienet_start_xmit_done(lp->ndev);
820 goto out;
821 }
822 if (!(status & XAXIDMA_IRQ_ALL_MASK))
68c8182b 823 dev_err(&ndev->dev, "No interrupts asserted in Tx path\n");
8a3b7a25
DB
824 if (status & XAXIDMA_IRQ_ERROR_MASK) {
825 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
826 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
827 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
828
829 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
830 /* Disable coalesce, delay timer and error interrupts */
831 cr &= (~XAXIDMA_IRQ_ALL_MASK);
832 /* Write to the Tx channel control register */
833 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
834
835 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
836 /* Disable coalesce, delay timer and error interrupts */
837 cr &= (~XAXIDMA_IRQ_ALL_MASK);
838 /* Write to the Rx channel control register */
839 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
840
841 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 842 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
843 }
844out:
8a3b7a25
DB
845 return IRQ_HANDLED;
846}
847
848/**
849 * axienet_rx_irq - Rx Isr.
850 * @irq: irq number
851 * @_ndev: net_device pointer
852 *
b0d081c5 853 * Return: IRQ_HANDLED for all cases.
8a3b7a25
DB
854 *
855 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
856 * processing.
857 */
858static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
859{
860 u32 cr;
861 unsigned int status;
862 struct net_device *ndev = _ndev;
863 struct axienet_local *lp = netdev_priv(ndev);
864
865 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
866 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 867 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
868 axienet_recv(lp->ndev);
869 goto out;
870 }
871 if (!(status & XAXIDMA_IRQ_ALL_MASK))
68c8182b 872 dev_err(&ndev->dev, "No interrupts asserted in Rx path\n");
8a3b7a25
DB
873 if (status & XAXIDMA_IRQ_ERROR_MASK) {
874 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
875 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
876 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
877
878 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
879 /* Disable coalesce, delay timer and error interrupts */
880 cr &= (~XAXIDMA_IRQ_ALL_MASK);
881 /* Finally write to the Tx channel control register */
882 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
883
884 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
885 /* Disable coalesce, delay timer and error interrupts */
886 cr &= (~XAXIDMA_IRQ_ALL_MASK);
887 /* write to the Rx channel control register */
888 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
889
890 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 891 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
892 }
893out:
8a3b7a25
DB
894 return IRQ_HANDLED;
895}
896
aecb55be
JM
897static void axienet_dma_err_handler(unsigned long data);
898
8a3b7a25
DB
899/**
900 * axienet_open - Driver open routine.
901 * @ndev: Pointer to net_device structure
902 *
b0d081c5 903 * Return: 0, on success.
8a3b7a25
DB
904 * non-zero error value on failure
905 *
906 * This is the driver open routine. It calls phy_start to start the PHY device.
907 * It also allocates interrupt service routines, enables the interrupt lines
908 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
909 * descriptors are initialized.
910 */
911static int axienet_open(struct net_device *ndev)
912{
913 int ret, mdio_mcreg;
914 struct axienet_local *lp = netdev_priv(ndev);
b1b7dcff 915 struct phy_device *phydev = NULL;
8a3b7a25
DB
916
917 dev_dbg(&ndev->dev, "axienet_open()\n");
918
919 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
920 ret = axienet_mdio_wait_until_ready(lp);
921 if (ret < 0)
922 return ret;
923 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
924 * When we do an Axi Ethernet reset, it resets the complete core
925 * including the MDIO. If MDIO is not disabled when the reset
850a7503
MS
926 * process is started, MDIO will be broken afterwards.
927 */
8a3b7a25
DB
928 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
929 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
930 axienet_device_reset(ndev);
931 /* Enable the MDIO */
932 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
933 ret = axienet_mdio_wait_until_ready(lp);
934 if (ret < 0)
935 return ret;
936
937 if (lp->phy_node) {
ee06b172
A
938 phydev = of_phy_connect(lp->ndev, lp->phy_node,
939 axienet_adjust_link, 0, lp->phy_mode);
d1d372e8 940
b1b7dcff 941 if (!phydev)
8a3b7a25 942 dev_err(lp->dev, "of_phy_connect() failed\n");
d7cc3163 943 else
b1b7dcff 944 phy_start(phydev);
8a3b7a25
DB
945 }
946
71c6c837
XF
947 /* Enable tasklets for Axi DMA error handling */
948 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
949 (unsigned long) lp);
950
8a3b7a25
DB
951 /* Enable interrupts for Axi DMA Tx */
952 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
953 if (ret)
954 goto err_tx_irq;
955 /* Enable interrupts for Axi DMA Rx */
956 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
957 if (ret)
958 goto err_rx_irq;
71c6c837 959
8a3b7a25
DB
960 return 0;
961
962err_rx_irq:
963 free_irq(lp->tx_irq, ndev);
964err_tx_irq:
b1b7dcff
PR
965 if (phydev)
966 phy_disconnect(phydev);
71c6c837 967 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25
DB
968 dev_err(lp->dev, "request_irq() failed\n");
969 return ret;
970}
971
972/**
973 * axienet_stop - Driver stop routine.
974 * @ndev: Pointer to net_device structure
975 *
b0d081c5 976 * Return: 0, on success.
8a3b7a25
DB
977 *
978 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
979 * device. It also removes the interrupt handlers and disables the interrupts.
980 * The Axi DMA Tx/Rx BDs are released.
981 */
982static int axienet_stop(struct net_device *ndev)
983{
984 u32 cr;
985 struct axienet_local *lp = netdev_priv(ndev);
986
987 dev_dbg(&ndev->dev, "axienet_close()\n");
988
989 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
990 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
991 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
992 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
993 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
994 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
995 axienet_setoptions(ndev, lp->options &
996 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
997
175c0dff 998 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25
DB
999
1000 free_irq(lp->tx_irq, ndev);
1001 free_irq(lp->rx_irq, ndev);
1002
b1b7dcff
PR
1003 if (ndev->phydev)
1004 phy_disconnect(ndev->phydev);
8a3b7a25
DB
1005
1006 axienet_dma_bd_release(ndev);
1007 return 0;
1008}
1009
1010/**
1011 * axienet_change_mtu - Driver change mtu routine.
1012 * @ndev: Pointer to net_device structure
1013 * @new_mtu: New mtu value to be applied
1014 *
b0d081c5 1015 * Return: Always returns 0 (success).
8a3b7a25
DB
1016 *
1017 * This is the change mtu driver routine. It checks if the Axi Ethernet
1018 * hardware supports jumbo frames before changing the mtu. This can be
1019 * called only when the device is not up.
1020 */
1021static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1022{
1023 struct axienet_local *lp = netdev_priv(ndev);
1024
1025 if (netif_running(ndev))
1026 return -EBUSY;
f080a8c3
ST
1027
1028 if ((new_mtu + VLAN_ETH_HLEN +
1029 XAE_TRL_SIZE) > lp->rxmem)
1030 return -EINVAL;
1031
f080a8c3 1032 ndev->mtu = new_mtu;
8a3b7a25
DB
1033
1034 return 0;
1035}
1036
1037#ifdef CONFIG_NET_POLL_CONTROLLER
1038/**
1039 * axienet_poll_controller - Axi Ethernet poll mechanism.
1040 * @ndev: Pointer to net_device structure
1041 *
1042 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1043 * to polling the ISRs and are enabled back after the polling is done.
1044 */
1045static void axienet_poll_controller(struct net_device *ndev)
1046{
1047 struct axienet_local *lp = netdev_priv(ndev);
1048 disable_irq(lp->tx_irq);
1049 disable_irq(lp->rx_irq);
1050 axienet_rx_irq(lp->tx_irq, ndev);
1051 axienet_tx_irq(lp->rx_irq, ndev);
1052 enable_irq(lp->tx_irq);
1053 enable_irq(lp->rx_irq);
1054}
1055#endif
1056
1057static const struct net_device_ops axienet_netdev_ops = {
1058 .ndo_open = axienet_open,
1059 .ndo_stop = axienet_stop,
1060 .ndo_start_xmit = axienet_start_xmit,
1061 .ndo_change_mtu = axienet_change_mtu,
1062 .ndo_set_mac_address = netdev_set_mac_address,
1063 .ndo_validate_addr = eth_validate_addr,
1064 .ndo_set_rx_mode = axienet_set_multicast_list,
1065#ifdef CONFIG_NET_POLL_CONTROLLER
1066 .ndo_poll_controller = axienet_poll_controller,
1067#endif
1068};
1069
8a3b7a25
DB
1070/**
1071 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1072 * @ndev: Pointer to net_device structure
1073 * @ed: Pointer to ethtool_drvinfo structure
1074 *
1075 * This implements ethtool command for getting the driver information.
1076 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1077 */
1078static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1079 struct ethtool_drvinfo *ed)
1080{
7826d43f
JP
1081 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1082 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
8a3b7a25
DB
1083}
1084
1085/**
1086 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1087 * AxiEthernet core.
1088 * @ndev: Pointer to net_device structure
1089 *
1090 * This implements ethtool command for getting the total register length
1091 * information.
b0d081c5
MS
1092 *
1093 * Return: the total regs length
8a3b7a25
DB
1094 */
1095static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1096{
1097 return sizeof(u32) * AXIENET_REGS_N;
1098}
1099
1100/**
1101 * axienet_ethtools_get_regs - Dump the contents of all registers present
1102 * in AxiEthernet core.
1103 * @ndev: Pointer to net_device structure
1104 * @regs: Pointer to ethtool_regs structure
1105 * @ret: Void pointer used to return the contents of the registers.
1106 *
1107 * This implements ethtool command for getting the Axi Ethernet register dump.
1108 * Issue "ethtool -d ethX" to execute this function.
1109 */
1110static void axienet_ethtools_get_regs(struct net_device *ndev,
1111 struct ethtool_regs *regs, void *ret)
1112{
1113 u32 *data = (u32 *) ret;
1114 size_t len = sizeof(u32) * AXIENET_REGS_N;
1115 struct axienet_local *lp = netdev_priv(ndev);
1116
1117 regs->version = 0;
1118 regs->len = len;
1119
1120 memset(data, 0, len);
1121 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1122 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1123 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1124 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1125 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1126 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1127 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1128 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1129 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1130 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1131 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1132 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1133 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1134 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1135 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1136 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1137 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1138 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1139 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1140 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1141 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1142 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1143 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1144 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1145 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1146 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1147 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1148 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1149 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1150 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1151 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1152 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1153}
1154
1155/**
1156 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1157 * Tx and Rx paths.
1158 * @ndev: Pointer to net_device structure
1159 * @epauseparm: Pointer to ethtool_pauseparam structure.
1160 *
1161 * This implements ethtool command for getting axi ethernet pause frame
1162 * setting. Issue "ethtool -a ethX" to execute this function.
1163 */
1164static void
1165axienet_ethtools_get_pauseparam(struct net_device *ndev,
1166 struct ethtool_pauseparam *epauseparm)
1167{
1168 u32 regval;
1169 struct axienet_local *lp = netdev_priv(ndev);
1170 epauseparm->autoneg = 0;
1171 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1172 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1173 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1174}
1175
1176/**
1177 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1178 * settings.
1179 * @ndev: Pointer to net_device structure
b0d081c5 1180 * @epauseparm:Pointer to ethtool_pauseparam structure
8a3b7a25
DB
1181 *
1182 * This implements ethtool command for enabling flow control on Rx and Tx
1183 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1184 * function.
b0d081c5
MS
1185 *
1186 * Return: 0 on success, -EFAULT if device is running
8a3b7a25
DB
1187 */
1188static int
1189axienet_ethtools_set_pauseparam(struct net_device *ndev,
1190 struct ethtool_pauseparam *epauseparm)
1191{
1192 u32 regval = 0;
1193 struct axienet_local *lp = netdev_priv(ndev);
1194
1195 if (netif_running(ndev)) {
c81a97b5
ST
1196 netdev_err(ndev,
1197 "Please stop netif before applying configuration\n");
8a3b7a25
DB
1198 return -EFAULT;
1199 }
1200
1201 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1202 if (epauseparm->tx_pause)
1203 regval |= XAE_FCC_FCTX_MASK;
1204 else
1205 regval &= ~XAE_FCC_FCTX_MASK;
1206 if (epauseparm->rx_pause)
1207 regval |= XAE_FCC_FCRX_MASK;
1208 else
1209 regval &= ~XAE_FCC_FCRX_MASK;
1210 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1211
1212 return 0;
1213}
1214
1215/**
1216 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1217 * @ndev: Pointer to net_device structure
1218 * @ecoalesce: Pointer to ethtool_coalesce structure
1219 *
1220 * This implements ethtool command for getting the DMA interrupt coalescing
1221 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1222 * execute this function.
b0d081c5
MS
1223 *
1224 * Return: 0 always
8a3b7a25
DB
1225 */
1226static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1227 struct ethtool_coalesce *ecoalesce)
1228{
1229 u32 regval = 0;
1230 struct axienet_local *lp = netdev_priv(ndev);
1231 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1232 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1233 >> XAXIDMA_COALESCE_SHIFT;
1234 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1235 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1236 >> XAXIDMA_COALESCE_SHIFT;
1237 return 0;
1238}
1239
1240/**
1241 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1242 * @ndev: Pointer to net_device structure
1243 * @ecoalesce: Pointer to ethtool_coalesce structure
1244 *
1245 * This implements ethtool command for setting the DMA interrupt coalescing
1246 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1247 * prompt to execute this function.
b0d081c5
MS
1248 *
1249 * Return: 0, on success, Non-zero error value on failure.
8a3b7a25
DB
1250 */
1251static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1252 struct ethtool_coalesce *ecoalesce)
1253{
1254 struct axienet_local *lp = netdev_priv(ndev);
1255
1256 if (netif_running(ndev)) {
c81a97b5
ST
1257 netdev_err(ndev,
1258 "Please stop netif before applying configuration\n");
8a3b7a25
DB
1259 return -EFAULT;
1260 }
1261
1262 if ((ecoalesce->rx_coalesce_usecs) ||
1263 (ecoalesce->rx_coalesce_usecs_irq) ||
1264 (ecoalesce->rx_max_coalesced_frames_irq) ||
1265 (ecoalesce->tx_coalesce_usecs) ||
1266 (ecoalesce->tx_coalesce_usecs_irq) ||
1267 (ecoalesce->tx_max_coalesced_frames_irq) ||
1268 (ecoalesce->stats_block_coalesce_usecs) ||
1269 (ecoalesce->use_adaptive_rx_coalesce) ||
1270 (ecoalesce->use_adaptive_tx_coalesce) ||
1271 (ecoalesce->pkt_rate_low) ||
1272 (ecoalesce->rx_coalesce_usecs_low) ||
1273 (ecoalesce->rx_max_coalesced_frames_low) ||
1274 (ecoalesce->tx_coalesce_usecs_low) ||
1275 (ecoalesce->tx_max_coalesced_frames_low) ||
1276 (ecoalesce->pkt_rate_high) ||
1277 (ecoalesce->rx_coalesce_usecs_high) ||
1278 (ecoalesce->rx_max_coalesced_frames_high) ||
1279 (ecoalesce->tx_coalesce_usecs_high) ||
1280 (ecoalesce->tx_max_coalesced_frames_high) ||
1281 (ecoalesce->rate_sample_interval))
1282 return -EOPNOTSUPP;
1283 if (ecoalesce->rx_max_coalesced_frames)
1284 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1285 if (ecoalesce->tx_max_coalesced_frames)
1286 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1287
1288 return 0;
1289}
1290
c7735f1b 1291static const struct ethtool_ops axienet_ethtool_ops = {
8a3b7a25
DB
1292 .get_drvinfo = axienet_ethtools_get_drvinfo,
1293 .get_regs_len = axienet_ethtools_get_regs_len,
1294 .get_regs = axienet_ethtools_get_regs,
1295 .get_link = ethtool_op_get_link,
1296 .get_pauseparam = axienet_ethtools_get_pauseparam,
1297 .set_pauseparam = axienet_ethtools_set_pauseparam,
1298 .get_coalesce = axienet_ethtools_get_coalesce,
1299 .set_coalesce = axienet_ethtools_set_coalesce,
6e384840
PR
1300 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1301 .set_link_ksettings = phy_ethtool_set_link_ksettings,
8a3b7a25
DB
1302};
1303
1304/**
1305 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1306 * @data: Data passed
1307 *
1308 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1309 * Tx/Rx BDs.
1310 */
1311static void axienet_dma_err_handler(unsigned long data)
1312{
1313 u32 axienet_status;
1314 u32 cr, i;
1315 int mdio_mcreg;
1316 struct axienet_local *lp = (struct axienet_local *) data;
1317 struct net_device *ndev = lp->ndev;
1318 struct axidma_bd *cur_p;
1319
1320 axienet_setoptions(ndev, lp->options &
1321 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1322 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1323 axienet_mdio_wait_until_ready(lp);
1324 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1325 * When we do an Axi Ethernet reset, it resets the complete core
1326 * including the MDIO. So if MDIO is not disabled when the reset
850a7503
MS
1327 * process is started, MDIO will be broken afterwards.
1328 */
8a3b7a25
DB
1329 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1330 ~XAE_MDIO_MC_MDIOEN_MASK));
1331
5852e93d
TK
1332 __axienet_device_reset(lp, XAXIDMA_TX_CR_OFFSET);
1333 __axienet_device_reset(lp, XAXIDMA_RX_CR_OFFSET);
8a3b7a25
DB
1334
1335 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1336 axienet_mdio_wait_until_ready(lp);
1337
1338 for (i = 0; i < TX_BD_NUM; i++) {
1339 cur_p = &lp->tx_bd_v[i];
1340 if (cur_p->phys)
1341 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1342 (cur_p->cntrl &
1343 XAXIDMA_BD_CTRL_LENGTH_MASK),
1344 DMA_TO_DEVICE);
1345 if (cur_p->app4)
1346 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1347 cur_p->phys = 0;
1348 cur_p->cntrl = 0;
1349 cur_p->status = 0;
1350 cur_p->app0 = 0;
1351 cur_p->app1 = 0;
1352 cur_p->app2 = 0;
1353 cur_p->app3 = 0;
1354 cur_p->app4 = 0;
1355 cur_p->sw_id_offset = 0;
1356 }
1357
1358 for (i = 0; i < RX_BD_NUM; i++) {
1359 cur_p = &lp->rx_bd_v[i];
1360 cur_p->status = 0;
1361 cur_p->app0 = 0;
1362 cur_p->app1 = 0;
1363 cur_p->app2 = 0;
1364 cur_p->app3 = 0;
1365 cur_p->app4 = 0;
1366 }
1367
1368 lp->tx_bd_ci = 0;
1369 lp->tx_bd_tail = 0;
1370 lp->rx_bd_ci = 0;
1371
1372 /* Start updating the Rx channel control register */
1373 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1374 /* Update the interrupt coalesce count */
1375 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1376 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1377 /* Update the delay timer count */
1378 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1379 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1380 /* Enable coalesce, delay timer and error interrupts */
1381 cr |= XAXIDMA_IRQ_ALL_MASK;
1382 /* Finally write to the Rx channel control register */
1383 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1384
1385 /* Start updating the Tx channel control register */
1386 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1387 /* Update the interrupt coalesce count */
1388 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1389 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1390 /* Update the delay timer count */
1391 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1392 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1393 /* Enable coalesce, delay timer and error interrupts */
1394 cr |= XAXIDMA_IRQ_ALL_MASK;
1395 /* Finally write to the Tx channel control register */
1396 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1397
1398 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
1399 * halted state. This will make the Rx side ready for reception.
1400 */
8a3b7a25
DB
1401 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1402 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1404 cr | XAXIDMA_CR_RUNSTOP_MASK);
1405 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1406 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1407
1408 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1409 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
1410 * tail pointer register that the Tx channel will start transmitting
1411 */
8a3b7a25
DB
1412 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1413 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1414 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1415 cr | XAXIDMA_CR_RUNSTOP_MASK);
1416
1417 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1418 axienet_status &= ~XAE_RCW1_RX_MASK;
1419 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1420
1421 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1422 if (axienet_status & XAE_INT_RXRJECT_MASK)
1423 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1424 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1425
1426 /* Sync default options with HW but leave receiver and
850a7503
MS
1427 * transmitter disabled.
1428 */
8a3b7a25
DB
1429 axienet_setoptions(ndev, lp->options &
1430 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1431 axienet_set_mac_address(ndev, NULL);
1432 axienet_set_multicast_list(ndev);
1433 axienet_setoptions(ndev, lp->options);
1434}
1435
1436/**
2be58620 1437 * axienet_probe - Axi Ethernet probe function.
95219aa5 1438 * @pdev: Pointer to platform device structure.
8a3b7a25 1439 *
b0d081c5 1440 * Return: 0, on success
8a3b7a25
DB
1441 * Non-zero error value on failure.
1442 *
1443 * This is the probe routine for Axi Ethernet driver. This is called before
1444 * any other driver routines are invoked. It allocates and sets up the Ethernet
1445 * device. Parses through device tree and populates fields of
1446 * axienet_local. It registers the Ethernet device.
1447 */
2be58620 1448static int axienet_probe(struct platform_device *pdev)
8a3b7a25 1449{
8495659b 1450 int ret;
8a3b7a25
DB
1451 struct device_node *np;
1452 struct axienet_local *lp;
1453 struct net_device *ndev;
da90e380 1454 const void *mac_addr;
46aa27df 1455 struct resource *ethres, dmares;
8495659b 1456 u32 value;
8a3b7a25
DB
1457
1458 ndev = alloc_etherdev(sizeof(*lp));
41de8d4c 1459 if (!ndev)
8a3b7a25 1460 return -ENOMEM;
8a3b7a25 1461
95219aa5 1462 platform_set_drvdata(pdev, ndev);
8a3b7a25 1463
95219aa5 1464 SET_NETDEV_DEV(ndev, &pdev->dev);
8a3b7a25 1465 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
28e24c62 1466 ndev->features = NETIF_F_SG;
8a3b7a25
DB
1467 ndev->netdev_ops = &axienet_netdev_ops;
1468 ndev->ethtool_ops = &axienet_ethtool_ops;
1469
d894be57
JW
1470 /* MTU range: 64 - 9000 */
1471 ndev->min_mtu = 64;
1472 ndev->max_mtu = XAE_JUMBO_MTU;
1473
8a3b7a25
DB
1474 lp = netdev_priv(ndev);
1475 lp->ndev = ndev;
95219aa5 1476 lp->dev = &pdev->dev;
8a3b7a25
DB
1477 lp->options = XAE_OPTION_DEFAULTS;
1478 /* Map device registers */
46aa27df
ST
1479 ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480 lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
fcc028c1 1481 if (IS_ERR(lp->regs)) {
95219aa5 1482 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
fcc028c1 1483 ret = PTR_ERR(lp->regs);
46aa27df 1484 goto free_netdev;
8a3b7a25 1485 }
46aa27df 1486
8a3b7a25
DB
1487 /* Setup checksum offload, but default to off if not specified */
1488 lp->features = 0;
1489
8495659b
ST
1490 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1491 if (!ret) {
1492 switch (value) {
8a3b7a25
DB
1493 case 1:
1494 lp->csum_offload_on_tx_path =
1495 XAE_FEATURE_PARTIAL_TX_CSUM;
1496 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1497 /* Can checksum TCP/UDP over IPv4. */
1498 ndev->features |= NETIF_F_IP_CSUM;
1499 break;
1500 case 2:
1501 lp->csum_offload_on_tx_path =
1502 XAE_FEATURE_FULL_TX_CSUM;
1503 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1504 /* Can checksum TCP/UDP over IPv4. */
1505 ndev->features |= NETIF_F_IP_CSUM;
1506 break;
1507 default:
1508 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1509 }
1510 }
8495659b
ST
1511 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1512 if (!ret) {
1513 switch (value) {
8a3b7a25
DB
1514 case 1:
1515 lp->csum_offload_on_rx_path =
1516 XAE_FEATURE_PARTIAL_RX_CSUM;
1517 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1518 break;
1519 case 2:
1520 lp->csum_offload_on_rx_path =
1521 XAE_FEATURE_FULL_RX_CSUM;
1522 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1523 break;
1524 default:
1525 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1526 }
1527 }
1528 /* For supporting jumbo frames, the Axi Ethernet hardware must have
f080a8c3
ST
1529 * a larger Rx/Tx Memory. Typically, the size must be large so that
1530 * we can enable jumbo option and start supporting jumbo frames.
1531 * Here we check for memory allocated for Rx/Tx in the hardware from
1532 * the device-tree and accordingly set flags.
1533 */
8495659b 1534 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
ee06b172
A
1535
1536 /* Start with the proprietary, and broken phy_type */
1537 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1538 if (!ret) {
1539 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1540 switch (value) {
1541 case XAE_PHY_TYPE_MII:
1542 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1543 break;
1544 case XAE_PHY_TYPE_GMII:
1545 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1546 break;
1547 case XAE_PHY_TYPE_RGMII_2_0:
1548 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1549 break;
1550 case XAE_PHY_TYPE_SGMII:
1551 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1552 break;
1553 case XAE_PHY_TYPE_1000BASE_X:
1554 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1555 break;
1556 default:
1557 ret = -EINVAL;
1558 goto free_netdev;
1559 }
1560 } else {
1561 lp->phy_mode = of_get_phy_mode(pdev->dev.of_node);
1562 if (lp->phy_mode < 0) {
1563 ret = -EINVAL;
1564 goto free_netdev;
1565 }
1566 }
8a3b7a25
DB
1567
1568 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
95219aa5 1569 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
3ad7b147 1570 if (!np) {
95219aa5 1571 dev_err(&pdev->dev, "could not find DMA node\n");
3ad7b147 1572 ret = -ENODEV;
46aa27df 1573 goto free_netdev;
8a3b7a25 1574 }
46aa27df
ST
1575 ret = of_address_to_resource(np, 0, &dmares);
1576 if (ret) {
1577 dev_err(&pdev->dev, "unable to get DMA resource\n");
fa3a419d 1578 of_node_put(np);
46aa27df
ST
1579 goto free_netdev;
1580 }
1581 lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
fcc028c1 1582 if (IS_ERR(lp->dma_regs)) {
46aa27df 1583 dev_err(&pdev->dev, "could not map DMA regs\n");
fcc028c1 1584 ret = PTR_ERR(lp->dma_regs);
fa3a419d 1585 of_node_put(np);
46aa27df 1586 goto free_netdev;
8a3b7a25
DB
1587 }
1588 lp->rx_irq = irq_of_parse_and_map(np, 1);
1589 lp->tx_irq = irq_of_parse_and_map(np, 0);
1590 of_node_put(np);
cb59c87d 1591 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
95219aa5 1592 dev_err(&pdev->dev, "could not determine irqs\n");
8a3b7a25 1593 ret = -ENOMEM;
46aa27df 1594 goto free_netdev;
8a3b7a25
DB
1595 }
1596
1597 /* Retrieve the MAC address */
da90e380
TK
1598 mac_addr = of_get_mac_address(pdev->dev.of_node);
1599 if (!mac_addr) {
95219aa5 1600 dev_err(&pdev->dev, "could not find MAC address\n");
46aa27df 1601 goto free_netdev;
8a3b7a25 1602 }
da90e380 1603 axienet_set_mac_address(ndev, mac_addr);
8a3b7a25
DB
1604
1605 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1606 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1607
95219aa5 1608 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
46aa27df 1609 if (lp->phy_node) {
95219aa5 1610 ret = axienet_mdio_setup(lp, pdev->dev.of_node);
46aa27df
ST
1611 if (ret)
1612 dev_warn(&pdev->dev, "error registering MDIO bus\n");
1613 }
8a3b7a25
DB
1614
1615 ret = register_netdev(lp->ndev);
1616 if (ret) {
1617 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
46aa27df 1618 goto free_netdev;
8a3b7a25
DB
1619 }
1620
8a3b7a25
DB
1621 return 0;
1622
46aa27df 1623free_netdev:
8a3b7a25 1624 free_netdev(ndev);
46aa27df 1625
8a3b7a25
DB
1626 return ret;
1627}
1628
2be58620 1629static int axienet_remove(struct platform_device *pdev)
8a3b7a25 1630{
95219aa5 1631 struct net_device *ndev = platform_get_drvdata(pdev);
8a3b7a25
DB
1632 struct axienet_local *lp = netdev_priv(ndev);
1633
1634 axienet_mdio_teardown(lp);
1635 unregister_netdev(ndev);
1636
6f3a59ac 1637 of_node_put(lp->phy_node);
8a3b7a25
DB
1638 lp->phy_node = NULL;
1639
8a3b7a25
DB
1640 free_netdev(ndev);
1641
1642 return 0;
1643}
1644
2be58620
ST
1645static struct platform_driver axienet_driver = {
1646 .probe = axienet_probe,
1647 .remove = axienet_remove,
8a3b7a25 1648 .driver = {
8a3b7a25
DB
1649 .name = "xilinx_axienet",
1650 .of_match_table = axienet_of_match,
1651 },
1652};
1653
2be58620 1654module_platform_driver(axienet_driver);
8a3b7a25
DB
1655
1656MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1657MODULE_AUTHOR("Xilinx");
1658MODULE_LICENSE("GPL");