]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/transaction.c
btrfs: add and use helpers for reading and writing last_trans_committed
[thirdparty/linux.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
d3575156 26#include "zoned.h"
c7f13d42 27#include "fs.h"
07e81dc9 28#include "accessors.h"
a0231804 29#include "extent-tree.h"
45c40c8f 30#include "root-tree.h"
59b818e0 31#include "defrag.h"
f2b39277 32#include "dir-item.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
79154b1b 37
956504a3
JB
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
fc7cbcd4 40#define BTRFS_ROOT_TRANS_TAG 0
0f7d52f4 41
61c047b5
QW
42/*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
77d20c68
JB
59 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
60 * |
61 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
62 * | the race and the rest will wait for the winner to commit the transaction.
63 * |
64 * | The winner will wait for previous running transaction to completely finish
65 * | if there is one.
61c047b5 66 * |
77d20c68 67 * Transaction N [[TRANS_STATE_COMMIT_START]]
61c047b5 68 * |
77d20c68 69 * | Then one of the following happens:
61c047b5
QW
70 * | - Wait for all other trans handle holders to release.
71 * | The btrfs_commit_transaction() caller will do the commit work.
72 * | - Wait for current transaction to be committed by others.
73 * | Other btrfs_commit_transaction() caller will do the commit work.
74 * |
75 * | At this stage, only btrfs_join_transaction*() variants can attach
76 * | to this running transaction.
77 * | All other variants will wait for current one to finish and attach to
78 * | transaction N+1.
79 * |
80 * | To next stage:
81 * | Caller is chosen to commit transaction N, and all other trans handle
82 * | haven been released.
83 * V
84 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
85 * |
86 * | The heavy lifting transaction work is started.
87 * | From running delayed refs (modifying extent tree) to creating pending
88 * | snapshots, running qgroups.
89 * | In short, modify supporting trees to reflect modifications of subvolume
90 * | trees.
91 * |
92 * | At this stage, all start_transaction() calls will wait for this
93 * | transaction to finish and attach to transaction N+1.
94 * |
95 * | To next stage:
96 * | Until all supporting trees are updated.
97 * V
98 * Transaction N [[TRANS_STATE_UNBLOCKED]]
99 * | Transaction N+1
100 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
101 * | need to write them back to disk and update |
102 * | super blocks. |
103 * | |
104 * | At this stage, new transaction is allowed to |
105 * | start. |
106 * | All new start_transaction() calls will be |
107 * | attached to transid N+1. |
108 * | |
109 * | To next stage: |
110 * | Until all tree blocks are super blocks are |
111 * | written to block devices |
112 * V |
113 * Transaction N [[TRANS_STATE_COMPLETED]] V
114 * All tree blocks and super blocks are written. Transaction N+1
115 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
116 * data structures will be cleaned up. | Life goes on
117 */
e8c9f186 118static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 119 [TRANS_STATE_RUNNING] = 0U,
77d20c68 120 [TRANS_STATE_COMMIT_PREP] = 0U,
bcf3a3e7
NB
121 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
122 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 123 __TRANS_ATTACH |
a6d155d2
FM
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOSTART),
bcf3a3e7 126 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
127 __TRANS_ATTACH |
128 __TRANS_JOIN |
a6d155d2
FM
129 __TRANS_JOIN_NOLOCK |
130 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
131 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
132 __TRANS_ATTACH |
133 __TRANS_JOIN |
134 __TRANS_JOIN_NOLOCK |
135 __TRANS_JOIN_NOSTART),
bcf3a3e7 136 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
137 __TRANS_ATTACH |
138 __TRANS_JOIN |
a6d155d2
FM
139 __TRANS_JOIN_NOLOCK |
140 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
141};
142
724e2315 143void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 144{
9b64f57d
ER
145 WARN_ON(refcount_read(&transaction->use_count) == 0);
146 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 147 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
150 WARN_ON(!RB_EMPTY_ROOT(
151 &transaction->delayed_refs.dirty_extent_root));
1262133b 152 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
153 btrfs_err(transaction->fs_info,
154 "pending csums is %llu",
155 transaction->delayed_refs.pending_csums);
7785a663
FM
156 /*
157 * If any block groups are found in ->deleted_bgs then it's
158 * because the transaction was aborted and a commit did not
159 * happen (things failed before writing the new superblock
160 * and calling btrfs_finish_extent_commit()), so we can not
161 * discard the physical locations of the block groups.
162 */
163 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 164 struct btrfs_block_group *cache;
7785a663
FM
165
166 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 167 struct btrfs_block_group,
7785a663
FM
168 bg_list);
169 list_del_init(&cache->bg_list);
6b7304af 170 btrfs_unfreeze_block_group(cache);
7785a663
FM
171 btrfs_put_block_group(cache);
172 }
bbbf7243 173 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 174 kfree(transaction);
78fae27e 175 }
79154b1b
CM
176}
177
889bfa39 178static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 179{
889bfa39 180 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 181 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
182 struct btrfs_root *root, *tmp;
183
dfba78dc
FM
184 /*
185 * At this point no one can be using this transaction to modify any tree
186 * and no one can start another transaction to modify any tree either.
187 */
188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189
9e351cc8 190 down_write(&fs_info->commit_root_sem);
d96b3424
FM
191
192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 fs_info->last_reloc_trans = trans->transid;
194
889bfa39 195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
196 dirty_list) {
197 list_del_init(&root->dirty_list);
198 free_extent_buffer(root->commit_root);
199 root->commit_root = btrfs_root_node(root);
41e7acd3 200 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 201 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 202 }
2b9dbef2
JB
203
204 /* We can free old roots now. */
889bfa39
JB
205 spin_lock(&cur_trans->dropped_roots_lock);
206 while (!list_empty(&cur_trans->dropped_roots)) {
207 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
208 struct btrfs_root, root_list);
209 list_del_init(&root->root_list);
889bfa39
JB
210 spin_unlock(&cur_trans->dropped_roots_lock);
211 btrfs_free_log(trans, root);
2b9dbef2 212 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 213 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 214 }
889bfa39 215 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 216
9e351cc8 217 up_write(&fs_info->commit_root_sem);
817d52f8
JB
218}
219
0860adfd
MX
220static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 unsigned int type)
222{
223 if (type & TRANS_EXTWRITERS)
224 atomic_inc(&trans->num_extwriters);
225}
226
227static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 unsigned int type)
229{
230 if (type & TRANS_EXTWRITERS)
231 atomic_dec(&trans->num_extwriters);
232}
233
234static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 unsigned int type)
236{
237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238}
239
240static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241{
242 return atomic_read(&trans->num_extwriters);
178260b2
MX
243}
244
fb6dea26 245/*
79bd3712
FM
246 * To be called after doing the chunk btree updates right after allocating a new
247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248 * chunk after all chunk btree updates and after finishing the second phase of
249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
251 */
252void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253{
254 struct btrfs_fs_info *fs_info = trans->fs_info;
255
256 if (!trans->chunk_bytes_reserved)
257 return;
258
fb6dea26 259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 260 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
261 trans->chunk_bytes_reserved = 0;
262}
263
d352ac68
CM
264/*
265 * either allocate a new transaction or hop into the existing one
266 */
2ff7e61e
JM
267static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 unsigned int type)
79154b1b
CM
269{
270 struct btrfs_transaction *cur_trans;
a4abeea4 271
19ae4e81 272 spin_lock(&fs_info->trans_lock);
d43317dc 273loop:
49b25e05 274 /* The file system has been taken offline. No new transactions. */
84961539 275 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 276 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
277 return -EROFS;
278 }
279
19ae4e81 280 cur_trans = fs_info->running_transaction;
a4abeea4 281 if (cur_trans) {
bf31f87f 282 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 283 spin_unlock(&fs_info->trans_lock);
49b25e05 284 return cur_trans->aborted;
871383be 285 }
4a9d8bde 286 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
287 spin_unlock(&fs_info->trans_lock);
288 return -EBUSY;
289 }
9b64f57d 290 refcount_inc(&cur_trans->use_count);
13c5a93e 291 atomic_inc(&cur_trans->num_writers);
0860adfd 292 extwriter_counter_inc(cur_trans, type);
19ae4e81 293 spin_unlock(&fs_info->trans_lock);
e1489b4f 294 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 295 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 296 return 0;
79154b1b 297 }
19ae4e81 298 spin_unlock(&fs_info->trans_lock);
a4abeea4 299
354aa0fb 300 /*
4490e803
FM
301 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
302 * current transaction, and commit it. If there is no transaction, just
303 * return ENOENT.
354aa0fb 304 */
4490e803 305 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
354aa0fb
MX
306 return -ENOENT;
307
4a9d8bde
MX
308 /*
309 * JOIN_NOLOCK only happens during the transaction commit, so
310 * it is impossible that ->running_transaction is NULL
311 */
312 BUG_ON(type == TRANS_JOIN_NOLOCK);
313
4b5faeac 314 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
315 if (!cur_trans)
316 return -ENOMEM;
d43317dc 317
e1489b4f 318 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 319 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 320
19ae4e81
JS
321 spin_lock(&fs_info->trans_lock);
322 if (fs_info->running_transaction) {
d43317dc
CM
323 /*
324 * someone started a transaction after we unlocked. Make sure
4a9d8bde 325 * to redo the checks above
d43317dc 326 */
5a9ba670 327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 329 kfree(cur_trans);
d43317dc 330 goto loop;
84961539 331 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 332 spin_unlock(&fs_info->trans_lock);
5a9ba670 333 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 335 kfree(cur_trans);
7b8b92af 336 return -EROFS;
79154b1b 337 }
d43317dc 338
ab8d0fc4 339 cur_trans->fs_info = fs_info;
48778179
FM
340 atomic_set(&cur_trans->pending_ordered, 0);
341 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 342 atomic_set(&cur_trans->num_writers, 1);
0860adfd 343 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
344 init_waitqueue_head(&cur_trans->writer_wait);
345 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 346 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
347 /*
348 * One for this trans handle, one so it will live on until we
349 * commit the transaction.
350 */
9b64f57d 351 refcount_set(&cur_trans->use_count, 2);
3204d33c 352 cur_trans->flags = 0;
afd48513 353 cur_trans->start_time = ktime_get_seconds();
a4abeea4 354
a099d0fd
AM
355 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356
5c9d028b 357 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 358 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 359 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
360
361 /*
362 * although the tree mod log is per file system and not per transaction,
363 * the log must never go across transaction boundaries.
364 */
365 smp_mb();
31b1a2bd 366 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 367 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 368 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 369 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 370 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 371
a4abeea4
JB
372 spin_lock_init(&cur_trans->delayed_refs.lock);
373
374 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 375 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 376 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 377 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 378 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 379 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 380 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 381 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 382 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 383 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 384 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 385 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
35da5a7e 386 IO_TREE_TRANS_DIRTY_PAGES);
fe119a6e 387 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
35da5a7e 388 IO_TREE_FS_PINNED_EXTENTS);
4a4f8fe2 389 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
19ae4e81
JS
390 cur_trans->transid = fs_info->generation;
391 fs_info->running_transaction = cur_trans;
49b25e05 392 cur_trans->aborted = 0;
19ae4e81 393 spin_unlock(&fs_info->trans_lock);
15ee9bc7 394
79154b1b
CM
395 return 0;
396}
397
d352ac68 398/*
92a7cc42
QW
399 * This does all the record keeping required to make sure that a shareable root
400 * is properly recorded in a given transaction. This is required to make sure
401 * the old root from before we joined the transaction is deleted when the
402 * transaction commits.
d352ac68 403 */
7585717f 404static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
405 struct btrfs_root *root,
406 int force)
6702ed49 407{
0b246afa 408 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 409 int ret = 0;
0b246afa 410
92a7cc42 411 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 412 root->last_trans < trans->transid) || force) {
4d31778a 413 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 414
7585717f 415 /*
27cdeb70 416 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
417 * we have the reloc mutex held now, so there
418 * is only one writer in this function
419 */
27cdeb70 420 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 421
27cdeb70 422 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
423 * they find our root->last_trans update
424 */
425 smp_wmb();
426
fc7cbcd4 427 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 428 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 429 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
430 return 0;
431 }
fc7cbcd4
DS
432 radix_tree_tag_set(&fs_info->fs_roots_radix,
433 (unsigned long)root->root_key.objectid,
434 BTRFS_ROOT_TRANS_TAG);
435 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
436 root->last_trans = trans->transid;
437
438 /* this is pretty tricky. We don't want to
439 * take the relocation lock in btrfs_record_root_in_trans
440 * unless we're really doing the first setup for this root in
441 * this transaction.
442 *
443 * Normally we'd use root->last_trans as a flag to decide
444 * if we want to take the expensive mutex.
445 *
446 * But, we have to set root->last_trans before we
447 * init the relocation root, otherwise, we trip over warnings
448 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 449 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
450 * fixing up the reloc trees and everyone must wait.
451 *
452 * When this is zero, they can trust root->last_trans and fly
453 * through btrfs_record_root_in_trans without having to take the
454 * lock. smp_wmb() makes sure that all the writes above are
455 * done before we pop in the zero below
456 */
03a7e111 457 ret = btrfs_init_reloc_root(trans, root);
c7548af6 458 smp_mb__before_atomic();
27cdeb70 459 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 460 }
03a7e111 461 return ret;
5d4f98a2 462}
bcc63abb 463
7585717f 464
2b9dbef2
JB
465void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
466 struct btrfs_root *root)
467{
0b246afa 468 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
469 struct btrfs_transaction *cur_trans = trans->transaction;
470
471 /* Add ourselves to the transaction dropped list */
472 spin_lock(&cur_trans->dropped_roots_lock);
473 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
474 spin_unlock(&cur_trans->dropped_roots_lock);
475
476 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
477 spin_lock(&fs_info->fs_roots_radix_lock);
478 radix_tree_tag_clear(&fs_info->fs_roots_radix,
479 (unsigned long)root->root_key.objectid,
480 BTRFS_ROOT_TRANS_TAG);
481 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
482}
483
7585717f
CM
484int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
485 struct btrfs_root *root)
486{
0b246afa 487 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 488 int ret;
0b246afa 489
92a7cc42 490 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
491 return 0;
492
493 /*
27cdeb70 494 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
495 * and barriers
496 */
497 smp_rmb();
498 if (root->last_trans == trans->transid &&
27cdeb70 499 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
500 return 0;
501
0b246afa 502 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 503 ret = record_root_in_trans(trans, root, 0);
0b246afa 504 mutex_unlock(&fs_info->reloc_mutex);
7585717f 505
1409e6cc 506 return ret;
7585717f
CM
507}
508
4a9d8bde
MX
509static inline int is_transaction_blocked(struct btrfs_transaction *trans)
510{
3296bf56 511 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 512 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 513 !TRANS_ABORTED(trans));
4a9d8bde
MX
514}
515
d352ac68
CM
516/* wait for commit against the current transaction to become unblocked
517 * when this is done, it is safe to start a new transaction, but the current
518 * transaction might not be fully on disk.
519 */
2ff7e61e 520static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 521{
f9295749 522 struct btrfs_transaction *cur_trans;
79154b1b 523
0b246afa
JM
524 spin_lock(&fs_info->trans_lock);
525 cur_trans = fs_info->running_transaction;
4a9d8bde 526 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 527 refcount_inc(&cur_trans->use_count);
0b246afa 528 spin_unlock(&fs_info->trans_lock);
72d63ed6 529
3e738c53 530 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 531 wait_event(fs_info->transaction_wait,
501407aa 532 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 533 TRANS_ABORTED(cur_trans));
724e2315 534 btrfs_put_transaction(cur_trans);
a4abeea4 535 } else {
0b246afa 536 spin_unlock(&fs_info->trans_lock);
f9295749 537 }
37d1aeee
CM
538}
539
2ff7e61e 540static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 541{
0b246afa 542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
543 return 0;
544
92e2f7e3 545 if (type == TRANS_START)
a22285a6 546 return 1;
a4abeea4 547
a22285a6
YZ
548 return 0;
549}
550
20dd2cbf
MX
551static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552{
0b246afa
JM
553 struct btrfs_fs_info *fs_info = root->fs_info;
554
555 if (!fs_info->reloc_ctl ||
92a7cc42 556 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
557 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 root->reloc_root)
559 return false;
560
561 return true;
562}
563
28270e25
FM
564static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
565 enum btrfs_reserve_flush_enum flush,
566 u64 num_bytes,
567 u64 *delayed_refs_bytes)
568{
569 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
570 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
571 u64 extra_delayed_refs_bytes = 0;
572 u64 bytes;
573 int ret;
574
575 /*
576 * If there's a gap between the size of the delayed refs reserve and
577 * its reserved space, than some tasks have added delayed refs or bumped
578 * its size otherwise (due to block group creation or removal, or block
579 * group item update). Also try to allocate that gap in order to prevent
580 * using (and possibly abusing) the global reserve when committing the
581 * transaction.
582 */
583 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
584 !btrfs_block_rsv_full(delayed_refs_rsv)) {
585 spin_lock(&delayed_refs_rsv->lock);
586 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved)
587 extra_delayed_refs_bytes = delayed_refs_rsv->size -
588 delayed_refs_rsv->reserved;
589 spin_unlock(&delayed_refs_rsv->lock);
590 }
591
592 bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes;
593
594 /*
595 * We want to reserve all the bytes we may need all at once, so we only
596 * do 1 enospc flushing cycle per transaction start.
597 */
598 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
599 if (ret == 0) {
600 if (extra_delayed_refs_bytes > 0)
601 btrfs_migrate_to_delayed_refs_rsv(fs_info,
602 extra_delayed_refs_bytes);
603 return 0;
604 }
605
606 if (extra_delayed_refs_bytes > 0) {
607 bytes -= extra_delayed_refs_bytes;
608 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
609 if (ret == 0)
610 return 0;
611 }
612
613 /*
614 * If we are an emergency flush, which can steal from the global block
615 * reserve, then attempt to not reserve space for the delayed refs, as
616 * we will consume space for them from the global block reserve.
617 */
618 if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
619 bytes -= *delayed_refs_bytes;
620 *delayed_refs_bytes = 0;
621 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
622 }
623
624 return ret;
625}
626
08e007d2 627static struct btrfs_trans_handle *
5aed1dd8 628start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
629 unsigned int type, enum btrfs_reserve_flush_enum flush,
630 bool enforce_qgroups)
37d1aeee 631{
0b246afa 632 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 633 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
28270e25 634 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
a22285a6
YZ
635 struct btrfs_trans_handle *h;
636 struct btrfs_transaction *cur_trans;
b5009945 637 u64 num_bytes = 0;
c5567237 638 u64 qgroup_reserved = 0;
28270e25 639 u64 delayed_refs_bytes = 0;
20dd2cbf 640 bool reloc_reserved = false;
9c343784 641 bool do_chunk_alloc = false;
20dd2cbf 642 int ret;
acce952b 643
84961539 644 if (BTRFS_FS_ERROR(fs_info))
acce952b 645 return ERR_PTR(-EROFS);
2a1eb461 646
46c4e71e 647 if (current->journal_info) {
0860adfd 648 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 649 h = current->journal_info;
b50fff81
DS
650 refcount_inc(&h->use_count);
651 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
652 h->orig_rsv = h->block_rsv;
653 h->block_rsv = NULL;
654 goto got_it;
655 }
b5009945
JB
656
657 /*
658 * Do the reservation before we join the transaction so we can do all
659 * the appropriate flushing if need be.
660 */
003d7c59 661 if (num_items && root != fs_info->chunk_root) {
0b246afa 662 qgroup_reserved = num_items * fs_info->nodesize;
a6496849
BB
663 /*
664 * Use prealloc for now, as there might be a currently running
665 * transaction that could free this reserved space prematurely
666 * by committing.
667 */
668 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
669 enforce_qgroups, false);
7174109c
QW
670 if (ret)
671 return ERR_PTR(ret);
c5567237 672
28270e25 673 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
ba2c4d4e 674 /*
28270e25
FM
675 * If we plan to insert/update/delete "num_items" from a btree,
676 * we will also generate delayed refs for extent buffers in the
677 * respective btree paths, so reserve space for the delayed refs
678 * that will be generated by the caller as it modifies btrees.
679 * Try to reserve them to avoid excessive use of the global
680 * block reserve.
ba2c4d4e 681 */
28270e25 682 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
ba2c4d4e 683
20dd2cbf
MX
684 /*
685 * Do the reservation for the relocation root creation
686 */
ee39b432 687 if (need_reserve_reloc_root(root)) {
0b246afa 688 num_bytes += fs_info->nodesize;
20dd2cbf
MX
689 reloc_reserved = true;
690 }
691
28270e25
FM
692 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
693 &delayed_refs_bytes);
ba2c4d4e
JB
694 if (ret)
695 goto reserve_fail;
9c343784 696
28270e25
FM
697 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
698
699 if (trans_rsv->space_info->force_alloc)
9c343784 700 do_chunk_alloc = true;
ba2c4d4e 701 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 702 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
703 /*
704 * Some people call with btrfs_start_transaction(root, 0)
705 * because they can be throttled, but have some other mechanism
706 * for reserving space. We still want these guys to refill the
707 * delayed block_rsv so just add 1 items worth of reservation
708 * here.
709 */
710 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 711 if (ret)
843fcf35 712 goto reserve_fail;
b5009945 713 }
a22285a6 714again:
f2f767e7 715 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
716 if (!h) {
717 ret = -ENOMEM;
718 goto alloc_fail;
719 }
37d1aeee 720
98114659
JB
721 /*
722 * If we are JOIN_NOLOCK we're already committing a transaction and
723 * waiting on this guy, so we don't need to do the sb_start_intwrite
724 * because we're already holding a ref. We need this because we could
725 * have raced in and did an fsync() on a file which can kick a commit
726 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
727 *
728 * If we are ATTACH, it means we just want to catch the current
729 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 730 */
0860adfd 731 if (type & __TRANS_FREEZABLE)
0b246afa 732 sb_start_intwrite(fs_info->sb);
b2b5ef5c 733
2ff7e61e
JM
734 if (may_wait_transaction(fs_info, type))
735 wait_current_trans(fs_info);
a22285a6 736
a4abeea4 737 do {
2ff7e61e 738 ret = join_transaction(fs_info, type);
178260b2 739 if (ret == -EBUSY) {
2ff7e61e 740 wait_current_trans(fs_info);
a6d155d2
FM
741 if (unlikely(type == TRANS_ATTACH ||
742 type == TRANS_JOIN_NOSTART))
178260b2
MX
743 ret = -ENOENT;
744 }
a4abeea4
JB
745 } while (ret == -EBUSY);
746
a43f7f82 747 if (ret < 0)
843fcf35 748 goto join_fail;
0f7d52f4 749
0b246afa 750 cur_trans = fs_info->running_transaction;
a22285a6
YZ
751
752 h->transid = cur_trans->transid;
753 h->transaction = cur_trans;
b50fff81 754 refcount_set(&h->use_count, 1);
64b63580 755 h->fs_info = root->fs_info;
7174109c 756
a698d075 757 h->type = type;
ea658bad 758 INIT_LIST_HEAD(&h->new_bgs);
28270e25 759 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
b7ec40d7 760
a22285a6 761 smp_mb();
3296bf56 762 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 763 may_wait_transaction(fs_info, type)) {
abdd2e80 764 current->journal_info = h;
3a45bb20 765 btrfs_commit_transaction(h);
a22285a6
YZ
766 goto again;
767 }
768
b5009945 769 if (num_bytes) {
0b246afa 770 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 771 h->transid, num_bytes, 1);
28270e25 772 h->block_rsv = trans_rsv;
b5009945 773 h->bytes_reserved = num_bytes;
28270e25
FM
774 if (delayed_refs_bytes > 0) {
775 trace_btrfs_space_reservation(fs_info,
776 "local_delayed_refs_rsv",
777 h->transid,
778 delayed_refs_bytes, 1);
779 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
780 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
781 delayed_refs_bytes = 0;
782 }
20dd2cbf 783 h->reloc_reserved = reloc_reserved;
a22285a6 784 }
9ed74f2d 785
a6496849
BB
786 /*
787 * Now that we have found a transaction to be a part of, convert the
788 * qgroup reservation from prealloc to pertrans. A different transaction
789 * can't race in and free our pertrans out from under us.
790 */
791 if (qgroup_reserved)
792 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
793
2a1eb461 794got_it:
bcf3a3e7 795 if (!current->journal_info)
a22285a6 796 current->journal_info = h;
fcc99734 797
9c343784
JB
798 /*
799 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
800 * ALLOC_FORCE the first run through, and then we won't allocate for
801 * anybody else who races in later. We don't care about the return
802 * value here.
803 */
804 if (do_chunk_alloc && num_bytes) {
805 u64 flags = h->block_rsv->space_info->flags;
806
807 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
808 CHUNK_ALLOC_NO_FORCE);
809 }
810
fcc99734
QW
811 /*
812 * btrfs_record_root_in_trans() needs to alloc new extents, and may
813 * call btrfs_join_transaction() while we're also starting a
814 * transaction.
815 *
816 * Thus it need to be called after current->journal_info initialized,
817 * or we can deadlock.
818 */
68075ea8
JB
819 ret = btrfs_record_root_in_trans(h, root);
820 if (ret) {
821 /*
822 * The transaction handle is fully initialized and linked with
823 * other structures so it needs to be ended in case of errors,
824 * not just freed.
825 */
826 btrfs_end_transaction(h);
827 return ERR_PTR(ret);
828 }
fcc99734 829
79154b1b 830 return h;
843fcf35
MX
831
832join_fail:
0860adfd 833 if (type & __TRANS_FREEZABLE)
0b246afa 834 sb_end_intwrite(fs_info->sb);
843fcf35
MX
835 kmem_cache_free(btrfs_trans_handle_cachep, h);
836alloc_fail:
837 if (num_bytes)
28270e25
FM
838 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
839 if (delayed_refs_bytes)
840 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
841 delayed_refs_bytes);
843fcf35 842reserve_fail:
a6496849 843 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
843fcf35 844 return ERR_PTR(ret);
79154b1b
CM
845}
846
f9295749 847struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 848 unsigned int num_items)
f9295749 849{
08e007d2 850 return start_transaction(root, num_items, TRANS_START,
003d7c59 851 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 852}
003d7c59 853
8eab77ff
FM
854struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
855 struct btrfs_root *root,
7f9fe614 856 unsigned int num_items)
8eab77ff 857{
7f9fe614
JB
858 return start_transaction(root, num_items, TRANS_START,
859 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 860}
8407aa46 861
7a7eaa40 862struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 863{
003d7c59
JM
864 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
865 true);
f9295749
CM
866}
867
8d510121 868struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 869{
575a75d6 870 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 871 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
872}
873
a6d155d2
FM
874/*
875 * Similar to regular join but it never starts a transaction when none is
19288951
FM
876 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
877 * This is similar to btrfs_attach_transaction() but it allows the join to
878 * happen if the transaction commit already started but it's not yet in the
879 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
a6d155d2
FM
880 */
881struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
882{
883 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
884 BTRFS_RESERVE_NO_FLUSH, true);
885}
886
d4edf39b 887/*
9580503b 888 * Catch the running transaction.
d4edf39b
MX
889 *
890 * It is used when we want to commit the current the transaction, but
891 * don't want to start a new one.
892 *
893 * Note: If this function return -ENOENT, it just means there is no
894 * running transaction. But it is possible that the inactive transaction
895 * is still in the memory, not fully on disk. If you hope there is no
896 * inactive transaction in the fs when -ENOENT is returned, you should
897 * invoke
898 * btrfs_attach_transaction_barrier()
899 */
354aa0fb 900struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 901{
575a75d6 902 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 903 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
904}
905
d4edf39b 906/*
9580503b 907 * Catch the running transaction.
d4edf39b 908 *
52042d8e 909 * It is similar to the above function, the difference is this one
d4edf39b
MX
910 * will wait for all the inactive transactions until they fully
911 * complete.
912 */
913struct btrfs_trans_handle *
914btrfs_attach_transaction_barrier(struct btrfs_root *root)
915{
916 struct btrfs_trans_handle *trans;
917
575a75d6 918 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 919 BTRFS_RESERVE_NO_FLUSH, true);
b28ff3a7
FM
920 if (trans == ERR_PTR(-ENOENT)) {
921 int ret;
922
923 ret = btrfs_wait_for_commit(root->fs_info, 0);
924 if (ret)
925 return ERR_PTR(ret);
926 }
d4edf39b
MX
927
928 return trans;
929}
930
d0c2f4fa
FM
931/* Wait for a transaction commit to reach at least the given state. */
932static noinline void wait_for_commit(struct btrfs_transaction *commit,
933 const enum btrfs_trans_state min_state)
89ce8a63 934{
5fd76bf3
OS
935 struct btrfs_fs_info *fs_info = commit->fs_info;
936 u64 transid = commit->transid;
937 bool put = false;
938
3e738c53
IA
939 /*
940 * At the moment this function is called with min_state either being
941 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
942 */
943 if (min_state == TRANS_STATE_COMPLETED)
944 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
945 else
946 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
947
5fd76bf3
OS
948 while (1) {
949 wait_event(commit->commit_wait, commit->state >= min_state);
950 if (put)
951 btrfs_put_transaction(commit);
952
953 if (min_state < TRANS_STATE_COMPLETED)
954 break;
955
956 /*
957 * A transaction isn't really completed until all of the
958 * previous transactions are completed, but with fsync we can
959 * end up with SUPER_COMMITTED transactions before a COMPLETED
960 * transaction. Wait for those.
961 */
962
963 spin_lock(&fs_info->trans_lock);
964 commit = list_first_entry_or_null(&fs_info->trans_list,
965 struct btrfs_transaction,
966 list);
967 if (!commit || commit->transid > transid) {
968 spin_unlock(&fs_info->trans_lock);
969 break;
970 }
971 refcount_inc(&commit->use_count);
972 put = true;
973 spin_unlock(&fs_info->trans_lock);
974 }
89ce8a63
CM
975}
976
2ff7e61e 977int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
978{
979 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 980 int ret = 0;
46204592 981
46204592 982 if (transid) {
0124855f 983 if (transid <= btrfs_get_last_trans_committed(fs_info))
a4abeea4 984 goto out;
46204592
SW
985
986 /* find specified transaction */
0b246afa
JM
987 spin_lock(&fs_info->trans_lock);
988 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
989 if (t->transid == transid) {
990 cur_trans = t;
9b64f57d 991 refcount_inc(&cur_trans->use_count);
8cd2807f 992 ret = 0;
46204592
SW
993 break;
994 }
8cd2807f
MX
995 if (t->transid > transid) {
996 ret = 0;
46204592 997 break;
8cd2807f 998 }
46204592 999 }
0b246afa 1000 spin_unlock(&fs_info->trans_lock);
42383020
SW
1001
1002 /*
1003 * The specified transaction doesn't exist, or we
1004 * raced with btrfs_commit_transaction
1005 */
1006 if (!cur_trans) {
0124855f 1007 if (transid > btrfs_get_last_trans_committed(fs_info))
42383020 1008 ret = -EINVAL;
8cd2807f 1009 goto out;
42383020 1010 }
46204592
SW
1011 } else {
1012 /* find newest transaction that is committing | committed */
0b246afa
JM
1013 spin_lock(&fs_info->trans_lock);
1014 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 1015 list) {
4a9d8bde
MX
1016 if (t->state >= TRANS_STATE_COMMIT_START) {
1017 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 1018 break;
46204592 1019 cur_trans = t;
9b64f57d 1020 refcount_inc(&cur_trans->use_count);
46204592
SW
1021 break;
1022 }
1023 }
0b246afa 1024 spin_unlock(&fs_info->trans_lock);
46204592 1025 if (!cur_trans)
a4abeea4 1026 goto out; /* nothing committing|committed */
46204592
SW
1027 }
1028
d0c2f4fa 1029 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
bf7ecbe9 1030 ret = cur_trans->aborted;
724e2315 1031 btrfs_put_transaction(cur_trans);
a4abeea4 1032out:
46204592
SW
1033 return ret;
1034}
1035
2ff7e61e 1036void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 1037{
92e2f7e3 1038 wait_current_trans(fs_info);
37d1aeee
CM
1039}
1040
a2633b6a 1041bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
1042{
1043 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 1044
3296bf56 1045 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 1046 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 1047 return true;
8929ecfa 1048
04fb3285
FM
1049 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1050 return true;
1051
1052 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
8929ecfa
YZ
1053}
1054
dc60c525
NB
1055static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1056
0e34693f 1057{
dc60c525
NB
1058 struct btrfs_fs_info *fs_info = trans->fs_info;
1059
0e34693f
NB
1060 if (!trans->block_rsv) {
1061 ASSERT(!trans->bytes_reserved);
28270e25 1062 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f
NB
1063 return;
1064 }
1065
28270e25
FM
1066 if (!trans->bytes_reserved) {
1067 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f 1068 return;
28270e25 1069 }
0e34693f
NB
1070
1071 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1072 trace_btrfs_space_reservation(fs_info, "transaction",
1073 trans->transid, trans->bytes_reserved, 0);
1074 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 1075 trans->bytes_reserved, NULL);
0e34693f 1076 trans->bytes_reserved = 0;
28270e25
FM
1077
1078 if (!trans->delayed_refs_bytes_reserved)
1079 return;
1080
1081 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1082 trans->transid,
1083 trans->delayed_refs_bytes_reserved, 0);
1084 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1085 trans->delayed_refs_bytes_reserved, NULL);
1086 trans->delayed_refs_bytes_reserved = 0;
0e34693f
NB
1087}
1088
89ce8a63 1089static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 1090 int throttle)
79154b1b 1091{
3a45bb20 1092 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 1093 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 1094 int err = 0;
c3e69d58 1095
b50fff81
DS
1096 if (refcount_read(&trans->use_count) > 1) {
1097 refcount_dec(&trans->use_count);
2a1eb461
JB
1098 trans->block_rsv = trans->orig_rsv;
1099 return 0;
1100 }
1101
dc60c525 1102 btrfs_trans_release_metadata(trans);
4c13d758 1103 trans->block_rsv = NULL;
c5567237 1104
119e80df 1105 btrfs_create_pending_block_groups(trans);
ea658bad 1106
4fbcdf66
FM
1107 btrfs_trans_release_chunk_metadata(trans);
1108
0860adfd 1109 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1110 sb_end_intwrite(info->sb);
6df7881a 1111
8929ecfa 1112 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1113 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1114 atomic_dec(&cur_trans->num_writers);
0860adfd 1115 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1116
093258e6 1117 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1118
5a9ba670 1119 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1120 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1121
724e2315 1122 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1123
1124 if (current->journal_info == trans)
1125 current->journal_info = NULL;
ab78c84d 1126
24bbcf04 1127 if (throttle)
2ff7e61e 1128 btrfs_run_delayed_iputs(info);
24bbcf04 1129
84961539 1130 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1131 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1132 if (TRANS_ABORTED(trans))
1133 err = trans->aborted;
1134 else
1135 err = -EROFS;
4e121c06 1136 }
49b25e05 1137
4edc2ca3
DJ
1138 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1139 return err;
79154b1b
CM
1140}
1141
3a45bb20 1142int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1143{
3a45bb20 1144 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1145}
1146
3a45bb20 1147int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1148{
3a45bb20 1149 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1150}
1151
d352ac68
CM
1152/*
1153 * when btree blocks are allocated, they have some corresponding bits set for
1154 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1155 * those extents are sent to disk but does not wait on them
d352ac68 1156 */
2ff7e61e 1157int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1158 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1159{
777e6bd7 1160 int err = 0;
7c4452b9 1161 int werr = 0;
0b246afa 1162 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1163 struct extent_state *cached_state = NULL;
777e6bd7 1164 u64 start = 0;
5f39d397 1165 u64 end;
7c4452b9 1166
e5860f82
FM
1167 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1168 mark, &cached_state)) {
663dfbb0
FM
1169 bool wait_writeback = false;
1170
1171 err = convert_extent_bit(dirty_pages, start, end,
1172 EXTENT_NEED_WAIT,
210aa277 1173 mark, &cached_state);
663dfbb0
FM
1174 /*
1175 * convert_extent_bit can return -ENOMEM, which is most of the
1176 * time a temporary error. So when it happens, ignore the error
1177 * and wait for writeback of this range to finish - because we
1178 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1179 * to __btrfs_wait_marked_extents() would not know that
1180 * writeback for this range started and therefore wouldn't
1181 * wait for it to finish - we don't want to commit a
1182 * superblock that points to btree nodes/leafs for which
1183 * writeback hasn't finished yet (and without errors).
663dfbb0 1184 * We cleanup any entries left in the io tree when committing
41e7acd3 1185 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1186 */
1187 if (err == -ENOMEM) {
1188 err = 0;
1189 wait_writeback = true;
1190 }
1191 if (!err)
1192 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1193 if (err)
1194 werr = err;
663dfbb0
FM
1195 else if (wait_writeback)
1196 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1197 free_extent_state(cached_state);
663dfbb0 1198 cached_state = NULL;
1728366e
JB
1199 cond_resched();
1200 start = end + 1;
7c4452b9 1201 }
690587d1
CM
1202 return werr;
1203}
1204
1205/*
1206 * when btree blocks are allocated, they have some corresponding bits set for
1207 * them in one of two extent_io trees. This is used to make sure all of
1208 * those extents are on disk for transaction or log commit. We wait
1209 * on all the pages and clear them from the dirty pages state tree
1210 */
bf89d38f
JM
1211static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1212 struct extent_io_tree *dirty_pages)
690587d1 1213{
690587d1
CM
1214 int err = 0;
1215 int werr = 0;
0b246afa 1216 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1217 struct extent_state *cached_state = NULL;
690587d1
CM
1218 u64 start = 0;
1219 u64 end;
777e6bd7 1220
e5860f82
FM
1221 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1222 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1223 /*
1224 * Ignore -ENOMEM errors returned by clear_extent_bit().
1225 * When committing the transaction, we'll remove any entries
1226 * left in the io tree. For a log commit, we don't remove them
1227 * after committing the log because the tree can be accessed
1228 * concurrently - we do it only at transaction commit time when
41e7acd3 1229 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1230 */
1231 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1232 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1233 if (err == -ENOMEM)
1234 err = 0;
1235 if (!err)
1236 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1237 if (err)
1238 werr = err;
e38e2ed7
FM
1239 free_extent_state(cached_state);
1240 cached_state = NULL;
1728366e
JB
1241 cond_resched();
1242 start = end + 1;
777e6bd7 1243 }
7c4452b9
CM
1244 if (err)
1245 werr = err;
bf89d38f
JM
1246 return werr;
1247}
656f30db 1248
b9fae2eb 1249static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1250 struct extent_io_tree *dirty_pages)
1251{
1252 bool errors = false;
1253 int err;
656f30db 1254
bf89d38f
JM
1255 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1256 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1257 errors = true;
1258
1259 if (errors && !err)
1260 err = -EIO;
1261 return err;
1262}
656f30db 1263
bf89d38f
JM
1264int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1265{
1266 struct btrfs_fs_info *fs_info = log_root->fs_info;
1267 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1268 bool errors = false;
1269 int err;
656f30db 1270
bf89d38f
JM
1271 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1272
1273 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1274 if ((mark & EXTENT_DIRTY) &&
1275 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1276 errors = true;
1277
1278 if ((mark & EXTENT_NEW) &&
1279 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1280 errors = true;
1281
1282 if (errors && !err)
1283 err = -EIO;
1284 return err;
79154b1b
CM
1285}
1286
690587d1 1287/*
c9b577c0
NB
1288 * When btree blocks are allocated the corresponding extents are marked dirty.
1289 * This function ensures such extents are persisted on disk for transaction or
1290 * log commit.
1291 *
1292 * @trans: transaction whose dirty pages we'd like to write
690587d1 1293 */
70458a58 1294static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1295{
1296 int ret;
1297 int ret2;
c9b577c0 1298 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1299 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1300 struct blk_plug plug;
690587d1 1301
c6adc9cc 1302 blk_start_plug(&plug);
c9b577c0 1303 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1304 blk_finish_plug(&plug);
bf89d38f 1305 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1306
41e7acd3 1307 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1308
bf0da8c1
CM
1309 if (ret)
1310 return ret;
c9b577c0 1311 else if (ret2)
bf0da8c1 1312 return ret2;
c9b577c0
NB
1313 else
1314 return 0;
d0c803c4
CM
1315}
1316
d352ac68
CM
1317/*
1318 * this is used to update the root pointer in the tree of tree roots.
1319 *
1320 * But, in the case of the extent allocation tree, updating the root
1321 * pointer may allocate blocks which may change the root of the extent
1322 * allocation tree.
1323 *
1324 * So, this loops and repeats and makes sure the cowonly root didn't
1325 * change while the root pointer was being updated in the metadata.
1326 */
0b86a832
CM
1327static int update_cowonly_root(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root)
79154b1b
CM
1329{
1330 int ret;
0b86a832 1331 u64 old_root_bytenr;
86b9f2ec 1332 u64 old_root_used;
0b246afa
JM
1333 struct btrfs_fs_info *fs_info = root->fs_info;
1334 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1335
86b9f2ec 1336 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1337
d397712b 1338 while (1) {
0b86a832 1339 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1340 if (old_root_bytenr == root->node->start &&
ea526d18 1341 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1342 break;
87ef2bb4 1343
5d4f98a2 1344 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1345 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1346 &root->root_key,
1347 &root->root_item);
49b25e05
JM
1348 if (ret)
1349 return ret;
56bec294 1350
86b9f2ec 1351 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1352 }
276e680d 1353
0b86a832
CM
1354 return 0;
1355}
1356
d352ac68
CM
1357/*
1358 * update all the cowonly tree roots on disk
49b25e05
JM
1359 *
1360 * The error handling in this function may not be obvious. Any of the
1361 * failures will cause the file system to go offline. We still need
1362 * to clean up the delayed refs.
d352ac68 1363 */
9386d8bc 1364static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1365{
9386d8bc 1366 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1367 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1368 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1369 struct list_head *next;
84234f3a 1370 struct extent_buffer *eb;
56bec294 1371 int ret;
84234f3a 1372
dfba78dc
FM
1373 /*
1374 * At this point no one can be using this transaction to modify any tree
1375 * and no one can start another transaction to modify any tree either.
1376 */
1377 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1378
84234f3a 1379 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1380 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1381 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1382 btrfs_tree_unlock(eb);
1383 free_extent_buffer(eb);
0b86a832 1384
49b25e05
JM
1385 if (ret)
1386 return ret;
87ef2bb4 1387
196c9d8d 1388 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1389 if (ret)
1390 return ret;
2b584c68 1391 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1392 if (ret)
1393 return ret;
280f8bd2 1394 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1395 if (ret)
1396 return ret;
546adb0d 1397
bbebb3e0 1398 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1399 if (ret)
1400 return ret;
1401
ea526d18 1402again:
d397712b 1403 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1404 struct btrfs_root *root;
0b86a832
CM
1405 next = fs_info->dirty_cowonly_roots.next;
1406 list_del_init(next);
1407 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1408 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1409
826582ca
JB
1410 list_add_tail(&root->dirty_list,
1411 &trans->transaction->switch_commits);
49b25e05
JM
1412 ret = update_cowonly_root(trans, root);
1413 if (ret)
1414 return ret;
79154b1b 1415 }
276e680d 1416
488bc2a2 1417 /* Now flush any delayed refs generated by updating all of the roots */
8a526c44 1418 ret = btrfs_run_delayed_refs(trans, U64_MAX);
488bc2a2
JB
1419 if (ret)
1420 return ret;
1421
1bbc621e 1422 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1423 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1424 if (ret)
1425 return ret;
488bc2a2
JB
1426
1427 /*
1428 * We're writing the dirty block groups, which could generate
1429 * delayed refs, which could generate more dirty block groups,
1430 * so we want to keep this flushing in this loop to make sure
1431 * everything gets run.
1432 */
8a526c44 1433 ret = btrfs_run_delayed_refs(trans, U64_MAX);
ea526d18
JB
1434 if (ret)
1435 return ret;
1436 }
1437
1438 if (!list_empty(&fs_info->dirty_cowonly_roots))
1439 goto again;
1440
9f6cbcbb
DS
1441 /* Update dev-replace pointer once everything is committed */
1442 fs_info->dev_replace.committed_cursor_left =
1443 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1444
79154b1b
CM
1445 return 0;
1446}
1447
b4be6aef
JB
1448/*
1449 * If we had a pending drop we need to see if there are any others left in our
1450 * dead roots list, and if not clear our bit and wake any waiters.
1451 */
1452void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1453{
1454 /*
1455 * We put the drop in progress roots at the front of the list, so if the
1456 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1457 * up.
1458 */
1459 spin_lock(&fs_info->trans_lock);
1460 if (!list_empty(&fs_info->dead_roots)) {
1461 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1462 struct btrfs_root,
1463 root_list);
1464 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1465 spin_unlock(&fs_info->trans_lock);
1466 return;
1467 }
1468 }
1469 spin_unlock(&fs_info->trans_lock);
1470
1471 btrfs_wake_unfinished_drop(fs_info);
1472}
1473
d352ac68
CM
1474/*
1475 * dead roots are old snapshots that need to be deleted. This allocates
1476 * a dirty root struct and adds it into the list of dead roots that need to
1477 * be deleted
1478 */
cfad392b 1479void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1480{
0b246afa
JM
1481 struct btrfs_fs_info *fs_info = root->fs_info;
1482
1483 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1484 if (list_empty(&root->root_list)) {
1485 btrfs_grab_root(root);
b4be6aef
JB
1486
1487 /* We want to process the partially complete drops first. */
1488 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1489 list_add(&root->root_list, &fs_info->dead_roots);
1490 else
1491 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1492 }
0b246afa 1493 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1494}
1495
d352ac68 1496/*
dfba78dc
FM
1497 * Update each subvolume root and its relocation root, if it exists, in the tree
1498 * of tree roots. Also free log roots if they exist.
d352ac68 1499 */
7e4443d9 1500static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1501{
7e4443d9 1502 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1503 struct btrfs_root *gang[8];
1504 int i;
1505 int ret;
54aa1f4d 1506
dfba78dc
FM
1507 /*
1508 * At this point no one can be using this transaction to modify any tree
1509 * and no one can start another transaction to modify any tree either.
1510 */
1511 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1512
fc7cbcd4
DS
1513 spin_lock(&fs_info->fs_roots_radix_lock);
1514 while (1) {
1515 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1516 (void **)gang, 0,
1517 ARRAY_SIZE(gang),
1518 BTRFS_ROOT_TRANS_TAG);
1519 if (ret == 0)
1520 break;
1521 for (i = 0; i < ret; i++) {
1522 struct btrfs_root *root = gang[i];
1523 int ret2;
1524
1525 /*
1526 * At this point we can neither have tasks logging inodes
1527 * from a root nor trying to commit a log tree.
1528 */
1529 ASSERT(atomic_read(&root->log_writers) == 0);
1530 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1531 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1532
1533 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1534 (unsigned long)root->root_key.objectid,
1535 BTRFS_ROOT_TRANS_TAG);
1536 spin_unlock(&fs_info->fs_roots_radix_lock);
1537
1538 btrfs_free_log(trans, root);
1539 ret2 = btrfs_update_reloc_root(trans, root);
1540 if (ret2)
1541 return ret2;
1542
1543 /* see comments in should_cow_block() */
1544 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1545 smp_mb__after_atomic();
1546
1547 if (root->commit_root != root->node) {
1548 list_add_tail(&root->dirty_list,
1549 &trans->transaction->switch_commits);
1550 btrfs_set_root_node(&root->root_item,
1551 root->node);
1552 }
48b36a60 1553
fc7cbcd4
DS
1554 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1555 &root->root_key,
1556 &root->root_item);
1557 if (ret2)
1558 return ret2;
1559 spin_lock(&fs_info->fs_roots_radix_lock);
1560 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1561 }
1562 }
fc7cbcd4 1563 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1564 return 0;
0f7d52f4
CM
1565}
1566
6426c7ad
QW
1567/*
1568 * Do all special snapshot related qgroup dirty hack.
1569 *
1570 * Will do all needed qgroup inherit and dirty hack like switch commit
1571 * roots inside one transaction and write all btree into disk, to make
1572 * qgroup works.
1573 */
1574static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1575 struct btrfs_root *src,
1576 struct btrfs_root *parent,
1577 struct btrfs_qgroup_inherit *inherit,
1578 u64 dst_objectid)
1579{
1580 struct btrfs_fs_info *fs_info = src->fs_info;
1581 int ret;
1582
1583 /*
5343cd93
BB
1584 * Save some performance in the case that qgroups are not enabled. If
1585 * this check races with the ioctl, rescan will kick in anyway.
6426c7ad 1586 */
182940f4 1587 if (!btrfs_qgroup_full_accounting(fs_info))
6426c7ad 1588 return 0;
6426c7ad 1589
4d31778a 1590 /*
52042d8e 1591 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1592 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1593 * recorded root will never be updated again, causing an outdated root
1594 * item.
1595 */
1c442d22
JB
1596 ret = record_root_in_trans(trans, src, 1);
1597 if (ret)
1598 return ret;
4d31778a 1599
2a4d84c1
JB
1600 /*
1601 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1602 * src root, so we must run the delayed refs here.
1603 *
1604 * However this isn't particularly fool proof, because there's no
1605 * synchronization keeping us from changing the tree after this point
1606 * before we do the qgroup_inherit, or even from making changes while
1607 * we're doing the qgroup_inherit. But that's a problem for the future,
1608 * for now flush the delayed refs to narrow the race window where the
1609 * qgroup counters could end up wrong.
1610 */
8a526c44 1611 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2a4d84c1
JB
1612 if (ret) {
1613 btrfs_abort_transaction(trans, ret);
44365827 1614 return ret;
2a4d84c1
JB
1615 }
1616
7e4443d9 1617 ret = commit_fs_roots(trans);
6426c7ad
QW
1618 if (ret)
1619 goto out;
460fb20a 1620 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1621 if (ret < 0)
1622 goto out;
1623
1624 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1625 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
5343cd93 1626 parent->root_key.objectid, inherit);
6426c7ad
QW
1627 if (ret < 0)
1628 goto out;
1629
1630 /*
1631 * Now we do a simplified commit transaction, which will:
1632 * 1) commit all subvolume and extent tree
1633 * To ensure all subvolume and extent tree have a valid
1634 * commit_root to accounting later insert_dir_item()
1635 * 2) write all btree blocks onto disk
1636 * This is to make sure later btree modification will be cowed
1637 * Or commit_root can be populated and cause wrong qgroup numbers
1638 * In this simplified commit, we don't really care about other trees
1639 * like chunk and root tree, as they won't affect qgroup.
1640 * And we don't write super to avoid half committed status.
1641 */
9386d8bc 1642 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1643 if (ret)
1644 goto out;
889bfa39 1645 switch_commit_roots(trans);
70458a58 1646 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1647 if (ret)
f7af3934 1648 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1649 "Error while writing out transaction for qgroup");
1650
1651out:
6426c7ad
QW
1652 /*
1653 * Force parent root to be updated, as we recorded it before so its
1654 * last_trans == cur_transid.
1655 * Or it won't be committed again onto disk after later
1656 * insert_dir_item()
1657 */
1658 if (!ret)
1c442d22 1659 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1660 return ret;
1661}
1662
d352ac68
CM
1663/*
1664 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1665 * transaction commit. This does the actual creation.
1666 *
1667 * Note:
1668 * If the error which may affect the commitment of the current transaction
1669 * happens, we should return the error number. If the error which just affect
1670 * the creation of the pending snapshots, just return 0.
d352ac68 1671 */
80b6794d 1672static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1673 struct btrfs_pending_snapshot *pending)
1674{
08d50ca3
NB
1675
1676 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1677 struct btrfs_key key;
80b6794d 1678 struct btrfs_root_item *new_root_item;
3063d29f
CM
1679 struct btrfs_root *tree_root = fs_info->tree_root;
1680 struct btrfs_root *root = pending->root;
6bdb72de 1681 struct btrfs_root *parent_root;
98c9942a 1682 struct btrfs_block_rsv *rsv;
ab3c5c18 1683 struct inode *parent_inode = pending->dir;
42874b3d
MX
1684 struct btrfs_path *path;
1685 struct btrfs_dir_item *dir_item;
3063d29f 1686 struct extent_buffer *tmp;
925baedd 1687 struct extent_buffer *old;
95582b00 1688 struct timespec64 cur_time;
aec8030a 1689 int ret = 0;
d68fc57b 1690 u64 to_reserve = 0;
6bdb72de 1691 u64 index = 0;
a22285a6 1692 u64 objectid;
b83cc969 1693 u64 root_flags;
ab3c5c18
STD
1694 unsigned int nofs_flags;
1695 struct fscrypt_name fname;
3063d29f 1696
8546b570
DS
1697 ASSERT(pending->path);
1698 path = pending->path;
42874b3d 1699
b0c0ea63
DS
1700 ASSERT(pending->root_item);
1701 new_root_item = pending->root_item;
a22285a6 1702
ab3c5c18
STD
1703 /*
1704 * We're inside a transaction and must make sure that any potential
1705 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1706 * filesystem.
1707 */
1708 nofs_flags = memalloc_nofs_save();
1709 pending->error = fscrypt_setup_filename(parent_inode,
1710 &pending->dentry->d_name, 0,
1711 &fname);
1712 memalloc_nofs_restore(nofs_flags);
1713 if (pending->error)
1714 goto free_pending;
ab3c5c18 1715
543068a2 1716 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1717 if (pending->error)
ab3c5c18 1718 goto free_fname;
3063d29f 1719
d6726335
QW
1720 /*
1721 * Make qgroup to skip current new snapshot's qgroupid, as it is
1722 * accounted by later btrfs_qgroup_inherit().
1723 */
1724 btrfs_set_skip_qgroup(trans, objectid);
1725
147d256e 1726 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1727
1728 if (to_reserve > 0) {
9270501c 1729 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1730 &pending->block_rsv,
1731 to_reserve,
1732 BTRFS_RESERVE_NO_FLUSH);
1733 if (pending->error)
d6726335 1734 goto clear_skip_qgroup;
d68fc57b
YZ
1735 }
1736
3063d29f 1737 key.objectid = objectid;
a22285a6
YZ
1738 key.offset = (u64)-1;
1739 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1740
6fa9700e 1741 rsv = trans->block_rsv;
a22285a6 1742 trans->block_rsv = &pending->block_rsv;
2382c5cc 1743 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1744 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1745 trans->transid,
1746 trans->bytes_reserved, 1);
a22285a6 1747 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1748 ret = record_root_in_trans(trans, parent_root, 0);
1749 if (ret)
1750 goto fail;
c2050a45 1751 cur_time = current_time(parent_inode);
04b285f3 1752
3063d29f
CM
1753 /*
1754 * insert the directory item
1755 */
877574e2 1756 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
df9f2782
FM
1757 if (ret) {
1758 btrfs_abort_transaction(trans, ret);
1759 goto fail;
1760 }
42874b3d
MX
1761
1762 /* check if there is a file/dir which has the same name. */
1763 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1764 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1765 &fname.disk_name, 0);
42874b3d 1766 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1767 pending->error = -EEXIST;
aec8030a 1768 goto dir_item_existed;
42874b3d
MX
1769 } else if (IS_ERR(dir_item)) {
1770 ret = PTR_ERR(dir_item);
66642832 1771 btrfs_abort_transaction(trans, ret);
8732d44f 1772 goto fail;
79787eaa 1773 }
42874b3d 1774 btrfs_release_path(path);
52c26179 1775
6ed05643
BB
1776 ret = btrfs_create_qgroup(trans, objectid);
1777 if (ret) {
1778 btrfs_abort_transaction(trans, ret);
1779 goto fail;
1780 }
1781
e999376f
CM
1782 /*
1783 * pull in the delayed directory update
1784 * and the delayed inode item
1785 * otherwise we corrupt the FS during
1786 * snapshot
1787 */
e5c304e6 1788 ret = btrfs_run_delayed_items(trans);
8732d44f 1789 if (ret) { /* Transaction aborted */
66642832 1790 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1791 goto fail;
1792 }
e999376f 1793
f0118cb6
JB
1794 ret = record_root_in_trans(trans, root, 0);
1795 if (ret) {
1796 btrfs_abort_transaction(trans, ret);
1797 goto fail;
1798 }
6bdb72de
SW
1799 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1800 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1801 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1802
b83cc969
LZ
1803 root_flags = btrfs_root_flags(new_root_item);
1804 if (pending->readonly)
1805 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1806 else
1807 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1808 btrfs_set_root_flags(new_root_item, root_flags);
1809
8ea05e3a
AB
1810 btrfs_set_root_generation_v2(new_root_item,
1811 trans->transid);
807fc790 1812 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1813 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1814 BTRFS_UUID_SIZE);
70023da2
SB
1815 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1816 memset(new_root_item->received_uuid, 0,
1817 sizeof(new_root_item->received_uuid));
1818 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1819 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1820 btrfs_set_root_stransid(new_root_item, 0);
1821 btrfs_set_root_rtransid(new_root_item, 0);
1822 }
3cae210f
QW
1823 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1824 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1825 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1826
6bdb72de 1827 old = btrfs_lock_root_node(root);
9631e4cc
JB
1828 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1829 BTRFS_NESTING_COW);
79787eaa
JM
1830 if (ret) {
1831 btrfs_tree_unlock(old);
1832 free_extent_buffer(old);
66642832 1833 btrfs_abort_transaction(trans, ret);
8732d44f 1834 goto fail;
79787eaa 1835 }
49b25e05 1836
49b25e05 1837 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1838 /* clean up in any case */
6bdb72de
SW
1839 btrfs_tree_unlock(old);
1840 free_extent_buffer(old);
8732d44f 1841 if (ret) {
66642832 1842 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1843 goto fail;
1844 }
f1ebcc74 1845 /* see comments in should_cow_block() */
27cdeb70 1846 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1847 smp_wmb();
1848
6bdb72de 1849 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1850 /* record when the snapshot was created in key.offset */
1851 key.offset = trans->transid;
1852 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1853 btrfs_tree_unlock(tmp);
1854 free_extent_buffer(tmp);
8732d44f 1855 if (ret) {
66642832 1856 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1857 goto fail;
1858 }
6bdb72de 1859
a22285a6
YZ
1860 /*
1861 * insert root back/forward references
1862 */
6025c19f 1863 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1864 parent_root->root_key.objectid,
4a0cc7ca 1865 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1866 &fname.disk_name);
8732d44f 1867 if (ret) {
66642832 1868 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1869 goto fail;
1870 }
0660b5af 1871
a22285a6 1872 key.offset = (u64)-1;
2dfb1e43 1873 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1874 if (IS_ERR(pending->snap)) {
1875 ret = PTR_ERR(pending->snap);
2d892ccd 1876 pending->snap = NULL;
66642832 1877 btrfs_abort_transaction(trans, ret);
8732d44f 1878 goto fail;
79787eaa 1879 }
d68fc57b 1880
49b25e05 1881 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1882 if (ret) {
66642832 1883 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1884 goto fail;
1885 }
361048f5 1886
6426c7ad
QW
1887 /*
1888 * Do special qgroup accounting for snapshot, as we do some qgroup
1889 * snapshot hack to do fast snapshot.
1890 * To co-operate with that hack, we do hack again.
1891 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1892 */
5343cd93
BB
1893 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1894 ret = qgroup_account_snapshot(trans, root, parent_root,
1895 pending->inherit, objectid);
1896 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1897 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1898 parent_root->root_key.objectid, pending->inherit);
6426c7ad
QW
1899 if (ret < 0)
1900 goto fail;
1901
6db75318
STD
1902 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1903 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1904 index);
42874b3d 1905 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1906 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1907 if (ret) {
66642832 1908 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1909 goto fail;
1910 }
42874b3d 1911
6ef06d27 1912 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1913 fname.disk_name.len * 2);
2a9462de 1914 parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
0a5d0dc5 1915 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
dd5f9615 1916 if (ret) {
66642832 1917 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1918 goto fail;
1919 }
807fc790
AS
1920 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1921 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1922 objectid);
dd5f9615 1923 if (ret) {
66642832 1924 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1925 goto fail;
1926 }
1927 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1928 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1929 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1930 objectid);
1931 if (ret && ret != -EEXIST) {
66642832 1932 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1933 goto fail;
1934 }
1935 }
d6726335 1936
3063d29f 1937fail:
aec8030a
MX
1938 pending->error = ret;
1939dir_item_existed:
98c9942a 1940 trans->block_rsv = rsv;
2382c5cc 1941 trans->bytes_reserved = 0;
d6726335
QW
1942clear_skip_qgroup:
1943 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1944free_fname:
1945 fscrypt_free_filename(&fname);
1946free_pending:
6fa9700e 1947 kfree(new_root_item);
b0c0ea63 1948 pending->root_item = NULL;
42874b3d 1949 btrfs_free_path(path);
8546b570
DS
1950 pending->path = NULL;
1951
49b25e05 1952 return ret;
3063d29f
CM
1953}
1954
d352ac68
CM
1955/*
1956 * create all the snapshots we've scheduled for creation
1957 */
08d50ca3 1958static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1959{
aec8030a 1960 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1961 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1962 int ret = 0;
3de4586c 1963
aec8030a
MX
1964 list_for_each_entry_safe(pending, next, head, list) {
1965 list_del(&pending->list);
08d50ca3 1966 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1967 if (ret)
1968 break;
1969 }
1970 return ret;
3de4586c
CM
1971}
1972
2ff7e61e 1973static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1974{
1975 struct btrfs_root_item *root_item;
1976 struct btrfs_super_block *super;
1977
0b246afa 1978 super = fs_info->super_copy;
5d4f98a2 1979
0b246afa 1980 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1981 super->chunk_root = root_item->bytenr;
1982 super->chunk_root_generation = root_item->generation;
1983 super->chunk_root_level = root_item->level;
5d4f98a2 1984
0b246afa 1985 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1986 super->root = root_item->bytenr;
1987 super->generation = root_item->generation;
1988 super->root_level = root_item->level;
0b246afa 1989 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1990 super->cache_generation = root_item->generation;
94846229
BB
1991 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1992 super->cache_generation = 0;
0b246afa 1993 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1994 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1995}
1996
f36f3042
CM
1997int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1998{
4a9d8bde 1999 struct btrfs_transaction *trans;
f36f3042 2000 int ret = 0;
4a9d8bde 2001
a4abeea4 2002 spin_lock(&info->trans_lock);
4a9d8bde
MX
2003 trans = info->running_transaction;
2004 if (trans)
2005 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 2006 spin_unlock(&info->trans_lock);
f36f3042
CM
2007 return ret;
2008}
2009
8929ecfa
YZ
2010int btrfs_transaction_blocked(struct btrfs_fs_info *info)
2011{
4a9d8bde 2012 struct btrfs_transaction *trans;
8929ecfa 2013 int ret = 0;
4a9d8bde 2014
a4abeea4 2015 spin_lock(&info->trans_lock);
4a9d8bde
MX
2016 trans = info->running_transaction;
2017 if (trans)
2018 ret = is_transaction_blocked(trans);
a4abeea4 2019 spin_unlock(&info->trans_lock);
8929ecfa
YZ
2020 return ret;
2021}
2022
fdfbf020 2023void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 2024{
3a45bb20 2025 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
2026 struct btrfs_transaction *cur_trans;
2027
fdfbf020
JB
2028 /* Kick the transaction kthread. */
2029 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2030 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
2031
2032 /* take transaction reference */
bb9c12c9 2033 cur_trans = trans->transaction;
9b64f57d 2034 refcount_inc(&cur_trans->use_count);
bb9c12c9 2035
3a45bb20 2036 btrfs_end_transaction(trans);
6fc4e354 2037
ae5d29d4
DS
2038 /*
2039 * Wait for the current transaction commit to start and block
2040 * subsequent transaction joins
2041 */
77d20c68 2042 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
ae5d29d4
DS
2043 wait_event(fs_info->transaction_blocked_wait,
2044 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2045 TRANS_ABORTED(cur_trans));
724e2315 2046 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
2047}
2048
97cb39bb 2049static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 2050{
97cb39bb 2051 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
2052 struct btrfs_transaction *cur_trans = trans->transaction;
2053
b50fff81 2054 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 2055
66642832 2056 btrfs_abort_transaction(trans, err);
7b8b92af 2057
0b246afa 2058 spin_lock(&fs_info->trans_lock);
66b6135b 2059
25d8c284
MX
2060 /*
2061 * If the transaction is removed from the list, it means this
2062 * transaction has been committed successfully, so it is impossible
2063 * to call the cleanup function.
2064 */
2065 BUG_ON(list_empty(&cur_trans->list));
66b6135b 2066
0b246afa 2067 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 2068 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2069 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2070
2071 /*
2072 * The thread has already released the lockdep map as reader
2073 * already in btrfs_commit_transaction().
2074 */
2075 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
2076 wait_event(cur_trans->writer_wait,
2077 atomic_read(&cur_trans->num_writers) == 1);
2078
0b246afa 2079 spin_lock(&fs_info->trans_lock);
d7096fc3 2080 }
061dde82
FM
2081
2082 /*
2083 * Now that we know no one else is still using the transaction we can
2084 * remove the transaction from the list of transactions. This avoids
2085 * the transaction kthread from cleaning up the transaction while some
2086 * other task is still using it, which could result in a use-after-free
2087 * on things like log trees, as it forces the transaction kthread to
2088 * wait for this transaction to be cleaned up by us.
2089 */
2090 list_del_init(&cur_trans->list);
2091
0b246afa 2092 spin_unlock(&fs_info->trans_lock);
49b25e05 2093
2ff7e61e 2094 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2095
0b246afa
JM
2096 spin_lock(&fs_info->trans_lock);
2097 if (cur_trans == fs_info->running_transaction)
2098 fs_info->running_transaction = NULL;
2099 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2100
e0228285 2101 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2102 sb_end_intwrite(fs_info->sb);
724e2315
JB
2103 btrfs_put_transaction(cur_trans);
2104 btrfs_put_transaction(cur_trans);
49b25e05 2105
2e4e97ab 2106 trace_btrfs_transaction_commit(fs_info);
49b25e05 2107
49b25e05
JM
2108 if (current->journal_info == trans)
2109 current->journal_info = NULL;
2d82a40a
FM
2110
2111 /*
2112 * If relocation is running, we can't cancel scrub because that will
2113 * result in a deadlock. Before relocating a block group, relocation
2114 * pauses scrub, then starts and commits a transaction before unpausing
2115 * scrub. If the transaction commit is being done by the relocation
2116 * task or triggered by another task and the relocation task is waiting
2117 * for the commit, and we end up here due to an error in the commit
2118 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2119 * asking for scrub to stop while having it asked to be paused higher
2120 * above in relocation code.
2121 */
2122 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2123 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2124
2125 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2126}
2127
c7cc64a9
DS
2128/*
2129 * Release reserved delayed ref space of all pending block groups of the
2130 * transaction and remove them from the list
2131 */
2132static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2133{
2134 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2135 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2136
2137 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9ef17228 2138 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
c7cc64a9
DS
2139 list_del_init(&block_group->bg_list);
2140 }
2141}
2142
88090ad3 2143static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2144{
ce8ea7cc 2145 /*
a0f0cf83 2146 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2147 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2148 * Currently are holding the fs freeze lock, if we do an async flush
2149 * we'll do btrfs_join_transaction() and deadlock because we need to
2150 * wait for the fs freeze lock. Using the direct flushing we benefit
2151 * from already being in a transaction and our join_transaction doesn't
2152 * have to re-take the fs freeze lock.
a0f0cf83
FM
2153 *
2154 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2155 * if it can read lock sb->s_umount. It will always be able to lock it,
2156 * except when the filesystem is being unmounted or being frozen, but in
2157 * those cases sync_filesystem() is called, which results in calling
2158 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2159 * Note that we don't call writeback_inodes_sb() directly, because it
2160 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2161 */
88090ad3 2162 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2163 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2164 return 0;
2165}
2166
88090ad3 2167static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2168{
88090ad3 2169 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2170 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2171}
2172
28b21c55
FM
2173/*
2174 * Add a pending snapshot associated with the given transaction handle to the
2175 * respective handle. This must be called after the transaction commit started
2176 * and while holding fs_info->trans_lock.
2177 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2178 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2179 * returns an error.
2180 */
2181static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2182{
2183 struct btrfs_transaction *cur_trans = trans->transaction;
2184
2185 if (!trans->pending_snapshot)
2186 return;
2187
2188 lockdep_assert_held(&trans->fs_info->trans_lock);
77d20c68 2189 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
28b21c55
FM
2190
2191 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2192}
2193
e55958c8
IA
2194static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2195{
2196 fs_info->commit_stats.commit_count++;
2197 fs_info->commit_stats.last_commit_dur = interval;
2198 fs_info->commit_stats.max_commit_dur =
2199 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2200 fs_info->commit_stats.total_commit_dur += interval;
2201}
2202
3a45bb20 2203int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2204{
3a45bb20 2205 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2206 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2207 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2208 int ret;
e55958c8
IA
2209 ktime_t start_time;
2210 ktime_t interval;
79154b1b 2211
35b814f3 2212 ASSERT(refcount_read(&trans->use_count) == 1);
77d20c68 2213 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
35b814f3 2214
c52cc7b7
JB
2215 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2216
8d25a086 2217 /* Stop the commit early if ->aborted is set */
bf31f87f 2218 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2219 ret = cur_trans->aborted;
3e738c53 2220 goto lockdep_trans_commit_start_release;
25287e0a 2221 }
49b25e05 2222
f45c752b
JB
2223 btrfs_trans_release_metadata(trans);
2224 trans->block_rsv = NULL;
2225
56bec294 2226 /*
e19eb11f
JB
2227 * We only want one transaction commit doing the flushing so we do not
2228 * waste a bunch of time on lock contention on the extent root node.
56bec294 2229 */
e19eb11f
JB
2230 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2231 &cur_trans->delayed_refs.flags)) {
2232 /*
2233 * Make a pass through all the delayed refs we have so far.
2234 * Any running threads may add more while we are here.
2235 */
2236 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2237 if (ret)
2238 goto lockdep_trans_commit_start_release;
e19eb11f 2239 }
56bec294 2240
119e80df 2241 btrfs_create_pending_block_groups(trans);
ea658bad 2242
3204d33c 2243 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2244 int run_it = 0;
2245
2246 /* this mutex is also taken before trying to set
2247 * block groups readonly. We need to make sure
2248 * that nobody has set a block group readonly
2249 * after a extents from that block group have been
2250 * allocated for cache files. btrfs_set_block_group_ro
2251 * will wait for the transaction to commit if it
3204d33c 2252 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2253 *
3204d33c
JB
2254 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2255 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2256 * hurt to have more than one go through, but there's no
2257 * real advantage to it either.
2258 */
0b246afa 2259 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2260 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2261 &cur_trans->flags))
1bbc621e 2262 run_it = 1;
0b246afa 2263 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2264
f9cacae3 2265 if (run_it) {
21217054 2266 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2267 if (ret)
2268 goto lockdep_trans_commit_start_release;
f9cacae3 2269 }
1bbc621e
CM
2270 }
2271
0b246afa 2272 spin_lock(&fs_info->trans_lock);
77d20c68 2273 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
d0c2f4fa
FM
2274 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2275
28b21c55
FM
2276 add_pending_snapshot(trans);
2277
0b246afa 2278 spin_unlock(&fs_info->trans_lock);
9b64f57d 2279 refcount_inc(&cur_trans->use_count);
ccd467d6 2280
d0c2f4fa
FM
2281 if (trans->in_fsync)
2282 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2283
2284 btrfs_trans_state_lockdep_release(fs_info,
77d20c68 2285 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
d0c2f4fa
FM
2286 ret = btrfs_end_transaction(trans);
2287 wait_for_commit(cur_trans, want_state);
15ee9bc7 2288
bf31f87f 2289 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2290 ret = cur_trans->aborted;
2291
724e2315 2292 btrfs_put_transaction(cur_trans);
15ee9bc7 2293
49b25e05 2294 return ret;
79154b1b 2295 }
4313b399 2296
77d20c68 2297 cur_trans->state = TRANS_STATE_COMMIT_PREP;
0b246afa 2298 wake_up(&fs_info->transaction_blocked_wait);
77d20c68 2299 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
bb9c12c9 2300
0b246afa 2301 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2302 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2303
2304 if (trans->in_fsync)
2305 want_state = TRANS_STATE_SUPER_COMMITTED;
2306
ccd467d6
CM
2307 prev_trans = list_entry(cur_trans->list.prev,
2308 struct btrfs_transaction, list);
d0c2f4fa 2309 if (prev_trans->state < want_state) {
9b64f57d 2310 refcount_inc(&prev_trans->use_count);
0b246afa 2311 spin_unlock(&fs_info->trans_lock);
ccd467d6 2312
d0c2f4fa
FM
2313 wait_for_commit(prev_trans, want_state);
2314
bf31f87f 2315 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2316
724e2315 2317 btrfs_put_transaction(prev_trans);
1f9b8c8f 2318 if (ret)
e1489b4f 2319 goto lockdep_release;
77d20c68 2320 spin_lock(&fs_info->trans_lock);
ccd467d6 2321 }
a4abeea4 2322 } else {
cb2d3dad
FM
2323 /*
2324 * The previous transaction was aborted and was already removed
2325 * from the list of transactions at fs_info->trans_list. So we
2326 * abort to prevent writing a new superblock that reflects a
2327 * corrupt state (pointing to trees with unwritten nodes/leafs).
2328 */
84961539 2329 if (BTRFS_FS_ERROR(fs_info)) {
77d20c68 2330 spin_unlock(&fs_info->trans_lock);
cb2d3dad 2331 ret = -EROFS;
e1489b4f 2332 goto lockdep_release;
cb2d3dad 2333 }
ccd467d6 2334 }
15ee9bc7 2335
77d20c68
JB
2336 cur_trans->state = TRANS_STATE_COMMIT_START;
2337 wake_up(&fs_info->transaction_blocked_wait);
2338 spin_unlock(&fs_info->trans_lock);
2339
e55958c8
IA
2340 /*
2341 * Get the time spent on the work done by the commit thread and not
2342 * the time spent waiting on a previous commit
2343 */
2344 start_time = ktime_get_ns();
2345
0860adfd
MX
2346 extwriter_counter_dec(cur_trans, trans->type);
2347
88090ad3 2348 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2349 if (ret)
e1489b4f 2350 goto lockdep_release;
82436617 2351
e5c304e6 2352 ret = btrfs_run_delayed_items(trans);
581227d0 2353 if (ret)
e1489b4f 2354 goto lockdep_release;
15ee9bc7 2355
5a9ba670
IA
2356 /*
2357 * The thread has started/joined the transaction thus it holds the
2358 * lockdep map as a reader. It has to release it before acquiring the
2359 * lockdep map as a writer.
2360 */
2361 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2362 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2363 wait_event(cur_trans->writer_wait,
2364 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2365
581227d0 2366 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2367 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2368 if (ret) {
2369 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2370 goto cleanup_transaction;
e1489b4f 2371 }
ca469637 2372
88090ad3 2373 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2374
48778179
FM
2375 /*
2376 * Wait for all ordered extents started by a fast fsync that joined this
2377 * transaction. Otherwise if this transaction commits before the ordered
2378 * extents complete we lose logged data after a power failure.
2379 */
8b53779e 2380 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2381 wait_event(cur_trans->pending_wait,
2382 atomic_read(&cur_trans->pending_ordered) == 0);
2383
2ff7e61e 2384 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2385 /*
2386 * Ok now we need to make sure to block out any other joins while we
2387 * commit the transaction. We could have started a join before setting
4a9d8bde 2388 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2389 */
0b246afa 2390 spin_lock(&fs_info->trans_lock);
28b21c55 2391 add_pending_snapshot(trans);
4a9d8bde 2392 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2393 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2394
2395 /*
2396 * The thread has started/joined the transaction thus it holds the
2397 * lockdep map as a reader. It has to release it before acquiring the
2398 * lockdep map as a writer.
2399 */
2400 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2401 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2402 wait_event(cur_trans->writer_wait,
2403 atomic_read(&cur_trans->num_writers) == 1);
2404
3e738c53
IA
2405 /*
2406 * Make lockdep happy by acquiring the state locks after
2407 * btrfs_trans_num_writers is released. If we acquired the state locks
2408 * before releasing the btrfs_trans_num_writers lock then lockdep would
2409 * complain because we did not follow the reverse order unlocking rule.
2410 */
2411 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2412 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2413 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2414
fdfbf020
JB
2415 /*
2416 * We've started the commit, clear the flag in case we were triggered to
2417 * do an async commit but somebody else started before the transaction
2418 * kthread could do the work.
2419 */
2420 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2421
bf31f87f 2422 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2423 ret = cur_trans->aborted;
3e738c53 2424 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2425 goto scrub_continue;
2cba30f1 2426 }
7585717f
CM
2427 /*
2428 * the reloc mutex makes sure that we stop
2429 * the balancing code from coming in and moving
2430 * extents around in the middle of the commit
2431 */
0b246afa 2432 mutex_lock(&fs_info->reloc_mutex);
7585717f 2433
42874b3d
MX
2434 /*
2435 * We needn't worry about the delayed items because we will
2436 * deal with them in create_pending_snapshot(), which is the
2437 * core function of the snapshot creation.
2438 */
08d50ca3 2439 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2440 if (ret)
2441 goto unlock_reloc;
3063d29f 2442
42874b3d
MX
2443 /*
2444 * We insert the dir indexes of the snapshots and update the inode
2445 * of the snapshots' parents after the snapshot creation, so there
2446 * are some delayed items which are not dealt with. Now deal with
2447 * them.
2448 *
2449 * We needn't worry that this operation will corrupt the snapshots,
2450 * because all the tree which are snapshoted will be forced to COW
2451 * the nodes and leaves.
2452 */
e5c304e6 2453 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2454 if (ret)
2455 goto unlock_reloc;
16cdcec7 2456
8a526c44 2457 ret = btrfs_run_delayed_refs(trans, U64_MAX);
56e9f6ea
DS
2458 if (ret)
2459 goto unlock_reloc;
56bec294 2460
e999376f
CM
2461 /*
2462 * make sure none of the code above managed to slip in a
2463 * delayed item
2464 */
ccdf9b30 2465 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2466
2c90e5d6 2467 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2468
7e4443d9 2469 ret = commit_fs_roots(trans);
56e9f6ea 2470 if (ret)
dfba78dc 2471 goto unlock_reloc;
54aa1f4d 2472
5d4f98a2 2473 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2474 * safe to free the root of tree log roots
2475 */
0b246afa 2476 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2477
0ed4792a
QW
2478 /*
2479 * Since fs roots are all committed, we can get a quite accurate
2480 * new_roots. So let's do quota accounting.
2481 */
460fb20a 2482 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2483 if (ret < 0)
dfba78dc 2484 goto unlock_reloc;
0ed4792a 2485
9386d8bc 2486 ret = commit_cowonly_roots(trans);
56e9f6ea 2487 if (ret)
dfba78dc 2488 goto unlock_reloc;
54aa1f4d 2489
2cba30f1
MX
2490 /*
2491 * The tasks which save the space cache and inode cache may also
2492 * update ->aborted, check it.
2493 */
bf31f87f 2494 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2495 ret = cur_trans->aborted;
dfba78dc 2496 goto unlock_reloc;
2cba30f1
MX
2497 }
2498
0b246afa 2499 cur_trans = fs_info->running_transaction;
5d4f98a2 2500
0b246afa
JM
2501 btrfs_set_root_node(&fs_info->tree_root->root_item,
2502 fs_info->tree_root->node);
2503 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2504 &cur_trans->switch_commits);
5d4f98a2 2505
0b246afa
JM
2506 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2507 fs_info->chunk_root->node);
2508 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2509 &cur_trans->switch_commits);
2510
f7238e50
JB
2511 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2512 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2513 fs_info->block_group_root->node);
2514 list_add_tail(&fs_info->block_group_root->dirty_list,
2515 &cur_trans->switch_commits);
2516 }
2517
889bfa39 2518 switch_commit_roots(trans);
5d4f98a2 2519
ce93ec54 2520 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2521 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2522 update_super_roots(fs_info);
e02119d5 2523
0b246afa
JM
2524 btrfs_set_super_log_root(fs_info->super_copy, 0);
2525 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2526 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2527 sizeof(*fs_info->super_copy));
ccd467d6 2528
bbbf7243 2529 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2530
0b246afa
JM
2531 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2532 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2533
4fbcdf66
FM
2534 btrfs_trans_release_chunk_metadata(trans);
2535
dfba78dc
FM
2536 /*
2537 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2538 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2539 * make sure that before we commit our superblock, no other task can
2540 * start a new transaction and commit a log tree before we commit our
2541 * superblock. Anyone trying to commit a log tree locks this mutex before
2542 * writing its superblock.
2543 */
2544 mutex_lock(&fs_info->tree_log_mutex);
2545
0b246afa 2546 spin_lock(&fs_info->trans_lock);
4a9d8bde 2547 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2548 fs_info->running_transaction = NULL;
2549 spin_unlock(&fs_info->trans_lock);
2550 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2551
0b246afa 2552 wake_up(&fs_info->transaction_wait);
3e738c53 2553 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2554
b7625f46
QW
2555 /* If we have features changed, wake up the cleaner to update sysfs. */
2556 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2557 fs_info->cleaner_kthread)
2558 wake_up_process(fs_info->cleaner_kthread);
2559
70458a58 2560 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2561 if (ret) {
0b246afa
JM
2562 btrfs_handle_fs_error(fs_info, ret,
2563 "Error while writing out transaction");
2564 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2565 goto scrub_continue;
49b25e05
JM
2566 }
2567
eece6a9c 2568 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2569 /*
2570 * the super is written, we can safely allow the tree-loggers
2571 * to go about their business
2572 */
0b246afa 2573 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2574 if (ret)
2575 goto scrub_continue;
e02119d5 2576
d0c2f4fa
FM
2577 /*
2578 * We needn't acquire the lock here because there is no other task
2579 * which can change it.
2580 */
2581 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2582 wake_up(&cur_trans->commit_wait);
3e738c53 2583 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2584
5ead2dd0 2585 btrfs_finish_extent_commit(trans);
4313b399 2586
3204d33c 2587 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2588 btrfs_clear_space_info_full(fs_info);
13212b54 2589
0124855f 2590 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
4a9d8bde
MX
2591 /*
2592 * We needn't acquire the lock here because there is no other task
2593 * which can change it.
2594 */
2595 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2596 wake_up(&cur_trans->commit_wait);
3e738c53 2597 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2598
0b246afa 2599 spin_lock(&fs_info->trans_lock);
13c5a93e 2600 list_del_init(&cur_trans->list);
0b246afa 2601 spin_unlock(&fs_info->trans_lock);
a4abeea4 2602
724e2315
JB
2603 btrfs_put_transaction(cur_trans);
2604 btrfs_put_transaction(cur_trans);
58176a96 2605
0860adfd 2606 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2607 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2608
2e4e97ab 2609 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2610
e55958c8
IA
2611 interval = ktime_get_ns() - start_time;
2612
2ff7e61e 2613 btrfs_scrub_continue(fs_info);
a2de733c 2614
9ed74f2d
JB
2615 if (current->journal_info == trans)
2616 current->journal_info = NULL;
2617
2c90e5d6 2618 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2619
e55958c8
IA
2620 update_commit_stats(fs_info, interval);
2621
79154b1b 2622 return ret;
49b25e05 2623
56e9f6ea
DS
2624unlock_reloc:
2625 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2626 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2627scrub_continue:
3e738c53
IA
2628 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2629 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2630 btrfs_scrub_continue(fs_info);
49b25e05 2631cleanup_transaction:
dc60c525 2632 btrfs_trans_release_metadata(trans);
c7cc64a9 2633 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2634 btrfs_trans_release_chunk_metadata(trans);
0e721106 2635 trans->block_rsv = NULL;
0b246afa 2636 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2637 if (current->journal_info == trans)
2638 current->journal_info = NULL;
97cb39bb 2639 cleanup_transaction(trans, ret);
49b25e05
JM
2640
2641 return ret;
e1489b4f
IA
2642
2643lockdep_release:
5a9ba670 2644 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2645 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2646 goto cleanup_transaction;
3e738c53
IA
2647
2648lockdep_trans_commit_start_release:
77d20c68 2649 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2650 btrfs_end_transaction(trans);
2651 return ret;
79154b1b
CM
2652}
2653
d352ac68 2654/*
9d1a2a3a
DS
2655 * return < 0 if error
2656 * 0 if there are no more dead_roots at the time of call
2657 * 1 there are more to be processed, call me again
2658 *
2659 * The return value indicates there are certainly more snapshots to delete, but
2660 * if there comes a new one during processing, it may return 0. We don't mind,
2661 * because btrfs_commit_super will poke cleaner thread and it will process it a
2662 * few seconds later.
d352ac68 2663 */
33c44184 2664int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2665{
33c44184 2666 struct btrfs_root *root;
9d1a2a3a 2667 int ret;
5d4f98a2 2668
a4abeea4 2669 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2670 if (list_empty(&fs_info->dead_roots)) {
2671 spin_unlock(&fs_info->trans_lock);
2672 return 0;
2673 }
2674 root = list_first_entry(&fs_info->dead_roots,
2675 struct btrfs_root, root_list);
cfad392b 2676 list_del_init(&root->root_list);
a4abeea4 2677 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2678
4fd786e6 2679 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2680
9d1a2a3a 2681 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2682
9d1a2a3a
DS
2683 if (btrfs_header_backref_rev(root->node) <
2684 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2685 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2686 else
0078a9f9 2687 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2688
dc9492c1 2689 btrfs_put_root(root);
6596a928 2690 return (ret < 0) ? 0 : 1;
e9d0b13b 2691}
572d9ab7 2692
fccf0c84
JB
2693/*
2694 * We only mark the transaction aborted and then set the file system read-only.
2695 * This will prevent new transactions from starting or trying to join this
2696 * one.
2697 *
2698 * This means that error recovery at the call site is limited to freeing
2699 * any local memory allocations and passing the error code up without
2700 * further cleanup. The transaction should complete as it normally would
2701 * in the call path but will return -EIO.
2702 *
2703 * We'll complete the cleanup in btrfs_end_transaction and
2704 * btrfs_commit_transaction.
2705 */
2706void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2707 const char *function,
ed164802 2708 unsigned int line, int error, bool first_hit)
fccf0c84
JB
2709{
2710 struct btrfs_fs_info *fs_info = trans->fs_info;
2711
ed164802
DS
2712 WRITE_ONCE(trans->aborted, error);
2713 WRITE_ONCE(trans->transaction->aborted, error);
2714 if (first_hit && error == -ENOSPC)
fccf0c84
JB
2715 btrfs_dump_space_info_for_trans_abort(fs_info);
2716 /* Wake up anybody who may be waiting on this transaction */
2717 wake_up(&fs_info->transaction_wait);
2718 wake_up(&fs_info->transaction_blocked_wait);
ed164802 2719 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
fccf0c84
JB
2720}
2721
956504a3
JB
2722int __init btrfs_transaction_init(void)
2723{
2724 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2725 sizeof(struct btrfs_trans_handle), 0,
2726 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2727 if (!btrfs_trans_handle_cachep)
2728 return -ENOMEM;
2729 return 0;
2730}
2731
2732void __cold btrfs_transaction_exit(void)
2733{
2734 kmem_cache_destroy(btrfs_trans_handle_cachep);
2735}