]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/transaction.c
btrfs: don't refill whole delayed refs block reserve when starting transaction
[thirdparty/linux.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
d3575156 26#include "zoned.h"
c7f13d42 27#include "fs.h"
07e81dc9 28#include "accessors.h"
a0231804 29#include "extent-tree.h"
45c40c8f 30#include "root-tree.h"
59b818e0 31#include "defrag.h"
f2b39277 32#include "dir-item.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
79154b1b 37
956504a3
JB
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
61c047b5
QW
40/*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * | Call btrfs_commit_transaction() on any trans handle attached to
55 * | transaction N
56 * V
77d20c68
JB
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
61c047b5 64 * |
77d20c68 65 * Transaction N [[TRANS_STATE_COMMIT_START]]
61c047b5 66 * |
77d20c68 67 * | Then one of the following happens:
61c047b5
QW
68 * | - Wait for all other trans handle holders to release.
69 * | The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * | Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * | Caller is chosen to commit transaction N, and all other trans handle
80 * | haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * | Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * | Transaction N+1
98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update |
100 * | super blocks. |
101 * | |
102 * | At this stage, new transaction is allowed to |
103 * | start. |
104 * | All new start_transaction() calls will be |
105 * | attached to transid N+1. |
106 * | |
107 * | To next stage: |
108 * | Until all tree blocks are super blocks are |
109 * | written to block devices |
110 * V |
111 * Transaction N [[TRANS_STATE_COMPLETED]] V
112 * All tree blocks and super blocks are written. Transaction N+1
113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
114 * data structures will be cleaned up. | Life goes on
115 */
e8c9f186 116static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 117 [TRANS_STATE_RUNNING] = 0U,
77d20c68 118 [TRANS_STATE_COMMIT_PREP] = 0U,
bcf3a3e7
NB
119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 121 __TRANS_ATTACH |
a6d155d2
FM
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOSTART),
bcf3a3e7 124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
a6d155d2
FM
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
bcf3a3e7 134 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
135 __TRANS_ATTACH |
136 __TRANS_JOIN |
a6d155d2
FM
137 __TRANS_JOIN_NOLOCK |
138 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
139};
140
724e2315 141void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 142{
9b64f57d
ER
143 WARN_ON(refcount_read(&transaction->use_count) == 0);
144 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 145 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.dirty_extent_root));
1262133b 150 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
151 btrfs_err(transaction->fs_info,
152 "pending csums is %llu",
153 transaction->delayed_refs.pending_csums);
7785a663
FM
154 /*
155 * If any block groups are found in ->deleted_bgs then it's
156 * because the transaction was aborted and a commit did not
157 * happen (things failed before writing the new superblock
158 * and calling btrfs_finish_extent_commit()), so we can not
159 * discard the physical locations of the block groups.
160 */
161 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 162 struct btrfs_block_group *cache;
7785a663
FM
163
164 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 165 struct btrfs_block_group,
7785a663
FM
166 bg_list);
167 list_del_init(&cache->bg_list);
6b7304af 168 btrfs_unfreeze_block_group(cache);
7785a663
FM
169 btrfs_put_block_group(cache);
170 }
bbbf7243 171 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 172 kfree(transaction);
78fae27e 173 }
79154b1b
CM
174}
175
889bfa39 176static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 177{
889bfa39 178 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 179 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
180 struct btrfs_root *root, *tmp;
181
dfba78dc
FM
182 /*
183 * At this point no one can be using this transaction to modify any tree
184 * and no one can start another transaction to modify any tree either.
185 */
186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
9e351cc8 188 down_write(&fs_info->commit_root_sem);
d96b3424
FM
189
190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191 fs_info->last_reloc_trans = trans->transid;
192
889bfa39 193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
194 dirty_list) {
195 list_del_init(&root->dirty_list);
196 free_extent_buffer(root->commit_root);
197 root->commit_root = btrfs_root_node(root);
41e7acd3 198 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 199 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 200 }
2b9dbef2
JB
201
202 /* We can free old roots now. */
889bfa39
JB
203 spin_lock(&cur_trans->dropped_roots_lock);
204 while (!list_empty(&cur_trans->dropped_roots)) {
205 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
206 struct btrfs_root, root_list);
207 list_del_init(&root->root_list);
889bfa39
JB
208 spin_unlock(&cur_trans->dropped_roots_lock);
209 btrfs_free_log(trans, root);
2b9dbef2 210 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 211 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 212 }
889bfa39 213 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 214
9e351cc8 215 up_write(&fs_info->commit_root_sem);
817d52f8
JB
216}
217
0860adfd
MX
218static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219 unsigned int type)
220{
221 if (type & TRANS_EXTWRITERS)
222 atomic_inc(&trans->num_extwriters);
223}
224
225static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226 unsigned int type)
227{
228 if (type & TRANS_EXTWRITERS)
229 atomic_dec(&trans->num_extwriters);
230}
231
232static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233 unsigned int type)
234{
235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236}
237
238static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239{
240 return atomic_read(&trans->num_extwriters);
178260b2
MX
241}
242
fb6dea26 243/*
79bd3712
FM
244 * To be called after doing the chunk btree updates right after allocating a new
245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246 * chunk after all chunk btree updates and after finishing the second phase of
247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
249 */
250void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251{
252 struct btrfs_fs_info *fs_info = trans->fs_info;
253
254 if (!trans->chunk_bytes_reserved)
255 return;
256
fb6dea26 257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 258 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
259 trans->chunk_bytes_reserved = 0;
260}
261
d352ac68
CM
262/*
263 * either allocate a new transaction or hop into the existing one
264 */
2ff7e61e
JM
265static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266 unsigned int type)
79154b1b
CM
267{
268 struct btrfs_transaction *cur_trans;
a4abeea4 269
19ae4e81 270 spin_lock(&fs_info->trans_lock);
d43317dc 271loop:
49b25e05 272 /* The file system has been taken offline. No new transactions. */
84961539 273 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 274 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
275 return -EROFS;
276 }
277
19ae4e81 278 cur_trans = fs_info->running_transaction;
a4abeea4 279 if (cur_trans) {
bf31f87f 280 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 281 spin_unlock(&fs_info->trans_lock);
49b25e05 282 return cur_trans->aborted;
871383be 283 }
4a9d8bde 284 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
285 spin_unlock(&fs_info->trans_lock);
286 return -EBUSY;
287 }
9b64f57d 288 refcount_inc(&cur_trans->use_count);
13c5a93e 289 atomic_inc(&cur_trans->num_writers);
0860adfd 290 extwriter_counter_inc(cur_trans, type);
19ae4e81 291 spin_unlock(&fs_info->trans_lock);
e1489b4f 292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 294 return 0;
79154b1b 295 }
19ae4e81 296 spin_unlock(&fs_info->trans_lock);
a4abeea4 297
354aa0fb 298 /*
4490e803
FM
299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300 * current transaction, and commit it. If there is no transaction, just
301 * return ENOENT.
354aa0fb 302 */
4490e803 303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
354aa0fb
MX
304 return -ENOENT;
305
4a9d8bde
MX
306 /*
307 * JOIN_NOLOCK only happens during the transaction commit, so
308 * it is impossible that ->running_transaction is NULL
309 */
310 BUG_ON(type == TRANS_JOIN_NOLOCK);
311
4b5faeac 312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
313 if (!cur_trans)
314 return -ENOMEM;
d43317dc 315
e1489b4f 316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 318
19ae4e81
JS
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
d43317dc
CM
321 /*
322 * someone started a transaction after we unlocked. Make sure
4a9d8bde 323 * to redo the checks above
d43317dc 324 */
5a9ba670 325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 327 kfree(cur_trans);
d43317dc 328 goto loop;
84961539 329 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 330 spin_unlock(&fs_info->trans_lock);
5a9ba670 331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 333 kfree(cur_trans);
7b8b92af 334 return -EROFS;
79154b1b 335 }
d43317dc 336
ab8d0fc4 337 cur_trans->fs_info = fs_info;
48778179
FM
338 atomic_set(&cur_trans->pending_ordered, 0);
339 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 340 atomic_set(&cur_trans->num_writers, 1);
0860adfd 341 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
342 init_waitqueue_head(&cur_trans->writer_wait);
343 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 344 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
345 /*
346 * One for this trans handle, one so it will live on until we
347 * commit the transaction.
348 */
9b64f57d 349 refcount_set(&cur_trans->use_count, 2);
3204d33c 350 cur_trans->flags = 0;
afd48513 351 cur_trans->start_time = ktime_get_seconds();
a4abeea4 352
a099d0fd
AM
353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
5c9d028b 355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 357 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
358
359 /*
360 * although the tree mod log is per file system and not per transaction,
361 * the log must never go across transaction boundaries.
362 */
363 smp_mb();
31b1a2bd 364 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 368 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 369
a4abeea4
JB
370 spin_lock_init(&cur_trans->delayed_refs.lock);
371
372 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 373 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 374 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 375 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 376 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 377 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 378 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 379 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 380 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 381 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 382 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
35da5a7e 384 IO_TREE_TRANS_DIRTY_PAGES);
fe119a6e 385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
35da5a7e 386 IO_TREE_FS_PINNED_EXTENTS);
4a4f8fe2 387 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
19ae4e81
JS
388 cur_trans->transid = fs_info->generation;
389 fs_info->running_transaction = cur_trans;
49b25e05 390 cur_trans->aborted = 0;
19ae4e81 391 spin_unlock(&fs_info->trans_lock);
15ee9bc7 392
79154b1b
CM
393 return 0;
394}
395
d352ac68 396/*
92a7cc42
QW
397 * This does all the record keeping required to make sure that a shareable root
398 * is properly recorded in a given transaction. This is required to make sure
399 * the old root from before we joined the transaction is deleted when the
400 * transaction commits.
d352ac68 401 */
7585717f 402static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
403 struct btrfs_root *root,
404 int force)
6702ed49 405{
0b246afa 406 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 407 int ret = 0;
0b246afa 408
92a7cc42 409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 410 root->last_trans < trans->transid) || force) {
4d31778a 411 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 412
7585717f 413 /*
27cdeb70 414 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
415 * we have the reloc mutex held now, so there
416 * is only one writer in this function
417 */
27cdeb70 418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 419
27cdeb70 420 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
421 * they find our root->last_trans update
422 */
423 smp_wmb();
424
fc7cbcd4 425 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 426 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 427 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
428 return 0;
429 }
fc7cbcd4
DS
430 radix_tree_tag_set(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
434 root->last_trans = trans->transid;
435
436 /* this is pretty tricky. We don't want to
437 * take the relocation lock in btrfs_record_root_in_trans
438 * unless we're really doing the first setup for this root in
439 * this transaction.
440 *
441 * Normally we'd use root->last_trans as a flag to decide
442 * if we want to take the expensive mutex.
443 *
444 * But, we have to set root->last_trans before we
445 * init the relocation root, otherwise, we trip over warnings
446 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 447 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
448 * fixing up the reloc trees and everyone must wait.
449 *
450 * When this is zero, they can trust root->last_trans and fly
451 * through btrfs_record_root_in_trans without having to take the
452 * lock. smp_wmb() makes sure that all the writes above are
453 * done before we pop in the zero below
454 */
03a7e111 455 ret = btrfs_init_reloc_root(trans, root);
c7548af6 456 smp_mb__before_atomic();
27cdeb70 457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 458 }
03a7e111 459 return ret;
5d4f98a2 460}
bcc63abb 461
7585717f 462
2b9dbef2
JB
463void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root)
465{
0b246afa 466 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
467 struct btrfs_transaction *cur_trans = trans->transaction;
468
469 /* Add ourselves to the transaction dropped list */
470 spin_lock(&cur_trans->dropped_roots_lock);
471 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472 spin_unlock(&cur_trans->dropped_roots_lock);
473
474 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
475 spin_lock(&fs_info->fs_roots_radix_lock);
476 radix_tree_tag_clear(&fs_info->fs_roots_radix,
477 (unsigned long)root->root_key.objectid,
478 BTRFS_ROOT_TRANS_TAG);
479 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
480}
481
7585717f
CM
482int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484{
0b246afa 485 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 486 int ret;
0b246afa 487
92a7cc42 488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
489 return 0;
490
491 /*
27cdeb70 492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
493 * and barriers
494 */
495 smp_rmb();
496 if (root->last_trans == trans->transid &&
27cdeb70 497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
498 return 0;
499
0b246afa 500 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 501 ret = record_root_in_trans(trans, root, 0);
0b246afa 502 mutex_unlock(&fs_info->reloc_mutex);
7585717f 503
1409e6cc 504 return ret;
7585717f
CM
505}
506
4a9d8bde
MX
507static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508{
3296bf56 509 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 510 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 511 !TRANS_ABORTED(trans));
4a9d8bde
MX
512}
513
d352ac68
CM
514/* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
2ff7e61e 518static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 519{
f9295749 520 struct btrfs_transaction *cur_trans;
79154b1b 521
0b246afa
JM
522 spin_lock(&fs_info->trans_lock);
523 cur_trans = fs_info->running_transaction;
4a9d8bde 524 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 525 refcount_inc(&cur_trans->use_count);
0b246afa 526 spin_unlock(&fs_info->trans_lock);
72d63ed6 527
3e738c53 528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 529 wait_event(fs_info->transaction_wait,
501407aa 530 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 531 TRANS_ABORTED(cur_trans));
724e2315 532 btrfs_put_transaction(cur_trans);
a4abeea4 533 } else {
0b246afa 534 spin_unlock(&fs_info->trans_lock);
f9295749 535 }
37d1aeee
CM
536}
537
2ff7e61e 538static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 539{
0b246afa 540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
541 return 0;
542
92e2f7e3 543 if (type == TRANS_START)
a22285a6 544 return 1;
a4abeea4 545
a22285a6
YZ
546 return 0;
547}
548
20dd2cbf
MX
549static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550{
0b246afa
JM
551 struct btrfs_fs_info *fs_info = root->fs_info;
552
553 if (!fs_info->reloc_ctl ||
92a7cc42 554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 root->reloc_root)
557 return false;
558
559 return true;
560}
561
28270e25
FM
562static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
563 enum btrfs_reserve_flush_enum flush,
564 u64 num_bytes,
565 u64 *delayed_refs_bytes)
566{
28270e25 567 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
2f6397e4 568 u64 bytes = num_bytes + *delayed_refs_bytes;
28270e25
FM
569 int ret;
570
28270e25
FM
571 /*
572 * We want to reserve all the bytes we may need all at once, so we only
573 * do 1 enospc flushing cycle per transaction start.
574 */
575 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
28270e25
FM
576
577 /*
578 * If we are an emergency flush, which can steal from the global block
579 * reserve, then attempt to not reserve space for the delayed refs, as
580 * we will consume space for them from the global block reserve.
581 */
2f6397e4 582 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
28270e25
FM
583 bytes -= *delayed_refs_bytes;
584 *delayed_refs_bytes = 0;
585 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
586 }
587
588 return ret;
589}
590
08e007d2 591static struct btrfs_trans_handle *
5aed1dd8 592start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
593 unsigned int type, enum btrfs_reserve_flush_enum flush,
594 bool enforce_qgroups)
37d1aeee 595{
0b246afa 596 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 597 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
28270e25 598 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
a22285a6
YZ
599 struct btrfs_trans_handle *h;
600 struct btrfs_transaction *cur_trans;
b5009945 601 u64 num_bytes = 0;
c5567237 602 u64 qgroup_reserved = 0;
28270e25 603 u64 delayed_refs_bytes = 0;
20dd2cbf 604 bool reloc_reserved = false;
9c343784 605 bool do_chunk_alloc = false;
20dd2cbf 606 int ret;
acce952b 607
84961539 608 if (BTRFS_FS_ERROR(fs_info))
acce952b 609 return ERR_PTR(-EROFS);
2a1eb461 610
46c4e71e 611 if (current->journal_info) {
0860adfd 612 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 613 h = current->journal_info;
b50fff81
DS
614 refcount_inc(&h->use_count);
615 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
616 h->orig_rsv = h->block_rsv;
617 h->block_rsv = NULL;
618 goto got_it;
619 }
b5009945
JB
620
621 /*
622 * Do the reservation before we join the transaction so we can do all
623 * the appropriate flushing if need be.
624 */
003d7c59 625 if (num_items && root != fs_info->chunk_root) {
0b246afa 626 qgroup_reserved = num_items * fs_info->nodesize;
a6496849
BB
627 /*
628 * Use prealloc for now, as there might be a currently running
629 * transaction that could free this reserved space prematurely
630 * by committing.
631 */
632 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
633 enforce_qgroups, false);
7174109c
QW
634 if (ret)
635 return ERR_PTR(ret);
c5567237 636
28270e25 637 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
ba2c4d4e 638 /*
28270e25
FM
639 * If we plan to insert/update/delete "num_items" from a btree,
640 * we will also generate delayed refs for extent buffers in the
641 * respective btree paths, so reserve space for the delayed refs
642 * that will be generated by the caller as it modifies btrees.
643 * Try to reserve them to avoid excessive use of the global
644 * block reserve.
ba2c4d4e 645 */
28270e25 646 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
ba2c4d4e 647
20dd2cbf
MX
648 /*
649 * Do the reservation for the relocation root creation
650 */
ee39b432 651 if (need_reserve_reloc_root(root)) {
0b246afa 652 num_bytes += fs_info->nodesize;
20dd2cbf
MX
653 reloc_reserved = true;
654 }
655
28270e25
FM
656 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
657 &delayed_refs_bytes);
ba2c4d4e
JB
658 if (ret)
659 goto reserve_fail;
9c343784 660
28270e25
FM
661 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
662
663 if (trans_rsv->space_info->force_alloc)
9c343784 664 do_chunk_alloc = true;
ba2c4d4e 665 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 666 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
667 /*
668 * Some people call with btrfs_start_transaction(root, 0)
669 * because they can be throttled, but have some other mechanism
670 * for reserving space. We still want these guys to refill the
671 * delayed block_rsv so just add 1 items worth of reservation
672 * here.
673 */
674 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 675 if (ret)
843fcf35 676 goto reserve_fail;
b5009945 677 }
a22285a6 678again:
f2f767e7 679 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
680 if (!h) {
681 ret = -ENOMEM;
682 goto alloc_fail;
683 }
37d1aeee 684
98114659
JB
685 /*
686 * If we are JOIN_NOLOCK we're already committing a transaction and
687 * waiting on this guy, so we don't need to do the sb_start_intwrite
688 * because we're already holding a ref. We need this because we could
689 * have raced in and did an fsync() on a file which can kick a commit
690 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
691 *
692 * If we are ATTACH, it means we just want to catch the current
693 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 694 */
0860adfd 695 if (type & __TRANS_FREEZABLE)
0b246afa 696 sb_start_intwrite(fs_info->sb);
b2b5ef5c 697
2ff7e61e
JM
698 if (may_wait_transaction(fs_info, type))
699 wait_current_trans(fs_info);
a22285a6 700
a4abeea4 701 do {
2ff7e61e 702 ret = join_transaction(fs_info, type);
178260b2 703 if (ret == -EBUSY) {
2ff7e61e 704 wait_current_trans(fs_info);
a6d155d2
FM
705 if (unlikely(type == TRANS_ATTACH ||
706 type == TRANS_JOIN_NOSTART))
178260b2
MX
707 ret = -ENOENT;
708 }
a4abeea4
JB
709 } while (ret == -EBUSY);
710
a43f7f82 711 if (ret < 0)
843fcf35 712 goto join_fail;
0f7d52f4 713
0b246afa 714 cur_trans = fs_info->running_transaction;
a22285a6
YZ
715
716 h->transid = cur_trans->transid;
717 h->transaction = cur_trans;
b50fff81 718 refcount_set(&h->use_count, 1);
64b63580 719 h->fs_info = root->fs_info;
7174109c 720
a698d075 721 h->type = type;
ea658bad 722 INIT_LIST_HEAD(&h->new_bgs);
28270e25 723 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
b7ec40d7 724
a22285a6 725 smp_mb();
3296bf56 726 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 727 may_wait_transaction(fs_info, type)) {
abdd2e80 728 current->journal_info = h;
3a45bb20 729 btrfs_commit_transaction(h);
a22285a6
YZ
730 goto again;
731 }
732
b5009945 733 if (num_bytes) {
0b246afa 734 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 735 h->transid, num_bytes, 1);
28270e25 736 h->block_rsv = trans_rsv;
b5009945 737 h->bytes_reserved = num_bytes;
28270e25
FM
738 if (delayed_refs_bytes > 0) {
739 trace_btrfs_space_reservation(fs_info,
740 "local_delayed_refs_rsv",
741 h->transid,
742 delayed_refs_bytes, 1);
743 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
744 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
745 delayed_refs_bytes = 0;
746 }
20dd2cbf 747 h->reloc_reserved = reloc_reserved;
a22285a6 748 }
9ed74f2d 749
a6496849
BB
750 /*
751 * Now that we have found a transaction to be a part of, convert the
752 * qgroup reservation from prealloc to pertrans. A different transaction
753 * can't race in and free our pertrans out from under us.
754 */
755 if (qgroup_reserved)
756 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
757
2a1eb461 758got_it:
bcf3a3e7 759 if (!current->journal_info)
a22285a6 760 current->journal_info = h;
fcc99734 761
9c343784
JB
762 /*
763 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
764 * ALLOC_FORCE the first run through, and then we won't allocate for
765 * anybody else who races in later. We don't care about the return
766 * value here.
767 */
768 if (do_chunk_alloc && num_bytes) {
769 u64 flags = h->block_rsv->space_info->flags;
770
771 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
772 CHUNK_ALLOC_NO_FORCE);
773 }
774
fcc99734
QW
775 /*
776 * btrfs_record_root_in_trans() needs to alloc new extents, and may
777 * call btrfs_join_transaction() while we're also starting a
778 * transaction.
779 *
780 * Thus it need to be called after current->journal_info initialized,
781 * or we can deadlock.
782 */
68075ea8
JB
783 ret = btrfs_record_root_in_trans(h, root);
784 if (ret) {
785 /*
786 * The transaction handle is fully initialized and linked with
787 * other structures so it needs to be ended in case of errors,
788 * not just freed.
789 */
790 btrfs_end_transaction(h);
791 return ERR_PTR(ret);
792 }
fcc99734 793
79154b1b 794 return h;
843fcf35
MX
795
796join_fail:
0860adfd 797 if (type & __TRANS_FREEZABLE)
0b246afa 798 sb_end_intwrite(fs_info->sb);
843fcf35
MX
799 kmem_cache_free(btrfs_trans_handle_cachep, h);
800alloc_fail:
801 if (num_bytes)
28270e25
FM
802 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
803 if (delayed_refs_bytes)
804 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
805 delayed_refs_bytes);
843fcf35 806reserve_fail:
a6496849 807 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
843fcf35 808 return ERR_PTR(ret);
79154b1b
CM
809}
810
f9295749 811struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 812 unsigned int num_items)
f9295749 813{
08e007d2 814 return start_transaction(root, num_items, TRANS_START,
003d7c59 815 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 816}
003d7c59 817
8eab77ff
FM
818struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
819 struct btrfs_root *root,
7f9fe614 820 unsigned int num_items)
8eab77ff 821{
7f9fe614
JB
822 return start_transaction(root, num_items, TRANS_START,
823 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 824}
8407aa46 825
7a7eaa40 826struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 827{
003d7c59
JM
828 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
829 true);
f9295749
CM
830}
831
8d510121 832struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 833{
575a75d6 834 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 835 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
836}
837
a6d155d2
FM
838/*
839 * Similar to regular join but it never starts a transaction when none is
19288951
FM
840 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
841 * This is similar to btrfs_attach_transaction() but it allows the join to
842 * happen if the transaction commit already started but it's not yet in the
843 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
a6d155d2
FM
844 */
845struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
846{
847 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
848 BTRFS_RESERVE_NO_FLUSH, true);
849}
850
d4edf39b 851/*
9580503b 852 * Catch the running transaction.
d4edf39b
MX
853 *
854 * It is used when we want to commit the current the transaction, but
855 * don't want to start a new one.
856 *
857 * Note: If this function return -ENOENT, it just means there is no
858 * running transaction. But it is possible that the inactive transaction
859 * is still in the memory, not fully on disk. If you hope there is no
860 * inactive transaction in the fs when -ENOENT is returned, you should
861 * invoke
862 * btrfs_attach_transaction_barrier()
863 */
354aa0fb 864struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 865{
575a75d6 866 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 867 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
868}
869
d4edf39b 870/*
9580503b 871 * Catch the running transaction.
d4edf39b 872 *
52042d8e 873 * It is similar to the above function, the difference is this one
d4edf39b
MX
874 * will wait for all the inactive transactions until they fully
875 * complete.
876 */
877struct btrfs_trans_handle *
878btrfs_attach_transaction_barrier(struct btrfs_root *root)
879{
880 struct btrfs_trans_handle *trans;
881
575a75d6 882 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 883 BTRFS_RESERVE_NO_FLUSH, true);
b28ff3a7
FM
884 if (trans == ERR_PTR(-ENOENT)) {
885 int ret;
886
887 ret = btrfs_wait_for_commit(root->fs_info, 0);
888 if (ret)
889 return ERR_PTR(ret);
890 }
d4edf39b
MX
891
892 return trans;
893}
894
d0c2f4fa
FM
895/* Wait for a transaction commit to reach at least the given state. */
896static noinline void wait_for_commit(struct btrfs_transaction *commit,
897 const enum btrfs_trans_state min_state)
89ce8a63 898{
5fd76bf3
OS
899 struct btrfs_fs_info *fs_info = commit->fs_info;
900 u64 transid = commit->transid;
901 bool put = false;
902
3e738c53
IA
903 /*
904 * At the moment this function is called with min_state either being
905 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
906 */
907 if (min_state == TRANS_STATE_COMPLETED)
908 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
909 else
910 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
911
5fd76bf3
OS
912 while (1) {
913 wait_event(commit->commit_wait, commit->state >= min_state);
914 if (put)
915 btrfs_put_transaction(commit);
916
917 if (min_state < TRANS_STATE_COMPLETED)
918 break;
919
920 /*
921 * A transaction isn't really completed until all of the
922 * previous transactions are completed, but with fsync we can
923 * end up with SUPER_COMMITTED transactions before a COMPLETED
924 * transaction. Wait for those.
925 */
926
927 spin_lock(&fs_info->trans_lock);
928 commit = list_first_entry_or_null(&fs_info->trans_list,
929 struct btrfs_transaction,
930 list);
931 if (!commit || commit->transid > transid) {
932 spin_unlock(&fs_info->trans_lock);
933 break;
934 }
935 refcount_inc(&commit->use_count);
936 put = true;
937 spin_unlock(&fs_info->trans_lock);
938 }
89ce8a63
CM
939}
940
2ff7e61e 941int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
942{
943 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 944 int ret = 0;
46204592 945
46204592 946 if (transid) {
0124855f 947 if (transid <= btrfs_get_last_trans_committed(fs_info))
a4abeea4 948 goto out;
46204592
SW
949
950 /* find specified transaction */
0b246afa
JM
951 spin_lock(&fs_info->trans_lock);
952 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
953 if (t->transid == transid) {
954 cur_trans = t;
9b64f57d 955 refcount_inc(&cur_trans->use_count);
8cd2807f 956 ret = 0;
46204592
SW
957 break;
958 }
8cd2807f
MX
959 if (t->transid > transid) {
960 ret = 0;
46204592 961 break;
8cd2807f 962 }
46204592 963 }
0b246afa 964 spin_unlock(&fs_info->trans_lock);
42383020
SW
965
966 /*
967 * The specified transaction doesn't exist, or we
968 * raced with btrfs_commit_transaction
969 */
970 if (!cur_trans) {
0124855f 971 if (transid > btrfs_get_last_trans_committed(fs_info))
42383020 972 ret = -EINVAL;
8cd2807f 973 goto out;
42383020 974 }
46204592
SW
975 } else {
976 /* find newest transaction that is committing | committed */
0b246afa
JM
977 spin_lock(&fs_info->trans_lock);
978 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 979 list) {
4a9d8bde
MX
980 if (t->state >= TRANS_STATE_COMMIT_START) {
981 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 982 break;
46204592 983 cur_trans = t;
9b64f57d 984 refcount_inc(&cur_trans->use_count);
46204592
SW
985 break;
986 }
987 }
0b246afa 988 spin_unlock(&fs_info->trans_lock);
46204592 989 if (!cur_trans)
a4abeea4 990 goto out; /* nothing committing|committed */
46204592
SW
991 }
992
d0c2f4fa 993 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
bf7ecbe9 994 ret = cur_trans->aborted;
724e2315 995 btrfs_put_transaction(cur_trans);
a4abeea4 996out:
46204592
SW
997 return ret;
998}
999
2ff7e61e 1000void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 1001{
92e2f7e3 1002 wait_current_trans(fs_info);
37d1aeee
CM
1003}
1004
a2633b6a 1005bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
1006{
1007 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 1008
3296bf56 1009 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 1010 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 1011 return true;
8929ecfa 1012
04fb3285
FM
1013 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1014 return true;
1015
1016 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
8929ecfa
YZ
1017}
1018
dc60c525
NB
1019static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1020
0e34693f 1021{
dc60c525
NB
1022 struct btrfs_fs_info *fs_info = trans->fs_info;
1023
0e34693f
NB
1024 if (!trans->block_rsv) {
1025 ASSERT(!trans->bytes_reserved);
28270e25 1026 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f
NB
1027 return;
1028 }
1029
28270e25
FM
1030 if (!trans->bytes_reserved) {
1031 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f 1032 return;
28270e25 1033 }
0e34693f
NB
1034
1035 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1036 trace_btrfs_space_reservation(fs_info, "transaction",
1037 trans->transid, trans->bytes_reserved, 0);
1038 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 1039 trans->bytes_reserved, NULL);
0e34693f 1040 trans->bytes_reserved = 0;
28270e25
FM
1041
1042 if (!trans->delayed_refs_bytes_reserved)
1043 return;
1044
1045 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1046 trans->transid,
1047 trans->delayed_refs_bytes_reserved, 0);
1048 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1049 trans->delayed_refs_bytes_reserved, NULL);
1050 trans->delayed_refs_bytes_reserved = 0;
0e34693f
NB
1051}
1052
89ce8a63 1053static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 1054 int throttle)
79154b1b 1055{
3a45bb20 1056 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 1057 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 1058 int err = 0;
c3e69d58 1059
b50fff81
DS
1060 if (refcount_read(&trans->use_count) > 1) {
1061 refcount_dec(&trans->use_count);
2a1eb461
JB
1062 trans->block_rsv = trans->orig_rsv;
1063 return 0;
1064 }
1065
dc60c525 1066 btrfs_trans_release_metadata(trans);
4c13d758 1067 trans->block_rsv = NULL;
c5567237 1068
119e80df 1069 btrfs_create_pending_block_groups(trans);
ea658bad 1070
4fbcdf66
FM
1071 btrfs_trans_release_chunk_metadata(trans);
1072
0860adfd 1073 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1074 sb_end_intwrite(info->sb);
6df7881a 1075
8929ecfa 1076 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1077 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1078 atomic_dec(&cur_trans->num_writers);
0860adfd 1079 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1080
093258e6 1081 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1082
5a9ba670 1083 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1084 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1085
724e2315 1086 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1087
1088 if (current->journal_info == trans)
1089 current->journal_info = NULL;
ab78c84d 1090
24bbcf04 1091 if (throttle)
2ff7e61e 1092 btrfs_run_delayed_iputs(info);
24bbcf04 1093
84961539 1094 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1095 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1096 if (TRANS_ABORTED(trans))
1097 err = trans->aborted;
1098 else
1099 err = -EROFS;
4e121c06 1100 }
49b25e05 1101
4edc2ca3
DJ
1102 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1103 return err;
79154b1b
CM
1104}
1105
3a45bb20 1106int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1107{
3a45bb20 1108 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1109}
1110
3a45bb20 1111int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1112{
3a45bb20 1113 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1114}
1115
d352ac68
CM
1116/*
1117 * when btree blocks are allocated, they have some corresponding bits set for
1118 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1119 * those extents are sent to disk but does not wait on them
d352ac68 1120 */
2ff7e61e 1121int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1122 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1123{
777e6bd7 1124 int err = 0;
7c4452b9 1125 int werr = 0;
0b246afa 1126 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1127 struct extent_state *cached_state = NULL;
777e6bd7 1128 u64 start = 0;
5f39d397 1129 u64 end;
7c4452b9 1130
e5860f82
FM
1131 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1132 mark, &cached_state)) {
663dfbb0
FM
1133 bool wait_writeback = false;
1134
1135 err = convert_extent_bit(dirty_pages, start, end,
1136 EXTENT_NEED_WAIT,
210aa277 1137 mark, &cached_state);
663dfbb0
FM
1138 /*
1139 * convert_extent_bit can return -ENOMEM, which is most of the
1140 * time a temporary error. So when it happens, ignore the error
1141 * and wait for writeback of this range to finish - because we
1142 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1143 * to __btrfs_wait_marked_extents() would not know that
1144 * writeback for this range started and therefore wouldn't
1145 * wait for it to finish - we don't want to commit a
1146 * superblock that points to btree nodes/leafs for which
1147 * writeback hasn't finished yet (and without errors).
663dfbb0 1148 * We cleanup any entries left in the io tree when committing
41e7acd3 1149 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1150 */
1151 if (err == -ENOMEM) {
1152 err = 0;
1153 wait_writeback = true;
1154 }
1155 if (!err)
1156 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1157 if (err)
1158 werr = err;
663dfbb0
FM
1159 else if (wait_writeback)
1160 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1161 free_extent_state(cached_state);
663dfbb0 1162 cached_state = NULL;
1728366e
JB
1163 cond_resched();
1164 start = end + 1;
7c4452b9 1165 }
690587d1
CM
1166 return werr;
1167}
1168
1169/*
1170 * when btree blocks are allocated, they have some corresponding bits set for
1171 * them in one of two extent_io trees. This is used to make sure all of
1172 * those extents are on disk for transaction or log commit. We wait
1173 * on all the pages and clear them from the dirty pages state tree
1174 */
bf89d38f
JM
1175static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1176 struct extent_io_tree *dirty_pages)
690587d1 1177{
690587d1
CM
1178 int err = 0;
1179 int werr = 0;
0b246afa 1180 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1181 struct extent_state *cached_state = NULL;
690587d1
CM
1182 u64 start = 0;
1183 u64 end;
777e6bd7 1184
e5860f82
FM
1185 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1186 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1187 /*
1188 * Ignore -ENOMEM errors returned by clear_extent_bit().
1189 * When committing the transaction, we'll remove any entries
1190 * left in the io tree. For a log commit, we don't remove them
1191 * after committing the log because the tree can be accessed
1192 * concurrently - we do it only at transaction commit time when
41e7acd3 1193 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1194 */
1195 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1196 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1197 if (err == -ENOMEM)
1198 err = 0;
1199 if (!err)
1200 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1201 if (err)
1202 werr = err;
e38e2ed7
FM
1203 free_extent_state(cached_state);
1204 cached_state = NULL;
1728366e
JB
1205 cond_resched();
1206 start = end + 1;
777e6bd7 1207 }
7c4452b9
CM
1208 if (err)
1209 werr = err;
bf89d38f
JM
1210 return werr;
1211}
656f30db 1212
b9fae2eb 1213static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1214 struct extent_io_tree *dirty_pages)
1215{
1216 bool errors = false;
1217 int err;
656f30db 1218
bf89d38f
JM
1219 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1220 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1221 errors = true;
1222
1223 if (errors && !err)
1224 err = -EIO;
1225 return err;
1226}
656f30db 1227
bf89d38f
JM
1228int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1229{
1230 struct btrfs_fs_info *fs_info = log_root->fs_info;
1231 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1232 bool errors = false;
1233 int err;
656f30db 1234
bf89d38f
JM
1235 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1236
1237 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1238 if ((mark & EXTENT_DIRTY) &&
1239 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1240 errors = true;
1241
1242 if ((mark & EXTENT_NEW) &&
1243 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1244 errors = true;
1245
1246 if (errors && !err)
1247 err = -EIO;
1248 return err;
79154b1b
CM
1249}
1250
690587d1 1251/*
c9b577c0
NB
1252 * When btree blocks are allocated the corresponding extents are marked dirty.
1253 * This function ensures such extents are persisted on disk for transaction or
1254 * log commit.
1255 *
1256 * @trans: transaction whose dirty pages we'd like to write
690587d1 1257 */
70458a58 1258static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1259{
1260 int ret;
1261 int ret2;
c9b577c0 1262 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1263 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1264 struct blk_plug plug;
690587d1 1265
c6adc9cc 1266 blk_start_plug(&plug);
c9b577c0 1267 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1268 blk_finish_plug(&plug);
bf89d38f 1269 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1270
41e7acd3 1271 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1272
bf0da8c1
CM
1273 if (ret)
1274 return ret;
c9b577c0 1275 else if (ret2)
bf0da8c1 1276 return ret2;
c9b577c0
NB
1277 else
1278 return 0;
d0c803c4
CM
1279}
1280
d352ac68
CM
1281/*
1282 * this is used to update the root pointer in the tree of tree roots.
1283 *
1284 * But, in the case of the extent allocation tree, updating the root
1285 * pointer may allocate blocks which may change the root of the extent
1286 * allocation tree.
1287 *
1288 * So, this loops and repeats and makes sure the cowonly root didn't
1289 * change while the root pointer was being updated in the metadata.
1290 */
0b86a832
CM
1291static int update_cowonly_root(struct btrfs_trans_handle *trans,
1292 struct btrfs_root *root)
79154b1b
CM
1293{
1294 int ret;
0b86a832 1295 u64 old_root_bytenr;
86b9f2ec 1296 u64 old_root_used;
0b246afa
JM
1297 struct btrfs_fs_info *fs_info = root->fs_info;
1298 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1299
86b9f2ec 1300 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1301
d397712b 1302 while (1) {
0b86a832 1303 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1304 if (old_root_bytenr == root->node->start &&
ea526d18 1305 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1306 break;
87ef2bb4 1307
5d4f98a2 1308 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1309 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1310 &root->root_key,
1311 &root->root_item);
49b25e05
JM
1312 if (ret)
1313 return ret;
56bec294 1314
86b9f2ec 1315 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1316 }
276e680d 1317
0b86a832
CM
1318 return 0;
1319}
1320
d352ac68
CM
1321/*
1322 * update all the cowonly tree roots on disk
49b25e05
JM
1323 *
1324 * The error handling in this function may not be obvious. Any of the
1325 * failures will cause the file system to go offline. We still need
1326 * to clean up the delayed refs.
d352ac68 1327 */
9386d8bc 1328static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1329{
9386d8bc 1330 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1331 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1332 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1333 struct list_head *next;
84234f3a 1334 struct extent_buffer *eb;
56bec294 1335 int ret;
84234f3a 1336
dfba78dc
FM
1337 /*
1338 * At this point no one can be using this transaction to modify any tree
1339 * and no one can start another transaction to modify any tree either.
1340 */
1341 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1342
84234f3a 1343 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1344 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1345 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1346 btrfs_tree_unlock(eb);
1347 free_extent_buffer(eb);
0b86a832 1348
49b25e05
JM
1349 if (ret)
1350 return ret;
87ef2bb4 1351
196c9d8d 1352 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1353 if (ret)
1354 return ret;
2b584c68 1355 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1356 if (ret)
1357 return ret;
280f8bd2 1358 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1359 if (ret)
1360 return ret;
546adb0d 1361
bbebb3e0 1362 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1363 if (ret)
1364 return ret;
1365
ea526d18 1366again:
d397712b 1367 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1368 struct btrfs_root *root;
0b86a832
CM
1369 next = fs_info->dirty_cowonly_roots.next;
1370 list_del_init(next);
1371 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1372 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1373
826582ca
JB
1374 list_add_tail(&root->dirty_list,
1375 &trans->transaction->switch_commits);
49b25e05
JM
1376 ret = update_cowonly_root(trans, root);
1377 if (ret)
1378 return ret;
79154b1b 1379 }
276e680d 1380
488bc2a2 1381 /* Now flush any delayed refs generated by updating all of the roots */
8a526c44 1382 ret = btrfs_run_delayed_refs(trans, U64_MAX);
488bc2a2
JB
1383 if (ret)
1384 return ret;
1385
1bbc621e 1386 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1387 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1388 if (ret)
1389 return ret;
488bc2a2
JB
1390
1391 /*
1392 * We're writing the dirty block groups, which could generate
1393 * delayed refs, which could generate more dirty block groups,
1394 * so we want to keep this flushing in this loop to make sure
1395 * everything gets run.
1396 */
8a526c44 1397 ret = btrfs_run_delayed_refs(trans, U64_MAX);
ea526d18
JB
1398 if (ret)
1399 return ret;
1400 }
1401
1402 if (!list_empty(&fs_info->dirty_cowonly_roots))
1403 goto again;
1404
9f6cbcbb
DS
1405 /* Update dev-replace pointer once everything is committed */
1406 fs_info->dev_replace.committed_cursor_left =
1407 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1408
79154b1b
CM
1409 return 0;
1410}
1411
b4be6aef
JB
1412/*
1413 * If we had a pending drop we need to see if there are any others left in our
1414 * dead roots list, and if not clear our bit and wake any waiters.
1415 */
1416void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1417{
1418 /*
1419 * We put the drop in progress roots at the front of the list, so if the
1420 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1421 * up.
1422 */
1423 spin_lock(&fs_info->trans_lock);
1424 if (!list_empty(&fs_info->dead_roots)) {
1425 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1426 struct btrfs_root,
1427 root_list);
1428 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1429 spin_unlock(&fs_info->trans_lock);
1430 return;
1431 }
1432 }
1433 spin_unlock(&fs_info->trans_lock);
1434
1435 btrfs_wake_unfinished_drop(fs_info);
1436}
1437
d352ac68
CM
1438/*
1439 * dead roots are old snapshots that need to be deleted. This allocates
1440 * a dirty root struct and adds it into the list of dead roots that need to
1441 * be deleted
1442 */
cfad392b 1443void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1444{
0b246afa
JM
1445 struct btrfs_fs_info *fs_info = root->fs_info;
1446
1447 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1448 if (list_empty(&root->root_list)) {
1449 btrfs_grab_root(root);
b4be6aef
JB
1450
1451 /* We want to process the partially complete drops first. */
1452 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1453 list_add(&root->root_list, &fs_info->dead_roots);
1454 else
1455 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1456 }
0b246afa 1457 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1458}
1459
d352ac68 1460/*
dfba78dc
FM
1461 * Update each subvolume root and its relocation root, if it exists, in the tree
1462 * of tree roots. Also free log roots if they exist.
d352ac68 1463 */
7e4443d9 1464static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1465{
7e4443d9 1466 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1467 struct btrfs_root *gang[8];
1468 int i;
1469 int ret;
54aa1f4d 1470
dfba78dc
FM
1471 /*
1472 * At this point no one can be using this transaction to modify any tree
1473 * and no one can start another transaction to modify any tree either.
1474 */
1475 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1476
fc7cbcd4
DS
1477 spin_lock(&fs_info->fs_roots_radix_lock);
1478 while (1) {
1479 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1480 (void **)gang, 0,
1481 ARRAY_SIZE(gang),
1482 BTRFS_ROOT_TRANS_TAG);
1483 if (ret == 0)
1484 break;
1485 for (i = 0; i < ret; i++) {
1486 struct btrfs_root *root = gang[i];
1487 int ret2;
1488
1489 /*
1490 * At this point we can neither have tasks logging inodes
1491 * from a root nor trying to commit a log tree.
1492 */
1493 ASSERT(atomic_read(&root->log_writers) == 0);
1494 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1495 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1496
1497 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1498 (unsigned long)root->root_key.objectid,
1499 BTRFS_ROOT_TRANS_TAG);
1500 spin_unlock(&fs_info->fs_roots_radix_lock);
1501
1502 btrfs_free_log(trans, root);
1503 ret2 = btrfs_update_reloc_root(trans, root);
1504 if (ret2)
1505 return ret2;
1506
1507 /* see comments in should_cow_block() */
1508 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1509 smp_mb__after_atomic();
1510
1511 if (root->commit_root != root->node) {
1512 list_add_tail(&root->dirty_list,
1513 &trans->transaction->switch_commits);
1514 btrfs_set_root_node(&root->root_item,
1515 root->node);
1516 }
48b36a60 1517
fc7cbcd4
DS
1518 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1519 &root->root_key,
1520 &root->root_item);
1521 if (ret2)
1522 return ret2;
1523 spin_lock(&fs_info->fs_roots_radix_lock);
1524 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1525 }
1526 }
fc7cbcd4 1527 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1528 return 0;
0f7d52f4
CM
1529}
1530
6426c7ad
QW
1531/*
1532 * Do all special snapshot related qgroup dirty hack.
1533 *
1534 * Will do all needed qgroup inherit and dirty hack like switch commit
1535 * roots inside one transaction and write all btree into disk, to make
1536 * qgroup works.
1537 */
1538static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1539 struct btrfs_root *src,
1540 struct btrfs_root *parent,
1541 struct btrfs_qgroup_inherit *inherit,
1542 u64 dst_objectid)
1543{
1544 struct btrfs_fs_info *fs_info = src->fs_info;
1545 int ret;
1546
1547 /*
5343cd93
BB
1548 * Save some performance in the case that qgroups are not enabled. If
1549 * this check races with the ioctl, rescan will kick in anyway.
6426c7ad 1550 */
182940f4 1551 if (!btrfs_qgroup_full_accounting(fs_info))
6426c7ad 1552 return 0;
6426c7ad 1553
4d31778a 1554 /*
52042d8e 1555 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1556 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1557 * recorded root will never be updated again, causing an outdated root
1558 * item.
1559 */
1c442d22
JB
1560 ret = record_root_in_trans(trans, src, 1);
1561 if (ret)
1562 return ret;
4d31778a 1563
2a4d84c1
JB
1564 /*
1565 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1566 * src root, so we must run the delayed refs here.
1567 *
1568 * However this isn't particularly fool proof, because there's no
1569 * synchronization keeping us from changing the tree after this point
1570 * before we do the qgroup_inherit, or even from making changes while
1571 * we're doing the qgroup_inherit. But that's a problem for the future,
1572 * for now flush the delayed refs to narrow the race window where the
1573 * qgroup counters could end up wrong.
1574 */
8a526c44 1575 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2a4d84c1
JB
1576 if (ret) {
1577 btrfs_abort_transaction(trans, ret);
44365827 1578 return ret;
2a4d84c1
JB
1579 }
1580
7e4443d9 1581 ret = commit_fs_roots(trans);
6426c7ad
QW
1582 if (ret)
1583 goto out;
460fb20a 1584 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1585 if (ret < 0)
1586 goto out;
1587
1588 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1589 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
5343cd93 1590 parent->root_key.objectid, inherit);
6426c7ad
QW
1591 if (ret < 0)
1592 goto out;
1593
1594 /*
1595 * Now we do a simplified commit transaction, which will:
1596 * 1) commit all subvolume and extent tree
1597 * To ensure all subvolume and extent tree have a valid
1598 * commit_root to accounting later insert_dir_item()
1599 * 2) write all btree blocks onto disk
1600 * This is to make sure later btree modification will be cowed
1601 * Or commit_root can be populated and cause wrong qgroup numbers
1602 * In this simplified commit, we don't really care about other trees
1603 * like chunk and root tree, as they won't affect qgroup.
1604 * And we don't write super to avoid half committed status.
1605 */
9386d8bc 1606 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1607 if (ret)
1608 goto out;
889bfa39 1609 switch_commit_roots(trans);
70458a58 1610 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1611 if (ret)
f7af3934 1612 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1613 "Error while writing out transaction for qgroup");
1614
1615out:
6426c7ad
QW
1616 /*
1617 * Force parent root to be updated, as we recorded it before so its
1618 * last_trans == cur_transid.
1619 * Or it won't be committed again onto disk after later
1620 * insert_dir_item()
1621 */
1622 if (!ret)
1c442d22 1623 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1624 return ret;
1625}
1626
d352ac68
CM
1627/*
1628 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1629 * transaction commit. This does the actual creation.
1630 *
1631 * Note:
1632 * If the error which may affect the commitment of the current transaction
1633 * happens, we should return the error number. If the error which just affect
1634 * the creation of the pending snapshots, just return 0.
d352ac68 1635 */
80b6794d 1636static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1637 struct btrfs_pending_snapshot *pending)
1638{
08d50ca3
NB
1639
1640 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1641 struct btrfs_key key;
80b6794d 1642 struct btrfs_root_item *new_root_item;
3063d29f
CM
1643 struct btrfs_root *tree_root = fs_info->tree_root;
1644 struct btrfs_root *root = pending->root;
6bdb72de 1645 struct btrfs_root *parent_root;
98c9942a 1646 struct btrfs_block_rsv *rsv;
ab3c5c18 1647 struct inode *parent_inode = pending->dir;
42874b3d
MX
1648 struct btrfs_path *path;
1649 struct btrfs_dir_item *dir_item;
3063d29f 1650 struct extent_buffer *tmp;
925baedd 1651 struct extent_buffer *old;
95582b00 1652 struct timespec64 cur_time;
aec8030a 1653 int ret = 0;
d68fc57b 1654 u64 to_reserve = 0;
6bdb72de 1655 u64 index = 0;
a22285a6 1656 u64 objectid;
b83cc969 1657 u64 root_flags;
ab3c5c18
STD
1658 unsigned int nofs_flags;
1659 struct fscrypt_name fname;
3063d29f 1660
8546b570
DS
1661 ASSERT(pending->path);
1662 path = pending->path;
42874b3d 1663
b0c0ea63
DS
1664 ASSERT(pending->root_item);
1665 new_root_item = pending->root_item;
a22285a6 1666
ab3c5c18
STD
1667 /*
1668 * We're inside a transaction and must make sure that any potential
1669 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1670 * filesystem.
1671 */
1672 nofs_flags = memalloc_nofs_save();
1673 pending->error = fscrypt_setup_filename(parent_inode,
1674 &pending->dentry->d_name, 0,
1675 &fname);
1676 memalloc_nofs_restore(nofs_flags);
1677 if (pending->error)
1678 goto free_pending;
ab3c5c18 1679
543068a2 1680 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1681 if (pending->error)
ab3c5c18 1682 goto free_fname;
3063d29f 1683
d6726335
QW
1684 /*
1685 * Make qgroup to skip current new snapshot's qgroupid, as it is
1686 * accounted by later btrfs_qgroup_inherit().
1687 */
1688 btrfs_set_skip_qgroup(trans, objectid);
1689
147d256e 1690 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1691
1692 if (to_reserve > 0) {
9270501c 1693 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1694 &pending->block_rsv,
1695 to_reserve,
1696 BTRFS_RESERVE_NO_FLUSH);
1697 if (pending->error)
d6726335 1698 goto clear_skip_qgroup;
d68fc57b
YZ
1699 }
1700
3063d29f 1701 key.objectid = objectid;
a22285a6
YZ
1702 key.offset = (u64)-1;
1703 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1704
6fa9700e 1705 rsv = trans->block_rsv;
a22285a6 1706 trans->block_rsv = &pending->block_rsv;
2382c5cc 1707 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1708 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1709 trans->transid,
1710 trans->bytes_reserved, 1);
a22285a6 1711 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1712 ret = record_root_in_trans(trans, parent_root, 0);
1713 if (ret)
1714 goto fail;
c2050a45 1715 cur_time = current_time(parent_inode);
04b285f3 1716
3063d29f
CM
1717 /*
1718 * insert the directory item
1719 */
877574e2 1720 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
df9f2782
FM
1721 if (ret) {
1722 btrfs_abort_transaction(trans, ret);
1723 goto fail;
1724 }
42874b3d
MX
1725
1726 /* check if there is a file/dir which has the same name. */
1727 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1728 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1729 &fname.disk_name, 0);
42874b3d 1730 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1731 pending->error = -EEXIST;
aec8030a 1732 goto dir_item_existed;
42874b3d
MX
1733 } else if (IS_ERR(dir_item)) {
1734 ret = PTR_ERR(dir_item);
66642832 1735 btrfs_abort_transaction(trans, ret);
8732d44f 1736 goto fail;
79787eaa 1737 }
42874b3d 1738 btrfs_release_path(path);
52c26179 1739
6ed05643 1740 ret = btrfs_create_qgroup(trans, objectid);
8049ba5d 1741 if (ret && ret != -EEXIST) {
6ed05643
BB
1742 btrfs_abort_transaction(trans, ret);
1743 goto fail;
1744 }
1745
e999376f
CM
1746 /*
1747 * pull in the delayed directory update
1748 * and the delayed inode item
1749 * otherwise we corrupt the FS during
1750 * snapshot
1751 */
e5c304e6 1752 ret = btrfs_run_delayed_items(trans);
8732d44f 1753 if (ret) { /* Transaction aborted */
66642832 1754 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1755 goto fail;
1756 }
e999376f 1757
f0118cb6
JB
1758 ret = record_root_in_trans(trans, root, 0);
1759 if (ret) {
1760 btrfs_abort_transaction(trans, ret);
1761 goto fail;
1762 }
6bdb72de
SW
1763 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1764 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1765 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1766
b83cc969
LZ
1767 root_flags = btrfs_root_flags(new_root_item);
1768 if (pending->readonly)
1769 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1770 else
1771 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1772 btrfs_set_root_flags(new_root_item, root_flags);
1773
8ea05e3a
AB
1774 btrfs_set_root_generation_v2(new_root_item,
1775 trans->transid);
807fc790 1776 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1777 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1778 BTRFS_UUID_SIZE);
70023da2
SB
1779 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1780 memset(new_root_item->received_uuid, 0,
1781 sizeof(new_root_item->received_uuid));
1782 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1783 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1784 btrfs_set_root_stransid(new_root_item, 0);
1785 btrfs_set_root_rtransid(new_root_item, 0);
1786 }
3cae210f
QW
1787 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1788 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1789 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1790
6bdb72de 1791 old = btrfs_lock_root_node(root);
9631e4cc
JB
1792 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1793 BTRFS_NESTING_COW);
79787eaa
JM
1794 if (ret) {
1795 btrfs_tree_unlock(old);
1796 free_extent_buffer(old);
66642832 1797 btrfs_abort_transaction(trans, ret);
8732d44f 1798 goto fail;
79787eaa 1799 }
49b25e05 1800
49b25e05 1801 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1802 /* clean up in any case */
6bdb72de
SW
1803 btrfs_tree_unlock(old);
1804 free_extent_buffer(old);
8732d44f 1805 if (ret) {
66642832 1806 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1807 goto fail;
1808 }
f1ebcc74 1809 /* see comments in should_cow_block() */
27cdeb70 1810 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1811 smp_wmb();
1812
6bdb72de 1813 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1814 /* record when the snapshot was created in key.offset */
1815 key.offset = trans->transid;
1816 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1817 btrfs_tree_unlock(tmp);
1818 free_extent_buffer(tmp);
8732d44f 1819 if (ret) {
66642832 1820 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1821 goto fail;
1822 }
6bdb72de 1823
a22285a6
YZ
1824 /*
1825 * insert root back/forward references
1826 */
6025c19f 1827 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1828 parent_root->root_key.objectid,
4a0cc7ca 1829 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1830 &fname.disk_name);
8732d44f 1831 if (ret) {
66642832 1832 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1833 goto fail;
1834 }
0660b5af 1835
a22285a6 1836 key.offset = (u64)-1;
2dfb1e43 1837 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1838 if (IS_ERR(pending->snap)) {
1839 ret = PTR_ERR(pending->snap);
2d892ccd 1840 pending->snap = NULL;
66642832 1841 btrfs_abort_transaction(trans, ret);
8732d44f 1842 goto fail;
79787eaa 1843 }
d68fc57b 1844
49b25e05 1845 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1846 if (ret) {
66642832 1847 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1848 goto fail;
1849 }
361048f5 1850
6426c7ad
QW
1851 /*
1852 * Do special qgroup accounting for snapshot, as we do some qgroup
1853 * snapshot hack to do fast snapshot.
1854 * To co-operate with that hack, we do hack again.
1855 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1856 */
5343cd93
BB
1857 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1858 ret = qgroup_account_snapshot(trans, root, parent_root,
1859 pending->inherit, objectid);
1860 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1861 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1862 parent_root->root_key.objectid, pending->inherit);
6426c7ad
QW
1863 if (ret < 0)
1864 goto fail;
1865
6db75318
STD
1866 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1867 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1868 index);
42874b3d 1869 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1870 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1871 if (ret) {
66642832 1872 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1873 goto fail;
1874 }
42874b3d 1875
6ef06d27 1876 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1877 fname.disk_name.len * 2);
b1c38a13
JL
1878 inode_set_mtime_to_ts(parent_inode,
1879 inode_set_ctime_current(parent_inode));
0a5d0dc5 1880 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
dd5f9615 1881 if (ret) {
66642832 1882 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1883 goto fail;
1884 }
807fc790
AS
1885 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1886 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1887 objectid);
dd5f9615 1888 if (ret) {
66642832 1889 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1890 goto fail;
1891 }
1892 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1893 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1894 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1895 objectid);
1896 if (ret && ret != -EEXIST) {
66642832 1897 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1898 goto fail;
1899 }
1900 }
d6726335 1901
3063d29f 1902fail:
aec8030a
MX
1903 pending->error = ret;
1904dir_item_existed:
98c9942a 1905 trans->block_rsv = rsv;
2382c5cc 1906 trans->bytes_reserved = 0;
d6726335
QW
1907clear_skip_qgroup:
1908 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1909free_fname:
1910 fscrypt_free_filename(&fname);
1911free_pending:
6fa9700e 1912 kfree(new_root_item);
b0c0ea63 1913 pending->root_item = NULL;
42874b3d 1914 btrfs_free_path(path);
8546b570
DS
1915 pending->path = NULL;
1916
49b25e05 1917 return ret;
3063d29f
CM
1918}
1919
d352ac68
CM
1920/*
1921 * create all the snapshots we've scheduled for creation
1922 */
08d50ca3 1923static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1924{
aec8030a 1925 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1926 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1927 int ret = 0;
3de4586c 1928
aec8030a
MX
1929 list_for_each_entry_safe(pending, next, head, list) {
1930 list_del(&pending->list);
08d50ca3 1931 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1932 if (ret)
1933 break;
1934 }
1935 return ret;
3de4586c
CM
1936}
1937
2ff7e61e 1938static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1939{
1940 struct btrfs_root_item *root_item;
1941 struct btrfs_super_block *super;
1942
0b246afa 1943 super = fs_info->super_copy;
5d4f98a2 1944
0b246afa 1945 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1946 super->chunk_root = root_item->bytenr;
1947 super->chunk_root_generation = root_item->generation;
1948 super->chunk_root_level = root_item->level;
5d4f98a2 1949
0b246afa 1950 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1951 super->root = root_item->bytenr;
1952 super->generation = root_item->generation;
1953 super->root_level = root_item->level;
0b246afa 1954 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1955 super->cache_generation = root_item->generation;
94846229
BB
1956 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1957 super->cache_generation = 0;
0b246afa 1958 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1959 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1960}
1961
f36f3042
CM
1962int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1963{
4a9d8bde 1964 struct btrfs_transaction *trans;
f36f3042 1965 int ret = 0;
4a9d8bde 1966
a4abeea4 1967 spin_lock(&info->trans_lock);
4a9d8bde
MX
1968 trans = info->running_transaction;
1969 if (trans)
1970 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1971 spin_unlock(&info->trans_lock);
f36f3042
CM
1972 return ret;
1973}
1974
8929ecfa
YZ
1975int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1976{
4a9d8bde 1977 struct btrfs_transaction *trans;
8929ecfa 1978 int ret = 0;
4a9d8bde 1979
a4abeea4 1980 spin_lock(&info->trans_lock);
4a9d8bde
MX
1981 trans = info->running_transaction;
1982 if (trans)
1983 ret = is_transaction_blocked(trans);
a4abeea4 1984 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1985 return ret;
1986}
1987
fdfbf020 1988void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1989{
3a45bb20 1990 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1991 struct btrfs_transaction *cur_trans;
1992
fdfbf020
JB
1993 /* Kick the transaction kthread. */
1994 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1995 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1996
1997 /* take transaction reference */
bb9c12c9 1998 cur_trans = trans->transaction;
9b64f57d 1999 refcount_inc(&cur_trans->use_count);
bb9c12c9 2000
3a45bb20 2001 btrfs_end_transaction(trans);
6fc4e354 2002
ae5d29d4
DS
2003 /*
2004 * Wait for the current transaction commit to start and block
2005 * subsequent transaction joins
2006 */
77d20c68 2007 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
ae5d29d4
DS
2008 wait_event(fs_info->transaction_blocked_wait,
2009 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2010 TRANS_ABORTED(cur_trans));
724e2315 2011 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
2012}
2013
97cb39bb 2014static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 2015{
97cb39bb 2016 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
2017 struct btrfs_transaction *cur_trans = trans->transaction;
2018
b50fff81 2019 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 2020
66642832 2021 btrfs_abort_transaction(trans, err);
7b8b92af 2022
0b246afa 2023 spin_lock(&fs_info->trans_lock);
66b6135b 2024
25d8c284
MX
2025 /*
2026 * If the transaction is removed from the list, it means this
2027 * transaction has been committed successfully, so it is impossible
2028 * to call the cleanup function.
2029 */
2030 BUG_ON(list_empty(&cur_trans->list));
66b6135b 2031
0b246afa 2032 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 2033 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2034 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2035
2036 /*
2037 * The thread has already released the lockdep map as reader
2038 * already in btrfs_commit_transaction().
2039 */
2040 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
2041 wait_event(cur_trans->writer_wait,
2042 atomic_read(&cur_trans->num_writers) == 1);
2043
0b246afa 2044 spin_lock(&fs_info->trans_lock);
d7096fc3 2045 }
061dde82
FM
2046
2047 /*
2048 * Now that we know no one else is still using the transaction we can
2049 * remove the transaction from the list of transactions. This avoids
2050 * the transaction kthread from cleaning up the transaction while some
2051 * other task is still using it, which could result in a use-after-free
2052 * on things like log trees, as it forces the transaction kthread to
2053 * wait for this transaction to be cleaned up by us.
2054 */
2055 list_del_init(&cur_trans->list);
2056
0b246afa 2057 spin_unlock(&fs_info->trans_lock);
49b25e05 2058
2ff7e61e 2059 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2060
0b246afa
JM
2061 spin_lock(&fs_info->trans_lock);
2062 if (cur_trans == fs_info->running_transaction)
2063 fs_info->running_transaction = NULL;
2064 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2065
e0228285 2066 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2067 sb_end_intwrite(fs_info->sb);
724e2315
JB
2068 btrfs_put_transaction(cur_trans);
2069 btrfs_put_transaction(cur_trans);
49b25e05 2070
2e4e97ab 2071 trace_btrfs_transaction_commit(fs_info);
49b25e05 2072
49b25e05
JM
2073 if (current->journal_info == trans)
2074 current->journal_info = NULL;
2d82a40a
FM
2075
2076 /*
2077 * If relocation is running, we can't cancel scrub because that will
2078 * result in a deadlock. Before relocating a block group, relocation
2079 * pauses scrub, then starts and commits a transaction before unpausing
2080 * scrub. If the transaction commit is being done by the relocation
2081 * task or triggered by another task and the relocation task is waiting
2082 * for the commit, and we end up here due to an error in the commit
2083 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2084 * asking for scrub to stop while having it asked to be paused higher
2085 * above in relocation code.
2086 */
2087 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2088 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2089
2090 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2091}
2092
c7cc64a9
DS
2093/*
2094 * Release reserved delayed ref space of all pending block groups of the
2095 * transaction and remove them from the list
2096 */
2097static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2098{
2099 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2100 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2101
2102 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9ef17228 2103 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
c7cc64a9
DS
2104 list_del_init(&block_group->bg_list);
2105 }
2106}
2107
88090ad3 2108static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2109{
ce8ea7cc 2110 /*
a0f0cf83 2111 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2112 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2113 * Currently are holding the fs freeze lock, if we do an async flush
2114 * we'll do btrfs_join_transaction() and deadlock because we need to
2115 * wait for the fs freeze lock. Using the direct flushing we benefit
2116 * from already being in a transaction and our join_transaction doesn't
2117 * have to re-take the fs freeze lock.
a0f0cf83
FM
2118 *
2119 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2120 * if it can read lock sb->s_umount. It will always be able to lock it,
2121 * except when the filesystem is being unmounted or being frozen, but in
2122 * those cases sync_filesystem() is called, which results in calling
2123 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2124 * Note that we don't call writeback_inodes_sb() directly, because it
2125 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2126 */
88090ad3 2127 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2128 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2129 return 0;
2130}
2131
88090ad3 2132static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2133{
88090ad3 2134 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2135 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2136}
2137
28b21c55
FM
2138/*
2139 * Add a pending snapshot associated with the given transaction handle to the
2140 * respective handle. This must be called after the transaction commit started
2141 * and while holding fs_info->trans_lock.
2142 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2143 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2144 * returns an error.
2145 */
2146static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2147{
2148 struct btrfs_transaction *cur_trans = trans->transaction;
2149
2150 if (!trans->pending_snapshot)
2151 return;
2152
2153 lockdep_assert_held(&trans->fs_info->trans_lock);
77d20c68 2154 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
28b21c55
FM
2155
2156 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2157}
2158
e55958c8
IA
2159static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2160{
2161 fs_info->commit_stats.commit_count++;
2162 fs_info->commit_stats.last_commit_dur = interval;
2163 fs_info->commit_stats.max_commit_dur =
2164 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2165 fs_info->commit_stats.total_commit_dur += interval;
2166}
2167
3a45bb20 2168int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2169{
3a45bb20 2170 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2171 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2172 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2173 int ret;
e55958c8
IA
2174 ktime_t start_time;
2175 ktime_t interval;
79154b1b 2176
35b814f3 2177 ASSERT(refcount_read(&trans->use_count) == 1);
77d20c68 2178 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
35b814f3 2179
c52cc7b7
JB
2180 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2181
8d25a086 2182 /* Stop the commit early if ->aborted is set */
bf31f87f 2183 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2184 ret = cur_trans->aborted;
3e738c53 2185 goto lockdep_trans_commit_start_release;
25287e0a 2186 }
49b25e05 2187
f45c752b
JB
2188 btrfs_trans_release_metadata(trans);
2189 trans->block_rsv = NULL;
2190
56bec294 2191 /*
e19eb11f
JB
2192 * We only want one transaction commit doing the flushing so we do not
2193 * waste a bunch of time on lock contention on the extent root node.
56bec294 2194 */
e19eb11f
JB
2195 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2196 &cur_trans->delayed_refs.flags)) {
2197 /*
2198 * Make a pass through all the delayed refs we have so far.
2199 * Any running threads may add more while we are here.
2200 */
2201 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2202 if (ret)
2203 goto lockdep_trans_commit_start_release;
e19eb11f 2204 }
56bec294 2205
119e80df 2206 btrfs_create_pending_block_groups(trans);
ea658bad 2207
3204d33c 2208 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2209 int run_it = 0;
2210
2211 /* this mutex is also taken before trying to set
2212 * block groups readonly. We need to make sure
2213 * that nobody has set a block group readonly
2214 * after a extents from that block group have been
2215 * allocated for cache files. btrfs_set_block_group_ro
2216 * will wait for the transaction to commit if it
3204d33c 2217 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2218 *
3204d33c
JB
2219 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2220 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2221 * hurt to have more than one go through, but there's no
2222 * real advantage to it either.
2223 */
0b246afa 2224 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2225 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2226 &cur_trans->flags))
1bbc621e 2227 run_it = 1;
0b246afa 2228 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2229
f9cacae3 2230 if (run_it) {
21217054 2231 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2232 if (ret)
2233 goto lockdep_trans_commit_start_release;
f9cacae3 2234 }
1bbc621e
CM
2235 }
2236
0b246afa 2237 spin_lock(&fs_info->trans_lock);
77d20c68 2238 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
d0c2f4fa
FM
2239 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2240
28b21c55
FM
2241 add_pending_snapshot(trans);
2242
0b246afa 2243 spin_unlock(&fs_info->trans_lock);
9b64f57d 2244 refcount_inc(&cur_trans->use_count);
ccd467d6 2245
d0c2f4fa
FM
2246 if (trans->in_fsync)
2247 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2248
2249 btrfs_trans_state_lockdep_release(fs_info,
77d20c68 2250 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
d0c2f4fa
FM
2251 ret = btrfs_end_transaction(trans);
2252 wait_for_commit(cur_trans, want_state);
15ee9bc7 2253
bf31f87f 2254 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2255 ret = cur_trans->aborted;
2256
724e2315 2257 btrfs_put_transaction(cur_trans);
15ee9bc7 2258
49b25e05 2259 return ret;
79154b1b 2260 }
4313b399 2261
77d20c68 2262 cur_trans->state = TRANS_STATE_COMMIT_PREP;
0b246afa 2263 wake_up(&fs_info->transaction_blocked_wait);
77d20c68 2264 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
bb9c12c9 2265
0b246afa 2266 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2267 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2268
2269 if (trans->in_fsync)
2270 want_state = TRANS_STATE_SUPER_COMMITTED;
2271
ccd467d6
CM
2272 prev_trans = list_entry(cur_trans->list.prev,
2273 struct btrfs_transaction, list);
d0c2f4fa 2274 if (prev_trans->state < want_state) {
9b64f57d 2275 refcount_inc(&prev_trans->use_count);
0b246afa 2276 spin_unlock(&fs_info->trans_lock);
ccd467d6 2277
d0c2f4fa
FM
2278 wait_for_commit(prev_trans, want_state);
2279
bf31f87f 2280 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2281
724e2315 2282 btrfs_put_transaction(prev_trans);
1f9b8c8f 2283 if (ret)
e1489b4f 2284 goto lockdep_release;
77d20c68 2285 spin_lock(&fs_info->trans_lock);
ccd467d6 2286 }
a4abeea4 2287 } else {
cb2d3dad
FM
2288 /*
2289 * The previous transaction was aborted and was already removed
2290 * from the list of transactions at fs_info->trans_list. So we
2291 * abort to prevent writing a new superblock that reflects a
2292 * corrupt state (pointing to trees with unwritten nodes/leafs).
2293 */
84961539 2294 if (BTRFS_FS_ERROR(fs_info)) {
77d20c68 2295 spin_unlock(&fs_info->trans_lock);
cb2d3dad 2296 ret = -EROFS;
e1489b4f 2297 goto lockdep_release;
cb2d3dad 2298 }
ccd467d6 2299 }
15ee9bc7 2300
77d20c68
JB
2301 cur_trans->state = TRANS_STATE_COMMIT_START;
2302 wake_up(&fs_info->transaction_blocked_wait);
2303 spin_unlock(&fs_info->trans_lock);
2304
e55958c8
IA
2305 /*
2306 * Get the time spent on the work done by the commit thread and not
2307 * the time spent waiting on a previous commit
2308 */
2309 start_time = ktime_get_ns();
2310
0860adfd
MX
2311 extwriter_counter_dec(cur_trans, trans->type);
2312
88090ad3 2313 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2314 if (ret)
e1489b4f 2315 goto lockdep_release;
82436617 2316
e5c304e6 2317 ret = btrfs_run_delayed_items(trans);
581227d0 2318 if (ret)
e1489b4f 2319 goto lockdep_release;
15ee9bc7 2320
5a9ba670
IA
2321 /*
2322 * The thread has started/joined the transaction thus it holds the
2323 * lockdep map as a reader. It has to release it before acquiring the
2324 * lockdep map as a writer.
2325 */
2326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2327 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2328 wait_event(cur_trans->writer_wait,
2329 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2330
581227d0 2331 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2332 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2333 if (ret) {
2334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2335 goto cleanup_transaction;
e1489b4f 2336 }
ca469637 2337
88090ad3 2338 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2339
48778179
FM
2340 /*
2341 * Wait for all ordered extents started by a fast fsync that joined this
2342 * transaction. Otherwise if this transaction commits before the ordered
2343 * extents complete we lose logged data after a power failure.
2344 */
8b53779e 2345 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2346 wait_event(cur_trans->pending_wait,
2347 atomic_read(&cur_trans->pending_ordered) == 0);
2348
2ff7e61e 2349 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2350 /*
2351 * Ok now we need to make sure to block out any other joins while we
2352 * commit the transaction. We could have started a join before setting
4a9d8bde 2353 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2354 */
0b246afa 2355 spin_lock(&fs_info->trans_lock);
28b21c55 2356 add_pending_snapshot(trans);
4a9d8bde 2357 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2358 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2359
2360 /*
2361 * The thread has started/joined the transaction thus it holds the
2362 * lockdep map as a reader. It has to release it before acquiring the
2363 * lockdep map as a writer.
2364 */
2365 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2366 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2367 wait_event(cur_trans->writer_wait,
2368 atomic_read(&cur_trans->num_writers) == 1);
2369
3e738c53
IA
2370 /*
2371 * Make lockdep happy by acquiring the state locks after
2372 * btrfs_trans_num_writers is released. If we acquired the state locks
2373 * before releasing the btrfs_trans_num_writers lock then lockdep would
2374 * complain because we did not follow the reverse order unlocking rule.
2375 */
2376 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2377 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2378 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2379
fdfbf020
JB
2380 /*
2381 * We've started the commit, clear the flag in case we were triggered to
2382 * do an async commit but somebody else started before the transaction
2383 * kthread could do the work.
2384 */
2385 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2386
bf31f87f 2387 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2388 ret = cur_trans->aborted;
3e738c53 2389 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2390 goto scrub_continue;
2cba30f1 2391 }
7585717f
CM
2392 /*
2393 * the reloc mutex makes sure that we stop
2394 * the balancing code from coming in and moving
2395 * extents around in the middle of the commit
2396 */
0b246afa 2397 mutex_lock(&fs_info->reloc_mutex);
7585717f 2398
42874b3d
MX
2399 /*
2400 * We needn't worry about the delayed items because we will
2401 * deal with them in create_pending_snapshot(), which is the
2402 * core function of the snapshot creation.
2403 */
08d50ca3 2404 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2405 if (ret)
2406 goto unlock_reloc;
3063d29f 2407
42874b3d
MX
2408 /*
2409 * We insert the dir indexes of the snapshots and update the inode
2410 * of the snapshots' parents after the snapshot creation, so there
2411 * are some delayed items which are not dealt with. Now deal with
2412 * them.
2413 *
2414 * We needn't worry that this operation will corrupt the snapshots,
2415 * because all the tree which are snapshoted will be forced to COW
2416 * the nodes and leaves.
2417 */
e5c304e6 2418 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2419 if (ret)
2420 goto unlock_reloc;
16cdcec7 2421
8a526c44 2422 ret = btrfs_run_delayed_refs(trans, U64_MAX);
56e9f6ea
DS
2423 if (ret)
2424 goto unlock_reloc;
56bec294 2425
e999376f
CM
2426 /*
2427 * make sure none of the code above managed to slip in a
2428 * delayed item
2429 */
ccdf9b30 2430 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2431
2c90e5d6 2432 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2433
7e4443d9 2434 ret = commit_fs_roots(trans);
56e9f6ea 2435 if (ret)
dfba78dc 2436 goto unlock_reloc;
54aa1f4d 2437
5d4f98a2 2438 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2439 * safe to free the root of tree log roots
2440 */
0b246afa 2441 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2442
0ed4792a
QW
2443 /*
2444 * Since fs roots are all committed, we can get a quite accurate
2445 * new_roots. So let's do quota accounting.
2446 */
460fb20a 2447 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2448 if (ret < 0)
dfba78dc 2449 goto unlock_reloc;
0ed4792a 2450
9386d8bc 2451 ret = commit_cowonly_roots(trans);
56e9f6ea 2452 if (ret)
dfba78dc 2453 goto unlock_reloc;
54aa1f4d 2454
2cba30f1
MX
2455 /*
2456 * The tasks which save the space cache and inode cache may also
2457 * update ->aborted, check it.
2458 */
bf31f87f 2459 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2460 ret = cur_trans->aborted;
dfba78dc 2461 goto unlock_reloc;
2cba30f1
MX
2462 }
2463
0b246afa 2464 cur_trans = fs_info->running_transaction;
5d4f98a2 2465
0b246afa
JM
2466 btrfs_set_root_node(&fs_info->tree_root->root_item,
2467 fs_info->tree_root->node);
2468 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2469 &cur_trans->switch_commits);
5d4f98a2 2470
0b246afa
JM
2471 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2472 fs_info->chunk_root->node);
2473 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2474 &cur_trans->switch_commits);
2475
f7238e50
JB
2476 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2477 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2478 fs_info->block_group_root->node);
2479 list_add_tail(&fs_info->block_group_root->dirty_list,
2480 &cur_trans->switch_commits);
2481 }
2482
889bfa39 2483 switch_commit_roots(trans);
5d4f98a2 2484
ce93ec54 2485 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2486 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2487 update_super_roots(fs_info);
e02119d5 2488
0b246afa
JM
2489 btrfs_set_super_log_root(fs_info->super_copy, 0);
2490 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2491 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2492 sizeof(*fs_info->super_copy));
ccd467d6 2493
bbbf7243 2494 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2495
0b246afa
JM
2496 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2497 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2498
4fbcdf66
FM
2499 btrfs_trans_release_chunk_metadata(trans);
2500
dfba78dc
FM
2501 /*
2502 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2503 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2504 * make sure that before we commit our superblock, no other task can
2505 * start a new transaction and commit a log tree before we commit our
2506 * superblock. Anyone trying to commit a log tree locks this mutex before
2507 * writing its superblock.
2508 */
2509 mutex_lock(&fs_info->tree_log_mutex);
2510
0b246afa 2511 spin_lock(&fs_info->trans_lock);
4a9d8bde 2512 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2513 fs_info->running_transaction = NULL;
2514 spin_unlock(&fs_info->trans_lock);
2515 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2516
0b246afa 2517 wake_up(&fs_info->transaction_wait);
3e738c53 2518 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2519
b7625f46
QW
2520 /* If we have features changed, wake up the cleaner to update sysfs. */
2521 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2522 fs_info->cleaner_kthread)
2523 wake_up_process(fs_info->cleaner_kthread);
2524
70458a58 2525 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2526 if (ret) {
0b246afa
JM
2527 btrfs_handle_fs_error(fs_info, ret,
2528 "Error while writing out transaction");
2529 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2530 goto scrub_continue;
49b25e05
JM
2531 }
2532
eece6a9c 2533 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2534 /*
2535 * the super is written, we can safely allow the tree-loggers
2536 * to go about their business
2537 */
0b246afa 2538 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2539 if (ret)
2540 goto scrub_continue;
e02119d5 2541
d0c2f4fa
FM
2542 /*
2543 * We needn't acquire the lock here because there is no other task
2544 * which can change it.
2545 */
2546 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2547 wake_up(&cur_trans->commit_wait);
3e738c53 2548 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2549
5ead2dd0 2550 btrfs_finish_extent_commit(trans);
4313b399 2551
3204d33c 2552 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2553 btrfs_clear_space_info_full(fs_info);
13212b54 2554
0124855f 2555 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
4a9d8bde
MX
2556 /*
2557 * We needn't acquire the lock here because there is no other task
2558 * which can change it.
2559 */
2560 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2561 wake_up(&cur_trans->commit_wait);
3e738c53 2562 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2563
0b246afa 2564 spin_lock(&fs_info->trans_lock);
13c5a93e 2565 list_del_init(&cur_trans->list);
0b246afa 2566 spin_unlock(&fs_info->trans_lock);
a4abeea4 2567
724e2315
JB
2568 btrfs_put_transaction(cur_trans);
2569 btrfs_put_transaction(cur_trans);
58176a96 2570
0860adfd 2571 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2572 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2573
2e4e97ab 2574 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2575
e55958c8
IA
2576 interval = ktime_get_ns() - start_time;
2577
2ff7e61e 2578 btrfs_scrub_continue(fs_info);
a2de733c 2579
9ed74f2d
JB
2580 if (current->journal_info == trans)
2581 current->journal_info = NULL;
2582
2c90e5d6 2583 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2584
e55958c8
IA
2585 update_commit_stats(fs_info, interval);
2586
79154b1b 2587 return ret;
49b25e05 2588
56e9f6ea
DS
2589unlock_reloc:
2590 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2591 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2592scrub_continue:
3e738c53
IA
2593 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2594 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2595 btrfs_scrub_continue(fs_info);
49b25e05 2596cleanup_transaction:
dc60c525 2597 btrfs_trans_release_metadata(trans);
c7cc64a9 2598 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2599 btrfs_trans_release_chunk_metadata(trans);
0e721106 2600 trans->block_rsv = NULL;
0b246afa 2601 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2602 if (current->journal_info == trans)
2603 current->journal_info = NULL;
97cb39bb 2604 cleanup_transaction(trans, ret);
49b25e05
JM
2605
2606 return ret;
e1489b4f
IA
2607
2608lockdep_release:
5a9ba670 2609 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2610 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2611 goto cleanup_transaction;
3e738c53
IA
2612
2613lockdep_trans_commit_start_release:
77d20c68 2614 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2615 btrfs_end_transaction(trans);
2616 return ret;
79154b1b
CM
2617}
2618
d352ac68 2619/*
9d1a2a3a
DS
2620 * return < 0 if error
2621 * 0 if there are no more dead_roots at the time of call
2622 * 1 there are more to be processed, call me again
2623 *
2624 * The return value indicates there are certainly more snapshots to delete, but
2625 * if there comes a new one during processing, it may return 0. We don't mind,
2626 * because btrfs_commit_super will poke cleaner thread and it will process it a
2627 * few seconds later.
d352ac68 2628 */
33c44184 2629int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2630{
33c44184 2631 struct btrfs_root *root;
9d1a2a3a 2632 int ret;
5d4f98a2 2633
a4abeea4 2634 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2635 if (list_empty(&fs_info->dead_roots)) {
2636 spin_unlock(&fs_info->trans_lock);
2637 return 0;
2638 }
2639 root = list_first_entry(&fs_info->dead_roots,
2640 struct btrfs_root, root_list);
cfad392b 2641 list_del_init(&root->root_list);
a4abeea4 2642 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2643
4fd786e6 2644 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2645
9d1a2a3a 2646 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2647
9d1a2a3a
DS
2648 if (btrfs_header_backref_rev(root->node) <
2649 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2650 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2651 else
0078a9f9 2652 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2653
dc9492c1 2654 btrfs_put_root(root);
6596a928 2655 return (ret < 0) ? 0 : 1;
e9d0b13b 2656}
572d9ab7 2657
fccf0c84
JB
2658/*
2659 * We only mark the transaction aborted and then set the file system read-only.
2660 * This will prevent new transactions from starting or trying to join this
2661 * one.
2662 *
2663 * This means that error recovery at the call site is limited to freeing
2664 * any local memory allocations and passing the error code up without
2665 * further cleanup. The transaction should complete as it normally would
2666 * in the call path but will return -EIO.
2667 *
2668 * We'll complete the cleanup in btrfs_end_transaction and
2669 * btrfs_commit_transaction.
2670 */
2671void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2672 const char *function,
ed164802 2673 unsigned int line, int error, bool first_hit)
fccf0c84
JB
2674{
2675 struct btrfs_fs_info *fs_info = trans->fs_info;
2676
ed164802
DS
2677 WRITE_ONCE(trans->aborted, error);
2678 WRITE_ONCE(trans->transaction->aborted, error);
2679 if (first_hit && error == -ENOSPC)
fccf0c84
JB
2680 btrfs_dump_space_info_for_trans_abort(fs_info);
2681 /* Wake up anybody who may be waiting on this transaction */
2682 wake_up(&fs_info->transaction_wait);
2683 wake_up(&fs_info->transaction_blocked_wait);
ed164802 2684 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
fccf0c84
JB
2685}
2686
956504a3
JB
2687int __init btrfs_transaction_init(void)
2688{
2689 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2690 sizeof(struct btrfs_trans_handle), 0,
2691 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2692 if (!btrfs_trans_handle_cachep)
2693 return -ENOMEM;
2694 return 0;
2695}
2696
2697void __cold btrfs_transaction_exit(void)
2698{
2699 kmem_cache_destroy(btrfs_trans_handle_cachep);
2700}