]> git.ipfire.org Git - thirdparty/linux.git/blame - include/linux/pid.h
Merge tag 'parisc-for-6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[thirdparty/linux.git] / include / linux / pid.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_PID_H
3#define _LINUX_PID_H
4
6d5e9d63 5#include <linux/pid_types.h>
b2d09103 6#include <linux/rculist.h>
f551103c 7#include <linux/rcupdate.h>
f57e515a 8#include <linux/refcount.h>
f551103c 9#include <linux/sched.h>
6d5e9d63 10#include <linux/wait.h>
1da177e4 11
92476d7f
EB
12/*
13 * What is struct pid?
14 *
15 * A struct pid is the kernel's internal notion of a process identifier.
16 * It refers to individual tasks, process groups, and sessions. While
17 * there are processes attached to it the struct pid lives in a hash
18 * table, so it and then the processes that it refers to can be found
19 * quickly from the numeric pid value. The attached processes may be
20 * quickly accessed by following pointers from struct pid.
21 *
25985edc 22 * Storing pid_t values in the kernel and referring to them later has a
92476d7f
EB
23 * problem. The process originally with that pid may have exited and the
24 * pid allocator wrapped, and another process could have come along
25 * and been assigned that pid.
26 *
27 * Referring to user space processes by holding a reference to struct
28 * task_struct has a problem. When the user space process exits
29 * the now useless task_struct is still kept. A task_struct plus a
30 * stack consumes around 10K of low kernel memory. More precisely
31 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
32 * a struct pid is about 64 bytes.
33 *
34 * Holding a reference to struct pid solves both of these problems.
35 * It is small so holding a reference does not consume a lot of
84d73786
SB
36 * resources, and since a new struct pid is allocated when the numeric pid
37 * value is reused (when pids wrap around) we don't mistakenly refer to new
38 * processes.
92476d7f
EB
39 */
40
4c3f2ead
SB
41
42/*
43 * struct upid is used to get the id of the struct pid, as it is
44 * seen in particular namespace. Later the struct pid is found with
45 * find_pid_ns() using the int nr and struct pid_namespace *ns.
46 */
47
9d9539db
CB
48#define RESERVED_PIDS 300
49
4c3f2ead 50struct upid {
4c3f2ead
SB
51 int nr;
52 struct pid_namespace *ns;
4c3f2ead
SB
53};
54
1da177e4
LT
55struct pid
56{
f57e515a 57 refcount_t count;
33166b1f 58 unsigned int level;
63f818f4 59 spinlock_t lock;
b28ddcc3 60 struct dentry *stashed;
9d9539db 61 u64 ino;
92476d7f
EB
62 /* lists of tasks that use this pid */
63 struct hlist_head tasks[PIDTYPE_MAX];
7bc3e6e5 64 struct hlist_head inodes;
b53b0b9d
JFG
65 /* wait queue for pidfd notifications */
66 wait_queue_head_t wait_pidfd;
92476d7f 67 struct rcu_head rcu;
b69f0aeb 68 struct upid numbers[];
1da177e4
LT
69};
70
820e45db
SB
71extern struct pid init_struct_pid;
72
3695eae5
CB
73struct file;
74
64bef697 75struct pid *pidfd_pid(const struct file *file);
1aa92cd3 76struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
e9bdcdbf 77struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
6ae930d9 78int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
64bef697 79void do_notify_pidfd(struct task_struct *task);
3695eae5 80
92476d7f
EB
81static inline struct pid *get_pid(struct pid *pid)
82{
83 if (pid)
f57e515a 84 refcount_inc(&pid->count);
92476d7f
EB
85 return pid;
86}
87
b3c97528
HH
88extern void put_pid(struct pid *pid);
89extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
3d6d8da4
CB
90static inline bool pid_has_task(struct pid *pid, enum pid_type type)
91{
92 return !hlist_empty(&pid->tasks[type]);
93}
b3c97528 94extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
1da177e4 95
1a657f78
ON
96extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
97
1da177e4 98/*
81907739 99 * these helpers must be called with the tasklist_lock write-held.
1da177e4 100 */
81907739 101extern void attach_pid(struct task_struct *task, enum pid_type);
b3c97528 102extern void detach_pid(struct task_struct *task, enum pid_type);
24336eae
ON
103extern void change_pid(struct task_struct *task, enum pid_type,
104 struct pid *pid);
6b03d130 105extern void exchange_tids(struct task_struct *task, struct task_struct *old);
b3c97528
HH
106extern void transfer_pid(struct task_struct *old, struct task_struct *new,
107 enum pid_type);
1da177e4 108
2374c09b
CH
109extern int pid_max;
110extern int pid_max_min, pid_max_max;
111
1da177e4
LT
112/*
113 * look up a PID in the hash table. Must be called with the tasklist_lock
92476d7f 114 * or rcu_read_lock() held.
198fe21b
PE
115 *
116 * find_pid_ns() finds the pid in the namespace specified
26498e89 117 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
198fe21b 118 *
dbda0de5 119 * see also find_task_by_vpid() set in include/linux/sched.h
92476d7f 120 */
b3c97528 121extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
8990571e 122extern struct pid *find_vpid(int nr);
92476d7f
EB
123
124/*
125 * Lookup a PID in the hash table, and return with it's count elevated.
1da177e4 126 */
92476d7f 127extern struct pid *find_get_pid(int nr);
198fe21b 128extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
1da177e4 129
49cb2fc4
AR
130extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
131 size_t set_tid_size);
b3c97528 132extern void free_pid(struct pid *pid);
c876ad76 133extern void disable_pid_allocation(struct pid_namespace *ns);
1da177e4 134
f9fb860f
EB
135/*
136 * ns_of_pid() returns the pid namespace in which the specified pid was
137 * allocated.
138 *
139 * NOTE:
140 * ns_of_pid() is expected to be called for a process (task) that has
141 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
142 * is expected to be non-NULL. If @pid is NULL, caller should handle
143 * the resulting NULL pid-ns.
144 */
145static inline struct pid_namespace *ns_of_pid(struct pid *pid)
146{
147 struct pid_namespace *ns = NULL;
148 if (pid)
149 ns = pid->numbers[pid->level].ns;
150 return ns;
151}
152
45a68628
EB
153/*
154 * is_child_reaper returns true if the pid is the init process
155 * of the current namespace. As this one could be checked before
156 * pid_ns->child_reaper is assigned in copy_process, we check
157 * with the pid number.
158 */
159static inline bool is_child_reaper(struct pid *pid)
160{
161 return pid->numbers[pid->level].nr == 1;
162}
163
7af57294
PE
164/*
165 * the helpers to get the pid's id seen from different namespaces
166 *
167 * pid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
168 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
169 * current.
7af57294
PE
170 * pid_nr_ns() : id seen from the ns specified.
171 *
172 * see also task_xid_nr() etc in include/linux/sched.h
173 */
174
5feb8f5f
EB
175static inline pid_t pid_nr(struct pid *pid)
176{
177 pid_t nr = 0;
178 if (pid)
7af57294
PE
179 nr = pid->numbers[0].nr;
180 return nr;
181}
182
183pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
44c4e1b2 184pid_t pid_vnr(struct pid *pid);
5feb8f5f 185
1d32849b
AM
186#define do_each_pid_task(pid, type, task) \
187 do { \
5ef64761 188 if ((pid) != NULL) \
b67bfe0d 189 hlist_for_each_entry_rcu((task), \
2c470475 190 &(pid)->tasks[type], pid_links[type]) {
d387cae0 191
46f382d2
ON
192 /*
193 * Both old and new leaders may be attached to
194 * the same pid in the middle of de_thread().
195 */
1d32849b 196#define while_each_pid_task(pid, type, task) \
46f382d2
ON
197 if (type == PIDTYPE_PID) \
198 break; \
1d32849b 199 } \
d387cae0 200 } while (0)
558cb325 201
2d70b68d
KC
202#define do_each_pid_thread(pid, type, task) \
203 do_each_pid_task(pid, type, task) { \
204 struct task_struct *tg___ = task; \
e3b5a342 205 for_each_thread(tg___, task) {
2d70b68d
KC
206
207#define while_each_pid_thread(pid, type, task) \
e3b5a342 208 } \
2d70b68d
KC
209 task = tg___; \
210 } while_each_pid_task(pid, type, task)
f551103c
KO
211
212static inline struct pid *task_pid(struct task_struct *task)
213{
214 return task->thread_pid;
215}
216
217/*
218 * the helpers to get the task's different pids as they are seen
219 * from various namespaces
220 *
221 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
222 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
223 * current.
224 * task_xid_nr_ns() : id seen from the ns specified;
225 *
226 * see also pid_nr() etc in include/linux/pid.h
227 */
228pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
229
230static inline pid_t task_pid_nr(struct task_struct *tsk)
231{
232 return tsk->pid;
233}
234
235static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
236{
237 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
238}
239
240static inline pid_t task_pid_vnr(struct task_struct *tsk)
241{
242 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
243}
244
245
246static inline pid_t task_tgid_nr(struct task_struct *tsk)
247{
248 return tsk->tgid;
249}
250
251/**
252 * pid_alive - check that a task structure is not stale
253 * @p: Task structure to be checked.
254 *
255 * Test if a process is not yet dead (at most zombie state)
256 * If pid_alive fails, then pointers within the task structure
257 * can be stale and must not be dereferenced.
258 *
259 * Return: 1 if the process is alive. 0 otherwise.
260 */
261static inline int pid_alive(const struct task_struct *p)
262{
263 return p->thread_pid != NULL;
264}
265
266static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
267{
268 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
269}
270
271static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
272{
273 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
274}
275
276
277static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
278{
279 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
280}
281
282static inline pid_t task_session_vnr(struct task_struct *tsk)
283{
284 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
285}
286
287static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
288{
289 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
290}
291
292static inline pid_t task_tgid_vnr(struct task_struct *tsk)
293{
294 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
295}
296
297static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
298{
299 pid_t pid = 0;
300
301 rcu_read_lock();
302 if (pid_alive(tsk))
303 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
304 rcu_read_unlock();
305
306 return pid;
307}
308
309static inline pid_t task_ppid_nr(const struct task_struct *tsk)
310{
311 return task_ppid_nr_ns(tsk, &init_pid_ns);
312}
313
314/* Obsolete, do not use: */
315static inline pid_t task_pgrp_nr(struct task_struct *tsk)
316{
317 return task_pgrp_nr_ns(tsk, &init_pid_ns);
318}
319
320/**
321 * is_global_init - check if a task structure is init. Since init
322 * is free to have sub-threads we need to check tgid.
323 * @tsk: Task structure to be checked.
324 *
325 * Check if a task structure is the first user space task the kernel created.
326 *
327 * Return: 1 if the task structure is init. 0 otherwise.
328 */
329static inline int is_global_init(struct task_struct *tsk)
330{
331 return task_tgid_nr(tsk) == 1;
332}
333
1da177e4 334#endif /* _LINUX_PID_H */