]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
1034void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30
PZ
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
8a49542c 1890static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1891{
1892 struct perf_event *sibling, *tmp;
6668128a 1893 struct perf_event_context *ctx = event->ctx;
8a49542c 1894
6668128a 1895 lockdep_assert_held(&ctx->lock);
a76a82a3 1896
8a49542c
PZ
1897 /*
1898 * We can have double detach due to exit/hot-unplug + close.
1899 */
1900 if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 return;
1902
1903 event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905 /*
1906 * If this is a sibling, remove it from its group.
1907 */
1908 if (event->group_leader != event) {
8343aae6 1909 list_del_init(&event->sibling_list);
8a49542c 1910 event->group_leader->nr_siblings--;
c320c7b7 1911 goto out;
8a49542c
PZ
1912 }
1913
04289bb9 1914 /*
cdd6c482
IM
1915 * If this was a group event with sibling events then
1916 * upgrade the siblings to singleton events by adding them
8a49542c 1917 * to whatever list we are on.
04289bb9 1918 */
8343aae6 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1920
04289bb9 1921 sibling->group_leader = sibling;
24868367 1922 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1923
1924 /* Inherit group flags from the previous leader */
4ff6a8de 1925 sibling->group_caps = event->group_caps;
652884fe 1926
8e1a2031 1927 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1928 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1929
1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 struct list_head *list = sibling->attr.pinned ?
1932 &ctx->pinned_active : &ctx->flexible_active;
1933
1934 list_add_tail(&sibling->active_list, list);
1935 }
8e1a2031
AB
1936 }
1937
652884fe 1938 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1939 }
c320c7b7
ACM
1940
1941out:
1942 perf_event__header_size(event->group_leader);
1943
edb39592 1944 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1945 perf_event__header_size(tmp);
04289bb9
IM
1946}
1947
fadfe7be
JO
1948static bool is_orphaned_event(struct perf_event *event)
1949{
a69b0ca4 1950 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1951}
1952
2c81a647 1953static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1954{
1955 struct pmu *pmu = event->pmu;
1956 return pmu->filter_match ? pmu->filter_match(event) : 1;
1957}
1958
2c81a647
MR
1959/*
1960 * Check whether we should attempt to schedule an event group based on
1961 * PMU-specific filtering. An event group can consist of HW and SW events,
1962 * potentially with a SW leader, so we must check all the filters, to
1963 * determine whether a group is schedulable:
1964 */
1965static inline int pmu_filter_match(struct perf_event *event)
1966{
edb39592 1967 struct perf_event *sibling;
2c81a647
MR
1968
1969 if (!__pmu_filter_match(event))
1970 return 0;
1971
edb39592
PZ
1972 for_each_sibling_event(sibling, event) {
1973 if (!__pmu_filter_match(sibling))
2c81a647
MR
1974 return 0;
1975 }
1976
1977 return 1;
1978}
1979
fa66f07a
SE
1980static inline int
1981event_filter_match(struct perf_event *event)
1982{
0b8f1e2e
PZ
1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1985}
1986
9ffcfa6f
SE
1987static void
1988event_sched_out(struct perf_event *event,
3b6f9e5c 1989 struct perf_cpu_context *cpuctx,
cdd6c482 1990 struct perf_event_context *ctx)
3b6f9e5c 1991{
0d3d73aa 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1993
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1996
cdd6c482 1997 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1998 return;
3b6f9e5c 1999
6668128a
PZ
2000 /*
2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 * we can schedule events _OUT_ individually through things like
2003 * __perf_remove_from_context().
2004 */
2005 list_del_init(&event->active_list);
2006
44377277
AS
2007 perf_pmu_disable(event->pmu);
2008
28a967c3
PZ
2009 event->pmu->del(event, 0);
2010 event->oncpu = -1;
0d3d73aa 2011
1d54ad94
PZ
2012 if (READ_ONCE(event->pending_disable) >= 0) {
2013 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2014 state = PERF_EVENT_STATE_OFF;
970892a9 2015 }
0d3d73aa 2016 perf_event_set_state(event, state);
3b6f9e5c 2017
cdd6c482 2018 if (!is_software_event(event))
3b6f9e5c 2019 cpuctx->active_oncpu--;
2fde4f94
MR
2020 if (!--ctx->nr_active)
2021 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2022 if (event->attr.freq && event->attr.sample_freq)
2023 ctx->nr_freq--;
cdd6c482 2024 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2025 cpuctx->exclusive = 0;
44377277
AS
2026
2027 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2028}
2029
d859e29f 2030static void
cdd6c482 2031group_sched_out(struct perf_event *group_event,
d859e29f 2032 struct perf_cpu_context *cpuctx,
cdd6c482 2033 struct perf_event_context *ctx)
d859e29f 2034{
cdd6c482 2035 struct perf_event *event;
0d3d73aa
PZ
2036
2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 return;
d859e29f 2039
3f005e7d
MR
2040 perf_pmu_disable(ctx->pmu);
2041
cdd6c482 2042 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2043
2044 /*
2045 * Schedule out siblings (if any):
2046 */
edb39592 2047 for_each_sibling_event(event, group_event)
cdd6c482 2048 event_sched_out(event, cpuctx, ctx);
d859e29f 2049
3f005e7d
MR
2050 perf_pmu_enable(ctx->pmu);
2051
0d3d73aa 2052 if (group_event->attr.exclusive)
d859e29f
PM
2053 cpuctx->exclusive = 0;
2054}
2055
45a0e07a 2056#define DETACH_GROUP 0x01UL
0017960f 2057
0793a61d 2058/*
cdd6c482 2059 * Cross CPU call to remove a performance event
0793a61d 2060 *
cdd6c482 2061 * We disable the event on the hardware level first. After that we
0793a61d
TG
2062 * remove it from the context list.
2063 */
fae3fde6
PZ
2064static void
2065__perf_remove_from_context(struct perf_event *event,
2066 struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx,
2068 void *info)
0793a61d 2069{
45a0e07a 2070 unsigned long flags = (unsigned long)info;
0793a61d 2071
3c5c8711
PZ
2072 if (ctx->is_active & EVENT_TIME) {
2073 update_context_time(ctx);
2074 update_cgrp_time_from_cpuctx(cpuctx);
2075 }
2076
cdd6c482 2077 event_sched_out(event, cpuctx, ctx);
45a0e07a 2078 if (flags & DETACH_GROUP)
46ce0fe9 2079 perf_group_detach(event);
cdd6c482 2080 list_del_event(event, ctx);
39a43640
PZ
2081
2082 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2083 ctx->is_active = 0;
39a43640
PZ
2084 if (ctx->task) {
2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 cpuctx->task_ctx = NULL;
2087 }
64ce3126 2088 }
0793a61d
TG
2089}
2090
0793a61d 2091/*
cdd6c482 2092 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2093 *
cdd6c482
IM
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2096 * remains valid. This is OK when called from perf_release since
2097 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2098 * When called from perf_event_exit_task, it's OK because the
c93f7669 2099 * context has been detached from its task.
0793a61d 2100 */
45a0e07a 2101static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2102{
a76a82a3
PZ
2103 struct perf_event_context *ctx = event->ctx;
2104
2105 lockdep_assert_held(&ctx->mutex);
0793a61d 2106
45a0e07a 2107 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2108
2109 /*
2110 * The above event_function_call() can NO-OP when it hits
2111 * TASK_TOMBSTONE. In that case we must already have been detached
2112 * from the context (by perf_event_exit_event()) but the grouping
2113 * might still be in-tact.
2114 */
2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 if ((flags & DETACH_GROUP) &&
2117 (event->attach_state & PERF_ATTACH_GROUP)) {
2118 /*
2119 * Since in that case we cannot possibly be scheduled, simply
2120 * detach now.
2121 */
2122 raw_spin_lock_irq(&ctx->lock);
2123 perf_group_detach(event);
2124 raw_spin_unlock_irq(&ctx->lock);
2125 }
0793a61d
TG
2126}
2127
d859e29f 2128/*
cdd6c482 2129 * Cross CPU call to disable a performance event
d859e29f 2130 */
fae3fde6
PZ
2131static void __perf_event_disable(struct perf_event *event,
2132 struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *ctx,
2134 void *info)
7b648018 2135{
fae3fde6
PZ
2136 if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 return;
7b648018 2138
3c5c8711
PZ
2139 if (ctx->is_active & EVENT_TIME) {
2140 update_context_time(ctx);
2141 update_cgrp_time_from_event(event);
2142 }
2143
fae3fde6
PZ
2144 if (event == event->group_leader)
2145 group_sched_out(event, cpuctx, ctx);
2146 else
2147 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2148
2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2150}
2151
d859e29f 2152/*
788faab7 2153 * Disable an event.
c93f7669 2154 *
cdd6c482
IM
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
c93f7669 2157 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2158 * perf_event_for_each_child or perf_event_for_each because they
2159 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2160 * goes to exit will block in perf_event_exit_event().
2161 *
cdd6c482 2162 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2163 * is the current context on this CPU and preemption is disabled,
cdd6c482 2164 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2165 */
f63a8daa 2166static void _perf_event_disable(struct perf_event *event)
d859e29f 2167{
cdd6c482 2168 struct perf_event_context *ctx = event->ctx;
d859e29f 2169
e625cce1 2170 raw_spin_lock_irq(&ctx->lock);
7b648018 2171 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2172 raw_spin_unlock_irq(&ctx->lock);
7b648018 2173 return;
53cfbf59 2174 }
e625cce1 2175 raw_spin_unlock_irq(&ctx->lock);
7b648018 2176
fae3fde6
PZ
2177 event_function_call(event, __perf_event_disable, NULL);
2178}
2179
2180void perf_event_disable_local(struct perf_event *event)
2181{
2182 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2183}
f63a8daa
PZ
2184
2185/*
2186 * Strictly speaking kernel users cannot create groups and therefore this
2187 * interface does not need the perf_event_ctx_lock() magic.
2188 */
2189void perf_event_disable(struct perf_event *event)
2190{
2191 struct perf_event_context *ctx;
2192
2193 ctx = perf_event_ctx_lock(event);
2194 _perf_event_disable(event);
2195 perf_event_ctx_unlock(event, ctx);
2196}
dcfce4a0 2197EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2198
5aab90ce
JO
2199void perf_event_disable_inatomic(struct perf_event *event)
2200{
1d54ad94
PZ
2201 WRITE_ONCE(event->pending_disable, smp_processor_id());
2202 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2203 irq_work_queue(&event->pending);
2204}
2205
e5d1367f 2206static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2207 struct perf_event_context *ctx)
e5d1367f
SE
2208{
2209 /*
2210 * use the correct time source for the time snapshot
2211 *
2212 * We could get by without this by leveraging the
2213 * fact that to get to this function, the caller
2214 * has most likely already called update_context_time()
2215 * and update_cgrp_time_xx() and thus both timestamp
2216 * are identical (or very close). Given that tstamp is,
2217 * already adjusted for cgroup, we could say that:
2218 * tstamp - ctx->timestamp
2219 * is equivalent to
2220 * tstamp - cgrp->timestamp.
2221 *
2222 * Then, in perf_output_read(), the calculation would
2223 * work with no changes because:
2224 * - event is guaranteed scheduled in
2225 * - no scheduled out in between
2226 * - thus the timestamp would be the same
2227 *
2228 * But this is a bit hairy.
2229 *
2230 * So instead, we have an explicit cgroup call to remain
2231 * within the time time source all along. We believe it
2232 * is cleaner and simpler to understand.
2233 */
2234 if (is_cgroup_event(event))
0d3d73aa 2235 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2236 else
0d3d73aa 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2238}
2239
4fe757dd
PZ
2240#define MAX_INTERRUPTS (~0ULL)
2241
2242static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2243static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2244
235c7fc7 2245static int
9ffcfa6f 2246event_sched_in(struct perf_event *event,
235c7fc7 2247 struct perf_cpu_context *cpuctx,
6e37738a 2248 struct perf_event_context *ctx)
235c7fc7 2249{
44377277 2250 int ret = 0;
4158755d 2251
63342411
PZ
2252 lockdep_assert_held(&ctx->lock);
2253
cdd6c482 2254 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2255 return 0;
2256
95ff4ca2
AS
2257 WRITE_ONCE(event->oncpu, smp_processor_id());
2258 /*
0c1cbc18
PZ
2259 * Order event::oncpu write to happen before the ACTIVE state is
2260 * visible. This allows perf_event_{stop,read}() to observe the correct
2261 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2262 */
2263 smp_wmb();
0d3d73aa 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2265
2266 /*
2267 * Unthrottle events, since we scheduled we might have missed several
2268 * ticks already, also for a heavily scheduling task there is little
2269 * guarantee it'll get a tick in a timely manner.
2270 */
2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272 perf_log_throttle(event, 1);
2273 event->hw.interrupts = 0;
2274 }
2275
44377277
AS
2276 perf_pmu_disable(event->pmu);
2277
0d3d73aa 2278 perf_set_shadow_time(event, ctx);
72f669c0 2279
ec0d7729
AS
2280 perf_log_itrace_start(event);
2281
a4eaf7f1 2282 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2284 event->oncpu = -1;
44377277
AS
2285 ret = -EAGAIN;
2286 goto out;
235c7fc7
IM
2287 }
2288
cdd6c482 2289 if (!is_software_event(event))
3b6f9e5c 2290 cpuctx->active_oncpu++;
2fde4f94
MR
2291 if (!ctx->nr_active++)
2292 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2293 if (event->attr.freq && event->attr.sample_freq)
2294 ctx->nr_freq++;
235c7fc7 2295
cdd6c482 2296 if (event->attr.exclusive)
3b6f9e5c
PM
2297 cpuctx->exclusive = 1;
2298
44377277
AS
2299out:
2300 perf_pmu_enable(event->pmu);
2301
2302 return ret;
235c7fc7
IM
2303}
2304
6751b71e 2305static int
cdd6c482 2306group_sched_in(struct perf_event *group_event,
6751b71e 2307 struct perf_cpu_context *cpuctx,
6e37738a 2308 struct perf_event_context *ctx)
6751b71e 2309{
6bde9b6c 2310 struct perf_event *event, *partial_group = NULL;
4a234593 2311 struct pmu *pmu = ctx->pmu;
6751b71e 2312
cdd6c482 2313 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2314 return 0;
2315
fbbe0701 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2317
9ffcfa6f 2318 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2319 pmu->cancel_txn(pmu);
272325c4 2320 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2321 return -EAGAIN;
90151c35 2322 }
6751b71e
PM
2323
2324 /*
2325 * Schedule in siblings as one group (if any):
2326 */
edb39592 2327 for_each_sibling_event(event, group_event) {
9ffcfa6f 2328 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2329 partial_group = event;
6751b71e
PM
2330 goto group_error;
2331 }
2332 }
2333
9ffcfa6f 2334 if (!pmu->commit_txn(pmu))
6e85158c 2335 return 0;
9ffcfa6f 2336
6751b71e
PM
2337group_error:
2338 /*
2339 * Groups can be scheduled in as one unit only, so undo any
2340 * partial group before returning:
0d3d73aa 2341 * The events up to the failed event are scheduled out normally.
6751b71e 2342 */
edb39592 2343 for_each_sibling_event(event, group_event) {
cdd6c482 2344 if (event == partial_group)
0d3d73aa 2345 break;
d7842da4 2346
0d3d73aa 2347 event_sched_out(event, cpuctx, ctx);
6751b71e 2348 }
9ffcfa6f 2349 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2350
ad5133b7 2351 pmu->cancel_txn(pmu);
90151c35 2352
272325c4 2353 perf_mux_hrtimer_restart(cpuctx);
9e630205 2354
6751b71e
PM
2355 return -EAGAIN;
2356}
2357
3b6f9e5c 2358/*
cdd6c482 2359 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2360 */
cdd6c482 2361static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2362 struct perf_cpu_context *cpuctx,
2363 int can_add_hw)
2364{
2365 /*
cdd6c482 2366 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2367 */
4ff6a8de 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2369 return 1;
2370 /*
2371 * If an exclusive group is already on, no other hardware
cdd6c482 2372 * events can go on.
3b6f9e5c
PM
2373 */
2374 if (cpuctx->exclusive)
2375 return 0;
2376 /*
2377 * If this group is exclusive and there are already
cdd6c482 2378 * events on the CPU, it can't go on.
3b6f9e5c 2379 */
cdd6c482 2380 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2381 return 0;
2382 /*
2383 * Otherwise, try to add it if all previous groups were able
2384 * to go on.
2385 */
2386 return can_add_hw;
2387}
2388
cdd6c482
IM
2389static void add_event_to_ctx(struct perf_event *event,
2390 struct perf_event_context *ctx)
53cfbf59 2391{
cdd6c482 2392 list_add_event(event, ctx);
8a49542c 2393 perf_group_attach(event);
53cfbf59
PM
2394}
2395
bd2afa49
PZ
2396static void ctx_sched_out(struct perf_event_context *ctx,
2397 struct perf_cpu_context *cpuctx,
2398 enum event_type_t event_type);
2c29ef0f
PZ
2399static void
2400ctx_sched_in(struct perf_event_context *ctx,
2401 struct perf_cpu_context *cpuctx,
2402 enum event_type_t event_type,
2403 struct task_struct *task);
fe4b04fa 2404
bd2afa49 2405static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2406 struct perf_event_context *ctx,
2407 enum event_type_t event_type)
bd2afa49
PZ
2408{
2409 if (!cpuctx->task_ctx)
2410 return;
2411
2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413 return;
2414
487f05e1 2415 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2416}
2417
dce5855b
PZ
2418static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419 struct perf_event_context *ctx,
2420 struct task_struct *task)
2421{
2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423 if (ctx)
2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426 if (ctx)
2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428}
2429
487f05e1
AS
2430/*
2431 * We want to maintain the following priority of scheduling:
2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433 * - task pinned (EVENT_PINNED)
2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435 * - task flexible (EVENT_FLEXIBLE).
2436 *
2437 * In order to avoid unscheduling and scheduling back in everything every
2438 * time an event is added, only do it for the groups of equal priority and
2439 * below.
2440 *
2441 * This can be called after a batch operation on task events, in which case
2442 * event_type is a bit mask of the types of events involved. For CPU events,
2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444 */
3e349507 2445static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2446 struct perf_event_context *task_ctx,
2447 enum event_type_t event_type)
0017960f 2448{
bd903afe 2449 enum event_type_t ctx_event_type;
487f05e1
AS
2450 bool cpu_event = !!(event_type & EVENT_CPU);
2451
2452 /*
2453 * If pinned groups are involved, flexible groups also need to be
2454 * scheduled out.
2455 */
2456 if (event_type & EVENT_PINNED)
2457 event_type |= EVENT_FLEXIBLE;
2458
bd903afe
SL
2459 ctx_event_type = event_type & EVENT_ALL;
2460
3e349507
PZ
2461 perf_pmu_disable(cpuctx->ctx.pmu);
2462 if (task_ctx)
487f05e1
AS
2463 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464
2465 /*
2466 * Decide which cpu ctx groups to schedule out based on the types
2467 * of events that caused rescheduling:
2468 * - EVENT_CPU: schedule out corresponding groups;
2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470 * - otherwise, do nothing more.
2471 */
2472 if (cpu_event)
2473 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474 else if (ctx_event_type & EVENT_PINNED)
2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476
3e349507
PZ
2477 perf_event_sched_in(cpuctx, task_ctx, current);
2478 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2479}
2480
c68d224e
SE
2481void perf_pmu_resched(struct pmu *pmu)
2482{
2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485
2486 perf_ctx_lock(cpuctx, task_ctx);
2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488 perf_ctx_unlock(cpuctx, task_ctx);
2489}
2490
0793a61d 2491/*
cdd6c482 2492 * Cross CPU call to install and enable a performance event
682076ae 2493 *
a096309b
PZ
2494 * Very similar to remote_function() + event_function() but cannot assume that
2495 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2496 */
fe4b04fa 2497static int __perf_install_in_context(void *info)
0793a61d 2498{
a096309b
PZ
2499 struct perf_event *event = info;
2500 struct perf_event_context *ctx = event->ctx;
108b02cf 2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2502 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2503 bool reprogram = true;
a096309b 2504 int ret = 0;
0793a61d 2505
63b6da39 2506 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2507 if (ctx->task) {
b58f6b0d
PZ
2508 raw_spin_lock(&ctx->lock);
2509 task_ctx = ctx;
a096309b 2510
63cae12b 2511 reprogram = (ctx->task == current);
b58f6b0d 2512
39a43640 2513 /*
63cae12b
PZ
2514 * If the task is running, it must be running on this CPU,
2515 * otherwise we cannot reprogram things.
2516 *
2517 * If its not running, we don't care, ctx->lock will
2518 * serialize against it becoming runnable.
39a43640 2519 */
63cae12b
PZ
2520 if (task_curr(ctx->task) && !reprogram) {
2521 ret = -ESRCH;
2522 goto unlock;
2523 }
a096309b 2524
63cae12b 2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2526 } else if (task_ctx) {
2527 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2528 }
b58f6b0d 2529
33801b94 2530#ifdef CONFIG_CGROUP_PERF
2531 if (is_cgroup_event(event)) {
2532 /*
2533 * If the current cgroup doesn't match the event's
2534 * cgroup, we should not try to schedule it.
2535 */
2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538 event->cgrp->css.cgroup);
2539 }
2540#endif
2541
63cae12b 2542 if (reprogram) {
a096309b
PZ
2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544 add_event_to_ctx(event, ctx);
487f05e1 2545 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2546 } else {
2547 add_event_to_ctx(event, ctx);
2548 }
2549
63b6da39 2550unlock:
2c29ef0f 2551 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2552
a096309b 2553 return ret;
0793a61d
TG
2554}
2555
8a58ddae
AS
2556static bool exclusive_event_installable(struct perf_event *event,
2557 struct perf_event_context *ctx);
2558
0793a61d 2559/*
a096309b
PZ
2560 * Attach a performance event to a context.
2561 *
2562 * Very similar to event_function_call, see comment there.
0793a61d
TG
2563 */
2564static void
cdd6c482
IM
2565perf_install_in_context(struct perf_event_context *ctx,
2566 struct perf_event *event,
0793a61d
TG
2567 int cpu)
2568{
a096309b 2569 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2570
fe4b04fa
PZ
2571 lockdep_assert_held(&ctx->mutex);
2572
8a58ddae
AS
2573 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2574
0cda4c02
YZ
2575 if (event->cpu != -1)
2576 event->cpu = cpu;
c3f00c70 2577
0b8f1e2e
PZ
2578 /*
2579 * Ensures that if we can observe event->ctx, both the event and ctx
2580 * will be 'complete'. See perf_iterate_sb_cpu().
2581 */
2582 smp_store_release(&event->ctx, ctx);
2583
a096309b
PZ
2584 if (!task) {
2585 cpu_function_call(cpu, __perf_install_in_context, event);
2586 return;
2587 }
2588
2589 /*
2590 * Should not happen, we validate the ctx is still alive before calling.
2591 */
2592 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2593 return;
2594
39a43640
PZ
2595 /*
2596 * Installing events is tricky because we cannot rely on ctx->is_active
2597 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2598 *
2599 * Instead we use task_curr(), which tells us if the task is running.
2600 * However, since we use task_curr() outside of rq::lock, we can race
2601 * against the actual state. This means the result can be wrong.
2602 *
2603 * If we get a false positive, we retry, this is harmless.
2604 *
2605 * If we get a false negative, things are complicated. If we are after
2606 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2607 * value must be correct. If we're before, it doesn't matter since
2608 * perf_event_context_sched_in() will program the counter.
2609 *
2610 * However, this hinges on the remote context switch having observed
2611 * our task->perf_event_ctxp[] store, such that it will in fact take
2612 * ctx::lock in perf_event_context_sched_in().
2613 *
2614 * We do this by task_function_call(), if the IPI fails to hit the task
2615 * we know any future context switch of task must see the
2616 * perf_event_ctpx[] store.
39a43640 2617 */
63cae12b 2618
63b6da39 2619 /*
63cae12b
PZ
2620 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2621 * task_cpu() load, such that if the IPI then does not find the task
2622 * running, a future context switch of that task must observe the
2623 * store.
63b6da39 2624 */
63cae12b
PZ
2625 smp_mb();
2626again:
2627 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2628 return;
2629
2630 raw_spin_lock_irq(&ctx->lock);
2631 task = ctx->task;
84c4e620 2632 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2633 /*
2634 * Cannot happen because we already checked above (which also
2635 * cannot happen), and we hold ctx->mutex, which serializes us
2636 * against perf_event_exit_task_context().
2637 */
63b6da39
PZ
2638 raw_spin_unlock_irq(&ctx->lock);
2639 return;
2640 }
39a43640 2641 /*
63cae12b
PZ
2642 * If the task is not running, ctx->lock will avoid it becoming so,
2643 * thus we can safely install the event.
39a43640 2644 */
63cae12b
PZ
2645 if (task_curr(task)) {
2646 raw_spin_unlock_irq(&ctx->lock);
2647 goto again;
2648 }
2649 add_event_to_ctx(event, ctx);
2650 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2651}
2652
d859e29f 2653/*
cdd6c482 2654 * Cross CPU call to enable a performance event
d859e29f 2655 */
fae3fde6
PZ
2656static void __perf_event_enable(struct perf_event *event,
2657 struct perf_cpu_context *cpuctx,
2658 struct perf_event_context *ctx,
2659 void *info)
04289bb9 2660{
cdd6c482 2661 struct perf_event *leader = event->group_leader;
fae3fde6 2662 struct perf_event_context *task_ctx;
04289bb9 2663
6e801e01
PZ
2664 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2665 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2666 return;
3cbed429 2667
bd2afa49
PZ
2668 if (ctx->is_active)
2669 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2670
0d3d73aa 2671 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2672
fae3fde6
PZ
2673 if (!ctx->is_active)
2674 return;
2675
e5d1367f 2676 if (!event_filter_match(event)) {
bd2afa49 2677 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2678 return;
e5d1367f 2679 }
f4c4176f 2680
04289bb9 2681 /*
cdd6c482 2682 * If the event is in a group and isn't the group leader,
d859e29f 2683 * then don't put it on unless the group is on.
04289bb9 2684 */
bd2afa49
PZ
2685 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2686 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2687 return;
bd2afa49 2688 }
fe4b04fa 2689
fae3fde6
PZ
2690 task_ctx = cpuctx->task_ctx;
2691 if (ctx->task)
2692 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2693
487f05e1 2694 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2695}
2696
d859e29f 2697/*
788faab7 2698 * Enable an event.
c93f7669 2699 *
cdd6c482
IM
2700 * If event->ctx is a cloned context, callers must make sure that
2701 * every task struct that event->ctx->task could possibly point to
c93f7669 2702 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2703 * perf_event_for_each_child or perf_event_for_each as described
2704 * for perf_event_disable.
d859e29f 2705 */
f63a8daa 2706static void _perf_event_enable(struct perf_event *event)
d859e29f 2707{
cdd6c482 2708 struct perf_event_context *ctx = event->ctx;
d859e29f 2709
7b648018 2710 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2711 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2712 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2713 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2714 return;
2715 }
2716
d859e29f 2717 /*
cdd6c482 2718 * If the event is in error state, clear that first.
7b648018
PZ
2719 *
2720 * That way, if we see the event in error state below, we know that it
2721 * has gone back into error state, as distinct from the task having
2722 * been scheduled away before the cross-call arrived.
d859e29f 2723 */
cdd6c482
IM
2724 if (event->state == PERF_EVENT_STATE_ERROR)
2725 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2726 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2727
fae3fde6 2728 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2729}
f63a8daa
PZ
2730
2731/*
2732 * See perf_event_disable();
2733 */
2734void perf_event_enable(struct perf_event *event)
2735{
2736 struct perf_event_context *ctx;
2737
2738 ctx = perf_event_ctx_lock(event);
2739 _perf_event_enable(event);
2740 perf_event_ctx_unlock(event, ctx);
2741}
dcfce4a0 2742EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2743
375637bc
AS
2744struct stop_event_data {
2745 struct perf_event *event;
2746 unsigned int restart;
2747};
2748
95ff4ca2
AS
2749static int __perf_event_stop(void *info)
2750{
375637bc
AS
2751 struct stop_event_data *sd = info;
2752 struct perf_event *event = sd->event;
95ff4ca2 2753
375637bc 2754 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2755 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2756 return 0;
2757
2758 /* matches smp_wmb() in event_sched_in() */
2759 smp_rmb();
2760
2761 /*
2762 * There is a window with interrupts enabled before we get here,
2763 * so we need to check again lest we try to stop another CPU's event.
2764 */
2765 if (READ_ONCE(event->oncpu) != smp_processor_id())
2766 return -EAGAIN;
2767
2768 event->pmu->stop(event, PERF_EF_UPDATE);
2769
375637bc
AS
2770 /*
2771 * May race with the actual stop (through perf_pmu_output_stop()),
2772 * but it is only used for events with AUX ring buffer, and such
2773 * events will refuse to restart because of rb::aux_mmap_count==0,
2774 * see comments in perf_aux_output_begin().
2775 *
788faab7 2776 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2777 * while restarting.
2778 */
2779 if (sd->restart)
c9bbdd48 2780 event->pmu->start(event, 0);
375637bc 2781
95ff4ca2
AS
2782 return 0;
2783}
2784
767ae086 2785static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2786{
2787 struct stop_event_data sd = {
2788 .event = event,
767ae086 2789 .restart = restart,
375637bc
AS
2790 };
2791 int ret = 0;
2792
2793 do {
2794 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2795 return 0;
2796
2797 /* matches smp_wmb() in event_sched_in() */
2798 smp_rmb();
2799
2800 /*
2801 * We only want to restart ACTIVE events, so if the event goes
2802 * inactive here (event->oncpu==-1), there's nothing more to do;
2803 * fall through with ret==-ENXIO.
2804 */
2805 ret = cpu_function_call(READ_ONCE(event->oncpu),
2806 __perf_event_stop, &sd);
2807 } while (ret == -EAGAIN);
2808
2809 return ret;
2810}
2811
2812/*
2813 * In order to contain the amount of racy and tricky in the address filter
2814 * configuration management, it is a two part process:
2815 *
2816 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2817 * we update the addresses of corresponding vmas in
c60f83b8 2818 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2819 * (p2) when an event is scheduled in (pmu::add), it calls
2820 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2821 * if the generation has changed since the previous call.
2822 *
2823 * If (p1) happens while the event is active, we restart it to force (p2).
2824 *
2825 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2826 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2827 * ioctl;
2828 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2829 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2830 * for reading;
2831 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2832 * of exec.
2833 */
2834void perf_event_addr_filters_sync(struct perf_event *event)
2835{
2836 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2837
2838 if (!has_addr_filter(event))
2839 return;
2840
2841 raw_spin_lock(&ifh->lock);
2842 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2843 event->pmu->addr_filters_sync(event);
2844 event->hw.addr_filters_gen = event->addr_filters_gen;
2845 }
2846 raw_spin_unlock(&ifh->lock);
2847}
2848EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2849
f63a8daa 2850static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2851{
2023b359 2852 /*
cdd6c482 2853 * not supported on inherited events
2023b359 2854 */
2e939d1d 2855 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2856 return -EINVAL;
2857
cdd6c482 2858 atomic_add(refresh, &event->event_limit);
f63a8daa 2859 _perf_event_enable(event);
2023b359
PZ
2860
2861 return 0;
79f14641 2862}
f63a8daa
PZ
2863
2864/*
2865 * See perf_event_disable()
2866 */
2867int perf_event_refresh(struct perf_event *event, int refresh)
2868{
2869 struct perf_event_context *ctx;
2870 int ret;
2871
2872 ctx = perf_event_ctx_lock(event);
2873 ret = _perf_event_refresh(event, refresh);
2874 perf_event_ctx_unlock(event, ctx);
2875
2876 return ret;
2877}
26ca5c11 2878EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2879
32ff77e8
MC
2880static int perf_event_modify_breakpoint(struct perf_event *bp,
2881 struct perf_event_attr *attr)
2882{
2883 int err;
2884
2885 _perf_event_disable(bp);
2886
2887 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2888
bf06278c 2889 if (!bp->attr.disabled)
32ff77e8 2890 _perf_event_enable(bp);
bf06278c
JO
2891
2892 return err;
32ff77e8
MC
2893}
2894
2895static int perf_event_modify_attr(struct perf_event *event,
2896 struct perf_event_attr *attr)
2897{
2898 if (event->attr.type != attr->type)
2899 return -EINVAL;
2900
2901 switch (event->attr.type) {
2902 case PERF_TYPE_BREAKPOINT:
2903 return perf_event_modify_breakpoint(event, attr);
2904 default:
2905 /* Place holder for future additions. */
2906 return -EOPNOTSUPP;
2907 }
2908}
2909
5b0311e1
FW
2910static void ctx_sched_out(struct perf_event_context *ctx,
2911 struct perf_cpu_context *cpuctx,
2912 enum event_type_t event_type)
235c7fc7 2913{
6668128a 2914 struct perf_event *event, *tmp;
db24d33e 2915 int is_active = ctx->is_active;
235c7fc7 2916
c994d613 2917 lockdep_assert_held(&ctx->lock);
235c7fc7 2918
39a43640
PZ
2919 if (likely(!ctx->nr_events)) {
2920 /*
2921 * See __perf_remove_from_context().
2922 */
2923 WARN_ON_ONCE(ctx->is_active);
2924 if (ctx->task)
2925 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2926 return;
39a43640
PZ
2927 }
2928
db24d33e 2929 ctx->is_active &= ~event_type;
3cbaa590
PZ
2930 if (!(ctx->is_active & EVENT_ALL))
2931 ctx->is_active = 0;
2932
63e30d3e
PZ
2933 if (ctx->task) {
2934 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2935 if (!ctx->is_active)
2936 cpuctx->task_ctx = NULL;
2937 }
facc4307 2938
8fdc6539
PZ
2939 /*
2940 * Always update time if it was set; not only when it changes.
2941 * Otherwise we can 'forget' to update time for any but the last
2942 * context we sched out. For example:
2943 *
2944 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2945 * ctx_sched_out(.event_type = EVENT_PINNED)
2946 *
2947 * would only update time for the pinned events.
2948 */
3cbaa590
PZ
2949 if (is_active & EVENT_TIME) {
2950 /* update (and stop) ctx time */
2951 update_context_time(ctx);
2952 update_cgrp_time_from_cpuctx(cpuctx);
2953 }
2954
8fdc6539
PZ
2955 is_active ^= ctx->is_active; /* changed bits */
2956
3cbaa590 2957 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2958 return;
5b0311e1 2959
fd7d5517
IR
2960 /*
2961 * If we had been multiplexing, no rotations are necessary, now no events
2962 * are active.
2963 */
2964 ctx->rotate_necessary = 0;
2965
075e0b00 2966 perf_pmu_disable(ctx->pmu);
3cbaa590 2967 if (is_active & EVENT_PINNED) {
6668128a 2968 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2969 group_sched_out(event, cpuctx, ctx);
9ed6060d 2970 }
889ff015 2971
3cbaa590 2972 if (is_active & EVENT_FLEXIBLE) {
6668128a 2973 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2974 group_sched_out(event, cpuctx, ctx);
9ed6060d 2975 }
1b9a644f 2976 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2977}
2978
564c2b21 2979/*
5a3126d4
PZ
2980 * Test whether two contexts are equivalent, i.e. whether they have both been
2981 * cloned from the same version of the same context.
2982 *
2983 * Equivalence is measured using a generation number in the context that is
2984 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2985 * and list_del_event().
564c2b21 2986 */
cdd6c482
IM
2987static int context_equiv(struct perf_event_context *ctx1,
2988 struct perf_event_context *ctx2)
564c2b21 2989{
211de6eb
PZ
2990 lockdep_assert_held(&ctx1->lock);
2991 lockdep_assert_held(&ctx2->lock);
2992
5a3126d4
PZ
2993 /* Pinning disables the swap optimization */
2994 if (ctx1->pin_count || ctx2->pin_count)
2995 return 0;
2996
2997 /* If ctx1 is the parent of ctx2 */
2998 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2999 return 1;
3000
3001 /* If ctx2 is the parent of ctx1 */
3002 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3003 return 1;
3004
3005 /*
3006 * If ctx1 and ctx2 have the same parent; we flatten the parent
3007 * hierarchy, see perf_event_init_context().
3008 */
3009 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3010 ctx1->parent_gen == ctx2->parent_gen)
3011 return 1;
3012
3013 /* Unmatched */
3014 return 0;
564c2b21
PM
3015}
3016
cdd6c482
IM
3017static void __perf_event_sync_stat(struct perf_event *event,
3018 struct perf_event *next_event)
bfbd3381
PZ
3019{
3020 u64 value;
3021
cdd6c482 3022 if (!event->attr.inherit_stat)
bfbd3381
PZ
3023 return;
3024
3025 /*
cdd6c482 3026 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3027 * because we're in the middle of a context switch and have IRQs
3028 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3029 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3030 * don't need to use it.
3031 */
0d3d73aa 3032 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3033 event->pmu->read(event);
bfbd3381 3034
0d3d73aa 3035 perf_event_update_time(event);
bfbd3381
PZ
3036
3037 /*
cdd6c482 3038 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3039 * values when we flip the contexts.
3040 */
e7850595
PZ
3041 value = local64_read(&next_event->count);
3042 value = local64_xchg(&event->count, value);
3043 local64_set(&next_event->count, value);
bfbd3381 3044
cdd6c482
IM
3045 swap(event->total_time_enabled, next_event->total_time_enabled);
3046 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3047
bfbd3381 3048 /*
19d2e755 3049 * Since we swizzled the values, update the user visible data too.
bfbd3381 3050 */
cdd6c482
IM
3051 perf_event_update_userpage(event);
3052 perf_event_update_userpage(next_event);
bfbd3381
PZ
3053}
3054
cdd6c482
IM
3055static void perf_event_sync_stat(struct perf_event_context *ctx,
3056 struct perf_event_context *next_ctx)
bfbd3381 3057{
cdd6c482 3058 struct perf_event *event, *next_event;
bfbd3381
PZ
3059
3060 if (!ctx->nr_stat)
3061 return;
3062
02ffdbc8
PZ
3063 update_context_time(ctx);
3064
cdd6c482
IM
3065 event = list_first_entry(&ctx->event_list,
3066 struct perf_event, event_entry);
bfbd3381 3067
cdd6c482
IM
3068 next_event = list_first_entry(&next_ctx->event_list,
3069 struct perf_event, event_entry);
bfbd3381 3070
cdd6c482
IM
3071 while (&event->event_entry != &ctx->event_list &&
3072 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3073
cdd6c482 3074 __perf_event_sync_stat(event, next_event);
bfbd3381 3075
cdd6c482
IM
3076 event = list_next_entry(event, event_entry);
3077 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3078 }
3079}
3080
fe4b04fa
PZ
3081static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3082 struct task_struct *next)
0793a61d 3083{
8dc85d54 3084 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3085 struct perf_event_context *next_ctx;
5a3126d4 3086 struct perf_event_context *parent, *next_parent;
108b02cf 3087 struct perf_cpu_context *cpuctx;
c93f7669 3088 int do_switch = 1;
0793a61d 3089
108b02cf
PZ
3090 if (likely(!ctx))
3091 return;
10989fb2 3092
108b02cf
PZ
3093 cpuctx = __get_cpu_context(ctx);
3094 if (!cpuctx->task_ctx)
0793a61d
TG
3095 return;
3096
c93f7669 3097 rcu_read_lock();
8dc85d54 3098 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3099 if (!next_ctx)
3100 goto unlock;
3101
3102 parent = rcu_dereference(ctx->parent_ctx);
3103 next_parent = rcu_dereference(next_ctx->parent_ctx);
3104
3105 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3106 if (!parent && !next_parent)
5a3126d4
PZ
3107 goto unlock;
3108
3109 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3110 /*
3111 * Looks like the two contexts are clones, so we might be
3112 * able to optimize the context switch. We lock both
3113 * contexts and check that they are clones under the
3114 * lock (including re-checking that neither has been
3115 * uncloned in the meantime). It doesn't matter which
3116 * order we take the locks because no other cpu could
3117 * be trying to lock both of these tasks.
3118 */
e625cce1
TG
3119 raw_spin_lock(&ctx->lock);
3120 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3121 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3122 WRITE_ONCE(ctx->task, next);
3123 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3124
3125 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3126
63b6da39
PZ
3127 /*
3128 * RCU_INIT_POINTER here is safe because we've not
3129 * modified the ctx and the above modification of
3130 * ctx->task and ctx->task_ctx_data are immaterial
3131 * since those values are always verified under
3132 * ctx->lock which we're now holding.
3133 */
3134 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3135 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3136
c93f7669 3137 do_switch = 0;
bfbd3381 3138
cdd6c482 3139 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3140 }
e625cce1
TG
3141 raw_spin_unlock(&next_ctx->lock);
3142 raw_spin_unlock(&ctx->lock);
564c2b21 3143 }
5a3126d4 3144unlock:
c93f7669 3145 rcu_read_unlock();
564c2b21 3146
c93f7669 3147 if (do_switch) {
facc4307 3148 raw_spin_lock(&ctx->lock);
487f05e1 3149 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3150 raw_spin_unlock(&ctx->lock);
c93f7669 3151 }
0793a61d
TG
3152}
3153
e48c1788
PZ
3154static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3155
ba532500
YZ
3156void perf_sched_cb_dec(struct pmu *pmu)
3157{
e48c1788
PZ
3158 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3159
ba532500 3160 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3161
3162 if (!--cpuctx->sched_cb_usage)
3163 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3164}
3165
e48c1788 3166
ba532500
YZ
3167void perf_sched_cb_inc(struct pmu *pmu)
3168{
e48c1788
PZ
3169 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3170
3171 if (!cpuctx->sched_cb_usage++)
3172 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3173
ba532500
YZ
3174 this_cpu_inc(perf_sched_cb_usages);
3175}
3176
3177/*
3178 * This function provides the context switch callback to the lower code
3179 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3180 *
3181 * This callback is relevant even to per-cpu events; for example multi event
3182 * PEBS requires this to provide PID/TID information. This requires we flush
3183 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3184 */
3185static void perf_pmu_sched_task(struct task_struct *prev,
3186 struct task_struct *next,
3187 bool sched_in)
3188{
3189 struct perf_cpu_context *cpuctx;
3190 struct pmu *pmu;
ba532500
YZ
3191
3192 if (prev == next)
3193 return;
3194
e48c1788 3195 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3196 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3197
e48c1788
PZ
3198 if (WARN_ON_ONCE(!pmu->sched_task))
3199 continue;
ba532500 3200
e48c1788
PZ
3201 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3202 perf_pmu_disable(pmu);
ba532500 3203
e48c1788 3204 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3205
e48c1788
PZ
3206 perf_pmu_enable(pmu);
3207 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3208 }
ba532500
YZ
3209}
3210
45ac1403
AH
3211static void perf_event_switch(struct task_struct *task,
3212 struct task_struct *next_prev, bool sched_in);
3213
8dc85d54
PZ
3214#define for_each_task_context_nr(ctxn) \
3215 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3216
3217/*
3218 * Called from scheduler to remove the events of the current task,
3219 * with interrupts disabled.
3220 *
3221 * We stop each event and update the event value in event->count.
3222 *
3223 * This does not protect us against NMI, but disable()
3224 * sets the disabled bit in the control field of event _before_
3225 * accessing the event control register. If a NMI hits, then it will
3226 * not restart the event.
3227 */
ab0cce56
JO
3228void __perf_event_task_sched_out(struct task_struct *task,
3229 struct task_struct *next)
8dc85d54
PZ
3230{
3231 int ctxn;
3232
ba532500
YZ
3233 if (__this_cpu_read(perf_sched_cb_usages))
3234 perf_pmu_sched_task(task, next, false);
3235
45ac1403
AH
3236 if (atomic_read(&nr_switch_events))
3237 perf_event_switch(task, next, false);
3238
8dc85d54
PZ
3239 for_each_task_context_nr(ctxn)
3240 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3241
3242 /*
3243 * if cgroup events exist on this CPU, then we need
3244 * to check if we have to switch out PMU state.
3245 * cgroup event are system-wide mode only
3246 */
4a32fea9 3247 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3248 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3249}
3250
5b0311e1
FW
3251/*
3252 * Called with IRQs disabled
3253 */
3254static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3255 enum event_type_t event_type)
3256{
3257 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3258}
3259
1cac7b1a
PZ
3260static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3261 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3262{
1cac7b1a
PZ
3263 struct perf_event **evt, *evt1, *evt2;
3264 int ret;
8e1a2031 3265
1cac7b1a
PZ
3266 evt1 = perf_event_groups_first(groups, -1);
3267 evt2 = perf_event_groups_first(groups, cpu);
3268
3269 while (evt1 || evt2) {
3270 if (evt1 && evt2) {
3271 if (evt1->group_index < evt2->group_index)
3272 evt = &evt1;
3273 else
3274 evt = &evt2;
3275 } else if (evt1) {
3276 evt = &evt1;
3277 } else {
3278 evt = &evt2;
8e1a2031 3279 }
1cac7b1a
PZ
3280
3281 ret = func(*evt, data);
3282 if (ret)
3283 return ret;
3284
3285 *evt = perf_event_groups_next(*evt);
8e1a2031 3286 }
0793a61d 3287
1cac7b1a
PZ
3288 return 0;
3289}
3290
3291struct sched_in_data {
3292 struct perf_event_context *ctx;
3293 struct perf_cpu_context *cpuctx;
3294 int can_add_hw;
3295};
3296
3297static int pinned_sched_in(struct perf_event *event, void *data)
3298{
3299 struct sched_in_data *sid = data;
3300
3301 if (event->state <= PERF_EVENT_STATE_OFF)
3302 return 0;
3303
3304 if (!event_filter_match(event))
3305 return 0;
3306
6668128a
PZ
3307 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3308 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3309 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3310 }
1cac7b1a
PZ
3311
3312 /*
3313 * If this pinned group hasn't been scheduled,
3314 * put it in error state.
3315 */
3316 if (event->state == PERF_EVENT_STATE_INACTIVE)
3317 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3318
3319 return 0;
3320}
3321
3322static int flexible_sched_in(struct perf_event *event, void *data)
3323{
3324 struct sched_in_data *sid = data;
3325
3326 if (event->state <= PERF_EVENT_STATE_OFF)
3327 return 0;
3328
3329 if (!event_filter_match(event))
3330 return 0;
3331
3332 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
fd7d5517
IR
3333 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3334 if (ret) {
1cac7b1a 3335 sid->can_add_hw = 0;
fd7d5517
IR
3336 sid->ctx->rotate_necessary = 1;
3337 return 0;
3338 }
3339 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3b6f9e5c 3340 }
1cac7b1a
PZ
3341
3342 return 0;
5b0311e1
FW
3343}
3344
3345static void
1cac7b1a
PZ
3346ctx_pinned_sched_in(struct perf_event_context *ctx,
3347 struct perf_cpu_context *cpuctx)
5b0311e1 3348{
1cac7b1a
PZ
3349 struct sched_in_data sid = {
3350 .ctx = ctx,
3351 .cpuctx = cpuctx,
3352 .can_add_hw = 1,
3353 };
3b6f9e5c 3354
1cac7b1a
PZ
3355 visit_groups_merge(&ctx->pinned_groups,
3356 smp_processor_id(),
3357 pinned_sched_in, &sid);
3358}
8e1a2031 3359
1cac7b1a
PZ
3360static void
3361ctx_flexible_sched_in(struct perf_event_context *ctx,
3362 struct perf_cpu_context *cpuctx)
3363{
3364 struct sched_in_data sid = {
3365 .ctx = ctx,
3366 .cpuctx = cpuctx,
3367 .can_add_hw = 1,
3368 };
0793a61d 3369
1cac7b1a
PZ
3370 visit_groups_merge(&ctx->flexible_groups,
3371 smp_processor_id(),
3372 flexible_sched_in, &sid);
5b0311e1
FW
3373}
3374
3375static void
3376ctx_sched_in(struct perf_event_context *ctx,
3377 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3378 enum event_type_t event_type,
3379 struct task_struct *task)
5b0311e1 3380{
db24d33e 3381 int is_active = ctx->is_active;
c994d613
PZ
3382 u64 now;
3383
3384 lockdep_assert_held(&ctx->lock);
e5d1367f 3385
5b0311e1 3386 if (likely(!ctx->nr_events))
facc4307 3387 return;
5b0311e1 3388
3cbaa590 3389 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3390 if (ctx->task) {
3391 if (!is_active)
3392 cpuctx->task_ctx = ctx;
3393 else
3394 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3395 }
3396
3cbaa590
PZ
3397 is_active ^= ctx->is_active; /* changed bits */
3398
3399 if (is_active & EVENT_TIME) {
3400 /* start ctx time */
3401 now = perf_clock();
3402 ctx->timestamp = now;
3403 perf_cgroup_set_timestamp(task, ctx);
3404 }
3405
5b0311e1
FW
3406 /*
3407 * First go through the list and put on any pinned groups
3408 * in order to give them the best chance of going on.
3409 */
3cbaa590 3410 if (is_active & EVENT_PINNED)
6e37738a 3411 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3412
3413 /* Then walk through the lower prio flexible groups */
3cbaa590 3414 if (is_active & EVENT_FLEXIBLE)
6e37738a 3415 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3416}
3417
329c0e01 3418static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3419 enum event_type_t event_type,
3420 struct task_struct *task)
329c0e01
FW
3421{
3422 struct perf_event_context *ctx = &cpuctx->ctx;
3423
e5d1367f 3424 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3425}
3426
e5d1367f
SE
3427static void perf_event_context_sched_in(struct perf_event_context *ctx,
3428 struct task_struct *task)
235c7fc7 3429{
108b02cf 3430 struct perf_cpu_context *cpuctx;
235c7fc7 3431
108b02cf 3432 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3433 if (cpuctx->task_ctx == ctx)
3434 return;
3435
facc4307 3436 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3437 /*
3438 * We must check ctx->nr_events while holding ctx->lock, such
3439 * that we serialize against perf_install_in_context().
3440 */
3441 if (!ctx->nr_events)
3442 goto unlock;
3443
1b9a644f 3444 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3445 /*
3446 * We want to keep the following priority order:
3447 * cpu pinned (that don't need to move), task pinned,
3448 * cpu flexible, task flexible.
fe45bafb
AS
3449 *
3450 * However, if task's ctx is not carrying any pinned
3451 * events, no need to flip the cpuctx's events around.
329c0e01 3452 */
8e1a2031 3453 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3454 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3455 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3456 perf_pmu_enable(ctx->pmu);
fdccc3fb 3457
3458unlock:
facc4307 3459 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3460}
3461
8dc85d54
PZ
3462/*
3463 * Called from scheduler to add the events of the current task
3464 * with interrupts disabled.
3465 *
3466 * We restore the event value and then enable it.
3467 *
3468 * This does not protect us against NMI, but enable()
3469 * sets the enabled bit in the control field of event _before_
3470 * accessing the event control register. If a NMI hits, then it will
3471 * keep the event running.
3472 */
ab0cce56
JO
3473void __perf_event_task_sched_in(struct task_struct *prev,
3474 struct task_struct *task)
8dc85d54
PZ
3475{
3476 struct perf_event_context *ctx;
3477 int ctxn;
3478
7e41d177
PZ
3479 /*
3480 * If cgroup events exist on this CPU, then we need to check if we have
3481 * to switch in PMU state; cgroup event are system-wide mode only.
3482 *
3483 * Since cgroup events are CPU events, we must schedule these in before
3484 * we schedule in the task events.
3485 */
3486 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3487 perf_cgroup_sched_in(prev, task);
3488
8dc85d54
PZ
3489 for_each_task_context_nr(ctxn) {
3490 ctx = task->perf_event_ctxp[ctxn];
3491 if (likely(!ctx))
3492 continue;
3493
e5d1367f 3494 perf_event_context_sched_in(ctx, task);
8dc85d54 3495 }
d010b332 3496
45ac1403
AH
3497 if (atomic_read(&nr_switch_events))
3498 perf_event_switch(task, prev, true);
3499
ba532500
YZ
3500 if (__this_cpu_read(perf_sched_cb_usages))
3501 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3502}
3503
abd50713
PZ
3504static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3505{
3506 u64 frequency = event->attr.sample_freq;
3507 u64 sec = NSEC_PER_SEC;
3508 u64 divisor, dividend;
3509
3510 int count_fls, nsec_fls, frequency_fls, sec_fls;
3511
3512 count_fls = fls64(count);
3513 nsec_fls = fls64(nsec);
3514 frequency_fls = fls64(frequency);
3515 sec_fls = 30;
3516
3517 /*
3518 * We got @count in @nsec, with a target of sample_freq HZ
3519 * the target period becomes:
3520 *
3521 * @count * 10^9
3522 * period = -------------------
3523 * @nsec * sample_freq
3524 *
3525 */
3526
3527 /*
3528 * Reduce accuracy by one bit such that @a and @b converge
3529 * to a similar magnitude.
3530 */
fe4b04fa 3531#define REDUCE_FLS(a, b) \
abd50713
PZ
3532do { \
3533 if (a##_fls > b##_fls) { \
3534 a >>= 1; \
3535 a##_fls--; \
3536 } else { \
3537 b >>= 1; \
3538 b##_fls--; \
3539 } \
3540} while (0)
3541
3542 /*
3543 * Reduce accuracy until either term fits in a u64, then proceed with
3544 * the other, so that finally we can do a u64/u64 division.
3545 */
3546 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3547 REDUCE_FLS(nsec, frequency);
3548 REDUCE_FLS(sec, count);
3549 }
3550
3551 if (count_fls + sec_fls > 64) {
3552 divisor = nsec * frequency;
3553
3554 while (count_fls + sec_fls > 64) {
3555 REDUCE_FLS(count, sec);
3556 divisor >>= 1;
3557 }
3558
3559 dividend = count * sec;
3560 } else {
3561 dividend = count * sec;
3562
3563 while (nsec_fls + frequency_fls > 64) {
3564 REDUCE_FLS(nsec, frequency);
3565 dividend >>= 1;
3566 }
3567
3568 divisor = nsec * frequency;
3569 }
3570
f6ab91ad
PZ
3571 if (!divisor)
3572 return dividend;
3573
abd50713
PZ
3574 return div64_u64(dividend, divisor);
3575}
3576
e050e3f0
SE
3577static DEFINE_PER_CPU(int, perf_throttled_count);
3578static DEFINE_PER_CPU(u64, perf_throttled_seq);
3579
f39d47ff 3580static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3581{
cdd6c482 3582 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3583 s64 period, sample_period;
bd2b5b12
PZ
3584 s64 delta;
3585
abd50713 3586 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3587
3588 delta = (s64)(period - hwc->sample_period);
3589 delta = (delta + 7) / 8; /* low pass filter */
3590
3591 sample_period = hwc->sample_period + delta;
3592
3593 if (!sample_period)
3594 sample_period = 1;
3595
bd2b5b12 3596 hwc->sample_period = sample_period;
abd50713 3597
e7850595 3598 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3599 if (disable)
3600 event->pmu->stop(event, PERF_EF_UPDATE);
3601
e7850595 3602 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3603
3604 if (disable)
3605 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3606 }
bd2b5b12
PZ
3607}
3608
e050e3f0
SE
3609/*
3610 * combine freq adjustment with unthrottling to avoid two passes over the
3611 * events. At the same time, make sure, having freq events does not change
3612 * the rate of unthrottling as that would introduce bias.
3613 */
3614static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3615 int needs_unthr)
60db5e09 3616{
cdd6c482
IM
3617 struct perf_event *event;
3618 struct hw_perf_event *hwc;
e050e3f0 3619 u64 now, period = TICK_NSEC;
abd50713 3620 s64 delta;
60db5e09 3621
e050e3f0
SE
3622 /*
3623 * only need to iterate over all events iff:
3624 * - context have events in frequency mode (needs freq adjust)
3625 * - there are events to unthrottle on this cpu
3626 */
3627 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3628 return;
3629
e050e3f0 3630 raw_spin_lock(&ctx->lock);
f39d47ff 3631 perf_pmu_disable(ctx->pmu);
e050e3f0 3632
03541f8b 3633 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3634 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3635 continue;
3636
5632ab12 3637 if (!event_filter_match(event))
5d27c23d
PZ
3638 continue;
3639
44377277
AS
3640 perf_pmu_disable(event->pmu);
3641
cdd6c482 3642 hwc = &event->hw;
6a24ed6c 3643
ae23bff1 3644 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3645 hwc->interrupts = 0;
cdd6c482 3646 perf_log_throttle(event, 1);
a4eaf7f1 3647 event->pmu->start(event, 0);
a78ac325
PZ
3648 }
3649
cdd6c482 3650 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3651 goto next;
60db5e09 3652
e050e3f0
SE
3653 /*
3654 * stop the event and update event->count
3655 */
3656 event->pmu->stop(event, PERF_EF_UPDATE);
3657
e7850595 3658 now = local64_read(&event->count);
abd50713
PZ
3659 delta = now - hwc->freq_count_stamp;
3660 hwc->freq_count_stamp = now;
60db5e09 3661
e050e3f0
SE
3662 /*
3663 * restart the event
3664 * reload only if value has changed
f39d47ff
SE
3665 * we have stopped the event so tell that
3666 * to perf_adjust_period() to avoid stopping it
3667 * twice.
e050e3f0 3668 */
abd50713 3669 if (delta > 0)
f39d47ff 3670 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3671
3672 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3673 next:
3674 perf_pmu_enable(event->pmu);
60db5e09 3675 }
e050e3f0 3676
f39d47ff 3677 perf_pmu_enable(ctx->pmu);
e050e3f0 3678 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3679}
3680
235c7fc7 3681/*
8703a7cf 3682 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3683 */
8703a7cf 3684static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3685{
dddd3379
TG
3686 /*
3687 * Rotate the first entry last of non-pinned groups. Rotation might be
3688 * disabled by the inheritance code.
3689 */
8703a7cf
PZ
3690 if (ctx->rotate_disable)
3691 return;
8e1a2031 3692
8703a7cf
PZ
3693 perf_event_groups_delete(&ctx->flexible_groups, event);
3694 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3695}
3696
8d5bce0c
PZ
3697static inline struct perf_event *
3698ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3699{
8d5bce0c
PZ
3700 return list_first_entry_or_null(&ctx->flexible_active,
3701 struct perf_event, active_list);
3702}
3703
3704static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3705{
3706 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
3707 struct perf_event_context *task_ctx = NULL;
3708 int cpu_rotate, task_rotate;
8d5bce0c
PZ
3709
3710 /*
3711 * Since we run this from IRQ context, nobody can install new
3712 * events, thus the event count values are stable.
3713 */
7fc23a53 3714
fd7d5517
IR
3715 cpu_rotate = cpuctx->ctx.rotate_necessary;
3716 task_ctx = cpuctx->task_ctx;
3717 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 3718
8d5bce0c
PZ
3719 if (!(cpu_rotate || task_rotate))
3720 return false;
0f5a2601 3721
facc4307 3722 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3723 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3724
8d5bce0c 3725 if (task_rotate)
fd7d5517 3726 task_event = ctx_first_active(task_ctx);
8d5bce0c
PZ
3727 if (cpu_rotate)
3728 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3729
8d5bce0c
PZ
3730 /*
3731 * As per the order given at ctx_resched() first 'pop' task flexible
3732 * and then, if needed CPU flexible.
3733 */
fd7d5517
IR
3734 if (task_event || (task_ctx && cpu_event))
3735 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3736 if (cpu_event)
3737 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3738
8d5bce0c 3739 if (task_event)
fd7d5517 3740 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
3741 if (cpu_event)
3742 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3743
fd7d5517 3744 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 3745
0f5a2601
PZ
3746 perf_pmu_enable(cpuctx->ctx.pmu);
3747 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3748
8d5bce0c 3749 return true;
e9d2b064
PZ
3750}
3751
3752void perf_event_task_tick(void)
3753{
2fde4f94
MR
3754 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3755 struct perf_event_context *ctx, *tmp;
e050e3f0 3756 int throttled;
b5ab4cd5 3757
16444645 3758 lockdep_assert_irqs_disabled();
e9d2b064 3759
e050e3f0
SE
3760 __this_cpu_inc(perf_throttled_seq);
3761 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3762 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3763
2fde4f94 3764 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3765 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3766}
3767
889ff015
FW
3768static int event_enable_on_exec(struct perf_event *event,
3769 struct perf_event_context *ctx)
3770{
3771 if (!event->attr.enable_on_exec)
3772 return 0;
3773
3774 event->attr.enable_on_exec = 0;
3775 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3776 return 0;
3777
0d3d73aa 3778 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3779
3780 return 1;
3781}
3782
57e7986e 3783/*
cdd6c482 3784 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3785 * This expects task == current.
3786 */
c1274499 3787static void perf_event_enable_on_exec(int ctxn)
57e7986e 3788{
c1274499 3789 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3790 enum event_type_t event_type = 0;
3e349507 3791 struct perf_cpu_context *cpuctx;
cdd6c482 3792 struct perf_event *event;
57e7986e
PM
3793 unsigned long flags;
3794 int enabled = 0;
3795
3796 local_irq_save(flags);
c1274499 3797 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3798 if (!ctx || !ctx->nr_events)
57e7986e
PM
3799 goto out;
3800
3e349507
PZ
3801 cpuctx = __get_cpu_context(ctx);
3802 perf_ctx_lock(cpuctx, ctx);
7fce2509 3803 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3804 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3805 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3806 event_type |= get_event_type(event);
3807 }
57e7986e
PM
3808
3809 /*
3e349507 3810 * Unclone and reschedule this context if we enabled any event.
57e7986e 3811 */
3e349507 3812 if (enabled) {
211de6eb 3813 clone_ctx = unclone_ctx(ctx);
487f05e1 3814 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3815 } else {
3816 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3817 }
3818 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3819
9ed6060d 3820out:
57e7986e 3821 local_irq_restore(flags);
211de6eb
PZ
3822
3823 if (clone_ctx)
3824 put_ctx(clone_ctx);
57e7986e
PM
3825}
3826
0492d4c5
PZ
3827struct perf_read_data {
3828 struct perf_event *event;
3829 bool group;
7d88962e 3830 int ret;
0492d4c5
PZ
3831};
3832
451d24d1 3833static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3834{
d6a2f903
DCC
3835 u16 local_pkg, event_pkg;
3836
3837 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3838 int local_cpu = smp_processor_id();
3839
3840 event_pkg = topology_physical_package_id(event_cpu);
3841 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3842
3843 if (event_pkg == local_pkg)
3844 return local_cpu;
3845 }
3846
3847 return event_cpu;
3848}
3849
0793a61d 3850/*
cdd6c482 3851 * Cross CPU call to read the hardware event
0793a61d 3852 */
cdd6c482 3853static void __perf_event_read(void *info)
0793a61d 3854{
0492d4c5
PZ
3855 struct perf_read_data *data = info;
3856 struct perf_event *sub, *event = data->event;
cdd6c482 3857 struct perf_event_context *ctx = event->ctx;
108b02cf 3858 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3859 struct pmu *pmu = event->pmu;
621a01ea 3860
e1ac3614
PM
3861 /*
3862 * If this is a task context, we need to check whether it is
3863 * the current task context of this cpu. If not it has been
3864 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3865 * event->count would have been updated to a recent sample
3866 * when the event was scheduled out.
e1ac3614
PM
3867 */
3868 if (ctx->task && cpuctx->task_ctx != ctx)
3869 return;
3870
e625cce1 3871 raw_spin_lock(&ctx->lock);
0c1cbc18 3872 if (ctx->is_active & EVENT_TIME) {
542e72fc 3873 update_context_time(ctx);
e5d1367f
SE
3874 update_cgrp_time_from_event(event);
3875 }
0492d4c5 3876
0d3d73aa
PZ
3877 perf_event_update_time(event);
3878 if (data->group)
3879 perf_event_update_sibling_time(event);
0c1cbc18 3880
4a00c16e
SB
3881 if (event->state != PERF_EVENT_STATE_ACTIVE)
3882 goto unlock;
0492d4c5 3883
4a00c16e
SB
3884 if (!data->group) {
3885 pmu->read(event);
3886 data->ret = 0;
0492d4c5 3887 goto unlock;
4a00c16e
SB
3888 }
3889
3890 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3891
3892 pmu->read(event);
0492d4c5 3893
edb39592 3894 for_each_sibling_event(sub, event) {
4a00c16e
SB
3895 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3896 /*
3897 * Use sibling's PMU rather than @event's since
3898 * sibling could be on different (eg: software) PMU.
3899 */
0492d4c5 3900 sub->pmu->read(sub);
4a00c16e 3901 }
0492d4c5 3902 }
4a00c16e
SB
3903
3904 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3905
3906unlock:
e625cce1 3907 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3908}
3909
b5e58793
PZ
3910static inline u64 perf_event_count(struct perf_event *event)
3911{
c39a0e2c 3912 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3913}
3914
ffe8690c
KX
3915/*
3916 * NMI-safe method to read a local event, that is an event that
3917 * is:
3918 * - either for the current task, or for this CPU
3919 * - does not have inherit set, for inherited task events
3920 * will not be local and we cannot read them atomically
3921 * - must not have a pmu::count method
3922 */
7d9285e8
YS
3923int perf_event_read_local(struct perf_event *event, u64 *value,
3924 u64 *enabled, u64 *running)
ffe8690c
KX
3925{
3926 unsigned long flags;
f91840a3 3927 int ret = 0;
ffe8690c
KX
3928
3929 /*
3930 * Disabling interrupts avoids all counter scheduling (context
3931 * switches, timer based rotation and IPIs).
3932 */
3933 local_irq_save(flags);
3934
ffe8690c
KX
3935 /*
3936 * It must not be an event with inherit set, we cannot read
3937 * all child counters from atomic context.
3938 */
f91840a3
AS
3939 if (event->attr.inherit) {
3940 ret = -EOPNOTSUPP;
3941 goto out;
3942 }
ffe8690c 3943
f91840a3
AS
3944 /* If this is a per-task event, it must be for current */
3945 if ((event->attach_state & PERF_ATTACH_TASK) &&
3946 event->hw.target != current) {
3947 ret = -EINVAL;
3948 goto out;
3949 }
3950
3951 /* If this is a per-CPU event, it must be for this CPU */
3952 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3953 event->cpu != smp_processor_id()) {
3954 ret = -EINVAL;
3955 goto out;
3956 }
ffe8690c 3957
befb1b3c
RC
3958 /* If this is a pinned event it must be running on this CPU */
3959 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3960 ret = -EBUSY;
3961 goto out;
3962 }
3963
ffe8690c
KX
3964 /*
3965 * If the event is currently on this CPU, its either a per-task event,
3966 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3967 * oncpu == -1).
3968 */
3969 if (event->oncpu == smp_processor_id())
3970 event->pmu->read(event);
3971
f91840a3 3972 *value = local64_read(&event->count);
0d3d73aa
PZ
3973 if (enabled || running) {
3974 u64 now = event->shadow_ctx_time + perf_clock();
3975 u64 __enabled, __running;
3976
3977 __perf_update_times(event, now, &__enabled, &__running);
3978 if (enabled)
3979 *enabled = __enabled;
3980 if (running)
3981 *running = __running;
3982 }
f91840a3 3983out:
ffe8690c
KX
3984 local_irq_restore(flags);
3985
f91840a3 3986 return ret;
ffe8690c
KX
3987}
3988
7d88962e 3989static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3990{
0c1cbc18 3991 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3992 int event_cpu, ret = 0;
7d88962e 3993
0793a61d 3994 /*
cdd6c482
IM
3995 * If event is enabled and currently active on a CPU, update the
3996 * value in the event structure:
0793a61d 3997 */
0c1cbc18
PZ
3998again:
3999 if (state == PERF_EVENT_STATE_ACTIVE) {
4000 struct perf_read_data data;
4001
4002 /*
4003 * Orders the ->state and ->oncpu loads such that if we see
4004 * ACTIVE we must also see the right ->oncpu.
4005 *
4006 * Matches the smp_wmb() from event_sched_in().
4007 */
4008 smp_rmb();
d6a2f903 4009
451d24d1
PZ
4010 event_cpu = READ_ONCE(event->oncpu);
4011 if ((unsigned)event_cpu >= nr_cpu_ids)
4012 return 0;
4013
0c1cbc18
PZ
4014 data = (struct perf_read_data){
4015 .event = event,
4016 .group = group,
4017 .ret = 0,
4018 };
4019
451d24d1
PZ
4020 preempt_disable();
4021 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4022
58763148
PZ
4023 /*
4024 * Purposely ignore the smp_call_function_single() return
4025 * value.
4026 *
451d24d1 4027 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4028 * scheduled out and that will have updated the event count.
4029 *
4030 * Therefore, either way, we'll have an up-to-date event count
4031 * after this.
4032 */
451d24d1
PZ
4033 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4034 preempt_enable();
58763148 4035 ret = data.ret;
0c1cbc18
PZ
4036
4037 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4038 struct perf_event_context *ctx = event->ctx;
4039 unsigned long flags;
4040
e625cce1 4041 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4042 state = event->state;
4043 if (state != PERF_EVENT_STATE_INACTIVE) {
4044 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4045 goto again;
4046 }
4047
c530ccd9 4048 /*
0c1cbc18
PZ
4049 * May read while context is not active (e.g., thread is
4050 * blocked), in that case we cannot update context time
c530ccd9 4051 */
0c1cbc18 4052 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4053 update_context_time(ctx);
e5d1367f
SE
4054 update_cgrp_time_from_event(event);
4055 }
0c1cbc18 4056
0d3d73aa 4057 perf_event_update_time(event);
0492d4c5 4058 if (group)
0d3d73aa 4059 perf_event_update_sibling_time(event);
e625cce1 4060 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4061 }
7d88962e
SB
4062
4063 return ret;
0793a61d
TG
4064}
4065
a63eaf34 4066/*
cdd6c482 4067 * Initialize the perf_event context in a task_struct:
a63eaf34 4068 */
eb184479 4069static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4070{
e625cce1 4071 raw_spin_lock_init(&ctx->lock);
a63eaf34 4072 mutex_init(&ctx->mutex);
2fde4f94 4073 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4074 perf_event_groups_init(&ctx->pinned_groups);
4075 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4076 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4077 INIT_LIST_HEAD(&ctx->pinned_active);
4078 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4079 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4080}
4081
4082static struct perf_event_context *
4083alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4084{
4085 struct perf_event_context *ctx;
4086
4087 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4088 if (!ctx)
4089 return NULL;
4090
4091 __perf_event_init_context(ctx);
4092 if (task) {
4093 ctx->task = task;
4094 get_task_struct(task);
0793a61d 4095 }
eb184479
PZ
4096 ctx->pmu = pmu;
4097
4098 return ctx;
a63eaf34
PM
4099}
4100
2ebd4ffb
MH
4101static struct task_struct *
4102find_lively_task_by_vpid(pid_t vpid)
4103{
4104 struct task_struct *task;
0793a61d
TG
4105
4106 rcu_read_lock();
2ebd4ffb 4107 if (!vpid)
0793a61d
TG
4108 task = current;
4109 else
2ebd4ffb 4110 task = find_task_by_vpid(vpid);
0793a61d
TG
4111 if (task)
4112 get_task_struct(task);
4113 rcu_read_unlock();
4114
4115 if (!task)
4116 return ERR_PTR(-ESRCH);
4117
2ebd4ffb 4118 return task;
2ebd4ffb
MH
4119}
4120
fe4b04fa
PZ
4121/*
4122 * Returns a matching context with refcount and pincount.
4123 */
108b02cf 4124static struct perf_event_context *
4af57ef2
YZ
4125find_get_context(struct pmu *pmu, struct task_struct *task,
4126 struct perf_event *event)
0793a61d 4127{
211de6eb 4128 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4129 struct perf_cpu_context *cpuctx;
4af57ef2 4130 void *task_ctx_data = NULL;
25346b93 4131 unsigned long flags;
8dc85d54 4132 int ctxn, err;
4af57ef2 4133 int cpu = event->cpu;
0793a61d 4134
22a4ec72 4135 if (!task) {
cdd6c482 4136 /* Must be root to operate on a CPU event: */
0764771d 4137 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4138 return ERR_PTR(-EACCES);
4139
108b02cf 4140 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4141 ctx = &cpuctx->ctx;
c93f7669 4142 get_ctx(ctx);
fe4b04fa 4143 ++ctx->pin_count;
0793a61d 4144
0793a61d
TG
4145 return ctx;
4146 }
4147
8dc85d54
PZ
4148 err = -EINVAL;
4149 ctxn = pmu->task_ctx_nr;
4150 if (ctxn < 0)
4151 goto errout;
4152
4af57ef2
YZ
4153 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4154 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4155 if (!task_ctx_data) {
4156 err = -ENOMEM;
4157 goto errout;
4158 }
4159 }
4160
9ed6060d 4161retry:
8dc85d54 4162 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4163 if (ctx) {
211de6eb 4164 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4165 ++ctx->pin_count;
4af57ef2
YZ
4166
4167 if (task_ctx_data && !ctx->task_ctx_data) {
4168 ctx->task_ctx_data = task_ctx_data;
4169 task_ctx_data = NULL;
4170 }
e625cce1 4171 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4172
4173 if (clone_ctx)
4174 put_ctx(clone_ctx);
9137fb28 4175 } else {
eb184479 4176 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4177 err = -ENOMEM;
4178 if (!ctx)
4179 goto errout;
eb184479 4180
4af57ef2
YZ
4181 if (task_ctx_data) {
4182 ctx->task_ctx_data = task_ctx_data;
4183 task_ctx_data = NULL;
4184 }
4185
dbe08d82
ON
4186 err = 0;
4187 mutex_lock(&task->perf_event_mutex);
4188 /*
4189 * If it has already passed perf_event_exit_task().
4190 * we must see PF_EXITING, it takes this mutex too.
4191 */
4192 if (task->flags & PF_EXITING)
4193 err = -ESRCH;
4194 else if (task->perf_event_ctxp[ctxn])
4195 err = -EAGAIN;
fe4b04fa 4196 else {
9137fb28 4197 get_ctx(ctx);
fe4b04fa 4198 ++ctx->pin_count;
dbe08d82 4199 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4200 }
dbe08d82
ON
4201 mutex_unlock(&task->perf_event_mutex);
4202
4203 if (unlikely(err)) {
9137fb28 4204 put_ctx(ctx);
dbe08d82
ON
4205
4206 if (err == -EAGAIN)
4207 goto retry;
4208 goto errout;
a63eaf34
PM
4209 }
4210 }
4211
4af57ef2 4212 kfree(task_ctx_data);
0793a61d 4213 return ctx;
c93f7669 4214
9ed6060d 4215errout:
4af57ef2 4216 kfree(task_ctx_data);
c93f7669 4217 return ERR_PTR(err);
0793a61d
TG
4218}
4219
6fb2915d 4220static void perf_event_free_filter(struct perf_event *event);
2541517c 4221static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4222
cdd6c482 4223static void free_event_rcu(struct rcu_head *head)
592903cd 4224{
cdd6c482 4225 struct perf_event *event;
592903cd 4226
cdd6c482
IM
4227 event = container_of(head, struct perf_event, rcu_head);
4228 if (event->ns)
4229 put_pid_ns(event->ns);
6fb2915d 4230 perf_event_free_filter(event);
cdd6c482 4231 kfree(event);
592903cd
PZ
4232}
4233
b69cf536
PZ
4234static void ring_buffer_attach(struct perf_event *event,
4235 struct ring_buffer *rb);
925d519a 4236
f2fb6bef
KL
4237static void detach_sb_event(struct perf_event *event)
4238{
4239 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4240
4241 raw_spin_lock(&pel->lock);
4242 list_del_rcu(&event->sb_list);
4243 raw_spin_unlock(&pel->lock);
4244}
4245
a4f144eb 4246static bool is_sb_event(struct perf_event *event)
f2fb6bef 4247{
a4f144eb
DCC
4248 struct perf_event_attr *attr = &event->attr;
4249
f2fb6bef 4250 if (event->parent)
a4f144eb 4251 return false;
f2fb6bef
KL
4252
4253 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4254 return false;
f2fb6bef 4255
a4f144eb
DCC
4256 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4257 attr->comm || attr->comm_exec ||
76193a94 4258 attr->task || attr->ksymbol ||
21038f2b
SL
4259 attr->context_switch ||
4260 attr->bpf_event)
a4f144eb
DCC
4261 return true;
4262 return false;
4263}
4264
4265static void unaccount_pmu_sb_event(struct perf_event *event)
4266{
4267 if (is_sb_event(event))
4268 detach_sb_event(event);
f2fb6bef
KL
4269}
4270
4beb31f3 4271static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4272{
4beb31f3
FW
4273 if (event->parent)
4274 return;
4275
4beb31f3
FW
4276 if (is_cgroup_event(event))
4277 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4278}
925d519a 4279
555e0c1e
FW
4280#ifdef CONFIG_NO_HZ_FULL
4281static DEFINE_SPINLOCK(nr_freq_lock);
4282#endif
4283
4284static void unaccount_freq_event_nohz(void)
4285{
4286#ifdef CONFIG_NO_HZ_FULL
4287 spin_lock(&nr_freq_lock);
4288 if (atomic_dec_and_test(&nr_freq_events))
4289 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4290 spin_unlock(&nr_freq_lock);
4291#endif
4292}
4293
4294static void unaccount_freq_event(void)
4295{
4296 if (tick_nohz_full_enabled())
4297 unaccount_freq_event_nohz();
4298 else
4299 atomic_dec(&nr_freq_events);
4300}
4301
4beb31f3
FW
4302static void unaccount_event(struct perf_event *event)
4303{
25432ae9
PZ
4304 bool dec = false;
4305
4beb31f3
FW
4306 if (event->parent)
4307 return;
4308
4309 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4310 dec = true;
4beb31f3
FW
4311 if (event->attr.mmap || event->attr.mmap_data)
4312 atomic_dec(&nr_mmap_events);
4313 if (event->attr.comm)
4314 atomic_dec(&nr_comm_events);
e4222673
HB
4315 if (event->attr.namespaces)
4316 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4317 if (event->attr.task)
4318 atomic_dec(&nr_task_events);
948b26b6 4319 if (event->attr.freq)
555e0c1e 4320 unaccount_freq_event();
45ac1403 4321 if (event->attr.context_switch) {
25432ae9 4322 dec = true;
45ac1403
AH
4323 atomic_dec(&nr_switch_events);
4324 }
4beb31f3 4325 if (is_cgroup_event(event))
25432ae9 4326 dec = true;
4beb31f3 4327 if (has_branch_stack(event))
25432ae9 4328 dec = true;
76193a94
SL
4329 if (event->attr.ksymbol)
4330 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4331 if (event->attr.bpf_event)
4332 atomic_dec(&nr_bpf_events);
25432ae9 4333
9107c89e
PZ
4334 if (dec) {
4335 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4336 schedule_delayed_work(&perf_sched_work, HZ);
4337 }
4beb31f3
FW
4338
4339 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4340
4341 unaccount_pmu_sb_event(event);
4beb31f3 4342}
925d519a 4343
9107c89e
PZ
4344static void perf_sched_delayed(struct work_struct *work)
4345{
4346 mutex_lock(&perf_sched_mutex);
4347 if (atomic_dec_and_test(&perf_sched_count))
4348 static_branch_disable(&perf_sched_events);
4349 mutex_unlock(&perf_sched_mutex);
4350}
4351
bed5b25a
AS
4352/*
4353 * The following implement mutual exclusion of events on "exclusive" pmus
4354 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4355 * at a time, so we disallow creating events that might conflict, namely:
4356 *
4357 * 1) cpu-wide events in the presence of per-task events,
4358 * 2) per-task events in the presence of cpu-wide events,
4359 * 3) two matching events on the same context.
4360 *
4361 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4362 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4363 */
4364static int exclusive_event_init(struct perf_event *event)
4365{
4366 struct pmu *pmu = event->pmu;
4367
8a58ddae 4368 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4369 return 0;
4370
4371 /*
4372 * Prevent co-existence of per-task and cpu-wide events on the
4373 * same exclusive pmu.
4374 *
4375 * Negative pmu::exclusive_cnt means there are cpu-wide
4376 * events on this "exclusive" pmu, positive means there are
4377 * per-task events.
4378 *
4379 * Since this is called in perf_event_alloc() path, event::ctx
4380 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4381 * to mean "per-task event", because unlike other attach states it
4382 * never gets cleared.
4383 */
4384 if (event->attach_state & PERF_ATTACH_TASK) {
4385 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4386 return -EBUSY;
4387 } else {
4388 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4389 return -EBUSY;
4390 }
4391
4392 return 0;
4393}
4394
4395static void exclusive_event_destroy(struct perf_event *event)
4396{
4397 struct pmu *pmu = event->pmu;
4398
8a58ddae 4399 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4400 return;
4401
4402 /* see comment in exclusive_event_init() */
4403 if (event->attach_state & PERF_ATTACH_TASK)
4404 atomic_dec(&pmu->exclusive_cnt);
4405 else
4406 atomic_inc(&pmu->exclusive_cnt);
4407}
4408
4409static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4410{
3bf6215a 4411 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4412 (e1->cpu == e2->cpu ||
4413 e1->cpu == -1 ||
4414 e2->cpu == -1))
4415 return true;
4416 return false;
4417}
4418
bed5b25a
AS
4419static bool exclusive_event_installable(struct perf_event *event,
4420 struct perf_event_context *ctx)
4421{
4422 struct perf_event *iter_event;
4423 struct pmu *pmu = event->pmu;
4424
8a58ddae
AS
4425 lockdep_assert_held(&ctx->mutex);
4426
4427 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4428 return true;
4429
4430 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4431 if (exclusive_event_match(iter_event, event))
4432 return false;
4433 }
4434
4435 return true;
4436}
4437
375637bc
AS
4438static void perf_addr_filters_splice(struct perf_event *event,
4439 struct list_head *head);
4440
683ede43 4441static void _free_event(struct perf_event *event)
f1600952 4442{
e360adbe 4443 irq_work_sync(&event->pending);
925d519a 4444
4beb31f3 4445 unaccount_event(event);
9ee318a7 4446
76369139 4447 if (event->rb) {
9bb5d40c
PZ
4448 /*
4449 * Can happen when we close an event with re-directed output.
4450 *
4451 * Since we have a 0 refcount, perf_mmap_close() will skip
4452 * over us; possibly making our ring_buffer_put() the last.
4453 */
4454 mutex_lock(&event->mmap_mutex);
b69cf536 4455 ring_buffer_attach(event, NULL);
9bb5d40c 4456 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4457 }
4458
e5d1367f
SE
4459 if (is_cgroup_event(event))
4460 perf_detach_cgroup(event);
4461
a0733e69
PZ
4462 if (!event->parent) {
4463 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4464 put_callchain_buffers();
4465 }
4466
4467 perf_event_free_bpf_prog(event);
375637bc 4468 perf_addr_filters_splice(event, NULL);
c60f83b8 4469 kfree(event->addr_filter_ranges);
a0733e69
PZ
4470
4471 if (event->destroy)
4472 event->destroy(event);
4473
1cf8dfe8
PZ
4474 /*
4475 * Must be after ->destroy(), due to uprobe_perf_close() using
4476 * hw.target.
4477 */
621b6d2e
PB
4478 if (event->hw.target)
4479 put_task_struct(event->hw.target);
4480
1cf8dfe8
PZ
4481 /*
4482 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4483 * all task references must be cleaned up.
4484 */
4485 if (event->ctx)
4486 put_ctx(event->ctx);
4487
62a92c8f
AS
4488 exclusive_event_destroy(event);
4489 module_put(event->pmu->module);
a0733e69
PZ
4490
4491 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4492}
4493
683ede43
PZ
4494/*
4495 * Used to free events which have a known refcount of 1, such as in error paths
4496 * where the event isn't exposed yet and inherited events.
4497 */
4498static void free_event(struct perf_event *event)
0793a61d 4499{
683ede43
PZ
4500 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4501 "unexpected event refcount: %ld; ptr=%p\n",
4502 atomic_long_read(&event->refcount), event)) {
4503 /* leak to avoid use-after-free */
4504 return;
4505 }
0793a61d 4506
683ede43 4507 _free_event(event);
0793a61d
TG
4508}
4509
a66a3052 4510/*
f8697762 4511 * Remove user event from the owner task.
a66a3052 4512 */
f8697762 4513static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4514{
8882135b 4515 struct task_struct *owner;
fb0459d7 4516
8882135b 4517 rcu_read_lock();
8882135b 4518 /*
f47c02c0
PZ
4519 * Matches the smp_store_release() in perf_event_exit_task(). If we
4520 * observe !owner it means the list deletion is complete and we can
4521 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4522 * owner->perf_event_mutex.
4523 */
506458ef 4524 owner = READ_ONCE(event->owner);
8882135b
PZ
4525 if (owner) {
4526 /*
4527 * Since delayed_put_task_struct() also drops the last
4528 * task reference we can safely take a new reference
4529 * while holding the rcu_read_lock().
4530 */
4531 get_task_struct(owner);
4532 }
4533 rcu_read_unlock();
4534
4535 if (owner) {
f63a8daa
PZ
4536 /*
4537 * If we're here through perf_event_exit_task() we're already
4538 * holding ctx->mutex which would be an inversion wrt. the
4539 * normal lock order.
4540 *
4541 * However we can safely take this lock because its the child
4542 * ctx->mutex.
4543 */
4544 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4545
8882135b
PZ
4546 /*
4547 * We have to re-check the event->owner field, if it is cleared
4548 * we raced with perf_event_exit_task(), acquiring the mutex
4549 * ensured they're done, and we can proceed with freeing the
4550 * event.
4551 */
f47c02c0 4552 if (event->owner) {
8882135b 4553 list_del_init(&event->owner_entry);
f47c02c0
PZ
4554 smp_store_release(&event->owner, NULL);
4555 }
8882135b
PZ
4556 mutex_unlock(&owner->perf_event_mutex);
4557 put_task_struct(owner);
4558 }
f8697762
JO
4559}
4560
f8697762
JO
4561static void put_event(struct perf_event *event)
4562{
f8697762
JO
4563 if (!atomic_long_dec_and_test(&event->refcount))
4564 return;
4565
c6e5b732
PZ
4566 _free_event(event);
4567}
4568
4569/*
4570 * Kill an event dead; while event:refcount will preserve the event
4571 * object, it will not preserve its functionality. Once the last 'user'
4572 * gives up the object, we'll destroy the thing.
4573 */
4574int perf_event_release_kernel(struct perf_event *event)
4575{
a4f4bb6d 4576 struct perf_event_context *ctx = event->ctx;
c6e5b732 4577 struct perf_event *child, *tmp;
82d94856 4578 LIST_HEAD(free_list);
c6e5b732 4579
a4f4bb6d
PZ
4580 /*
4581 * If we got here through err_file: fput(event_file); we will not have
4582 * attached to a context yet.
4583 */
4584 if (!ctx) {
4585 WARN_ON_ONCE(event->attach_state &
4586 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4587 goto no_ctx;
4588 }
4589
f8697762
JO
4590 if (!is_kernel_event(event))
4591 perf_remove_from_owner(event);
8882135b 4592
5fa7c8ec 4593 ctx = perf_event_ctx_lock(event);
a83fe28e 4594 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4595 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4596
a69b0ca4 4597 raw_spin_lock_irq(&ctx->lock);
683ede43 4598 /*
d8a8cfc7 4599 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4600 * anymore.
683ede43 4601 *
a69b0ca4
PZ
4602 * Anybody acquiring event->child_mutex after the below loop _must_
4603 * also see this, most importantly inherit_event() which will avoid
4604 * placing more children on the list.
683ede43 4605 *
c6e5b732
PZ
4606 * Thus this guarantees that we will in fact observe and kill _ALL_
4607 * child events.
683ede43 4608 */
a69b0ca4
PZ
4609 event->state = PERF_EVENT_STATE_DEAD;
4610 raw_spin_unlock_irq(&ctx->lock);
4611
4612 perf_event_ctx_unlock(event, ctx);
683ede43 4613
c6e5b732
PZ
4614again:
4615 mutex_lock(&event->child_mutex);
4616 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4617
c6e5b732
PZ
4618 /*
4619 * Cannot change, child events are not migrated, see the
4620 * comment with perf_event_ctx_lock_nested().
4621 */
506458ef 4622 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4623 /*
4624 * Since child_mutex nests inside ctx::mutex, we must jump
4625 * through hoops. We start by grabbing a reference on the ctx.
4626 *
4627 * Since the event cannot get freed while we hold the
4628 * child_mutex, the context must also exist and have a !0
4629 * reference count.
4630 */
4631 get_ctx(ctx);
4632
4633 /*
4634 * Now that we have a ctx ref, we can drop child_mutex, and
4635 * acquire ctx::mutex without fear of it going away. Then we
4636 * can re-acquire child_mutex.
4637 */
4638 mutex_unlock(&event->child_mutex);
4639 mutex_lock(&ctx->mutex);
4640 mutex_lock(&event->child_mutex);
4641
4642 /*
4643 * Now that we hold ctx::mutex and child_mutex, revalidate our
4644 * state, if child is still the first entry, it didn't get freed
4645 * and we can continue doing so.
4646 */
4647 tmp = list_first_entry_or_null(&event->child_list,
4648 struct perf_event, child_list);
4649 if (tmp == child) {
4650 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4651 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4652 /*
4653 * This matches the refcount bump in inherit_event();
4654 * this can't be the last reference.
4655 */
4656 put_event(event);
4657 }
4658
4659 mutex_unlock(&event->child_mutex);
4660 mutex_unlock(&ctx->mutex);
4661 put_ctx(ctx);
4662 goto again;
4663 }
4664 mutex_unlock(&event->child_mutex);
4665
82d94856 4666 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4667 void *var = &child->ctx->refcount;
4668
82d94856
PZ
4669 list_del(&child->child_list);
4670 free_event(child);
1cf8dfe8
PZ
4671
4672 /*
4673 * Wake any perf_event_free_task() waiting for this event to be
4674 * freed.
4675 */
4676 smp_mb(); /* pairs with wait_var_event() */
4677 wake_up_var(var);
82d94856
PZ
4678 }
4679
a4f4bb6d
PZ
4680no_ctx:
4681 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4682 return 0;
4683}
4684EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4685
8b10c5e2
PZ
4686/*
4687 * Called when the last reference to the file is gone.
4688 */
a6fa941d
AV
4689static int perf_release(struct inode *inode, struct file *file)
4690{
c6e5b732 4691 perf_event_release_kernel(file->private_data);
a6fa941d 4692 return 0;
fb0459d7 4693}
fb0459d7 4694
ca0dd44c 4695static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4696{
cdd6c482 4697 struct perf_event *child;
e53c0994
PZ
4698 u64 total = 0;
4699
59ed446f
PZ
4700 *enabled = 0;
4701 *running = 0;
4702
6f10581a 4703 mutex_lock(&event->child_mutex);
01add3ea 4704
7d88962e 4705 (void)perf_event_read(event, false);
01add3ea
SB
4706 total += perf_event_count(event);
4707
59ed446f
PZ
4708 *enabled += event->total_time_enabled +
4709 atomic64_read(&event->child_total_time_enabled);
4710 *running += event->total_time_running +
4711 atomic64_read(&event->child_total_time_running);
4712
4713 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4714 (void)perf_event_read(child, false);
01add3ea 4715 total += perf_event_count(child);
59ed446f
PZ
4716 *enabled += child->total_time_enabled;
4717 *running += child->total_time_running;
4718 }
6f10581a 4719 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4720
4721 return total;
4722}
ca0dd44c
PZ
4723
4724u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4725{
4726 struct perf_event_context *ctx;
4727 u64 count;
4728
4729 ctx = perf_event_ctx_lock(event);
4730 count = __perf_event_read_value(event, enabled, running);
4731 perf_event_ctx_unlock(event, ctx);
4732
4733 return count;
4734}
fb0459d7 4735EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4736
7d88962e 4737static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4738 u64 read_format, u64 *values)
3dab77fb 4739{
2aeb1883 4740 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4741 struct perf_event *sub;
2aeb1883 4742 unsigned long flags;
fa8c2693 4743 int n = 1; /* skip @nr */
7d88962e 4744 int ret;
f63a8daa 4745
7d88962e
SB
4746 ret = perf_event_read(leader, true);
4747 if (ret)
4748 return ret;
abf4868b 4749
a9cd8194
PZ
4750 raw_spin_lock_irqsave(&ctx->lock, flags);
4751
fa8c2693
PZ
4752 /*
4753 * Since we co-schedule groups, {enabled,running} times of siblings
4754 * will be identical to those of the leader, so we only publish one
4755 * set.
4756 */
4757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4758 values[n++] += leader->total_time_enabled +
4759 atomic64_read(&leader->child_total_time_enabled);
4760 }
3dab77fb 4761
fa8c2693
PZ
4762 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4763 values[n++] += leader->total_time_running +
4764 atomic64_read(&leader->child_total_time_running);
4765 }
4766
4767 /*
4768 * Write {count,id} tuples for every sibling.
4769 */
4770 values[n++] += perf_event_count(leader);
abf4868b
PZ
4771 if (read_format & PERF_FORMAT_ID)
4772 values[n++] = primary_event_id(leader);
3dab77fb 4773
edb39592 4774 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4775 values[n++] += perf_event_count(sub);
4776 if (read_format & PERF_FORMAT_ID)
4777 values[n++] = primary_event_id(sub);
4778 }
7d88962e 4779
2aeb1883 4780 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4781 return 0;
fa8c2693 4782}
3dab77fb 4783
fa8c2693
PZ
4784static int perf_read_group(struct perf_event *event,
4785 u64 read_format, char __user *buf)
4786{
4787 struct perf_event *leader = event->group_leader, *child;
4788 struct perf_event_context *ctx = leader->ctx;
7d88962e 4789 int ret;
fa8c2693 4790 u64 *values;
3dab77fb 4791
fa8c2693 4792 lockdep_assert_held(&ctx->mutex);
3dab77fb 4793
fa8c2693
PZ
4794 values = kzalloc(event->read_size, GFP_KERNEL);
4795 if (!values)
4796 return -ENOMEM;
3dab77fb 4797
fa8c2693
PZ
4798 values[0] = 1 + leader->nr_siblings;
4799
4800 /*
4801 * By locking the child_mutex of the leader we effectively
4802 * lock the child list of all siblings.. XXX explain how.
4803 */
4804 mutex_lock(&leader->child_mutex);
abf4868b 4805
7d88962e
SB
4806 ret = __perf_read_group_add(leader, read_format, values);
4807 if (ret)
4808 goto unlock;
4809
4810 list_for_each_entry(child, &leader->child_list, child_list) {
4811 ret = __perf_read_group_add(child, read_format, values);
4812 if (ret)
4813 goto unlock;
4814 }
abf4868b 4815
fa8c2693 4816 mutex_unlock(&leader->child_mutex);
abf4868b 4817
7d88962e 4818 ret = event->read_size;
fa8c2693
PZ
4819 if (copy_to_user(buf, values, event->read_size))
4820 ret = -EFAULT;
7d88962e 4821 goto out;
fa8c2693 4822
7d88962e
SB
4823unlock:
4824 mutex_unlock(&leader->child_mutex);
4825out:
fa8c2693 4826 kfree(values);
abf4868b 4827 return ret;
3dab77fb
PZ
4828}
4829
b15f495b 4830static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4831 u64 read_format, char __user *buf)
4832{
59ed446f 4833 u64 enabled, running;
3dab77fb
PZ
4834 u64 values[4];
4835 int n = 0;
4836
ca0dd44c 4837 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4838 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4839 values[n++] = enabled;
4840 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4841 values[n++] = running;
3dab77fb 4842 if (read_format & PERF_FORMAT_ID)
cdd6c482 4843 values[n++] = primary_event_id(event);
3dab77fb
PZ
4844
4845 if (copy_to_user(buf, values, n * sizeof(u64)))
4846 return -EFAULT;
4847
4848 return n * sizeof(u64);
4849}
4850
dc633982
JO
4851static bool is_event_hup(struct perf_event *event)
4852{
4853 bool no_children;
4854
a69b0ca4 4855 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4856 return false;
4857
4858 mutex_lock(&event->child_mutex);
4859 no_children = list_empty(&event->child_list);
4860 mutex_unlock(&event->child_mutex);
4861 return no_children;
4862}
4863
0793a61d 4864/*
cdd6c482 4865 * Read the performance event - simple non blocking version for now
0793a61d
TG
4866 */
4867static ssize_t
b15f495b 4868__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4869{
cdd6c482 4870 u64 read_format = event->attr.read_format;
3dab77fb 4871 int ret;
0793a61d 4872
3b6f9e5c 4873 /*
788faab7 4874 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4875 * error state (i.e. because it was pinned but it couldn't be
4876 * scheduled on to the CPU at some point).
4877 */
cdd6c482 4878 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4879 return 0;
4880
c320c7b7 4881 if (count < event->read_size)
3dab77fb
PZ
4882 return -ENOSPC;
4883
cdd6c482 4884 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4885 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4886 ret = perf_read_group(event, read_format, buf);
3dab77fb 4887 else
b15f495b 4888 ret = perf_read_one(event, read_format, buf);
0793a61d 4889
3dab77fb 4890 return ret;
0793a61d
TG
4891}
4892
0793a61d
TG
4893static ssize_t
4894perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4895{
cdd6c482 4896 struct perf_event *event = file->private_data;
f63a8daa
PZ
4897 struct perf_event_context *ctx;
4898 int ret;
0793a61d 4899
f63a8daa 4900 ctx = perf_event_ctx_lock(event);
b15f495b 4901 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4902 perf_event_ctx_unlock(event, ctx);
4903
4904 return ret;
0793a61d
TG
4905}
4906
9dd95748 4907static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4908{
cdd6c482 4909 struct perf_event *event = file->private_data;
76369139 4910 struct ring_buffer *rb;
a9a08845 4911 __poll_t events = EPOLLHUP;
c7138f37 4912
e708d7ad 4913 poll_wait(file, &event->waitq, wait);
179033b3 4914
dc633982 4915 if (is_event_hup(event))
179033b3 4916 return events;
c7138f37 4917
10c6db11 4918 /*
9bb5d40c
PZ
4919 * Pin the event->rb by taking event->mmap_mutex; otherwise
4920 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4921 */
4922 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4923 rb = event->rb;
4924 if (rb)
76369139 4925 events = atomic_xchg(&rb->poll, 0);
10c6db11 4926 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4927 return events;
4928}
4929
f63a8daa 4930static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4931{
7d88962e 4932 (void)perf_event_read(event, false);
e7850595 4933 local64_set(&event->count, 0);
cdd6c482 4934 perf_event_update_userpage(event);
3df5edad
PZ
4935}
4936
c93f7669 4937/*
cdd6c482
IM
4938 * Holding the top-level event's child_mutex means that any
4939 * descendant process that has inherited this event will block
8ba289b8 4940 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4941 * task existence requirements of perf_event_enable/disable.
c93f7669 4942 */
cdd6c482
IM
4943static void perf_event_for_each_child(struct perf_event *event,
4944 void (*func)(struct perf_event *))
3df5edad 4945{
cdd6c482 4946 struct perf_event *child;
3df5edad 4947
cdd6c482 4948 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4949
cdd6c482
IM
4950 mutex_lock(&event->child_mutex);
4951 func(event);
4952 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4953 func(child);
cdd6c482 4954 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4955}
4956
cdd6c482
IM
4957static void perf_event_for_each(struct perf_event *event,
4958 void (*func)(struct perf_event *))
3df5edad 4959{
cdd6c482
IM
4960 struct perf_event_context *ctx = event->ctx;
4961 struct perf_event *sibling;
3df5edad 4962
f63a8daa
PZ
4963 lockdep_assert_held(&ctx->mutex);
4964
cdd6c482 4965 event = event->group_leader;
75f937f2 4966
cdd6c482 4967 perf_event_for_each_child(event, func);
edb39592 4968 for_each_sibling_event(sibling, event)
724b6daa 4969 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4970}
4971
fae3fde6
PZ
4972static void __perf_event_period(struct perf_event *event,
4973 struct perf_cpu_context *cpuctx,
4974 struct perf_event_context *ctx,
4975 void *info)
c7999c6f 4976{
fae3fde6 4977 u64 value = *((u64 *)info);
c7999c6f 4978 bool active;
08247e31 4979
cdd6c482 4980 if (event->attr.freq) {
cdd6c482 4981 event->attr.sample_freq = value;
08247e31 4982 } else {
cdd6c482
IM
4983 event->attr.sample_period = value;
4984 event->hw.sample_period = value;
08247e31 4985 }
bad7192b
PZ
4986
4987 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4988 if (active) {
4989 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4990 /*
4991 * We could be throttled; unthrottle now to avoid the tick
4992 * trying to unthrottle while we already re-started the event.
4993 */
4994 if (event->hw.interrupts == MAX_INTERRUPTS) {
4995 event->hw.interrupts = 0;
4996 perf_log_throttle(event, 1);
4997 }
bad7192b
PZ
4998 event->pmu->stop(event, PERF_EF_UPDATE);
4999 }
5000
5001 local64_set(&event->hw.period_left, 0);
5002
5003 if (active) {
5004 event->pmu->start(event, PERF_EF_RELOAD);
5005 perf_pmu_enable(ctx->pmu);
5006 }
c7999c6f
PZ
5007}
5008
81ec3f3c
JO
5009static int perf_event_check_period(struct perf_event *event, u64 value)
5010{
5011 return event->pmu->check_period(event, value);
5012}
5013
c7999c6f
PZ
5014static int perf_event_period(struct perf_event *event, u64 __user *arg)
5015{
c7999c6f
PZ
5016 u64 value;
5017
5018 if (!is_sampling_event(event))
5019 return -EINVAL;
5020
5021 if (copy_from_user(&value, arg, sizeof(value)))
5022 return -EFAULT;
5023
5024 if (!value)
5025 return -EINVAL;
5026
5027 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5028 return -EINVAL;
5029
81ec3f3c
JO
5030 if (perf_event_check_period(event, value))
5031 return -EINVAL;
5032
913a90bc
RB
5033 if (!event->attr.freq && (value & (1ULL << 63)))
5034 return -EINVAL;
5035
fae3fde6 5036 event_function_call(event, __perf_event_period, &value);
08247e31 5037
c7999c6f 5038 return 0;
08247e31
PZ
5039}
5040
ac9721f3
PZ
5041static const struct file_operations perf_fops;
5042
2903ff01 5043static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5044{
2903ff01
AV
5045 struct fd f = fdget(fd);
5046 if (!f.file)
5047 return -EBADF;
ac9721f3 5048
2903ff01
AV
5049 if (f.file->f_op != &perf_fops) {
5050 fdput(f);
5051 return -EBADF;
ac9721f3 5052 }
2903ff01
AV
5053 *p = f;
5054 return 0;
ac9721f3
PZ
5055}
5056
5057static int perf_event_set_output(struct perf_event *event,
5058 struct perf_event *output_event);
6fb2915d 5059static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5060static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5061static int perf_copy_attr(struct perf_event_attr __user *uattr,
5062 struct perf_event_attr *attr);
a4be7c27 5063
f63a8daa 5064static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5065{
cdd6c482 5066 void (*func)(struct perf_event *);
3df5edad 5067 u32 flags = arg;
d859e29f
PM
5068
5069 switch (cmd) {
cdd6c482 5070 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5071 func = _perf_event_enable;
d859e29f 5072 break;
cdd6c482 5073 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5074 func = _perf_event_disable;
79f14641 5075 break;
cdd6c482 5076 case PERF_EVENT_IOC_RESET:
f63a8daa 5077 func = _perf_event_reset;
6de6a7b9 5078 break;
3df5edad 5079
cdd6c482 5080 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5081 return _perf_event_refresh(event, arg);
08247e31 5082
cdd6c482
IM
5083 case PERF_EVENT_IOC_PERIOD:
5084 return perf_event_period(event, (u64 __user *)arg);
08247e31 5085
cf4957f1
JO
5086 case PERF_EVENT_IOC_ID:
5087 {
5088 u64 id = primary_event_id(event);
5089
5090 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5091 return -EFAULT;
5092 return 0;
5093 }
5094
cdd6c482 5095 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5096 {
ac9721f3 5097 int ret;
ac9721f3 5098 if (arg != -1) {
2903ff01
AV
5099 struct perf_event *output_event;
5100 struct fd output;
5101 ret = perf_fget_light(arg, &output);
5102 if (ret)
5103 return ret;
5104 output_event = output.file->private_data;
5105 ret = perf_event_set_output(event, output_event);
5106 fdput(output);
5107 } else {
5108 ret = perf_event_set_output(event, NULL);
ac9721f3 5109 }
ac9721f3
PZ
5110 return ret;
5111 }
a4be7c27 5112
6fb2915d
LZ
5113 case PERF_EVENT_IOC_SET_FILTER:
5114 return perf_event_set_filter(event, (void __user *)arg);
5115
2541517c
AS
5116 case PERF_EVENT_IOC_SET_BPF:
5117 return perf_event_set_bpf_prog(event, arg);
5118
86e7972f
WN
5119 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5120 struct ring_buffer *rb;
5121
5122 rcu_read_lock();
5123 rb = rcu_dereference(event->rb);
5124 if (!rb || !rb->nr_pages) {
5125 rcu_read_unlock();
5126 return -EINVAL;
5127 }
5128 rb_toggle_paused(rb, !!arg);
5129 rcu_read_unlock();
5130 return 0;
5131 }
f371b304
YS
5132
5133 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5134 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5135
5136 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5137 struct perf_event_attr new_attr;
5138 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5139 &new_attr);
5140
5141 if (err)
5142 return err;
5143
5144 return perf_event_modify_attr(event, &new_attr);
5145 }
d859e29f 5146 default:
3df5edad 5147 return -ENOTTY;
d859e29f 5148 }
3df5edad
PZ
5149
5150 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5151 perf_event_for_each(event, func);
3df5edad 5152 else
cdd6c482 5153 perf_event_for_each_child(event, func);
3df5edad
PZ
5154
5155 return 0;
d859e29f
PM
5156}
5157
f63a8daa
PZ
5158static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5159{
5160 struct perf_event *event = file->private_data;
5161 struct perf_event_context *ctx;
5162 long ret;
5163
5164 ctx = perf_event_ctx_lock(event);
5165 ret = _perf_ioctl(event, cmd, arg);
5166 perf_event_ctx_unlock(event, ctx);
5167
5168 return ret;
5169}
5170
b3f20785
PM
5171#ifdef CONFIG_COMPAT
5172static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5173 unsigned long arg)
5174{
5175 switch (_IOC_NR(cmd)) {
5176 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5177 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5178 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5179 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5180 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5181 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5182 cmd &= ~IOCSIZE_MASK;
5183 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5184 }
5185 break;
5186 }
5187 return perf_ioctl(file, cmd, arg);
5188}
5189#else
5190# define perf_compat_ioctl NULL
5191#endif
5192
cdd6c482 5193int perf_event_task_enable(void)
771d7cde 5194{
f63a8daa 5195 struct perf_event_context *ctx;
cdd6c482 5196 struct perf_event *event;
771d7cde 5197
cdd6c482 5198 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5199 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5200 ctx = perf_event_ctx_lock(event);
5201 perf_event_for_each_child(event, _perf_event_enable);
5202 perf_event_ctx_unlock(event, ctx);
5203 }
cdd6c482 5204 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5205
5206 return 0;
5207}
5208
cdd6c482 5209int perf_event_task_disable(void)
771d7cde 5210{
f63a8daa 5211 struct perf_event_context *ctx;
cdd6c482 5212 struct perf_event *event;
771d7cde 5213
cdd6c482 5214 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5215 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5216 ctx = perf_event_ctx_lock(event);
5217 perf_event_for_each_child(event, _perf_event_disable);
5218 perf_event_ctx_unlock(event, ctx);
5219 }
cdd6c482 5220 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5221
5222 return 0;
5223}
5224
cdd6c482 5225static int perf_event_index(struct perf_event *event)
194002b2 5226{
a4eaf7f1
PZ
5227 if (event->hw.state & PERF_HES_STOPPED)
5228 return 0;
5229
cdd6c482 5230 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5231 return 0;
5232
35edc2a5 5233 return event->pmu->event_idx(event);
194002b2
PZ
5234}
5235
c4794295 5236static void calc_timer_values(struct perf_event *event,
e3f3541c 5237 u64 *now,
7f310a5d
EM
5238 u64 *enabled,
5239 u64 *running)
c4794295 5240{
e3f3541c 5241 u64 ctx_time;
c4794295 5242
e3f3541c
PZ
5243 *now = perf_clock();
5244 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5245 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5246}
5247
fa731587
PZ
5248static void perf_event_init_userpage(struct perf_event *event)
5249{
5250 struct perf_event_mmap_page *userpg;
5251 struct ring_buffer *rb;
5252
5253 rcu_read_lock();
5254 rb = rcu_dereference(event->rb);
5255 if (!rb)
5256 goto unlock;
5257
5258 userpg = rb->user_page;
5259
5260 /* Allow new userspace to detect that bit 0 is deprecated */
5261 userpg->cap_bit0_is_deprecated = 1;
5262 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5263 userpg->data_offset = PAGE_SIZE;
5264 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5265
5266unlock:
5267 rcu_read_unlock();
5268}
5269
c1317ec2
AL
5270void __weak arch_perf_update_userpage(
5271 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5272{
5273}
5274
38ff667b
PZ
5275/*
5276 * Callers need to ensure there can be no nesting of this function, otherwise
5277 * the seqlock logic goes bad. We can not serialize this because the arch
5278 * code calls this from NMI context.
5279 */
cdd6c482 5280void perf_event_update_userpage(struct perf_event *event)
37d81828 5281{
cdd6c482 5282 struct perf_event_mmap_page *userpg;
76369139 5283 struct ring_buffer *rb;
e3f3541c 5284 u64 enabled, running, now;
38ff667b
PZ
5285
5286 rcu_read_lock();
5ec4c599
PZ
5287 rb = rcu_dereference(event->rb);
5288 if (!rb)
5289 goto unlock;
5290
0d641208
EM
5291 /*
5292 * compute total_time_enabled, total_time_running
5293 * based on snapshot values taken when the event
5294 * was last scheduled in.
5295 *
5296 * we cannot simply called update_context_time()
5297 * because of locking issue as we can be called in
5298 * NMI context
5299 */
e3f3541c 5300 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5301
76369139 5302 userpg = rb->user_page;
7b732a75 5303 /*
9d2dcc8f
MF
5304 * Disable preemption to guarantee consistent time stamps are stored to
5305 * the user page.
7b732a75
PZ
5306 */
5307 preempt_disable();
37d81828 5308 ++userpg->lock;
92f22a38 5309 barrier();
cdd6c482 5310 userpg->index = perf_event_index(event);
b5e58793 5311 userpg->offset = perf_event_count(event);
365a4038 5312 if (userpg->index)
e7850595 5313 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5314
0d641208 5315 userpg->time_enabled = enabled +
cdd6c482 5316 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5317
0d641208 5318 userpg->time_running = running +
cdd6c482 5319 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5320
c1317ec2 5321 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5322
92f22a38 5323 barrier();
37d81828 5324 ++userpg->lock;
7b732a75 5325 preempt_enable();
38ff667b 5326unlock:
7b732a75 5327 rcu_read_unlock();
37d81828 5328}
82975c46 5329EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5330
9e3ed2d7 5331static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5332{
11bac800 5333 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5334 struct ring_buffer *rb;
9e3ed2d7 5335 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5336
5337 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5338 if (vmf->pgoff == 0)
5339 ret = 0;
5340 return ret;
5341 }
5342
5343 rcu_read_lock();
76369139
FW
5344 rb = rcu_dereference(event->rb);
5345 if (!rb)
906010b2
PZ
5346 goto unlock;
5347
5348 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5349 goto unlock;
5350
76369139 5351 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5352 if (!vmf->page)
5353 goto unlock;
5354
5355 get_page(vmf->page);
11bac800 5356 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5357 vmf->page->index = vmf->pgoff;
5358
5359 ret = 0;
5360unlock:
5361 rcu_read_unlock();
5362
5363 return ret;
5364}
5365
10c6db11
PZ
5366static void ring_buffer_attach(struct perf_event *event,
5367 struct ring_buffer *rb)
5368{
b69cf536 5369 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5370 unsigned long flags;
5371
b69cf536
PZ
5372 if (event->rb) {
5373 /*
5374 * Should be impossible, we set this when removing
5375 * event->rb_entry and wait/clear when adding event->rb_entry.
5376 */
5377 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5378
b69cf536 5379 old_rb = event->rb;
b69cf536
PZ
5380 spin_lock_irqsave(&old_rb->event_lock, flags);
5381 list_del_rcu(&event->rb_entry);
5382 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5383
2f993cf0
ON
5384 event->rcu_batches = get_state_synchronize_rcu();
5385 event->rcu_pending = 1;
b69cf536 5386 }
10c6db11 5387
b69cf536 5388 if (rb) {
2f993cf0
ON
5389 if (event->rcu_pending) {
5390 cond_synchronize_rcu(event->rcu_batches);
5391 event->rcu_pending = 0;
5392 }
5393
b69cf536
PZ
5394 spin_lock_irqsave(&rb->event_lock, flags);
5395 list_add_rcu(&event->rb_entry, &rb->event_list);
5396 spin_unlock_irqrestore(&rb->event_lock, flags);
5397 }
5398
767ae086
AS
5399 /*
5400 * Avoid racing with perf_mmap_close(AUX): stop the event
5401 * before swizzling the event::rb pointer; if it's getting
5402 * unmapped, its aux_mmap_count will be 0 and it won't
5403 * restart. See the comment in __perf_pmu_output_stop().
5404 *
5405 * Data will inevitably be lost when set_output is done in
5406 * mid-air, but then again, whoever does it like this is
5407 * not in for the data anyway.
5408 */
5409 if (has_aux(event))
5410 perf_event_stop(event, 0);
5411
b69cf536
PZ
5412 rcu_assign_pointer(event->rb, rb);
5413
5414 if (old_rb) {
5415 ring_buffer_put(old_rb);
5416 /*
5417 * Since we detached before setting the new rb, so that we
5418 * could attach the new rb, we could have missed a wakeup.
5419 * Provide it now.
5420 */
5421 wake_up_all(&event->waitq);
5422 }
10c6db11
PZ
5423}
5424
5425static void ring_buffer_wakeup(struct perf_event *event)
5426{
5427 struct ring_buffer *rb;
5428
5429 rcu_read_lock();
5430 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5431 if (rb) {
5432 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5433 wake_up_all(&event->waitq);
5434 }
10c6db11
PZ
5435 rcu_read_unlock();
5436}
5437
fdc26706 5438struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5439{
76369139 5440 struct ring_buffer *rb;
7b732a75 5441
ac9721f3 5442 rcu_read_lock();
76369139
FW
5443 rb = rcu_dereference(event->rb);
5444 if (rb) {
fecb8ed2 5445 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5446 rb = NULL;
ac9721f3
PZ
5447 }
5448 rcu_read_unlock();
5449
76369139 5450 return rb;
ac9721f3
PZ
5451}
5452
fdc26706 5453void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5454{
fecb8ed2 5455 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5456 return;
7b732a75 5457
9bb5d40c 5458 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5459
76369139 5460 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5461}
5462
5463static void perf_mmap_open(struct vm_area_struct *vma)
5464{
cdd6c482 5465 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5466
cdd6c482 5467 atomic_inc(&event->mmap_count);
9bb5d40c 5468 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5469
45bfb2e5
PZ
5470 if (vma->vm_pgoff)
5471 atomic_inc(&event->rb->aux_mmap_count);
5472
1e0fb9ec 5473 if (event->pmu->event_mapped)
bfe33492 5474 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5475}
5476
95ff4ca2
AS
5477static void perf_pmu_output_stop(struct perf_event *event);
5478
9bb5d40c
PZ
5479/*
5480 * A buffer can be mmap()ed multiple times; either directly through the same
5481 * event, or through other events by use of perf_event_set_output().
5482 *
5483 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5484 * the buffer here, where we still have a VM context. This means we need
5485 * to detach all events redirecting to us.
5486 */
7b732a75
PZ
5487static void perf_mmap_close(struct vm_area_struct *vma)
5488{
cdd6c482 5489 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5490
b69cf536 5491 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5492 struct user_struct *mmap_user = rb->mmap_user;
5493 int mmap_locked = rb->mmap_locked;
5494 unsigned long size = perf_data_size(rb);
789f90fc 5495
1e0fb9ec 5496 if (event->pmu->event_unmapped)
bfe33492 5497 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5498
45bfb2e5
PZ
5499 /*
5500 * rb->aux_mmap_count will always drop before rb->mmap_count and
5501 * event->mmap_count, so it is ok to use event->mmap_mutex to
5502 * serialize with perf_mmap here.
5503 */
5504 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5505 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5506 /*
5507 * Stop all AUX events that are writing to this buffer,
5508 * so that we can free its AUX pages and corresponding PMU
5509 * data. Note that after rb::aux_mmap_count dropped to zero,
5510 * they won't start any more (see perf_aux_output_begin()).
5511 */
5512 perf_pmu_output_stop(event);
5513
5514 /* now it's safe to free the pages */
45bfb2e5 5515 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
70f8a3ca 5516 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5517
95ff4ca2 5518 /* this has to be the last one */
45bfb2e5 5519 rb_free_aux(rb);
ca3bb3d0 5520 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5521
45bfb2e5
PZ
5522 mutex_unlock(&event->mmap_mutex);
5523 }
5524
9bb5d40c
PZ
5525 atomic_dec(&rb->mmap_count);
5526
5527 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5528 goto out_put;
9bb5d40c 5529
b69cf536 5530 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5531 mutex_unlock(&event->mmap_mutex);
5532
5533 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5534 if (atomic_read(&rb->mmap_count))
5535 goto out_put;
ac9721f3 5536
9bb5d40c
PZ
5537 /*
5538 * No other mmap()s, detach from all other events that might redirect
5539 * into the now unreachable buffer. Somewhat complicated by the
5540 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5541 */
5542again:
5543 rcu_read_lock();
5544 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5545 if (!atomic_long_inc_not_zero(&event->refcount)) {
5546 /*
5547 * This event is en-route to free_event() which will
5548 * detach it and remove it from the list.
5549 */
5550 continue;
5551 }
5552 rcu_read_unlock();
789f90fc 5553
9bb5d40c
PZ
5554 mutex_lock(&event->mmap_mutex);
5555 /*
5556 * Check we didn't race with perf_event_set_output() which can
5557 * swizzle the rb from under us while we were waiting to
5558 * acquire mmap_mutex.
5559 *
5560 * If we find a different rb; ignore this event, a next
5561 * iteration will no longer find it on the list. We have to
5562 * still restart the iteration to make sure we're not now
5563 * iterating the wrong list.
5564 */
b69cf536
PZ
5565 if (event->rb == rb)
5566 ring_buffer_attach(event, NULL);
5567
cdd6c482 5568 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5569 put_event(event);
ac9721f3 5570
9bb5d40c
PZ
5571 /*
5572 * Restart the iteration; either we're on the wrong list or
5573 * destroyed its integrity by doing a deletion.
5574 */
5575 goto again;
7b732a75 5576 }
9bb5d40c
PZ
5577 rcu_read_unlock();
5578
5579 /*
5580 * It could be there's still a few 0-ref events on the list; they'll
5581 * get cleaned up by free_event() -- they'll also still have their
5582 * ref on the rb and will free it whenever they are done with it.
5583 *
5584 * Aside from that, this buffer is 'fully' detached and unmapped,
5585 * undo the VM accounting.
5586 */
5587
5588 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
70f8a3ca 5589 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5590 free_uid(mmap_user);
5591
b69cf536 5592out_put:
9bb5d40c 5593 ring_buffer_put(rb); /* could be last */
37d81828
PM
5594}
5595
f0f37e2f 5596static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5597 .open = perf_mmap_open,
fca0c116 5598 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5599 .fault = perf_mmap_fault,
5600 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5601};
5602
5603static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5604{
cdd6c482 5605 struct perf_event *event = file->private_data;
22a4f650 5606 unsigned long user_locked, user_lock_limit;
789f90fc 5607 struct user_struct *user = current_user();
22a4f650 5608 unsigned long locked, lock_limit;
45bfb2e5 5609 struct ring_buffer *rb = NULL;
7b732a75
PZ
5610 unsigned long vma_size;
5611 unsigned long nr_pages;
45bfb2e5 5612 long user_extra = 0, extra = 0;
d57e34fd 5613 int ret = 0, flags = 0;
37d81828 5614
c7920614
PZ
5615 /*
5616 * Don't allow mmap() of inherited per-task counters. This would
5617 * create a performance issue due to all children writing to the
76369139 5618 * same rb.
c7920614
PZ
5619 */
5620 if (event->cpu == -1 && event->attr.inherit)
5621 return -EINVAL;
5622
43a21ea8 5623 if (!(vma->vm_flags & VM_SHARED))
37d81828 5624 return -EINVAL;
7b732a75
PZ
5625
5626 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5627
5628 if (vma->vm_pgoff == 0) {
5629 nr_pages = (vma_size / PAGE_SIZE) - 1;
5630 } else {
5631 /*
5632 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5633 * mapped, all subsequent mappings should have the same size
5634 * and offset. Must be above the normal perf buffer.
5635 */
5636 u64 aux_offset, aux_size;
5637
5638 if (!event->rb)
5639 return -EINVAL;
5640
5641 nr_pages = vma_size / PAGE_SIZE;
5642
5643 mutex_lock(&event->mmap_mutex);
5644 ret = -EINVAL;
5645
5646 rb = event->rb;
5647 if (!rb)
5648 goto aux_unlock;
5649
6aa7de05
MR
5650 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5651 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5652
5653 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5654 goto aux_unlock;
5655
5656 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5657 goto aux_unlock;
5658
5659 /* already mapped with a different offset */
5660 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5661 goto aux_unlock;
5662
5663 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5664 goto aux_unlock;
5665
5666 /* already mapped with a different size */
5667 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5668 goto aux_unlock;
5669
5670 if (!is_power_of_2(nr_pages))
5671 goto aux_unlock;
5672
5673 if (!atomic_inc_not_zero(&rb->mmap_count))
5674 goto aux_unlock;
5675
5676 if (rb_has_aux(rb)) {
5677 atomic_inc(&rb->aux_mmap_count);
5678 ret = 0;
5679 goto unlock;
5680 }
5681
5682 atomic_set(&rb->aux_mmap_count, 1);
5683 user_extra = nr_pages;
5684
5685 goto accounting;
5686 }
7b732a75 5687
7730d865 5688 /*
76369139 5689 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5690 * can do bitmasks instead of modulo.
5691 */
2ed11312 5692 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5693 return -EINVAL;
5694
7b732a75 5695 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5696 return -EINVAL;
5697
cdd6c482 5698 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5699again:
cdd6c482 5700 mutex_lock(&event->mmap_mutex);
76369139 5701 if (event->rb) {
9bb5d40c 5702 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5703 ret = -EINVAL;
9bb5d40c
PZ
5704 goto unlock;
5705 }
5706
5707 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5708 /*
5709 * Raced against perf_mmap_close() through
5710 * perf_event_set_output(). Try again, hope for better
5711 * luck.
5712 */
5713 mutex_unlock(&event->mmap_mutex);
5714 goto again;
5715 }
5716
ebb3c4c4
PZ
5717 goto unlock;
5718 }
5719
789f90fc 5720 user_extra = nr_pages + 1;
45bfb2e5
PZ
5721
5722accounting:
cdd6c482 5723 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5724
5725 /*
5726 * Increase the limit linearly with more CPUs:
5727 */
5728 user_lock_limit *= num_online_cpus();
5729
789f90fc 5730 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5731
789f90fc
PZ
5732 if (user_locked > user_lock_limit)
5733 extra = user_locked - user_lock_limit;
7b732a75 5734
78d7d407 5735 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5736 lock_limit >>= PAGE_SHIFT;
70f8a3ca 5737 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 5738
459ec28a
IM
5739 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5740 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5741 ret = -EPERM;
5742 goto unlock;
5743 }
7b732a75 5744
45bfb2e5 5745 WARN_ON(!rb && event->rb);
906010b2 5746
d57e34fd 5747 if (vma->vm_flags & VM_WRITE)
76369139 5748 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5749
76369139 5750 if (!rb) {
45bfb2e5
PZ
5751 rb = rb_alloc(nr_pages,
5752 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5753 event->cpu, flags);
26cb63ad 5754
45bfb2e5
PZ
5755 if (!rb) {
5756 ret = -ENOMEM;
5757 goto unlock;
5758 }
43a21ea8 5759
45bfb2e5
PZ
5760 atomic_set(&rb->mmap_count, 1);
5761 rb->mmap_user = get_current_user();
5762 rb->mmap_locked = extra;
26cb63ad 5763
45bfb2e5 5764 ring_buffer_attach(event, rb);
ac9721f3 5765
45bfb2e5
PZ
5766 perf_event_init_userpage(event);
5767 perf_event_update_userpage(event);
5768 } else {
1a594131
AS
5769 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5770 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5771 if (!ret)
5772 rb->aux_mmap_locked = extra;
5773 }
9a0f05cb 5774
ebb3c4c4 5775unlock:
45bfb2e5
PZ
5776 if (!ret) {
5777 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 5778 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 5779
ac9721f3 5780 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5781 } else if (rb) {
5782 atomic_dec(&rb->mmap_count);
5783 }
5784aux_unlock:
cdd6c482 5785 mutex_unlock(&event->mmap_mutex);
37d81828 5786
9bb5d40c
PZ
5787 /*
5788 * Since pinned accounting is per vm we cannot allow fork() to copy our
5789 * vma.
5790 */
26cb63ad 5791 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5792 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5793
1e0fb9ec 5794 if (event->pmu->event_mapped)
bfe33492 5795 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5796
7b732a75 5797 return ret;
37d81828
PM
5798}
5799
3c446b3d
PZ
5800static int perf_fasync(int fd, struct file *filp, int on)
5801{
496ad9aa 5802 struct inode *inode = file_inode(filp);
cdd6c482 5803 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5804 int retval;
5805
5955102c 5806 inode_lock(inode);
cdd6c482 5807 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5808 inode_unlock(inode);
3c446b3d
PZ
5809
5810 if (retval < 0)
5811 return retval;
5812
5813 return 0;
5814}
5815
0793a61d 5816static const struct file_operations perf_fops = {
3326c1ce 5817 .llseek = no_llseek,
0793a61d
TG
5818 .release = perf_release,
5819 .read = perf_read,
5820 .poll = perf_poll,
d859e29f 5821 .unlocked_ioctl = perf_ioctl,
b3f20785 5822 .compat_ioctl = perf_compat_ioctl,
37d81828 5823 .mmap = perf_mmap,
3c446b3d 5824 .fasync = perf_fasync,
0793a61d
TG
5825};
5826
925d519a 5827/*
cdd6c482 5828 * Perf event wakeup
925d519a
PZ
5829 *
5830 * If there's data, ensure we set the poll() state and publish everything
5831 * to user-space before waking everybody up.
5832 */
5833
fed66e2c
PZ
5834static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5835{
5836 /* only the parent has fasync state */
5837 if (event->parent)
5838 event = event->parent;
5839 return &event->fasync;
5840}
5841
cdd6c482 5842void perf_event_wakeup(struct perf_event *event)
925d519a 5843{
10c6db11 5844 ring_buffer_wakeup(event);
4c9e2542 5845
cdd6c482 5846 if (event->pending_kill) {
fed66e2c 5847 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5848 event->pending_kill = 0;
4c9e2542 5849 }
925d519a
PZ
5850}
5851
1d54ad94
PZ
5852static void perf_pending_event_disable(struct perf_event *event)
5853{
5854 int cpu = READ_ONCE(event->pending_disable);
5855
5856 if (cpu < 0)
5857 return;
5858
5859 if (cpu == smp_processor_id()) {
5860 WRITE_ONCE(event->pending_disable, -1);
5861 perf_event_disable_local(event);
5862 return;
5863 }
5864
5865 /*
5866 * CPU-A CPU-B
5867 *
5868 * perf_event_disable_inatomic()
5869 * @pending_disable = CPU-A;
5870 * irq_work_queue();
5871 *
5872 * sched-out
5873 * @pending_disable = -1;
5874 *
5875 * sched-in
5876 * perf_event_disable_inatomic()
5877 * @pending_disable = CPU-B;
5878 * irq_work_queue(); // FAILS
5879 *
5880 * irq_work_run()
5881 * perf_pending_event()
5882 *
5883 * But the event runs on CPU-B and wants disabling there.
5884 */
5885 irq_work_queue_on(&event->pending, cpu);
5886}
5887
e360adbe 5888static void perf_pending_event(struct irq_work *entry)
79f14641 5889{
1d54ad94 5890 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
5891 int rctx;
5892
5893 rctx = perf_swevent_get_recursion_context();
5894 /*
5895 * If we 'fail' here, that's OK, it means recursion is already disabled
5896 * and we won't recurse 'further'.
5897 */
79f14641 5898
1d54ad94 5899 perf_pending_event_disable(event);
79f14641 5900
cdd6c482
IM
5901 if (event->pending_wakeup) {
5902 event->pending_wakeup = 0;
5903 perf_event_wakeup(event);
79f14641 5904 }
d525211f
PZ
5905
5906 if (rctx >= 0)
5907 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5908}
5909
39447b38
ZY
5910/*
5911 * We assume there is only KVM supporting the callbacks.
5912 * Later on, we might change it to a list if there is
5913 * another virtualization implementation supporting the callbacks.
5914 */
5915struct perf_guest_info_callbacks *perf_guest_cbs;
5916
5917int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5918{
5919 perf_guest_cbs = cbs;
5920 return 0;
5921}
5922EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5923
5924int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5925{
5926 perf_guest_cbs = NULL;
5927 return 0;
5928}
5929EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5930
4018994f
JO
5931static void
5932perf_output_sample_regs(struct perf_output_handle *handle,
5933 struct pt_regs *regs, u64 mask)
5934{
5935 int bit;
29dd3288 5936 DECLARE_BITMAP(_mask, 64);
4018994f 5937
29dd3288
MS
5938 bitmap_from_u64(_mask, mask);
5939 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5940 u64 val;
5941
5942 val = perf_reg_value(regs, bit);
5943 perf_output_put(handle, val);
5944 }
5945}
5946
60e2364e 5947static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5948 struct pt_regs *regs,
5949 struct pt_regs *regs_user_copy)
4018994f 5950{
88a7c26a
AL
5951 if (user_mode(regs)) {
5952 regs_user->abi = perf_reg_abi(current);
2565711f 5953 regs_user->regs = regs;
085ebfe9 5954 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 5955 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5956 } else {
5957 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5958 regs_user->regs = NULL;
4018994f
JO
5959 }
5960}
5961
60e2364e
SE
5962static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5963 struct pt_regs *regs)
5964{
5965 regs_intr->regs = regs;
5966 regs_intr->abi = perf_reg_abi(current);
5967}
5968
5969
c5ebcedb
JO
5970/*
5971 * Get remaining task size from user stack pointer.
5972 *
5973 * It'd be better to take stack vma map and limit this more
5974 * precisly, but there's no way to get it safely under interrupt,
5975 * so using TASK_SIZE as limit.
5976 */
5977static u64 perf_ustack_task_size(struct pt_regs *regs)
5978{
5979 unsigned long addr = perf_user_stack_pointer(regs);
5980
5981 if (!addr || addr >= TASK_SIZE)
5982 return 0;
5983
5984 return TASK_SIZE - addr;
5985}
5986
5987static u16
5988perf_sample_ustack_size(u16 stack_size, u16 header_size,
5989 struct pt_regs *regs)
5990{
5991 u64 task_size;
5992
5993 /* No regs, no stack pointer, no dump. */
5994 if (!regs)
5995 return 0;
5996
5997 /*
5998 * Check if we fit in with the requested stack size into the:
5999 * - TASK_SIZE
6000 * If we don't, we limit the size to the TASK_SIZE.
6001 *
6002 * - remaining sample size
6003 * If we don't, we customize the stack size to
6004 * fit in to the remaining sample size.
6005 */
6006
6007 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6008 stack_size = min(stack_size, (u16) task_size);
6009
6010 /* Current header size plus static size and dynamic size. */
6011 header_size += 2 * sizeof(u64);
6012
6013 /* Do we fit in with the current stack dump size? */
6014 if ((u16) (header_size + stack_size) < header_size) {
6015 /*
6016 * If we overflow the maximum size for the sample,
6017 * we customize the stack dump size to fit in.
6018 */
6019 stack_size = USHRT_MAX - header_size - sizeof(u64);
6020 stack_size = round_up(stack_size, sizeof(u64));
6021 }
6022
6023 return stack_size;
6024}
6025
6026static void
6027perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6028 struct pt_regs *regs)
6029{
6030 /* Case of a kernel thread, nothing to dump */
6031 if (!regs) {
6032 u64 size = 0;
6033 perf_output_put(handle, size);
6034 } else {
6035 unsigned long sp;
6036 unsigned int rem;
6037 u64 dyn_size;
02e18447 6038 mm_segment_t fs;
c5ebcedb
JO
6039
6040 /*
6041 * We dump:
6042 * static size
6043 * - the size requested by user or the best one we can fit
6044 * in to the sample max size
6045 * data
6046 * - user stack dump data
6047 * dynamic size
6048 * - the actual dumped size
6049 */
6050
6051 /* Static size. */
6052 perf_output_put(handle, dump_size);
6053
6054 /* Data. */
6055 sp = perf_user_stack_pointer(regs);
02e18447
YC
6056 fs = get_fs();
6057 set_fs(USER_DS);
c5ebcedb 6058 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6059 set_fs(fs);
c5ebcedb
JO
6060 dyn_size = dump_size - rem;
6061
6062 perf_output_skip(handle, rem);
6063
6064 /* Dynamic size. */
6065 perf_output_put(handle, dyn_size);
6066 }
6067}
6068
c980d109
ACM
6069static void __perf_event_header__init_id(struct perf_event_header *header,
6070 struct perf_sample_data *data,
6071 struct perf_event *event)
6844c09d
ACM
6072{
6073 u64 sample_type = event->attr.sample_type;
6074
6075 data->type = sample_type;
6076 header->size += event->id_header_size;
6077
6078 if (sample_type & PERF_SAMPLE_TID) {
6079 /* namespace issues */
6080 data->tid_entry.pid = perf_event_pid(event, current);
6081 data->tid_entry.tid = perf_event_tid(event, current);
6082 }
6083
6084 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6085 data->time = perf_event_clock(event);
6844c09d 6086
ff3d527c 6087 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6088 data->id = primary_event_id(event);
6089
6090 if (sample_type & PERF_SAMPLE_STREAM_ID)
6091 data->stream_id = event->id;
6092
6093 if (sample_type & PERF_SAMPLE_CPU) {
6094 data->cpu_entry.cpu = raw_smp_processor_id();
6095 data->cpu_entry.reserved = 0;
6096 }
6097}
6098
76369139
FW
6099void perf_event_header__init_id(struct perf_event_header *header,
6100 struct perf_sample_data *data,
6101 struct perf_event *event)
c980d109
ACM
6102{
6103 if (event->attr.sample_id_all)
6104 __perf_event_header__init_id(header, data, event);
6105}
6106
6107static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6108 struct perf_sample_data *data)
6109{
6110 u64 sample_type = data->type;
6111
6112 if (sample_type & PERF_SAMPLE_TID)
6113 perf_output_put(handle, data->tid_entry);
6114
6115 if (sample_type & PERF_SAMPLE_TIME)
6116 perf_output_put(handle, data->time);
6117
6118 if (sample_type & PERF_SAMPLE_ID)
6119 perf_output_put(handle, data->id);
6120
6121 if (sample_type & PERF_SAMPLE_STREAM_ID)
6122 perf_output_put(handle, data->stream_id);
6123
6124 if (sample_type & PERF_SAMPLE_CPU)
6125 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6126
6127 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6128 perf_output_put(handle, data->id);
c980d109
ACM
6129}
6130
76369139
FW
6131void perf_event__output_id_sample(struct perf_event *event,
6132 struct perf_output_handle *handle,
6133 struct perf_sample_data *sample)
c980d109
ACM
6134{
6135 if (event->attr.sample_id_all)
6136 __perf_event__output_id_sample(handle, sample);
6137}
6138
3dab77fb 6139static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6140 struct perf_event *event,
6141 u64 enabled, u64 running)
3dab77fb 6142{
cdd6c482 6143 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6144 u64 values[4];
6145 int n = 0;
6146
b5e58793 6147 values[n++] = perf_event_count(event);
3dab77fb 6148 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6149 values[n++] = enabled +
cdd6c482 6150 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6151 }
6152 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6153 values[n++] = running +
cdd6c482 6154 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6155 }
6156 if (read_format & PERF_FORMAT_ID)
cdd6c482 6157 values[n++] = primary_event_id(event);
3dab77fb 6158
76369139 6159 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6160}
6161
3dab77fb 6162static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6163 struct perf_event *event,
6164 u64 enabled, u64 running)
3dab77fb 6165{
cdd6c482
IM
6166 struct perf_event *leader = event->group_leader, *sub;
6167 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6168 u64 values[5];
6169 int n = 0;
6170
6171 values[n++] = 1 + leader->nr_siblings;
6172
6173 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6174 values[n++] = enabled;
3dab77fb
PZ
6175
6176 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6177 values[n++] = running;
3dab77fb 6178
9e5b127d
PZ
6179 if ((leader != event) &&
6180 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6181 leader->pmu->read(leader);
6182
b5e58793 6183 values[n++] = perf_event_count(leader);
3dab77fb 6184 if (read_format & PERF_FORMAT_ID)
cdd6c482 6185 values[n++] = primary_event_id(leader);
3dab77fb 6186
76369139 6187 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6188
edb39592 6189 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6190 n = 0;
6191
6f5ab001
JO
6192 if ((sub != event) &&
6193 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6194 sub->pmu->read(sub);
6195
b5e58793 6196 values[n++] = perf_event_count(sub);
3dab77fb 6197 if (read_format & PERF_FORMAT_ID)
cdd6c482 6198 values[n++] = primary_event_id(sub);
3dab77fb 6199
76369139 6200 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6201 }
6202}
6203
eed01528
SE
6204#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6205 PERF_FORMAT_TOTAL_TIME_RUNNING)
6206
ba5213ae
PZ
6207/*
6208 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6209 *
6210 * The problem is that its both hard and excessively expensive to iterate the
6211 * child list, not to mention that its impossible to IPI the children running
6212 * on another CPU, from interrupt/NMI context.
6213 */
3dab77fb 6214static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6215 struct perf_event *event)
3dab77fb 6216{
e3f3541c 6217 u64 enabled = 0, running = 0, now;
eed01528
SE
6218 u64 read_format = event->attr.read_format;
6219
6220 /*
6221 * compute total_time_enabled, total_time_running
6222 * based on snapshot values taken when the event
6223 * was last scheduled in.
6224 *
6225 * we cannot simply called update_context_time()
6226 * because of locking issue as we are called in
6227 * NMI context
6228 */
c4794295 6229 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6230 calc_timer_values(event, &now, &enabled, &running);
eed01528 6231
cdd6c482 6232 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6233 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6234 else
eed01528 6235 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6236}
6237
5622f295
MM
6238void perf_output_sample(struct perf_output_handle *handle,
6239 struct perf_event_header *header,
6240 struct perf_sample_data *data,
cdd6c482 6241 struct perf_event *event)
5622f295
MM
6242{
6243 u64 sample_type = data->type;
6244
6245 perf_output_put(handle, *header);
6246
ff3d527c
AH
6247 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6248 perf_output_put(handle, data->id);
6249
5622f295
MM
6250 if (sample_type & PERF_SAMPLE_IP)
6251 perf_output_put(handle, data->ip);
6252
6253 if (sample_type & PERF_SAMPLE_TID)
6254 perf_output_put(handle, data->tid_entry);
6255
6256 if (sample_type & PERF_SAMPLE_TIME)
6257 perf_output_put(handle, data->time);
6258
6259 if (sample_type & PERF_SAMPLE_ADDR)
6260 perf_output_put(handle, data->addr);
6261
6262 if (sample_type & PERF_SAMPLE_ID)
6263 perf_output_put(handle, data->id);
6264
6265 if (sample_type & PERF_SAMPLE_STREAM_ID)
6266 perf_output_put(handle, data->stream_id);
6267
6268 if (sample_type & PERF_SAMPLE_CPU)
6269 perf_output_put(handle, data->cpu_entry);
6270
6271 if (sample_type & PERF_SAMPLE_PERIOD)
6272 perf_output_put(handle, data->period);
6273
6274 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6275 perf_output_read(handle, event);
5622f295
MM
6276
6277 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6278 int size = 1;
5622f295 6279
99e818cc
JO
6280 size += data->callchain->nr;
6281 size *= sizeof(u64);
6282 __output_copy(handle, data->callchain, size);
5622f295
MM
6283 }
6284
6285 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6286 struct perf_raw_record *raw = data->raw;
6287
6288 if (raw) {
6289 struct perf_raw_frag *frag = &raw->frag;
6290
6291 perf_output_put(handle, raw->size);
6292 do {
6293 if (frag->copy) {
6294 __output_custom(handle, frag->copy,
6295 frag->data, frag->size);
6296 } else {
6297 __output_copy(handle, frag->data,
6298 frag->size);
6299 }
6300 if (perf_raw_frag_last(frag))
6301 break;
6302 frag = frag->next;
6303 } while (1);
6304 if (frag->pad)
6305 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6306 } else {
6307 struct {
6308 u32 size;
6309 u32 data;
6310 } raw = {
6311 .size = sizeof(u32),
6312 .data = 0,
6313 };
6314 perf_output_put(handle, raw);
6315 }
6316 }
a7ac67ea 6317
bce38cd5
SE
6318 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6319 if (data->br_stack) {
6320 size_t size;
6321
6322 size = data->br_stack->nr
6323 * sizeof(struct perf_branch_entry);
6324
6325 perf_output_put(handle, data->br_stack->nr);
6326 perf_output_copy(handle, data->br_stack->entries, size);
6327 } else {
6328 /*
6329 * we always store at least the value of nr
6330 */
6331 u64 nr = 0;
6332 perf_output_put(handle, nr);
6333 }
6334 }
4018994f
JO
6335
6336 if (sample_type & PERF_SAMPLE_REGS_USER) {
6337 u64 abi = data->regs_user.abi;
6338
6339 /*
6340 * If there are no regs to dump, notice it through
6341 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6342 */
6343 perf_output_put(handle, abi);
6344
6345 if (abi) {
6346 u64 mask = event->attr.sample_regs_user;
6347 perf_output_sample_regs(handle,
6348 data->regs_user.regs,
6349 mask);
6350 }
6351 }
c5ebcedb 6352
a5cdd40c 6353 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6354 perf_output_sample_ustack(handle,
6355 data->stack_user_size,
6356 data->regs_user.regs);
a5cdd40c 6357 }
c3feedf2
AK
6358
6359 if (sample_type & PERF_SAMPLE_WEIGHT)
6360 perf_output_put(handle, data->weight);
d6be9ad6
SE
6361
6362 if (sample_type & PERF_SAMPLE_DATA_SRC)
6363 perf_output_put(handle, data->data_src.val);
a5cdd40c 6364
fdfbbd07
AK
6365 if (sample_type & PERF_SAMPLE_TRANSACTION)
6366 perf_output_put(handle, data->txn);
6367
60e2364e
SE
6368 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6369 u64 abi = data->regs_intr.abi;
6370 /*
6371 * If there are no regs to dump, notice it through
6372 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6373 */
6374 perf_output_put(handle, abi);
6375
6376 if (abi) {
6377 u64 mask = event->attr.sample_regs_intr;
6378
6379 perf_output_sample_regs(handle,
6380 data->regs_intr.regs,
6381 mask);
6382 }
6383 }
6384
fc7ce9c7
KL
6385 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6386 perf_output_put(handle, data->phys_addr);
6387
a5cdd40c
PZ
6388 if (!event->attr.watermark) {
6389 int wakeup_events = event->attr.wakeup_events;
6390
6391 if (wakeup_events) {
6392 struct ring_buffer *rb = handle->rb;
6393 int events = local_inc_return(&rb->events);
6394
6395 if (events >= wakeup_events) {
6396 local_sub(wakeup_events, &rb->events);
6397 local_inc(&rb->wakeup);
6398 }
6399 }
6400 }
5622f295
MM
6401}
6402
fc7ce9c7
KL
6403static u64 perf_virt_to_phys(u64 virt)
6404{
6405 u64 phys_addr = 0;
6406 struct page *p = NULL;
6407
6408 if (!virt)
6409 return 0;
6410
6411 if (virt >= TASK_SIZE) {
6412 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6413 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6414 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6415 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6416 } else {
6417 /*
6418 * Walking the pages tables for user address.
6419 * Interrupts are disabled, so it prevents any tear down
6420 * of the page tables.
6421 * Try IRQ-safe __get_user_pages_fast first.
6422 * If failed, leave phys_addr as 0.
6423 */
6424 if ((current->mm != NULL) &&
6425 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6426 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6427
6428 if (p)
6429 put_page(p);
6430 }
6431
6432 return phys_addr;
6433}
6434
99e818cc
JO
6435static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6436
6cbc304f 6437struct perf_callchain_entry *
8cf7e0e2
JO
6438perf_callchain(struct perf_event *event, struct pt_regs *regs)
6439{
6440 bool kernel = !event->attr.exclude_callchain_kernel;
6441 bool user = !event->attr.exclude_callchain_user;
6442 /* Disallow cross-task user callchains. */
6443 bool crosstask = event->ctx->task && event->ctx->task != current;
6444 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6445 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6446
6447 if (!kernel && !user)
99e818cc 6448 return &__empty_callchain;
8cf7e0e2 6449
99e818cc
JO
6450 callchain = get_perf_callchain(regs, 0, kernel, user,
6451 max_stack, crosstask, true);
6452 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6453}
6454
5622f295
MM
6455void perf_prepare_sample(struct perf_event_header *header,
6456 struct perf_sample_data *data,
cdd6c482 6457 struct perf_event *event,
5622f295 6458 struct pt_regs *regs)
7b732a75 6459{
cdd6c482 6460 u64 sample_type = event->attr.sample_type;
7b732a75 6461
cdd6c482 6462 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6463 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6464
6465 header->misc = 0;
6466 header->misc |= perf_misc_flags(regs);
6fab0192 6467
c980d109 6468 __perf_event_header__init_id(header, data, event);
6844c09d 6469
c320c7b7 6470 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6471 data->ip = perf_instruction_pointer(regs);
6472
b23f3325 6473 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6474 int size = 1;
394ee076 6475
6cbc304f
PZ
6476 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6477 data->callchain = perf_callchain(event, regs);
6478
99e818cc 6479 size += data->callchain->nr;
5622f295
MM
6480
6481 header->size += size * sizeof(u64);
394ee076
PZ
6482 }
6483
3a43ce68 6484 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6485 struct perf_raw_record *raw = data->raw;
6486 int size;
6487
6488 if (raw) {
6489 struct perf_raw_frag *frag = &raw->frag;
6490 u32 sum = 0;
6491
6492 do {
6493 sum += frag->size;
6494 if (perf_raw_frag_last(frag))
6495 break;
6496 frag = frag->next;
6497 } while (1);
6498
6499 size = round_up(sum + sizeof(u32), sizeof(u64));
6500 raw->size = size - sizeof(u32);
6501 frag->pad = raw->size - sum;
6502 } else {
6503 size = sizeof(u64);
6504 }
a044560c 6505
7e3f977e 6506 header->size += size;
7f453c24 6507 }
bce38cd5
SE
6508
6509 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6510 int size = sizeof(u64); /* nr */
6511 if (data->br_stack) {
6512 size += data->br_stack->nr
6513 * sizeof(struct perf_branch_entry);
6514 }
6515 header->size += size;
6516 }
4018994f 6517
2565711f 6518 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6519 perf_sample_regs_user(&data->regs_user, regs,
6520 &data->regs_user_copy);
2565711f 6521
4018994f
JO
6522 if (sample_type & PERF_SAMPLE_REGS_USER) {
6523 /* regs dump ABI info */
6524 int size = sizeof(u64);
6525
4018994f
JO
6526 if (data->regs_user.regs) {
6527 u64 mask = event->attr.sample_regs_user;
6528 size += hweight64(mask) * sizeof(u64);
6529 }
6530
6531 header->size += size;
6532 }
c5ebcedb
JO
6533
6534 if (sample_type & PERF_SAMPLE_STACK_USER) {
6535 /*
6536 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6537 * processed as the last one or have additional check added
6538 * in case new sample type is added, because we could eat
6539 * up the rest of the sample size.
6540 */
c5ebcedb
JO
6541 u16 stack_size = event->attr.sample_stack_user;
6542 u16 size = sizeof(u64);
6543
c5ebcedb 6544 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6545 data->regs_user.regs);
c5ebcedb
JO
6546
6547 /*
6548 * If there is something to dump, add space for the dump
6549 * itself and for the field that tells the dynamic size,
6550 * which is how many have been actually dumped.
6551 */
6552 if (stack_size)
6553 size += sizeof(u64) + stack_size;
6554
6555 data->stack_user_size = stack_size;
6556 header->size += size;
6557 }
60e2364e
SE
6558
6559 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6560 /* regs dump ABI info */
6561 int size = sizeof(u64);
6562
6563 perf_sample_regs_intr(&data->regs_intr, regs);
6564
6565 if (data->regs_intr.regs) {
6566 u64 mask = event->attr.sample_regs_intr;
6567
6568 size += hweight64(mask) * sizeof(u64);
6569 }
6570
6571 header->size += size;
6572 }
fc7ce9c7
KL
6573
6574 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6575 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6576}
7f453c24 6577
56201969 6578static __always_inline int
9ecda41a
WN
6579__perf_event_output(struct perf_event *event,
6580 struct perf_sample_data *data,
6581 struct pt_regs *regs,
6582 int (*output_begin)(struct perf_output_handle *,
6583 struct perf_event *,
6584 unsigned int))
5622f295
MM
6585{
6586 struct perf_output_handle handle;
6587 struct perf_event_header header;
56201969 6588 int err;
689802b2 6589
927c7a9e
FW
6590 /* protect the callchain buffers */
6591 rcu_read_lock();
6592
cdd6c482 6593 perf_prepare_sample(&header, data, event, regs);
5c148194 6594
56201969
ACM
6595 err = output_begin(&handle, event, header.size);
6596 if (err)
927c7a9e 6597 goto exit;
0322cd6e 6598
cdd6c482 6599 perf_output_sample(&handle, &header, data, event);
f413cdb8 6600
8a057d84 6601 perf_output_end(&handle);
927c7a9e
FW
6602
6603exit:
6604 rcu_read_unlock();
56201969 6605 return err;
0322cd6e
PZ
6606}
6607
9ecda41a
WN
6608void
6609perf_event_output_forward(struct perf_event *event,
6610 struct perf_sample_data *data,
6611 struct pt_regs *regs)
6612{
6613 __perf_event_output(event, data, regs, perf_output_begin_forward);
6614}
6615
6616void
6617perf_event_output_backward(struct perf_event *event,
6618 struct perf_sample_data *data,
6619 struct pt_regs *regs)
6620{
6621 __perf_event_output(event, data, regs, perf_output_begin_backward);
6622}
6623
56201969 6624int
9ecda41a
WN
6625perf_event_output(struct perf_event *event,
6626 struct perf_sample_data *data,
6627 struct pt_regs *regs)
6628{
56201969 6629 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6630}
6631
38b200d6 6632/*
cdd6c482 6633 * read event_id
38b200d6
PZ
6634 */
6635
6636struct perf_read_event {
6637 struct perf_event_header header;
6638
6639 u32 pid;
6640 u32 tid;
38b200d6
PZ
6641};
6642
6643static void
cdd6c482 6644perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6645 struct task_struct *task)
6646{
6647 struct perf_output_handle handle;
c980d109 6648 struct perf_sample_data sample;
dfc65094 6649 struct perf_read_event read_event = {
38b200d6 6650 .header = {
cdd6c482 6651 .type = PERF_RECORD_READ,
38b200d6 6652 .misc = 0,
c320c7b7 6653 .size = sizeof(read_event) + event->read_size,
38b200d6 6654 },
cdd6c482
IM
6655 .pid = perf_event_pid(event, task),
6656 .tid = perf_event_tid(event, task),
38b200d6 6657 };
3dab77fb 6658 int ret;
38b200d6 6659
c980d109 6660 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6661 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6662 if (ret)
6663 return;
6664
dfc65094 6665 perf_output_put(&handle, read_event);
cdd6c482 6666 perf_output_read(&handle, event);
c980d109 6667 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6668
38b200d6
PZ
6669 perf_output_end(&handle);
6670}
6671
aab5b71e 6672typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6673
6674static void
aab5b71e
PZ
6675perf_iterate_ctx(struct perf_event_context *ctx,
6676 perf_iterate_f output,
b73e4fef 6677 void *data, bool all)
52d857a8
JO
6678{
6679 struct perf_event *event;
6680
6681 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6682 if (!all) {
6683 if (event->state < PERF_EVENT_STATE_INACTIVE)
6684 continue;
6685 if (!event_filter_match(event))
6686 continue;
6687 }
6688
67516844 6689 output(event, data);
52d857a8
JO
6690 }
6691}
6692
aab5b71e 6693static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6694{
6695 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6696 struct perf_event *event;
6697
6698 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6699 /*
6700 * Skip events that are not fully formed yet; ensure that
6701 * if we observe event->ctx, both event and ctx will be
6702 * complete enough. See perf_install_in_context().
6703 */
6704 if (!smp_load_acquire(&event->ctx))
6705 continue;
6706
f2fb6bef
KL
6707 if (event->state < PERF_EVENT_STATE_INACTIVE)
6708 continue;
6709 if (!event_filter_match(event))
6710 continue;
6711 output(event, data);
6712 }
6713}
6714
aab5b71e
PZ
6715/*
6716 * Iterate all events that need to receive side-band events.
6717 *
6718 * For new callers; ensure that account_pmu_sb_event() includes
6719 * your event, otherwise it might not get delivered.
6720 */
52d857a8 6721static void
aab5b71e 6722perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6723 struct perf_event_context *task_ctx)
6724{
52d857a8 6725 struct perf_event_context *ctx;
52d857a8
JO
6726 int ctxn;
6727
aab5b71e
PZ
6728 rcu_read_lock();
6729 preempt_disable();
6730
4e93ad60 6731 /*
aab5b71e
PZ
6732 * If we have task_ctx != NULL we only notify the task context itself.
6733 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6734 * context.
6735 */
6736 if (task_ctx) {
aab5b71e
PZ
6737 perf_iterate_ctx(task_ctx, output, data, false);
6738 goto done;
4e93ad60
JO
6739 }
6740
aab5b71e 6741 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6742
6743 for_each_task_context_nr(ctxn) {
52d857a8
JO
6744 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6745 if (ctx)
aab5b71e 6746 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6747 }
aab5b71e 6748done:
f2fb6bef 6749 preempt_enable();
52d857a8 6750 rcu_read_unlock();
95ff4ca2
AS
6751}
6752
375637bc
AS
6753/*
6754 * Clear all file-based filters at exec, they'll have to be
6755 * re-instated when/if these objects are mmapped again.
6756 */
6757static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6758{
6759 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6760 struct perf_addr_filter *filter;
6761 unsigned int restart = 0, count = 0;
6762 unsigned long flags;
6763
6764 if (!has_addr_filter(event))
6765 return;
6766
6767 raw_spin_lock_irqsave(&ifh->lock, flags);
6768 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6769 if (filter->path.dentry) {
c60f83b8
AS
6770 event->addr_filter_ranges[count].start = 0;
6771 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6772 restart++;
6773 }
6774
6775 count++;
6776 }
6777
6778 if (restart)
6779 event->addr_filters_gen++;
6780 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6781
6782 if (restart)
767ae086 6783 perf_event_stop(event, 1);
375637bc
AS
6784}
6785
6786void perf_event_exec(void)
6787{
6788 struct perf_event_context *ctx;
6789 int ctxn;
6790
6791 rcu_read_lock();
6792 for_each_task_context_nr(ctxn) {
6793 ctx = current->perf_event_ctxp[ctxn];
6794 if (!ctx)
6795 continue;
6796
6797 perf_event_enable_on_exec(ctxn);
6798
aab5b71e 6799 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6800 true);
6801 }
6802 rcu_read_unlock();
6803}
6804
95ff4ca2
AS
6805struct remote_output {
6806 struct ring_buffer *rb;
6807 int err;
6808};
6809
6810static void __perf_event_output_stop(struct perf_event *event, void *data)
6811{
6812 struct perf_event *parent = event->parent;
6813 struct remote_output *ro = data;
6814 struct ring_buffer *rb = ro->rb;
375637bc
AS
6815 struct stop_event_data sd = {
6816 .event = event,
6817 };
95ff4ca2
AS
6818
6819 if (!has_aux(event))
6820 return;
6821
6822 if (!parent)
6823 parent = event;
6824
6825 /*
6826 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6827 * ring-buffer, but it will be the child that's actually using it.
6828 *
6829 * We are using event::rb to determine if the event should be stopped,
6830 * however this may race with ring_buffer_attach() (through set_output),
6831 * which will make us skip the event that actually needs to be stopped.
6832 * So ring_buffer_attach() has to stop an aux event before re-assigning
6833 * its rb pointer.
95ff4ca2
AS
6834 */
6835 if (rcu_dereference(parent->rb) == rb)
375637bc 6836 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6837}
6838
6839static int __perf_pmu_output_stop(void *info)
6840{
6841 struct perf_event *event = info;
6842 struct pmu *pmu = event->pmu;
8b6a3fe8 6843 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6844 struct remote_output ro = {
6845 .rb = event->rb,
6846 };
6847
6848 rcu_read_lock();
aab5b71e 6849 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6850 if (cpuctx->task_ctx)
aab5b71e 6851 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6852 &ro, false);
95ff4ca2
AS
6853 rcu_read_unlock();
6854
6855 return ro.err;
6856}
6857
6858static void perf_pmu_output_stop(struct perf_event *event)
6859{
6860 struct perf_event *iter;
6861 int err, cpu;
6862
6863restart:
6864 rcu_read_lock();
6865 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6866 /*
6867 * For per-CPU events, we need to make sure that neither they
6868 * nor their children are running; for cpu==-1 events it's
6869 * sufficient to stop the event itself if it's active, since
6870 * it can't have children.
6871 */
6872 cpu = iter->cpu;
6873 if (cpu == -1)
6874 cpu = READ_ONCE(iter->oncpu);
6875
6876 if (cpu == -1)
6877 continue;
6878
6879 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6880 if (err == -EAGAIN) {
6881 rcu_read_unlock();
6882 goto restart;
6883 }
6884 }
6885 rcu_read_unlock();
52d857a8
JO
6886}
6887
60313ebe 6888/*
9f498cc5
PZ
6889 * task tracking -- fork/exit
6890 *
13d7a241 6891 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6892 */
6893
9f498cc5 6894struct perf_task_event {
3a80b4a3 6895 struct task_struct *task;
cdd6c482 6896 struct perf_event_context *task_ctx;
60313ebe
PZ
6897
6898 struct {
6899 struct perf_event_header header;
6900
6901 u32 pid;
6902 u32 ppid;
9f498cc5
PZ
6903 u32 tid;
6904 u32 ptid;
393b2ad8 6905 u64 time;
cdd6c482 6906 } event_id;
60313ebe
PZ
6907};
6908
67516844
JO
6909static int perf_event_task_match(struct perf_event *event)
6910{
13d7a241
SE
6911 return event->attr.comm || event->attr.mmap ||
6912 event->attr.mmap2 || event->attr.mmap_data ||
6913 event->attr.task;
67516844
JO
6914}
6915
cdd6c482 6916static void perf_event_task_output(struct perf_event *event,
52d857a8 6917 void *data)
60313ebe 6918{
52d857a8 6919 struct perf_task_event *task_event = data;
60313ebe 6920 struct perf_output_handle handle;
c980d109 6921 struct perf_sample_data sample;
9f498cc5 6922 struct task_struct *task = task_event->task;
c980d109 6923 int ret, size = task_event->event_id.header.size;
8bb39f9a 6924
67516844
JO
6925 if (!perf_event_task_match(event))
6926 return;
6927
c980d109 6928 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6929
c980d109 6930 ret = perf_output_begin(&handle, event,
a7ac67ea 6931 task_event->event_id.header.size);
ef60777c 6932 if (ret)
c980d109 6933 goto out;
60313ebe 6934
cdd6c482
IM
6935 task_event->event_id.pid = perf_event_pid(event, task);
6936 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6937
cdd6c482
IM
6938 task_event->event_id.tid = perf_event_tid(event, task);
6939 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6940
34f43927
PZ
6941 task_event->event_id.time = perf_event_clock(event);
6942
cdd6c482 6943 perf_output_put(&handle, task_event->event_id);
393b2ad8 6944
c980d109
ACM
6945 perf_event__output_id_sample(event, &handle, &sample);
6946
60313ebe 6947 perf_output_end(&handle);
c980d109
ACM
6948out:
6949 task_event->event_id.header.size = size;
60313ebe
PZ
6950}
6951
cdd6c482
IM
6952static void perf_event_task(struct task_struct *task,
6953 struct perf_event_context *task_ctx,
3a80b4a3 6954 int new)
60313ebe 6955{
9f498cc5 6956 struct perf_task_event task_event;
60313ebe 6957
cdd6c482
IM
6958 if (!atomic_read(&nr_comm_events) &&
6959 !atomic_read(&nr_mmap_events) &&
6960 !atomic_read(&nr_task_events))
60313ebe
PZ
6961 return;
6962
9f498cc5 6963 task_event = (struct perf_task_event){
3a80b4a3
PZ
6964 .task = task,
6965 .task_ctx = task_ctx,
cdd6c482 6966 .event_id = {
60313ebe 6967 .header = {
cdd6c482 6968 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6969 .misc = 0,
cdd6c482 6970 .size = sizeof(task_event.event_id),
60313ebe 6971 },
573402db
PZ
6972 /* .pid */
6973 /* .ppid */
9f498cc5
PZ
6974 /* .tid */
6975 /* .ptid */
34f43927 6976 /* .time */
60313ebe
PZ
6977 },
6978 };
6979
aab5b71e 6980 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6981 &task_event,
6982 task_ctx);
9f498cc5
PZ
6983}
6984
cdd6c482 6985void perf_event_fork(struct task_struct *task)
9f498cc5 6986{
cdd6c482 6987 perf_event_task(task, NULL, 1);
e4222673 6988 perf_event_namespaces(task);
60313ebe
PZ
6989}
6990
8d1b2d93
PZ
6991/*
6992 * comm tracking
6993 */
6994
6995struct perf_comm_event {
22a4f650
IM
6996 struct task_struct *task;
6997 char *comm;
8d1b2d93
PZ
6998 int comm_size;
6999
7000 struct {
7001 struct perf_event_header header;
7002
7003 u32 pid;
7004 u32 tid;
cdd6c482 7005 } event_id;
8d1b2d93
PZ
7006};
7007
67516844
JO
7008static int perf_event_comm_match(struct perf_event *event)
7009{
7010 return event->attr.comm;
7011}
7012
cdd6c482 7013static void perf_event_comm_output(struct perf_event *event,
52d857a8 7014 void *data)
8d1b2d93 7015{
52d857a8 7016 struct perf_comm_event *comm_event = data;
8d1b2d93 7017 struct perf_output_handle handle;
c980d109 7018 struct perf_sample_data sample;
cdd6c482 7019 int size = comm_event->event_id.header.size;
c980d109
ACM
7020 int ret;
7021
67516844
JO
7022 if (!perf_event_comm_match(event))
7023 return;
7024
c980d109
ACM
7025 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7026 ret = perf_output_begin(&handle, event,
a7ac67ea 7027 comm_event->event_id.header.size);
8d1b2d93
PZ
7028
7029 if (ret)
c980d109 7030 goto out;
8d1b2d93 7031
cdd6c482
IM
7032 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7033 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7034
cdd6c482 7035 perf_output_put(&handle, comm_event->event_id);
76369139 7036 __output_copy(&handle, comm_event->comm,
8d1b2d93 7037 comm_event->comm_size);
c980d109
ACM
7038
7039 perf_event__output_id_sample(event, &handle, &sample);
7040
8d1b2d93 7041 perf_output_end(&handle);
c980d109
ACM
7042out:
7043 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7044}
7045
cdd6c482 7046static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7047{
413ee3b4 7048 char comm[TASK_COMM_LEN];
8d1b2d93 7049 unsigned int size;
8d1b2d93 7050
413ee3b4 7051 memset(comm, 0, sizeof(comm));
96b02d78 7052 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7053 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7054
7055 comm_event->comm = comm;
7056 comm_event->comm_size = size;
7057
cdd6c482 7058 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7059
aab5b71e 7060 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7061 comm_event,
7062 NULL);
8d1b2d93
PZ
7063}
7064
82b89778 7065void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7066{
9ee318a7
PZ
7067 struct perf_comm_event comm_event;
7068
cdd6c482 7069 if (!atomic_read(&nr_comm_events))
9ee318a7 7070 return;
a63eaf34 7071
9ee318a7 7072 comm_event = (struct perf_comm_event){
8d1b2d93 7073 .task = task,
573402db
PZ
7074 /* .comm */
7075 /* .comm_size */
cdd6c482 7076 .event_id = {
573402db 7077 .header = {
cdd6c482 7078 .type = PERF_RECORD_COMM,
82b89778 7079 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7080 /* .size */
7081 },
7082 /* .pid */
7083 /* .tid */
8d1b2d93
PZ
7084 },
7085 };
7086
cdd6c482 7087 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7088}
7089
e4222673
HB
7090/*
7091 * namespaces tracking
7092 */
7093
7094struct perf_namespaces_event {
7095 struct task_struct *task;
7096
7097 struct {
7098 struct perf_event_header header;
7099
7100 u32 pid;
7101 u32 tid;
7102 u64 nr_namespaces;
7103 struct perf_ns_link_info link_info[NR_NAMESPACES];
7104 } event_id;
7105};
7106
7107static int perf_event_namespaces_match(struct perf_event *event)
7108{
7109 return event->attr.namespaces;
7110}
7111
7112static void perf_event_namespaces_output(struct perf_event *event,
7113 void *data)
7114{
7115 struct perf_namespaces_event *namespaces_event = data;
7116 struct perf_output_handle handle;
7117 struct perf_sample_data sample;
34900ec5 7118 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7119 int ret;
7120
7121 if (!perf_event_namespaces_match(event))
7122 return;
7123
7124 perf_event_header__init_id(&namespaces_event->event_id.header,
7125 &sample, event);
7126 ret = perf_output_begin(&handle, event,
7127 namespaces_event->event_id.header.size);
7128 if (ret)
34900ec5 7129 goto out;
e4222673
HB
7130
7131 namespaces_event->event_id.pid = perf_event_pid(event,
7132 namespaces_event->task);
7133 namespaces_event->event_id.tid = perf_event_tid(event,
7134 namespaces_event->task);
7135
7136 perf_output_put(&handle, namespaces_event->event_id);
7137
7138 perf_event__output_id_sample(event, &handle, &sample);
7139
7140 perf_output_end(&handle);
34900ec5
JO
7141out:
7142 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7143}
7144
7145static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7146 struct task_struct *task,
7147 const struct proc_ns_operations *ns_ops)
7148{
7149 struct path ns_path;
7150 struct inode *ns_inode;
7151 void *error;
7152
7153 error = ns_get_path(&ns_path, task, ns_ops);
7154 if (!error) {
7155 ns_inode = ns_path.dentry->d_inode;
7156 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7157 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7158 path_put(&ns_path);
e4222673
HB
7159 }
7160}
7161
7162void perf_event_namespaces(struct task_struct *task)
7163{
7164 struct perf_namespaces_event namespaces_event;
7165 struct perf_ns_link_info *ns_link_info;
7166
7167 if (!atomic_read(&nr_namespaces_events))
7168 return;
7169
7170 namespaces_event = (struct perf_namespaces_event){
7171 .task = task,
7172 .event_id = {
7173 .header = {
7174 .type = PERF_RECORD_NAMESPACES,
7175 .misc = 0,
7176 .size = sizeof(namespaces_event.event_id),
7177 },
7178 /* .pid */
7179 /* .tid */
7180 .nr_namespaces = NR_NAMESPACES,
7181 /* .link_info[NR_NAMESPACES] */
7182 },
7183 };
7184
7185 ns_link_info = namespaces_event.event_id.link_info;
7186
7187 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7188 task, &mntns_operations);
7189
7190#ifdef CONFIG_USER_NS
7191 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7192 task, &userns_operations);
7193#endif
7194#ifdef CONFIG_NET_NS
7195 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7196 task, &netns_operations);
7197#endif
7198#ifdef CONFIG_UTS_NS
7199 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7200 task, &utsns_operations);
7201#endif
7202#ifdef CONFIG_IPC_NS
7203 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7204 task, &ipcns_operations);
7205#endif
7206#ifdef CONFIG_PID_NS
7207 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7208 task, &pidns_operations);
7209#endif
7210#ifdef CONFIG_CGROUPS
7211 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7212 task, &cgroupns_operations);
7213#endif
7214
7215 perf_iterate_sb(perf_event_namespaces_output,
7216 &namespaces_event,
7217 NULL);
7218}
7219
0a4a9391
PZ
7220/*
7221 * mmap tracking
7222 */
7223
7224struct perf_mmap_event {
089dd79d
PZ
7225 struct vm_area_struct *vma;
7226
7227 const char *file_name;
7228 int file_size;
13d7a241
SE
7229 int maj, min;
7230 u64 ino;
7231 u64 ino_generation;
f972eb63 7232 u32 prot, flags;
0a4a9391
PZ
7233
7234 struct {
7235 struct perf_event_header header;
7236
7237 u32 pid;
7238 u32 tid;
7239 u64 start;
7240 u64 len;
7241 u64 pgoff;
cdd6c482 7242 } event_id;
0a4a9391
PZ
7243};
7244
67516844
JO
7245static int perf_event_mmap_match(struct perf_event *event,
7246 void *data)
7247{
7248 struct perf_mmap_event *mmap_event = data;
7249 struct vm_area_struct *vma = mmap_event->vma;
7250 int executable = vma->vm_flags & VM_EXEC;
7251
7252 return (!executable && event->attr.mmap_data) ||
13d7a241 7253 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7254}
7255
cdd6c482 7256static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7257 void *data)
0a4a9391 7258{
52d857a8 7259 struct perf_mmap_event *mmap_event = data;
0a4a9391 7260 struct perf_output_handle handle;
c980d109 7261 struct perf_sample_data sample;
cdd6c482 7262 int size = mmap_event->event_id.header.size;
d9c1bb2f 7263 u32 type = mmap_event->event_id.header.type;
c980d109 7264 int ret;
0a4a9391 7265
67516844
JO
7266 if (!perf_event_mmap_match(event, data))
7267 return;
7268
13d7a241
SE
7269 if (event->attr.mmap2) {
7270 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7271 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7272 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7273 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7274 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7275 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7276 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7277 }
7278
c980d109
ACM
7279 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7280 ret = perf_output_begin(&handle, event,
a7ac67ea 7281 mmap_event->event_id.header.size);
0a4a9391 7282 if (ret)
c980d109 7283 goto out;
0a4a9391 7284
cdd6c482
IM
7285 mmap_event->event_id.pid = perf_event_pid(event, current);
7286 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7287
cdd6c482 7288 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7289
7290 if (event->attr.mmap2) {
7291 perf_output_put(&handle, mmap_event->maj);
7292 perf_output_put(&handle, mmap_event->min);
7293 perf_output_put(&handle, mmap_event->ino);
7294 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7295 perf_output_put(&handle, mmap_event->prot);
7296 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7297 }
7298
76369139 7299 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7300 mmap_event->file_size);
c980d109
ACM
7301
7302 perf_event__output_id_sample(event, &handle, &sample);
7303
78d613eb 7304 perf_output_end(&handle);
c980d109
ACM
7305out:
7306 mmap_event->event_id.header.size = size;
d9c1bb2f 7307 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7308}
7309
cdd6c482 7310static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7311{
089dd79d
PZ
7312 struct vm_area_struct *vma = mmap_event->vma;
7313 struct file *file = vma->vm_file;
13d7a241
SE
7314 int maj = 0, min = 0;
7315 u64 ino = 0, gen = 0;
f972eb63 7316 u32 prot = 0, flags = 0;
0a4a9391
PZ
7317 unsigned int size;
7318 char tmp[16];
7319 char *buf = NULL;
2c42cfbf 7320 char *name;
413ee3b4 7321
0b3589be
PZ
7322 if (vma->vm_flags & VM_READ)
7323 prot |= PROT_READ;
7324 if (vma->vm_flags & VM_WRITE)
7325 prot |= PROT_WRITE;
7326 if (vma->vm_flags & VM_EXEC)
7327 prot |= PROT_EXEC;
7328
7329 if (vma->vm_flags & VM_MAYSHARE)
7330 flags = MAP_SHARED;
7331 else
7332 flags = MAP_PRIVATE;
7333
7334 if (vma->vm_flags & VM_DENYWRITE)
7335 flags |= MAP_DENYWRITE;
7336 if (vma->vm_flags & VM_MAYEXEC)
7337 flags |= MAP_EXECUTABLE;
7338 if (vma->vm_flags & VM_LOCKED)
7339 flags |= MAP_LOCKED;
7340 if (vma->vm_flags & VM_HUGETLB)
7341 flags |= MAP_HUGETLB;
7342
0a4a9391 7343 if (file) {
13d7a241
SE
7344 struct inode *inode;
7345 dev_t dev;
3ea2f2b9 7346
2c42cfbf 7347 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7348 if (!buf) {
c7e548b4
ON
7349 name = "//enomem";
7350 goto cpy_name;
0a4a9391 7351 }
413ee3b4 7352 /*
3ea2f2b9 7353 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7354 * need to add enough zero bytes after the string to handle
7355 * the 64bit alignment we do later.
7356 */
9bf39ab2 7357 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7358 if (IS_ERR(name)) {
c7e548b4
ON
7359 name = "//toolong";
7360 goto cpy_name;
0a4a9391 7361 }
13d7a241
SE
7362 inode = file_inode(vma->vm_file);
7363 dev = inode->i_sb->s_dev;
7364 ino = inode->i_ino;
7365 gen = inode->i_generation;
7366 maj = MAJOR(dev);
7367 min = MINOR(dev);
f972eb63 7368
c7e548b4 7369 goto got_name;
0a4a9391 7370 } else {
fbe26abe
JO
7371 if (vma->vm_ops && vma->vm_ops->name) {
7372 name = (char *) vma->vm_ops->name(vma);
7373 if (name)
7374 goto cpy_name;
7375 }
7376
2c42cfbf 7377 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7378 if (name)
7379 goto cpy_name;
089dd79d 7380
32c5fb7e 7381 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7382 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7383 name = "[heap]";
7384 goto cpy_name;
32c5fb7e
ON
7385 }
7386 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7387 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7388 name = "[stack]";
7389 goto cpy_name;
089dd79d
PZ
7390 }
7391
c7e548b4
ON
7392 name = "//anon";
7393 goto cpy_name;
0a4a9391
PZ
7394 }
7395
c7e548b4
ON
7396cpy_name:
7397 strlcpy(tmp, name, sizeof(tmp));
7398 name = tmp;
0a4a9391 7399got_name:
2c42cfbf
PZ
7400 /*
7401 * Since our buffer works in 8 byte units we need to align our string
7402 * size to a multiple of 8. However, we must guarantee the tail end is
7403 * zero'd out to avoid leaking random bits to userspace.
7404 */
7405 size = strlen(name)+1;
7406 while (!IS_ALIGNED(size, sizeof(u64)))
7407 name[size++] = '\0';
0a4a9391
PZ
7408
7409 mmap_event->file_name = name;
7410 mmap_event->file_size = size;
13d7a241
SE
7411 mmap_event->maj = maj;
7412 mmap_event->min = min;
7413 mmap_event->ino = ino;
7414 mmap_event->ino_generation = gen;
f972eb63
PZ
7415 mmap_event->prot = prot;
7416 mmap_event->flags = flags;
0a4a9391 7417
2fe85427
SE
7418 if (!(vma->vm_flags & VM_EXEC))
7419 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7420
cdd6c482 7421 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7422
aab5b71e 7423 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7424 mmap_event,
7425 NULL);
665c2142 7426
0a4a9391
PZ
7427 kfree(buf);
7428}
7429
375637bc
AS
7430/*
7431 * Check whether inode and address range match filter criteria.
7432 */
7433static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7434 struct file *file, unsigned long offset,
7435 unsigned long size)
7436{
7f635ff1
MP
7437 /* d_inode(NULL) won't be equal to any mapped user-space file */
7438 if (!filter->path.dentry)
7439 return false;
7440
9511bce9 7441 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7442 return false;
7443
7444 if (filter->offset > offset + size)
7445 return false;
7446
7447 if (filter->offset + filter->size < offset)
7448 return false;
7449
7450 return true;
7451}
7452
c60f83b8
AS
7453static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7454 struct vm_area_struct *vma,
7455 struct perf_addr_filter_range *fr)
7456{
7457 unsigned long vma_size = vma->vm_end - vma->vm_start;
7458 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7459 struct file *file = vma->vm_file;
7460
7461 if (!perf_addr_filter_match(filter, file, off, vma_size))
7462 return false;
7463
7464 if (filter->offset < off) {
7465 fr->start = vma->vm_start;
7466 fr->size = min(vma_size, filter->size - (off - filter->offset));
7467 } else {
7468 fr->start = vma->vm_start + filter->offset - off;
7469 fr->size = min(vma->vm_end - fr->start, filter->size);
7470 }
7471
7472 return true;
7473}
7474
375637bc
AS
7475static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7476{
7477 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7478 struct vm_area_struct *vma = data;
375637bc
AS
7479 struct perf_addr_filter *filter;
7480 unsigned int restart = 0, count = 0;
c60f83b8 7481 unsigned long flags;
375637bc
AS
7482
7483 if (!has_addr_filter(event))
7484 return;
7485
c60f83b8 7486 if (!vma->vm_file)
375637bc
AS
7487 return;
7488
7489 raw_spin_lock_irqsave(&ifh->lock, flags);
7490 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7491 if (perf_addr_filter_vma_adjust(filter, vma,
7492 &event->addr_filter_ranges[count]))
375637bc 7493 restart++;
375637bc
AS
7494
7495 count++;
7496 }
7497
7498 if (restart)
7499 event->addr_filters_gen++;
7500 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7501
7502 if (restart)
767ae086 7503 perf_event_stop(event, 1);
375637bc
AS
7504}
7505
7506/*
7507 * Adjust all task's events' filters to the new vma
7508 */
7509static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7510{
7511 struct perf_event_context *ctx;
7512 int ctxn;
7513
12b40a23
MP
7514 /*
7515 * Data tracing isn't supported yet and as such there is no need
7516 * to keep track of anything that isn't related to executable code:
7517 */
7518 if (!(vma->vm_flags & VM_EXEC))
7519 return;
7520
375637bc
AS
7521 rcu_read_lock();
7522 for_each_task_context_nr(ctxn) {
7523 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7524 if (!ctx)
7525 continue;
7526
aab5b71e 7527 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7528 }
7529 rcu_read_unlock();
7530}
7531
3af9e859 7532void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7533{
9ee318a7
PZ
7534 struct perf_mmap_event mmap_event;
7535
cdd6c482 7536 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7537 return;
7538
7539 mmap_event = (struct perf_mmap_event){
089dd79d 7540 .vma = vma,
573402db
PZ
7541 /* .file_name */
7542 /* .file_size */
cdd6c482 7543 .event_id = {
573402db 7544 .header = {
cdd6c482 7545 .type = PERF_RECORD_MMAP,
39447b38 7546 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7547 /* .size */
7548 },
7549 /* .pid */
7550 /* .tid */
089dd79d
PZ
7551 .start = vma->vm_start,
7552 .len = vma->vm_end - vma->vm_start,
3a0304e9 7553 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7554 },
13d7a241
SE
7555 /* .maj (attr_mmap2 only) */
7556 /* .min (attr_mmap2 only) */
7557 /* .ino (attr_mmap2 only) */
7558 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7559 /* .prot (attr_mmap2 only) */
7560 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7561 };
7562
375637bc 7563 perf_addr_filters_adjust(vma);
cdd6c482 7564 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7565}
7566
68db7e98
AS
7567void perf_event_aux_event(struct perf_event *event, unsigned long head,
7568 unsigned long size, u64 flags)
7569{
7570 struct perf_output_handle handle;
7571 struct perf_sample_data sample;
7572 struct perf_aux_event {
7573 struct perf_event_header header;
7574 u64 offset;
7575 u64 size;
7576 u64 flags;
7577 } rec = {
7578 .header = {
7579 .type = PERF_RECORD_AUX,
7580 .misc = 0,
7581 .size = sizeof(rec),
7582 },
7583 .offset = head,
7584 .size = size,
7585 .flags = flags,
7586 };
7587 int ret;
7588
7589 perf_event_header__init_id(&rec.header, &sample, event);
7590 ret = perf_output_begin(&handle, event, rec.header.size);
7591
7592 if (ret)
7593 return;
7594
7595 perf_output_put(&handle, rec);
7596 perf_event__output_id_sample(event, &handle, &sample);
7597
7598 perf_output_end(&handle);
7599}
7600
f38b0dbb
KL
7601/*
7602 * Lost/dropped samples logging
7603 */
7604void perf_log_lost_samples(struct perf_event *event, u64 lost)
7605{
7606 struct perf_output_handle handle;
7607 struct perf_sample_data sample;
7608 int ret;
7609
7610 struct {
7611 struct perf_event_header header;
7612 u64 lost;
7613 } lost_samples_event = {
7614 .header = {
7615 .type = PERF_RECORD_LOST_SAMPLES,
7616 .misc = 0,
7617 .size = sizeof(lost_samples_event),
7618 },
7619 .lost = lost,
7620 };
7621
7622 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7623
7624 ret = perf_output_begin(&handle, event,
7625 lost_samples_event.header.size);
7626 if (ret)
7627 return;
7628
7629 perf_output_put(&handle, lost_samples_event);
7630 perf_event__output_id_sample(event, &handle, &sample);
7631 perf_output_end(&handle);
7632}
7633
45ac1403
AH
7634/*
7635 * context_switch tracking
7636 */
7637
7638struct perf_switch_event {
7639 struct task_struct *task;
7640 struct task_struct *next_prev;
7641
7642 struct {
7643 struct perf_event_header header;
7644 u32 next_prev_pid;
7645 u32 next_prev_tid;
7646 } event_id;
7647};
7648
7649static int perf_event_switch_match(struct perf_event *event)
7650{
7651 return event->attr.context_switch;
7652}
7653
7654static void perf_event_switch_output(struct perf_event *event, void *data)
7655{
7656 struct perf_switch_event *se = data;
7657 struct perf_output_handle handle;
7658 struct perf_sample_data sample;
7659 int ret;
7660
7661 if (!perf_event_switch_match(event))
7662 return;
7663
7664 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7665 if (event->ctx->task) {
7666 se->event_id.header.type = PERF_RECORD_SWITCH;
7667 se->event_id.header.size = sizeof(se->event_id.header);
7668 } else {
7669 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7670 se->event_id.header.size = sizeof(se->event_id);
7671 se->event_id.next_prev_pid =
7672 perf_event_pid(event, se->next_prev);
7673 se->event_id.next_prev_tid =
7674 perf_event_tid(event, se->next_prev);
7675 }
7676
7677 perf_event_header__init_id(&se->event_id.header, &sample, event);
7678
7679 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7680 if (ret)
7681 return;
7682
7683 if (event->ctx->task)
7684 perf_output_put(&handle, se->event_id.header);
7685 else
7686 perf_output_put(&handle, se->event_id);
7687
7688 perf_event__output_id_sample(event, &handle, &sample);
7689
7690 perf_output_end(&handle);
7691}
7692
7693static void perf_event_switch(struct task_struct *task,
7694 struct task_struct *next_prev, bool sched_in)
7695{
7696 struct perf_switch_event switch_event;
7697
7698 /* N.B. caller checks nr_switch_events != 0 */
7699
7700 switch_event = (struct perf_switch_event){
7701 .task = task,
7702 .next_prev = next_prev,
7703 .event_id = {
7704 .header = {
7705 /* .type */
7706 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7707 /* .size */
7708 },
7709 /* .next_prev_pid */
7710 /* .next_prev_tid */
7711 },
7712 };
7713
101592b4
AB
7714 if (!sched_in && task->state == TASK_RUNNING)
7715 switch_event.event_id.header.misc |=
7716 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7717
aab5b71e 7718 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7719 &switch_event,
7720 NULL);
7721}
7722
a78ac325
PZ
7723/*
7724 * IRQ throttle logging
7725 */
7726
cdd6c482 7727static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7728{
7729 struct perf_output_handle handle;
c980d109 7730 struct perf_sample_data sample;
a78ac325
PZ
7731 int ret;
7732
7733 struct {
7734 struct perf_event_header header;
7735 u64 time;
cca3f454 7736 u64 id;
7f453c24 7737 u64 stream_id;
a78ac325
PZ
7738 } throttle_event = {
7739 .header = {
cdd6c482 7740 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7741 .misc = 0,
7742 .size = sizeof(throttle_event),
7743 },
34f43927 7744 .time = perf_event_clock(event),
cdd6c482
IM
7745 .id = primary_event_id(event),
7746 .stream_id = event->id,
a78ac325
PZ
7747 };
7748
966ee4d6 7749 if (enable)
cdd6c482 7750 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7751
c980d109
ACM
7752 perf_event_header__init_id(&throttle_event.header, &sample, event);
7753
7754 ret = perf_output_begin(&handle, event,
a7ac67ea 7755 throttle_event.header.size);
a78ac325
PZ
7756 if (ret)
7757 return;
7758
7759 perf_output_put(&handle, throttle_event);
c980d109 7760 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7761 perf_output_end(&handle);
7762}
7763
76193a94
SL
7764/*
7765 * ksymbol register/unregister tracking
7766 */
7767
7768struct perf_ksymbol_event {
7769 const char *name;
7770 int name_len;
7771 struct {
7772 struct perf_event_header header;
7773 u64 addr;
7774 u32 len;
7775 u16 ksym_type;
7776 u16 flags;
7777 } event_id;
7778};
7779
7780static int perf_event_ksymbol_match(struct perf_event *event)
7781{
7782 return event->attr.ksymbol;
7783}
7784
7785static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7786{
7787 struct perf_ksymbol_event *ksymbol_event = data;
7788 struct perf_output_handle handle;
7789 struct perf_sample_data sample;
7790 int ret;
7791
7792 if (!perf_event_ksymbol_match(event))
7793 return;
7794
7795 perf_event_header__init_id(&ksymbol_event->event_id.header,
7796 &sample, event);
7797 ret = perf_output_begin(&handle, event,
7798 ksymbol_event->event_id.header.size);
7799 if (ret)
7800 return;
7801
7802 perf_output_put(&handle, ksymbol_event->event_id);
7803 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7804 perf_event__output_id_sample(event, &handle, &sample);
7805
7806 perf_output_end(&handle);
7807}
7808
7809void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7810 const char *sym)
7811{
7812 struct perf_ksymbol_event ksymbol_event;
7813 char name[KSYM_NAME_LEN];
7814 u16 flags = 0;
7815 int name_len;
7816
7817 if (!atomic_read(&nr_ksymbol_events))
7818 return;
7819
7820 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7821 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7822 goto err;
7823
7824 strlcpy(name, sym, KSYM_NAME_LEN);
7825 name_len = strlen(name) + 1;
7826 while (!IS_ALIGNED(name_len, sizeof(u64)))
7827 name[name_len++] = '\0';
7828 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7829
7830 if (unregister)
7831 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7832
7833 ksymbol_event = (struct perf_ksymbol_event){
7834 .name = name,
7835 .name_len = name_len,
7836 .event_id = {
7837 .header = {
7838 .type = PERF_RECORD_KSYMBOL,
7839 .size = sizeof(ksymbol_event.event_id) +
7840 name_len,
7841 },
7842 .addr = addr,
7843 .len = len,
7844 .ksym_type = ksym_type,
7845 .flags = flags,
7846 },
7847 };
7848
7849 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7850 return;
7851err:
7852 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7853}
7854
6ee52e2a
SL
7855/*
7856 * bpf program load/unload tracking
7857 */
7858
7859struct perf_bpf_event {
7860 struct bpf_prog *prog;
7861 struct {
7862 struct perf_event_header header;
7863 u16 type;
7864 u16 flags;
7865 u32 id;
7866 u8 tag[BPF_TAG_SIZE];
7867 } event_id;
7868};
7869
7870static int perf_event_bpf_match(struct perf_event *event)
7871{
7872 return event->attr.bpf_event;
7873}
7874
7875static void perf_event_bpf_output(struct perf_event *event, void *data)
7876{
7877 struct perf_bpf_event *bpf_event = data;
7878 struct perf_output_handle handle;
7879 struct perf_sample_data sample;
7880 int ret;
7881
7882 if (!perf_event_bpf_match(event))
7883 return;
7884
7885 perf_event_header__init_id(&bpf_event->event_id.header,
7886 &sample, event);
7887 ret = perf_output_begin(&handle, event,
7888 bpf_event->event_id.header.size);
7889 if (ret)
7890 return;
7891
7892 perf_output_put(&handle, bpf_event->event_id);
7893 perf_event__output_id_sample(event, &handle, &sample);
7894
7895 perf_output_end(&handle);
7896}
7897
7898static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7899 enum perf_bpf_event_type type)
7900{
7901 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7902 char sym[KSYM_NAME_LEN];
7903 int i;
7904
7905 if (prog->aux->func_cnt == 0) {
7906 bpf_get_prog_name(prog, sym);
7907 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7908 (u64)(unsigned long)prog->bpf_func,
7909 prog->jited_len, unregister, sym);
7910 } else {
7911 for (i = 0; i < prog->aux->func_cnt; i++) {
7912 struct bpf_prog *subprog = prog->aux->func[i];
7913
7914 bpf_get_prog_name(subprog, sym);
7915 perf_event_ksymbol(
7916 PERF_RECORD_KSYMBOL_TYPE_BPF,
7917 (u64)(unsigned long)subprog->bpf_func,
7918 subprog->jited_len, unregister, sym);
7919 }
7920 }
7921}
7922
7923void perf_event_bpf_event(struct bpf_prog *prog,
7924 enum perf_bpf_event_type type,
7925 u16 flags)
7926{
7927 struct perf_bpf_event bpf_event;
7928
7929 if (type <= PERF_BPF_EVENT_UNKNOWN ||
7930 type >= PERF_BPF_EVENT_MAX)
7931 return;
7932
7933 switch (type) {
7934 case PERF_BPF_EVENT_PROG_LOAD:
7935 case PERF_BPF_EVENT_PROG_UNLOAD:
7936 if (atomic_read(&nr_ksymbol_events))
7937 perf_event_bpf_emit_ksymbols(prog, type);
7938 break;
7939 default:
7940 break;
7941 }
7942
7943 if (!atomic_read(&nr_bpf_events))
7944 return;
7945
7946 bpf_event = (struct perf_bpf_event){
7947 .prog = prog,
7948 .event_id = {
7949 .header = {
7950 .type = PERF_RECORD_BPF_EVENT,
7951 .size = sizeof(bpf_event.event_id),
7952 },
7953 .type = type,
7954 .flags = flags,
7955 .id = prog->aux->id,
7956 },
7957 };
7958
7959 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7960
7961 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7962 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7963}
7964
8d4e6c4c
AS
7965void perf_event_itrace_started(struct perf_event *event)
7966{
7967 event->attach_state |= PERF_ATTACH_ITRACE;
7968}
7969
ec0d7729
AS
7970static void perf_log_itrace_start(struct perf_event *event)
7971{
7972 struct perf_output_handle handle;
7973 struct perf_sample_data sample;
7974 struct perf_aux_event {
7975 struct perf_event_header header;
7976 u32 pid;
7977 u32 tid;
7978 } rec;
7979 int ret;
7980
7981 if (event->parent)
7982 event = event->parent;
7983
7984 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7985 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7986 return;
7987
ec0d7729
AS
7988 rec.header.type = PERF_RECORD_ITRACE_START;
7989 rec.header.misc = 0;
7990 rec.header.size = sizeof(rec);
7991 rec.pid = perf_event_pid(event, current);
7992 rec.tid = perf_event_tid(event, current);
7993
7994 perf_event_header__init_id(&rec.header, &sample, event);
7995 ret = perf_output_begin(&handle, event, rec.header.size);
7996
7997 if (ret)
7998 return;
7999
8000 perf_output_put(&handle, rec);
8001 perf_event__output_id_sample(event, &handle, &sample);
8002
8003 perf_output_end(&handle);
8004}
8005
475113d9
JO
8006static int
8007__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8008{
cdd6c482 8009 struct hw_perf_event *hwc = &event->hw;
79f14641 8010 int ret = 0;
475113d9 8011 u64 seq;
96398826 8012
e050e3f0
SE
8013 seq = __this_cpu_read(perf_throttled_seq);
8014 if (seq != hwc->interrupts_seq) {
8015 hwc->interrupts_seq = seq;
8016 hwc->interrupts = 1;
8017 } else {
8018 hwc->interrupts++;
8019 if (unlikely(throttle
8020 && hwc->interrupts >= max_samples_per_tick)) {
8021 __this_cpu_inc(perf_throttled_count);
555e0c1e 8022 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8023 hwc->interrupts = MAX_INTERRUPTS;
8024 perf_log_throttle(event, 0);
a78ac325
PZ
8025 ret = 1;
8026 }
e050e3f0 8027 }
60db5e09 8028
cdd6c482 8029 if (event->attr.freq) {
def0a9b2 8030 u64 now = perf_clock();
abd50713 8031 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8032
abd50713 8033 hwc->freq_time_stamp = now;
bd2b5b12 8034
abd50713 8035 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8036 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8037 }
8038
475113d9
JO
8039 return ret;
8040}
8041
8042int perf_event_account_interrupt(struct perf_event *event)
8043{
8044 return __perf_event_account_interrupt(event, 1);
8045}
8046
8047/*
8048 * Generic event overflow handling, sampling.
8049 */
8050
8051static int __perf_event_overflow(struct perf_event *event,
8052 int throttle, struct perf_sample_data *data,
8053 struct pt_regs *regs)
8054{
8055 int events = atomic_read(&event->event_limit);
8056 int ret = 0;
8057
8058 /*
8059 * Non-sampling counters might still use the PMI to fold short
8060 * hardware counters, ignore those.
8061 */
8062 if (unlikely(!is_sampling_event(event)))
8063 return 0;
8064
8065 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8066
2023b359
PZ
8067 /*
8068 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8069 * events
2023b359
PZ
8070 */
8071
cdd6c482
IM
8072 event->pending_kill = POLL_IN;
8073 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8074 ret = 1;
cdd6c482 8075 event->pending_kill = POLL_HUP;
5aab90ce
JO
8076
8077 perf_event_disable_inatomic(event);
79f14641
PZ
8078 }
8079
aa6a5f3c 8080 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8081
fed66e2c 8082 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8083 event->pending_wakeup = 1;
8084 irq_work_queue(&event->pending);
f506b3dc
PZ
8085 }
8086
79f14641 8087 return ret;
f6c7d5fe
PZ
8088}
8089
a8b0ca17 8090int perf_event_overflow(struct perf_event *event,
5622f295
MM
8091 struct perf_sample_data *data,
8092 struct pt_regs *regs)
850bc73f 8093{
a8b0ca17 8094 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8095}
8096
15dbf27c 8097/*
cdd6c482 8098 * Generic software event infrastructure
15dbf27c
PZ
8099 */
8100
b28ab83c
PZ
8101struct swevent_htable {
8102 struct swevent_hlist *swevent_hlist;
8103 struct mutex hlist_mutex;
8104 int hlist_refcount;
8105
8106 /* Recursion avoidance in each contexts */
8107 int recursion[PERF_NR_CONTEXTS];
8108};
8109
8110static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8111
7b4b6658 8112/*
cdd6c482
IM
8113 * We directly increment event->count and keep a second value in
8114 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8115 * is kept in the range [-sample_period, 0] so that we can use the
8116 * sign as trigger.
8117 */
8118
ab573844 8119u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8120{
cdd6c482 8121 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8122 u64 period = hwc->last_period;
8123 u64 nr, offset;
8124 s64 old, val;
8125
8126 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8127
8128again:
e7850595 8129 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8130 if (val < 0)
8131 return 0;
15dbf27c 8132
7b4b6658
PZ
8133 nr = div64_u64(period + val, period);
8134 offset = nr * period;
8135 val -= offset;
e7850595 8136 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8137 goto again;
15dbf27c 8138
7b4b6658 8139 return nr;
15dbf27c
PZ
8140}
8141
0cff784a 8142static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8143 struct perf_sample_data *data,
5622f295 8144 struct pt_regs *regs)
15dbf27c 8145{
cdd6c482 8146 struct hw_perf_event *hwc = &event->hw;
850bc73f 8147 int throttle = 0;
15dbf27c 8148
0cff784a
PZ
8149 if (!overflow)
8150 overflow = perf_swevent_set_period(event);
15dbf27c 8151
7b4b6658
PZ
8152 if (hwc->interrupts == MAX_INTERRUPTS)
8153 return;
15dbf27c 8154
7b4b6658 8155 for (; overflow; overflow--) {
a8b0ca17 8156 if (__perf_event_overflow(event, throttle,
5622f295 8157 data, regs)) {
7b4b6658
PZ
8158 /*
8159 * We inhibit the overflow from happening when
8160 * hwc->interrupts == MAX_INTERRUPTS.
8161 */
8162 break;
8163 }
cf450a73 8164 throttle = 1;
7b4b6658 8165 }
15dbf27c
PZ
8166}
8167
a4eaf7f1 8168static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8169 struct perf_sample_data *data,
5622f295 8170 struct pt_regs *regs)
7b4b6658 8171{
cdd6c482 8172 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8173
e7850595 8174 local64_add(nr, &event->count);
d6d020e9 8175
0cff784a
PZ
8176 if (!regs)
8177 return;
8178
6c7e550f 8179 if (!is_sampling_event(event))
7b4b6658 8180 return;
d6d020e9 8181
5d81e5cf
AV
8182 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8183 data->period = nr;
8184 return perf_swevent_overflow(event, 1, data, regs);
8185 } else
8186 data->period = event->hw.last_period;
8187
0cff784a 8188 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8189 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8190
e7850595 8191 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8192 return;
df1a132b 8193
a8b0ca17 8194 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8195}
8196
f5ffe02e
FW
8197static int perf_exclude_event(struct perf_event *event,
8198 struct pt_regs *regs)
8199{
a4eaf7f1 8200 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8201 return 1;
a4eaf7f1 8202
f5ffe02e
FW
8203 if (regs) {
8204 if (event->attr.exclude_user && user_mode(regs))
8205 return 1;
8206
8207 if (event->attr.exclude_kernel && !user_mode(regs))
8208 return 1;
8209 }
8210
8211 return 0;
8212}
8213
cdd6c482 8214static int perf_swevent_match(struct perf_event *event,
1c432d89 8215 enum perf_type_id type,
6fb2915d
LZ
8216 u32 event_id,
8217 struct perf_sample_data *data,
8218 struct pt_regs *regs)
15dbf27c 8219{
cdd6c482 8220 if (event->attr.type != type)
a21ca2ca 8221 return 0;
f5ffe02e 8222
cdd6c482 8223 if (event->attr.config != event_id)
15dbf27c
PZ
8224 return 0;
8225
f5ffe02e
FW
8226 if (perf_exclude_event(event, regs))
8227 return 0;
15dbf27c
PZ
8228
8229 return 1;
8230}
8231
76e1d904
FW
8232static inline u64 swevent_hash(u64 type, u32 event_id)
8233{
8234 u64 val = event_id | (type << 32);
8235
8236 return hash_64(val, SWEVENT_HLIST_BITS);
8237}
8238
49f135ed
FW
8239static inline struct hlist_head *
8240__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8241{
49f135ed
FW
8242 u64 hash = swevent_hash(type, event_id);
8243
8244 return &hlist->heads[hash];
8245}
76e1d904 8246
49f135ed
FW
8247/* For the read side: events when they trigger */
8248static inline struct hlist_head *
b28ab83c 8249find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8250{
8251 struct swevent_hlist *hlist;
76e1d904 8252
b28ab83c 8253 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8254 if (!hlist)
8255 return NULL;
8256
49f135ed
FW
8257 return __find_swevent_head(hlist, type, event_id);
8258}
8259
8260/* For the event head insertion and removal in the hlist */
8261static inline struct hlist_head *
b28ab83c 8262find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8263{
8264 struct swevent_hlist *hlist;
8265 u32 event_id = event->attr.config;
8266 u64 type = event->attr.type;
8267
8268 /*
8269 * Event scheduling is always serialized against hlist allocation
8270 * and release. Which makes the protected version suitable here.
8271 * The context lock guarantees that.
8272 */
b28ab83c 8273 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8274 lockdep_is_held(&event->ctx->lock));
8275 if (!hlist)
8276 return NULL;
8277
8278 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8279}
8280
8281static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8282 u64 nr,
76e1d904
FW
8283 struct perf_sample_data *data,
8284 struct pt_regs *regs)
15dbf27c 8285{
4a32fea9 8286 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8287 struct perf_event *event;
76e1d904 8288 struct hlist_head *head;
15dbf27c 8289
76e1d904 8290 rcu_read_lock();
b28ab83c 8291 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8292 if (!head)
8293 goto end;
8294
b67bfe0d 8295 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8296 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8297 perf_swevent_event(event, nr, data, regs);
15dbf27c 8298 }
76e1d904
FW
8299end:
8300 rcu_read_unlock();
15dbf27c
PZ
8301}
8302
86038c5e
PZI
8303DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8304
4ed7c92d 8305int perf_swevent_get_recursion_context(void)
96f6d444 8306{
4a32fea9 8307 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8308
b28ab83c 8309 return get_recursion_context(swhash->recursion);
96f6d444 8310}
645e8cc0 8311EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8312
98b5c2c6 8313void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8314{
4a32fea9 8315 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8316
b28ab83c 8317 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8318}
15dbf27c 8319
86038c5e 8320void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8321{
a4234bfc 8322 struct perf_sample_data data;
4ed7c92d 8323
86038c5e 8324 if (WARN_ON_ONCE(!regs))
4ed7c92d 8325 return;
a4234bfc 8326
fd0d000b 8327 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8328 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8329}
8330
8331void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8332{
8333 int rctx;
8334
8335 preempt_disable_notrace();
8336 rctx = perf_swevent_get_recursion_context();
8337 if (unlikely(rctx < 0))
8338 goto fail;
8339
8340 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8341
8342 perf_swevent_put_recursion_context(rctx);
86038c5e 8343fail:
1c024eca 8344 preempt_enable_notrace();
b8e83514
PZ
8345}
8346
cdd6c482 8347static void perf_swevent_read(struct perf_event *event)
15dbf27c 8348{
15dbf27c
PZ
8349}
8350
a4eaf7f1 8351static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8352{
4a32fea9 8353 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8354 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8355 struct hlist_head *head;
8356
6c7e550f 8357 if (is_sampling_event(event)) {
7b4b6658 8358 hwc->last_period = hwc->sample_period;
cdd6c482 8359 perf_swevent_set_period(event);
7b4b6658 8360 }
76e1d904 8361
a4eaf7f1
PZ
8362 hwc->state = !(flags & PERF_EF_START);
8363
b28ab83c 8364 head = find_swevent_head(swhash, event);
12ca6ad2 8365 if (WARN_ON_ONCE(!head))
76e1d904
FW
8366 return -EINVAL;
8367
8368 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8369 perf_event_update_userpage(event);
76e1d904 8370
15dbf27c
PZ
8371 return 0;
8372}
8373
a4eaf7f1 8374static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8375{
76e1d904 8376 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8377}
8378
a4eaf7f1 8379static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8380{
a4eaf7f1 8381 event->hw.state = 0;
d6d020e9 8382}
aa9c4c0f 8383
a4eaf7f1 8384static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8385{
a4eaf7f1 8386 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8387}
8388
49f135ed
FW
8389/* Deref the hlist from the update side */
8390static inline struct swevent_hlist *
b28ab83c 8391swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8392{
b28ab83c
PZ
8393 return rcu_dereference_protected(swhash->swevent_hlist,
8394 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8395}
8396
b28ab83c 8397static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8398{
b28ab83c 8399 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8400
49f135ed 8401 if (!hlist)
76e1d904
FW
8402 return;
8403
70691d4a 8404 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8405 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8406}
8407
3b364d7b 8408static void swevent_hlist_put_cpu(int cpu)
76e1d904 8409{
b28ab83c 8410 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8411
b28ab83c 8412 mutex_lock(&swhash->hlist_mutex);
76e1d904 8413
b28ab83c
PZ
8414 if (!--swhash->hlist_refcount)
8415 swevent_hlist_release(swhash);
76e1d904 8416
b28ab83c 8417 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8418}
8419
3b364d7b 8420static void swevent_hlist_put(void)
76e1d904
FW
8421{
8422 int cpu;
8423
76e1d904 8424 for_each_possible_cpu(cpu)
3b364d7b 8425 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8426}
8427
3b364d7b 8428static int swevent_hlist_get_cpu(int cpu)
76e1d904 8429{
b28ab83c 8430 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8431 int err = 0;
8432
b28ab83c 8433 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8434 if (!swevent_hlist_deref(swhash) &&
8435 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8436 struct swevent_hlist *hlist;
8437
8438 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8439 if (!hlist) {
8440 err = -ENOMEM;
8441 goto exit;
8442 }
b28ab83c 8443 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8444 }
b28ab83c 8445 swhash->hlist_refcount++;
9ed6060d 8446exit:
b28ab83c 8447 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8448
8449 return err;
8450}
8451
3b364d7b 8452static int swevent_hlist_get(void)
76e1d904 8453{
3b364d7b 8454 int err, cpu, failed_cpu;
76e1d904 8455
a63fbed7 8456 mutex_lock(&pmus_lock);
76e1d904 8457 for_each_possible_cpu(cpu) {
3b364d7b 8458 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8459 if (err) {
8460 failed_cpu = cpu;
8461 goto fail;
8462 }
8463 }
a63fbed7 8464 mutex_unlock(&pmus_lock);
76e1d904 8465 return 0;
9ed6060d 8466fail:
76e1d904
FW
8467 for_each_possible_cpu(cpu) {
8468 if (cpu == failed_cpu)
8469 break;
3b364d7b 8470 swevent_hlist_put_cpu(cpu);
76e1d904 8471 }
a63fbed7 8472 mutex_unlock(&pmus_lock);
76e1d904
FW
8473 return err;
8474}
8475
c5905afb 8476struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8477
b0a873eb
PZ
8478static void sw_perf_event_destroy(struct perf_event *event)
8479{
8480 u64 event_id = event->attr.config;
95476b64 8481
b0a873eb
PZ
8482 WARN_ON(event->parent);
8483
c5905afb 8484 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8485 swevent_hlist_put();
b0a873eb
PZ
8486}
8487
8488static int perf_swevent_init(struct perf_event *event)
8489{
8176cced 8490 u64 event_id = event->attr.config;
b0a873eb
PZ
8491
8492 if (event->attr.type != PERF_TYPE_SOFTWARE)
8493 return -ENOENT;
8494
2481c5fa
SE
8495 /*
8496 * no branch sampling for software events
8497 */
8498 if (has_branch_stack(event))
8499 return -EOPNOTSUPP;
8500
b0a873eb
PZ
8501 switch (event_id) {
8502 case PERF_COUNT_SW_CPU_CLOCK:
8503 case PERF_COUNT_SW_TASK_CLOCK:
8504 return -ENOENT;
8505
8506 default:
8507 break;
8508 }
8509
ce677831 8510 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8511 return -ENOENT;
8512
8513 if (!event->parent) {
8514 int err;
8515
3b364d7b 8516 err = swevent_hlist_get();
b0a873eb
PZ
8517 if (err)
8518 return err;
8519
c5905afb 8520 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8521 event->destroy = sw_perf_event_destroy;
8522 }
8523
8524 return 0;
8525}
8526
8527static struct pmu perf_swevent = {
89a1e187 8528 .task_ctx_nr = perf_sw_context,
95476b64 8529
34f43927
PZ
8530 .capabilities = PERF_PMU_CAP_NO_NMI,
8531
b0a873eb 8532 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8533 .add = perf_swevent_add,
8534 .del = perf_swevent_del,
8535 .start = perf_swevent_start,
8536 .stop = perf_swevent_stop,
1c024eca 8537 .read = perf_swevent_read,
1c024eca
PZ
8538};
8539
b0a873eb
PZ
8540#ifdef CONFIG_EVENT_TRACING
8541
1c024eca
PZ
8542static int perf_tp_filter_match(struct perf_event *event,
8543 struct perf_sample_data *data)
8544{
7e3f977e 8545 void *record = data->raw->frag.data;
1c024eca 8546
b71b437e
PZ
8547 /* only top level events have filters set */
8548 if (event->parent)
8549 event = event->parent;
8550
1c024eca
PZ
8551 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8552 return 1;
8553 return 0;
8554}
8555
8556static int perf_tp_event_match(struct perf_event *event,
8557 struct perf_sample_data *data,
8558 struct pt_regs *regs)
8559{
a0f7d0f7
FW
8560 if (event->hw.state & PERF_HES_STOPPED)
8561 return 0;
580d607c 8562 /*
9fd2e48b 8563 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 8564 */
9fd2e48b 8565 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
8566 return 0;
8567
8568 if (!perf_tp_filter_match(event, data))
8569 return 0;
8570
8571 return 1;
8572}
8573
85b67bcb
AS
8574void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8575 struct trace_event_call *call, u64 count,
8576 struct pt_regs *regs, struct hlist_head *head,
8577 struct task_struct *task)
8578{
e87c6bc3 8579 if (bpf_prog_array_valid(call)) {
85b67bcb 8580 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8581 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8582 perf_swevent_put_recursion_context(rctx);
8583 return;
8584 }
8585 }
8586 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8587 rctx, task);
85b67bcb
AS
8588}
8589EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8590
1e1dcd93 8591void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8592 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8593 struct task_struct *task)
95476b64
FW
8594{
8595 struct perf_sample_data data;
8fd0fbbe 8596 struct perf_event *event;
1c024eca 8597
95476b64 8598 struct perf_raw_record raw = {
7e3f977e
DB
8599 .frag = {
8600 .size = entry_size,
8601 .data = record,
8602 },
95476b64
FW
8603 };
8604
1e1dcd93 8605 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8606 data.raw = &raw;
8607
1e1dcd93
AS
8608 perf_trace_buf_update(record, event_type);
8609
8fd0fbbe 8610 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8611 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8612 perf_swevent_event(event, count, &data, regs);
4f41c013 8613 }
ecc55f84 8614
e6dab5ff
AV
8615 /*
8616 * If we got specified a target task, also iterate its context and
8617 * deliver this event there too.
8618 */
8619 if (task && task != current) {
8620 struct perf_event_context *ctx;
8621 struct trace_entry *entry = record;
8622
8623 rcu_read_lock();
8624 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8625 if (!ctx)
8626 goto unlock;
8627
8628 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8629 if (event->cpu != smp_processor_id())
8630 continue;
e6dab5ff
AV
8631 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8632 continue;
8633 if (event->attr.config != entry->type)
8634 continue;
8635 if (perf_tp_event_match(event, &data, regs))
8636 perf_swevent_event(event, count, &data, regs);
8637 }
8638unlock:
8639 rcu_read_unlock();
8640 }
8641
ecc55f84 8642 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8643}
8644EXPORT_SYMBOL_GPL(perf_tp_event);
8645
cdd6c482 8646static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8647{
1c024eca 8648 perf_trace_destroy(event);
e077df4f
PZ
8649}
8650
b0a873eb 8651static int perf_tp_event_init(struct perf_event *event)
e077df4f 8652{
76e1d904
FW
8653 int err;
8654
b0a873eb
PZ
8655 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8656 return -ENOENT;
8657
2481c5fa
SE
8658 /*
8659 * no branch sampling for tracepoint events
8660 */
8661 if (has_branch_stack(event))
8662 return -EOPNOTSUPP;
8663
1c024eca
PZ
8664 err = perf_trace_init(event);
8665 if (err)
b0a873eb 8666 return err;
e077df4f 8667
cdd6c482 8668 event->destroy = tp_perf_event_destroy;
e077df4f 8669
b0a873eb
PZ
8670 return 0;
8671}
8672
8673static struct pmu perf_tracepoint = {
89a1e187
PZ
8674 .task_ctx_nr = perf_sw_context,
8675
b0a873eb 8676 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8677 .add = perf_trace_add,
8678 .del = perf_trace_del,
8679 .start = perf_swevent_start,
8680 .stop = perf_swevent_stop,
b0a873eb 8681 .read = perf_swevent_read,
b0a873eb
PZ
8682};
8683
33ea4b24 8684#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8685/*
8686 * Flags in config, used by dynamic PMU kprobe and uprobe
8687 * The flags should match following PMU_FORMAT_ATTR().
8688 *
8689 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8690 * if not set, create kprobe/uprobe
a6ca88b2
SL
8691 *
8692 * The following values specify a reference counter (or semaphore in the
8693 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8694 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8695 *
8696 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8697 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8698 */
8699enum perf_probe_config {
8700 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8701 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8702 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8703};
8704
8705PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8706#endif
e12f03d7 8707
a6ca88b2
SL
8708#ifdef CONFIG_KPROBE_EVENTS
8709static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8710 &format_attr_retprobe.attr,
8711 NULL,
8712};
8713
a6ca88b2 8714static struct attribute_group kprobe_format_group = {
e12f03d7 8715 .name = "format",
a6ca88b2 8716 .attrs = kprobe_attrs,
e12f03d7
SL
8717};
8718
a6ca88b2
SL
8719static const struct attribute_group *kprobe_attr_groups[] = {
8720 &kprobe_format_group,
e12f03d7
SL
8721 NULL,
8722};
8723
8724static int perf_kprobe_event_init(struct perf_event *event);
8725static struct pmu perf_kprobe = {
8726 .task_ctx_nr = perf_sw_context,
8727 .event_init = perf_kprobe_event_init,
8728 .add = perf_trace_add,
8729 .del = perf_trace_del,
8730 .start = perf_swevent_start,
8731 .stop = perf_swevent_stop,
8732 .read = perf_swevent_read,
a6ca88b2 8733 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8734};
8735
8736static int perf_kprobe_event_init(struct perf_event *event)
8737{
8738 int err;
8739 bool is_retprobe;
8740
8741 if (event->attr.type != perf_kprobe.type)
8742 return -ENOENT;
32e6e967
SL
8743
8744 if (!capable(CAP_SYS_ADMIN))
8745 return -EACCES;
8746
e12f03d7
SL
8747 /*
8748 * no branch sampling for probe events
8749 */
8750 if (has_branch_stack(event))
8751 return -EOPNOTSUPP;
8752
8753 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8754 err = perf_kprobe_init(event, is_retprobe);
8755 if (err)
8756 return err;
8757
8758 event->destroy = perf_kprobe_destroy;
8759
8760 return 0;
8761}
8762#endif /* CONFIG_KPROBE_EVENTS */
8763
33ea4b24 8764#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8765PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8766
8767static struct attribute *uprobe_attrs[] = {
8768 &format_attr_retprobe.attr,
8769 &format_attr_ref_ctr_offset.attr,
8770 NULL,
8771};
8772
8773static struct attribute_group uprobe_format_group = {
8774 .name = "format",
8775 .attrs = uprobe_attrs,
8776};
8777
8778static const struct attribute_group *uprobe_attr_groups[] = {
8779 &uprobe_format_group,
8780 NULL,
8781};
8782
33ea4b24
SL
8783static int perf_uprobe_event_init(struct perf_event *event);
8784static struct pmu perf_uprobe = {
8785 .task_ctx_nr = perf_sw_context,
8786 .event_init = perf_uprobe_event_init,
8787 .add = perf_trace_add,
8788 .del = perf_trace_del,
8789 .start = perf_swevent_start,
8790 .stop = perf_swevent_stop,
8791 .read = perf_swevent_read,
a6ca88b2 8792 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8793};
8794
8795static int perf_uprobe_event_init(struct perf_event *event)
8796{
8797 int err;
a6ca88b2 8798 unsigned long ref_ctr_offset;
33ea4b24
SL
8799 bool is_retprobe;
8800
8801 if (event->attr.type != perf_uprobe.type)
8802 return -ENOENT;
32e6e967
SL
8803
8804 if (!capable(CAP_SYS_ADMIN))
8805 return -EACCES;
8806
33ea4b24
SL
8807 /*
8808 * no branch sampling for probe events
8809 */
8810 if (has_branch_stack(event))
8811 return -EOPNOTSUPP;
8812
8813 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8814 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8815 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8816 if (err)
8817 return err;
8818
8819 event->destroy = perf_uprobe_destroy;
8820
8821 return 0;
8822}
8823#endif /* CONFIG_UPROBE_EVENTS */
8824
b0a873eb
PZ
8825static inline void perf_tp_register(void)
8826{
2e80a82a 8827 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8828#ifdef CONFIG_KPROBE_EVENTS
8829 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8830#endif
33ea4b24
SL
8831#ifdef CONFIG_UPROBE_EVENTS
8832 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8833#endif
e077df4f 8834}
6fb2915d 8835
6fb2915d
LZ
8836static void perf_event_free_filter(struct perf_event *event)
8837{
8838 ftrace_profile_free_filter(event);
8839}
8840
aa6a5f3c
AS
8841#ifdef CONFIG_BPF_SYSCALL
8842static void bpf_overflow_handler(struct perf_event *event,
8843 struct perf_sample_data *data,
8844 struct pt_regs *regs)
8845{
8846 struct bpf_perf_event_data_kern ctx = {
8847 .data = data,
7d9285e8 8848 .event = event,
aa6a5f3c
AS
8849 };
8850 int ret = 0;
8851
c895f6f7 8852 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8853 preempt_disable();
8854 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8855 goto out;
8856 rcu_read_lock();
88575199 8857 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8858 rcu_read_unlock();
8859out:
8860 __this_cpu_dec(bpf_prog_active);
8861 preempt_enable();
8862 if (!ret)
8863 return;
8864
8865 event->orig_overflow_handler(event, data, regs);
8866}
8867
8868static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8869{
8870 struct bpf_prog *prog;
8871
8872 if (event->overflow_handler_context)
8873 /* hw breakpoint or kernel counter */
8874 return -EINVAL;
8875
8876 if (event->prog)
8877 return -EEXIST;
8878
8879 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8880 if (IS_ERR(prog))
8881 return PTR_ERR(prog);
8882
8883 event->prog = prog;
8884 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8885 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8886 return 0;
8887}
8888
8889static void perf_event_free_bpf_handler(struct perf_event *event)
8890{
8891 struct bpf_prog *prog = event->prog;
8892
8893 if (!prog)
8894 return;
8895
8896 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8897 event->prog = NULL;
8898 bpf_prog_put(prog);
8899}
8900#else
8901static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8902{
8903 return -EOPNOTSUPP;
8904}
8905static void perf_event_free_bpf_handler(struct perf_event *event)
8906{
8907}
8908#endif
8909
e12f03d7
SL
8910/*
8911 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8912 * with perf_event_open()
8913 */
8914static inline bool perf_event_is_tracing(struct perf_event *event)
8915{
8916 if (event->pmu == &perf_tracepoint)
8917 return true;
8918#ifdef CONFIG_KPROBE_EVENTS
8919 if (event->pmu == &perf_kprobe)
8920 return true;
33ea4b24
SL
8921#endif
8922#ifdef CONFIG_UPROBE_EVENTS
8923 if (event->pmu == &perf_uprobe)
8924 return true;
e12f03d7
SL
8925#endif
8926 return false;
8927}
8928
2541517c
AS
8929static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8930{
cf5f5cea 8931 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8932 struct bpf_prog *prog;
e87c6bc3 8933 int ret;
2541517c 8934
e12f03d7 8935 if (!perf_event_is_tracing(event))
f91840a3 8936 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8937
98b5c2c6
AS
8938 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8939 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8940 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8941 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8942 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8943 return -EINVAL;
8944
8945 prog = bpf_prog_get(prog_fd);
8946 if (IS_ERR(prog))
8947 return PTR_ERR(prog);
8948
98b5c2c6 8949 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8950 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8951 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8952 /* valid fd, but invalid bpf program type */
8953 bpf_prog_put(prog);
8954 return -EINVAL;
8955 }
8956
9802d865
JB
8957 /* Kprobe override only works for kprobes, not uprobes. */
8958 if (prog->kprobe_override &&
8959 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8960 bpf_prog_put(prog);
8961 return -EINVAL;
8962 }
8963
cf5f5cea 8964 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8965 int off = trace_event_get_offsets(event->tp_event);
8966
8967 if (prog->aux->max_ctx_offset > off) {
8968 bpf_prog_put(prog);
8969 return -EACCES;
8970 }
8971 }
2541517c 8972
e87c6bc3
YS
8973 ret = perf_event_attach_bpf_prog(event, prog);
8974 if (ret)
8975 bpf_prog_put(prog);
8976 return ret;
2541517c
AS
8977}
8978
8979static void perf_event_free_bpf_prog(struct perf_event *event)
8980{
e12f03d7 8981 if (!perf_event_is_tracing(event)) {
0b4c6841 8982 perf_event_free_bpf_handler(event);
2541517c 8983 return;
2541517c 8984 }
e87c6bc3 8985 perf_event_detach_bpf_prog(event);
2541517c
AS
8986}
8987
e077df4f 8988#else
6fb2915d 8989
b0a873eb 8990static inline void perf_tp_register(void)
e077df4f 8991{
e077df4f 8992}
6fb2915d 8993
6fb2915d
LZ
8994static void perf_event_free_filter(struct perf_event *event)
8995{
8996}
8997
2541517c
AS
8998static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8999{
9000 return -ENOENT;
9001}
9002
9003static void perf_event_free_bpf_prog(struct perf_event *event)
9004{
9005}
07b139c8 9006#endif /* CONFIG_EVENT_TRACING */
e077df4f 9007
24f1e32c 9008#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9009void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9010{
f5ffe02e
FW
9011 struct perf_sample_data sample;
9012 struct pt_regs *regs = data;
9013
fd0d000b 9014 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9015
a4eaf7f1 9016 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9017 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9018}
9019#endif
9020
375637bc
AS
9021/*
9022 * Allocate a new address filter
9023 */
9024static struct perf_addr_filter *
9025perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9026{
9027 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9028 struct perf_addr_filter *filter;
9029
9030 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9031 if (!filter)
9032 return NULL;
9033
9034 INIT_LIST_HEAD(&filter->entry);
9035 list_add_tail(&filter->entry, filters);
9036
9037 return filter;
9038}
9039
9040static void free_filters_list(struct list_head *filters)
9041{
9042 struct perf_addr_filter *filter, *iter;
9043
9044 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9045 path_put(&filter->path);
375637bc
AS
9046 list_del(&filter->entry);
9047 kfree(filter);
9048 }
9049}
9050
9051/*
9052 * Free existing address filters and optionally install new ones
9053 */
9054static void perf_addr_filters_splice(struct perf_event *event,
9055 struct list_head *head)
9056{
9057 unsigned long flags;
9058 LIST_HEAD(list);
9059
9060 if (!has_addr_filter(event))
9061 return;
9062
9063 /* don't bother with children, they don't have their own filters */
9064 if (event->parent)
9065 return;
9066
9067 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9068
9069 list_splice_init(&event->addr_filters.list, &list);
9070 if (head)
9071 list_splice(head, &event->addr_filters.list);
9072
9073 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9074
9075 free_filters_list(&list);
9076}
9077
9078/*
9079 * Scan through mm's vmas and see if one of them matches the
9080 * @filter; if so, adjust filter's address range.
9081 * Called with mm::mmap_sem down for reading.
9082 */
c60f83b8
AS
9083static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9084 struct mm_struct *mm,
9085 struct perf_addr_filter_range *fr)
375637bc
AS
9086{
9087 struct vm_area_struct *vma;
9088
9089 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9090 if (!vma->vm_file)
375637bc
AS
9091 continue;
9092
c60f83b8
AS
9093 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9094 return;
375637bc 9095 }
375637bc
AS
9096}
9097
9098/*
9099 * Update event's address range filters based on the
9100 * task's existing mappings, if any.
9101 */
9102static void perf_event_addr_filters_apply(struct perf_event *event)
9103{
9104 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9105 struct task_struct *task = READ_ONCE(event->ctx->task);
9106 struct perf_addr_filter *filter;
9107 struct mm_struct *mm = NULL;
9108 unsigned int count = 0;
9109 unsigned long flags;
9110
9111 /*
9112 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9113 * will stop on the parent's child_mutex that our caller is also holding
9114 */
9115 if (task == TASK_TOMBSTONE)
9116 return;
9117
52a44f83
AS
9118 if (ifh->nr_file_filters) {
9119 mm = get_task_mm(event->ctx->task);
9120 if (!mm)
9121 goto restart;
375637bc 9122
52a44f83
AS
9123 down_read(&mm->mmap_sem);
9124 }
375637bc
AS
9125
9126 raw_spin_lock_irqsave(&ifh->lock, flags);
9127 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9128 if (filter->path.dentry) {
9129 /*
9130 * Adjust base offset if the filter is associated to a
9131 * binary that needs to be mapped:
9132 */
9133 event->addr_filter_ranges[count].start = 0;
9134 event->addr_filter_ranges[count].size = 0;
375637bc 9135
c60f83b8 9136 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9137 } else {
9138 event->addr_filter_ranges[count].start = filter->offset;
9139 event->addr_filter_ranges[count].size = filter->size;
9140 }
375637bc
AS
9141
9142 count++;
9143 }
9144
9145 event->addr_filters_gen++;
9146 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9147
52a44f83
AS
9148 if (ifh->nr_file_filters) {
9149 up_read(&mm->mmap_sem);
375637bc 9150
52a44f83
AS
9151 mmput(mm);
9152 }
375637bc
AS
9153
9154restart:
767ae086 9155 perf_event_stop(event, 1);
375637bc
AS
9156}
9157
9158/*
9159 * Address range filtering: limiting the data to certain
9160 * instruction address ranges. Filters are ioctl()ed to us from
9161 * userspace as ascii strings.
9162 *
9163 * Filter string format:
9164 *
9165 * ACTION RANGE_SPEC
9166 * where ACTION is one of the
9167 * * "filter": limit the trace to this region
9168 * * "start": start tracing from this address
9169 * * "stop": stop tracing at this address/region;
9170 * RANGE_SPEC is
9171 * * for kernel addresses: <start address>[/<size>]
9172 * * for object files: <start address>[/<size>]@</path/to/object/file>
9173 *
6ed70cf3
AS
9174 * if <size> is not specified or is zero, the range is treated as a single
9175 * address; not valid for ACTION=="filter".
375637bc
AS
9176 */
9177enum {
e96271f3 9178 IF_ACT_NONE = -1,
375637bc
AS
9179 IF_ACT_FILTER,
9180 IF_ACT_START,
9181 IF_ACT_STOP,
9182 IF_SRC_FILE,
9183 IF_SRC_KERNEL,
9184 IF_SRC_FILEADDR,
9185 IF_SRC_KERNELADDR,
9186};
9187
9188enum {
9189 IF_STATE_ACTION = 0,
9190 IF_STATE_SOURCE,
9191 IF_STATE_END,
9192};
9193
9194static const match_table_t if_tokens = {
9195 { IF_ACT_FILTER, "filter" },
9196 { IF_ACT_START, "start" },
9197 { IF_ACT_STOP, "stop" },
9198 { IF_SRC_FILE, "%u/%u@%s" },
9199 { IF_SRC_KERNEL, "%u/%u" },
9200 { IF_SRC_FILEADDR, "%u@%s" },
9201 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9202 { IF_ACT_NONE, NULL },
375637bc
AS
9203};
9204
9205/*
9206 * Address filter string parser
9207 */
9208static int
9209perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9210 struct list_head *filters)
9211{
9212 struct perf_addr_filter *filter = NULL;
9213 char *start, *orig, *filename = NULL;
375637bc
AS
9214 substring_t args[MAX_OPT_ARGS];
9215 int state = IF_STATE_ACTION, token;
9216 unsigned int kernel = 0;
9217 int ret = -EINVAL;
9218
9219 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9220 if (!fstr)
9221 return -ENOMEM;
9222
9223 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9224 static const enum perf_addr_filter_action_t actions[] = {
9225 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9226 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9227 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9228 };
375637bc
AS
9229 ret = -EINVAL;
9230
9231 if (!*start)
9232 continue;
9233
9234 /* filter definition begins */
9235 if (state == IF_STATE_ACTION) {
9236 filter = perf_addr_filter_new(event, filters);
9237 if (!filter)
9238 goto fail;
9239 }
9240
9241 token = match_token(start, if_tokens, args);
9242 switch (token) {
9243 case IF_ACT_FILTER:
9244 case IF_ACT_START:
375637bc
AS
9245 case IF_ACT_STOP:
9246 if (state != IF_STATE_ACTION)
9247 goto fail;
9248
6ed70cf3 9249 filter->action = actions[token];
375637bc
AS
9250 state = IF_STATE_SOURCE;
9251 break;
9252
9253 case IF_SRC_KERNELADDR:
9254 case IF_SRC_KERNEL:
9255 kernel = 1;
10c3405f 9256 /* fall through */
375637bc
AS
9257
9258 case IF_SRC_FILEADDR:
9259 case IF_SRC_FILE:
9260 if (state != IF_STATE_SOURCE)
9261 goto fail;
9262
375637bc
AS
9263 *args[0].to = 0;
9264 ret = kstrtoul(args[0].from, 0, &filter->offset);
9265 if (ret)
9266 goto fail;
9267
6ed70cf3 9268 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9269 *args[1].to = 0;
9270 ret = kstrtoul(args[1].from, 0, &filter->size);
9271 if (ret)
9272 goto fail;
9273 }
9274
4059ffd0 9275 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9276 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9277
9278 filename = match_strdup(&args[fpos]);
375637bc
AS
9279 if (!filename) {
9280 ret = -ENOMEM;
9281 goto fail;
9282 }
9283 }
9284
9285 state = IF_STATE_END;
9286 break;
9287
9288 default:
9289 goto fail;
9290 }
9291
9292 /*
9293 * Filter definition is fully parsed, validate and install it.
9294 * Make sure that it doesn't contradict itself or the event's
9295 * attribute.
9296 */
9297 if (state == IF_STATE_END) {
9ccbfbb1 9298 ret = -EINVAL;
375637bc
AS
9299 if (kernel && event->attr.exclude_kernel)
9300 goto fail;
9301
6ed70cf3
AS
9302 /*
9303 * ACTION "filter" must have a non-zero length region
9304 * specified.
9305 */
9306 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9307 !filter->size)
9308 goto fail;
9309
375637bc
AS
9310 if (!kernel) {
9311 if (!filename)
9312 goto fail;
9313
6ce77bfd
AS
9314 /*
9315 * For now, we only support file-based filters
9316 * in per-task events; doing so for CPU-wide
9317 * events requires additional context switching
9318 * trickery, since same object code will be
9319 * mapped at different virtual addresses in
9320 * different processes.
9321 */
9322 ret = -EOPNOTSUPP;
9323 if (!event->ctx->task)
9324 goto fail_free_name;
9325
375637bc 9326 /* look up the path and grab its inode */
9511bce9
SL
9327 ret = kern_path(filename, LOOKUP_FOLLOW,
9328 &filter->path);
375637bc
AS
9329 if (ret)
9330 goto fail_free_name;
9331
375637bc
AS
9332 kfree(filename);
9333 filename = NULL;
9334
9335 ret = -EINVAL;
9511bce9
SL
9336 if (!filter->path.dentry ||
9337 !S_ISREG(d_inode(filter->path.dentry)
9338 ->i_mode))
375637bc 9339 goto fail;
6ce77bfd
AS
9340
9341 event->addr_filters.nr_file_filters++;
375637bc
AS
9342 }
9343
9344 /* ready to consume more filters */
9345 state = IF_STATE_ACTION;
9346 filter = NULL;
9347 }
9348 }
9349
9350 if (state != IF_STATE_ACTION)
9351 goto fail;
9352
9353 kfree(orig);
9354
9355 return 0;
9356
9357fail_free_name:
9358 kfree(filename);
9359fail:
9360 free_filters_list(filters);
9361 kfree(orig);
9362
9363 return ret;
9364}
9365
9366static int
9367perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9368{
9369 LIST_HEAD(filters);
9370 int ret;
9371
9372 /*
9373 * Since this is called in perf_ioctl() path, we're already holding
9374 * ctx::mutex.
9375 */
9376 lockdep_assert_held(&event->ctx->mutex);
9377
9378 if (WARN_ON_ONCE(event->parent))
9379 return -EINVAL;
9380
375637bc
AS
9381 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9382 if (ret)
6ce77bfd 9383 goto fail_clear_files;
375637bc
AS
9384
9385 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9386 if (ret)
9387 goto fail_free_filters;
375637bc
AS
9388
9389 /* remove existing filters, if any */
9390 perf_addr_filters_splice(event, &filters);
9391
9392 /* install new filters */
9393 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9394
6ce77bfd
AS
9395 return ret;
9396
9397fail_free_filters:
9398 free_filters_list(&filters);
9399
9400fail_clear_files:
9401 event->addr_filters.nr_file_filters = 0;
9402
375637bc
AS
9403 return ret;
9404}
9405
c796bbbe
AS
9406static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9407{
c796bbbe 9408 int ret = -EINVAL;
e12f03d7 9409 char *filter_str;
c796bbbe
AS
9410
9411 filter_str = strndup_user(arg, PAGE_SIZE);
9412 if (IS_ERR(filter_str))
9413 return PTR_ERR(filter_str);
9414
e12f03d7
SL
9415#ifdef CONFIG_EVENT_TRACING
9416 if (perf_event_is_tracing(event)) {
9417 struct perf_event_context *ctx = event->ctx;
9418
9419 /*
9420 * Beware, here be dragons!!
9421 *
9422 * the tracepoint muck will deadlock against ctx->mutex, but
9423 * the tracepoint stuff does not actually need it. So
9424 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9425 * already have a reference on ctx.
9426 *
9427 * This can result in event getting moved to a different ctx,
9428 * but that does not affect the tracepoint state.
9429 */
9430 mutex_unlock(&ctx->mutex);
9431 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9432 mutex_lock(&ctx->mutex);
9433 } else
9434#endif
9435 if (has_addr_filter(event))
375637bc 9436 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9437
9438 kfree(filter_str);
9439 return ret;
9440}
9441
b0a873eb
PZ
9442/*
9443 * hrtimer based swevent callback
9444 */
f29ac756 9445
b0a873eb 9446static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9447{
b0a873eb
PZ
9448 enum hrtimer_restart ret = HRTIMER_RESTART;
9449 struct perf_sample_data data;
9450 struct pt_regs *regs;
9451 struct perf_event *event;
9452 u64 period;
f29ac756 9453
b0a873eb 9454 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9455
9456 if (event->state != PERF_EVENT_STATE_ACTIVE)
9457 return HRTIMER_NORESTART;
9458
b0a873eb 9459 event->pmu->read(event);
f344011c 9460
fd0d000b 9461 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9462 regs = get_irq_regs();
9463
9464 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9465 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9466 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9467 ret = HRTIMER_NORESTART;
9468 }
24f1e32c 9469
b0a873eb
PZ
9470 period = max_t(u64, 10000, event->hw.sample_period);
9471 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9472
b0a873eb 9473 return ret;
f29ac756
PZ
9474}
9475
b0a873eb 9476static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9477{
b0a873eb 9478 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9479 s64 period;
9480
9481 if (!is_sampling_event(event))
9482 return;
f5ffe02e 9483
5d508e82
FBH
9484 period = local64_read(&hwc->period_left);
9485 if (period) {
9486 if (period < 0)
9487 period = 10000;
fa407f35 9488
5d508e82
FBH
9489 local64_set(&hwc->period_left, 0);
9490 } else {
9491 period = max_t(u64, 10000, hwc->sample_period);
9492 }
3497d206
TG
9493 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9494 HRTIMER_MODE_REL_PINNED);
24f1e32c 9495}
b0a873eb
PZ
9496
9497static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9498{
b0a873eb
PZ
9499 struct hw_perf_event *hwc = &event->hw;
9500
6c7e550f 9501 if (is_sampling_event(event)) {
b0a873eb 9502 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9503 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9504
9505 hrtimer_cancel(&hwc->hrtimer);
9506 }
24f1e32c
FW
9507}
9508
ba3dd36c
PZ
9509static void perf_swevent_init_hrtimer(struct perf_event *event)
9510{
9511 struct hw_perf_event *hwc = &event->hw;
9512
9513 if (!is_sampling_event(event))
9514 return;
9515
9516 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9517 hwc->hrtimer.function = perf_swevent_hrtimer;
9518
9519 /*
9520 * Since hrtimers have a fixed rate, we can do a static freq->period
9521 * mapping and avoid the whole period adjust feedback stuff.
9522 */
9523 if (event->attr.freq) {
9524 long freq = event->attr.sample_freq;
9525
9526 event->attr.sample_period = NSEC_PER_SEC / freq;
9527 hwc->sample_period = event->attr.sample_period;
9528 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9529 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9530 event->attr.freq = 0;
9531 }
9532}
9533
b0a873eb
PZ
9534/*
9535 * Software event: cpu wall time clock
9536 */
9537
9538static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9539{
b0a873eb
PZ
9540 s64 prev;
9541 u64 now;
9542
a4eaf7f1 9543 now = local_clock();
b0a873eb
PZ
9544 prev = local64_xchg(&event->hw.prev_count, now);
9545 local64_add(now - prev, &event->count);
24f1e32c 9546}
24f1e32c 9547
a4eaf7f1 9548static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9549{
a4eaf7f1 9550 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9551 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9552}
9553
a4eaf7f1 9554static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9555{
b0a873eb
PZ
9556 perf_swevent_cancel_hrtimer(event);
9557 cpu_clock_event_update(event);
9558}
f29ac756 9559
a4eaf7f1
PZ
9560static int cpu_clock_event_add(struct perf_event *event, int flags)
9561{
9562 if (flags & PERF_EF_START)
9563 cpu_clock_event_start(event, flags);
6a694a60 9564 perf_event_update_userpage(event);
a4eaf7f1
PZ
9565
9566 return 0;
9567}
9568
9569static void cpu_clock_event_del(struct perf_event *event, int flags)
9570{
9571 cpu_clock_event_stop(event, flags);
9572}
9573
b0a873eb
PZ
9574static void cpu_clock_event_read(struct perf_event *event)
9575{
9576 cpu_clock_event_update(event);
9577}
f344011c 9578
b0a873eb
PZ
9579static int cpu_clock_event_init(struct perf_event *event)
9580{
9581 if (event->attr.type != PERF_TYPE_SOFTWARE)
9582 return -ENOENT;
9583
9584 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9585 return -ENOENT;
9586
2481c5fa
SE
9587 /*
9588 * no branch sampling for software events
9589 */
9590 if (has_branch_stack(event))
9591 return -EOPNOTSUPP;
9592
ba3dd36c
PZ
9593 perf_swevent_init_hrtimer(event);
9594
b0a873eb 9595 return 0;
f29ac756
PZ
9596}
9597
b0a873eb 9598static struct pmu perf_cpu_clock = {
89a1e187
PZ
9599 .task_ctx_nr = perf_sw_context,
9600
34f43927
PZ
9601 .capabilities = PERF_PMU_CAP_NO_NMI,
9602
b0a873eb 9603 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9604 .add = cpu_clock_event_add,
9605 .del = cpu_clock_event_del,
9606 .start = cpu_clock_event_start,
9607 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9608 .read = cpu_clock_event_read,
9609};
9610
9611/*
9612 * Software event: task time clock
9613 */
9614
9615static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9616{
b0a873eb
PZ
9617 u64 prev;
9618 s64 delta;
5c92d124 9619
b0a873eb
PZ
9620 prev = local64_xchg(&event->hw.prev_count, now);
9621 delta = now - prev;
9622 local64_add(delta, &event->count);
9623}
5c92d124 9624
a4eaf7f1 9625static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9626{
a4eaf7f1 9627 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9628 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9629}
9630
a4eaf7f1 9631static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9632{
9633 perf_swevent_cancel_hrtimer(event);
9634 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9635}
9636
9637static int task_clock_event_add(struct perf_event *event, int flags)
9638{
9639 if (flags & PERF_EF_START)
9640 task_clock_event_start(event, flags);
6a694a60 9641 perf_event_update_userpage(event);
b0a873eb 9642
a4eaf7f1
PZ
9643 return 0;
9644}
9645
9646static void task_clock_event_del(struct perf_event *event, int flags)
9647{
9648 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9649}
9650
9651static void task_clock_event_read(struct perf_event *event)
9652{
768a06e2
PZ
9653 u64 now = perf_clock();
9654 u64 delta = now - event->ctx->timestamp;
9655 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9656
9657 task_clock_event_update(event, time);
9658}
9659
9660static int task_clock_event_init(struct perf_event *event)
6fb2915d 9661{
b0a873eb
PZ
9662 if (event->attr.type != PERF_TYPE_SOFTWARE)
9663 return -ENOENT;
9664
9665 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9666 return -ENOENT;
9667
2481c5fa
SE
9668 /*
9669 * no branch sampling for software events
9670 */
9671 if (has_branch_stack(event))
9672 return -EOPNOTSUPP;
9673
ba3dd36c
PZ
9674 perf_swevent_init_hrtimer(event);
9675
b0a873eb 9676 return 0;
6fb2915d
LZ
9677}
9678
b0a873eb 9679static struct pmu perf_task_clock = {
89a1e187
PZ
9680 .task_ctx_nr = perf_sw_context,
9681
34f43927
PZ
9682 .capabilities = PERF_PMU_CAP_NO_NMI,
9683
b0a873eb 9684 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9685 .add = task_clock_event_add,
9686 .del = task_clock_event_del,
9687 .start = task_clock_event_start,
9688 .stop = task_clock_event_stop,
b0a873eb
PZ
9689 .read = task_clock_event_read,
9690};
6fb2915d 9691
ad5133b7 9692static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9693{
e077df4f 9694}
6fb2915d 9695
fbbe0701
SB
9696static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9697{
9698}
9699
ad5133b7 9700static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9701{
ad5133b7 9702 return 0;
6fb2915d
LZ
9703}
9704
81ec3f3c
JO
9705static int perf_event_nop_int(struct perf_event *event, u64 value)
9706{
9707 return 0;
9708}
9709
18ab2cd3 9710static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9711
9712static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9713{
fbbe0701
SB
9714 __this_cpu_write(nop_txn_flags, flags);
9715
9716 if (flags & ~PERF_PMU_TXN_ADD)
9717 return;
9718
ad5133b7 9719 perf_pmu_disable(pmu);
6fb2915d
LZ
9720}
9721
ad5133b7
PZ
9722static int perf_pmu_commit_txn(struct pmu *pmu)
9723{
fbbe0701
SB
9724 unsigned int flags = __this_cpu_read(nop_txn_flags);
9725
9726 __this_cpu_write(nop_txn_flags, 0);
9727
9728 if (flags & ~PERF_PMU_TXN_ADD)
9729 return 0;
9730
ad5133b7
PZ
9731 perf_pmu_enable(pmu);
9732 return 0;
9733}
e077df4f 9734
ad5133b7 9735static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9736{
fbbe0701
SB
9737 unsigned int flags = __this_cpu_read(nop_txn_flags);
9738
9739 __this_cpu_write(nop_txn_flags, 0);
9740
9741 if (flags & ~PERF_PMU_TXN_ADD)
9742 return;
9743
ad5133b7 9744 perf_pmu_enable(pmu);
24f1e32c
FW
9745}
9746
35edc2a5
PZ
9747static int perf_event_idx_default(struct perf_event *event)
9748{
c719f560 9749 return 0;
35edc2a5
PZ
9750}
9751
8dc85d54
PZ
9752/*
9753 * Ensures all contexts with the same task_ctx_nr have the same
9754 * pmu_cpu_context too.
9755 */
9e317041 9756static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9757{
8dc85d54 9758 struct pmu *pmu;
b326e956 9759
8dc85d54
PZ
9760 if (ctxn < 0)
9761 return NULL;
24f1e32c 9762
8dc85d54
PZ
9763 list_for_each_entry(pmu, &pmus, entry) {
9764 if (pmu->task_ctx_nr == ctxn)
9765 return pmu->pmu_cpu_context;
9766 }
24f1e32c 9767
8dc85d54 9768 return NULL;
24f1e32c
FW
9769}
9770
51676957
PZ
9771static void free_pmu_context(struct pmu *pmu)
9772{
df0062b2
WD
9773 /*
9774 * Static contexts such as perf_sw_context have a global lifetime
9775 * and may be shared between different PMUs. Avoid freeing them
9776 * when a single PMU is going away.
9777 */
9778 if (pmu->task_ctx_nr > perf_invalid_context)
9779 return;
9780
51676957 9781 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9782}
6e855cd4
AS
9783
9784/*
9785 * Let userspace know that this PMU supports address range filtering:
9786 */
9787static ssize_t nr_addr_filters_show(struct device *dev,
9788 struct device_attribute *attr,
9789 char *page)
9790{
9791 struct pmu *pmu = dev_get_drvdata(dev);
9792
9793 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9794}
9795DEVICE_ATTR_RO(nr_addr_filters);
9796
2e80a82a 9797static struct idr pmu_idr;
d6d020e9 9798
abe43400
PZ
9799static ssize_t
9800type_show(struct device *dev, struct device_attribute *attr, char *page)
9801{
9802 struct pmu *pmu = dev_get_drvdata(dev);
9803
9804 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9805}
90826ca7 9806static DEVICE_ATTR_RO(type);
abe43400 9807
62b85639
SE
9808static ssize_t
9809perf_event_mux_interval_ms_show(struct device *dev,
9810 struct device_attribute *attr,
9811 char *page)
9812{
9813 struct pmu *pmu = dev_get_drvdata(dev);
9814
9815 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9816}
9817
272325c4
PZ
9818static DEFINE_MUTEX(mux_interval_mutex);
9819
62b85639
SE
9820static ssize_t
9821perf_event_mux_interval_ms_store(struct device *dev,
9822 struct device_attribute *attr,
9823 const char *buf, size_t count)
9824{
9825 struct pmu *pmu = dev_get_drvdata(dev);
9826 int timer, cpu, ret;
9827
9828 ret = kstrtoint(buf, 0, &timer);
9829 if (ret)
9830 return ret;
9831
9832 if (timer < 1)
9833 return -EINVAL;
9834
9835 /* same value, noting to do */
9836 if (timer == pmu->hrtimer_interval_ms)
9837 return count;
9838
272325c4 9839 mutex_lock(&mux_interval_mutex);
62b85639
SE
9840 pmu->hrtimer_interval_ms = timer;
9841
9842 /* update all cpuctx for this PMU */
a63fbed7 9843 cpus_read_lock();
272325c4 9844 for_each_online_cpu(cpu) {
62b85639
SE
9845 struct perf_cpu_context *cpuctx;
9846 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9847 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9848
272325c4
PZ
9849 cpu_function_call(cpu,
9850 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9851 }
a63fbed7 9852 cpus_read_unlock();
272325c4 9853 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9854
9855 return count;
9856}
90826ca7 9857static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9858
90826ca7
GKH
9859static struct attribute *pmu_dev_attrs[] = {
9860 &dev_attr_type.attr,
9861 &dev_attr_perf_event_mux_interval_ms.attr,
9862 NULL,
abe43400 9863};
90826ca7 9864ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9865
9866static int pmu_bus_running;
9867static struct bus_type pmu_bus = {
9868 .name = "event_source",
90826ca7 9869 .dev_groups = pmu_dev_groups,
abe43400
PZ
9870};
9871
9872static void pmu_dev_release(struct device *dev)
9873{
9874 kfree(dev);
9875}
9876
9877static int pmu_dev_alloc(struct pmu *pmu)
9878{
9879 int ret = -ENOMEM;
9880
9881 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9882 if (!pmu->dev)
9883 goto out;
9884
0c9d42ed 9885 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9886 device_initialize(pmu->dev);
9887 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9888 if (ret)
9889 goto free_dev;
9890
9891 dev_set_drvdata(pmu->dev, pmu);
9892 pmu->dev->bus = &pmu_bus;
9893 pmu->dev->release = pmu_dev_release;
9894 ret = device_add(pmu->dev);
9895 if (ret)
9896 goto free_dev;
9897
6e855cd4
AS
9898 /* For PMUs with address filters, throw in an extra attribute: */
9899 if (pmu->nr_addr_filters)
9900 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9901
9902 if (ret)
9903 goto del_dev;
9904
f3a3a825
JO
9905 if (pmu->attr_update)
9906 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9907
9908 if (ret)
9909 goto del_dev;
9910
abe43400
PZ
9911out:
9912 return ret;
9913
6e855cd4
AS
9914del_dev:
9915 device_del(pmu->dev);
9916
abe43400
PZ
9917free_dev:
9918 put_device(pmu->dev);
9919 goto out;
9920}
9921
547e9fd7 9922static struct lock_class_key cpuctx_mutex;
facc4307 9923static struct lock_class_key cpuctx_lock;
547e9fd7 9924
03d8e80b 9925int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9926{
108b02cf 9927 int cpu, ret;
24f1e32c 9928
b0a873eb 9929 mutex_lock(&pmus_lock);
33696fc0
PZ
9930 ret = -ENOMEM;
9931 pmu->pmu_disable_count = alloc_percpu(int);
9932 if (!pmu->pmu_disable_count)
9933 goto unlock;
f29ac756 9934
2e80a82a
PZ
9935 pmu->type = -1;
9936 if (!name)
9937 goto skip_type;
9938 pmu->name = name;
9939
9940 if (type < 0) {
0e9c3be2
TH
9941 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9942 if (type < 0) {
9943 ret = type;
2e80a82a
PZ
9944 goto free_pdc;
9945 }
9946 }
9947 pmu->type = type;
9948
abe43400
PZ
9949 if (pmu_bus_running) {
9950 ret = pmu_dev_alloc(pmu);
9951 if (ret)
9952 goto free_idr;
9953 }
9954
2e80a82a 9955skip_type:
26657848
PZ
9956 if (pmu->task_ctx_nr == perf_hw_context) {
9957 static int hw_context_taken = 0;
9958
5101ef20
MR
9959 /*
9960 * Other than systems with heterogeneous CPUs, it never makes
9961 * sense for two PMUs to share perf_hw_context. PMUs which are
9962 * uncore must use perf_invalid_context.
9963 */
9964 if (WARN_ON_ONCE(hw_context_taken &&
9965 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9966 pmu->task_ctx_nr = perf_invalid_context;
9967
9968 hw_context_taken = 1;
9969 }
9970
8dc85d54
PZ
9971 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9972 if (pmu->pmu_cpu_context)
9973 goto got_cpu_context;
f29ac756 9974
c4814202 9975 ret = -ENOMEM;
108b02cf
PZ
9976 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9977 if (!pmu->pmu_cpu_context)
abe43400 9978 goto free_dev;
f344011c 9979
108b02cf
PZ
9980 for_each_possible_cpu(cpu) {
9981 struct perf_cpu_context *cpuctx;
9982
9983 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9984 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9985 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9986 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9987 cpuctx->ctx.pmu = pmu;
a63fbed7 9988 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9989
272325c4 9990 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9991 }
76e1d904 9992
8dc85d54 9993got_cpu_context:
ad5133b7
PZ
9994 if (!pmu->start_txn) {
9995 if (pmu->pmu_enable) {
9996 /*
9997 * If we have pmu_enable/pmu_disable calls, install
9998 * transaction stubs that use that to try and batch
9999 * hardware accesses.
10000 */
10001 pmu->start_txn = perf_pmu_start_txn;
10002 pmu->commit_txn = perf_pmu_commit_txn;
10003 pmu->cancel_txn = perf_pmu_cancel_txn;
10004 } else {
fbbe0701 10005 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10006 pmu->commit_txn = perf_pmu_nop_int;
10007 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10008 }
5c92d124 10009 }
15dbf27c 10010
ad5133b7
PZ
10011 if (!pmu->pmu_enable) {
10012 pmu->pmu_enable = perf_pmu_nop_void;
10013 pmu->pmu_disable = perf_pmu_nop_void;
10014 }
10015
81ec3f3c
JO
10016 if (!pmu->check_period)
10017 pmu->check_period = perf_event_nop_int;
10018
35edc2a5
PZ
10019 if (!pmu->event_idx)
10020 pmu->event_idx = perf_event_idx_default;
10021
b0a873eb 10022 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 10023 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10024 ret = 0;
10025unlock:
b0a873eb
PZ
10026 mutex_unlock(&pmus_lock);
10027
33696fc0 10028 return ret;
108b02cf 10029
abe43400
PZ
10030free_dev:
10031 device_del(pmu->dev);
10032 put_device(pmu->dev);
10033
2e80a82a
PZ
10034free_idr:
10035 if (pmu->type >= PERF_TYPE_MAX)
10036 idr_remove(&pmu_idr, pmu->type);
10037
108b02cf
PZ
10038free_pdc:
10039 free_percpu(pmu->pmu_disable_count);
10040 goto unlock;
f29ac756 10041}
c464c76e 10042EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10043
b0a873eb 10044void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10045{
b0a873eb
PZ
10046 mutex_lock(&pmus_lock);
10047 list_del_rcu(&pmu->entry);
5c92d124 10048
0475f9ea 10049 /*
cde8e884
PZ
10050 * We dereference the pmu list under both SRCU and regular RCU, so
10051 * synchronize against both of those.
0475f9ea 10052 */
b0a873eb 10053 synchronize_srcu(&pmus_srcu);
cde8e884 10054 synchronize_rcu();
d6d020e9 10055
33696fc0 10056 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
10057 if (pmu->type >= PERF_TYPE_MAX)
10058 idr_remove(&pmu_idr, pmu->type);
a9f97721 10059 if (pmu_bus_running) {
0933840a
JO
10060 if (pmu->nr_addr_filters)
10061 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10062 device_del(pmu->dev);
10063 put_device(pmu->dev);
10064 }
51676957 10065 free_pmu_context(pmu);
a9f97721 10066 mutex_unlock(&pmus_lock);
b0a873eb 10067}
c464c76e 10068EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10069
e321d02d
KL
10070static inline bool has_extended_regs(struct perf_event *event)
10071{
10072 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10073 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10074}
10075
cc34b98b
MR
10076static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10077{
ccd41c86 10078 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10079 int ret;
10080
10081 if (!try_module_get(pmu->module))
10082 return -ENODEV;
ccd41c86 10083
0c7296ca
PZ
10084 /*
10085 * A number of pmu->event_init() methods iterate the sibling_list to,
10086 * for example, validate if the group fits on the PMU. Therefore,
10087 * if this is a sibling event, acquire the ctx->mutex to protect
10088 * the sibling_list.
10089 */
10090 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10091 /*
10092 * This ctx->mutex can nest when we're called through
10093 * inheritance. See the perf_event_ctx_lock_nested() comment.
10094 */
10095 ctx = perf_event_ctx_lock_nested(event->group_leader,
10096 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10097 BUG_ON(!ctx);
10098 }
10099
cc34b98b
MR
10100 event->pmu = pmu;
10101 ret = pmu->event_init(event);
ccd41c86
PZ
10102
10103 if (ctx)
10104 perf_event_ctx_unlock(event->group_leader, ctx);
10105
cc6795ae 10106 if (!ret) {
e321d02d
KL
10107 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10108 has_extended_regs(event))
10109 ret = -EOPNOTSUPP;
10110
cc6795ae 10111 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10112 event_has_any_exclude_flag(event))
cc6795ae 10113 ret = -EINVAL;
e321d02d
KL
10114
10115 if (ret && event->destroy)
10116 event->destroy(event);
cc6795ae
AM
10117 }
10118
cc34b98b
MR
10119 if (ret)
10120 module_put(pmu->module);
10121
10122 return ret;
10123}
10124
18ab2cd3 10125static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10126{
85c617ab 10127 struct pmu *pmu;
b0a873eb 10128 int idx;
940c5b29 10129 int ret;
b0a873eb
PZ
10130
10131 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10132
40999312
KL
10133 /* Try parent's PMU first: */
10134 if (event->parent && event->parent->pmu) {
10135 pmu = event->parent->pmu;
10136 ret = perf_try_init_event(pmu, event);
10137 if (!ret)
10138 goto unlock;
10139 }
10140
2e80a82a
PZ
10141 rcu_read_lock();
10142 pmu = idr_find(&pmu_idr, event->attr.type);
10143 rcu_read_unlock();
940c5b29 10144 if (pmu) {
cc34b98b 10145 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10146 if (ret)
10147 pmu = ERR_PTR(ret);
2e80a82a 10148 goto unlock;
940c5b29 10149 }
2e80a82a 10150
b0a873eb 10151 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10152 ret = perf_try_init_event(pmu, event);
b0a873eb 10153 if (!ret)
e5f4d339 10154 goto unlock;
76e1d904 10155
b0a873eb
PZ
10156 if (ret != -ENOENT) {
10157 pmu = ERR_PTR(ret);
e5f4d339 10158 goto unlock;
f344011c 10159 }
5c92d124 10160 }
e5f4d339
PZ
10161 pmu = ERR_PTR(-ENOENT);
10162unlock:
b0a873eb 10163 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10164
4aeb0b42 10165 return pmu;
5c92d124
IM
10166}
10167
f2fb6bef
KL
10168static void attach_sb_event(struct perf_event *event)
10169{
10170 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10171
10172 raw_spin_lock(&pel->lock);
10173 list_add_rcu(&event->sb_list, &pel->list);
10174 raw_spin_unlock(&pel->lock);
10175}
10176
aab5b71e
PZ
10177/*
10178 * We keep a list of all !task (and therefore per-cpu) events
10179 * that need to receive side-band records.
10180 *
10181 * This avoids having to scan all the various PMU per-cpu contexts
10182 * looking for them.
10183 */
f2fb6bef
KL
10184static void account_pmu_sb_event(struct perf_event *event)
10185{
a4f144eb 10186 if (is_sb_event(event))
f2fb6bef
KL
10187 attach_sb_event(event);
10188}
10189
4beb31f3
FW
10190static void account_event_cpu(struct perf_event *event, int cpu)
10191{
10192 if (event->parent)
10193 return;
10194
4beb31f3
FW
10195 if (is_cgroup_event(event))
10196 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10197}
10198
555e0c1e
FW
10199/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10200static void account_freq_event_nohz(void)
10201{
10202#ifdef CONFIG_NO_HZ_FULL
10203 /* Lock so we don't race with concurrent unaccount */
10204 spin_lock(&nr_freq_lock);
10205 if (atomic_inc_return(&nr_freq_events) == 1)
10206 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10207 spin_unlock(&nr_freq_lock);
10208#endif
10209}
10210
10211static void account_freq_event(void)
10212{
10213 if (tick_nohz_full_enabled())
10214 account_freq_event_nohz();
10215 else
10216 atomic_inc(&nr_freq_events);
10217}
10218
10219
766d6c07
FW
10220static void account_event(struct perf_event *event)
10221{
25432ae9
PZ
10222 bool inc = false;
10223
4beb31f3
FW
10224 if (event->parent)
10225 return;
10226
766d6c07 10227 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10228 inc = true;
766d6c07
FW
10229 if (event->attr.mmap || event->attr.mmap_data)
10230 atomic_inc(&nr_mmap_events);
10231 if (event->attr.comm)
10232 atomic_inc(&nr_comm_events);
e4222673
HB
10233 if (event->attr.namespaces)
10234 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10235 if (event->attr.task)
10236 atomic_inc(&nr_task_events);
555e0c1e
FW
10237 if (event->attr.freq)
10238 account_freq_event();
45ac1403
AH
10239 if (event->attr.context_switch) {
10240 atomic_inc(&nr_switch_events);
25432ae9 10241 inc = true;
45ac1403 10242 }
4beb31f3 10243 if (has_branch_stack(event))
25432ae9 10244 inc = true;
4beb31f3 10245 if (is_cgroup_event(event))
25432ae9 10246 inc = true;
76193a94
SL
10247 if (event->attr.ksymbol)
10248 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10249 if (event->attr.bpf_event)
10250 atomic_inc(&nr_bpf_events);
25432ae9 10251
9107c89e 10252 if (inc) {
5bce9db1
AS
10253 /*
10254 * We need the mutex here because static_branch_enable()
10255 * must complete *before* the perf_sched_count increment
10256 * becomes visible.
10257 */
9107c89e
PZ
10258 if (atomic_inc_not_zero(&perf_sched_count))
10259 goto enabled;
10260
10261 mutex_lock(&perf_sched_mutex);
10262 if (!atomic_read(&perf_sched_count)) {
10263 static_branch_enable(&perf_sched_events);
10264 /*
10265 * Guarantee that all CPUs observe they key change and
10266 * call the perf scheduling hooks before proceeding to
10267 * install events that need them.
10268 */
0809d954 10269 synchronize_rcu();
9107c89e
PZ
10270 }
10271 /*
10272 * Now that we have waited for the sync_sched(), allow further
10273 * increments to by-pass the mutex.
10274 */
10275 atomic_inc(&perf_sched_count);
10276 mutex_unlock(&perf_sched_mutex);
10277 }
10278enabled:
4beb31f3
FW
10279
10280 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10281
10282 account_pmu_sb_event(event);
766d6c07
FW
10283}
10284
0793a61d 10285/*
788faab7 10286 * Allocate and initialize an event structure
0793a61d 10287 */
cdd6c482 10288static struct perf_event *
c3f00c70 10289perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10290 struct task_struct *task,
10291 struct perf_event *group_leader,
10292 struct perf_event *parent_event,
4dc0da86 10293 perf_overflow_handler_t overflow_handler,
79dff51e 10294 void *context, int cgroup_fd)
0793a61d 10295{
51b0fe39 10296 struct pmu *pmu;
cdd6c482
IM
10297 struct perf_event *event;
10298 struct hw_perf_event *hwc;
90983b16 10299 long err = -EINVAL;
0793a61d 10300
66832eb4
ON
10301 if ((unsigned)cpu >= nr_cpu_ids) {
10302 if (!task || cpu != -1)
10303 return ERR_PTR(-EINVAL);
10304 }
10305
c3f00c70 10306 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10307 if (!event)
d5d2bc0d 10308 return ERR_PTR(-ENOMEM);
0793a61d 10309
04289bb9 10310 /*
cdd6c482 10311 * Single events are their own group leaders, with an
04289bb9
IM
10312 * empty sibling list:
10313 */
10314 if (!group_leader)
cdd6c482 10315 group_leader = event;
04289bb9 10316
cdd6c482
IM
10317 mutex_init(&event->child_mutex);
10318 INIT_LIST_HEAD(&event->child_list);
fccc714b 10319
cdd6c482
IM
10320 INIT_LIST_HEAD(&event->event_entry);
10321 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10322 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10323 init_event_group(event);
10c6db11 10324 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10325 INIT_LIST_HEAD(&event->active_entry);
375637bc 10326 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10327 INIT_HLIST_NODE(&event->hlist_entry);
10328
10c6db11 10329
cdd6c482 10330 init_waitqueue_head(&event->waitq);
1d54ad94 10331 event->pending_disable = -1;
e360adbe 10332 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10333
cdd6c482 10334 mutex_init(&event->mmap_mutex);
375637bc 10335 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10336
a6fa941d 10337 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10338 event->cpu = cpu;
10339 event->attr = *attr;
10340 event->group_leader = group_leader;
10341 event->pmu = NULL;
cdd6c482 10342 event->oncpu = -1;
a96bbc16 10343
cdd6c482 10344 event->parent = parent_event;
b84fbc9f 10345
17cf22c3 10346 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10347 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10348
cdd6c482 10349 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10350
d580ff86
PZ
10351 if (task) {
10352 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10353 /*
50f16a8b
PZ
10354 * XXX pmu::event_init needs to know what task to account to
10355 * and we cannot use the ctx information because we need the
10356 * pmu before we get a ctx.
d580ff86 10357 */
621b6d2e 10358 get_task_struct(task);
50f16a8b 10359 event->hw.target = task;
d580ff86
PZ
10360 }
10361
34f43927
PZ
10362 event->clock = &local_clock;
10363 if (parent_event)
10364 event->clock = parent_event->clock;
10365
4dc0da86 10366 if (!overflow_handler && parent_event) {
b326e956 10367 overflow_handler = parent_event->overflow_handler;
4dc0da86 10368 context = parent_event->overflow_handler_context;
f1e4ba5b 10369#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10370 if (overflow_handler == bpf_overflow_handler) {
10371 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10372
10373 if (IS_ERR(prog)) {
10374 err = PTR_ERR(prog);
10375 goto err_ns;
10376 }
10377 event->prog = prog;
10378 event->orig_overflow_handler =
10379 parent_event->orig_overflow_handler;
10380 }
10381#endif
4dc0da86 10382 }
66832eb4 10383
1879445d
WN
10384 if (overflow_handler) {
10385 event->overflow_handler = overflow_handler;
10386 event->overflow_handler_context = context;
9ecda41a
WN
10387 } else if (is_write_backward(event)){
10388 event->overflow_handler = perf_event_output_backward;
10389 event->overflow_handler_context = NULL;
1879445d 10390 } else {
9ecda41a 10391 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10392 event->overflow_handler_context = NULL;
10393 }
97eaf530 10394
0231bb53 10395 perf_event__state_init(event);
a86ed508 10396
4aeb0b42 10397 pmu = NULL;
b8e83514 10398
cdd6c482 10399 hwc = &event->hw;
bd2b5b12 10400 hwc->sample_period = attr->sample_period;
0d48696f 10401 if (attr->freq && attr->sample_freq)
bd2b5b12 10402 hwc->sample_period = 1;
eced1dfc 10403 hwc->last_period = hwc->sample_period;
bd2b5b12 10404
e7850595 10405 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10406
2023b359 10407 /*
ba5213ae
PZ
10408 * We currently do not support PERF_SAMPLE_READ on inherited events.
10409 * See perf_output_read().
2023b359 10410 */
ba5213ae 10411 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10412 goto err_ns;
a46a2300
YZ
10413
10414 if (!has_branch_stack(event))
10415 event->attr.branch_sample_type = 0;
2023b359 10416
79dff51e
MF
10417 if (cgroup_fd != -1) {
10418 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10419 if (err)
10420 goto err_ns;
10421 }
10422
b0a873eb 10423 pmu = perf_init_event(event);
85c617ab 10424 if (IS_ERR(pmu)) {
4aeb0b42 10425 err = PTR_ERR(pmu);
90983b16 10426 goto err_ns;
621a01ea 10427 }
d5d2bc0d 10428
bed5b25a
AS
10429 err = exclusive_event_init(event);
10430 if (err)
10431 goto err_pmu;
10432
375637bc 10433 if (has_addr_filter(event)) {
c60f83b8
AS
10434 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10435 sizeof(struct perf_addr_filter_range),
10436 GFP_KERNEL);
10437 if (!event->addr_filter_ranges) {
36cc2b92 10438 err = -ENOMEM;
375637bc 10439 goto err_per_task;
36cc2b92 10440 }
375637bc 10441
18736eef
AS
10442 /*
10443 * Clone the parent's vma offsets: they are valid until exec()
10444 * even if the mm is not shared with the parent.
10445 */
10446 if (event->parent) {
10447 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10448
10449 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10450 memcpy(event->addr_filter_ranges,
10451 event->parent->addr_filter_ranges,
10452 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10453 raw_spin_unlock_irq(&ifh->lock);
10454 }
10455
375637bc
AS
10456 /* force hw sync on the address filters */
10457 event->addr_filters_gen = 1;
10458 }
10459
cdd6c482 10460 if (!event->parent) {
927c7a9e 10461 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10462 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10463 if (err)
375637bc 10464 goto err_addr_filters;
d010b332 10465 }
f344011c 10466 }
9ee318a7 10467
927a5570
AS
10468 /* symmetric to unaccount_event() in _free_event() */
10469 account_event(event);
10470
cdd6c482 10471 return event;
90983b16 10472
375637bc 10473err_addr_filters:
c60f83b8 10474 kfree(event->addr_filter_ranges);
375637bc 10475
bed5b25a
AS
10476err_per_task:
10477 exclusive_event_destroy(event);
10478
90983b16
FW
10479err_pmu:
10480 if (event->destroy)
10481 event->destroy(event);
c464c76e 10482 module_put(pmu->module);
90983b16 10483err_ns:
79dff51e
MF
10484 if (is_cgroup_event(event))
10485 perf_detach_cgroup(event);
90983b16
FW
10486 if (event->ns)
10487 put_pid_ns(event->ns);
621b6d2e
PB
10488 if (event->hw.target)
10489 put_task_struct(event->hw.target);
90983b16
FW
10490 kfree(event);
10491
10492 return ERR_PTR(err);
0793a61d
TG
10493}
10494
cdd6c482
IM
10495static int perf_copy_attr(struct perf_event_attr __user *uattr,
10496 struct perf_event_attr *attr)
974802ea 10497{
974802ea 10498 u32 size;
cdf8073d 10499 int ret;
974802ea 10500
96d4f267 10501 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
974802ea
PZ
10502 return -EFAULT;
10503
10504 /*
10505 * zero the full structure, so that a short copy will be nice.
10506 */
10507 memset(attr, 0, sizeof(*attr));
10508
10509 ret = get_user(size, &uattr->size);
10510 if (ret)
10511 return ret;
10512
10513 if (size > PAGE_SIZE) /* silly large */
10514 goto err_size;
10515
10516 if (!size) /* abi compat */
10517 size = PERF_ATTR_SIZE_VER0;
10518
10519 if (size < PERF_ATTR_SIZE_VER0)
10520 goto err_size;
10521
10522 /*
10523 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10524 * ensure all the unknown bits are 0 - i.e. new
10525 * user-space does not rely on any kernel feature
10526 * extensions we dont know about yet.
974802ea
PZ
10527 */
10528 if (size > sizeof(*attr)) {
cdf8073d
IS
10529 unsigned char __user *addr;
10530 unsigned char __user *end;
10531 unsigned char val;
974802ea 10532
cdf8073d
IS
10533 addr = (void __user *)uattr + sizeof(*attr);
10534 end = (void __user *)uattr + size;
974802ea 10535
cdf8073d 10536 for (; addr < end; addr++) {
974802ea
PZ
10537 ret = get_user(val, addr);
10538 if (ret)
10539 return ret;
10540 if (val)
10541 goto err_size;
10542 }
b3e62e35 10543 size = sizeof(*attr);
974802ea
PZ
10544 }
10545
10546 ret = copy_from_user(attr, uattr, size);
10547 if (ret)
10548 return -EFAULT;
10549
f12f42ac
MX
10550 attr->size = size;
10551
cd757645 10552 if (attr->__reserved_1)
974802ea
PZ
10553 return -EINVAL;
10554
10555 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10556 return -EINVAL;
10557
10558 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10559 return -EINVAL;
10560
bce38cd5
SE
10561 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10562 u64 mask = attr->branch_sample_type;
10563
10564 /* only using defined bits */
10565 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10566 return -EINVAL;
10567
10568 /* at least one branch bit must be set */
10569 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10570 return -EINVAL;
10571
bce38cd5
SE
10572 /* propagate priv level, when not set for branch */
10573 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10574
10575 /* exclude_kernel checked on syscall entry */
10576 if (!attr->exclude_kernel)
10577 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10578
10579 if (!attr->exclude_user)
10580 mask |= PERF_SAMPLE_BRANCH_USER;
10581
10582 if (!attr->exclude_hv)
10583 mask |= PERF_SAMPLE_BRANCH_HV;
10584 /*
10585 * adjust user setting (for HW filter setup)
10586 */
10587 attr->branch_sample_type = mask;
10588 }
e712209a
SE
10589 /* privileged levels capture (kernel, hv): check permissions */
10590 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10591 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10592 return -EACCES;
bce38cd5 10593 }
4018994f 10594
c5ebcedb 10595 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10596 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10597 if (ret)
10598 return ret;
10599 }
10600
10601 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10602 if (!arch_perf_have_user_stack_dump())
10603 return -ENOSYS;
10604
10605 /*
10606 * We have __u32 type for the size, but so far
10607 * we can only use __u16 as maximum due to the
10608 * __u16 sample size limit.
10609 */
10610 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10611 return -EINVAL;
c5ebcedb 10612 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10613 return -EINVAL;
c5ebcedb 10614 }
4018994f 10615
5f970521
JO
10616 if (!attr->sample_max_stack)
10617 attr->sample_max_stack = sysctl_perf_event_max_stack;
10618
60e2364e
SE
10619 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10620 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10621out:
10622 return ret;
10623
10624err_size:
10625 put_user(sizeof(*attr), &uattr->size);
10626 ret = -E2BIG;
10627 goto out;
10628}
10629
ac9721f3
PZ
10630static int
10631perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10632{
b69cf536 10633 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10634 int ret = -EINVAL;
10635
ac9721f3 10636 if (!output_event)
a4be7c27
PZ
10637 goto set;
10638
ac9721f3
PZ
10639 /* don't allow circular references */
10640 if (event == output_event)
a4be7c27
PZ
10641 goto out;
10642
0f139300
PZ
10643 /*
10644 * Don't allow cross-cpu buffers
10645 */
10646 if (output_event->cpu != event->cpu)
10647 goto out;
10648
10649 /*
76369139 10650 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10651 */
10652 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10653 goto out;
10654
34f43927
PZ
10655 /*
10656 * Mixing clocks in the same buffer is trouble you don't need.
10657 */
10658 if (output_event->clock != event->clock)
10659 goto out;
10660
9ecda41a
WN
10661 /*
10662 * Either writing ring buffer from beginning or from end.
10663 * Mixing is not allowed.
10664 */
10665 if (is_write_backward(output_event) != is_write_backward(event))
10666 goto out;
10667
45bfb2e5
PZ
10668 /*
10669 * If both events generate aux data, they must be on the same PMU
10670 */
10671 if (has_aux(event) && has_aux(output_event) &&
10672 event->pmu != output_event->pmu)
10673 goto out;
10674
a4be7c27 10675set:
cdd6c482 10676 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10677 /* Can't redirect output if we've got an active mmap() */
10678 if (atomic_read(&event->mmap_count))
10679 goto unlock;
a4be7c27 10680
ac9721f3 10681 if (output_event) {
76369139
FW
10682 /* get the rb we want to redirect to */
10683 rb = ring_buffer_get(output_event);
10684 if (!rb)
ac9721f3 10685 goto unlock;
a4be7c27
PZ
10686 }
10687
b69cf536 10688 ring_buffer_attach(event, rb);
9bb5d40c 10689
a4be7c27 10690 ret = 0;
ac9721f3
PZ
10691unlock:
10692 mutex_unlock(&event->mmap_mutex);
10693
a4be7c27 10694out:
a4be7c27
PZ
10695 return ret;
10696}
10697
f63a8daa
PZ
10698static void mutex_lock_double(struct mutex *a, struct mutex *b)
10699{
10700 if (b < a)
10701 swap(a, b);
10702
10703 mutex_lock(a);
10704 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10705}
10706
34f43927
PZ
10707static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10708{
10709 bool nmi_safe = false;
10710
10711 switch (clk_id) {
10712 case CLOCK_MONOTONIC:
10713 event->clock = &ktime_get_mono_fast_ns;
10714 nmi_safe = true;
10715 break;
10716
10717 case CLOCK_MONOTONIC_RAW:
10718 event->clock = &ktime_get_raw_fast_ns;
10719 nmi_safe = true;
10720 break;
10721
10722 case CLOCK_REALTIME:
10723 event->clock = &ktime_get_real_ns;
10724 break;
10725
10726 case CLOCK_BOOTTIME:
9285ec4c 10727 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
10728 break;
10729
10730 case CLOCK_TAI:
9285ec4c 10731 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
10732 break;
10733
10734 default:
10735 return -EINVAL;
10736 }
10737
10738 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10739 return -EINVAL;
10740
10741 return 0;
10742}
10743
321027c1
PZ
10744/*
10745 * Variation on perf_event_ctx_lock_nested(), except we take two context
10746 * mutexes.
10747 */
10748static struct perf_event_context *
10749__perf_event_ctx_lock_double(struct perf_event *group_leader,
10750 struct perf_event_context *ctx)
10751{
10752 struct perf_event_context *gctx;
10753
10754again:
10755 rcu_read_lock();
10756 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10757 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10758 rcu_read_unlock();
10759 goto again;
10760 }
10761 rcu_read_unlock();
10762
10763 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10764
10765 if (group_leader->ctx != gctx) {
10766 mutex_unlock(&ctx->mutex);
10767 mutex_unlock(&gctx->mutex);
10768 put_ctx(gctx);
10769 goto again;
10770 }
10771
10772 return gctx;
10773}
10774
0793a61d 10775/**
cdd6c482 10776 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10777 *
cdd6c482 10778 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10779 * @pid: target pid
9f66a381 10780 * @cpu: target cpu
cdd6c482 10781 * @group_fd: group leader event fd
0793a61d 10782 */
cdd6c482
IM
10783SYSCALL_DEFINE5(perf_event_open,
10784 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10785 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10786{
b04243ef
PZ
10787 struct perf_event *group_leader = NULL, *output_event = NULL;
10788 struct perf_event *event, *sibling;
cdd6c482 10789 struct perf_event_attr attr;
f63a8daa 10790 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10791 struct file *event_file = NULL;
2903ff01 10792 struct fd group = {NULL, 0};
38a81da2 10793 struct task_struct *task = NULL;
89a1e187 10794 struct pmu *pmu;
ea635c64 10795 int event_fd;
b04243ef 10796 int move_group = 0;
dc86cabe 10797 int err;
a21b0b35 10798 int f_flags = O_RDWR;
79dff51e 10799 int cgroup_fd = -1;
0793a61d 10800
2743a5b0 10801 /* for future expandability... */
e5d1367f 10802 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10803 return -EINVAL;
10804
dc86cabe
IM
10805 err = perf_copy_attr(attr_uptr, &attr);
10806 if (err)
10807 return err;
eab656ae 10808
0764771d
PZ
10809 if (!attr.exclude_kernel) {
10810 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10811 return -EACCES;
10812 }
10813
e4222673
HB
10814 if (attr.namespaces) {
10815 if (!capable(CAP_SYS_ADMIN))
10816 return -EACCES;
10817 }
10818
df58ab24 10819 if (attr.freq) {
cdd6c482 10820 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10821 return -EINVAL;
0819b2e3
PZ
10822 } else {
10823 if (attr.sample_period & (1ULL << 63))
10824 return -EINVAL;
df58ab24
PZ
10825 }
10826
fc7ce9c7
KL
10827 /* Only privileged users can get physical addresses */
10828 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10829 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10830 return -EACCES;
10831
e5d1367f
SE
10832 /*
10833 * In cgroup mode, the pid argument is used to pass the fd
10834 * opened to the cgroup directory in cgroupfs. The cpu argument
10835 * designates the cpu on which to monitor threads from that
10836 * cgroup.
10837 */
10838 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10839 return -EINVAL;
10840
a21b0b35
YD
10841 if (flags & PERF_FLAG_FD_CLOEXEC)
10842 f_flags |= O_CLOEXEC;
10843
10844 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10845 if (event_fd < 0)
10846 return event_fd;
10847
ac9721f3 10848 if (group_fd != -1) {
2903ff01
AV
10849 err = perf_fget_light(group_fd, &group);
10850 if (err)
d14b12d7 10851 goto err_fd;
2903ff01 10852 group_leader = group.file->private_data;
ac9721f3
PZ
10853 if (flags & PERF_FLAG_FD_OUTPUT)
10854 output_event = group_leader;
10855 if (flags & PERF_FLAG_FD_NO_GROUP)
10856 group_leader = NULL;
10857 }
10858
e5d1367f 10859 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10860 task = find_lively_task_by_vpid(pid);
10861 if (IS_ERR(task)) {
10862 err = PTR_ERR(task);
10863 goto err_group_fd;
10864 }
10865 }
10866
1f4ee503
PZ
10867 if (task && group_leader &&
10868 group_leader->attr.inherit != attr.inherit) {
10869 err = -EINVAL;
10870 goto err_task;
10871 }
10872
79c9ce57
PZ
10873 if (task) {
10874 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10875 if (err)
e5aeee51 10876 goto err_task;
79c9ce57
PZ
10877
10878 /*
10879 * Reuse ptrace permission checks for now.
10880 *
10881 * We must hold cred_guard_mutex across this and any potential
10882 * perf_install_in_context() call for this new event to
10883 * serialize against exec() altering our credentials (and the
10884 * perf_event_exit_task() that could imply).
10885 */
10886 err = -EACCES;
10887 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10888 goto err_cred;
10889 }
10890
79dff51e
MF
10891 if (flags & PERF_FLAG_PID_CGROUP)
10892 cgroup_fd = pid;
10893
4dc0da86 10894 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10895 NULL, NULL, cgroup_fd);
d14b12d7
SE
10896 if (IS_ERR(event)) {
10897 err = PTR_ERR(event);
79c9ce57 10898 goto err_cred;
d14b12d7
SE
10899 }
10900
53b25335
VW
10901 if (is_sampling_event(event)) {
10902 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10903 err = -EOPNOTSUPP;
53b25335
VW
10904 goto err_alloc;
10905 }
10906 }
10907
89a1e187
PZ
10908 /*
10909 * Special case software events and allow them to be part of
10910 * any hardware group.
10911 */
10912 pmu = event->pmu;
b04243ef 10913
34f43927
PZ
10914 if (attr.use_clockid) {
10915 err = perf_event_set_clock(event, attr.clockid);
10916 if (err)
10917 goto err_alloc;
10918 }
10919
4ff6a8de
DCC
10920 if (pmu->task_ctx_nr == perf_sw_context)
10921 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10922
a1150c20
SL
10923 if (group_leader) {
10924 if (is_software_event(event) &&
10925 !in_software_context(group_leader)) {
b04243ef 10926 /*
a1150c20
SL
10927 * If the event is a sw event, but the group_leader
10928 * is on hw context.
b04243ef 10929 *
a1150c20
SL
10930 * Allow the addition of software events to hw
10931 * groups, this is safe because software events
10932 * never fail to schedule.
b04243ef 10933 */
a1150c20
SL
10934 pmu = group_leader->ctx->pmu;
10935 } else if (!is_software_event(event) &&
10936 is_software_event(group_leader) &&
4ff6a8de 10937 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10938 /*
10939 * In case the group is a pure software group, and we
10940 * try to add a hardware event, move the whole group to
10941 * the hardware context.
10942 */
10943 move_group = 1;
10944 }
10945 }
89a1e187
PZ
10946
10947 /*
10948 * Get the target context (task or percpu):
10949 */
4af57ef2 10950 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10951 if (IS_ERR(ctx)) {
10952 err = PTR_ERR(ctx);
c6be5a5c 10953 goto err_alloc;
89a1e187
PZ
10954 }
10955
ccff286d 10956 /*
cdd6c482 10957 * Look up the group leader (we will attach this event to it):
04289bb9 10958 */
ac9721f3 10959 if (group_leader) {
dc86cabe 10960 err = -EINVAL;
04289bb9 10961
04289bb9 10962 /*
ccff286d
IM
10963 * Do not allow a recursive hierarchy (this new sibling
10964 * becoming part of another group-sibling):
10965 */
10966 if (group_leader->group_leader != group_leader)
c3f00c70 10967 goto err_context;
34f43927
PZ
10968
10969 /* All events in a group should have the same clock */
10970 if (group_leader->clock != event->clock)
10971 goto err_context;
10972
ccff286d 10973 /*
64aee2a9
MR
10974 * Make sure we're both events for the same CPU;
10975 * grouping events for different CPUs is broken; since
10976 * you can never concurrently schedule them anyhow.
04289bb9 10977 */
64aee2a9
MR
10978 if (group_leader->cpu != event->cpu)
10979 goto err_context;
c3c87e77 10980
64aee2a9
MR
10981 /*
10982 * Make sure we're both on the same task, or both
10983 * per-CPU events.
10984 */
10985 if (group_leader->ctx->task != ctx->task)
10986 goto err_context;
10987
10988 /*
10989 * Do not allow to attach to a group in a different task
10990 * or CPU context. If we're moving SW events, we'll fix
10991 * this up later, so allow that.
10992 */
10993 if (!move_group && group_leader->ctx != ctx)
10994 goto err_context;
b04243ef 10995
3b6f9e5c
PM
10996 /*
10997 * Only a group leader can be exclusive or pinned
10998 */
0d48696f 10999 if (attr.exclusive || attr.pinned)
c3f00c70 11000 goto err_context;
ac9721f3
PZ
11001 }
11002
11003 if (output_event) {
11004 err = perf_event_set_output(event, output_event);
11005 if (err)
c3f00c70 11006 goto err_context;
ac9721f3 11007 }
0793a61d 11008
a21b0b35
YD
11009 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11010 f_flags);
ea635c64
AV
11011 if (IS_ERR(event_file)) {
11012 err = PTR_ERR(event_file);
201c2f85 11013 event_file = NULL;
c3f00c70 11014 goto err_context;
ea635c64 11015 }
9b51f66d 11016
b04243ef 11017 if (move_group) {
321027c1
PZ
11018 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11019
84c4e620
PZ
11020 if (gctx->task == TASK_TOMBSTONE) {
11021 err = -ESRCH;
11022 goto err_locked;
11023 }
321027c1
PZ
11024
11025 /*
11026 * Check if we raced against another sys_perf_event_open() call
11027 * moving the software group underneath us.
11028 */
11029 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11030 /*
11031 * If someone moved the group out from under us, check
11032 * if this new event wound up on the same ctx, if so
11033 * its the regular !move_group case, otherwise fail.
11034 */
11035 if (gctx != ctx) {
11036 err = -EINVAL;
11037 goto err_locked;
11038 } else {
11039 perf_event_ctx_unlock(group_leader, gctx);
11040 move_group = 0;
11041 }
11042 }
8a58ddae
AS
11043
11044 /*
11045 * Failure to create exclusive events returns -EBUSY.
11046 */
11047 err = -EBUSY;
11048 if (!exclusive_event_installable(group_leader, ctx))
11049 goto err_locked;
11050
11051 for_each_sibling_event(sibling, group_leader) {
11052 if (!exclusive_event_installable(sibling, ctx))
11053 goto err_locked;
11054 }
f55fc2a5
PZ
11055 } else {
11056 mutex_lock(&ctx->mutex);
11057 }
11058
84c4e620
PZ
11059 if (ctx->task == TASK_TOMBSTONE) {
11060 err = -ESRCH;
11061 goto err_locked;
11062 }
11063
a723968c
PZ
11064 if (!perf_event_validate_size(event)) {
11065 err = -E2BIG;
11066 goto err_locked;
11067 }
11068
a63fbed7
TG
11069 if (!task) {
11070 /*
11071 * Check if the @cpu we're creating an event for is online.
11072 *
11073 * We use the perf_cpu_context::ctx::mutex to serialize against
11074 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11075 */
11076 struct perf_cpu_context *cpuctx =
11077 container_of(ctx, struct perf_cpu_context, ctx);
11078
11079 if (!cpuctx->online) {
11080 err = -ENODEV;
11081 goto err_locked;
11082 }
11083 }
11084
11085
f55fc2a5
PZ
11086 /*
11087 * Must be under the same ctx::mutex as perf_install_in_context(),
11088 * because we need to serialize with concurrent event creation.
11089 */
11090 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11091 err = -EBUSY;
11092 goto err_locked;
11093 }
f63a8daa 11094
f55fc2a5
PZ
11095 WARN_ON_ONCE(ctx->parent_ctx);
11096
79c9ce57
PZ
11097 /*
11098 * This is the point on no return; we cannot fail hereafter. This is
11099 * where we start modifying current state.
11100 */
11101
f55fc2a5 11102 if (move_group) {
f63a8daa
PZ
11103 /*
11104 * See perf_event_ctx_lock() for comments on the details
11105 * of swizzling perf_event::ctx.
11106 */
45a0e07a 11107 perf_remove_from_context(group_leader, 0);
279b5165 11108 put_ctx(gctx);
0231bb53 11109
edb39592 11110 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11111 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11112 put_ctx(gctx);
11113 }
b04243ef 11114
f63a8daa
PZ
11115 /*
11116 * Wait for everybody to stop referencing the events through
11117 * the old lists, before installing it on new lists.
11118 */
0cda4c02 11119 synchronize_rcu();
f63a8daa 11120
8f95b435
PZI
11121 /*
11122 * Install the group siblings before the group leader.
11123 *
11124 * Because a group leader will try and install the entire group
11125 * (through the sibling list, which is still in-tact), we can
11126 * end up with siblings installed in the wrong context.
11127 *
11128 * By installing siblings first we NO-OP because they're not
11129 * reachable through the group lists.
11130 */
edb39592 11131 for_each_sibling_event(sibling, group_leader) {
8f95b435 11132 perf_event__state_init(sibling);
9fc81d87 11133 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11134 get_ctx(ctx);
11135 }
8f95b435
PZI
11136
11137 /*
11138 * Removing from the context ends up with disabled
11139 * event. What we want here is event in the initial
11140 * startup state, ready to be add into new context.
11141 */
11142 perf_event__state_init(group_leader);
11143 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11144 get_ctx(ctx);
bed5b25a
AS
11145 }
11146
f73e22ab
PZ
11147 /*
11148 * Precalculate sample_data sizes; do while holding ctx::mutex such
11149 * that we're serialized against further additions and before
11150 * perf_install_in_context() which is the point the event is active and
11151 * can use these values.
11152 */
11153 perf_event__header_size(event);
11154 perf_event__id_header_size(event);
11155
78cd2c74
PZ
11156 event->owner = current;
11157
e2d37cd2 11158 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11159 perf_unpin_context(ctx);
f63a8daa 11160
f55fc2a5 11161 if (move_group)
321027c1 11162 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11163 mutex_unlock(&ctx->mutex);
9b51f66d 11164
79c9ce57
PZ
11165 if (task) {
11166 mutex_unlock(&task->signal->cred_guard_mutex);
11167 put_task_struct(task);
11168 }
11169
cdd6c482
IM
11170 mutex_lock(&current->perf_event_mutex);
11171 list_add_tail(&event->owner_entry, &current->perf_event_list);
11172 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11173
8a49542c
PZ
11174 /*
11175 * Drop the reference on the group_event after placing the
11176 * new event on the sibling_list. This ensures destruction
11177 * of the group leader will find the pointer to itself in
11178 * perf_group_detach().
11179 */
2903ff01 11180 fdput(group);
ea635c64
AV
11181 fd_install(event_fd, event_file);
11182 return event_fd;
0793a61d 11183
f55fc2a5
PZ
11184err_locked:
11185 if (move_group)
321027c1 11186 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11187 mutex_unlock(&ctx->mutex);
11188/* err_file: */
11189 fput(event_file);
c3f00c70 11190err_context:
fe4b04fa 11191 perf_unpin_context(ctx);
ea635c64 11192 put_ctx(ctx);
c6be5a5c 11193err_alloc:
13005627
PZ
11194 /*
11195 * If event_file is set, the fput() above will have called ->release()
11196 * and that will take care of freeing the event.
11197 */
11198 if (!event_file)
11199 free_event(event);
79c9ce57
PZ
11200err_cred:
11201 if (task)
11202 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11203err_task:
e7d0bc04
PZ
11204 if (task)
11205 put_task_struct(task);
89a1e187 11206err_group_fd:
2903ff01 11207 fdput(group);
ea635c64
AV
11208err_fd:
11209 put_unused_fd(event_fd);
dc86cabe 11210 return err;
0793a61d
TG
11211}
11212
fb0459d7
AV
11213/**
11214 * perf_event_create_kernel_counter
11215 *
11216 * @attr: attributes of the counter to create
11217 * @cpu: cpu in which the counter is bound
38a81da2 11218 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11219 */
11220struct perf_event *
11221perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11222 struct task_struct *task,
4dc0da86
AK
11223 perf_overflow_handler_t overflow_handler,
11224 void *context)
fb0459d7 11225{
fb0459d7 11226 struct perf_event_context *ctx;
c3f00c70 11227 struct perf_event *event;
fb0459d7 11228 int err;
d859e29f 11229
fb0459d7
AV
11230 /*
11231 * Get the target context (task or percpu):
11232 */
d859e29f 11233
4dc0da86 11234 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11235 overflow_handler, context, -1);
c3f00c70
PZ
11236 if (IS_ERR(event)) {
11237 err = PTR_ERR(event);
11238 goto err;
11239 }
d859e29f 11240
f8697762 11241 /* Mark owner so we could distinguish it from user events. */
63b6da39 11242 event->owner = TASK_TOMBSTONE;
f8697762 11243
4af57ef2 11244 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11245 if (IS_ERR(ctx)) {
11246 err = PTR_ERR(ctx);
c3f00c70 11247 goto err_free;
d859e29f 11248 }
fb0459d7 11249
fb0459d7
AV
11250 WARN_ON_ONCE(ctx->parent_ctx);
11251 mutex_lock(&ctx->mutex);
84c4e620
PZ
11252 if (ctx->task == TASK_TOMBSTONE) {
11253 err = -ESRCH;
11254 goto err_unlock;
11255 }
11256
a63fbed7
TG
11257 if (!task) {
11258 /*
11259 * Check if the @cpu we're creating an event for is online.
11260 *
11261 * We use the perf_cpu_context::ctx::mutex to serialize against
11262 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11263 */
11264 struct perf_cpu_context *cpuctx =
11265 container_of(ctx, struct perf_cpu_context, ctx);
11266 if (!cpuctx->online) {
11267 err = -ENODEV;
11268 goto err_unlock;
11269 }
11270 }
11271
bed5b25a 11272 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11273 err = -EBUSY;
84c4e620 11274 goto err_unlock;
bed5b25a
AS
11275 }
11276
4ce54af8 11277 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11278 perf_unpin_context(ctx);
fb0459d7
AV
11279 mutex_unlock(&ctx->mutex);
11280
fb0459d7
AV
11281 return event;
11282
84c4e620
PZ
11283err_unlock:
11284 mutex_unlock(&ctx->mutex);
11285 perf_unpin_context(ctx);
11286 put_ctx(ctx);
c3f00c70
PZ
11287err_free:
11288 free_event(event);
11289err:
c6567f64 11290 return ERR_PTR(err);
9b51f66d 11291}
fb0459d7 11292EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11293
0cda4c02
YZ
11294void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11295{
11296 struct perf_event_context *src_ctx;
11297 struct perf_event_context *dst_ctx;
11298 struct perf_event *event, *tmp;
11299 LIST_HEAD(events);
11300
11301 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11302 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11303
f63a8daa
PZ
11304 /*
11305 * See perf_event_ctx_lock() for comments on the details
11306 * of swizzling perf_event::ctx.
11307 */
11308 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11309 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11310 event_entry) {
45a0e07a 11311 perf_remove_from_context(event, 0);
9a545de0 11312 unaccount_event_cpu(event, src_cpu);
0cda4c02 11313 put_ctx(src_ctx);
9886167d 11314 list_add(&event->migrate_entry, &events);
0cda4c02 11315 }
0cda4c02 11316
8f95b435
PZI
11317 /*
11318 * Wait for the events to quiesce before re-instating them.
11319 */
0cda4c02
YZ
11320 synchronize_rcu();
11321
8f95b435
PZI
11322 /*
11323 * Re-instate events in 2 passes.
11324 *
11325 * Skip over group leaders and only install siblings on this first
11326 * pass, siblings will not get enabled without a leader, however a
11327 * leader will enable its siblings, even if those are still on the old
11328 * context.
11329 */
11330 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11331 if (event->group_leader == event)
11332 continue;
11333
11334 list_del(&event->migrate_entry);
11335 if (event->state >= PERF_EVENT_STATE_OFF)
11336 event->state = PERF_EVENT_STATE_INACTIVE;
11337 account_event_cpu(event, dst_cpu);
11338 perf_install_in_context(dst_ctx, event, dst_cpu);
11339 get_ctx(dst_ctx);
11340 }
11341
11342 /*
11343 * Once all the siblings are setup properly, install the group leaders
11344 * to make it go.
11345 */
9886167d
PZ
11346 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11347 list_del(&event->migrate_entry);
0cda4c02
YZ
11348 if (event->state >= PERF_EVENT_STATE_OFF)
11349 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11350 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11351 perf_install_in_context(dst_ctx, event, dst_cpu);
11352 get_ctx(dst_ctx);
11353 }
11354 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11355 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11356}
11357EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11358
cdd6c482 11359static void sync_child_event(struct perf_event *child_event,
38b200d6 11360 struct task_struct *child)
d859e29f 11361{
cdd6c482 11362 struct perf_event *parent_event = child_event->parent;
8bc20959 11363 u64 child_val;
d859e29f 11364
cdd6c482
IM
11365 if (child_event->attr.inherit_stat)
11366 perf_event_read_event(child_event, child);
38b200d6 11367
b5e58793 11368 child_val = perf_event_count(child_event);
d859e29f
PM
11369
11370 /*
11371 * Add back the child's count to the parent's count:
11372 */
a6e6dea6 11373 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11374 atomic64_add(child_event->total_time_enabled,
11375 &parent_event->child_total_time_enabled);
11376 atomic64_add(child_event->total_time_running,
11377 &parent_event->child_total_time_running);
d859e29f
PM
11378}
11379
9b51f66d 11380static void
8ba289b8
PZ
11381perf_event_exit_event(struct perf_event *child_event,
11382 struct perf_event_context *child_ctx,
11383 struct task_struct *child)
9b51f66d 11384{
8ba289b8
PZ
11385 struct perf_event *parent_event = child_event->parent;
11386
1903d50c
PZ
11387 /*
11388 * Do not destroy the 'original' grouping; because of the context
11389 * switch optimization the original events could've ended up in a
11390 * random child task.
11391 *
11392 * If we were to destroy the original group, all group related
11393 * operations would cease to function properly after this random
11394 * child dies.
11395 *
11396 * Do destroy all inherited groups, we don't care about those
11397 * and being thorough is better.
11398 */
32132a3d
PZ
11399 raw_spin_lock_irq(&child_ctx->lock);
11400 WARN_ON_ONCE(child_ctx->is_active);
11401
8ba289b8 11402 if (parent_event)
32132a3d
PZ
11403 perf_group_detach(child_event);
11404 list_del_event(child_event, child_ctx);
0d3d73aa 11405 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11406 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11407
9b51f66d 11408 /*
8ba289b8 11409 * Parent events are governed by their filedesc, retain them.
9b51f66d 11410 */
8ba289b8 11411 if (!parent_event) {
179033b3 11412 perf_event_wakeup(child_event);
8ba289b8 11413 return;
4bcf349a 11414 }
8ba289b8
PZ
11415 /*
11416 * Child events can be cleaned up.
11417 */
11418
11419 sync_child_event(child_event, child);
11420
11421 /*
11422 * Remove this event from the parent's list
11423 */
11424 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11425 mutex_lock(&parent_event->child_mutex);
11426 list_del_init(&child_event->child_list);
11427 mutex_unlock(&parent_event->child_mutex);
11428
11429 /*
11430 * Kick perf_poll() for is_event_hup().
11431 */
11432 perf_event_wakeup(parent_event);
11433 free_event(child_event);
11434 put_event(parent_event);
9b51f66d
IM
11435}
11436
8dc85d54 11437static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11438{
211de6eb 11439 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11440 struct perf_event *child_event, *next;
63b6da39
PZ
11441
11442 WARN_ON_ONCE(child != current);
9b51f66d 11443
6a3351b6 11444 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11445 if (!child_ctx)
9b51f66d
IM
11446 return;
11447
ad3a37de 11448 /*
6a3351b6
PZ
11449 * In order to reduce the amount of tricky in ctx tear-down, we hold
11450 * ctx::mutex over the entire thing. This serializes against almost
11451 * everything that wants to access the ctx.
11452 *
11453 * The exception is sys_perf_event_open() /
11454 * perf_event_create_kernel_count() which does find_get_context()
11455 * without ctx::mutex (it cannot because of the move_group double mutex
11456 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11457 */
6a3351b6 11458 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11459
11460 /*
6a3351b6
PZ
11461 * In a single ctx::lock section, de-schedule the events and detach the
11462 * context from the task such that we cannot ever get it scheduled back
11463 * in.
c93f7669 11464 */
6a3351b6 11465 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11466 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11467
71a851b4 11468 /*
63b6da39
PZ
11469 * Now that the context is inactive, destroy the task <-> ctx relation
11470 * and mark the context dead.
71a851b4 11471 */
63b6da39
PZ
11472 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11473 put_ctx(child_ctx); /* cannot be last */
11474 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11475 put_task_struct(current); /* cannot be last */
4a1c0f26 11476
211de6eb 11477 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11478 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11479
211de6eb
PZ
11480 if (clone_ctx)
11481 put_ctx(clone_ctx);
4a1c0f26 11482
9f498cc5 11483 /*
cdd6c482
IM
11484 * Report the task dead after unscheduling the events so that we
11485 * won't get any samples after PERF_RECORD_EXIT. We can however still
11486 * get a few PERF_RECORD_READ events.
9f498cc5 11487 */
cdd6c482 11488 perf_event_task(child, child_ctx, 0);
a63eaf34 11489
ebf905fc 11490 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11491 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11492
a63eaf34
PM
11493 mutex_unlock(&child_ctx->mutex);
11494
11495 put_ctx(child_ctx);
9b51f66d
IM
11496}
11497
8dc85d54
PZ
11498/*
11499 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11500 *
11501 * Can be called with cred_guard_mutex held when called from
11502 * install_exec_creds().
8dc85d54
PZ
11503 */
11504void perf_event_exit_task(struct task_struct *child)
11505{
8882135b 11506 struct perf_event *event, *tmp;
8dc85d54
PZ
11507 int ctxn;
11508
8882135b
PZ
11509 mutex_lock(&child->perf_event_mutex);
11510 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11511 owner_entry) {
11512 list_del_init(&event->owner_entry);
11513
11514 /*
11515 * Ensure the list deletion is visible before we clear
11516 * the owner, closes a race against perf_release() where
11517 * we need to serialize on the owner->perf_event_mutex.
11518 */
f47c02c0 11519 smp_store_release(&event->owner, NULL);
8882135b
PZ
11520 }
11521 mutex_unlock(&child->perf_event_mutex);
11522
8dc85d54
PZ
11523 for_each_task_context_nr(ctxn)
11524 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11525
11526 /*
11527 * The perf_event_exit_task_context calls perf_event_task
11528 * with child's task_ctx, which generates EXIT events for
11529 * child contexts and sets child->perf_event_ctxp[] to NULL.
11530 * At this point we need to send EXIT events to cpu contexts.
11531 */
11532 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11533}
11534
889ff015
FW
11535static void perf_free_event(struct perf_event *event,
11536 struct perf_event_context *ctx)
11537{
11538 struct perf_event *parent = event->parent;
11539
11540 if (WARN_ON_ONCE(!parent))
11541 return;
11542
11543 mutex_lock(&parent->child_mutex);
11544 list_del_init(&event->child_list);
11545 mutex_unlock(&parent->child_mutex);
11546
a6fa941d 11547 put_event(parent);
889ff015 11548
652884fe 11549 raw_spin_lock_irq(&ctx->lock);
8a49542c 11550 perf_group_detach(event);
889ff015 11551 list_del_event(event, ctx);
652884fe 11552 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11553 free_event(event);
11554}
11555
bbbee908 11556/*
1cf8dfe8
PZ
11557 * Free a context as created by inheritance by perf_event_init_task() below,
11558 * used by fork() in case of fail.
652884fe 11559 *
1cf8dfe8
PZ
11560 * Even though the task has never lived, the context and events have been
11561 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 11562 */
cdd6c482 11563void perf_event_free_task(struct task_struct *task)
bbbee908 11564{
8dc85d54 11565 struct perf_event_context *ctx;
cdd6c482 11566 struct perf_event *event, *tmp;
8dc85d54 11567 int ctxn;
bbbee908 11568
8dc85d54
PZ
11569 for_each_task_context_nr(ctxn) {
11570 ctx = task->perf_event_ctxp[ctxn];
11571 if (!ctx)
11572 continue;
bbbee908 11573
8dc85d54 11574 mutex_lock(&ctx->mutex);
e552a838
PZ
11575 raw_spin_lock_irq(&ctx->lock);
11576 /*
11577 * Destroy the task <-> ctx relation and mark the context dead.
11578 *
11579 * This is important because even though the task hasn't been
11580 * exposed yet the context has been (through child_list).
11581 */
11582 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11583 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11584 put_task_struct(task); /* cannot be last */
11585 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11586
15121c78 11587 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11588 perf_free_event(event, ctx);
bbbee908 11589
8dc85d54 11590 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
11591
11592 /*
11593 * perf_event_release_kernel() could've stolen some of our
11594 * child events and still have them on its free_list. In that
11595 * case we must wait for these events to have been freed (in
11596 * particular all their references to this task must've been
11597 * dropped).
11598 *
11599 * Without this copy_process() will unconditionally free this
11600 * task (irrespective of its reference count) and
11601 * _free_event()'s put_task_struct(event->hw.target) will be a
11602 * use-after-free.
11603 *
11604 * Wait for all events to drop their context reference.
11605 */
11606 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11607 put_ctx(ctx); /* must be last */
8dc85d54 11608 }
889ff015
FW
11609}
11610
4e231c79
PZ
11611void perf_event_delayed_put(struct task_struct *task)
11612{
11613 int ctxn;
11614
11615 for_each_task_context_nr(ctxn)
11616 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11617}
11618
e03e7ee3 11619struct file *perf_event_get(unsigned int fd)
ffe8690c 11620{
02e5ad97 11621 struct file *file = fget(fd);
e03e7ee3
AS
11622 if (!file)
11623 return ERR_PTR(-EBADF);
ffe8690c 11624
e03e7ee3
AS
11625 if (file->f_op != &perf_fops) {
11626 fput(file);
11627 return ERR_PTR(-EBADF);
11628 }
ffe8690c 11629
e03e7ee3 11630 return file;
ffe8690c
KX
11631}
11632
f8d959a5
YS
11633const struct perf_event *perf_get_event(struct file *file)
11634{
11635 if (file->f_op != &perf_fops)
11636 return ERR_PTR(-EINVAL);
11637
11638 return file->private_data;
11639}
11640
ffe8690c
KX
11641const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11642{
11643 if (!event)
11644 return ERR_PTR(-EINVAL);
11645
11646 return &event->attr;
11647}
11648
97dee4f3 11649/*
788faab7 11650 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11651 *
11652 * Returns:
11653 * - valid pointer on success
11654 * - NULL for orphaned events
11655 * - IS_ERR() on error
97dee4f3
PZ
11656 */
11657static struct perf_event *
11658inherit_event(struct perf_event *parent_event,
11659 struct task_struct *parent,
11660 struct perf_event_context *parent_ctx,
11661 struct task_struct *child,
11662 struct perf_event *group_leader,
11663 struct perf_event_context *child_ctx)
11664{
8ca2bd41 11665 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11666 struct perf_event *child_event;
cee010ec 11667 unsigned long flags;
97dee4f3
PZ
11668
11669 /*
11670 * Instead of creating recursive hierarchies of events,
11671 * we link inherited events back to the original parent,
11672 * which has a filp for sure, which we use as the reference
11673 * count:
11674 */
11675 if (parent_event->parent)
11676 parent_event = parent_event->parent;
11677
11678 child_event = perf_event_alloc(&parent_event->attr,
11679 parent_event->cpu,
d580ff86 11680 child,
97dee4f3 11681 group_leader, parent_event,
79dff51e 11682 NULL, NULL, -1);
97dee4f3
PZ
11683 if (IS_ERR(child_event))
11684 return child_event;
a6fa941d 11685
313ccb96
JO
11686
11687 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11688 !child_ctx->task_ctx_data) {
11689 struct pmu *pmu = child_event->pmu;
11690
11691 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11692 GFP_KERNEL);
11693 if (!child_ctx->task_ctx_data) {
11694 free_event(child_event);
11695 return NULL;
11696 }
11697 }
11698
c6e5b732
PZ
11699 /*
11700 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11701 * must be under the same lock in order to serialize against
11702 * perf_event_release_kernel(), such that either we must observe
11703 * is_orphaned_event() or they will observe us on the child_list.
11704 */
11705 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11706 if (is_orphaned_event(parent_event) ||
11707 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11708 mutex_unlock(&parent_event->child_mutex);
313ccb96 11709 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11710 free_event(child_event);
11711 return NULL;
11712 }
11713
97dee4f3
PZ
11714 get_ctx(child_ctx);
11715
11716 /*
11717 * Make the child state follow the state of the parent event,
11718 * not its attr.disabled bit. We hold the parent's mutex,
11719 * so we won't race with perf_event_{en, dis}able_family.
11720 */
1929def9 11721 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11722 child_event->state = PERF_EVENT_STATE_INACTIVE;
11723 else
11724 child_event->state = PERF_EVENT_STATE_OFF;
11725
11726 if (parent_event->attr.freq) {
11727 u64 sample_period = parent_event->hw.sample_period;
11728 struct hw_perf_event *hwc = &child_event->hw;
11729
11730 hwc->sample_period = sample_period;
11731 hwc->last_period = sample_period;
11732
11733 local64_set(&hwc->period_left, sample_period);
11734 }
11735
11736 child_event->ctx = child_ctx;
11737 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11738 child_event->overflow_handler_context
11739 = parent_event->overflow_handler_context;
97dee4f3 11740
614b6780
TG
11741 /*
11742 * Precalculate sample_data sizes
11743 */
11744 perf_event__header_size(child_event);
6844c09d 11745 perf_event__id_header_size(child_event);
614b6780 11746
97dee4f3
PZ
11747 /*
11748 * Link it up in the child's context:
11749 */
cee010ec 11750 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11751 add_event_to_ctx(child_event, child_ctx);
cee010ec 11752 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11753
97dee4f3
PZ
11754 /*
11755 * Link this into the parent event's child list
11756 */
97dee4f3
PZ
11757 list_add_tail(&child_event->child_list, &parent_event->child_list);
11758 mutex_unlock(&parent_event->child_mutex);
11759
11760 return child_event;
11761}
11762
d8a8cfc7
PZ
11763/*
11764 * Inherits an event group.
11765 *
11766 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11767 * This matches with perf_event_release_kernel() removing all child events.
11768 *
11769 * Returns:
11770 * - 0 on success
11771 * - <0 on error
11772 */
97dee4f3
PZ
11773static int inherit_group(struct perf_event *parent_event,
11774 struct task_struct *parent,
11775 struct perf_event_context *parent_ctx,
11776 struct task_struct *child,
11777 struct perf_event_context *child_ctx)
11778{
11779 struct perf_event *leader;
11780 struct perf_event *sub;
11781 struct perf_event *child_ctr;
11782
11783 leader = inherit_event(parent_event, parent, parent_ctx,
11784 child, NULL, child_ctx);
11785 if (IS_ERR(leader))
11786 return PTR_ERR(leader);
d8a8cfc7
PZ
11787 /*
11788 * @leader can be NULL here because of is_orphaned_event(). In this
11789 * case inherit_event() will create individual events, similar to what
11790 * perf_group_detach() would do anyway.
11791 */
edb39592 11792 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11793 child_ctr = inherit_event(sub, parent, parent_ctx,
11794 child, leader, child_ctx);
11795 if (IS_ERR(child_ctr))
11796 return PTR_ERR(child_ctr);
11797 }
11798 return 0;
889ff015
FW
11799}
11800
d8a8cfc7
PZ
11801/*
11802 * Creates the child task context and tries to inherit the event-group.
11803 *
11804 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11805 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11806 * consistent with perf_event_release_kernel() removing all child events.
11807 *
11808 * Returns:
11809 * - 0 on success
11810 * - <0 on error
11811 */
889ff015
FW
11812static int
11813inherit_task_group(struct perf_event *event, struct task_struct *parent,
11814 struct perf_event_context *parent_ctx,
8dc85d54 11815 struct task_struct *child, int ctxn,
889ff015
FW
11816 int *inherited_all)
11817{
11818 int ret;
8dc85d54 11819 struct perf_event_context *child_ctx;
889ff015
FW
11820
11821 if (!event->attr.inherit) {
11822 *inherited_all = 0;
11823 return 0;
bbbee908
PZ
11824 }
11825
fe4b04fa 11826 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11827 if (!child_ctx) {
11828 /*
11829 * This is executed from the parent task context, so
11830 * inherit events that have been marked for cloning.
11831 * First allocate and initialize a context for the
11832 * child.
11833 */
734df5ab 11834 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11835 if (!child_ctx)
11836 return -ENOMEM;
bbbee908 11837
8dc85d54 11838 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11839 }
11840
11841 ret = inherit_group(event, parent, parent_ctx,
11842 child, child_ctx);
11843
11844 if (ret)
11845 *inherited_all = 0;
11846
11847 return ret;
bbbee908
PZ
11848}
11849
9b51f66d 11850/*
cdd6c482 11851 * Initialize the perf_event context in task_struct
9b51f66d 11852 */
985c8dcb 11853static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11854{
889ff015 11855 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11856 struct perf_event_context *cloned_ctx;
11857 struct perf_event *event;
9b51f66d 11858 struct task_struct *parent = current;
564c2b21 11859 int inherited_all = 1;
dddd3379 11860 unsigned long flags;
6ab423e0 11861 int ret = 0;
9b51f66d 11862
8dc85d54 11863 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11864 return 0;
11865
ad3a37de 11866 /*
25346b93
PM
11867 * If the parent's context is a clone, pin it so it won't get
11868 * swapped under us.
ad3a37de 11869 */
8dc85d54 11870 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11871 if (!parent_ctx)
11872 return 0;
25346b93 11873
ad3a37de
PM
11874 /*
11875 * No need to check if parent_ctx != NULL here; since we saw
11876 * it non-NULL earlier, the only reason for it to become NULL
11877 * is if we exit, and since we're currently in the middle of
11878 * a fork we can't be exiting at the same time.
11879 */
ad3a37de 11880
9b51f66d
IM
11881 /*
11882 * Lock the parent list. No need to lock the child - not PID
11883 * hashed yet and not running, so nobody can access it.
11884 */
d859e29f 11885 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11886
11887 /*
11888 * We dont have to disable NMIs - we are only looking at
11889 * the list, not manipulating it:
11890 */
6e6804d2 11891 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11892 ret = inherit_task_group(event, parent, parent_ctx,
11893 child, ctxn, &inherited_all);
889ff015 11894 if (ret)
e7cc4865 11895 goto out_unlock;
889ff015 11896 }
b93f7978 11897
dddd3379
TG
11898 /*
11899 * We can't hold ctx->lock when iterating the ->flexible_group list due
11900 * to allocations, but we need to prevent rotation because
11901 * rotate_ctx() will change the list from interrupt context.
11902 */
11903 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11904 parent_ctx->rotate_disable = 1;
11905 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11906
6e6804d2 11907 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11908 ret = inherit_task_group(event, parent, parent_ctx,
11909 child, ctxn, &inherited_all);
889ff015 11910 if (ret)
e7cc4865 11911 goto out_unlock;
564c2b21
PM
11912 }
11913
dddd3379
TG
11914 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11915 parent_ctx->rotate_disable = 0;
dddd3379 11916
8dc85d54 11917 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11918
05cbaa28 11919 if (child_ctx && inherited_all) {
564c2b21
PM
11920 /*
11921 * Mark the child context as a clone of the parent
11922 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11923 *
11924 * Note that if the parent is a clone, the holding of
11925 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11926 */
c5ed5145 11927 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11928 if (cloned_ctx) {
11929 child_ctx->parent_ctx = cloned_ctx;
25346b93 11930 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11931 } else {
11932 child_ctx->parent_ctx = parent_ctx;
11933 child_ctx->parent_gen = parent_ctx->generation;
11934 }
11935 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11936 }
11937
c5ed5145 11938 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11939out_unlock:
d859e29f 11940 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11941
25346b93 11942 perf_unpin_context(parent_ctx);
fe4b04fa 11943 put_ctx(parent_ctx);
ad3a37de 11944
6ab423e0 11945 return ret;
9b51f66d
IM
11946}
11947
8dc85d54
PZ
11948/*
11949 * Initialize the perf_event context in task_struct
11950 */
11951int perf_event_init_task(struct task_struct *child)
11952{
11953 int ctxn, ret;
11954
8550d7cb
ON
11955 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11956 mutex_init(&child->perf_event_mutex);
11957 INIT_LIST_HEAD(&child->perf_event_list);
11958
8dc85d54
PZ
11959 for_each_task_context_nr(ctxn) {
11960 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11961 if (ret) {
11962 perf_event_free_task(child);
8dc85d54 11963 return ret;
6c72e350 11964 }
8dc85d54
PZ
11965 }
11966
11967 return 0;
11968}
11969
220b140b
PM
11970static void __init perf_event_init_all_cpus(void)
11971{
b28ab83c 11972 struct swevent_htable *swhash;
220b140b 11973 int cpu;
220b140b 11974
a63fbed7
TG
11975 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11976
220b140b 11977 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11978 swhash = &per_cpu(swevent_htable, cpu);
11979 mutex_init(&swhash->hlist_mutex);
2fde4f94 11980 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11981
11982 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11983 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11984
058fe1c0
DCC
11985#ifdef CONFIG_CGROUP_PERF
11986 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11987#endif
e48c1788 11988 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11989 }
11990}
11991
d18bf422 11992static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11993{
108b02cf 11994 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11995
b28ab83c 11996 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11997 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11998 struct swevent_hlist *hlist;
11999
b28ab83c
PZ
12000 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12001 WARN_ON(!hlist);
12002 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12003 }
b28ab83c 12004 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12005}
12006
2965faa5 12007#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12008static void __perf_event_exit_context(void *__info)
0793a61d 12009{
108b02cf 12010 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12011 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12012 struct perf_event *event;
0793a61d 12013
fae3fde6 12014 raw_spin_lock(&ctx->lock);
0ee098c9 12015 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12016 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12017 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12018 raw_spin_unlock(&ctx->lock);
0793a61d 12019}
108b02cf
PZ
12020
12021static void perf_event_exit_cpu_context(int cpu)
12022{
a63fbed7 12023 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12024 struct perf_event_context *ctx;
12025 struct pmu *pmu;
108b02cf 12026
a63fbed7
TG
12027 mutex_lock(&pmus_lock);
12028 list_for_each_entry(pmu, &pmus, entry) {
12029 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12030 ctx = &cpuctx->ctx;
108b02cf
PZ
12031
12032 mutex_lock(&ctx->mutex);
12033 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12034 cpuctx->online = 0;
108b02cf
PZ
12035 mutex_unlock(&ctx->mutex);
12036 }
a63fbed7
TG
12037 cpumask_clear_cpu(cpu, perf_online_mask);
12038 mutex_unlock(&pmus_lock);
108b02cf 12039}
00e16c3d
TG
12040#else
12041
12042static void perf_event_exit_cpu_context(int cpu) { }
12043
12044#endif
108b02cf 12045
a63fbed7
TG
12046int perf_event_init_cpu(unsigned int cpu)
12047{
12048 struct perf_cpu_context *cpuctx;
12049 struct perf_event_context *ctx;
12050 struct pmu *pmu;
12051
12052 perf_swevent_init_cpu(cpu);
12053
12054 mutex_lock(&pmus_lock);
12055 cpumask_set_cpu(cpu, perf_online_mask);
12056 list_for_each_entry(pmu, &pmus, entry) {
12057 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12058 ctx = &cpuctx->ctx;
12059
12060 mutex_lock(&ctx->mutex);
12061 cpuctx->online = 1;
12062 mutex_unlock(&ctx->mutex);
12063 }
12064 mutex_unlock(&pmus_lock);
12065
12066 return 0;
12067}
12068
00e16c3d 12069int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12070{
e3703f8c 12071 perf_event_exit_cpu_context(cpu);
00e16c3d 12072 return 0;
0793a61d 12073}
0793a61d 12074
c277443c
PZ
12075static int
12076perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12077{
12078 int cpu;
12079
12080 for_each_online_cpu(cpu)
12081 perf_event_exit_cpu(cpu);
12082
12083 return NOTIFY_OK;
12084}
12085
12086/*
12087 * Run the perf reboot notifier at the very last possible moment so that
12088 * the generic watchdog code runs as long as possible.
12089 */
12090static struct notifier_block perf_reboot_notifier = {
12091 .notifier_call = perf_reboot,
12092 .priority = INT_MIN,
12093};
12094
cdd6c482 12095void __init perf_event_init(void)
0793a61d 12096{
3c502e7a
JW
12097 int ret;
12098
2e80a82a
PZ
12099 idr_init(&pmu_idr);
12100
220b140b 12101 perf_event_init_all_cpus();
b0a873eb 12102 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12103 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12104 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12105 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12106 perf_tp_register();
00e16c3d 12107 perf_event_init_cpu(smp_processor_id());
c277443c 12108 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12109
12110 ret = init_hw_breakpoint();
12111 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12112
b01c3a00
JO
12113 /*
12114 * Build time assertion that we keep the data_head at the intended
12115 * location. IOW, validation we got the __reserved[] size right.
12116 */
12117 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12118 != 1024);
0793a61d 12119}
abe43400 12120
fd979c01
CS
12121ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12122 char *page)
12123{
12124 struct perf_pmu_events_attr *pmu_attr =
12125 container_of(attr, struct perf_pmu_events_attr, attr);
12126
12127 if (pmu_attr->event_str)
12128 return sprintf(page, "%s\n", pmu_attr->event_str);
12129
12130 return 0;
12131}
675965b0 12132EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12133
abe43400
PZ
12134static int __init perf_event_sysfs_init(void)
12135{
12136 struct pmu *pmu;
12137 int ret;
12138
12139 mutex_lock(&pmus_lock);
12140
12141 ret = bus_register(&pmu_bus);
12142 if (ret)
12143 goto unlock;
12144
12145 list_for_each_entry(pmu, &pmus, entry) {
12146 if (!pmu->name || pmu->type < 0)
12147 continue;
12148
12149 ret = pmu_dev_alloc(pmu);
12150 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12151 }
12152 pmu_bus_running = 1;
12153 ret = 0;
12154
12155unlock:
12156 mutex_unlock(&pmus_lock);
12157
12158 return ret;
12159}
12160device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12161
12162#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12163static struct cgroup_subsys_state *
12164perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12165{
12166 struct perf_cgroup *jc;
e5d1367f 12167
1b15d055 12168 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12169 if (!jc)
12170 return ERR_PTR(-ENOMEM);
12171
e5d1367f
SE
12172 jc->info = alloc_percpu(struct perf_cgroup_info);
12173 if (!jc->info) {
12174 kfree(jc);
12175 return ERR_PTR(-ENOMEM);
12176 }
12177
e5d1367f
SE
12178 return &jc->css;
12179}
12180
eb95419b 12181static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12182{
eb95419b
TH
12183 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12184
e5d1367f
SE
12185 free_percpu(jc->info);
12186 kfree(jc);
12187}
12188
12189static int __perf_cgroup_move(void *info)
12190{
12191 struct task_struct *task = info;
ddaaf4e2 12192 rcu_read_lock();
e5d1367f 12193 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12194 rcu_read_unlock();
e5d1367f
SE
12195 return 0;
12196}
12197
1f7dd3e5 12198static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12199{
bb9d97b6 12200 struct task_struct *task;
1f7dd3e5 12201 struct cgroup_subsys_state *css;
bb9d97b6 12202
1f7dd3e5 12203 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12204 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12205}
12206
073219e9 12207struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12208 .css_alloc = perf_cgroup_css_alloc,
12209 .css_free = perf_cgroup_css_free,
bb9d97b6 12210 .attach = perf_cgroup_attach,
968ebff1
TH
12211 /*
12212 * Implicitly enable on dfl hierarchy so that perf events can
12213 * always be filtered by cgroup2 path as long as perf_event
12214 * controller is not mounted on a legacy hierarchy.
12215 */
12216 .implicit_on_dfl = true,
8cfd8147 12217 .threaded = true,
e5d1367f
SE
12218};
12219#endif /* CONFIG_CGROUP_PERF */