]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/workqueue.c
Merge branch 'for-5.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[thirdparty/linux.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 70 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
1258fae7 127 * A: wq_pool_attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
24acfb71 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 136 * RCU for reads.
5b95e1af 137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
24acfb71 140 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
d565ed63 148 spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43 156 struct list_head worklist; /* L: list of pending works */
ea1abd61 157
5826cc8f
LJ
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4 170 struct list_head workers; /* A: attached workers */
60f5a4bc 171 struct completion *detach_completion; /* all workers detached */
e19e397a 172
7cda9aae 173 struct ida worker_ida; /* worker IDs for task name */
e19e397a 174
7a4e344c 175 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 178
e19e397a
TH
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
185
186 /*
24acfb71 187 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
8b03ae3c
TH
191} ____cacheline_aligned_in_smp;
192
1da177e4 193/*
112202d9
TH
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
1da177e4 198 */
112202d9 199struct pool_workqueue {
bd7bdd43 200 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 201 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
8864b4e5 204 int refcnt; /* L: reference count */
73f53c4a
TH
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
1e19ffc6 207 int nr_active; /* L: nr of active works */
a0a1a5fd 208 int max_active; /* L: max active works */
1e19ffc6 209 struct list_head delayed_works; /* L: delayed works */
3c25a55d 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 211 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 216 * itself is also RCU protected so that the first pwq can be
b09f4fd3 217 * determined without grabbing wq->mutex.
8864b4e5
TH
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
e904e6c2 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 222
73f53c4a
TH
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
3c25a55d
LJ
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
229 struct completion done; /* flush completion */
230};
231
226223ab
TH
232struct wq_device;
233
1da177e4 234/*
c5aa87bb
TH
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
237 */
238struct workqueue_struct {
3c25a55d 239 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 240 struct list_head list; /* PR: list of all workqueues */
73f53c4a 241
3c25a55d
LJ
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
112202d9 245 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 249
2e109a28 250 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
251 struct worker *rescuer; /* I: rescue worker */
252
87fc741e 253 int nr_drainers; /* WQ: drain in progress */
a357fc03 254 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 255
5b95e1af
LJ
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 258
226223ab
TH
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
4e6045f1 262#ifdef CONFIG_LOCKDEP
669de8bd
BVA
263 char *lock_name;
264 struct lock_class_key key;
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad 269 /*
24acfb71
TG
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 305
e2dca7ad 306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 307static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 308
ef557180
MG
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 314
f303fccb
TH
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
7d19c5ce 327/* the per-cpu worker pools */
25528213 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 329
68e13a67 330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 331
68e13a67 332/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
c5aa87bb 335/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
8a2b7538
TH
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
d320c038 341struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 342EXPORT_SYMBOL(system_wq);
044c782c 343struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 344EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 345struct workqueue_struct *system_long_wq __read_mostly;
d320c038 346EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 347struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 348EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 349struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 350EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 355
7d19c5ce 356static int worker_thread(void *__worker);
6ba94429 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 358
97bd2347
TH
359#define CREATE_TRACE_POINTS
360#include <trace/events/workqueue.h>
361
68e13a67 362#define assert_rcu_or_pool_mutex() \
24acfb71 363 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 364 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 365 "RCU or wq_pool_mutex should be held")
5bcab335 366
b09f4fd3 367#define assert_rcu_or_wq_mutex(wq) \
24acfb71 368 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 369 !lockdep_is_held(&wq->mutex), \
24acfb71 370 "RCU or wq->mutex should be held")
76af4d93 371
5b95e1af 372#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 373 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
374 !lockdep_is_held(&wq->mutex) && \
375 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 376 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 377
f02ae73a
TH
378#define for_each_cpu_worker_pool(pool, cpu) \
379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 381 (pool)++)
4ce62e9e 382
17116969
TH
383/**
384 * for_each_pool - iterate through all worker_pools in the system
385 * @pool: iteration cursor
611c92a0 386 * @pi: integer used for iteration
fa1b54e6 387 *
24acfb71 388 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
389 * locked. If the pool needs to be used beyond the locking in effect, the
390 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
17116969 394 */
611c92a0
TH
395#define for_each_pool(pool, pi) \
396 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 398 else
17116969 399
822d8405
TH
400/**
401 * for_each_pool_worker - iterate through all workers of a worker_pool
402 * @worker: iteration cursor
822d8405
TH
403 * @pool: worker_pool to iterate workers of
404 *
1258fae7 405 * This must be called with wq_pool_attach_mutex.
822d8405
TH
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
da028469
LJ
410#define for_each_pool_worker(worker, pool) \
411 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 412 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
413 else
414
49e3cf44
TH
415/**
416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417 * @pwq: iteration cursor
418 * @wq: the target workqueue
76af4d93 419 *
24acfb71 420 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
421 * If the pwq needs to be used beyond the locking in effect, the caller is
422 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
49e3cf44
TH
426 */
427#define for_each_pwq(pwq, wq) \
76af4d93 428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 430 else
f3421797 431
dc186ad7
TG
432#ifdef CONFIG_DEBUG_OBJECTS_WORK
433
434static struct debug_obj_descr work_debug_descr;
435
99777288
SG
436static void *work_debug_hint(void *addr)
437{
438 return ((struct work_struct *) addr)->func;
439}
440
b9fdac7f
CD
441static bool work_is_static_object(void *addr)
442{
443 struct work_struct *work = addr;
444
445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446}
447
dc186ad7
TG
448/*
449 * fixup_init is called when:
450 * - an active object is initialized
451 */
02a982a6 452static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
453{
454 struct work_struct *work = addr;
455
456 switch (state) {
457 case ODEBUG_STATE_ACTIVE:
458 cancel_work_sync(work);
459 debug_object_init(work, &work_debug_descr);
02a982a6 460 return true;
dc186ad7 461 default:
02a982a6 462 return false;
dc186ad7
TG
463 }
464}
465
dc186ad7
TG
466/*
467 * fixup_free is called when:
468 * - an active object is freed
469 */
02a982a6 470static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
471{
472 struct work_struct *work = addr;
473
474 switch (state) {
475 case ODEBUG_STATE_ACTIVE:
476 cancel_work_sync(work);
477 debug_object_free(work, &work_debug_descr);
02a982a6 478 return true;
dc186ad7 479 default:
02a982a6 480 return false;
dc186ad7
TG
481 }
482}
483
484static struct debug_obj_descr work_debug_descr = {
485 .name = "work_struct",
99777288 486 .debug_hint = work_debug_hint,
b9fdac7f 487 .is_static_object = work_is_static_object,
dc186ad7 488 .fixup_init = work_fixup_init,
dc186ad7
TG
489 .fixup_free = work_fixup_free,
490};
491
492static inline void debug_work_activate(struct work_struct *work)
493{
494 debug_object_activate(work, &work_debug_descr);
495}
496
497static inline void debug_work_deactivate(struct work_struct *work)
498{
499 debug_object_deactivate(work, &work_debug_descr);
500}
501
502void __init_work(struct work_struct *work, int onstack)
503{
504 if (onstack)
505 debug_object_init_on_stack(work, &work_debug_descr);
506 else
507 debug_object_init(work, &work_debug_descr);
508}
509EXPORT_SYMBOL_GPL(__init_work);
510
511void destroy_work_on_stack(struct work_struct *work)
512{
513 debug_object_free(work, &work_debug_descr);
514}
515EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516
ea2e64f2
TG
517void destroy_delayed_work_on_stack(struct delayed_work *work)
518{
519 destroy_timer_on_stack(&work->timer);
520 debug_object_free(&work->work, &work_debug_descr);
521}
522EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523
dc186ad7
TG
524#else
525static inline void debug_work_activate(struct work_struct *work) { }
526static inline void debug_work_deactivate(struct work_struct *work) { }
527#endif
528
4e8b22bd
LB
529/**
530 * worker_pool_assign_id - allocate ID and assing it to @pool
531 * @pool: the pool pointer of interest
532 *
533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534 * successfully, -errno on failure.
535 */
9daf9e67
TH
536static int worker_pool_assign_id(struct worker_pool *pool)
537{
538 int ret;
539
68e13a67 540 lockdep_assert_held(&wq_pool_mutex);
5bcab335 541
4e8b22bd
LB
542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 GFP_KERNEL);
229641a6 544 if (ret >= 0) {
e68035fb 545 pool->id = ret;
229641a6
TH
546 return 0;
547 }
fa1b54e6 548 return ret;
7c3eed5c
TH
549}
550
df2d5ae4
TH
551/**
552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553 * @wq: the target workqueue
554 * @node: the node ID
555 *
24acfb71 556 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 557 * read locked.
df2d5ae4
TH
558 * If the pwq needs to be used beyond the locking in effect, the caller is
559 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
560 *
561 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
562 */
563static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
564 int node)
565{
5b95e1af 566 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
567
568 /*
569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
570 * delayed item is pending. The plan is to keep CPU -> NODE
571 * mapping valid and stable across CPU on/offlines. Once that
572 * happens, this workaround can be removed.
573 */
574 if (unlikely(node == NUMA_NO_NODE))
575 return wq->dfl_pwq;
576
df2d5ae4
TH
577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578}
579
73f53c4a
TH
580static unsigned int work_color_to_flags(int color)
581{
582 return color << WORK_STRUCT_COLOR_SHIFT;
583}
584
585static int get_work_color(struct work_struct *work)
586{
587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
589}
590
591static int work_next_color(int color)
592{
593 return (color + 1) % WORK_NR_COLORS;
594}
1da177e4 595
14441960 596/*
112202d9
TH
597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 599 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 600 *
112202d9
TH
601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
603 * work->data. These functions should only be called while the work is
604 * owned - ie. while the PENDING bit is set.
7a22ad75 605 *
112202d9 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 607 * corresponding to a work. Pool is available once the work has been
112202d9 608 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 609 * available only while the work item is queued.
7a22ad75 610 *
bbb68dfa
TH
611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612 * canceled. While being canceled, a work item may have its PENDING set
613 * but stay off timer and worklist for arbitrarily long and nobody should
614 * try to steal the PENDING bit.
14441960 615 */
7a22ad75
TH
616static inline void set_work_data(struct work_struct *work, unsigned long data,
617 unsigned long flags)
365970a1 618{
6183c009 619 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
620 atomic_long_set(&work->data, data | flags | work_static(work));
621}
365970a1 622
112202d9 623static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
624 unsigned long extra_flags)
625{
112202d9
TH
626 set_work_data(work, (unsigned long)pwq,
627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
628}
629
4468a00f
LJ
630static void set_work_pool_and_keep_pending(struct work_struct *work,
631 int pool_id)
632{
633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 WORK_STRUCT_PENDING);
635}
636
7c3eed5c
TH
637static void set_work_pool_and_clear_pending(struct work_struct *work,
638 int pool_id)
7a22ad75 639{
23657bb1
TH
640 /*
641 * The following wmb is paired with the implied mb in
642 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 * here are visible to and precede any updates by the next PENDING
644 * owner.
645 */
646 smp_wmb();
7c3eed5c 647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
648 /*
649 * The following mb guarantees that previous clear of a PENDING bit
650 * will not be reordered with any speculative LOADS or STORES from
651 * work->current_func, which is executed afterwards. This possible
8bdc6201 652 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
653 * the same @work. E.g. consider this case:
654 *
655 * CPU#0 CPU#1
656 * ---------------------------- --------------------------------
657 *
658 * 1 STORE event_indicated
659 * 2 queue_work_on() {
660 * 3 test_and_set_bit(PENDING)
661 * 4 } set_..._and_clear_pending() {
662 * 5 set_work_data() # clear bit
663 * 6 smp_mb()
664 * 7 work->current_func() {
665 * 8 LOAD event_indicated
666 * }
667 *
668 * Without an explicit full barrier speculative LOAD on line 8 can
669 * be executed before CPU#0 does STORE on line 1. If that happens,
670 * CPU#0 observes the PENDING bit is still set and new execution of
671 * a @work is not queued in a hope, that CPU#1 will eventually
672 * finish the queued @work. Meanwhile CPU#1 does not see
673 * event_indicated is set, because speculative LOAD was executed
674 * before actual STORE.
675 */
676 smp_mb();
7a22ad75 677}
f756d5e2 678
7a22ad75 679static void clear_work_data(struct work_struct *work)
1da177e4 680{
7c3eed5c
TH
681 smp_wmb(); /* see set_work_pool_and_clear_pending() */
682 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
683}
684
112202d9 685static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 686{
e120153d 687 unsigned long data = atomic_long_read(&work->data);
7a22ad75 688
112202d9 689 if (data & WORK_STRUCT_PWQ)
e120153d
TH
690 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
691 else
692 return NULL;
4d707b9f
ON
693}
694
7c3eed5c
TH
695/**
696 * get_work_pool - return the worker_pool a given work was associated with
697 * @work: the work item of interest
698 *
68e13a67 699 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
700 * access under RCU read lock. As such, this function should be
701 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
702 *
703 * All fields of the returned pool are accessible as long as the above
704 * mentioned locking is in effect. If the returned pool needs to be used
705 * beyond the critical section, the caller is responsible for ensuring the
706 * returned pool is and stays online.
d185af30
YB
707 *
708 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
709 */
710static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 711{
e120153d 712 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 713 int pool_id;
7a22ad75 714
68e13a67 715 assert_rcu_or_pool_mutex();
fa1b54e6 716
112202d9
TH
717 if (data & WORK_STRUCT_PWQ)
718 return ((struct pool_workqueue *)
7c3eed5c 719 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 720
7c3eed5c
TH
721 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
722 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
723 return NULL;
724
fa1b54e6 725 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
726}
727
728/**
729 * get_work_pool_id - return the worker pool ID a given work is associated with
730 * @work: the work item of interest
731 *
d185af30 732 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
733 * %WORK_OFFQ_POOL_NONE if none.
734 */
735static int get_work_pool_id(struct work_struct *work)
736{
54d5b7d0
LJ
737 unsigned long data = atomic_long_read(&work->data);
738
112202d9
TH
739 if (data & WORK_STRUCT_PWQ)
740 return ((struct pool_workqueue *)
54d5b7d0 741 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 742
54d5b7d0 743 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
744}
745
bbb68dfa
TH
746static void mark_work_canceling(struct work_struct *work)
747{
7c3eed5c 748 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 749
7c3eed5c
TH
750 pool_id <<= WORK_OFFQ_POOL_SHIFT;
751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
752}
753
754static bool work_is_canceling(struct work_struct *work)
755{
756 unsigned long data = atomic_long_read(&work->data);
757
112202d9 758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
759}
760
e22bee78 761/*
3270476a
TH
762 * Policy functions. These define the policies on how the global worker
763 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 764 * they're being called with pool->lock held.
e22bee78
TH
765 */
766
63d95a91 767static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 768{
e19e397a 769 return !atomic_read(&pool->nr_running);
a848e3b6
ON
770}
771
4594bf15 772/*
e22bee78
TH
773 * Need to wake up a worker? Called from anything but currently
774 * running workers.
974271c4
TH
775 *
776 * Note that, because unbound workers never contribute to nr_running, this
706026c2 777 * function will always return %true for unbound pools as long as the
974271c4 778 * worklist isn't empty.
4594bf15 779 */
63d95a91 780static bool need_more_worker(struct worker_pool *pool)
365970a1 781{
63d95a91 782 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 783}
4594bf15 784
e22bee78 785/* Can I start working? Called from busy but !running workers. */
63d95a91 786static bool may_start_working(struct worker_pool *pool)
e22bee78 787{
63d95a91 788 return pool->nr_idle;
e22bee78
TH
789}
790
791/* Do I need to keep working? Called from currently running workers. */
63d95a91 792static bool keep_working(struct worker_pool *pool)
e22bee78 793{
e19e397a
TH
794 return !list_empty(&pool->worklist) &&
795 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
796}
797
798/* Do we need a new worker? Called from manager. */
63d95a91 799static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 800{
63d95a91 801 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 802}
365970a1 803
e22bee78 804/* Do we have too many workers and should some go away? */
63d95a91 805static bool too_many_workers(struct worker_pool *pool)
e22bee78 806{
692b4825 807 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
809 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
810
811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
812}
813
4d707b9f 814/*
e22bee78
TH
815 * Wake up functions.
816 */
817
1037de36
LJ
818/* Return the first idle worker. Safe with preemption disabled */
819static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 820{
63d95a91 821 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
822 return NULL;
823
63d95a91 824 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
825}
826
827/**
828 * wake_up_worker - wake up an idle worker
63d95a91 829 * @pool: worker pool to wake worker from
7e11629d 830 *
63d95a91 831 * Wake up the first idle worker of @pool.
7e11629d
TH
832 *
833 * CONTEXT:
d565ed63 834 * spin_lock_irq(pool->lock).
7e11629d 835 */
63d95a91 836static void wake_up_worker(struct worker_pool *pool)
7e11629d 837{
1037de36 838 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
839
840 if (likely(worker))
841 wake_up_process(worker->task);
842}
843
d302f017 844/**
6d25be57 845 * wq_worker_running - a worker is running again
e22bee78 846 * @task: task waking up
e22bee78 847 *
6d25be57 848 * This function is called when a worker returns from schedule()
e22bee78 849 */
6d25be57 850void wq_worker_running(struct task_struct *task)
e22bee78
TH
851{
852 struct worker *worker = kthread_data(task);
853
6d25be57
TG
854 if (!worker->sleeping)
855 return;
856 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 857 atomic_inc(&worker->pool->nr_running);
6d25be57 858 worker->sleeping = 0;
e22bee78
TH
859}
860
861/**
862 * wq_worker_sleeping - a worker is going to sleep
863 * @task: task going to sleep
e22bee78 864 *
6d25be57
TG
865 * This function is called from schedule() when a busy worker is
866 * going to sleep.
e22bee78 867 */
6d25be57 868void wq_worker_sleeping(struct task_struct *task)
e22bee78 869{
6d25be57 870 struct worker *next, *worker = kthread_data(task);
111c225a 871 struct worker_pool *pool;
e22bee78 872
111c225a
TH
873 /*
874 * Rescuers, which may not have all the fields set up like normal
875 * workers, also reach here, let's not access anything before
876 * checking NOT_RUNNING.
877 */
2d64672e 878 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 879 return;
e22bee78 880
111c225a 881 pool = worker->pool;
111c225a 882
6d25be57
TG
883 if (WARN_ON_ONCE(worker->sleeping))
884 return;
885
886 worker->sleeping = 1;
887 spin_lock_irq(&pool->lock);
e22bee78
TH
888
889 /*
890 * The counterpart of the following dec_and_test, implied mb,
891 * worklist not empty test sequence is in insert_work().
892 * Please read comment there.
893 *
628c78e7
TH
894 * NOT_RUNNING is clear. This means that we're bound to and
895 * running on the local cpu w/ rq lock held and preemption
896 * disabled, which in turn means that none else could be
d565ed63 897 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 898 * lock is safe.
e22bee78 899 */
e19e397a 900 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
901 !list_empty(&pool->worklist)) {
902 next = first_idle_worker(pool);
903 if (next)
904 wake_up_process(next->task);
905 }
906 spin_unlock_irq(&pool->lock);
e22bee78
TH
907}
908
1b69ac6b
JW
909/**
910 * wq_worker_last_func - retrieve worker's last work function
8194fe94 911 * @task: Task to retrieve last work function of.
1b69ac6b
JW
912 *
913 * Determine the last function a worker executed. This is called from
914 * the scheduler to get a worker's last known identity.
915 *
916 * CONTEXT:
917 * spin_lock_irq(rq->lock)
918 *
4b047002
JW
919 * This function is called during schedule() when a kworker is going
920 * to sleep. It's used by psi to identify aggregation workers during
921 * dequeuing, to allow periodic aggregation to shut-off when that
922 * worker is the last task in the system or cgroup to go to sleep.
923 *
924 * As this function doesn't involve any workqueue-related locking, it
925 * only returns stable values when called from inside the scheduler's
926 * queuing and dequeuing paths, when @task, which must be a kworker,
927 * is guaranteed to not be processing any works.
928 *
1b69ac6b
JW
929 * Return:
930 * The last work function %current executed as a worker, NULL if it
931 * hasn't executed any work yet.
932 */
933work_func_t wq_worker_last_func(struct task_struct *task)
934{
935 struct worker *worker = kthread_data(task);
936
937 return worker->last_func;
938}
939
e22bee78
TH
940/**
941 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 942 * @worker: self
d302f017 943 * @flags: flags to set
d302f017 944 *
228f1d00 945 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 946 *
cb444766 947 * CONTEXT:
d565ed63 948 * spin_lock_irq(pool->lock)
d302f017 949 */
228f1d00 950static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 951{
bd7bdd43 952 struct worker_pool *pool = worker->pool;
e22bee78 953
cb444766
TH
954 WARN_ON_ONCE(worker->task != current);
955
228f1d00 956 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
957 if ((flags & WORKER_NOT_RUNNING) &&
958 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 959 atomic_dec(&pool->nr_running);
e22bee78
TH
960 }
961
d302f017
TH
962 worker->flags |= flags;
963}
964
965/**
e22bee78 966 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 967 * @worker: self
d302f017
TH
968 * @flags: flags to clear
969 *
e22bee78 970 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 971 *
cb444766 972 * CONTEXT:
d565ed63 973 * spin_lock_irq(pool->lock)
d302f017
TH
974 */
975static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
976{
63d95a91 977 struct worker_pool *pool = worker->pool;
e22bee78
TH
978 unsigned int oflags = worker->flags;
979
cb444766
TH
980 WARN_ON_ONCE(worker->task != current);
981
d302f017 982 worker->flags &= ~flags;
e22bee78 983
42c025f3
TH
984 /*
985 * If transitioning out of NOT_RUNNING, increment nr_running. Note
986 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
987 * of multiple flags, not a single flag.
988 */
e22bee78
TH
989 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
990 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 991 atomic_inc(&pool->nr_running);
d302f017
TH
992}
993
8cca0eea
TH
994/**
995 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 996 * @pool: pool of interest
8cca0eea
TH
997 * @work: work to find worker for
998 *
c9e7cf27
TH
999 * Find a worker which is executing @work on @pool by searching
1000 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1001 * to match, its current execution should match the address of @work and
1002 * its work function. This is to avoid unwanted dependency between
1003 * unrelated work executions through a work item being recycled while still
1004 * being executed.
1005 *
1006 * This is a bit tricky. A work item may be freed once its execution
1007 * starts and nothing prevents the freed area from being recycled for
1008 * another work item. If the same work item address ends up being reused
1009 * before the original execution finishes, workqueue will identify the
1010 * recycled work item as currently executing and make it wait until the
1011 * current execution finishes, introducing an unwanted dependency.
1012 *
c5aa87bb
TH
1013 * This function checks the work item address and work function to avoid
1014 * false positives. Note that this isn't complete as one may construct a
1015 * work function which can introduce dependency onto itself through a
1016 * recycled work item. Well, if somebody wants to shoot oneself in the
1017 * foot that badly, there's only so much we can do, and if such deadlock
1018 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1019 *
1020 * CONTEXT:
d565ed63 1021 * spin_lock_irq(pool->lock).
8cca0eea 1022 *
d185af30
YB
1023 * Return:
1024 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1025 * otherwise.
4d707b9f 1026 */
c9e7cf27 1027static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1028 struct work_struct *work)
4d707b9f 1029{
42f8570f 1030 struct worker *worker;
42f8570f 1031
b67bfe0d 1032 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1033 (unsigned long)work)
1034 if (worker->current_work == work &&
1035 worker->current_func == work->func)
42f8570f
SL
1036 return worker;
1037
1038 return NULL;
4d707b9f
ON
1039}
1040
bf4ede01
TH
1041/**
1042 * move_linked_works - move linked works to a list
1043 * @work: start of series of works to be scheduled
1044 * @head: target list to append @work to
402dd89d 1045 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1046 *
1047 * Schedule linked works starting from @work to @head. Work series to
1048 * be scheduled starts at @work and includes any consecutive work with
1049 * WORK_STRUCT_LINKED set in its predecessor.
1050 *
1051 * If @nextp is not NULL, it's updated to point to the next work of
1052 * the last scheduled work. This allows move_linked_works() to be
1053 * nested inside outer list_for_each_entry_safe().
1054 *
1055 * CONTEXT:
d565ed63 1056 * spin_lock_irq(pool->lock).
bf4ede01
TH
1057 */
1058static void move_linked_works(struct work_struct *work, struct list_head *head,
1059 struct work_struct **nextp)
1060{
1061 struct work_struct *n;
1062
1063 /*
1064 * Linked worklist will always end before the end of the list,
1065 * use NULL for list head.
1066 */
1067 list_for_each_entry_safe_from(work, n, NULL, entry) {
1068 list_move_tail(&work->entry, head);
1069 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1070 break;
1071 }
1072
1073 /*
1074 * If we're already inside safe list traversal and have moved
1075 * multiple works to the scheduled queue, the next position
1076 * needs to be updated.
1077 */
1078 if (nextp)
1079 *nextp = n;
1080}
1081
8864b4e5
TH
1082/**
1083 * get_pwq - get an extra reference on the specified pool_workqueue
1084 * @pwq: pool_workqueue to get
1085 *
1086 * Obtain an extra reference on @pwq. The caller should guarantee that
1087 * @pwq has positive refcnt and be holding the matching pool->lock.
1088 */
1089static void get_pwq(struct pool_workqueue *pwq)
1090{
1091 lockdep_assert_held(&pwq->pool->lock);
1092 WARN_ON_ONCE(pwq->refcnt <= 0);
1093 pwq->refcnt++;
1094}
1095
1096/**
1097 * put_pwq - put a pool_workqueue reference
1098 * @pwq: pool_workqueue to put
1099 *
1100 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1101 * destruction. The caller should be holding the matching pool->lock.
1102 */
1103static void put_pwq(struct pool_workqueue *pwq)
1104{
1105 lockdep_assert_held(&pwq->pool->lock);
1106 if (likely(--pwq->refcnt))
1107 return;
1108 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1109 return;
1110 /*
1111 * @pwq can't be released under pool->lock, bounce to
1112 * pwq_unbound_release_workfn(). This never recurses on the same
1113 * pool->lock as this path is taken only for unbound workqueues and
1114 * the release work item is scheduled on a per-cpu workqueue. To
1115 * avoid lockdep warning, unbound pool->locks are given lockdep
1116 * subclass of 1 in get_unbound_pool().
1117 */
1118 schedule_work(&pwq->unbound_release_work);
1119}
1120
dce90d47
TH
1121/**
1122 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1123 * @pwq: pool_workqueue to put (can be %NULL)
1124 *
1125 * put_pwq() with locking. This function also allows %NULL @pwq.
1126 */
1127static void put_pwq_unlocked(struct pool_workqueue *pwq)
1128{
1129 if (pwq) {
1130 /*
24acfb71 1131 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1132 * following lock operations are safe.
1133 */
1134 spin_lock_irq(&pwq->pool->lock);
1135 put_pwq(pwq);
1136 spin_unlock_irq(&pwq->pool->lock);
1137 }
1138}
1139
112202d9 1140static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1141{
112202d9 1142 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1143
1144 trace_workqueue_activate_work(work);
82607adc
TH
1145 if (list_empty(&pwq->pool->worklist))
1146 pwq->pool->watchdog_ts = jiffies;
112202d9 1147 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1148 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1149 pwq->nr_active++;
bf4ede01
TH
1150}
1151
112202d9 1152static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1153{
112202d9 1154 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1155 struct work_struct, entry);
1156
112202d9 1157 pwq_activate_delayed_work(work);
3aa62497
LJ
1158}
1159
bf4ede01 1160/**
112202d9
TH
1161 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1162 * @pwq: pwq of interest
bf4ede01 1163 * @color: color of work which left the queue
bf4ede01
TH
1164 *
1165 * A work either has completed or is removed from pending queue,
112202d9 1166 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1167 *
1168 * CONTEXT:
d565ed63 1169 * spin_lock_irq(pool->lock).
bf4ede01 1170 */
112202d9 1171static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1172{
8864b4e5 1173 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1174 if (color == WORK_NO_COLOR)
8864b4e5 1175 goto out_put;
bf4ede01 1176
112202d9 1177 pwq->nr_in_flight[color]--;
bf4ede01 1178
112202d9
TH
1179 pwq->nr_active--;
1180 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1181 /* one down, submit a delayed one */
112202d9
TH
1182 if (pwq->nr_active < pwq->max_active)
1183 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1184 }
1185
1186 /* is flush in progress and are we at the flushing tip? */
112202d9 1187 if (likely(pwq->flush_color != color))
8864b4e5 1188 goto out_put;
bf4ede01
TH
1189
1190 /* are there still in-flight works? */
112202d9 1191 if (pwq->nr_in_flight[color])
8864b4e5 1192 goto out_put;
bf4ede01 1193
112202d9
TH
1194 /* this pwq is done, clear flush_color */
1195 pwq->flush_color = -1;
bf4ede01
TH
1196
1197 /*
112202d9 1198 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1199 * will handle the rest.
1200 */
112202d9
TH
1201 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1202 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1203out_put:
1204 put_pwq(pwq);
bf4ede01
TH
1205}
1206
36e227d2 1207/**
bbb68dfa 1208 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1209 * @work: work item to steal
1210 * @is_dwork: @work is a delayed_work
bbb68dfa 1211 * @flags: place to store irq state
36e227d2
TH
1212 *
1213 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1214 * stable state - idle, on timer or on worklist.
36e227d2 1215 *
d185af30 1216 * Return:
36e227d2
TH
1217 * 1 if @work was pending and we successfully stole PENDING
1218 * 0 if @work was idle and we claimed PENDING
1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1220 * -ENOENT if someone else is canceling @work, this state may persist
1221 * for arbitrarily long
36e227d2 1222 *
d185af30 1223 * Note:
bbb68dfa 1224 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1225 * interrupted while holding PENDING and @work off queue, irq must be
1226 * disabled on entry. This, combined with delayed_work->timer being
1227 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1228 *
1229 * On successful return, >= 0, irq is disabled and the caller is
1230 * responsible for releasing it using local_irq_restore(*@flags).
1231 *
e0aecdd8 1232 * This function is safe to call from any context including IRQ handler.
bf4ede01 1233 */
bbb68dfa
TH
1234static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1235 unsigned long *flags)
bf4ede01 1236{
d565ed63 1237 struct worker_pool *pool;
112202d9 1238 struct pool_workqueue *pwq;
bf4ede01 1239
bbb68dfa
TH
1240 local_irq_save(*flags);
1241
36e227d2
TH
1242 /* try to steal the timer if it exists */
1243 if (is_dwork) {
1244 struct delayed_work *dwork = to_delayed_work(work);
1245
e0aecdd8
TH
1246 /*
1247 * dwork->timer is irqsafe. If del_timer() fails, it's
1248 * guaranteed that the timer is not queued anywhere and not
1249 * running on the local CPU.
1250 */
36e227d2
TH
1251 if (likely(del_timer(&dwork->timer)))
1252 return 1;
1253 }
1254
1255 /* try to claim PENDING the normal way */
bf4ede01
TH
1256 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1257 return 0;
1258
24acfb71 1259 rcu_read_lock();
bf4ede01
TH
1260 /*
1261 * The queueing is in progress, or it is already queued. Try to
1262 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1263 */
d565ed63
TH
1264 pool = get_work_pool(work);
1265 if (!pool)
bbb68dfa 1266 goto fail;
bf4ede01 1267
d565ed63 1268 spin_lock(&pool->lock);
0b3dae68 1269 /*
112202d9
TH
1270 * work->data is guaranteed to point to pwq only while the work
1271 * item is queued on pwq->wq, and both updating work->data to point
1272 * to pwq on queueing and to pool on dequeueing are done under
1273 * pwq->pool->lock. This in turn guarantees that, if work->data
1274 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1275 * item is currently queued on that pool.
1276 */
112202d9
TH
1277 pwq = get_work_pwq(work);
1278 if (pwq && pwq->pool == pool) {
16062836
TH
1279 debug_work_deactivate(work);
1280
1281 /*
1282 * A delayed work item cannot be grabbed directly because
1283 * it might have linked NO_COLOR work items which, if left
112202d9 1284 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1285 * management later on and cause stall. Make sure the work
1286 * item is activated before grabbing.
1287 */
1288 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1289 pwq_activate_delayed_work(work);
16062836
TH
1290
1291 list_del_init(&work->entry);
9c34a704 1292 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1293
112202d9 1294 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1295 set_work_pool_and_keep_pending(work, pool->id);
1296
1297 spin_unlock(&pool->lock);
24acfb71 1298 rcu_read_unlock();
16062836 1299 return 1;
bf4ede01 1300 }
d565ed63 1301 spin_unlock(&pool->lock);
bbb68dfa 1302fail:
24acfb71 1303 rcu_read_unlock();
bbb68dfa
TH
1304 local_irq_restore(*flags);
1305 if (work_is_canceling(work))
1306 return -ENOENT;
1307 cpu_relax();
36e227d2 1308 return -EAGAIN;
bf4ede01
TH
1309}
1310
4690c4ab 1311/**
706026c2 1312 * insert_work - insert a work into a pool
112202d9 1313 * @pwq: pwq @work belongs to
4690c4ab
TH
1314 * @work: work to insert
1315 * @head: insertion point
1316 * @extra_flags: extra WORK_STRUCT_* flags to set
1317 *
112202d9 1318 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1319 * work_struct flags.
4690c4ab
TH
1320 *
1321 * CONTEXT:
d565ed63 1322 * spin_lock_irq(pool->lock).
4690c4ab 1323 */
112202d9
TH
1324static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1325 struct list_head *head, unsigned int extra_flags)
b89deed3 1326{
112202d9 1327 struct worker_pool *pool = pwq->pool;
e22bee78 1328
4690c4ab 1329 /* we own @work, set data and link */
112202d9 1330 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1331 list_add_tail(&work->entry, head);
8864b4e5 1332 get_pwq(pwq);
e22bee78
TH
1333
1334 /*
c5aa87bb
TH
1335 * Ensure either wq_worker_sleeping() sees the above
1336 * list_add_tail() or we see zero nr_running to avoid workers lying
1337 * around lazily while there are works to be processed.
e22bee78
TH
1338 */
1339 smp_mb();
1340
63d95a91
TH
1341 if (__need_more_worker(pool))
1342 wake_up_worker(pool);
b89deed3
ON
1343}
1344
c8efcc25
TH
1345/*
1346 * Test whether @work is being queued from another work executing on the
8d03ecfe 1347 * same workqueue.
c8efcc25
TH
1348 */
1349static bool is_chained_work(struct workqueue_struct *wq)
1350{
8d03ecfe
TH
1351 struct worker *worker;
1352
1353 worker = current_wq_worker();
1354 /*
bf393fd4 1355 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1356 * I'm @worker, it's safe to dereference it without locking.
1357 */
112202d9 1358 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1359}
1360
ef557180
MG
1361/*
1362 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1363 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1364 * avoid perturbing sensitive tasks.
1365 */
1366static int wq_select_unbound_cpu(int cpu)
1367{
f303fccb 1368 static bool printed_dbg_warning;
ef557180
MG
1369 int new_cpu;
1370
f303fccb
TH
1371 if (likely(!wq_debug_force_rr_cpu)) {
1372 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1373 return cpu;
1374 } else if (!printed_dbg_warning) {
1375 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1376 printed_dbg_warning = true;
1377 }
1378
ef557180
MG
1379 if (cpumask_empty(wq_unbound_cpumask))
1380 return cpu;
1381
1382 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1383 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1384 if (unlikely(new_cpu >= nr_cpu_ids)) {
1385 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1386 if (unlikely(new_cpu >= nr_cpu_ids))
1387 return cpu;
1388 }
1389 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1390
1391 return new_cpu;
1392}
1393
d84ff051 1394static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1395 struct work_struct *work)
1396{
112202d9 1397 struct pool_workqueue *pwq;
c9178087 1398 struct worker_pool *last_pool;
1e19ffc6 1399 struct list_head *worklist;
8a2e8e5d 1400 unsigned int work_flags;
b75cac93 1401 unsigned int req_cpu = cpu;
8930caba
TH
1402
1403 /*
1404 * While a work item is PENDING && off queue, a task trying to
1405 * steal the PENDING will busy-loop waiting for it to either get
1406 * queued or lose PENDING. Grabbing PENDING and queueing should
1407 * happen with IRQ disabled.
1408 */
8e8eb730 1409 lockdep_assert_irqs_disabled();
1da177e4 1410
dc186ad7 1411 debug_work_activate(work);
1e19ffc6 1412
9ef28a73 1413 /* if draining, only works from the same workqueue are allowed */
618b01eb 1414 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1415 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1416 return;
24acfb71 1417 rcu_read_lock();
9e8cd2f5 1418retry:
df2d5ae4 1419 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1421
c9178087 1422 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1423 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1425 else
1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1427
c9178087
TH
1428 /*
1429 * If @work was previously on a different pool, it might still be
1430 * running there, in which case the work needs to be queued on that
1431 * pool to guarantee non-reentrancy.
1432 */
1433 last_pool = get_work_pool(work);
1434 if (last_pool && last_pool != pwq->pool) {
1435 struct worker *worker;
18aa9eff 1436
c9178087 1437 spin_lock(&last_pool->lock);
18aa9eff 1438
c9178087 1439 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1440
c9178087
TH
1441 if (worker && worker->current_pwq->wq == wq) {
1442 pwq = worker->current_pwq;
8930caba 1443 } else {
c9178087
TH
1444 /* meh... not running there, queue here */
1445 spin_unlock(&last_pool->lock);
112202d9 1446 spin_lock(&pwq->pool->lock);
8930caba 1447 }
f3421797 1448 } else {
112202d9 1449 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1450 }
1451
9e8cd2f5
TH
1452 /*
1453 * pwq is determined and locked. For unbound pools, we could have
1454 * raced with pwq release and it could already be dead. If its
1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1456 * without another pwq replacing it in the numa_pwq_tbl or while
1457 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1458 * make forward-progress.
1459 */
1460 if (unlikely(!pwq->refcnt)) {
1461 if (wq->flags & WQ_UNBOUND) {
1462 spin_unlock(&pwq->pool->lock);
1463 cpu_relax();
1464 goto retry;
1465 }
1466 /* oops */
1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 wq->name, cpu);
1469 }
1470
112202d9
TH
1471 /* pwq determined, queue */
1472 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1473
24acfb71
TG
1474 if (WARN_ON(!list_empty(&work->entry)))
1475 goto out;
1e19ffc6 1476
112202d9
TH
1477 pwq->nr_in_flight[pwq->work_color]++;
1478 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1479
112202d9 1480 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1481 trace_workqueue_activate_work(work);
112202d9
TH
1482 pwq->nr_active++;
1483 worklist = &pwq->pool->worklist;
82607adc
TH
1484 if (list_empty(worklist))
1485 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1486 } else {
1487 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1488 worklist = &pwq->delayed_works;
8a2e8e5d 1489 }
1e19ffc6 1490
112202d9 1491 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1492
24acfb71 1493out:
112202d9 1494 spin_unlock(&pwq->pool->lock);
24acfb71 1495 rcu_read_unlock();
1da177e4
LT
1496}
1497
0fcb78c2 1498/**
c1a220e7
ZR
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
0fcb78c2
REB
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
c1a220e7
ZR
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
d185af30
YB
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1508 */
d4283e93
TH
1509bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 struct work_struct *work)
1da177e4 1511{
d4283e93 1512 bool ret = false;
8930caba 1513 unsigned long flags;
ef1ca236 1514
8930caba 1515 local_irq_save(flags);
c1a220e7 1516
22df02bb 1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1518 __queue_work(cpu, wq, work);
d4283e93 1519 ret = true;
c1a220e7 1520 }
ef1ca236 1521
8930caba 1522 local_irq_restore(flags);
1da177e4
LT
1523 return ret;
1524}
ad7b1f84 1525EXPORT_SYMBOL(queue_work_on);
1da177e4 1526
8204e0c1
AD
1527/**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536static int workqueue_select_cpu_near(int node)
1537{
1538 int cpu;
1539
1540 /* No point in doing this if NUMA isn't enabled for workqueues */
1541 if (!wq_numa_enabled)
1542 return WORK_CPU_UNBOUND;
1543
1544 /* Delay binding to CPU if node is not valid or online */
1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 return WORK_CPU_UNBOUND;
1547
1548 /* Use local node/cpu if we are already there */
1549 cpu = raw_smp_processor_id();
1550 if (node == cpu_to_node(cpu))
1551 return cpu;
1552
1553 /* Use "random" otherwise know as "first" online CPU of node */
1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556 /* If CPU is valid return that, otherwise just defer */
1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558}
1559
1560/**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580bool queue_work_node(int node, struct workqueue_struct *wq,
1581 struct work_struct *work)
1582{
1583 unsigned long flags;
1584 bool ret = false;
1585
1586 /*
1587 * This current implementation is specific to unbound workqueues.
1588 * Specifically we only return the first available CPU for a given
1589 * node instead of cycling through individual CPUs within the node.
1590 *
1591 * If this is used with a per-cpu workqueue then the logic in
1592 * workqueue_select_cpu_near would need to be updated to allow for
1593 * some round robin type logic.
1594 */
1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597 local_irq_save(flags);
1598
1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 int cpu = workqueue_select_cpu_near(node);
1601
1602 __queue_work(cpu, wq, work);
1603 ret = true;
1604 }
1605
1606 local_irq_restore(flags);
1607 return ret;
1608}
1609EXPORT_SYMBOL_GPL(queue_work_node);
1610
8c20feb6 1611void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1612{
8c20feb6 1613 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1614
e0aecdd8 1615 /* should have been called from irqsafe timer with irq already off */
60c057bc 1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1617}
1438ade5 1618EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1619
7beb2edf
TH
1620static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 struct delayed_work *dwork, unsigned long delay)
1da177e4 1622{
7beb2edf
TH
1623 struct timer_list *timer = &dwork->timer;
1624 struct work_struct *work = &dwork->work;
7beb2edf 1625
637fdbae 1626 WARN_ON_ONCE(!wq);
841b86f3 1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1628 WARN_ON_ONCE(timer_pending(timer));
1629 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1630
8852aac2
TH
1631 /*
1632 * If @delay is 0, queue @dwork->work immediately. This is for
1633 * both optimization and correctness. The earliest @timer can
1634 * expire is on the closest next tick and delayed_work users depend
1635 * on that there's no such delay when @delay is 0.
1636 */
1637 if (!delay) {
1638 __queue_work(cpu, wq, &dwork->work);
1639 return;
1640 }
1641
60c057bc 1642 dwork->wq = wq;
1265057f 1643 dwork->cpu = cpu;
7beb2edf
TH
1644 timer->expires = jiffies + delay;
1645
041bd12e
TH
1646 if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 add_timer_on(timer, cpu);
1648 else
1649 add_timer(timer);
1da177e4
LT
1650}
1651
0fcb78c2
REB
1652/**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
af9997e4 1656 * @dwork: work to queue
0fcb78c2
REB
1657 * @delay: number of jiffies to wait before queueing
1658 *
d185af30 1659 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
0fcb78c2 1662 */
d4283e93
TH
1663bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1665{
52bad64d 1666 struct work_struct *work = &dwork->work;
d4283e93 1667 bool ret = false;
8930caba 1668 unsigned long flags;
7a6bc1cd 1669
8930caba
TH
1670 /* read the comment in __queue_work() */
1671 local_irq_save(flags);
7a6bc1cd 1672
22df02bb 1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1674 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1675 ret = true;
7a6bc1cd 1676 }
8a3e77cc 1677
8930caba 1678 local_irq_restore(flags);
7a6bc1cd
VP
1679 return ret;
1680}
ad7b1f84 1681EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1682
8376fe22
TH
1683/**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay. If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
d185af30 1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1696 * pending and its timer was modified.
1697 *
e0aecdd8 1698 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1699 * See try_to_grab_pending() for details.
1700 */
1701bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 struct delayed_work *dwork, unsigned long delay)
1703{
1704 unsigned long flags;
1705 int ret;
c7fc77f7 1706
8376fe22
TH
1707 do {
1708 ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 } while (unlikely(ret == -EAGAIN));
63bc0362 1710
8376fe22
TH
1711 if (likely(ret >= 0)) {
1712 __queue_delayed_work(cpu, wq, dwork, delay);
1713 local_irq_restore(flags);
7a6bc1cd 1714 }
8376fe22
TH
1715
1716 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1717 return ret;
1718}
8376fe22
TH
1719EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
05f0fe6b
TH
1721static void rcu_work_rcufn(struct rcu_head *rcu)
1722{
1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725 /* read the comment in __queue_work() */
1726 local_irq_disable();
1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 local_irq_enable();
1729}
1730
1731/**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise. Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1738 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742{
1743 struct work_struct *work = &rwork->work;
1744
1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 rwork->wq = wq;
1747 call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 return true;
1749 }
1750
1751 return false;
1752}
1753EXPORT_SYMBOL(queue_rcu_work);
1754
c8e55f36
TH
1755/**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state. Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
d565ed63 1763 * spin_lock_irq(pool->lock).
c8e55f36
TH
1764 */
1765static void worker_enter_idle(struct worker *worker)
1da177e4 1766{
bd7bdd43 1767 struct worker_pool *pool = worker->pool;
c8e55f36 1768
6183c009
TH
1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 (worker->hentry.next || worker->hentry.pprev)))
1772 return;
c8e55f36 1773
051e1850 1774 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1775 worker->flags |= WORKER_IDLE;
bd7bdd43 1776 pool->nr_idle++;
e22bee78 1777 worker->last_active = jiffies;
c8e55f36
TH
1778
1779 /* idle_list is LIFO */
bd7bdd43 1780 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1781
628c78e7
TH
1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1784
544ecf31 1785 /*
e8b3f8db 1786 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1787 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1788 * nr_running, the warning may trigger spuriously. Check iff
1789 * unbind is not in progress.
544ecf31 1790 */
24647570 1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1792 pool->nr_workers == pool->nr_idle &&
e19e397a 1793 atomic_read(&pool->nr_running));
c8e55f36
TH
1794}
1795
1796/**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state. Update stats.
1801 *
1802 * LOCKING:
d565ed63 1803 * spin_lock_irq(pool->lock).
c8e55f36
TH
1804 */
1805static void worker_leave_idle(struct worker *worker)
1806{
bd7bdd43 1807 struct worker_pool *pool = worker->pool;
c8e55f36 1808
6183c009
TH
1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 return;
d302f017 1811 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1812 pool->nr_idle--;
c8e55f36
TH
1813 list_del_init(&worker->entry);
1814}
1815
f7537df5 1816static struct worker *alloc_worker(int node)
c34056a3
TH
1817{
1818 struct worker *worker;
1819
f7537df5 1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1821 if (worker) {
1822 INIT_LIST_HEAD(&worker->entry);
affee4b2 1823 INIT_LIST_HEAD(&worker->scheduled);
da028469 1824 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1825 /* on creation a worker is in !idle && prep state */
1826 worker->flags = WORKER_PREP;
c8e55f36 1827 }
c34056a3
TH
1828 return worker;
1829}
1830
4736cbf7
LJ
1831/**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840static void worker_attach_to_pool(struct worker *worker,
1841 struct worker_pool *pool)
1842{
1258fae7 1843 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1844
1845 /*
1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 * online CPUs. It'll be re-applied when any of the CPUs come up.
1848 */
1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851 /*
1258fae7
TH
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
4736cbf7
LJ
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858
1859 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1860 worker->pool = pool;
4736cbf7 1861
1258fae7 1862 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1863}
1864
60f5a4bc
LJ
1865/**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
60f5a4bc 1868 *
4736cbf7
LJ
1869 * Undo the attaching which had been done in worker_attach_to_pool(). The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
60f5a4bc 1872 */
a2d812a2 1873static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1874{
a2d812a2 1875 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1876 struct completion *detach_completion = NULL;
1877
1258fae7 1878 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1879
da028469 1880 list_del(&worker->node);
a2d812a2
TH
1881 worker->pool = NULL;
1882
da028469 1883 if (list_empty(&pool->workers))
60f5a4bc 1884 detach_completion = pool->detach_completion;
1258fae7 1885 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1886
b62c0751
LJ
1887 /* clear leftover flags without pool->lock after it is detached */
1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
60f5a4bc
LJ
1890 if (detach_completion)
1891 complete(detach_completion);
1892}
1893
c34056a3
TH
1894/**
1895 * create_worker - create a new workqueue worker
63d95a91 1896 * @pool: pool the new worker will belong to
c34056a3 1897 *
051e1850 1898 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1899 *
1900 * CONTEXT:
1901 * Might sleep. Does GFP_KERNEL allocations.
1902 *
d185af30 1903 * Return:
c34056a3
TH
1904 * Pointer to the newly created worker.
1905 */
bc2ae0f5 1906static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1907{
c34056a3 1908 struct worker *worker = NULL;
f3421797 1909 int id = -1;
e3c916a4 1910 char id_buf[16];
c34056a3 1911
7cda9aae
LJ
1912 /* ID is needed to determine kthread name */
1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1914 if (id < 0)
1915 goto fail;
c34056a3 1916
f7537df5 1917 worker = alloc_worker(pool->node);
c34056a3
TH
1918 if (!worker)
1919 goto fail;
1920
c34056a3
TH
1921 worker->id = id;
1922
29c91e99 1923 if (pool->cpu >= 0)
e3c916a4
TH
1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 pool->attrs->nice < 0 ? "H" : "");
f3421797 1926 else
e3c916a4
TH
1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
f3f90ad4 1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1930 "kworker/%s", id_buf);
c34056a3
TH
1931 if (IS_ERR(worker->task))
1932 goto fail;
1933
91151228 1934 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1935 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1936
da028469 1937 /* successful, attach the worker to the pool */
4736cbf7 1938 worker_attach_to_pool(worker, pool);
822d8405 1939
051e1850
LJ
1940 /* start the newly created worker */
1941 spin_lock_irq(&pool->lock);
1942 worker->pool->nr_workers++;
1943 worker_enter_idle(worker);
1944 wake_up_process(worker->task);
1945 spin_unlock_irq(&pool->lock);
1946
c34056a3 1947 return worker;
822d8405 1948
c34056a3 1949fail:
9625ab17 1950 if (id >= 0)
7cda9aae 1951 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1952 kfree(worker);
1953 return NULL;
1954}
1955
c34056a3
TH
1956/**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1959 *
73eb7fe7
LJ
1960 * Destroy @worker and adjust @pool stats accordingly. The worker should
1961 * be idle.
c8e55f36
TH
1962 *
1963 * CONTEXT:
60f5a4bc 1964 * spin_lock_irq(pool->lock).
c34056a3
TH
1965 */
1966static void destroy_worker(struct worker *worker)
1967{
bd7bdd43 1968 struct worker_pool *pool = worker->pool;
c34056a3 1969
cd549687
TH
1970 lockdep_assert_held(&pool->lock);
1971
c34056a3 1972 /* sanity check frenzy */
6183c009 1973 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1974 WARN_ON(!list_empty(&worker->scheduled)) ||
1975 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1976 return;
c34056a3 1977
73eb7fe7
LJ
1978 pool->nr_workers--;
1979 pool->nr_idle--;
5bdfff96 1980
c8e55f36 1981 list_del_init(&worker->entry);
cb444766 1982 worker->flags |= WORKER_DIE;
60f5a4bc 1983 wake_up_process(worker->task);
c34056a3
TH
1984}
1985
32a6c723 1986static void idle_worker_timeout(struct timer_list *t)
e22bee78 1987{
32a6c723 1988 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1989
d565ed63 1990 spin_lock_irq(&pool->lock);
e22bee78 1991
3347fc9f 1992 while (too_many_workers(pool)) {
e22bee78
TH
1993 struct worker *worker;
1994 unsigned long expires;
1995
1996 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
3347fc9f 2000 if (time_before(jiffies, expires)) {
63d95a91 2001 mod_timer(&pool->idle_timer, expires);
3347fc9f 2002 break;
d5abe669 2003 }
3347fc9f
LJ
2004
2005 destroy_worker(worker);
e22bee78
TH
2006 }
2007
d565ed63 2008 spin_unlock_irq(&pool->lock);
e22bee78 2009}
d5abe669 2010
493a1724 2011static void send_mayday(struct work_struct *work)
e22bee78 2012{
112202d9
TH
2013 struct pool_workqueue *pwq = get_work_pwq(work);
2014 struct workqueue_struct *wq = pwq->wq;
493a1724 2015
2e109a28 2016 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2017
493008a8 2018 if (!wq->rescuer)
493a1724 2019 return;
e22bee78
TH
2020
2021 /* mayday mayday mayday */
493a1724 2022 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2023 /*
2024 * If @pwq is for an unbound wq, its base ref may be put at
2025 * any time due to an attribute change. Pin @pwq until the
2026 * rescuer is done with it.
2027 */
2028 get_pwq(pwq);
493a1724 2029 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2030 wake_up_process(wq->rescuer->task);
493a1724 2031 }
e22bee78
TH
2032}
2033
32a6c723 2034static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2035{
32a6c723 2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2037 struct work_struct *work;
2038
b2d82909
TH
2039 spin_lock_irq(&pool->lock);
2040 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2041
63d95a91 2042 if (need_to_create_worker(pool)) {
e22bee78
TH
2043 /*
2044 * We've been trying to create a new worker but
2045 * haven't been successful. We might be hitting an
2046 * allocation deadlock. Send distress signals to
2047 * rescuers.
2048 */
63d95a91 2049 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2050 send_mayday(work);
1da177e4 2051 }
e22bee78 2052
b2d82909
TH
2053 spin_unlock(&wq_mayday_lock);
2054 spin_unlock_irq(&pool->lock);
e22bee78 2055
63d95a91 2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2057}
2058
e22bee78
TH
2059/**
2060 * maybe_create_worker - create a new worker if necessary
63d95a91 2061 * @pool: pool to create a new worker for
e22bee78 2062 *
63d95a91 2063 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2064 * have at least one idle worker on return from this function. If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2066 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2067 * possible allocation deadlock.
2068 *
c5aa87bb
TH
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
e22bee78
TH
2071 *
2072 * LOCKING:
d565ed63 2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2074 * multiple times. Does GFP_KERNEL allocations. Called only from
2075 * manager.
e22bee78 2076 */
29187a9e 2077static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2078__releases(&pool->lock)
2079__acquires(&pool->lock)
1da177e4 2080{
e22bee78 2081restart:
d565ed63 2082 spin_unlock_irq(&pool->lock);
9f9c2364 2083
e22bee78 2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2086
2087 while (true) {
051e1850 2088 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2089 break;
1da177e4 2090
e212f361 2091 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2092
63d95a91 2093 if (!need_to_create_worker(pool))
e22bee78
TH
2094 break;
2095 }
2096
63d95a91 2097 del_timer_sync(&pool->mayday_timer);
d565ed63 2098 spin_lock_irq(&pool->lock);
051e1850
LJ
2099 /*
2100 * This is necessary even after a new worker was just successfully
2101 * created as @pool->lock was dropped and the new worker might have
2102 * already become busy.
2103 */
63d95a91 2104 if (need_to_create_worker(pool))
e22bee78 2105 goto restart;
e22bee78
TH
2106}
2107
73f53c4a 2108/**
e22bee78
TH
2109 * manage_workers - manage worker pool
2110 * @worker: self
73f53c4a 2111 *
706026c2 2112 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2113 * to. At any given time, there can be only zero or one manager per
706026c2 2114 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2115 *
2116 * The caller can safely start processing works on false return. On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
73f53c4a
TH
2119 *
2120 * CONTEXT:
d565ed63 2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2122 * multiple times. Does GFP_KERNEL allocations.
2123 *
d185af30 2124 * Return:
29187a9e
TH
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
73f53c4a 2129 */
e22bee78 2130static bool manage_workers(struct worker *worker)
73f53c4a 2131{
63d95a91 2132 struct worker_pool *pool = worker->pool;
73f53c4a 2133
692b4825 2134 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2135 return false;
692b4825
TH
2136
2137 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2138 pool->manager = worker;
1e19ffc6 2139
29187a9e 2140 maybe_create_worker(pool);
e22bee78 2141
2607d7a6 2142 pool->manager = NULL;
692b4825
TH
2143 pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 wake_up(&wq_manager_wait);
29187a9e 2145 return true;
73f53c4a
TH
2146}
2147
a62428c0
TH
2148/**
2149 * process_one_work - process single work
c34056a3 2150 * @worker: self
a62428c0
TH
2151 * @work: work to process
2152 *
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
d565ed63 2160 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2161 */
c34056a3 2162static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2163__releases(&pool->lock)
2164__acquires(&pool->lock)
a62428c0 2165{
112202d9 2166 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2167 struct worker_pool *pool = worker->pool;
112202d9 2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2169 int work_color;
7e11629d 2170 struct worker *collision;
a62428c0
TH
2171#ifdef CONFIG_LOCKDEP
2172 /*
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2178 */
4d82a1de
PZ
2179 struct lockdep_map lockdep_map;
2180
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2182#endif
807407c0 2183 /* ensure we're on the correct CPU */
85327af6 2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2185 raw_smp_processor_id() != pool->cpu);
25511a47 2186
7e11629d
TH
2187 /*
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2192 */
c9e7cf27 2193 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2197 }
2198
8930caba 2199 /* claim and dequeue */
a62428c0 2200 debug_work_deactivate(work);
c9e7cf27 2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2202 worker->current_work = work;
a2c1c57b 2203 worker->current_func = work->func;
112202d9 2204 worker->current_pwq = pwq;
73f53c4a 2205 work_color = get_work_color(work);
7a22ad75 2206
8bf89593
TH
2207 /*
2208 * Record wq name for cmdline and debug reporting, may get
2209 * overridden through set_worker_desc().
2210 */
2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
a62428c0
TH
2213 list_del_init(&work->entry);
2214
fb0e7beb 2215 /*
228f1d00
LJ
2216 * CPU intensive works don't participate in concurrency management.
2217 * They're the scheduler's responsibility. This takes @worker out
2218 * of concurrency management and the next code block will chain
2219 * execution of the pending work items.
fb0e7beb
TH
2220 */
2221 if (unlikely(cpu_intensive))
228f1d00 2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2223
974271c4 2224 /*
a489a03e
LJ
2225 * Wake up another worker if necessary. The condition is always
2226 * false for normal per-cpu workers since nr_running would always
2227 * be >= 1 at this point. This is used to chain execution of the
2228 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2229 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2230 */
a489a03e 2231 if (need_more_worker(pool))
63d95a91 2232 wake_up_worker(pool);
974271c4 2233
8930caba 2234 /*
7c3eed5c 2235 * Record the last pool and clear PENDING which should be the last
d565ed63 2236 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
8930caba 2239 */
7c3eed5c 2240 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2241
d565ed63 2242 spin_unlock_irq(&pool->lock);
a62428c0 2243
a1d14934 2244 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2245 lock_map_acquire(&lockdep_map);
e6f3faa7 2246 /*
f52be570
PZ
2247 * Strictly speaking we should mark the invariant state without holding
2248 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2249 *
2250 * However, that would result in:
2251 *
2252 * A(W1)
2253 * WFC(C)
2254 * A(W1)
2255 * C(C)
2256 *
2257 * Which would create W1->C->W1 dependencies, even though there is no
2258 * actual deadlock possible. There are two solutions, using a
2259 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2260 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2261 * these locks.
2262 *
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for single-threaded
2265 * workqueues), so hiding them isn't a problem.
2266 */
f52be570 2267 lockdep_invariant_state(true);
e36c886a 2268 trace_workqueue_execute_start(work);
a2c1c57b 2269 worker->current_func(work);
e36c886a
AV
2270 /*
2271 * While we must be careful to not use "work" after this, the trace
2272 * point will only record its address.
2273 */
2274 trace_workqueue_execute_end(work);
a62428c0 2275 lock_map_release(&lockdep_map);
112202d9 2276 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2277
2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2280 " last function: %ps\n",
a2c1c57b
TH
2281 current->comm, preempt_count(), task_pid_nr(current),
2282 worker->current_func);
a62428c0
TH
2283 debug_show_held_locks(current);
2284 dump_stack();
2285 }
2286
b22ce278
TH
2287 /*
2288 * The following prevents a kworker from hogging CPU on !PREEMPT
2289 * kernels, where a requeueing work item waiting for something to
2290 * happen could deadlock with stop_machine as such work item could
2291 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2292 * stop_machine. At the same time, report a quiescent RCU state so
2293 * the same condition doesn't freeze RCU.
b22ce278 2294 */
a7e6425e 2295 cond_resched();
b22ce278 2296
d565ed63 2297 spin_lock_irq(&pool->lock);
a62428c0 2298
fb0e7beb
TH
2299 /* clear cpu intensive status */
2300 if (unlikely(cpu_intensive))
2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302
1b69ac6b
JW
2303 /* tag the worker for identification in schedule() */
2304 worker->last_func = worker->current_func;
2305
a62428c0 2306 /* we're done with it, release */
42f8570f 2307 hash_del(&worker->hentry);
c34056a3 2308 worker->current_work = NULL;
a2c1c57b 2309 worker->current_func = NULL;
112202d9
TH
2310 worker->current_pwq = NULL;
2311 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2312}
2313
affee4b2
TH
2314/**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works. Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
d565ed63 2323 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2324 * multiple times.
2325 */
2326static void process_scheduled_works(struct worker *worker)
1da177e4 2327{
affee4b2
TH
2328 while (!list_empty(&worker->scheduled)) {
2329 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2330 struct work_struct, entry);
c34056a3 2331 process_one_work(worker, work);
1da177e4 2332 }
1da177e4
LT
2333}
2334
197f6acc
TH
2335static void set_pf_worker(bool val)
2336{
2337 mutex_lock(&wq_pool_attach_mutex);
2338 if (val)
2339 current->flags |= PF_WQ_WORKER;
2340 else
2341 current->flags &= ~PF_WQ_WORKER;
2342 mutex_unlock(&wq_pool_attach_mutex);
2343}
2344
4690c4ab
TH
2345/**
2346 * worker_thread - the worker thread function
c34056a3 2347 * @__worker: self
4690c4ab 2348 *
c5aa87bb
TH
2349 * The worker thread function. All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one. These workers process all
2351 * work items regardless of their specific target workqueue. The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
d185af30
YB
2354 *
2355 * Return: 0
4690c4ab 2356 */
c34056a3 2357static int worker_thread(void *__worker)
1da177e4 2358{
c34056a3 2359 struct worker *worker = __worker;
bd7bdd43 2360 struct worker_pool *pool = worker->pool;
1da177e4 2361
e22bee78 2362 /* tell the scheduler that this is a workqueue worker */
197f6acc 2363 set_pf_worker(true);
c8e55f36 2364woke_up:
d565ed63 2365 spin_lock_irq(&pool->lock);
1da177e4 2366
a9ab775b
TH
2367 /* am I supposed to die? */
2368 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2369 spin_unlock_irq(&pool->lock);
a9ab775b 2370 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2371 set_pf_worker(false);
60f5a4bc
LJ
2372
2373 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2374 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2375 worker_detach_from_pool(worker);
60f5a4bc 2376 kfree(worker);
a9ab775b 2377 return 0;
c8e55f36 2378 }
affee4b2 2379
c8e55f36 2380 worker_leave_idle(worker);
db7bccf4 2381recheck:
e22bee78 2382 /* no more worker necessary? */
63d95a91 2383 if (!need_more_worker(pool))
e22bee78
TH
2384 goto sleep;
2385
2386 /* do we need to manage? */
63d95a91 2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2388 goto recheck;
2389
c8e55f36
TH
2390 /*
2391 * ->scheduled list can only be filled while a worker is
2392 * preparing to process a work or actually processing it.
2393 * Make sure nobody diddled with it while I was sleeping.
2394 */
6183c009 2395 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2396
e22bee78 2397 /*
a9ab775b
TH
2398 * Finish PREP stage. We're guaranteed to have at least one idle
2399 * worker or that someone else has already assumed the manager
2400 * role. This is where @worker starts participating in concurrency
2401 * management if applicable and concurrency management is restored
2402 * after being rebound. See rebind_workers() for details.
e22bee78 2403 */
a9ab775b 2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2405
2406 do {
c8e55f36 2407 struct work_struct *work =
bd7bdd43 2408 list_first_entry(&pool->worklist,
c8e55f36
TH
2409 struct work_struct, entry);
2410
82607adc
TH
2411 pool->watchdog_ts = jiffies;
2412
c8e55f36
TH
2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 /* optimization path, not strictly necessary */
2415 process_one_work(worker, work);
2416 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2417 process_scheduled_works(worker);
c8e55f36
TH
2418 } else {
2419 move_linked_works(work, &worker->scheduled, NULL);
2420 process_scheduled_works(worker);
affee4b2 2421 }
63d95a91 2422 } while (keep_working(pool));
e22bee78 2423
228f1d00 2424 worker_set_flags(worker, WORKER_PREP);
d313dd85 2425sleep:
c8e55f36 2426 /*
d565ed63
TH
2427 * pool->lock is held and there's no work to process and no need to
2428 * manage, sleep. Workers are woken up only while holding
2429 * pool->lock or from local cpu, so setting the current state
2430 * before releasing pool->lock is enough to prevent losing any
2431 * event.
c8e55f36
TH
2432 */
2433 worker_enter_idle(worker);
c5a94a61 2434 __set_current_state(TASK_IDLE);
d565ed63 2435 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2436 schedule();
2437 goto woke_up;
1da177e4
LT
2438}
2439
e22bee78
TH
2440/**
2441 * rescuer_thread - the rescuer thread function
111c225a 2442 * @__rescuer: self
e22bee78
TH
2443 *
2444 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2445 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2446 *
706026c2 2447 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2451 * the problem rescuer solves.
2452 *
706026c2
TH
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
d185af30
YB
2458 *
2459 * Return: 0
e22bee78 2460 */
111c225a 2461static int rescuer_thread(void *__rescuer)
e22bee78 2462{
111c225a
TH
2463 struct worker *rescuer = __rescuer;
2464 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2465 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2466 bool should_stop;
e22bee78
TH
2467
2468 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2469
2470 /*
2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2472 * doesn't participate in concurrency management.
2473 */
197f6acc 2474 set_pf_worker(true);
e22bee78 2475repeat:
c5a94a61 2476 set_current_state(TASK_IDLE);
e22bee78 2477
4d595b86
LJ
2478 /*
2479 * By the time the rescuer is requested to stop, the workqueue
2480 * shouldn't have any work pending, but @wq->maydays may still have
2481 * pwq(s) queued. This can happen by non-rescuer workers consuming
2482 * all the work items before the rescuer got to them. Go through
2483 * @wq->maydays processing before acting on should_stop so that the
2484 * list is always empty on exit.
2485 */
2486 should_stop = kthread_should_stop();
e22bee78 2487
493a1724 2488 /* see whether any pwq is asking for help */
2e109a28 2489 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2490
2491 while (!list_empty(&wq->maydays)) {
2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 struct pool_workqueue, mayday_node);
112202d9 2494 struct worker_pool *pool = pwq->pool;
e22bee78 2495 struct work_struct *work, *n;
82607adc 2496 bool first = true;
e22bee78
TH
2497
2498 __set_current_state(TASK_RUNNING);
493a1724
TH
2499 list_del_init(&pwq->mayday_node);
2500
2e109a28 2501 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2502
51697d39
LJ
2503 worker_attach_to_pool(rescuer, pool);
2504
2505 spin_lock_irq(&pool->lock);
e22bee78
TH
2506
2507 /*
2508 * Slurp in all works issued via this workqueue and
2509 * process'em.
2510 */
0479c8c5 2511 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 if (get_work_pwq(work) == pwq) {
2514 if (first)
2515 pool->watchdog_ts = jiffies;
e22bee78 2516 move_linked_works(work, scheduled, &n);
82607adc
TH
2517 }
2518 first = false;
2519 }
e22bee78 2520
008847f6
N
2521 if (!list_empty(scheduled)) {
2522 process_scheduled_works(rescuer);
2523
2524 /*
2525 * The above execution of rescued work items could
2526 * have created more to rescue through
2527 * pwq_activate_first_delayed() or chained
2528 * queueing. Let's put @pwq back on mayday list so
2529 * that such back-to-back work items, which may be
2530 * being used to relieve memory pressure, don't
2531 * incur MAYDAY_INTERVAL delay inbetween.
2532 */
2533 if (need_to_create_worker(pool)) {
2534 spin_lock(&wq_mayday_lock);
2535 get_pwq(pwq);
2536 list_move_tail(&pwq->mayday_node, &wq->maydays);
2537 spin_unlock(&wq_mayday_lock);
2538 }
2539 }
7576958a 2540
77668c8b
LJ
2541 /*
2542 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2543 * go away while we're still attached to it.
77668c8b
LJ
2544 */
2545 put_pwq(pwq);
2546
7576958a 2547 /*
d8ca83e6 2548 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2549 * regular worker; otherwise, we end up with 0 concurrency
2550 * and stalling the execution.
2551 */
d8ca83e6 2552 if (need_more_worker(pool))
63d95a91 2553 wake_up_worker(pool);
7576958a 2554
13b1d625
LJ
2555 spin_unlock_irq(&pool->lock);
2556
a2d812a2 2557 worker_detach_from_pool(rescuer);
13b1d625
LJ
2558
2559 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2560 }
2561
2e109a28 2562 spin_unlock_irq(&wq_mayday_lock);
493a1724 2563
4d595b86
LJ
2564 if (should_stop) {
2565 __set_current_state(TASK_RUNNING);
197f6acc 2566 set_pf_worker(false);
4d595b86
LJ
2567 return 0;
2568 }
2569
111c225a
TH
2570 /* rescuers should never participate in concurrency management */
2571 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2572 schedule();
2573 goto repeat;
1da177e4
LT
2574}
2575
fca839c0
TH
2576/**
2577 * check_flush_dependency - check for flush dependency sanity
2578 * @target_wq: workqueue being flushed
2579 * @target_work: work item being flushed (NULL for workqueue flushes)
2580 *
2581 * %current is trying to flush the whole @target_wq or @target_work on it.
2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2583 * reclaiming memory or running on a workqueue which doesn't have
2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2585 * a deadlock.
2586 */
2587static void check_flush_dependency(struct workqueue_struct *target_wq,
2588 struct work_struct *target_work)
2589{
2590 work_func_t target_func = target_work ? target_work->func : NULL;
2591 struct worker *worker;
2592
2593 if (target_wq->flags & WQ_MEM_RECLAIM)
2594 return;
2595
2596 worker = current_wq_worker();
2597
2598 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2599 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2600 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2601 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2602 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2603 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2604 worker->current_pwq->wq->name, worker->current_func,
2605 target_wq->name, target_func);
2606}
2607
fc2e4d70
ON
2608struct wq_barrier {
2609 struct work_struct work;
2610 struct completion done;
2607d7a6 2611 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2612};
2613
2614static void wq_barrier_func(struct work_struct *work)
2615{
2616 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2617 complete(&barr->done);
2618}
2619
4690c4ab
TH
2620/**
2621 * insert_wq_barrier - insert a barrier work
112202d9 2622 * @pwq: pwq to insert barrier into
4690c4ab 2623 * @barr: wq_barrier to insert
affee4b2
TH
2624 * @target: target work to attach @barr to
2625 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2626 *
affee4b2
TH
2627 * @barr is linked to @target such that @barr is completed only after
2628 * @target finishes execution. Please note that the ordering
2629 * guarantee is observed only with respect to @target and on the local
2630 * cpu.
2631 *
2632 * Currently, a queued barrier can't be canceled. This is because
2633 * try_to_grab_pending() can't determine whether the work to be
2634 * grabbed is at the head of the queue and thus can't clear LINKED
2635 * flag of the previous work while there must be a valid next work
2636 * after a work with LINKED flag set.
2637 *
2638 * Note that when @worker is non-NULL, @target may be modified
112202d9 2639 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2640 *
2641 * CONTEXT:
d565ed63 2642 * spin_lock_irq(pool->lock).
4690c4ab 2643 */
112202d9 2644static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2645 struct wq_barrier *barr,
2646 struct work_struct *target, struct worker *worker)
fc2e4d70 2647{
affee4b2
TH
2648 struct list_head *head;
2649 unsigned int linked = 0;
2650
dc186ad7 2651 /*
d565ed63 2652 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2653 * as we know for sure that this will not trigger any of the
2654 * checks and call back into the fixup functions where we
2655 * might deadlock.
2656 */
ca1cab37 2657 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2658 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2659
fd1a5b04
BP
2660 init_completion_map(&barr->done, &target->lockdep_map);
2661
2607d7a6 2662 barr->task = current;
83c22520 2663
affee4b2
TH
2664 /*
2665 * If @target is currently being executed, schedule the
2666 * barrier to the worker; otherwise, put it after @target.
2667 */
2668 if (worker)
2669 head = worker->scheduled.next;
2670 else {
2671 unsigned long *bits = work_data_bits(target);
2672
2673 head = target->entry.next;
2674 /* there can already be other linked works, inherit and set */
2675 linked = *bits & WORK_STRUCT_LINKED;
2676 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2677 }
2678
dc186ad7 2679 debug_work_activate(&barr->work);
112202d9 2680 insert_work(pwq, &barr->work, head,
affee4b2 2681 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2682}
2683
73f53c4a 2684/**
112202d9 2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2686 * @wq: workqueue being flushed
2687 * @flush_color: new flush color, < 0 for no-op
2688 * @work_color: new work color, < 0 for no-op
2689 *
112202d9 2690 * Prepare pwqs for workqueue flushing.
73f53c4a 2691 *
112202d9
TH
2692 * If @flush_color is non-negative, flush_color on all pwqs should be
2693 * -1. If no pwq has in-flight commands at the specified color, all
2694 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2695 * has in flight commands, its pwq->flush_color is set to
2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2697 * wakeup logic is armed and %true is returned.
2698 *
2699 * The caller should have initialized @wq->first_flusher prior to
2700 * calling this function with non-negative @flush_color. If
2701 * @flush_color is negative, no flush color update is done and %false
2702 * is returned.
2703 *
112202d9 2704 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2705 * work_color which is previous to @work_color and all will be
2706 * advanced to @work_color.
2707 *
2708 * CONTEXT:
3c25a55d 2709 * mutex_lock(wq->mutex).
73f53c4a 2710 *
d185af30 2711 * Return:
73f53c4a
TH
2712 * %true if @flush_color >= 0 and there's something to flush. %false
2713 * otherwise.
2714 */
112202d9 2715static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2716 int flush_color, int work_color)
1da177e4 2717{
73f53c4a 2718 bool wait = false;
49e3cf44 2719 struct pool_workqueue *pwq;
1da177e4 2720
73f53c4a 2721 if (flush_color >= 0) {
6183c009 2722 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2723 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2724 }
2355b70f 2725
49e3cf44 2726 for_each_pwq(pwq, wq) {
112202d9 2727 struct worker_pool *pool = pwq->pool;
fc2e4d70 2728
b09f4fd3 2729 spin_lock_irq(&pool->lock);
83c22520 2730
73f53c4a 2731 if (flush_color >= 0) {
6183c009 2732 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2733
112202d9
TH
2734 if (pwq->nr_in_flight[flush_color]) {
2735 pwq->flush_color = flush_color;
2736 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2737 wait = true;
2738 }
2739 }
1da177e4 2740
73f53c4a 2741 if (work_color >= 0) {
6183c009 2742 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2743 pwq->work_color = work_color;
73f53c4a 2744 }
1da177e4 2745
b09f4fd3 2746 spin_unlock_irq(&pool->lock);
1da177e4 2747 }
2355b70f 2748
112202d9 2749 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2750 complete(&wq->first_flusher->done);
14441960 2751
73f53c4a 2752 return wait;
1da177e4
LT
2753}
2754
0fcb78c2 2755/**
1da177e4 2756 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2757 * @wq: workqueue to flush
1da177e4 2758 *
c5aa87bb
TH
2759 * This function sleeps until all work items which were queued on entry
2760 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2761 */
7ad5b3a5 2762void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2763{
73f53c4a
TH
2764 struct wq_flusher this_flusher = {
2765 .list = LIST_HEAD_INIT(this_flusher.list),
2766 .flush_color = -1,
fd1a5b04 2767 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2768 };
2769 int next_color;
1da177e4 2770
3347fa09
TH
2771 if (WARN_ON(!wq_online))
2772 return;
2773
87915adc
JB
2774 lock_map_acquire(&wq->lockdep_map);
2775 lock_map_release(&wq->lockdep_map);
2776
3c25a55d 2777 mutex_lock(&wq->mutex);
73f53c4a
TH
2778
2779 /*
2780 * Start-to-wait phase
2781 */
2782 next_color = work_next_color(wq->work_color);
2783
2784 if (next_color != wq->flush_color) {
2785 /*
2786 * Color space is not full. The current work_color
2787 * becomes our flush_color and work_color is advanced
2788 * by one.
2789 */
6183c009 2790 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2791 this_flusher.flush_color = wq->work_color;
2792 wq->work_color = next_color;
2793
2794 if (!wq->first_flusher) {
2795 /* no flush in progress, become the first flusher */
6183c009 2796 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2797
2798 wq->first_flusher = &this_flusher;
2799
112202d9 2800 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2801 wq->work_color)) {
2802 /* nothing to flush, done */
2803 wq->flush_color = next_color;
2804 wq->first_flusher = NULL;
2805 goto out_unlock;
2806 }
2807 } else {
2808 /* wait in queue */
6183c009 2809 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2810 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2811 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2812 }
2813 } else {
2814 /*
2815 * Oops, color space is full, wait on overflow queue.
2816 * The next flush completion will assign us
2817 * flush_color and transfer to flusher_queue.
2818 */
2819 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2820 }
2821
fca839c0
TH
2822 check_flush_dependency(wq, NULL);
2823
3c25a55d 2824 mutex_unlock(&wq->mutex);
73f53c4a
TH
2825
2826 wait_for_completion(&this_flusher.done);
2827
2828 /*
2829 * Wake-up-and-cascade phase
2830 *
2831 * First flushers are responsible for cascading flushes and
2832 * handling overflow. Non-first flushers can simply return.
2833 */
2834 if (wq->first_flusher != &this_flusher)
2835 return;
2836
3c25a55d 2837 mutex_lock(&wq->mutex);
73f53c4a 2838
4ce48b37
TH
2839 /* we might have raced, check again with mutex held */
2840 if (wq->first_flusher != &this_flusher)
2841 goto out_unlock;
2842
73f53c4a
TH
2843 wq->first_flusher = NULL;
2844
6183c009
TH
2845 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2846 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2847
2848 while (true) {
2849 struct wq_flusher *next, *tmp;
2850
2851 /* complete all the flushers sharing the current flush color */
2852 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2853 if (next->flush_color != wq->flush_color)
2854 break;
2855 list_del_init(&next->list);
2856 complete(&next->done);
2857 }
2858
6183c009
TH
2859 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2860 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2861
2862 /* this flush_color is finished, advance by one */
2863 wq->flush_color = work_next_color(wq->flush_color);
2864
2865 /* one color has been freed, handle overflow queue */
2866 if (!list_empty(&wq->flusher_overflow)) {
2867 /*
2868 * Assign the same color to all overflowed
2869 * flushers, advance work_color and append to
2870 * flusher_queue. This is the start-to-wait
2871 * phase for these overflowed flushers.
2872 */
2873 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2874 tmp->flush_color = wq->work_color;
2875
2876 wq->work_color = work_next_color(wq->work_color);
2877
2878 list_splice_tail_init(&wq->flusher_overflow,
2879 &wq->flusher_queue);
112202d9 2880 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2881 }
2882
2883 if (list_empty(&wq->flusher_queue)) {
6183c009 2884 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2885 break;
2886 }
2887
2888 /*
2889 * Need to flush more colors. Make the next flusher
112202d9 2890 * the new first flusher and arm pwqs.
73f53c4a 2891 */
6183c009
TH
2892 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2893 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2894
2895 list_del_init(&next->list);
2896 wq->first_flusher = next;
2897
112202d9 2898 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2899 break;
2900
2901 /*
2902 * Meh... this color is already done, clear first
2903 * flusher and repeat cascading.
2904 */
2905 wq->first_flusher = NULL;
2906 }
2907
2908out_unlock:
3c25a55d 2909 mutex_unlock(&wq->mutex);
1da177e4 2910}
1dadafa8 2911EXPORT_SYMBOL(flush_workqueue);
1da177e4 2912
9c5a2ba7
TH
2913/**
2914 * drain_workqueue - drain a workqueue
2915 * @wq: workqueue to drain
2916 *
2917 * Wait until the workqueue becomes empty. While draining is in progress,
2918 * only chain queueing is allowed. IOW, only currently pending or running
2919 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2920 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2921 * by the depth of chaining and should be relatively short. Whine if it
2922 * takes too long.
2923 */
2924void drain_workqueue(struct workqueue_struct *wq)
2925{
2926 unsigned int flush_cnt = 0;
49e3cf44 2927 struct pool_workqueue *pwq;
9c5a2ba7
TH
2928
2929 /*
2930 * __queue_work() needs to test whether there are drainers, is much
2931 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2932 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2933 */
87fc741e 2934 mutex_lock(&wq->mutex);
9c5a2ba7 2935 if (!wq->nr_drainers++)
618b01eb 2936 wq->flags |= __WQ_DRAINING;
87fc741e 2937 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2938reflush:
2939 flush_workqueue(wq);
2940
b09f4fd3 2941 mutex_lock(&wq->mutex);
76af4d93 2942
49e3cf44 2943 for_each_pwq(pwq, wq) {
fa2563e4 2944 bool drained;
9c5a2ba7 2945
b09f4fd3 2946 spin_lock_irq(&pwq->pool->lock);
112202d9 2947 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2948 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2949
2950 if (drained)
9c5a2ba7
TH
2951 continue;
2952
2953 if (++flush_cnt == 10 ||
2954 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2955 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2956 wq->name, flush_cnt);
76af4d93 2957
b09f4fd3 2958 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2959 goto reflush;
2960 }
2961
9c5a2ba7 2962 if (!--wq->nr_drainers)
618b01eb 2963 wq->flags &= ~__WQ_DRAINING;
87fc741e 2964 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2965}
2966EXPORT_SYMBOL_GPL(drain_workqueue);
2967
d6e89786
JB
2968static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2969 bool from_cancel)
db700897 2970{
affee4b2 2971 struct worker *worker = NULL;
c9e7cf27 2972 struct worker_pool *pool;
112202d9 2973 struct pool_workqueue *pwq;
db700897
ON
2974
2975 might_sleep();
fa1b54e6 2976
24acfb71 2977 rcu_read_lock();
c9e7cf27 2978 pool = get_work_pool(work);
fa1b54e6 2979 if (!pool) {
24acfb71 2980 rcu_read_unlock();
baf59022 2981 return false;
fa1b54e6 2982 }
db700897 2983
24acfb71 2984 spin_lock_irq(&pool->lock);
0b3dae68 2985 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2986 pwq = get_work_pwq(work);
2987 if (pwq) {
2988 if (unlikely(pwq->pool != pool))
4690c4ab 2989 goto already_gone;
606a5020 2990 } else {
c9e7cf27 2991 worker = find_worker_executing_work(pool, work);
affee4b2 2992 if (!worker)
4690c4ab 2993 goto already_gone;
112202d9 2994 pwq = worker->current_pwq;
606a5020 2995 }
db700897 2996
fca839c0
TH
2997 check_flush_dependency(pwq->wq, work);
2998
112202d9 2999 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3000 spin_unlock_irq(&pool->lock);
7a22ad75 3001
e159489b 3002 /*
a1d14934
PZ
3003 * Force a lock recursion deadlock when using flush_work() inside a
3004 * single-threaded or rescuer equipped workqueue.
3005 *
3006 * For single threaded workqueues the deadlock happens when the work
3007 * is after the work issuing the flush_work(). For rescuer equipped
3008 * workqueues the deadlock happens when the rescuer stalls, blocking
3009 * forward progress.
e159489b 3010 */
d6e89786
JB
3011 if (!from_cancel &&
3012 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3013 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3014 lock_map_release(&pwq->wq->lockdep_map);
3015 }
24acfb71 3016 rcu_read_unlock();
401a8d04 3017 return true;
4690c4ab 3018already_gone:
d565ed63 3019 spin_unlock_irq(&pool->lock);
24acfb71 3020 rcu_read_unlock();
401a8d04 3021 return false;
db700897 3022}
baf59022 3023
d6e89786
JB
3024static bool __flush_work(struct work_struct *work, bool from_cancel)
3025{
3026 struct wq_barrier barr;
3027
3028 if (WARN_ON(!wq_online))
3029 return false;
3030
4d43d395
TH
3031 if (WARN_ON(!work->func))
3032 return false;
3033
87915adc
JB
3034 if (!from_cancel) {
3035 lock_map_acquire(&work->lockdep_map);
3036 lock_map_release(&work->lockdep_map);
3037 }
3038
d6e89786
JB
3039 if (start_flush_work(work, &barr, from_cancel)) {
3040 wait_for_completion(&barr.done);
3041 destroy_work_on_stack(&barr.work);
3042 return true;
3043 } else {
3044 return false;
3045 }
3046}
3047
baf59022
TH
3048/**
3049 * flush_work - wait for a work to finish executing the last queueing instance
3050 * @work: the work to flush
3051 *
606a5020
TH
3052 * Wait until @work has finished execution. @work is guaranteed to be idle
3053 * on return if it hasn't been requeued since flush started.
baf59022 3054 *
d185af30 3055 * Return:
baf59022
TH
3056 * %true if flush_work() waited for the work to finish execution,
3057 * %false if it was already idle.
3058 */
3059bool flush_work(struct work_struct *work)
3060{
d6e89786 3061 return __flush_work(work, false);
6e84d644 3062}
606a5020 3063EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3064
8603e1b3 3065struct cwt_wait {
ac6424b9 3066 wait_queue_entry_t wait;
8603e1b3
TH
3067 struct work_struct *work;
3068};
3069
ac6424b9 3070static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3071{
3072 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3073
3074 if (cwait->work != key)
3075 return 0;
3076 return autoremove_wake_function(wait, mode, sync, key);
3077}
3078
36e227d2 3079static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3080{
8603e1b3 3081 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3082 unsigned long flags;
1f1f642e
ON
3083 int ret;
3084
3085 do {
bbb68dfa
TH
3086 ret = try_to_grab_pending(work, is_dwork, &flags);
3087 /*
8603e1b3
TH
3088 * If someone else is already canceling, wait for it to
3089 * finish. flush_work() doesn't work for PREEMPT_NONE
3090 * because we may get scheduled between @work's completion
3091 * and the other canceling task resuming and clearing
3092 * CANCELING - flush_work() will return false immediately
3093 * as @work is no longer busy, try_to_grab_pending() will
3094 * return -ENOENT as @work is still being canceled and the
3095 * other canceling task won't be able to clear CANCELING as
3096 * we're hogging the CPU.
3097 *
3098 * Let's wait for completion using a waitqueue. As this
3099 * may lead to the thundering herd problem, use a custom
3100 * wake function which matches @work along with exclusive
3101 * wait and wakeup.
bbb68dfa 3102 */
8603e1b3
TH
3103 if (unlikely(ret == -ENOENT)) {
3104 struct cwt_wait cwait;
3105
3106 init_wait(&cwait.wait);
3107 cwait.wait.func = cwt_wakefn;
3108 cwait.work = work;
3109
3110 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3111 TASK_UNINTERRUPTIBLE);
3112 if (work_is_canceling(work))
3113 schedule();
3114 finish_wait(&cancel_waitq, &cwait.wait);
3115 }
1f1f642e
ON
3116 } while (unlikely(ret < 0));
3117
bbb68dfa
TH
3118 /* tell other tasks trying to grab @work to back off */
3119 mark_work_canceling(work);
3120 local_irq_restore(flags);
3121
3347fa09
TH
3122 /*
3123 * This allows canceling during early boot. We know that @work
3124 * isn't executing.
3125 */
3126 if (wq_online)
d6e89786 3127 __flush_work(work, true);
3347fa09 3128
7a22ad75 3129 clear_work_data(work);
8603e1b3
TH
3130
3131 /*
3132 * Paired with prepare_to_wait() above so that either
3133 * waitqueue_active() is visible here or !work_is_canceling() is
3134 * visible there.
3135 */
3136 smp_mb();
3137 if (waitqueue_active(&cancel_waitq))
3138 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3139
1f1f642e
ON
3140 return ret;
3141}
3142
6e84d644 3143/**
401a8d04
TH
3144 * cancel_work_sync - cancel a work and wait for it to finish
3145 * @work: the work to cancel
6e84d644 3146 *
401a8d04
TH
3147 * Cancel @work and wait for its execution to finish. This function
3148 * can be used even if the work re-queues itself or migrates to
3149 * another workqueue. On return from this function, @work is
3150 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3151 *
401a8d04
TH
3152 * cancel_work_sync(&delayed_work->work) must not be used for
3153 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3154 *
401a8d04 3155 * The caller must ensure that the workqueue on which @work was last
6e84d644 3156 * queued can't be destroyed before this function returns.
401a8d04 3157 *
d185af30 3158 * Return:
401a8d04 3159 * %true if @work was pending, %false otherwise.
6e84d644 3160 */
401a8d04 3161bool cancel_work_sync(struct work_struct *work)
6e84d644 3162{
36e227d2 3163 return __cancel_work_timer(work, false);
b89deed3 3164}
28e53bdd 3165EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3166
6e84d644 3167/**
401a8d04
TH
3168 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3169 * @dwork: the delayed work to flush
6e84d644 3170 *
401a8d04
TH
3171 * Delayed timer is cancelled and the pending work is queued for
3172 * immediate execution. Like flush_work(), this function only
3173 * considers the last queueing instance of @dwork.
1f1f642e 3174 *
d185af30 3175 * Return:
401a8d04
TH
3176 * %true if flush_work() waited for the work to finish execution,
3177 * %false if it was already idle.
6e84d644 3178 */
401a8d04
TH
3179bool flush_delayed_work(struct delayed_work *dwork)
3180{
8930caba 3181 local_irq_disable();
401a8d04 3182 if (del_timer_sync(&dwork->timer))
60c057bc 3183 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3184 local_irq_enable();
401a8d04
TH
3185 return flush_work(&dwork->work);
3186}
3187EXPORT_SYMBOL(flush_delayed_work);
3188
05f0fe6b
TH
3189/**
3190 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3191 * @rwork: the rcu work to flush
3192 *
3193 * Return:
3194 * %true if flush_rcu_work() waited for the work to finish execution,
3195 * %false if it was already idle.
3196 */
3197bool flush_rcu_work(struct rcu_work *rwork)
3198{
3199 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3200 rcu_barrier();
3201 flush_work(&rwork->work);
3202 return true;
3203 } else {
3204 return flush_work(&rwork->work);
3205 }
3206}
3207EXPORT_SYMBOL(flush_rcu_work);
3208
f72b8792
JA
3209static bool __cancel_work(struct work_struct *work, bool is_dwork)
3210{
3211 unsigned long flags;
3212 int ret;
3213
3214 do {
3215 ret = try_to_grab_pending(work, is_dwork, &flags);
3216 } while (unlikely(ret == -EAGAIN));
3217
3218 if (unlikely(ret < 0))
3219 return false;
3220
3221 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3222 local_irq_restore(flags);
3223 return ret;
3224}
3225
09383498 3226/**
57b30ae7
TH
3227 * cancel_delayed_work - cancel a delayed work
3228 * @dwork: delayed_work to cancel
09383498 3229 *
d185af30
YB
3230 * Kill off a pending delayed_work.
3231 *
3232 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3233 * pending.
3234 *
3235 * Note:
3236 * The work callback function may still be running on return, unless
3237 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3238 * use cancel_delayed_work_sync() to wait on it.
09383498 3239 *
57b30ae7 3240 * This function is safe to call from any context including IRQ handler.
09383498 3241 */
57b30ae7 3242bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3243{
f72b8792 3244 return __cancel_work(&dwork->work, true);
09383498 3245}
57b30ae7 3246EXPORT_SYMBOL(cancel_delayed_work);
09383498 3247
401a8d04
TH
3248/**
3249 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3250 * @dwork: the delayed work cancel
3251 *
3252 * This is cancel_work_sync() for delayed works.
3253 *
d185af30 3254 * Return:
401a8d04
TH
3255 * %true if @dwork was pending, %false otherwise.
3256 */
3257bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3258{
36e227d2 3259 return __cancel_work_timer(&dwork->work, true);
6e84d644 3260}
f5a421a4 3261EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3262
b6136773 3263/**
31ddd871 3264 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3265 * @func: the function to call
b6136773 3266 *
31ddd871
TH
3267 * schedule_on_each_cpu() executes @func on each online CPU using the
3268 * system workqueue and blocks until all CPUs have completed.
b6136773 3269 * schedule_on_each_cpu() is very slow.
31ddd871 3270 *
d185af30 3271 * Return:
31ddd871 3272 * 0 on success, -errno on failure.
b6136773 3273 */
65f27f38 3274int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3275{
3276 int cpu;
38f51568 3277 struct work_struct __percpu *works;
15316ba8 3278
b6136773
AM
3279 works = alloc_percpu(struct work_struct);
3280 if (!works)
15316ba8 3281 return -ENOMEM;
b6136773 3282
93981800
TH
3283 get_online_cpus();
3284
15316ba8 3285 for_each_online_cpu(cpu) {
9bfb1839
IM
3286 struct work_struct *work = per_cpu_ptr(works, cpu);
3287
3288 INIT_WORK(work, func);
b71ab8c2 3289 schedule_work_on(cpu, work);
65a64464 3290 }
93981800
TH
3291
3292 for_each_online_cpu(cpu)
3293 flush_work(per_cpu_ptr(works, cpu));
3294
95402b38 3295 put_online_cpus();
b6136773 3296 free_percpu(works);
15316ba8
CL
3297 return 0;
3298}
3299
1fa44eca
JB
3300/**
3301 * execute_in_process_context - reliably execute the routine with user context
3302 * @fn: the function to execute
1fa44eca
JB
3303 * @ew: guaranteed storage for the execute work structure (must
3304 * be available when the work executes)
3305 *
3306 * Executes the function immediately if process context is available,
3307 * otherwise schedules the function for delayed execution.
3308 *
d185af30 3309 * Return: 0 - function was executed
1fa44eca
JB
3310 * 1 - function was scheduled for execution
3311 */
65f27f38 3312int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3313{
3314 if (!in_interrupt()) {
65f27f38 3315 fn(&ew->work);
1fa44eca
JB
3316 return 0;
3317 }
3318
65f27f38 3319 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3320 schedule_work(&ew->work);
3321
3322 return 1;
3323}
3324EXPORT_SYMBOL_GPL(execute_in_process_context);
3325
6ba94429
FW
3326/**
3327 * free_workqueue_attrs - free a workqueue_attrs
3328 * @attrs: workqueue_attrs to free
226223ab 3329 *
6ba94429 3330 * Undo alloc_workqueue_attrs().
226223ab 3331 */
6ba94429 3332void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3333{
6ba94429
FW
3334 if (attrs) {
3335 free_cpumask_var(attrs->cpumask);
3336 kfree(attrs);
3337 }
226223ab
TH
3338}
3339
6ba94429
FW
3340/**
3341 * alloc_workqueue_attrs - allocate a workqueue_attrs
3342 * @gfp_mask: allocation mask to use
3343 *
3344 * Allocate a new workqueue_attrs, initialize with default settings and
3345 * return it.
3346 *
3347 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3348 */
3349struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3350{
6ba94429 3351 struct workqueue_attrs *attrs;
226223ab 3352
6ba94429
FW
3353 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3354 if (!attrs)
3355 goto fail;
3356 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3357 goto fail;
3358
3359 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3360 return attrs;
3361fail:
3362 free_workqueue_attrs(attrs);
3363 return NULL;
226223ab
TH
3364}
3365
6ba94429
FW
3366static void copy_workqueue_attrs(struct workqueue_attrs *to,
3367 const struct workqueue_attrs *from)
226223ab 3368{
6ba94429
FW
3369 to->nice = from->nice;
3370 cpumask_copy(to->cpumask, from->cpumask);
3371 /*
3372 * Unlike hash and equality test, this function doesn't ignore
3373 * ->no_numa as it is used for both pool and wq attrs. Instead,
3374 * get_unbound_pool() explicitly clears ->no_numa after copying.
3375 */
3376 to->no_numa = from->no_numa;
226223ab
TH
3377}
3378
6ba94429
FW
3379/* hash value of the content of @attr */
3380static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3381{
6ba94429 3382 u32 hash = 0;
226223ab 3383
6ba94429
FW
3384 hash = jhash_1word(attrs->nice, hash);
3385 hash = jhash(cpumask_bits(attrs->cpumask),
3386 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3387 return hash;
226223ab 3388}
226223ab 3389
6ba94429
FW
3390/* content equality test */
3391static bool wqattrs_equal(const struct workqueue_attrs *a,
3392 const struct workqueue_attrs *b)
226223ab 3393{
6ba94429
FW
3394 if (a->nice != b->nice)
3395 return false;
3396 if (!cpumask_equal(a->cpumask, b->cpumask))
3397 return false;
3398 return true;
226223ab
TH
3399}
3400
6ba94429
FW
3401/**
3402 * init_worker_pool - initialize a newly zalloc'd worker_pool
3403 * @pool: worker_pool to initialize
3404 *
402dd89d 3405 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3406 *
3407 * Return: 0 on success, -errno on failure. Even on failure, all fields
3408 * inside @pool proper are initialized and put_unbound_pool() can be called
3409 * on @pool safely to release it.
3410 */
3411static int init_worker_pool(struct worker_pool *pool)
226223ab 3412{
6ba94429
FW
3413 spin_lock_init(&pool->lock);
3414 pool->id = -1;
3415 pool->cpu = -1;
3416 pool->node = NUMA_NO_NODE;
3417 pool->flags |= POOL_DISASSOCIATED;
82607adc 3418 pool->watchdog_ts = jiffies;
6ba94429
FW
3419 INIT_LIST_HEAD(&pool->worklist);
3420 INIT_LIST_HEAD(&pool->idle_list);
3421 hash_init(pool->busy_hash);
226223ab 3422
32a6c723 3423 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3424
32a6c723 3425 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3426
6ba94429 3427 INIT_LIST_HEAD(&pool->workers);
226223ab 3428
6ba94429
FW
3429 ida_init(&pool->worker_ida);
3430 INIT_HLIST_NODE(&pool->hash_node);
3431 pool->refcnt = 1;
226223ab 3432
6ba94429
FW
3433 /* shouldn't fail above this point */
3434 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3435 if (!pool->attrs)
3436 return -ENOMEM;
3437 return 0;
226223ab
TH
3438}
3439
669de8bd
BVA
3440#ifdef CONFIG_LOCKDEP
3441static void wq_init_lockdep(struct workqueue_struct *wq)
3442{
3443 char *lock_name;
3444
3445 lockdep_register_key(&wq->key);
3446 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3447 if (!lock_name)
3448 lock_name = wq->name;
69a106c0
QC
3449
3450 wq->lock_name = lock_name;
669de8bd
BVA
3451 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3452}
3453
3454static void wq_unregister_lockdep(struct workqueue_struct *wq)
3455{
3456 lockdep_unregister_key(&wq->key);
3457}
3458
3459static void wq_free_lockdep(struct workqueue_struct *wq)
3460{
3461 if (wq->lock_name != wq->name)
3462 kfree(wq->lock_name);
3463}
3464#else
3465static void wq_init_lockdep(struct workqueue_struct *wq)
3466{
3467}
3468
3469static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470{
3471}
3472
3473static void wq_free_lockdep(struct workqueue_struct *wq)
3474{
3475}
3476#endif
3477
6ba94429 3478static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3479{
6ba94429
FW
3480 struct workqueue_struct *wq =
3481 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3482
669de8bd
BVA
3483 wq_free_lockdep(wq);
3484
6ba94429
FW
3485 if (!(wq->flags & WQ_UNBOUND))
3486 free_percpu(wq->cpu_pwqs);
226223ab 3487 else
6ba94429 3488 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3489
6ba94429
FW
3490 kfree(wq->rescuer);
3491 kfree(wq);
226223ab
TH
3492}
3493
6ba94429 3494static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3495{
6ba94429 3496 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3497
6ba94429
FW
3498 ida_destroy(&pool->worker_ida);
3499 free_workqueue_attrs(pool->attrs);
3500 kfree(pool);
226223ab
TH
3501}
3502
6ba94429
FW
3503/**
3504 * put_unbound_pool - put a worker_pool
3505 * @pool: worker_pool to put
3506 *
24acfb71 3507 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3508 * safe manner. get_unbound_pool() calls this function on its failure path
3509 * and this function should be able to release pools which went through,
3510 * successfully or not, init_worker_pool().
3511 *
3512 * Should be called with wq_pool_mutex held.
3513 */
3514static void put_unbound_pool(struct worker_pool *pool)
226223ab 3515{
6ba94429
FW
3516 DECLARE_COMPLETION_ONSTACK(detach_completion);
3517 struct worker *worker;
226223ab 3518
6ba94429 3519 lockdep_assert_held(&wq_pool_mutex);
226223ab 3520
6ba94429
FW
3521 if (--pool->refcnt)
3522 return;
226223ab 3523
6ba94429
FW
3524 /* sanity checks */
3525 if (WARN_ON(!(pool->cpu < 0)) ||
3526 WARN_ON(!list_empty(&pool->worklist)))
3527 return;
226223ab 3528
6ba94429
FW
3529 /* release id and unhash */
3530 if (pool->id >= 0)
3531 idr_remove(&worker_pool_idr, pool->id);
3532 hash_del(&pool->hash_node);
d55262c4 3533
6ba94429 3534 /*
692b4825
TH
3535 * Become the manager and destroy all workers. This prevents
3536 * @pool's workers from blocking on attach_mutex. We're the last
3537 * manager and @pool gets freed with the flag set.
6ba94429 3538 */
6ba94429 3539 spin_lock_irq(&pool->lock);
692b4825
TH
3540 wait_event_lock_irq(wq_manager_wait,
3541 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3542 pool->flags |= POOL_MANAGER_ACTIVE;
3543
6ba94429
FW
3544 while ((worker = first_idle_worker(pool)))
3545 destroy_worker(worker);
3546 WARN_ON(pool->nr_workers || pool->nr_idle);
3547 spin_unlock_irq(&pool->lock);
d55262c4 3548
1258fae7 3549 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3550 if (!list_empty(&pool->workers))
3551 pool->detach_completion = &detach_completion;
1258fae7 3552 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3553
6ba94429
FW
3554 if (pool->detach_completion)
3555 wait_for_completion(pool->detach_completion);
226223ab 3556
6ba94429
FW
3557 /* shut down the timers */
3558 del_timer_sync(&pool->idle_timer);
3559 del_timer_sync(&pool->mayday_timer);
226223ab 3560
24acfb71 3561 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3562 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3563}
3564
3565/**
6ba94429
FW
3566 * get_unbound_pool - get a worker_pool with the specified attributes
3567 * @attrs: the attributes of the worker_pool to get
226223ab 3568 *
6ba94429
FW
3569 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3570 * reference count and return it. If there already is a matching
3571 * worker_pool, it will be used; otherwise, this function attempts to
3572 * create a new one.
226223ab 3573 *
6ba94429 3574 * Should be called with wq_pool_mutex held.
226223ab 3575 *
6ba94429
FW
3576 * Return: On success, a worker_pool with the same attributes as @attrs.
3577 * On failure, %NULL.
226223ab 3578 */
6ba94429 3579static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3580{
6ba94429
FW
3581 u32 hash = wqattrs_hash(attrs);
3582 struct worker_pool *pool;
3583 int node;
e2273584 3584 int target_node = NUMA_NO_NODE;
226223ab 3585
6ba94429 3586 lockdep_assert_held(&wq_pool_mutex);
226223ab 3587
6ba94429
FW
3588 /* do we already have a matching pool? */
3589 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3590 if (wqattrs_equal(pool->attrs, attrs)) {
3591 pool->refcnt++;
3592 return pool;
3593 }
3594 }
226223ab 3595
e2273584
XP
3596 /* if cpumask is contained inside a NUMA node, we belong to that node */
3597 if (wq_numa_enabled) {
3598 for_each_node(node) {
3599 if (cpumask_subset(attrs->cpumask,
3600 wq_numa_possible_cpumask[node])) {
3601 target_node = node;
3602 break;
3603 }
3604 }
3605 }
3606
6ba94429 3607 /* nope, create a new one */
e2273584 3608 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3609 if (!pool || init_worker_pool(pool) < 0)
3610 goto fail;
3611
3612 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3613 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3614 pool->node = target_node;
226223ab
TH
3615
3616 /*
6ba94429
FW
3617 * no_numa isn't a worker_pool attribute, always clear it. See
3618 * 'struct workqueue_attrs' comments for detail.
226223ab 3619 */
6ba94429 3620 pool->attrs->no_numa = false;
226223ab 3621
6ba94429
FW
3622 if (worker_pool_assign_id(pool) < 0)
3623 goto fail;
226223ab 3624
6ba94429 3625 /* create and start the initial worker */
3347fa09 3626 if (wq_online && !create_worker(pool))
6ba94429 3627 goto fail;
226223ab 3628
6ba94429
FW
3629 /* install */
3630 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3631
6ba94429
FW
3632 return pool;
3633fail:
3634 if (pool)
3635 put_unbound_pool(pool);
3636 return NULL;
226223ab 3637}
226223ab 3638
6ba94429 3639static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3640{
6ba94429
FW
3641 kmem_cache_free(pwq_cache,
3642 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3643}
3644
6ba94429
FW
3645/*
3646 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3647 * and needs to be destroyed.
7a4e344c 3648 */
6ba94429 3649static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3650{
6ba94429
FW
3651 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3652 unbound_release_work);
3653 struct workqueue_struct *wq = pwq->wq;
3654 struct worker_pool *pool = pwq->pool;
3655 bool is_last;
7a4e344c 3656
6ba94429
FW
3657 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3658 return;
7a4e344c 3659
6ba94429
FW
3660 mutex_lock(&wq->mutex);
3661 list_del_rcu(&pwq->pwqs_node);
3662 is_last = list_empty(&wq->pwqs);
3663 mutex_unlock(&wq->mutex);
3664
3665 mutex_lock(&wq_pool_mutex);
3666 put_unbound_pool(pool);
3667 mutex_unlock(&wq_pool_mutex);
3668
25b00775 3669 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3670
2865a8fb 3671 /*
6ba94429
FW
3672 * If we're the last pwq going away, @wq is already dead and no one
3673 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3674 */
669de8bd
BVA
3675 if (is_last) {
3676 wq_unregister_lockdep(wq);
25b00775 3677 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3678 }
29c91e99
TH
3679}
3680
7a4e344c 3681/**
6ba94429
FW
3682 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3683 * @pwq: target pool_workqueue
d185af30 3684 *
6ba94429
FW
3685 * If @pwq isn't freezing, set @pwq->max_active to the associated
3686 * workqueue's saved_max_active and activate delayed work items
3687 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3688 */
6ba94429 3689static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3690{
6ba94429
FW
3691 struct workqueue_struct *wq = pwq->wq;
3692 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3693 unsigned long flags;
4e1a1f9a 3694
6ba94429
FW
3695 /* for @wq->saved_max_active */
3696 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3697
6ba94429
FW
3698 /* fast exit for non-freezable wqs */
3699 if (!freezable && pwq->max_active == wq->saved_max_active)
3700 return;
7a4e344c 3701
3347fa09
TH
3702 /* this function can be called during early boot w/ irq disabled */
3703 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3704
6ba94429
FW
3705 /*
3706 * During [un]freezing, the caller is responsible for ensuring that
3707 * this function is called at least once after @workqueue_freezing
3708 * is updated and visible.
3709 */
3710 if (!freezable || !workqueue_freezing) {
3711 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3712
6ba94429
FW
3713 while (!list_empty(&pwq->delayed_works) &&
3714 pwq->nr_active < pwq->max_active)
3715 pwq_activate_first_delayed(pwq);
e2dca7ad 3716
6ba94429
FW
3717 /*
3718 * Need to kick a worker after thawed or an unbound wq's
3719 * max_active is bumped. It's a slow path. Do it always.
3720 */
3721 wake_up_worker(pwq->pool);
3722 } else {
3723 pwq->max_active = 0;
3724 }
e2dca7ad 3725
3347fa09 3726 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3727}
3728
6ba94429
FW
3729/* initialize newly alloced @pwq which is associated with @wq and @pool */
3730static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3731 struct worker_pool *pool)
29c91e99 3732{
6ba94429 3733 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3734
6ba94429
FW
3735 memset(pwq, 0, sizeof(*pwq));
3736
3737 pwq->pool = pool;
3738 pwq->wq = wq;
3739 pwq->flush_color = -1;
3740 pwq->refcnt = 1;
3741 INIT_LIST_HEAD(&pwq->delayed_works);
3742 INIT_LIST_HEAD(&pwq->pwqs_node);
3743 INIT_LIST_HEAD(&pwq->mayday_node);
3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3745}
3746
6ba94429
FW
3747/* sync @pwq with the current state of its associated wq and link it */
3748static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3749{
6ba94429 3750 struct workqueue_struct *wq = pwq->wq;
29c91e99 3751
6ba94429 3752 lockdep_assert_held(&wq->mutex);
a892cacc 3753
6ba94429
FW
3754 /* may be called multiple times, ignore if already linked */
3755 if (!list_empty(&pwq->pwqs_node))
29c91e99 3756 return;
29c91e99 3757
6ba94429
FW
3758 /* set the matching work_color */
3759 pwq->work_color = wq->work_color;
29c91e99 3760
6ba94429
FW
3761 /* sync max_active to the current setting */
3762 pwq_adjust_max_active(pwq);
29c91e99 3763
6ba94429
FW
3764 /* link in @pwq */
3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3766}
29c91e99 3767
6ba94429
FW
3768/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 const struct workqueue_attrs *attrs)
3771{
3772 struct worker_pool *pool;
3773 struct pool_workqueue *pwq;
60f5a4bc 3774
6ba94429 3775 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3776
6ba94429
FW
3777 pool = get_unbound_pool(attrs);
3778 if (!pool)
3779 return NULL;
60f5a4bc 3780
6ba94429
FW
3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3782 if (!pwq) {
3783 put_unbound_pool(pool);
3784 return NULL;
3785 }
29c91e99 3786
6ba94429
FW
3787 init_pwq(pwq, wq, pool);
3788 return pwq;
3789}
29c91e99 3790
29c91e99 3791/**
30186c6f 3792 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3793 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3794 * @node: the target NUMA node
3795 * @cpu_going_down: if >= 0, the CPU to consider as offline
3796 * @cpumask: outarg, the resulting cpumask
29c91e99 3797 *
6ba94429
FW
3798 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3799 * @cpu_going_down is >= 0, that cpu is considered offline during
3800 * calculation. The result is stored in @cpumask.
a892cacc 3801 *
6ba94429
FW
3802 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3803 * enabled and @node has online CPUs requested by @attrs, the returned
3804 * cpumask is the intersection of the possible CPUs of @node and
3805 * @attrs->cpumask.
d185af30 3806 *
6ba94429
FW
3807 * The caller is responsible for ensuring that the cpumask of @node stays
3808 * stable.
3809 *
3810 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3811 * %false if equal.
29c91e99 3812 */
6ba94429
FW
3813static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3814 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3815{
6ba94429
FW
3816 if (!wq_numa_enabled || attrs->no_numa)
3817 goto use_dfl;
29c91e99 3818
6ba94429
FW
3819 /* does @node have any online CPUs @attrs wants? */
3820 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3821 if (cpu_going_down >= 0)
3822 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3823
6ba94429
FW
3824 if (cpumask_empty(cpumask))
3825 goto use_dfl;
4c16bd32
TH
3826
3827 /* yeap, return possible CPUs in @node that @attrs wants */
3828 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3829
3830 if (cpumask_empty(cpumask)) {
3831 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3832 "possible intersect\n");
3833 return false;
3834 }
3835
4c16bd32
TH
3836 return !cpumask_equal(cpumask, attrs->cpumask);
3837
3838use_dfl:
3839 cpumask_copy(cpumask, attrs->cpumask);
3840 return false;
3841}
3842
1befcf30
TH
3843/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3844static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3845 int node,
3846 struct pool_workqueue *pwq)
3847{
3848 struct pool_workqueue *old_pwq;
3849
5b95e1af 3850 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3851 lockdep_assert_held(&wq->mutex);
3852
3853 /* link_pwq() can handle duplicate calls */
3854 link_pwq(pwq);
3855
3856 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3857 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3858 return old_pwq;
3859}
3860
2d5f0764
LJ
3861/* context to store the prepared attrs & pwqs before applying */
3862struct apply_wqattrs_ctx {
3863 struct workqueue_struct *wq; /* target workqueue */
3864 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3865 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3866 struct pool_workqueue *dfl_pwq;
3867 struct pool_workqueue *pwq_tbl[];
3868};
3869
3870/* free the resources after success or abort */
3871static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3872{
3873 if (ctx) {
3874 int node;
3875
3876 for_each_node(node)
3877 put_pwq_unlocked(ctx->pwq_tbl[node]);
3878 put_pwq_unlocked(ctx->dfl_pwq);
3879
3880 free_workqueue_attrs(ctx->attrs);
3881
3882 kfree(ctx);
3883 }
3884}
3885
3886/* allocate the attrs and pwqs for later installation */
3887static struct apply_wqattrs_ctx *
3888apply_wqattrs_prepare(struct workqueue_struct *wq,
3889 const struct workqueue_attrs *attrs)
9e8cd2f5 3890{
2d5f0764 3891 struct apply_wqattrs_ctx *ctx;
4c16bd32 3892 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3893 int node;
9e8cd2f5 3894
2d5f0764 3895 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3896
acafe7e3 3897 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3898
13e2e556 3899 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3900 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3901 if (!ctx || !new_attrs || !tmp_attrs)
3902 goto out_free;
13e2e556 3903
042f7df1
LJ
3904 /*
3905 * Calculate the attrs of the default pwq.
3906 * If the user configured cpumask doesn't overlap with the
3907 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3908 */
13e2e556 3909 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3910 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3911 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3912 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3913
4c16bd32
TH
3914 /*
3915 * We may create multiple pwqs with differing cpumasks. Make a
3916 * copy of @new_attrs which will be modified and used to obtain
3917 * pools.
3918 */
3919 copy_workqueue_attrs(tmp_attrs, new_attrs);
3920
4c16bd32
TH
3921 /*
3922 * If something goes wrong during CPU up/down, we'll fall back to
3923 * the default pwq covering whole @attrs->cpumask. Always create
3924 * it even if we don't use it immediately.
3925 */
2d5f0764
LJ
3926 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3927 if (!ctx->dfl_pwq)
3928 goto out_free;
4c16bd32
TH
3929
3930 for_each_node(node) {
042f7df1 3931 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3932 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3933 if (!ctx->pwq_tbl[node])
3934 goto out_free;
4c16bd32 3935 } else {
2d5f0764
LJ
3936 ctx->dfl_pwq->refcnt++;
3937 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3938 }
3939 }
3940
042f7df1
LJ
3941 /* save the user configured attrs and sanitize it. */
3942 copy_workqueue_attrs(new_attrs, attrs);
3943 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3944 ctx->attrs = new_attrs;
042f7df1 3945
2d5f0764
LJ
3946 ctx->wq = wq;
3947 free_workqueue_attrs(tmp_attrs);
3948 return ctx;
3949
3950out_free:
3951 free_workqueue_attrs(tmp_attrs);
3952 free_workqueue_attrs(new_attrs);
3953 apply_wqattrs_cleanup(ctx);
3954 return NULL;
3955}
3956
3957/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3958static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3959{
3960 int node;
9e8cd2f5 3961
4c16bd32 3962 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3963 mutex_lock(&ctx->wq->mutex);
a892cacc 3964
2d5f0764 3965 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3966
3967 /* save the previous pwq and install the new one */
f147f29e 3968 for_each_node(node)
2d5f0764
LJ
3969 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3970 ctx->pwq_tbl[node]);
4c16bd32
TH
3971
3972 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3973 link_pwq(ctx->dfl_pwq);
3974 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3975
2d5f0764
LJ
3976 mutex_unlock(&ctx->wq->mutex);
3977}
9e8cd2f5 3978
a0111cf6
LJ
3979static void apply_wqattrs_lock(void)
3980{
3981 /* CPUs should stay stable across pwq creations and installations */
3982 get_online_cpus();
3983 mutex_lock(&wq_pool_mutex);
3984}
3985
3986static void apply_wqattrs_unlock(void)
3987{
3988 mutex_unlock(&wq_pool_mutex);
3989 put_online_cpus();
3990}
3991
3992static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3993 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3994{
3995 struct apply_wqattrs_ctx *ctx;
4c16bd32 3996
2d5f0764
LJ
3997 /* only unbound workqueues can change attributes */
3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3999 return -EINVAL;
13e2e556 4000
2d5f0764 4001 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4002 if (!list_empty(&wq->pwqs)) {
4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4004 return -EINVAL;
4005
4006 wq->flags &= ~__WQ_ORDERED;
4007 }
2d5f0764 4008
2d5f0764 4009 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4010 if (!ctx)
4011 return -ENOMEM;
2d5f0764
LJ
4012
4013 /* the ctx has been prepared successfully, let's commit it */
6201171e 4014 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4015 apply_wqattrs_cleanup(ctx);
4016
6201171e 4017 return 0;
9e8cd2f5
TH
4018}
4019
a0111cf6
LJ
4020/**
4021 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4022 * @wq: the target workqueue
4023 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4024 *
4025 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4026 * machines, this function maps a separate pwq to each NUMA node with
4027 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4028 * NUMA node it was issued on. Older pwqs are released as in-flight work
4029 * items finish. Note that a work item which repeatedly requeues itself
4030 * back-to-back will stay on its current pwq.
4031 *
4032 * Performs GFP_KERNEL allocations.
4033 *
4034 * Return: 0 on success and -errno on failure.
4035 */
4036int apply_workqueue_attrs(struct workqueue_struct *wq,
4037 const struct workqueue_attrs *attrs)
4038{
4039 int ret;
4040
4041 apply_wqattrs_lock();
4042 ret = apply_workqueue_attrs_locked(wq, attrs);
4043 apply_wqattrs_unlock();
4044
4045 return ret;
4046}
6106c0f8 4047EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 4048
4c16bd32
TH
4049/**
4050 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4051 * @wq: the target workqueue
4052 * @cpu: the CPU coming up or going down
4053 * @online: whether @cpu is coming up or going down
4054 *
4055 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4056 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4057 * @wq accordingly.
4058 *
4059 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4060 * falls back to @wq->dfl_pwq which may not be optimal but is always
4061 * correct.
4062 *
4063 * Note that when the last allowed CPU of a NUMA node goes offline for a
4064 * workqueue with a cpumask spanning multiple nodes, the workers which were
4065 * already executing the work items for the workqueue will lose their CPU
4066 * affinity and may execute on any CPU. This is similar to how per-cpu
4067 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4068 * affinity, it's the user's responsibility to flush the work item from
4069 * CPU_DOWN_PREPARE.
4070 */
4071static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4072 bool online)
4073{
4074 int node = cpu_to_node(cpu);
4075 int cpu_off = online ? -1 : cpu;
4076 struct pool_workqueue *old_pwq = NULL, *pwq;
4077 struct workqueue_attrs *target_attrs;
4078 cpumask_t *cpumask;
4079
4080 lockdep_assert_held(&wq_pool_mutex);
4081
f7142ed4
LJ
4082 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4083 wq->unbound_attrs->no_numa)
4c16bd32
TH
4084 return;
4085
4086 /*
4087 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4088 * Let's use a preallocated one. The following buf is protected by
4089 * CPU hotplug exclusion.
4090 */
4091 target_attrs = wq_update_unbound_numa_attrs_buf;
4092 cpumask = target_attrs->cpumask;
4093
4c16bd32
TH
4094 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4095 pwq = unbound_pwq_by_node(wq, node);
4096
4097 /*
4098 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4099 * different from the default pwq's, we need to compare it to @pwq's
4100 * and create a new one if they don't match. If the target cpumask
4101 * equals the default pwq's, the default pwq should be used.
4c16bd32 4102 */
042f7df1 4103 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4104 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4105 return;
4c16bd32 4106 } else {
534a3fbb 4107 goto use_dfl_pwq;
4c16bd32
TH
4108 }
4109
4c16bd32
TH
4110 /* create a new pwq */
4111 pwq = alloc_unbound_pwq(wq, target_attrs);
4112 if (!pwq) {
2d916033
FF
4113 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4114 wq->name);
77f300b1 4115 goto use_dfl_pwq;
4c16bd32
TH
4116 }
4117
f7142ed4 4118 /* Install the new pwq. */
4c16bd32
TH
4119 mutex_lock(&wq->mutex);
4120 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4121 goto out_unlock;
4122
4123use_dfl_pwq:
f7142ed4 4124 mutex_lock(&wq->mutex);
4c16bd32
TH
4125 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4126 get_pwq(wq->dfl_pwq);
4127 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4128 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4129out_unlock:
4130 mutex_unlock(&wq->mutex);
4131 put_pwq_unlocked(old_pwq);
4132}
4133
30cdf249 4134static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4135{
49e3cf44 4136 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4137 int cpu, ret;
30cdf249
TH
4138
4139 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4140 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4141 if (!wq->cpu_pwqs)
30cdf249
TH
4142 return -ENOMEM;
4143
4144 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4145 struct pool_workqueue *pwq =
4146 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4147 struct worker_pool *cpu_pools =
f02ae73a 4148 per_cpu(cpu_worker_pools, cpu);
f3421797 4149
f147f29e
TH
4150 init_pwq(pwq, wq, &cpu_pools[highpri]);
4151
4152 mutex_lock(&wq->mutex);
1befcf30 4153 link_pwq(pwq);
f147f29e 4154 mutex_unlock(&wq->mutex);
30cdf249 4155 }
9e8cd2f5 4156 return 0;
8a2b7538
TH
4157 } else if (wq->flags & __WQ_ORDERED) {
4158 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4159 /* there should only be single pwq for ordering guarantee */
4160 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4161 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4162 "ordering guarantee broken for workqueue %s\n", wq->name);
4163 return ret;
30cdf249 4164 } else {
9e8cd2f5 4165 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4166 }
0f900049
TH
4167}
4168
f3421797
TH
4169static int wq_clamp_max_active(int max_active, unsigned int flags,
4170 const char *name)
b71ab8c2 4171{
f3421797
TH
4172 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4173
4174 if (max_active < 1 || max_active > lim)
044c782c
VI
4175 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4176 max_active, name, 1, lim);
b71ab8c2 4177
f3421797 4178 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4179}
4180
983c7515
TH
4181/*
4182 * Workqueues which may be used during memory reclaim should have a rescuer
4183 * to guarantee forward progress.
4184 */
4185static int init_rescuer(struct workqueue_struct *wq)
4186{
4187 struct worker *rescuer;
4188 int ret;
4189
4190 if (!(wq->flags & WQ_MEM_RECLAIM))
4191 return 0;
4192
4193 rescuer = alloc_worker(NUMA_NO_NODE);
4194 if (!rescuer)
4195 return -ENOMEM;
4196
4197 rescuer->rescue_wq = wq;
4198 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4199 ret = PTR_ERR_OR_ZERO(rescuer->task);
4200 if (ret) {
4201 kfree(rescuer);
4202 return ret;
4203 }
4204
4205 wq->rescuer = rescuer;
4206 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4207 wake_up_process(rescuer->task);
4208
4209 return 0;
4210}
4211
a2775bbc 4212__printf(1, 4)
669de8bd
BVA
4213struct workqueue_struct *alloc_workqueue(const char *fmt,
4214 unsigned int flags,
4215 int max_active, ...)
1da177e4 4216{
df2d5ae4 4217 size_t tbl_size = 0;
ecf6881f 4218 va_list args;
1da177e4 4219 struct workqueue_struct *wq;
49e3cf44 4220 struct pool_workqueue *pwq;
b196be89 4221
5c0338c6
TH
4222 /*
4223 * Unbound && max_active == 1 used to imply ordered, which is no
4224 * longer the case on NUMA machines due to per-node pools. While
4225 * alloc_ordered_workqueue() is the right way to create an ordered
4226 * workqueue, keep the previous behavior to avoid subtle breakages
4227 * on NUMA.
4228 */
4229 if ((flags & WQ_UNBOUND) && max_active == 1)
4230 flags |= __WQ_ORDERED;
4231
cee22a15
VK
4232 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4233 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4234 flags |= WQ_UNBOUND;
4235
ecf6881f 4236 /* allocate wq and format name */
df2d5ae4 4237 if (flags & WQ_UNBOUND)
ddcb57e2 4238 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4239
4240 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4241 if (!wq)
d2c1d404 4242 return NULL;
b196be89 4243
6029a918
TH
4244 if (flags & WQ_UNBOUND) {
4245 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4246 if (!wq->unbound_attrs)
4247 goto err_free_wq;
4248 }
4249
669de8bd 4250 va_start(args, max_active);
ecf6881f 4251 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4252 va_end(args);
1da177e4 4253
d320c038 4254 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4255 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4256
b196be89 4257 /* init wq */
97e37d7b 4258 wq->flags = flags;
a0a1a5fd 4259 wq->saved_max_active = max_active;
3c25a55d 4260 mutex_init(&wq->mutex);
112202d9 4261 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4262 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4263 INIT_LIST_HEAD(&wq->flusher_queue);
4264 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4265 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4266
669de8bd 4267 wq_init_lockdep(wq);
cce1a165 4268 INIT_LIST_HEAD(&wq->list);
3af24433 4269
30cdf249 4270 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4271 goto err_unreg_lockdep;
1537663f 4272
40c17f75 4273 if (wq_online && init_rescuer(wq) < 0)
983c7515 4274 goto err_destroy;
3af24433 4275
226223ab
TH
4276 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4277 goto err_destroy;
4278
a0a1a5fd 4279 /*
68e13a67
LJ
4280 * wq_pool_mutex protects global freeze state and workqueues list.
4281 * Grab it, adjust max_active and add the new @wq to workqueues
4282 * list.
a0a1a5fd 4283 */
68e13a67 4284 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4285
a357fc03 4286 mutex_lock(&wq->mutex);
699ce097
TH
4287 for_each_pwq(pwq, wq)
4288 pwq_adjust_max_active(pwq);
a357fc03 4289 mutex_unlock(&wq->mutex);
a0a1a5fd 4290
e2dca7ad 4291 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4292
68e13a67 4293 mutex_unlock(&wq_pool_mutex);
1537663f 4294
3af24433 4295 return wq;
d2c1d404 4296
82efcab3 4297err_unreg_lockdep:
009bb421
BVA
4298 wq_unregister_lockdep(wq);
4299 wq_free_lockdep(wq);
82efcab3 4300err_free_wq:
6029a918 4301 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4302 kfree(wq);
4303 return NULL;
4304err_destroy:
4305 destroy_workqueue(wq);
4690c4ab 4306 return NULL;
3af24433 4307}
669de8bd 4308EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4309
3af24433
ON
4310/**
4311 * destroy_workqueue - safely terminate a workqueue
4312 * @wq: target workqueue
4313 *
4314 * Safely destroy a workqueue. All work currently pending will be done first.
4315 */
4316void destroy_workqueue(struct workqueue_struct *wq)
4317{
49e3cf44 4318 struct pool_workqueue *pwq;
4c16bd32 4319 int node;
3af24433 4320
9c5a2ba7
TH
4321 /* drain it before proceeding with destruction */
4322 drain_workqueue(wq);
c8efcc25 4323
6183c009 4324 /* sanity checks */
b09f4fd3 4325 mutex_lock(&wq->mutex);
49e3cf44 4326 for_each_pwq(pwq, wq) {
6183c009
TH
4327 int i;
4328
76af4d93
TH
4329 for (i = 0; i < WORK_NR_COLORS; i++) {
4330 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4331 mutex_unlock(&wq->mutex);
fa07fb6a 4332 show_workqueue_state();
6183c009 4333 return;
76af4d93
TH
4334 }
4335 }
4336
5c529597 4337 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4338 WARN_ON(pwq->nr_active) ||
76af4d93 4339 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4340 mutex_unlock(&wq->mutex);
fa07fb6a 4341 show_workqueue_state();
6183c009 4342 return;
76af4d93 4343 }
6183c009 4344 }
b09f4fd3 4345 mutex_unlock(&wq->mutex);
6183c009 4346
a0a1a5fd
TH
4347 /*
4348 * wq list is used to freeze wq, remove from list after
4349 * flushing is complete in case freeze races us.
4350 */
68e13a67 4351 mutex_lock(&wq_pool_mutex);
e2dca7ad 4352 list_del_rcu(&wq->list);
68e13a67 4353 mutex_unlock(&wq_pool_mutex);
3af24433 4354
226223ab
TH
4355 workqueue_sysfs_unregister(wq);
4356
e2dca7ad 4357 if (wq->rescuer)
e22bee78 4358 kthread_stop(wq->rescuer->task);
e22bee78 4359
8864b4e5 4360 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4361 wq_unregister_lockdep(wq);
8864b4e5
TH
4362 /*
4363 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4364 * schedule RCU free.
8864b4e5 4365 */
25b00775 4366 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4367 } else {
4368 /*
4369 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4370 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4371 * @wq will be freed when the last pwq is released.
8864b4e5 4372 */
4c16bd32
TH
4373 for_each_node(node) {
4374 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4375 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4376 put_pwq_unlocked(pwq);
4377 }
4378
4379 /*
4380 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4381 * put. Don't access it afterwards.
4382 */
4383 pwq = wq->dfl_pwq;
4384 wq->dfl_pwq = NULL;
dce90d47 4385 put_pwq_unlocked(pwq);
29c91e99 4386 }
3af24433
ON
4387}
4388EXPORT_SYMBOL_GPL(destroy_workqueue);
4389
dcd989cb
TH
4390/**
4391 * workqueue_set_max_active - adjust max_active of a workqueue
4392 * @wq: target workqueue
4393 * @max_active: new max_active value.
4394 *
4395 * Set max_active of @wq to @max_active.
4396 *
4397 * CONTEXT:
4398 * Don't call from IRQ context.
4399 */
4400void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4401{
49e3cf44 4402 struct pool_workqueue *pwq;
dcd989cb 4403
8719dcea 4404 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4405 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4406 return;
4407
f3421797 4408 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4409
a357fc03 4410 mutex_lock(&wq->mutex);
dcd989cb 4411
0a94efb5 4412 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4413 wq->saved_max_active = max_active;
4414
699ce097
TH
4415 for_each_pwq(pwq, wq)
4416 pwq_adjust_max_active(pwq);
93981800 4417
a357fc03 4418 mutex_unlock(&wq->mutex);
15316ba8 4419}
dcd989cb 4420EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4421
27d4ee03
LW
4422/**
4423 * current_work - retrieve %current task's work struct
4424 *
4425 * Determine if %current task is a workqueue worker and what it's working on.
4426 * Useful to find out the context that the %current task is running in.
4427 *
4428 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4429 */
4430struct work_struct *current_work(void)
4431{
4432 struct worker *worker = current_wq_worker();
4433
4434 return worker ? worker->current_work : NULL;
4435}
4436EXPORT_SYMBOL(current_work);
4437
e6267616
TH
4438/**
4439 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4440 *
4441 * Determine whether %current is a workqueue rescuer. Can be used from
4442 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4443 *
4444 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4445 */
4446bool current_is_workqueue_rescuer(void)
4447{
4448 struct worker *worker = current_wq_worker();
4449
6a092dfd 4450 return worker && worker->rescue_wq;
e6267616
TH
4451}
4452
eef6a7d5 4453/**
dcd989cb
TH
4454 * workqueue_congested - test whether a workqueue is congested
4455 * @cpu: CPU in question
4456 * @wq: target workqueue
eef6a7d5 4457 *
dcd989cb
TH
4458 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4459 * no synchronization around this function and the test result is
4460 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4461 *
d3251859
TH
4462 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4463 * Note that both per-cpu and unbound workqueues may be associated with
4464 * multiple pool_workqueues which have separate congested states. A
4465 * workqueue being congested on one CPU doesn't mean the workqueue is also
4466 * contested on other CPUs / NUMA nodes.
4467 *
d185af30 4468 * Return:
dcd989cb 4469 * %true if congested, %false otherwise.
eef6a7d5 4470 */
d84ff051 4471bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4472{
7fb98ea7 4473 struct pool_workqueue *pwq;
76af4d93
TH
4474 bool ret;
4475
24acfb71
TG
4476 rcu_read_lock();
4477 preempt_disable();
7fb98ea7 4478
d3251859
TH
4479 if (cpu == WORK_CPU_UNBOUND)
4480 cpu = smp_processor_id();
4481
7fb98ea7
TH
4482 if (!(wq->flags & WQ_UNBOUND))
4483 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4484 else
df2d5ae4 4485 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4486
76af4d93 4487 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4488 preempt_enable();
4489 rcu_read_unlock();
76af4d93
TH
4490
4491 return ret;
1da177e4 4492}
dcd989cb 4493EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4494
dcd989cb
TH
4495/**
4496 * work_busy - test whether a work is currently pending or running
4497 * @work: the work to be tested
4498 *
4499 * Test whether @work is currently pending or running. There is no
4500 * synchronization around this function and the test result is
4501 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4502 *
d185af30 4503 * Return:
dcd989cb
TH
4504 * OR'd bitmask of WORK_BUSY_* bits.
4505 */
4506unsigned int work_busy(struct work_struct *work)
1da177e4 4507{
fa1b54e6 4508 struct worker_pool *pool;
dcd989cb
TH
4509 unsigned long flags;
4510 unsigned int ret = 0;
1da177e4 4511
dcd989cb
TH
4512 if (work_pending(work))
4513 ret |= WORK_BUSY_PENDING;
1da177e4 4514
24acfb71 4515 rcu_read_lock();
fa1b54e6 4516 pool = get_work_pool(work);
038366c5 4517 if (pool) {
24acfb71 4518 spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4519 if (find_worker_executing_work(pool, work))
4520 ret |= WORK_BUSY_RUNNING;
24acfb71 4521 spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4522 }
24acfb71 4523 rcu_read_unlock();
1da177e4 4524
dcd989cb 4525 return ret;
1da177e4 4526}
dcd989cb 4527EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4528
3d1cb205
TH
4529/**
4530 * set_worker_desc - set description for the current work item
4531 * @fmt: printf-style format string
4532 * @...: arguments for the format string
4533 *
4534 * This function can be called by a running work function to describe what
4535 * the work item is about. If the worker task gets dumped, this
4536 * information will be printed out together to help debugging. The
4537 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4538 */
4539void set_worker_desc(const char *fmt, ...)
4540{
4541 struct worker *worker = current_wq_worker();
4542 va_list args;
4543
4544 if (worker) {
4545 va_start(args, fmt);
4546 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4547 va_end(args);
3d1cb205
TH
4548 }
4549}
5c750d58 4550EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4551
4552/**
4553 * print_worker_info - print out worker information and description
4554 * @log_lvl: the log level to use when printing
4555 * @task: target task
4556 *
4557 * If @task is a worker and currently executing a work item, print out the
4558 * name of the workqueue being serviced and worker description set with
4559 * set_worker_desc() by the currently executing work item.
4560 *
4561 * This function can be safely called on any task as long as the
4562 * task_struct itself is accessible. While safe, this function isn't
4563 * synchronized and may print out mixups or garbages of limited length.
4564 */
4565void print_worker_info(const char *log_lvl, struct task_struct *task)
4566{
4567 work_func_t *fn = NULL;
4568 char name[WQ_NAME_LEN] = { };
4569 char desc[WORKER_DESC_LEN] = { };
4570 struct pool_workqueue *pwq = NULL;
4571 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4572 struct worker *worker;
4573
4574 if (!(task->flags & PF_WQ_WORKER))
4575 return;
4576
4577 /*
4578 * This function is called without any synchronization and @task
4579 * could be in any state. Be careful with dereferences.
4580 */
e700591a 4581 worker = kthread_probe_data(task);
3d1cb205
TH
4582
4583 /*
8bf89593
TH
4584 * Carefully copy the associated workqueue's workfn, name and desc.
4585 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4586 */
4587 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4588 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4589 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4590 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4591 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4592
4593 if (fn || name[0] || desc[0]) {
d75f773c 4594 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4595 if (strcmp(name, desc))
3d1cb205
TH
4596 pr_cont(" (%s)", desc);
4597 pr_cont("\n");
4598 }
4599}
4600
3494fc30
TH
4601static void pr_cont_pool_info(struct worker_pool *pool)
4602{
4603 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4604 if (pool->node != NUMA_NO_NODE)
4605 pr_cont(" node=%d", pool->node);
4606 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4607}
4608
4609static void pr_cont_work(bool comma, struct work_struct *work)
4610{
4611 if (work->func == wq_barrier_func) {
4612 struct wq_barrier *barr;
4613
4614 barr = container_of(work, struct wq_barrier, work);
4615
4616 pr_cont("%s BAR(%d)", comma ? "," : "",
4617 task_pid_nr(barr->task));
4618 } else {
d75f773c 4619 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4620 }
4621}
4622
4623static void show_pwq(struct pool_workqueue *pwq)
4624{
4625 struct worker_pool *pool = pwq->pool;
4626 struct work_struct *work;
4627 struct worker *worker;
4628 bool has_in_flight = false, has_pending = false;
4629 int bkt;
4630
4631 pr_info(" pwq %d:", pool->id);
4632 pr_cont_pool_info(pool);
4633
4634 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4635 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4636
4637 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4638 if (worker->current_pwq == pwq) {
4639 has_in_flight = true;
4640 break;
4641 }
4642 }
4643 if (has_in_flight) {
4644 bool comma = false;
4645
4646 pr_info(" in-flight:");
4647 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4648 if (worker->current_pwq != pwq)
4649 continue;
4650
d75f773c 4651 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30
TH
4652 task_pid_nr(worker->task),
4653 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4654 worker->current_func);
4655 list_for_each_entry(work, &worker->scheduled, entry)
4656 pr_cont_work(false, work);
4657 comma = true;
4658 }
4659 pr_cont("\n");
4660 }
4661
4662 list_for_each_entry(work, &pool->worklist, entry) {
4663 if (get_work_pwq(work) == pwq) {
4664 has_pending = true;
4665 break;
4666 }
4667 }
4668 if (has_pending) {
4669 bool comma = false;
4670
4671 pr_info(" pending:");
4672 list_for_each_entry(work, &pool->worklist, entry) {
4673 if (get_work_pwq(work) != pwq)
4674 continue;
4675
4676 pr_cont_work(comma, work);
4677 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4678 }
4679 pr_cont("\n");
4680 }
4681
4682 if (!list_empty(&pwq->delayed_works)) {
4683 bool comma = false;
4684
4685 pr_info(" delayed:");
4686 list_for_each_entry(work, &pwq->delayed_works, entry) {
4687 pr_cont_work(comma, work);
4688 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4689 }
4690 pr_cont("\n");
4691 }
4692}
4693
4694/**
4695 * show_workqueue_state - dump workqueue state
4696 *
7b776af6
RL
4697 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4698 * all busy workqueues and pools.
3494fc30
TH
4699 */
4700void show_workqueue_state(void)
4701{
4702 struct workqueue_struct *wq;
4703 struct worker_pool *pool;
4704 unsigned long flags;
4705 int pi;
4706
24acfb71 4707 rcu_read_lock();
3494fc30
TH
4708
4709 pr_info("Showing busy workqueues and worker pools:\n");
4710
4711 list_for_each_entry_rcu(wq, &workqueues, list) {
4712 struct pool_workqueue *pwq;
4713 bool idle = true;
4714
4715 for_each_pwq(pwq, wq) {
4716 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4717 idle = false;
4718 break;
4719 }
4720 }
4721 if (idle)
4722 continue;
4723
4724 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4725
4726 for_each_pwq(pwq, wq) {
4727 spin_lock_irqsave(&pwq->pool->lock, flags);
4728 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4729 show_pwq(pwq);
4730 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4731 /*
4732 * We could be printing a lot from atomic context, e.g.
4733 * sysrq-t -> show_workqueue_state(). Avoid triggering
4734 * hard lockup.
4735 */
4736 touch_nmi_watchdog();
3494fc30
TH
4737 }
4738 }
4739
4740 for_each_pool(pool, pi) {
4741 struct worker *worker;
4742 bool first = true;
4743
4744 spin_lock_irqsave(&pool->lock, flags);
4745 if (pool->nr_workers == pool->nr_idle)
4746 goto next_pool;
4747
4748 pr_info("pool %d:", pool->id);
4749 pr_cont_pool_info(pool);
82607adc
TH
4750 pr_cont(" hung=%us workers=%d",
4751 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4752 pool->nr_workers);
3494fc30
TH
4753 if (pool->manager)
4754 pr_cont(" manager: %d",
4755 task_pid_nr(pool->manager->task));
4756 list_for_each_entry(worker, &pool->idle_list, entry) {
4757 pr_cont(" %s%d", first ? "idle: " : "",
4758 task_pid_nr(worker->task));
4759 first = false;
4760 }
4761 pr_cont("\n");
4762 next_pool:
4763 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4764 /*
4765 * We could be printing a lot from atomic context, e.g.
4766 * sysrq-t -> show_workqueue_state(). Avoid triggering
4767 * hard lockup.
4768 */
4769 touch_nmi_watchdog();
3494fc30
TH
4770 }
4771
24acfb71 4772 rcu_read_unlock();
3494fc30
TH
4773}
4774
6b59808b
TH
4775/* used to show worker information through /proc/PID/{comm,stat,status} */
4776void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4777{
6b59808b
TH
4778 int off;
4779
4780 /* always show the actual comm */
4781 off = strscpy(buf, task->comm, size);
4782 if (off < 0)
4783 return;
4784
197f6acc 4785 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4786 mutex_lock(&wq_pool_attach_mutex);
4787
197f6acc
TH
4788 if (task->flags & PF_WQ_WORKER) {
4789 struct worker *worker = kthread_data(task);
4790 struct worker_pool *pool = worker->pool;
6b59808b 4791
197f6acc
TH
4792 if (pool) {
4793 spin_lock_irq(&pool->lock);
4794 /*
4795 * ->desc tracks information (wq name or
4796 * set_worker_desc()) for the latest execution. If
4797 * current, prepend '+', otherwise '-'.
4798 */
4799 if (worker->desc[0] != '\0') {
4800 if (worker->current_work)
4801 scnprintf(buf + off, size - off, "+%s",
4802 worker->desc);
4803 else
4804 scnprintf(buf + off, size - off, "-%s",
4805 worker->desc);
4806 }
4807 spin_unlock_irq(&pool->lock);
6b59808b 4808 }
6b59808b
TH
4809 }
4810
4811 mutex_unlock(&wq_pool_attach_mutex);
4812}
4813
66448bc2
MM
4814#ifdef CONFIG_SMP
4815
db7bccf4
TH
4816/*
4817 * CPU hotplug.
4818 *
e22bee78 4819 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4820 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4821 * pool which make migrating pending and scheduled works very
e22bee78 4822 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4823 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4824 * blocked draining impractical.
4825 *
24647570 4826 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4827 * running as an unbound one and allowing it to be reattached later if the
4828 * cpu comes back online.
db7bccf4 4829 */
1da177e4 4830
e8b3f8db 4831static void unbind_workers(int cpu)
3af24433 4832{
4ce62e9e 4833 struct worker_pool *pool;
db7bccf4 4834 struct worker *worker;
3af24433 4835
f02ae73a 4836 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4837 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4838 spin_lock_irq(&pool->lock);
3af24433 4839
94cf58bb 4840 /*
92f9c5c4 4841 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4842 * unbound and set DISASSOCIATED. Before this, all workers
4843 * except for the ones which are still executing works from
4844 * before the last CPU down must be on the cpu. After
4845 * this, they may become diasporas.
4846 */
da028469 4847 for_each_pool_worker(worker, pool)
c9e7cf27 4848 worker->flags |= WORKER_UNBOUND;
06ba38a9 4849
24647570 4850 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4851
94cf58bb 4852 spin_unlock_irq(&pool->lock);
1258fae7 4853 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4854
eb283428
LJ
4855 /*
4856 * Call schedule() so that we cross rq->lock and thus can
4857 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4858 * This is necessary as scheduler callbacks may be invoked
4859 * from other cpus.
4860 */
4861 schedule();
06ba38a9 4862
eb283428
LJ
4863 /*
4864 * Sched callbacks are disabled now. Zap nr_running.
4865 * After this, nr_running stays zero and need_more_worker()
4866 * and keep_working() are always true as long as the
4867 * worklist is not empty. This pool now behaves as an
4868 * unbound (in terms of concurrency management) pool which
4869 * are served by workers tied to the pool.
4870 */
e19e397a 4871 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4872
4873 /*
4874 * With concurrency management just turned off, a busy
4875 * worker blocking could lead to lengthy stalls. Kick off
4876 * unbound chain execution of currently pending work items.
4877 */
4878 spin_lock_irq(&pool->lock);
4879 wake_up_worker(pool);
4880 spin_unlock_irq(&pool->lock);
4881 }
3af24433 4882}
3af24433 4883
bd7c089e
TH
4884/**
4885 * rebind_workers - rebind all workers of a pool to the associated CPU
4886 * @pool: pool of interest
4887 *
a9ab775b 4888 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4889 */
4890static void rebind_workers(struct worker_pool *pool)
4891{
a9ab775b 4892 struct worker *worker;
bd7c089e 4893
1258fae7 4894 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4895
a9ab775b
TH
4896 /*
4897 * Restore CPU affinity of all workers. As all idle workers should
4898 * be on the run-queue of the associated CPU before any local
402dd89d 4899 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4900 * of all workers first and then clear UNBOUND. As we're called
4901 * from CPU_ONLINE, the following shouldn't fail.
4902 */
da028469 4903 for_each_pool_worker(worker, pool)
a9ab775b
TH
4904 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4905 pool->attrs->cpumask) < 0);
bd7c089e 4906
a9ab775b 4907 spin_lock_irq(&pool->lock);
f7c17d26 4908
3de5e884 4909 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4910
da028469 4911 for_each_pool_worker(worker, pool) {
a9ab775b 4912 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4913
4914 /*
a9ab775b
TH
4915 * A bound idle worker should actually be on the runqueue
4916 * of the associated CPU for local wake-ups targeting it to
4917 * work. Kick all idle workers so that they migrate to the
4918 * associated CPU. Doing this in the same loop as
4919 * replacing UNBOUND with REBOUND is safe as no worker will
4920 * be bound before @pool->lock is released.
bd7c089e 4921 */
a9ab775b
TH
4922 if (worker_flags & WORKER_IDLE)
4923 wake_up_process(worker->task);
bd7c089e 4924
a9ab775b
TH
4925 /*
4926 * We want to clear UNBOUND but can't directly call
4927 * worker_clr_flags() or adjust nr_running. Atomically
4928 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4929 * @worker will clear REBOUND using worker_clr_flags() when
4930 * it initiates the next execution cycle thus restoring
4931 * concurrency management. Note that when or whether
4932 * @worker clears REBOUND doesn't affect correctness.
4933 *
c95491ed 4934 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 4935 * tested without holding any lock in
6d25be57 4936 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
4937 * fail incorrectly leading to premature concurrency
4938 * management operations.
4939 */
4940 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4941 worker_flags |= WORKER_REBOUND;
4942 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4943 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4944 }
a9ab775b
TH
4945
4946 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4947}
4948
7dbc725e
TH
4949/**
4950 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4951 * @pool: unbound pool of interest
4952 * @cpu: the CPU which is coming up
4953 *
4954 * An unbound pool may end up with a cpumask which doesn't have any online
4955 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4956 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4957 * online CPU before, cpus_allowed of all its workers should be restored.
4958 */
4959static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4960{
4961 static cpumask_t cpumask;
4962 struct worker *worker;
7dbc725e 4963
1258fae7 4964 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
4965
4966 /* is @cpu allowed for @pool? */
4967 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4968 return;
4969
7dbc725e 4970 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4971
4972 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4973 for_each_pool_worker(worker, pool)
d945b5e9 4974 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4975}
4976
7ee681b2
TG
4977int workqueue_prepare_cpu(unsigned int cpu)
4978{
4979 struct worker_pool *pool;
4980
4981 for_each_cpu_worker_pool(pool, cpu) {
4982 if (pool->nr_workers)
4983 continue;
4984 if (!create_worker(pool))
4985 return -ENOMEM;
4986 }
4987 return 0;
4988}
4989
4990int workqueue_online_cpu(unsigned int cpu)
3af24433 4991{
4ce62e9e 4992 struct worker_pool *pool;
4c16bd32 4993 struct workqueue_struct *wq;
7dbc725e 4994 int pi;
3ce63377 4995
7ee681b2 4996 mutex_lock(&wq_pool_mutex);
7dbc725e 4997
7ee681b2 4998 for_each_pool(pool, pi) {
1258fae7 4999 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5000
7ee681b2
TG
5001 if (pool->cpu == cpu)
5002 rebind_workers(pool);
5003 else if (pool->cpu < 0)
5004 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5005
1258fae7 5006 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5007 }
6ba94429 5008
7ee681b2
TG
5009 /* update NUMA affinity of unbound workqueues */
5010 list_for_each_entry(wq, &workqueues, list)
5011 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5012
7ee681b2
TG
5013 mutex_unlock(&wq_pool_mutex);
5014 return 0;
6ba94429
FW
5015}
5016
7ee681b2 5017int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5018{
6ba94429
FW
5019 struct workqueue_struct *wq;
5020
7ee681b2 5021 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5022 if (WARN_ON(cpu != smp_processor_id()))
5023 return -1;
5024
5025 unbind_workers(cpu);
7ee681b2
TG
5026
5027 /* update NUMA affinity of unbound workqueues */
5028 mutex_lock(&wq_pool_mutex);
5029 list_for_each_entry(wq, &workqueues, list)
5030 wq_update_unbound_numa(wq, cpu, false);
5031 mutex_unlock(&wq_pool_mutex);
5032
7ee681b2 5033 return 0;
6ba94429
FW
5034}
5035
6ba94429
FW
5036struct work_for_cpu {
5037 struct work_struct work;
5038 long (*fn)(void *);
5039 void *arg;
5040 long ret;
5041};
5042
5043static void work_for_cpu_fn(struct work_struct *work)
5044{
5045 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5046
5047 wfc->ret = wfc->fn(wfc->arg);
5048}
5049
5050/**
22aceb31 5051 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5052 * @cpu: the cpu to run on
5053 * @fn: the function to run
5054 * @arg: the function arg
5055 *
5056 * It is up to the caller to ensure that the cpu doesn't go offline.
5057 * The caller must not hold any locks which would prevent @fn from completing.
5058 *
5059 * Return: The value @fn returns.
5060 */
5061long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5062{
5063 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5064
5065 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5066 schedule_work_on(cpu, &wfc.work);
5067 flush_work(&wfc.work);
5068 destroy_work_on_stack(&wfc.work);
5069 return wfc.ret;
5070}
5071EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5072
5073/**
5074 * work_on_cpu_safe - run a function in thread context on a particular cpu
5075 * @cpu: the cpu to run on
5076 * @fn: the function to run
5077 * @arg: the function argument
5078 *
5079 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5080 * any locks which would prevent @fn from completing.
5081 *
5082 * Return: The value @fn returns.
5083 */
5084long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5085{
5086 long ret = -ENODEV;
5087
5088 get_online_cpus();
5089 if (cpu_online(cpu))
5090 ret = work_on_cpu(cpu, fn, arg);
5091 put_online_cpus();
5092 return ret;
5093}
5094EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5095#endif /* CONFIG_SMP */
5096
5097#ifdef CONFIG_FREEZER
5098
5099/**
5100 * freeze_workqueues_begin - begin freezing workqueues
5101 *
5102 * Start freezing workqueues. After this function returns, all freezable
5103 * workqueues will queue new works to their delayed_works list instead of
5104 * pool->worklist.
5105 *
5106 * CONTEXT:
5107 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5108 */
5109void freeze_workqueues_begin(void)
5110{
5111 struct workqueue_struct *wq;
5112 struct pool_workqueue *pwq;
5113
5114 mutex_lock(&wq_pool_mutex);
5115
5116 WARN_ON_ONCE(workqueue_freezing);
5117 workqueue_freezing = true;
5118
5119 list_for_each_entry(wq, &workqueues, list) {
5120 mutex_lock(&wq->mutex);
5121 for_each_pwq(pwq, wq)
5122 pwq_adjust_max_active(pwq);
5123 mutex_unlock(&wq->mutex);
5124 }
5125
5126 mutex_unlock(&wq_pool_mutex);
5127}
5128
5129/**
5130 * freeze_workqueues_busy - are freezable workqueues still busy?
5131 *
5132 * Check whether freezing is complete. This function must be called
5133 * between freeze_workqueues_begin() and thaw_workqueues().
5134 *
5135 * CONTEXT:
5136 * Grabs and releases wq_pool_mutex.
5137 *
5138 * Return:
5139 * %true if some freezable workqueues are still busy. %false if freezing
5140 * is complete.
5141 */
5142bool freeze_workqueues_busy(void)
5143{
5144 bool busy = false;
5145 struct workqueue_struct *wq;
5146 struct pool_workqueue *pwq;
5147
5148 mutex_lock(&wq_pool_mutex);
5149
5150 WARN_ON_ONCE(!workqueue_freezing);
5151
5152 list_for_each_entry(wq, &workqueues, list) {
5153 if (!(wq->flags & WQ_FREEZABLE))
5154 continue;
5155 /*
5156 * nr_active is monotonically decreasing. It's safe
5157 * to peek without lock.
5158 */
24acfb71 5159 rcu_read_lock();
6ba94429
FW
5160 for_each_pwq(pwq, wq) {
5161 WARN_ON_ONCE(pwq->nr_active < 0);
5162 if (pwq->nr_active) {
5163 busy = true;
24acfb71 5164 rcu_read_unlock();
6ba94429
FW
5165 goto out_unlock;
5166 }
5167 }
24acfb71 5168 rcu_read_unlock();
6ba94429
FW
5169 }
5170out_unlock:
5171 mutex_unlock(&wq_pool_mutex);
5172 return busy;
5173}
5174
5175/**
5176 * thaw_workqueues - thaw workqueues
5177 *
5178 * Thaw workqueues. Normal queueing is restored and all collected
5179 * frozen works are transferred to their respective pool worklists.
5180 *
5181 * CONTEXT:
5182 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5183 */
5184void thaw_workqueues(void)
5185{
5186 struct workqueue_struct *wq;
5187 struct pool_workqueue *pwq;
5188
5189 mutex_lock(&wq_pool_mutex);
5190
5191 if (!workqueue_freezing)
5192 goto out_unlock;
5193
5194 workqueue_freezing = false;
5195
5196 /* restore max_active and repopulate worklist */
5197 list_for_each_entry(wq, &workqueues, list) {
5198 mutex_lock(&wq->mutex);
5199 for_each_pwq(pwq, wq)
5200 pwq_adjust_max_active(pwq);
5201 mutex_unlock(&wq->mutex);
5202 }
5203
5204out_unlock:
5205 mutex_unlock(&wq_pool_mutex);
5206}
5207#endif /* CONFIG_FREEZER */
5208
042f7df1
LJ
5209static int workqueue_apply_unbound_cpumask(void)
5210{
5211 LIST_HEAD(ctxs);
5212 int ret = 0;
5213 struct workqueue_struct *wq;
5214 struct apply_wqattrs_ctx *ctx, *n;
5215
5216 lockdep_assert_held(&wq_pool_mutex);
5217
5218 list_for_each_entry(wq, &workqueues, list) {
5219 if (!(wq->flags & WQ_UNBOUND))
5220 continue;
5221 /* creating multiple pwqs breaks ordering guarantee */
5222 if (wq->flags & __WQ_ORDERED)
5223 continue;
5224
5225 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5226 if (!ctx) {
5227 ret = -ENOMEM;
5228 break;
5229 }
5230
5231 list_add_tail(&ctx->list, &ctxs);
5232 }
5233
5234 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5235 if (!ret)
5236 apply_wqattrs_commit(ctx);
5237 apply_wqattrs_cleanup(ctx);
5238 }
5239
5240 return ret;
5241}
5242
5243/**
5244 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5245 * @cpumask: the cpumask to set
5246 *
5247 * The low-level workqueues cpumask is a global cpumask that limits
5248 * the affinity of all unbound workqueues. This function check the @cpumask
5249 * and apply it to all unbound workqueues and updates all pwqs of them.
5250 *
5251 * Retun: 0 - Success
5252 * -EINVAL - Invalid @cpumask
5253 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5254 */
5255int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5256{
5257 int ret = -EINVAL;
5258 cpumask_var_t saved_cpumask;
5259
5260 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5261 return -ENOMEM;
5262
c98a9805
TS
5263 /*
5264 * Not excluding isolated cpus on purpose.
5265 * If the user wishes to include them, we allow that.
5266 */
042f7df1
LJ
5267 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5268 if (!cpumask_empty(cpumask)) {
a0111cf6 5269 apply_wqattrs_lock();
042f7df1
LJ
5270
5271 /* save the old wq_unbound_cpumask. */
5272 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5273
5274 /* update wq_unbound_cpumask at first and apply it to wqs. */
5275 cpumask_copy(wq_unbound_cpumask, cpumask);
5276 ret = workqueue_apply_unbound_cpumask();
5277
5278 /* restore the wq_unbound_cpumask when failed. */
5279 if (ret < 0)
5280 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5281
a0111cf6 5282 apply_wqattrs_unlock();
042f7df1 5283 }
042f7df1
LJ
5284
5285 free_cpumask_var(saved_cpumask);
5286 return ret;
5287}
5288
6ba94429
FW
5289#ifdef CONFIG_SYSFS
5290/*
5291 * Workqueues with WQ_SYSFS flag set is visible to userland via
5292 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5293 * following attributes.
5294 *
5295 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5296 * max_active RW int : maximum number of in-flight work items
5297 *
5298 * Unbound workqueues have the following extra attributes.
5299 *
9a19b463 5300 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5301 * nice RW int : nice value of the workers
5302 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5303 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5304 */
5305struct wq_device {
5306 struct workqueue_struct *wq;
5307 struct device dev;
5308};
5309
5310static struct workqueue_struct *dev_to_wq(struct device *dev)
5311{
5312 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5313
5314 return wq_dev->wq;
5315}
5316
5317static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5318 char *buf)
5319{
5320 struct workqueue_struct *wq = dev_to_wq(dev);
5321
5322 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5323}
5324static DEVICE_ATTR_RO(per_cpu);
5325
5326static ssize_t max_active_show(struct device *dev,
5327 struct device_attribute *attr, char *buf)
5328{
5329 struct workqueue_struct *wq = dev_to_wq(dev);
5330
5331 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5332}
5333
5334static ssize_t max_active_store(struct device *dev,
5335 struct device_attribute *attr, const char *buf,
5336 size_t count)
5337{
5338 struct workqueue_struct *wq = dev_to_wq(dev);
5339 int val;
5340
5341 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5342 return -EINVAL;
5343
5344 workqueue_set_max_active(wq, val);
5345 return count;
5346}
5347static DEVICE_ATTR_RW(max_active);
5348
5349static struct attribute *wq_sysfs_attrs[] = {
5350 &dev_attr_per_cpu.attr,
5351 &dev_attr_max_active.attr,
5352 NULL,
5353};
5354ATTRIBUTE_GROUPS(wq_sysfs);
5355
5356static ssize_t wq_pool_ids_show(struct device *dev,
5357 struct device_attribute *attr, char *buf)
5358{
5359 struct workqueue_struct *wq = dev_to_wq(dev);
5360 const char *delim = "";
5361 int node, written = 0;
5362
24acfb71
TG
5363 get_online_cpus();
5364 rcu_read_lock();
6ba94429
FW
5365 for_each_node(node) {
5366 written += scnprintf(buf + written, PAGE_SIZE - written,
5367 "%s%d:%d", delim, node,
5368 unbound_pwq_by_node(wq, node)->pool->id);
5369 delim = " ";
5370 }
5371 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5372 rcu_read_unlock();
5373 put_online_cpus();
6ba94429
FW
5374
5375 return written;
5376}
5377
5378static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5379 char *buf)
5380{
5381 struct workqueue_struct *wq = dev_to_wq(dev);
5382 int written;
5383
5384 mutex_lock(&wq->mutex);
5385 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5386 mutex_unlock(&wq->mutex);
5387
5388 return written;
5389}
5390
5391/* prepare workqueue_attrs for sysfs store operations */
5392static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5393{
5394 struct workqueue_attrs *attrs;
5395
899a94fe
LJ
5396 lockdep_assert_held(&wq_pool_mutex);
5397
6ba94429
FW
5398 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5399 if (!attrs)
5400 return NULL;
5401
6ba94429 5402 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5403 return attrs;
5404}
5405
5406static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5407 const char *buf, size_t count)
5408{
5409 struct workqueue_struct *wq = dev_to_wq(dev);
5410 struct workqueue_attrs *attrs;
d4d3e257
LJ
5411 int ret = -ENOMEM;
5412
5413 apply_wqattrs_lock();
6ba94429
FW
5414
5415 attrs = wq_sysfs_prep_attrs(wq);
5416 if (!attrs)
d4d3e257 5417 goto out_unlock;
6ba94429
FW
5418
5419 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5420 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5421 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5422 else
5423 ret = -EINVAL;
5424
d4d3e257
LJ
5425out_unlock:
5426 apply_wqattrs_unlock();
6ba94429
FW
5427 free_workqueue_attrs(attrs);
5428 return ret ?: count;
5429}
5430
5431static ssize_t wq_cpumask_show(struct device *dev,
5432 struct device_attribute *attr, char *buf)
5433{
5434 struct workqueue_struct *wq = dev_to_wq(dev);
5435 int written;
5436
5437 mutex_lock(&wq->mutex);
5438 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5439 cpumask_pr_args(wq->unbound_attrs->cpumask));
5440 mutex_unlock(&wq->mutex);
5441 return written;
5442}
5443
5444static ssize_t wq_cpumask_store(struct device *dev,
5445 struct device_attribute *attr,
5446 const char *buf, size_t count)
5447{
5448 struct workqueue_struct *wq = dev_to_wq(dev);
5449 struct workqueue_attrs *attrs;
d4d3e257
LJ
5450 int ret = -ENOMEM;
5451
5452 apply_wqattrs_lock();
6ba94429
FW
5453
5454 attrs = wq_sysfs_prep_attrs(wq);
5455 if (!attrs)
d4d3e257 5456 goto out_unlock;
6ba94429
FW
5457
5458 ret = cpumask_parse(buf, attrs->cpumask);
5459 if (!ret)
d4d3e257 5460 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5461
d4d3e257
LJ
5462out_unlock:
5463 apply_wqattrs_unlock();
6ba94429
FW
5464 free_workqueue_attrs(attrs);
5465 return ret ?: count;
5466}
5467
5468static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5469 char *buf)
5470{
5471 struct workqueue_struct *wq = dev_to_wq(dev);
5472 int written;
7dbc725e 5473
6ba94429
FW
5474 mutex_lock(&wq->mutex);
5475 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5476 !wq->unbound_attrs->no_numa);
5477 mutex_unlock(&wq->mutex);
4c16bd32 5478
6ba94429 5479 return written;
65758202
TH
5480}
5481
6ba94429
FW
5482static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5483 const char *buf, size_t count)
65758202 5484{
6ba94429
FW
5485 struct workqueue_struct *wq = dev_to_wq(dev);
5486 struct workqueue_attrs *attrs;
d4d3e257
LJ
5487 int v, ret = -ENOMEM;
5488
5489 apply_wqattrs_lock();
4c16bd32 5490
6ba94429
FW
5491 attrs = wq_sysfs_prep_attrs(wq);
5492 if (!attrs)
d4d3e257 5493 goto out_unlock;
4c16bd32 5494
6ba94429
FW
5495 ret = -EINVAL;
5496 if (sscanf(buf, "%d", &v) == 1) {
5497 attrs->no_numa = !v;
d4d3e257 5498 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5499 }
6ba94429 5500
d4d3e257
LJ
5501out_unlock:
5502 apply_wqattrs_unlock();
6ba94429
FW
5503 free_workqueue_attrs(attrs);
5504 return ret ?: count;
65758202
TH
5505}
5506
6ba94429
FW
5507static struct device_attribute wq_sysfs_unbound_attrs[] = {
5508 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5509 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5510 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5511 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5512 __ATTR_NULL,
5513};
8ccad40d 5514
6ba94429
FW
5515static struct bus_type wq_subsys = {
5516 .name = "workqueue",
5517 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5518};
5519
b05a7928
FW
5520static ssize_t wq_unbound_cpumask_show(struct device *dev,
5521 struct device_attribute *attr, char *buf)
5522{
5523 int written;
5524
042f7df1 5525 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5526 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5527 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5528 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5529
5530 return written;
5531}
5532
042f7df1
LJ
5533static ssize_t wq_unbound_cpumask_store(struct device *dev,
5534 struct device_attribute *attr, const char *buf, size_t count)
5535{
5536 cpumask_var_t cpumask;
5537 int ret;
5538
5539 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5540 return -ENOMEM;
5541
5542 ret = cpumask_parse(buf, cpumask);
5543 if (!ret)
5544 ret = workqueue_set_unbound_cpumask(cpumask);
5545
5546 free_cpumask_var(cpumask);
5547 return ret ? ret : count;
5548}
5549
b05a7928 5550static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5551 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5552 wq_unbound_cpumask_store);
b05a7928 5553
6ba94429 5554static int __init wq_sysfs_init(void)
2d3854a3 5555{
b05a7928
FW
5556 int err;
5557
5558 err = subsys_virtual_register(&wq_subsys, NULL);
5559 if (err)
5560 return err;
5561
5562 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5563}
6ba94429 5564core_initcall(wq_sysfs_init);
2d3854a3 5565
6ba94429 5566static void wq_device_release(struct device *dev)
2d3854a3 5567{
6ba94429 5568 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5569
6ba94429 5570 kfree(wq_dev);
2d3854a3 5571}
a0a1a5fd
TH
5572
5573/**
6ba94429
FW
5574 * workqueue_sysfs_register - make a workqueue visible in sysfs
5575 * @wq: the workqueue to register
a0a1a5fd 5576 *
6ba94429
FW
5577 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5578 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5579 * which is the preferred method.
a0a1a5fd 5580 *
6ba94429
FW
5581 * Workqueue user should use this function directly iff it wants to apply
5582 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5583 * apply_workqueue_attrs() may race against userland updating the
5584 * attributes.
5585 *
5586 * Return: 0 on success, -errno on failure.
a0a1a5fd 5587 */
6ba94429 5588int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5589{
6ba94429
FW
5590 struct wq_device *wq_dev;
5591 int ret;
a0a1a5fd 5592
6ba94429 5593 /*
402dd89d 5594 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5595 * attributes breaks ordering guarantee. Disallow exposing ordered
5596 * workqueues.
5597 */
0a94efb5 5598 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5599 return -EINVAL;
a0a1a5fd 5600
6ba94429
FW
5601 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5602 if (!wq_dev)
5603 return -ENOMEM;
5bcab335 5604
6ba94429
FW
5605 wq_dev->wq = wq;
5606 wq_dev->dev.bus = &wq_subsys;
6ba94429 5607 wq_dev->dev.release = wq_device_release;
23217b44 5608 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5609
6ba94429
FW
5610 /*
5611 * unbound_attrs are created separately. Suppress uevent until
5612 * everything is ready.
5613 */
5614 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5615
6ba94429
FW
5616 ret = device_register(&wq_dev->dev);
5617 if (ret) {
537f4146 5618 put_device(&wq_dev->dev);
6ba94429
FW
5619 wq->wq_dev = NULL;
5620 return ret;
5621 }
a0a1a5fd 5622
6ba94429
FW
5623 if (wq->flags & WQ_UNBOUND) {
5624 struct device_attribute *attr;
a0a1a5fd 5625
6ba94429
FW
5626 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5627 ret = device_create_file(&wq_dev->dev, attr);
5628 if (ret) {
5629 device_unregister(&wq_dev->dev);
5630 wq->wq_dev = NULL;
5631 return ret;
a0a1a5fd
TH
5632 }
5633 }
5634 }
6ba94429
FW
5635
5636 dev_set_uevent_suppress(&wq_dev->dev, false);
5637 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5638 return 0;
a0a1a5fd
TH
5639}
5640
5641/**
6ba94429
FW
5642 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5643 * @wq: the workqueue to unregister
a0a1a5fd 5644 *
6ba94429 5645 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5646 */
6ba94429 5647static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5648{
6ba94429 5649 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5650
6ba94429
FW
5651 if (!wq->wq_dev)
5652 return;
a0a1a5fd 5653
6ba94429
FW
5654 wq->wq_dev = NULL;
5655 device_unregister(&wq_dev->dev);
a0a1a5fd 5656}
6ba94429
FW
5657#else /* CONFIG_SYSFS */
5658static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5659#endif /* CONFIG_SYSFS */
a0a1a5fd 5660
82607adc
TH
5661/*
5662 * Workqueue watchdog.
5663 *
5664 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5665 * flush dependency, a concurrency managed work item which stays RUNNING
5666 * indefinitely. Workqueue stalls can be very difficult to debug as the
5667 * usual warning mechanisms don't trigger and internal workqueue state is
5668 * largely opaque.
5669 *
5670 * Workqueue watchdog monitors all worker pools periodically and dumps
5671 * state if some pools failed to make forward progress for a while where
5672 * forward progress is defined as the first item on ->worklist changing.
5673 *
5674 * This mechanism is controlled through the kernel parameter
5675 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5676 * corresponding sysfs parameter file.
5677 */
5678#ifdef CONFIG_WQ_WATCHDOG
5679
82607adc 5680static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5681static struct timer_list wq_watchdog_timer;
82607adc
TH
5682
5683static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5684static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5685
5686static void wq_watchdog_reset_touched(void)
5687{
5688 int cpu;
5689
5690 wq_watchdog_touched = jiffies;
5691 for_each_possible_cpu(cpu)
5692 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5693}
5694
5cd79d6a 5695static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5696{
5697 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5698 bool lockup_detected = false;
5699 struct worker_pool *pool;
5700 int pi;
5701
5702 if (!thresh)
5703 return;
5704
5705 rcu_read_lock();
5706
5707 for_each_pool(pool, pi) {
5708 unsigned long pool_ts, touched, ts;
5709
5710 if (list_empty(&pool->worklist))
5711 continue;
5712
5713 /* get the latest of pool and touched timestamps */
5714 pool_ts = READ_ONCE(pool->watchdog_ts);
5715 touched = READ_ONCE(wq_watchdog_touched);
5716
5717 if (time_after(pool_ts, touched))
5718 ts = pool_ts;
5719 else
5720 ts = touched;
5721
5722 if (pool->cpu >= 0) {
5723 unsigned long cpu_touched =
5724 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5725 pool->cpu));
5726 if (time_after(cpu_touched, ts))
5727 ts = cpu_touched;
5728 }
5729
5730 /* did we stall? */
5731 if (time_after(jiffies, ts + thresh)) {
5732 lockup_detected = true;
5733 pr_emerg("BUG: workqueue lockup - pool");
5734 pr_cont_pool_info(pool);
5735 pr_cont(" stuck for %us!\n",
5736 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5737 }
5738 }
5739
5740 rcu_read_unlock();
5741
5742 if (lockup_detected)
5743 show_workqueue_state();
5744
5745 wq_watchdog_reset_touched();
5746 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5747}
5748
cb9d7fd5 5749notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5750{
5751 if (cpu >= 0)
5752 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5753 else
5754 wq_watchdog_touched = jiffies;
5755}
5756
5757static void wq_watchdog_set_thresh(unsigned long thresh)
5758{
5759 wq_watchdog_thresh = 0;
5760 del_timer_sync(&wq_watchdog_timer);
5761
5762 if (thresh) {
5763 wq_watchdog_thresh = thresh;
5764 wq_watchdog_reset_touched();
5765 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5766 }
5767}
5768
5769static int wq_watchdog_param_set_thresh(const char *val,
5770 const struct kernel_param *kp)
5771{
5772 unsigned long thresh;
5773 int ret;
5774
5775 ret = kstrtoul(val, 0, &thresh);
5776 if (ret)
5777 return ret;
5778
5779 if (system_wq)
5780 wq_watchdog_set_thresh(thresh);
5781 else
5782 wq_watchdog_thresh = thresh;
5783
5784 return 0;
5785}
5786
5787static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5788 .set = wq_watchdog_param_set_thresh,
5789 .get = param_get_ulong,
5790};
5791
5792module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5793 0644);
5794
5795static void wq_watchdog_init(void)
5796{
5cd79d6a 5797 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5798 wq_watchdog_set_thresh(wq_watchdog_thresh);
5799}
5800
5801#else /* CONFIG_WQ_WATCHDOG */
5802
5803static inline void wq_watchdog_init(void) { }
5804
5805#endif /* CONFIG_WQ_WATCHDOG */
5806
bce90380
TH
5807static void __init wq_numa_init(void)
5808{
5809 cpumask_var_t *tbl;
5810 int node, cpu;
5811
bce90380
TH
5812 if (num_possible_nodes() <= 1)
5813 return;
5814
d55262c4
TH
5815 if (wq_disable_numa) {
5816 pr_info("workqueue: NUMA affinity support disabled\n");
5817 return;
5818 }
5819
4c16bd32
TH
5820 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5821 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5822
bce90380
TH
5823 /*
5824 * We want masks of possible CPUs of each node which isn't readily
5825 * available. Build one from cpu_to_node() which should have been
5826 * fully initialized by now.
5827 */
6396bb22 5828 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5829 BUG_ON(!tbl);
5830
5831 for_each_node(node)
5a6024f1 5832 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5833 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5834
5835 for_each_possible_cpu(cpu) {
5836 node = cpu_to_node(cpu);
5837 if (WARN_ON(node == NUMA_NO_NODE)) {
5838 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5839 /* happens iff arch is bonkers, let's just proceed */
5840 return;
5841 }
5842 cpumask_set_cpu(cpu, tbl[node]);
5843 }
5844
5845 wq_numa_possible_cpumask = tbl;
5846 wq_numa_enabled = true;
5847}
5848
3347fa09
TH
5849/**
5850 * workqueue_init_early - early init for workqueue subsystem
5851 *
5852 * This is the first half of two-staged workqueue subsystem initialization
5853 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5854 * idr are up. It sets up all the data structures and system workqueues
5855 * and allows early boot code to create workqueues and queue/cancel work
5856 * items. Actual work item execution starts only after kthreads can be
5857 * created and scheduled right before early initcalls.
5858 */
5859int __init workqueue_init_early(void)
1da177e4 5860{
7a4e344c 5861 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5862 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5863 int i, cpu;
c34056a3 5864
e904e6c2
TH
5865 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5866
b05a7928 5867 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5868 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5869
e904e6c2
TH
5870 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5871
706026c2 5872 /* initialize CPU pools */
29c91e99 5873 for_each_possible_cpu(cpu) {
4ce62e9e 5874 struct worker_pool *pool;
8b03ae3c 5875
7a4e344c 5876 i = 0;
f02ae73a 5877 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5878 BUG_ON(init_worker_pool(pool));
ec22ca5e 5879 pool->cpu = cpu;
29c91e99 5880 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5881 pool->attrs->nice = std_nice[i++];
f3f90ad4 5882 pool->node = cpu_to_node(cpu);
7a4e344c 5883
9daf9e67 5884 /* alloc pool ID */
68e13a67 5885 mutex_lock(&wq_pool_mutex);
9daf9e67 5886 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5887 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5888 }
8b03ae3c
TH
5889 }
5890
8a2b7538 5891 /* create default unbound and ordered wq attrs */
29c91e99
TH
5892 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5893 struct workqueue_attrs *attrs;
5894
5895 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5896 attrs->nice = std_nice[i];
29c91e99 5897 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5898
5899 /*
5900 * An ordered wq should have only one pwq as ordering is
5901 * guaranteed by max_active which is enforced by pwqs.
5902 * Turn off NUMA so that dfl_pwq is used for all nodes.
5903 */
5904 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5905 attrs->nice = std_nice[i];
5906 attrs->no_numa = true;
5907 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5908 }
5909
d320c038 5910 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5911 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5912 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5913 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5914 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5915 system_freezable_wq = alloc_workqueue("events_freezable",
5916 WQ_FREEZABLE, 0);
0668106c
VK
5917 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5918 WQ_POWER_EFFICIENT, 0);
5919 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5920 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5921 0);
1aabe902 5922 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5923 !system_unbound_wq || !system_freezable_wq ||
5924 !system_power_efficient_wq ||
5925 !system_freezable_power_efficient_wq);
82607adc 5926
3347fa09
TH
5927 return 0;
5928}
5929
5930/**
5931 * workqueue_init - bring workqueue subsystem fully online
5932 *
5933 * This is the latter half of two-staged workqueue subsystem initialization
5934 * and invoked as soon as kthreads can be created and scheduled.
5935 * Workqueues have been created and work items queued on them, but there
5936 * are no kworkers executing the work items yet. Populate the worker pools
5937 * with the initial workers and enable future kworker creations.
5938 */
5939int __init workqueue_init(void)
5940{
2186d9f9 5941 struct workqueue_struct *wq;
3347fa09
TH
5942 struct worker_pool *pool;
5943 int cpu, bkt;
5944
2186d9f9
TH
5945 /*
5946 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5947 * CPU to node mapping may not be available that early on some
5948 * archs such as power and arm64. As per-cpu pools created
5949 * previously could be missing node hint and unbound pools NUMA
5950 * affinity, fix them up.
40c17f75
TH
5951 *
5952 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5953 */
5954 wq_numa_init();
5955
5956 mutex_lock(&wq_pool_mutex);
5957
5958 for_each_possible_cpu(cpu) {
5959 for_each_cpu_worker_pool(pool, cpu) {
5960 pool->node = cpu_to_node(cpu);
5961 }
5962 }
5963
40c17f75 5964 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5965 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5966 WARN(init_rescuer(wq),
5967 "workqueue: failed to create early rescuer for %s",
5968 wq->name);
5969 }
2186d9f9
TH
5970
5971 mutex_unlock(&wq_pool_mutex);
5972
3347fa09
TH
5973 /* create the initial workers */
5974 for_each_online_cpu(cpu) {
5975 for_each_cpu_worker_pool(pool, cpu) {
5976 pool->flags &= ~POOL_DISASSOCIATED;
5977 BUG_ON(!create_worker(pool));
5978 }
5979 }
5980
5981 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5982 BUG_ON(!create_worker(pool));
5983
5984 wq_online = true;
82607adc
TH
5985 wq_watchdog_init();
5986
6ee0578b 5987 return 0;
1da177e4 5988}