]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/bitmap.c
[PATCH] Remove needless checks in fs/9p/vfs_inode.c
[thirdparty/linux.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8#include <linux/module.h>
9#include <linux/ctype.h>
10#include <linux/errno.h>
11#include <linux/bitmap.h>
12#include <linux/bitops.h>
13#include <asm/uaccess.h>
14
15/*
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
19 * BITS_PER_LONG.
20 *
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
28 * results.
29 *
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
33 * in output bitmaps.
34 *
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
39 */
40
41int __bitmap_empty(const unsigned long *bitmap, int bits)
42{
43 int k, lim = bits/BITS_PER_LONG;
44 for (k = 0; k < lim; ++k)
45 if (bitmap[k])
46 return 0;
47
48 if (bits % BITS_PER_LONG)
49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 return 0;
51
52 return 1;
53}
54EXPORT_SYMBOL(__bitmap_empty);
55
56int __bitmap_full(const unsigned long *bitmap, int bits)
57{
58 int k, lim = bits/BITS_PER_LONG;
59 for (k = 0; k < lim; ++k)
60 if (~bitmap[k])
61 return 0;
62
63 if (bits % BITS_PER_LONG)
64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 return 0;
66
67 return 1;
68}
69EXPORT_SYMBOL(__bitmap_full);
70
71int __bitmap_equal(const unsigned long *bitmap1,
72 const unsigned long *bitmap2, int bits)
73{
74 int k, lim = bits/BITS_PER_LONG;
75 for (k = 0; k < lim; ++k)
76 if (bitmap1[k] != bitmap2[k])
77 return 0;
78
79 if (bits % BITS_PER_LONG)
80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 return 0;
82
83 return 1;
84}
85EXPORT_SYMBOL(__bitmap_equal);
86
87void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88{
89 int k, lim = bits/BITS_PER_LONG;
90 for (k = 0; k < lim; ++k)
91 dst[k] = ~src[k];
92
93 if (bits % BITS_PER_LONG)
94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95}
96EXPORT_SYMBOL(__bitmap_complement);
97
98/*
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 * @dst - destination bitmap
101 * @src - source bitmap
102 * @nbits - shift by this many bits
103 * @bits - bitmap size, in bits
104 *
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
108 */
109void __bitmap_shift_right(unsigned long *dst,
110 const unsigned long *src, int shift, int bits)
111{
112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 unsigned long mask = (1UL << left) - 1;
115 for (k = 0; off + k < lim; ++k) {
116 unsigned long upper, lower;
117
118 /*
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
121 */
122 if (!rem || off + k + 1 >= lim)
123 upper = 0;
124 else {
125 upper = src[off + k + 1];
126 if (off + k + 1 == lim - 1 && left)
127 upper &= mask;
128 }
129 lower = src[off + k];
130 if (left && off + k == lim - 1)
131 lower &= mask;
132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 if (left && k == lim - 1)
134 dst[k] &= mask;
135 }
136 if (off)
137 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138}
139EXPORT_SYMBOL(__bitmap_shift_right);
140
141
142/*
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 * @dst - destination bitmap
145 * @src - source bitmap
146 * @nbits - shift by this many bits
147 * @bits - bitmap size, in bits
148 *
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
152 */
153
154void __bitmap_shift_left(unsigned long *dst,
155 const unsigned long *src, int shift, int bits)
156{
157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 for (k = lim - off - 1; k >= 0; --k) {
160 unsigned long upper, lower;
161
162 /*
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
165 */
166 if (rem && k > 0)
167 lower = src[k - 1];
168 else
169 lower = 0;
170 upper = src[k];
171 if (left && k == lim - 1)
172 upper &= (1UL << left) - 1;
173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
174 if (left && k + off == lim - 1)
175 dst[k + off] &= (1UL << left) - 1;
176 }
177 if (off)
178 memset(dst, 0, off*sizeof(unsigned long));
179}
180EXPORT_SYMBOL(__bitmap_shift_left);
181
182void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 const unsigned long *bitmap2, int bits)
184{
185 int k;
186 int nr = BITS_TO_LONGS(bits);
187
188 for (k = 0; k < nr; k++)
189 dst[k] = bitmap1[k] & bitmap2[k];
190}
191EXPORT_SYMBOL(__bitmap_and);
192
193void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194 const unsigned long *bitmap2, int bits)
195{
196 int k;
197 int nr = BITS_TO_LONGS(bits);
198
199 for (k = 0; k < nr; k++)
200 dst[k] = bitmap1[k] | bitmap2[k];
201}
202EXPORT_SYMBOL(__bitmap_or);
203
204void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205 const unsigned long *bitmap2, int bits)
206{
207 int k;
208 int nr = BITS_TO_LONGS(bits);
209
210 for (k = 0; k < nr; k++)
211 dst[k] = bitmap1[k] ^ bitmap2[k];
212}
213EXPORT_SYMBOL(__bitmap_xor);
214
215void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216 const unsigned long *bitmap2, int bits)
217{
218 int k;
219 int nr = BITS_TO_LONGS(bits);
220
221 for (k = 0; k < nr; k++)
222 dst[k] = bitmap1[k] & ~bitmap2[k];
223}
224EXPORT_SYMBOL(__bitmap_andnot);
225
226int __bitmap_intersects(const unsigned long *bitmap1,
227 const unsigned long *bitmap2, int bits)
228{
229 int k, lim = bits/BITS_PER_LONG;
230 for (k = 0; k < lim; ++k)
231 if (bitmap1[k] & bitmap2[k])
232 return 1;
233
234 if (bits % BITS_PER_LONG)
235 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236 return 1;
237 return 0;
238}
239EXPORT_SYMBOL(__bitmap_intersects);
240
241int __bitmap_subset(const unsigned long *bitmap1,
242 const unsigned long *bitmap2, int bits)
243{
244 int k, lim = bits/BITS_PER_LONG;
245 for (k = 0; k < lim; ++k)
246 if (bitmap1[k] & ~bitmap2[k])
247 return 0;
248
249 if (bits % BITS_PER_LONG)
250 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251 return 0;
252 return 1;
253}
254EXPORT_SYMBOL(__bitmap_subset);
255
1da177e4
LT
256int __bitmap_weight(const unsigned long *bitmap, int bits)
257{
258 int k, w = 0, lim = bits/BITS_PER_LONG;
259
260 for (k = 0; k < lim; k++)
37d54111 261 w += hweight_long(bitmap[k]);
1da177e4
LT
262
263 if (bits % BITS_PER_LONG)
37d54111 264 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
265
266 return w;
267}
1da177e4
LT
268EXPORT_SYMBOL(__bitmap_weight);
269
270/*
271 * Bitmap printing & parsing functions: first version by Bill Irwin,
272 * second version by Paul Jackson, third by Joe Korty.
273 */
274
275#define CHUNKSZ 32
276#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
277#define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278#define BASEDEC 10 /* fancier cpuset lists input in decimal */
279
280/**
281 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282 * @buf: byte buffer into which string is placed
283 * @buflen: reserved size of @buf, in bytes
284 * @maskp: pointer to bitmap to convert
285 * @nmaskbits: size of bitmap, in bits
286 *
287 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
288 * comma-separated sets of eight digits per set.
289 */
290int bitmap_scnprintf(char *buf, unsigned int buflen,
291 const unsigned long *maskp, int nmaskbits)
292{
293 int i, word, bit, len = 0;
294 unsigned long val;
295 const char *sep = "";
296 int chunksz;
297 u32 chunkmask;
298
299 chunksz = nmaskbits & (CHUNKSZ - 1);
300 if (chunksz == 0)
301 chunksz = CHUNKSZ;
302
8c0e33c1 303 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
1da177e4
LT
304 for (; i >= 0; i -= CHUNKSZ) {
305 chunkmask = ((1ULL << chunksz) - 1);
306 word = i / BITS_PER_LONG;
307 bit = i % BITS_PER_LONG;
308 val = (maskp[word] >> bit) & chunkmask;
309 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310 (chunksz+3)/4, val);
311 chunksz = CHUNKSZ;
312 sep = ",";
313 }
314 return len;
315}
316EXPORT_SYMBOL(bitmap_scnprintf);
317
318/**
319 * bitmap_parse - convert an ASCII hex string into a bitmap.
320 * @buf: pointer to buffer in user space containing string.
321 * @buflen: buffer size in bytes. If string is smaller than this
322 * then it must be terminated with a \0.
323 * @maskp: pointer to bitmap array that will contain result.
324 * @nmaskbits: size of bitmap, in bits.
325 *
326 * Commas group hex digits into chunks. Each chunk defines exactly 32
327 * bits of the resultant bitmask. No chunk may specify a value larger
328 * than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value
329 * then leading 0-bits are prepended. -EINVAL is returned for illegal
330 * characters and for grouping errors such as "1,,5", ",44", "," and "".
331 * Leading and trailing whitespace accepted, but not embedded whitespace.
332 */
333int bitmap_parse(const char __user *ubuf, unsigned int ubuflen,
334 unsigned long *maskp, int nmaskbits)
335{
336 int c, old_c, totaldigits, ndigits, nchunks, nbits;
337 u32 chunk;
338
339 bitmap_zero(maskp, nmaskbits);
340
341 nchunks = nbits = totaldigits = c = 0;
342 do {
343 chunk = ndigits = 0;
344
345 /* Get the next chunk of the bitmap */
346 while (ubuflen) {
347 old_c = c;
348 if (get_user(c, ubuf++))
349 return -EFAULT;
350 ubuflen--;
351 if (isspace(c))
352 continue;
353
354 /*
355 * If the last character was a space and the current
356 * character isn't '\0', we've got embedded whitespace.
357 * This is a no-no, so throw an error.
358 */
359 if (totaldigits && c && isspace(old_c))
360 return -EINVAL;
361
362 /* A '\0' or a ',' signal the end of the chunk */
363 if (c == '\0' || c == ',')
364 break;
365
366 if (!isxdigit(c))
367 return -EINVAL;
368
369 /*
370 * Make sure there are at least 4 free bits in 'chunk'.
371 * If not, this hexdigit will overflow 'chunk', so
372 * throw an error.
373 */
374 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
375 return -EOVERFLOW;
376
377 chunk = (chunk << 4) | unhex(c);
378 ndigits++; totaldigits++;
379 }
380 if (ndigits == 0)
381 return -EINVAL;
382 if (nchunks == 0 && chunk == 0)
383 continue;
384
385 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
386 *maskp |= chunk;
387 nchunks++;
388 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
389 if (nbits > nmaskbits)
390 return -EOVERFLOW;
391 } while (ubuflen && c == ',');
392
393 return 0;
394}
395EXPORT_SYMBOL(bitmap_parse);
396
397/*
398 * bscnl_emit(buf, buflen, rbot, rtop, bp)
399 *
400 * Helper routine for bitmap_scnlistprintf(). Write decimal number
401 * or range to buf, suppressing output past buf+buflen, with optional
402 * comma-prefix. Return len of what would be written to buf, if it
403 * all fit.
404 */
405static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
406{
407 if (len > 0)
408 len += scnprintf(buf + len, buflen - len, ",");
409 if (rbot == rtop)
410 len += scnprintf(buf + len, buflen - len, "%d", rbot);
411 else
412 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
413 return len;
414}
415
416/**
417 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
418 * @buf: byte buffer into which string is placed
419 * @buflen: reserved size of @buf, in bytes
420 * @maskp: pointer to bitmap to convert
421 * @nmaskbits: size of bitmap, in bits
422 *
423 * Output format is a comma-separated list of decimal numbers and
424 * ranges. Consecutively set bits are shown as two hyphen-separated
425 * decimal numbers, the smallest and largest bit numbers set in
426 * the range. Output format is compatible with the format
427 * accepted as input by bitmap_parselist().
428 *
429 * The return value is the number of characters which would be
430 * generated for the given input, excluding the trailing '\0', as
431 * per ISO C99.
432 */
433int bitmap_scnlistprintf(char *buf, unsigned int buflen,
434 const unsigned long *maskp, int nmaskbits)
435{
436 int len = 0;
437 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
438 int cur, rbot, rtop;
439
440 rbot = cur = find_first_bit(maskp, nmaskbits);
441 while (cur < nmaskbits) {
442 rtop = cur;
443 cur = find_next_bit(maskp, nmaskbits, cur+1);
444 if (cur >= nmaskbits || cur > rtop + 1) {
445 len = bscnl_emit(buf, buflen, rbot, rtop, len);
446 rbot = cur;
447 }
448 }
449 return len;
450}
451EXPORT_SYMBOL(bitmap_scnlistprintf);
452
453/**
454 * bitmap_parselist - convert list format ASCII string to bitmap
455 * @buf: read nul-terminated user string from this buffer
456 * @mask: write resulting mask here
457 * @nmaskbits: number of bits in mask to be written
458 *
459 * Input format is a comma-separated list of decimal numbers and
460 * ranges. Consecutively set bits are shown as two hyphen-separated
461 * decimal numbers, the smallest and largest bit numbers set in
462 * the range.
463 *
464 * Returns 0 on success, -errno on invalid input strings:
465 * -EINVAL: second number in range smaller than first
466 * -EINVAL: invalid character in string
467 * -ERANGE: bit number specified too large for mask
468 */
469int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
470{
471 unsigned a, b;
472
473 bitmap_zero(maskp, nmaskbits);
474 do {
475 if (!isdigit(*bp))
476 return -EINVAL;
477 b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
478 if (*bp == '-') {
479 bp++;
480 if (!isdigit(*bp))
481 return -EINVAL;
482 b = simple_strtoul(bp, (char **)&bp, BASEDEC);
483 }
484 if (!(a <= b))
485 return -EINVAL;
486 if (b >= nmaskbits)
487 return -ERANGE;
488 while (a <= b) {
489 set_bit(a, maskp);
490 a++;
491 }
492 if (*bp == ',')
493 bp++;
494 } while (*bp != '\0' && *bp != '\n');
495 return 0;
496}
497EXPORT_SYMBOL(bitmap_parselist);
498
fb5eeeee
PJ
499/*
500 * bitmap_pos_to_ord(buf, pos, bits)
501 * @buf: pointer to a bitmap
502 * @pos: a bit position in @buf (0 <= @pos < @bits)
503 * @bits: number of valid bit positions in @buf
504 *
505 * Map the bit at position @pos in @buf (of length @bits) to the
506 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 507 * is not a valid bit position, map to -1.
fb5eeeee
PJ
508 *
509 * If for example, just bits 4 through 7 are set in @buf, then @pos
510 * values 4 through 7 will get mapped to 0 through 3, respectively,
511 * and other @pos values will get mapped to 0. When @pos value 7
512 * gets mapped to (returns) @ord value 3 in this example, that means
513 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
514 *
515 * The bit positions 0 through @bits are valid positions in @buf.
516 */
517static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
518{
96b7f341 519 int i, ord;
fb5eeeee 520
96b7f341
PJ
521 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
522 return -1;
fb5eeeee 523
96b7f341
PJ
524 i = find_first_bit(buf, bits);
525 ord = 0;
526 while (i < pos) {
527 i = find_next_bit(buf, bits, i + 1);
528 ord++;
fb5eeeee 529 }
96b7f341
PJ
530 BUG_ON(i != pos);
531
fb5eeeee
PJ
532 return ord;
533}
534
535/**
536 * bitmap_ord_to_pos(buf, ord, bits)
537 * @buf: pointer to bitmap
538 * @ord: ordinal bit position (n-th set bit, n >= 0)
539 * @bits: number of valid bit positions in @buf
540 *
541 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
96b7f341
PJ
542 * Value of @ord should be in range 0 <= @ord < weight(buf), else
543 * results are undefined.
fb5eeeee
PJ
544 *
545 * If for example, just bits 4 through 7 are set in @buf, then @ord
546 * values 0 through 3 will get mapped to 4 through 7, respectively,
96b7f341 547 * and all other @ord values return undefined values. When @ord value 3
fb5eeeee
PJ
548 * gets mapped to (returns) @pos value 7 in this example, that means
549 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
550 *
551 * The bit positions 0 through @bits are valid positions in @buf.
552 */
553static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
554{
555 int pos = 0;
556
557 if (ord >= 0 && ord < bits) {
558 int i;
559
560 for (i = find_first_bit(buf, bits);
561 i < bits && ord > 0;
562 i = find_next_bit(buf, bits, i + 1))
563 ord--;
564 if (i < bits && ord == 0)
565 pos = i;
566 }
567
568 return pos;
569}
570
571/**
572 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 573 * @dst: remapped result
96b7f341 574 * @src: subset to be remapped
fb5eeeee
PJ
575 * @old: defines domain of map
576 * @new: defines range of map
577 * @bits: number of bits in each of these bitmaps
578 *
579 * Let @old and @new define a mapping of bit positions, such that
580 * whatever position is held by the n-th set bit in @old is mapped
581 * to the n-th set bit in @new. In the more general case, allowing
582 * for the possibility that the weight 'w' of @new is less than the
583 * weight of @old, map the position of the n-th set bit in @old to
584 * the position of the m-th set bit in @new, where m == n % w.
585 *
96b7f341
PJ
586 * If either of the @old and @new bitmaps are empty, or if @src and
587 * @dst point to the same location, then this routine copies @src
588 * to @dst.
fb5eeeee 589 *
96b7f341
PJ
590 * The positions of unset bits in @old are mapped to themselves
591 * (the identify map).
fb5eeeee
PJ
592 *
593 * Apply the above specified mapping to @src, placing the result in
594 * @dst, clearing any bits previously set in @dst.
595 *
fb5eeeee
PJ
596 * For example, lets say that @old has bits 4 through 7 set, and
597 * @new has bits 12 through 15 set. This defines the mapping of bit
598 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
599 * bit positions unchanged. So if say @src comes into this routine
600 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
601 * 13 and 15 set.
fb5eeeee
PJ
602 */
603void bitmap_remap(unsigned long *dst, const unsigned long *src,
604 const unsigned long *old, const unsigned long *new,
605 int bits)
606{
96b7f341 607 int oldbit, w;
fb5eeeee 608
fb5eeeee
PJ
609 if (dst == src) /* following doesn't handle inplace remaps */
610 return;
fb5eeeee 611 bitmap_zero(dst, bits);
96b7f341
PJ
612
613 w = bitmap_weight(new, bits);
614 for (oldbit = find_first_bit(src, bits);
615 oldbit < bits;
616 oldbit = find_next_bit(src, bits, oldbit + 1)) {
617 int n = bitmap_pos_to_ord(old, oldbit, bits);
618 if (n < 0 || w == 0)
619 set_bit(oldbit, dst); /* identity map */
620 else
621 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
fb5eeeee
PJ
622 }
623}
624EXPORT_SYMBOL(bitmap_remap);
625
626/**
627 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
628 * @oldbit - bit position to be mapped
629 * @old: defines domain of map
630 * @new: defines range of map
631 * @bits: number of bits in each of these bitmaps
632 *
633 * Let @old and @new define a mapping of bit positions, such that
634 * whatever position is held by the n-th set bit in @old is mapped
635 * to the n-th set bit in @new. In the more general case, allowing
636 * for the possibility that the weight 'w' of @new is less than the
637 * weight of @old, map the position of the n-th set bit in @old to
638 * the position of the m-th set bit in @new, where m == n % w.
639 *
96b7f341
PJ
640 * The positions of unset bits in @old are mapped to themselves
641 * (the identify map).
fb5eeeee
PJ
642 *
643 * Apply the above specified mapping to bit position @oldbit, returning
644 * the new bit position.
645 *
646 * For example, lets say that @old has bits 4 through 7 set, and
647 * @new has bits 12 through 15 set. This defines the mapping of bit
648 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
649 * bit positions unchanged. So if say @oldbit is 5, then this routine
650 * returns 13.
fb5eeeee
PJ
651 */
652int bitmap_bitremap(int oldbit, const unsigned long *old,
653 const unsigned long *new, int bits)
654{
96b7f341
PJ
655 int w = bitmap_weight(new, bits);
656 int n = bitmap_pos_to_ord(old, oldbit, bits);
657 if (n < 0 || w == 0)
658 return oldbit;
659 else
660 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
661}
662EXPORT_SYMBOL(bitmap_bitremap);
663
3cf64b93
PJ
664/*
665 * Common code for bitmap_*_region() routines.
666 * bitmap: array of unsigned longs corresponding to the bitmap
667 * pos: the beginning of the region
668 * order: region size (log base 2 of number of bits)
669 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 670 *
3cf64b93
PJ
671 * Can set, verify and/or release a region of bits in a bitmap,
672 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 673 *
3cf64b93
PJ
674 * A region of a bitmap is a sequence of bits in the bitmap, of
675 * some size '1 << order' (a power of two), aligned to that same
676 * '1 << order' power of two.
677 *
678 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
679 * Returns 0 in all other cases and reg_ops.
1da177e4 680 */
3cf64b93
PJ
681
682enum {
683 REG_OP_ISFREE, /* true if region is all zero bits */
684 REG_OP_ALLOC, /* set all bits in region */
685 REG_OP_RELEASE, /* clear all bits in region */
686};
687
688static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1da177e4 689{
3cf64b93
PJ
690 int nbits_reg; /* number of bits in region */
691 int index; /* index first long of region in bitmap */
692 int offset; /* bit offset region in bitmap[index] */
693 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 694 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 695 unsigned long mask; /* bitmask for one long of region */
74373c6a 696 int i; /* scans bitmap by longs */
3cf64b93 697 int ret = 0; /* return value */
74373c6a 698
3cf64b93
PJ
699 /*
700 * Either nlongs_reg == 1 (for small orders that fit in one long)
701 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
702 */
703 nbits_reg = 1 << order;
704 index = pos / BITS_PER_LONG;
705 offset = pos - (index * BITS_PER_LONG);
706 nlongs_reg = BITS_TO_LONGS(nbits_reg);
707 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 708
3cf64b93
PJ
709 /*
710 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
711 * overflows if nbitsinlong == BITS_PER_LONG.
712 */
74373c6a 713 mask = (1UL << (nbitsinlong - 1));
1da177e4 714 mask += mask - 1;
3cf64b93 715 mask <<= offset;
1da177e4 716
3cf64b93
PJ
717 switch (reg_op) {
718 case REG_OP_ISFREE:
719 for (i = 0; i < nlongs_reg; i++) {
720 if (bitmap[index + i] & mask)
721 goto done;
722 }
723 ret = 1; /* all bits in region free (zero) */
724 break;
725
726 case REG_OP_ALLOC:
727 for (i = 0; i < nlongs_reg; i++)
728 bitmap[index + i] |= mask;
729 break;
730
731 case REG_OP_RELEASE:
732 for (i = 0; i < nlongs_reg; i++)
733 bitmap[index + i] &= ~mask;
734 break;
1da177e4 735 }
3cf64b93
PJ
736done:
737 return ret;
738}
739
740/**
741 * bitmap_find_free_region - find a contiguous aligned mem region
742 * @bitmap: array of unsigned longs corresponding to the bitmap
743 * @bits: number of bits in the bitmap
744 * @order: region size (log base 2 of number of bits) to find
745 *
746 * Find a region of free (zero) bits in a @bitmap of @bits bits and
747 * allocate them (set them to one). Only consider regions of length
748 * a power (@order) of two, aligned to that power of two, which
749 * makes the search algorithm much faster.
750 *
751 * Return the bit offset in bitmap of the allocated region,
752 * or -errno on failure.
753 */
754int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
755{
756 int pos; /* scans bitmap by regions of size order */
757
758 for (pos = 0; pos < bits; pos += (1 << order))
759 if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
760 break;
761 if (pos == bits)
762 return -ENOMEM;
763 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
764 return pos;
1da177e4
LT
765}
766EXPORT_SYMBOL(bitmap_find_free_region);
767
768/**
87e24802 769 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
770 * @bitmap: array of unsigned longs corresponding to the bitmap
771 * @pos: beginning of bit region to release
772 * @order: region size (log base 2 of number of bits) to release
1da177e4
LT
773 *
774 * This is the complement to __bitmap_find_free_region and releases
775 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
776 *
777 * No return value.
1da177e4
LT
778 */
779void bitmap_release_region(unsigned long *bitmap, int pos, int order)
780{
3cf64b93 781 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
782}
783EXPORT_SYMBOL(bitmap_release_region);
784
87e24802
PJ
785/**
786 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
787 * @bitmap: array of unsigned longs corresponding to the bitmap
788 * @pos: beginning of bit region to allocate
789 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
790 *
791 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 792 *
87e24802
PJ
793 * Return 0 on success, or -EBUSY if specified region wasn't
794 * free (not all bits were zero).
795 */
1da177e4
LT
796int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
797{
3cf64b93
PJ
798 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
799 return -EBUSY;
800 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
801 return 0;
802}
803EXPORT_SYMBOL(bitmap_allocate_region);