]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/huge_memory.c
Merge tag 'soundwire-5.3-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[thirdparty/linux.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
97ae1749 35
71e3aac0
AA
36#include <asm/tlb.h>
37#include <asm/pgalloc.h>
38#include "internal.h"
39
ba76149f 40/*
b14d595a
MD
41 * By default, transparent hugepage support is disabled in order to avoid
42 * risking an increased memory footprint for applications that are not
43 * guaranteed to benefit from it. When transparent hugepage support is
44 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
45 * Defrag is invoked by khugepaged hugepage allocations and by page faults
46 * for all hugepage allocations.
ba76149f 47 */
71e3aac0 48unsigned long transparent_hugepage_flags __read_mostly =
13ece886 49#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 50 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
51#endif
52#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54#endif
444eb2a4 55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 58
9a982250 59static struct shrinker deferred_split_shrinker;
f000565a 60
97ae1749 61static atomic_t huge_zero_refcount;
56873f43 62struct page *huge_zero_page __read_mostly;
4a6c1297 63
7635d9cb
MH
64bool transparent_hugepage_enabled(struct vm_area_struct *vma)
65{
c0630669
YS
66 /* The addr is used to check if the vma size fits */
67 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
68
69 if (!transhuge_vma_suitable(vma, addr))
70 return false;
7635d9cb
MH
71 if (vma_is_anonymous(vma))
72 return __transparent_hugepage_enabled(vma);
c0630669
YS
73 if (vma_is_shmem(vma))
74 return shmem_huge_enabled(vma);
7635d9cb
MH
75
76 return false;
77}
78
6fcb52a5 79static struct page *get_huge_zero_page(void)
97ae1749
KS
80{
81 struct page *zero_page;
82retry:
83 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 84 return READ_ONCE(huge_zero_page);
97ae1749
KS
85
86 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 87 HPAGE_PMD_ORDER);
d8a8e1f0
KS
88 if (!zero_page) {
89 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 90 return NULL;
d8a8e1f0
KS
91 }
92 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 93 preempt_disable();
5918d10a 94 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 95 preempt_enable();
5ddacbe9 96 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
97 goto retry;
98 }
99
100 /* We take additional reference here. It will be put back by shrinker */
101 atomic_set(&huge_zero_refcount, 2);
102 preempt_enable();
4db0c3c2 103 return READ_ONCE(huge_zero_page);
4a6c1297
KS
104}
105
6fcb52a5 106static void put_huge_zero_page(void)
4a6c1297 107{
97ae1749
KS
108 /*
109 * Counter should never go to zero here. Only shrinker can put
110 * last reference.
111 */
112 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
113}
114
6fcb52a5
AL
115struct page *mm_get_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 return READ_ONCE(huge_zero_page);
119
120 if (!get_huge_zero_page())
121 return NULL;
122
123 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
124 put_huge_zero_page();
125
126 return READ_ONCE(huge_zero_page);
127}
128
129void mm_put_huge_zero_page(struct mm_struct *mm)
130{
131 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 put_huge_zero_page();
133}
134
48896466
GC
135static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
136 struct shrink_control *sc)
4a6c1297 137{
48896466
GC
138 /* we can free zero page only if last reference remains */
139 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
140}
97ae1749 141
48896466
GC
142static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
143 struct shrink_control *sc)
144{
97ae1749 145 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
146 struct page *zero_page = xchg(&huge_zero_page, NULL);
147 BUG_ON(zero_page == NULL);
5ddacbe9 148 __free_pages(zero_page, compound_order(zero_page));
48896466 149 return HPAGE_PMD_NR;
97ae1749
KS
150 }
151
152 return 0;
4a6c1297
KS
153}
154
97ae1749 155static struct shrinker huge_zero_page_shrinker = {
48896466
GC
156 .count_objects = shrink_huge_zero_page_count,
157 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
158 .seeks = DEFAULT_SEEKS,
159};
160
71e3aac0 161#ifdef CONFIG_SYSFS
71e3aac0
AA
162static ssize_t enabled_show(struct kobject *kobj,
163 struct kobj_attribute *attr, char *buf)
164{
444eb2a4
MG
165 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
166 return sprintf(buf, "[always] madvise never\n");
167 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
168 return sprintf(buf, "always [madvise] never\n");
169 else
170 return sprintf(buf, "always madvise [never]\n");
71e3aac0 171}
444eb2a4 172
71e3aac0
AA
173static ssize_t enabled_store(struct kobject *kobj,
174 struct kobj_attribute *attr,
175 const char *buf, size_t count)
176{
21440d7e 177 ssize_t ret = count;
ba76149f 178
21440d7e
DR
179 if (!memcmp("always", buf,
180 min(sizeof("always")-1, count))) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (!memcmp("madvise", buf,
184 min(sizeof("madvise")-1, count))) {
185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 } else if (!memcmp("never", buf,
188 min(sizeof("never")-1, count))) {
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 } else
192 ret = -EINVAL;
ba76149f
AA
193
194 if (ret > 0) {
b46e756f 195 int err = start_stop_khugepaged();
ba76149f
AA
196 if (err)
197 ret = err;
198 }
ba76149f 199 return ret;
71e3aac0
AA
200}
201static struct kobj_attribute enabled_attr =
202 __ATTR(enabled, 0644, enabled_show, enabled_store);
203
b46e756f 204ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
205 struct kobj_attribute *attr, char *buf,
206 enum transparent_hugepage_flag flag)
207{
e27e6151
BH
208 return sprintf(buf, "%d\n",
209 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 210}
e27e6151 211
b46e756f 212ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
213 struct kobj_attribute *attr,
214 const char *buf, size_t count,
215 enum transparent_hugepage_flag flag)
216{
e27e6151
BH
217 unsigned long value;
218 int ret;
219
220 ret = kstrtoul(buf, 10, &value);
221 if (ret < 0)
222 return ret;
223 if (value > 1)
224 return -EINVAL;
225
226 if (value)
71e3aac0 227 set_bit(flag, &transparent_hugepage_flags);
e27e6151 228 else
71e3aac0 229 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
230
231 return count;
232}
233
71e3aac0
AA
234static ssize_t defrag_show(struct kobject *kobj,
235 struct kobj_attribute *attr, char *buf)
236{
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 238 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
240 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
243 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
244 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
245 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 246}
21440d7e 247
71e3aac0
AA
248static ssize_t defrag_store(struct kobject *kobj,
249 struct kobj_attribute *attr,
250 const char *buf, size_t count)
251{
21440d7e
DR
252 if (!memcmp("always", buf,
253 min(sizeof("always")-1, count))) {
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
258 } else if (!memcmp("defer+madvise", buf,
259 min(sizeof("defer+madvise")-1, count))) {
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
264 } else if (!memcmp("defer", buf,
265 min(sizeof("defer")-1, count))) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
270 } else if (!memcmp("madvise", buf,
271 min(sizeof("madvise")-1, count))) {
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 } else if (!memcmp("never", buf,
277 min(sizeof("never")-1, count))) {
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 } else
283 return -EINVAL;
284
285 return count;
71e3aac0
AA
286}
287static struct kobj_attribute defrag_attr =
288 __ATTR(defrag, 0644, defrag_show, defrag_store);
289
79da5407
KS
290static ssize_t use_zero_page_show(struct kobject *kobj,
291 struct kobj_attribute *attr, char *buf)
292{
b46e756f 293 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
294 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
295}
296static ssize_t use_zero_page_store(struct kobject *kobj,
297 struct kobj_attribute *attr, const char *buf, size_t count)
298{
b46e756f 299 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
300 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
301}
302static struct kobj_attribute use_zero_page_attr =
303 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
304
305static ssize_t hpage_pmd_size_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
307{
308 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
309}
310static struct kobj_attribute hpage_pmd_size_attr =
311 __ATTR_RO(hpage_pmd_size);
312
71e3aac0
AA
313#ifdef CONFIG_DEBUG_VM
314static ssize_t debug_cow_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf)
316{
b46e756f 317 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static ssize_t debug_cow_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count)
323{
b46e756f 324 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
325 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
326}
327static struct kobj_attribute debug_cow_attr =
328 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
329#endif /* CONFIG_DEBUG_VM */
330
331static struct attribute *hugepage_attr[] = {
332 &enabled_attr.attr,
333 &defrag_attr.attr,
79da5407 334 &use_zero_page_attr.attr,
49920d28 335 &hpage_pmd_size_attr.attr,
e496cf3d 336#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
337 &shmem_enabled_attr.attr,
338#endif
71e3aac0
AA
339#ifdef CONFIG_DEBUG_VM
340 &debug_cow_attr.attr,
341#endif
342 NULL,
343};
344
8aa95a21 345static const struct attribute_group hugepage_attr_group = {
71e3aac0 346 .attrs = hugepage_attr,
ba76149f
AA
347};
348
569e5590 349static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 350{
71e3aac0
AA
351 int err;
352
569e5590
SL
353 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 355 pr_err("failed to create transparent hugepage kobject\n");
569e5590 356 return -ENOMEM;
ba76149f
AA
357 }
358
569e5590 359 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 360 if (err) {
ae3a8c1c 361 pr_err("failed to register transparent hugepage group\n");
569e5590 362 goto delete_obj;
ba76149f
AA
363 }
364
569e5590 365 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 366 if (err) {
ae3a8c1c 367 pr_err("failed to register transparent hugepage group\n");
569e5590 368 goto remove_hp_group;
ba76149f 369 }
569e5590
SL
370
371 return 0;
372
373remove_hp_group:
374 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
375delete_obj:
376 kobject_put(*hugepage_kobj);
377 return err;
378}
379
380static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381{
382 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 kobject_put(hugepage_kobj);
385}
386#else
387static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
388{
389 return 0;
390}
391
392static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
393{
394}
395#endif /* CONFIG_SYSFS */
396
397static int __init hugepage_init(void)
398{
399 int err;
400 struct kobject *hugepage_kobj;
401
402 if (!has_transparent_hugepage()) {
403 transparent_hugepage_flags = 0;
404 return -EINVAL;
405 }
406
ff20c2e0
KS
407 /*
408 * hugepages can't be allocated by the buddy allocator
409 */
410 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
411 /*
412 * we use page->mapping and page->index in second tail page
413 * as list_head: assuming THP order >= 2
414 */
415 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
416
569e5590
SL
417 err = hugepage_init_sysfs(&hugepage_kobj);
418 if (err)
65ebb64f 419 goto err_sysfs;
ba76149f 420
b46e756f 421 err = khugepaged_init();
ba76149f 422 if (err)
65ebb64f 423 goto err_slab;
ba76149f 424
65ebb64f
KS
425 err = register_shrinker(&huge_zero_page_shrinker);
426 if (err)
427 goto err_hzp_shrinker;
9a982250
KS
428 err = register_shrinker(&deferred_split_shrinker);
429 if (err)
430 goto err_split_shrinker;
97ae1749 431
97562cd2
RR
432 /*
433 * By default disable transparent hugepages on smaller systems,
434 * where the extra memory used could hurt more than TLB overhead
435 * is likely to save. The admin can still enable it through /sys.
436 */
ca79b0c2 437 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 438 transparent_hugepage_flags = 0;
79553da2
KS
439 return 0;
440 }
97562cd2 441
79553da2 442 err = start_stop_khugepaged();
65ebb64f
KS
443 if (err)
444 goto err_khugepaged;
ba76149f 445
569e5590 446 return 0;
65ebb64f 447err_khugepaged:
9a982250
KS
448 unregister_shrinker(&deferred_split_shrinker);
449err_split_shrinker:
65ebb64f
KS
450 unregister_shrinker(&huge_zero_page_shrinker);
451err_hzp_shrinker:
b46e756f 452 khugepaged_destroy();
65ebb64f 453err_slab:
569e5590 454 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 455err_sysfs:
ba76149f 456 return err;
71e3aac0 457}
a64fb3cd 458subsys_initcall(hugepage_init);
71e3aac0
AA
459
460static int __init setup_transparent_hugepage(char *str)
461{
462 int ret = 0;
463 if (!str)
464 goto out;
465 if (!strcmp(str, "always")) {
466 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 &transparent_hugepage_flags);
468 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 &transparent_hugepage_flags);
470 ret = 1;
471 } else if (!strcmp(str, "madvise")) {
472 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 &transparent_hugepage_flags);
474 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 &transparent_hugepage_flags);
476 ret = 1;
477 } else if (!strcmp(str, "never")) {
478 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
479 &transparent_hugepage_flags);
480 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481 &transparent_hugepage_flags);
482 ret = 1;
483 }
484out:
485 if (!ret)
ae3a8c1c 486 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
487 return ret;
488}
489__setup("transparent_hugepage=", setup_transparent_hugepage);
490
f55e1014 491pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 492{
f55e1014 493 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
494 pmd = pmd_mkwrite(pmd);
495 return pmd;
496}
497
9a982250
KS
498static inline struct list_head *page_deferred_list(struct page *page)
499{
fa3015b7
MW
500 /* ->lru in the tail pages is occupied by compound_head. */
501 return &page[2].deferred_list;
9a982250
KS
502}
503
504void prep_transhuge_page(struct page *page)
505{
506 /*
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
509 */
9a982250
KS
510
511 INIT_LIST_HEAD(page_deferred_list(page));
512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513}
514
b3b07077 515static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
74d2fad1
TK
516 loff_t off, unsigned long flags, unsigned long size)
517{
518 unsigned long addr;
519 loff_t off_end = off + len;
520 loff_t off_align = round_up(off, size);
521 unsigned long len_pad;
522
523 if (off_end <= off_align || (off_end - off_align) < size)
524 return 0;
525
526 len_pad = len + size;
527 if (len_pad < len || (off + len_pad) < off)
528 return 0;
529
530 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
531 off >> PAGE_SHIFT, flags);
532 if (IS_ERR_VALUE(addr))
533 return 0;
534
535 addr += (off - addr) & (size - 1);
536 return addr;
537}
538
539unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
540 unsigned long len, unsigned long pgoff, unsigned long flags)
541{
542 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
543
544 if (addr)
545 goto out;
546 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
547 goto out;
548
549 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
550 if (addr)
551 return addr;
552
553 out:
554 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
555}
556EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
557
2b740303
SJ
558static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
559 struct page *page, gfp_t gfp)
71e3aac0 560{
82b0f8c3 561 struct vm_area_struct *vma = vmf->vma;
00501b53 562 struct mem_cgroup *memcg;
71e3aac0 563 pgtable_t pgtable;
82b0f8c3 564 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 565 vm_fault_t ret = 0;
71e3aac0 566
309381fe 567 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 568
2cf85583 569 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
570 put_page(page);
571 count_vm_event(THP_FAULT_FALLBACK);
572 return VM_FAULT_FALLBACK;
573 }
00501b53 574
4cf58924 575 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 576 if (unlikely(!pgtable)) {
6b31d595
MH
577 ret = VM_FAULT_OOM;
578 goto release;
00501b53 579 }
71e3aac0 580
c79b57e4 581 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
582 /*
583 * The memory barrier inside __SetPageUptodate makes sure that
584 * clear_huge_page writes become visible before the set_pmd_at()
585 * write.
586 */
71e3aac0
AA
587 __SetPageUptodate(page);
588
82b0f8c3
JK
589 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
590 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 591 goto unlock_release;
71e3aac0
AA
592 } else {
593 pmd_t entry;
6b251fc9 594
6b31d595
MH
595 ret = check_stable_address_space(vma->vm_mm);
596 if (ret)
597 goto unlock_release;
598
6b251fc9
AA
599 /* Deliver the page fault to userland */
600 if (userfaultfd_missing(vma)) {
2b740303 601 vm_fault_t ret2;
6b251fc9 602
82b0f8c3 603 spin_unlock(vmf->ptl);
f627c2f5 604 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 605 put_page(page);
bae473a4 606 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
607 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
608 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
609 return ret2;
6b251fc9
AA
610 }
611
3122359a 612 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 613 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 614 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 615 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 616 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
617 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
618 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 619 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 620 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 621 spin_unlock(vmf->ptl);
6b251fc9 622 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 623 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
624 }
625
aa2e878e 626 return 0;
6b31d595
MH
627unlock_release:
628 spin_unlock(vmf->ptl);
629release:
630 if (pgtable)
631 pte_free(vma->vm_mm, pgtable);
632 mem_cgroup_cancel_charge(page, memcg, true);
633 put_page(page);
634 return ret;
635
71e3aac0
AA
636}
637
444eb2a4 638/*
21440d7e
DR
639 * always: directly stall for all thp allocations
640 * defer: wake kswapd and fail if not immediately available
641 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642 * fail if not immediately available
643 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
644 * available
645 * never: never stall for any thp allocation
444eb2a4 646 */
356ff8a9 647static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 648{
21440d7e 649 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 650
2f0799a0 651 /* Always do synchronous compaction */
21440d7e 652 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
356ff8a9 653 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
654
655 /* Kick kcompactd and fail quickly */
21440d7e 656 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
356ff8a9 657 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
658
659 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 660 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
661 return GFP_TRANSHUGE_LIGHT |
662 (vma_madvised ? __GFP_DIRECT_RECLAIM :
663 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
664
665 /* Only do synchronous compaction if madvised */
21440d7e 666 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
667 return GFP_TRANSHUGE_LIGHT |
668 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 669
356ff8a9 670 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
671}
672
c4088ebd 673/* Caller must hold page table lock. */
d295e341 674static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 675 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 676 struct page *zero_page)
fc9fe822
KS
677{
678 pmd_t entry;
7c414164
AM
679 if (!pmd_none(*pmd))
680 return false;
5918d10a 681 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 682 entry = pmd_mkhuge(entry);
12c9d70b
MW
683 if (pgtable)
684 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 685 set_pmd_at(mm, haddr, pmd, entry);
c4812909 686 mm_inc_nr_ptes(mm);
7c414164 687 return true;
fc9fe822
KS
688}
689
2b740303 690vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 691{
82b0f8c3 692 struct vm_area_struct *vma = vmf->vma;
077fcf11 693 gfp_t gfp;
71e3aac0 694 struct page *page;
82b0f8c3 695 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 696
43675e6f 697 if (!transhuge_vma_suitable(vma, haddr))
c0292554 698 return VM_FAULT_FALLBACK;
128ec037
KS
699 if (unlikely(anon_vma_prepare(vma)))
700 return VM_FAULT_OOM;
6d50e60c 701 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 702 return VM_FAULT_OOM;
82b0f8c3 703 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 704 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
705 transparent_hugepage_use_zero_page()) {
706 pgtable_t pgtable;
707 struct page *zero_page;
708 bool set;
2b740303 709 vm_fault_t ret;
4cf58924 710 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 711 if (unlikely(!pgtable))
ba76149f 712 return VM_FAULT_OOM;
6fcb52a5 713 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 714 if (unlikely(!zero_page)) {
bae473a4 715 pte_free(vma->vm_mm, pgtable);
81ab4201 716 count_vm_event(THP_FAULT_FALLBACK);
c0292554 717 return VM_FAULT_FALLBACK;
b9bbfbe3 718 }
82b0f8c3 719 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
720 ret = 0;
721 set = false;
82b0f8c3 722 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
723 ret = check_stable_address_space(vma->vm_mm);
724 if (ret) {
725 spin_unlock(vmf->ptl);
726 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
727 spin_unlock(vmf->ptl);
728 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
729 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
730 } else {
bae473a4 731 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
732 haddr, vmf->pmd, zero_page);
733 spin_unlock(vmf->ptl);
6b251fc9
AA
734 set = true;
735 }
736 } else
82b0f8c3 737 spin_unlock(vmf->ptl);
6fcb52a5 738 if (!set)
bae473a4 739 pte_free(vma->vm_mm, pgtable);
6b251fc9 740 return ret;
71e3aac0 741 }
356ff8a9
DR
742 gfp = alloc_hugepage_direct_gfpmask(vma);
743 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
744 if (unlikely(!page)) {
745 count_vm_event(THP_FAULT_FALLBACK);
c0292554 746 return VM_FAULT_FALLBACK;
128ec037 747 }
9a982250 748 prep_transhuge_page(page);
82b0f8c3 749 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
750}
751
ae18d6dc 752static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
753 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
754 pgtable_t pgtable)
5cad465d
MW
755{
756 struct mm_struct *mm = vma->vm_mm;
757 pmd_t entry;
758 spinlock_t *ptl;
759
760 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
761 if (!pmd_none(*pmd)) {
762 if (write) {
763 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
764 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
765 goto out_unlock;
766 }
767 entry = pmd_mkyoung(*pmd);
768 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
769 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
770 update_mmu_cache_pmd(vma, addr, pmd);
771 }
772
773 goto out_unlock;
774 }
775
f25748e3
DW
776 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
777 if (pfn_t_devmap(pfn))
778 entry = pmd_mkdevmap(entry);
01871e59 779 if (write) {
f55e1014
LT
780 entry = pmd_mkyoung(pmd_mkdirty(entry));
781 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 782 }
3b6521f5
OH
783
784 if (pgtable) {
785 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 786 mm_inc_nr_ptes(mm);
c6f3c5ee 787 pgtable = NULL;
3b6521f5
OH
788 }
789
01871e59
RZ
790 set_pmd_at(mm, addr, pmd, entry);
791 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
792
793out_unlock:
5cad465d 794 spin_unlock(ptl);
c6f3c5ee
AK
795 if (pgtable)
796 pte_free(mm, pgtable);
5cad465d
MW
797}
798
fce86ff5 799vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 800{
fce86ff5
DW
801 unsigned long addr = vmf->address & PMD_MASK;
802 struct vm_area_struct *vma = vmf->vma;
5cad465d 803 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 804 pgtable_t pgtable = NULL;
fce86ff5 805
5cad465d
MW
806 /*
807 * If we had pmd_special, we could avoid all these restrictions,
808 * but we need to be consistent with PTEs and architectures that
809 * can't support a 'special' bit.
810 */
e1fb4a08
DJ
811 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
812 !pfn_t_devmap(pfn));
5cad465d
MW
813 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
814 (VM_PFNMAP|VM_MIXEDMAP));
815 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
816
817 if (addr < vma->vm_start || addr >= vma->vm_end)
818 return VM_FAULT_SIGBUS;
308a047c 819
3b6521f5 820 if (arch_needs_pgtable_deposit()) {
4cf58924 821 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
822 if (!pgtable)
823 return VM_FAULT_OOM;
824 }
825
308a047c
BP
826 track_pfn_insert(vma, &pgprot, pfn);
827
fce86ff5 828 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 829 return VM_FAULT_NOPAGE;
5cad465d 830}
dee41079 831EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 832
a00cc7d9 833#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 834static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 835{
f55e1014 836 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
837 pud = pud_mkwrite(pud);
838 return pud;
839}
840
841static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
842 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
843{
844 struct mm_struct *mm = vma->vm_mm;
845 pud_t entry;
846 spinlock_t *ptl;
847
848 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
849 if (!pud_none(*pud)) {
850 if (write) {
851 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
853 goto out_unlock;
854 }
855 entry = pud_mkyoung(*pud);
856 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
857 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
858 update_mmu_cache_pud(vma, addr, pud);
859 }
860 goto out_unlock;
861 }
862
a00cc7d9
MW
863 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
864 if (pfn_t_devmap(pfn))
865 entry = pud_mkdevmap(entry);
866 if (write) {
f55e1014
LT
867 entry = pud_mkyoung(pud_mkdirty(entry));
868 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
869 }
870 set_pud_at(mm, addr, pud, entry);
871 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
872
873out_unlock:
a00cc7d9
MW
874 spin_unlock(ptl);
875}
876
fce86ff5 877vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 878{
fce86ff5
DW
879 unsigned long addr = vmf->address & PUD_MASK;
880 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 881 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 882
a00cc7d9
MW
883 /*
884 * If we had pud_special, we could avoid all these restrictions,
885 * but we need to be consistent with PTEs and architectures that
886 * can't support a 'special' bit.
887 */
62ec0d8c
DJ
888 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
889 !pfn_t_devmap(pfn));
a00cc7d9
MW
890 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
891 (VM_PFNMAP|VM_MIXEDMAP));
892 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
893
894 if (addr < vma->vm_start || addr >= vma->vm_end)
895 return VM_FAULT_SIGBUS;
896
897 track_pfn_insert(vma, &pgprot, pfn);
898
fce86ff5 899 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
900 return VM_FAULT_NOPAGE;
901}
902EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
903#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
904
3565fce3 905static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 906 pmd_t *pmd, int flags)
3565fce3
DW
907{
908 pmd_t _pmd;
909
a8f97366
KS
910 _pmd = pmd_mkyoung(*pmd);
911 if (flags & FOLL_WRITE)
912 _pmd = pmd_mkdirty(_pmd);
3565fce3 913 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 914 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
915 update_mmu_cache_pmd(vma, addr, pmd);
916}
917
918struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 919 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
920{
921 unsigned long pfn = pmd_pfn(*pmd);
922 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
923 struct page *page;
924
925 assert_spin_locked(pmd_lockptr(mm, pmd));
926
8310d48b
KF
927 /*
928 * When we COW a devmap PMD entry, we split it into PTEs, so we should
929 * not be in this function with `flags & FOLL_COW` set.
930 */
931 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
932
f6f37321 933 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
934 return NULL;
935
936 if (pmd_present(*pmd) && pmd_devmap(*pmd))
937 /* pass */;
938 else
939 return NULL;
940
941 if (flags & FOLL_TOUCH)
a8f97366 942 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
943
944 /*
945 * device mapped pages can only be returned if the
946 * caller will manage the page reference count.
947 */
948 if (!(flags & FOLL_GET))
949 return ERR_PTR(-EEXIST);
950
951 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
952 *pgmap = get_dev_pagemap(pfn, *pgmap);
953 if (!*pgmap)
3565fce3
DW
954 return ERR_PTR(-EFAULT);
955 page = pfn_to_page(pfn);
956 get_page(page);
3565fce3
DW
957
958 return page;
959}
960
71e3aac0
AA
961int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
962 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
963 struct vm_area_struct *vma)
964{
c4088ebd 965 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
966 struct page *src_page;
967 pmd_t pmd;
12c9d70b 968 pgtable_t pgtable = NULL;
628d47ce 969 int ret = -ENOMEM;
71e3aac0 970
628d47ce
KS
971 /* Skip if can be re-fill on fault */
972 if (!vma_is_anonymous(vma))
973 return 0;
974
4cf58924 975 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
976 if (unlikely(!pgtable))
977 goto out;
71e3aac0 978
c4088ebd
KS
979 dst_ptl = pmd_lock(dst_mm, dst_pmd);
980 src_ptl = pmd_lockptr(src_mm, src_pmd);
981 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
982
983 ret = -EAGAIN;
984 pmd = *src_pmd;
84c3fc4e
ZY
985
986#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
987 if (unlikely(is_swap_pmd(pmd))) {
988 swp_entry_t entry = pmd_to_swp_entry(pmd);
989
990 VM_BUG_ON(!is_pmd_migration_entry(pmd));
991 if (is_write_migration_entry(entry)) {
992 make_migration_entry_read(&entry);
993 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
994 if (pmd_swp_soft_dirty(*src_pmd))
995 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
996 set_pmd_at(src_mm, addr, src_pmd, pmd);
997 }
dd8a67f9 998 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 999 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1000 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1001 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1002 ret = 0;
1003 goto out_unlock;
1004 }
1005#endif
1006
628d47ce 1007 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1008 pte_free(dst_mm, pgtable);
1009 goto out_unlock;
1010 }
fc9fe822 1011 /*
c4088ebd 1012 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1013 * under splitting since we don't split the page itself, only pmd to
1014 * a page table.
1015 */
1016 if (is_huge_zero_pmd(pmd)) {
5918d10a 1017 struct page *zero_page;
97ae1749
KS
1018 /*
1019 * get_huge_zero_page() will never allocate a new page here,
1020 * since we already have a zero page to copy. It just takes a
1021 * reference.
1022 */
6fcb52a5 1023 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1024 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1025 zero_page);
fc9fe822
KS
1026 ret = 0;
1027 goto out_unlock;
1028 }
de466bd6 1029
628d47ce
KS
1030 src_page = pmd_page(pmd);
1031 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1032 get_page(src_page);
1033 page_dup_rmap(src_page, true);
1034 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1035 mm_inc_nr_ptes(dst_mm);
628d47ce 1036 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1037
1038 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1039 pmd = pmd_mkold(pmd_wrprotect(pmd));
1040 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1041
1042 ret = 0;
1043out_unlock:
c4088ebd
KS
1044 spin_unlock(src_ptl);
1045 spin_unlock(dst_ptl);
71e3aac0
AA
1046out:
1047 return ret;
1048}
1049
a00cc7d9
MW
1050#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1051static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1052 pud_t *pud, int flags)
a00cc7d9
MW
1053{
1054 pud_t _pud;
1055
a8f97366
KS
1056 _pud = pud_mkyoung(*pud);
1057 if (flags & FOLL_WRITE)
1058 _pud = pud_mkdirty(_pud);
a00cc7d9 1059 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1060 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1061 update_mmu_cache_pud(vma, addr, pud);
1062}
1063
1064struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1065 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1066{
1067 unsigned long pfn = pud_pfn(*pud);
1068 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1069 struct page *page;
1070
1071 assert_spin_locked(pud_lockptr(mm, pud));
1072
f6f37321 1073 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1074 return NULL;
1075
1076 if (pud_present(*pud) && pud_devmap(*pud))
1077 /* pass */;
1078 else
1079 return NULL;
1080
1081 if (flags & FOLL_TOUCH)
a8f97366 1082 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1083
1084 /*
1085 * device mapped pages can only be returned if the
1086 * caller will manage the page reference count.
1087 */
1088 if (!(flags & FOLL_GET))
1089 return ERR_PTR(-EEXIST);
1090
1091 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1092 *pgmap = get_dev_pagemap(pfn, *pgmap);
1093 if (!*pgmap)
a00cc7d9
MW
1094 return ERR_PTR(-EFAULT);
1095 page = pfn_to_page(pfn);
1096 get_page(page);
a00cc7d9
MW
1097
1098 return page;
1099}
1100
1101int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1103 struct vm_area_struct *vma)
1104{
1105 spinlock_t *dst_ptl, *src_ptl;
1106 pud_t pud;
1107 int ret;
1108
1109 dst_ptl = pud_lock(dst_mm, dst_pud);
1110 src_ptl = pud_lockptr(src_mm, src_pud);
1111 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1112
1113 ret = -EAGAIN;
1114 pud = *src_pud;
1115 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1116 goto out_unlock;
1117
1118 /*
1119 * When page table lock is held, the huge zero pud should not be
1120 * under splitting since we don't split the page itself, only pud to
1121 * a page table.
1122 */
1123 if (is_huge_zero_pud(pud)) {
1124 /* No huge zero pud yet */
1125 }
1126
1127 pudp_set_wrprotect(src_mm, addr, src_pud);
1128 pud = pud_mkold(pud_wrprotect(pud));
1129 set_pud_at(dst_mm, addr, dst_pud, pud);
1130
1131 ret = 0;
1132out_unlock:
1133 spin_unlock(src_ptl);
1134 spin_unlock(dst_ptl);
1135 return ret;
1136}
1137
1138void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1139{
1140 pud_t entry;
1141 unsigned long haddr;
1142 bool write = vmf->flags & FAULT_FLAG_WRITE;
1143
1144 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1145 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1146 goto unlock;
1147
1148 entry = pud_mkyoung(orig_pud);
1149 if (write)
1150 entry = pud_mkdirty(entry);
1151 haddr = vmf->address & HPAGE_PUD_MASK;
1152 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1153 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1154
1155unlock:
1156 spin_unlock(vmf->ptl);
1157}
1158#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1159
82b0f8c3 1160void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1161{
1162 pmd_t entry;
1163 unsigned long haddr;
20f664aa 1164 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1165
82b0f8c3
JK
1166 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1167 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1168 goto unlock;
1169
1170 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1171 if (write)
1172 entry = pmd_mkdirty(entry);
82b0f8c3 1173 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1174 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1175 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1176
1177unlock:
82b0f8c3 1178 spin_unlock(vmf->ptl);
a1dd450b
WD
1179}
1180
2b740303
SJ
1181static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1182 pmd_t orig_pmd, struct page *page)
71e3aac0 1183{
82b0f8c3
JK
1184 struct vm_area_struct *vma = vmf->vma;
1185 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1186 struct mem_cgroup *memcg;
71e3aac0
AA
1187 pgtable_t pgtable;
1188 pmd_t _pmd;
2b740303
SJ
1189 int i;
1190 vm_fault_t ret = 0;
71e3aac0 1191 struct page **pages;
ac46d4f3 1192 struct mmu_notifier_range range;
71e3aac0 1193
6da2ec56
KC
1194 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1195 GFP_KERNEL);
71e3aac0
AA
1196 if (unlikely(!pages)) {
1197 ret |= VM_FAULT_OOM;
1198 goto out;
1199 }
1200
1201 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1202 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1203 vmf->address, page_to_nid(page));
b9bbfbe3 1204 if (unlikely(!pages[i] ||
2cf85583 1205 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1206 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1207 if (pages[i])
71e3aac0 1208 put_page(pages[i]);
b9bbfbe3 1209 while (--i >= 0) {
00501b53
JW
1210 memcg = (void *)page_private(pages[i]);
1211 set_page_private(pages[i], 0);
f627c2f5
KS
1212 mem_cgroup_cancel_charge(pages[i], memcg,
1213 false);
b9bbfbe3
AA
1214 put_page(pages[i]);
1215 }
71e3aac0
AA
1216 kfree(pages);
1217 ret |= VM_FAULT_OOM;
1218 goto out;
1219 }
00501b53 1220 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1221 }
1222
1223 for (i = 0; i < HPAGE_PMD_NR; i++) {
1224 copy_user_highpage(pages[i], page + i,
0089e485 1225 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1226 __SetPageUptodate(pages[i]);
1227 cond_resched();
1228 }
1229
7269f999
JG
1230 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1231 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1232 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1233
82b0f8c3
JK
1234 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1235 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1236 goto out_free_pages;
309381fe 1237 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1238
0f10851e
JG
1239 /*
1240 * Leave pmd empty until pte is filled note we must notify here as
1241 * concurrent CPU thread might write to new page before the call to
1242 * mmu_notifier_invalidate_range_end() happens which can lead to a
1243 * device seeing memory write in different order than CPU.
1244 *
ad56b738 1245 * See Documentation/vm/mmu_notifier.rst
0f10851e 1246 */
82b0f8c3 1247 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1248
82b0f8c3 1249 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1250 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1251
1252 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1253 pte_t entry;
71e3aac0
AA
1254 entry = mk_pte(pages[i], vma->vm_page_prot);
1255 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1256 memcg = (void *)page_private(pages[i]);
1257 set_page_private(pages[i], 0);
82b0f8c3 1258 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1259 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1260 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1261 vmf->pte = pte_offset_map(&_pmd, haddr);
1262 VM_BUG_ON(!pte_none(*vmf->pte));
1263 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1264 pte_unmap(vmf->pte);
71e3aac0
AA
1265 }
1266 kfree(pages);
1267
71e3aac0 1268 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1269 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1270 page_remove_rmap(page, true);
82b0f8c3 1271 spin_unlock(vmf->ptl);
71e3aac0 1272
4645b9fe
JG
1273 /*
1274 * No need to double call mmu_notifier->invalidate_range() callback as
1275 * the above pmdp_huge_clear_flush_notify() did already call it.
1276 */
ac46d4f3 1277 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1278
71e3aac0
AA
1279 ret |= VM_FAULT_WRITE;
1280 put_page(page);
1281
1282out:
1283 return ret;
1284
1285out_free_pages:
82b0f8c3 1286 spin_unlock(vmf->ptl);
ac46d4f3 1287 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1288 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1289 memcg = (void *)page_private(pages[i]);
1290 set_page_private(pages[i], 0);
f627c2f5 1291 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1292 put_page(pages[i]);
b9bbfbe3 1293 }
71e3aac0
AA
1294 kfree(pages);
1295 goto out;
1296}
1297
2b740303 1298vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1299{
82b0f8c3 1300 struct vm_area_struct *vma = vmf->vma;
93b4796d 1301 struct page *page = NULL, *new_page;
00501b53 1302 struct mem_cgroup *memcg;
82b0f8c3 1303 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1304 struct mmu_notifier_range range;
3b363692 1305 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1306 vm_fault_t ret = 0;
71e3aac0 1307
82b0f8c3 1308 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1309 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1310 if (is_huge_zero_pmd(orig_pmd))
1311 goto alloc;
82b0f8c3
JK
1312 spin_lock(vmf->ptl);
1313 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1314 goto out_unlock;
1315
1316 page = pmd_page(orig_pmd);
309381fe 1317 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1318 /*
1319 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1320 * part.
1f25fe20 1321 */
ba3c4ce6
HY
1322 if (!trylock_page(page)) {
1323 get_page(page);
1324 spin_unlock(vmf->ptl);
1325 lock_page(page);
1326 spin_lock(vmf->ptl);
1327 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1328 unlock_page(page);
1329 put_page(page);
1330 goto out_unlock;
1331 }
1332 put_page(page);
1333 }
1334 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1335 pmd_t entry;
1336 entry = pmd_mkyoung(orig_pmd);
f55e1014 1337 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1338 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1339 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1340 ret |= VM_FAULT_WRITE;
ba3c4ce6 1341 unlock_page(page);
71e3aac0
AA
1342 goto out_unlock;
1343 }
ba3c4ce6 1344 unlock_page(page);
ddc58f27 1345 get_page(page);
82b0f8c3 1346 spin_unlock(vmf->ptl);
93b4796d 1347alloc:
7635d9cb 1348 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1349 !transparent_hugepage_debug_cow()) {
356ff8a9
DR
1350 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1351 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1352 } else
71e3aac0
AA
1353 new_page = NULL;
1354
9a982250
KS
1355 if (likely(new_page)) {
1356 prep_transhuge_page(new_page);
1357 } else {
eecc1e42 1358 if (!page) {
82b0f8c3 1359 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1360 ret |= VM_FAULT_FALLBACK;
93b4796d 1361 } else {
82b0f8c3 1362 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1363 if (ret & VM_FAULT_OOM) {
82b0f8c3 1364 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1365 ret |= VM_FAULT_FALLBACK;
1366 }
ddc58f27 1367 put_page(page);
93b4796d 1368 }
17766dde 1369 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1370 goto out;
1371 }
1372
2cf85583 1373 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1374 huge_gfp, &memcg, true))) {
b9bbfbe3 1375 put_page(new_page);
82b0f8c3 1376 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1377 if (page)
ddc58f27 1378 put_page(page);
9845cbbd 1379 ret |= VM_FAULT_FALLBACK;
17766dde 1380 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1381 goto out;
1382 }
1383
17766dde 1384 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1385 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1386
eecc1e42 1387 if (!page)
c79b57e4 1388 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1389 else
c9f4cd71
HY
1390 copy_user_huge_page(new_page, page, vmf->address,
1391 vma, HPAGE_PMD_NR);
71e3aac0
AA
1392 __SetPageUptodate(new_page);
1393
7269f999
JG
1394 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1395 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1396 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1397
82b0f8c3 1398 spin_lock(vmf->ptl);
93b4796d 1399 if (page)
ddc58f27 1400 put_page(page);
82b0f8c3
JK
1401 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1402 spin_unlock(vmf->ptl);
f627c2f5 1403 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1404 put_page(new_page);
2ec74c3e 1405 goto out_mn;
b9bbfbe3 1406 } else {
71e3aac0 1407 pmd_t entry;
3122359a 1408 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1409 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1410 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1411 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1412 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1413 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1414 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1415 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1416 if (!page) {
bae473a4 1417 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1418 } else {
309381fe 1419 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1420 page_remove_rmap(page, true);
93b4796d
KS
1421 put_page(page);
1422 }
71e3aac0
AA
1423 ret |= VM_FAULT_WRITE;
1424 }
82b0f8c3 1425 spin_unlock(vmf->ptl);
2ec74c3e 1426out_mn:
4645b9fe
JG
1427 /*
1428 * No need to double call mmu_notifier->invalidate_range() callback as
1429 * the above pmdp_huge_clear_flush_notify() did already call it.
1430 */
ac46d4f3 1431 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1432out:
1433 return ret;
2ec74c3e 1434out_unlock:
82b0f8c3 1435 spin_unlock(vmf->ptl);
2ec74c3e 1436 return ret;
71e3aac0
AA
1437}
1438
8310d48b
KF
1439/*
1440 * FOLL_FORCE can write to even unwritable pmd's, but only
1441 * after we've gone through a COW cycle and they are dirty.
1442 */
1443static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1444{
f6f37321 1445 return pmd_write(pmd) ||
8310d48b
KF
1446 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1447}
1448
b676b293 1449struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1450 unsigned long addr,
1451 pmd_t *pmd,
1452 unsigned int flags)
1453{
b676b293 1454 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1455 struct page *page = NULL;
1456
c4088ebd 1457 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1458
8310d48b 1459 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1460 goto out;
1461
85facf25
KS
1462 /* Avoid dumping huge zero page */
1463 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1464 return ERR_PTR(-EFAULT);
1465
2b4847e7 1466 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1467 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1468 goto out;
1469
71e3aac0 1470 page = pmd_page(*pmd);
ca120cf6 1471 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1472 if (flags & FOLL_TOUCH)
a8f97366 1473 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1474 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1475 /*
1476 * We don't mlock() pte-mapped THPs. This way we can avoid
1477 * leaking mlocked pages into non-VM_LOCKED VMAs.
1478 *
9a73f61b
KS
1479 * For anon THP:
1480 *
e90309c9
KS
1481 * In most cases the pmd is the only mapping of the page as we
1482 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1483 * writable private mappings in populate_vma_page_range().
1484 *
1485 * The only scenario when we have the page shared here is if we
1486 * mlocking read-only mapping shared over fork(). We skip
1487 * mlocking such pages.
9a73f61b
KS
1488 *
1489 * For file THP:
1490 *
1491 * We can expect PageDoubleMap() to be stable under page lock:
1492 * for file pages we set it in page_add_file_rmap(), which
1493 * requires page to be locked.
e90309c9 1494 */
9a73f61b
KS
1495
1496 if (PageAnon(page) && compound_mapcount(page) != 1)
1497 goto skip_mlock;
1498 if (PageDoubleMap(page) || !page->mapping)
1499 goto skip_mlock;
1500 if (!trylock_page(page))
1501 goto skip_mlock;
1502 lru_add_drain();
1503 if (page->mapping && !PageDoubleMap(page))
1504 mlock_vma_page(page);
1505 unlock_page(page);
b676b293 1506 }
9a73f61b 1507skip_mlock:
71e3aac0 1508 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1509 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1510 if (flags & FOLL_GET)
ddc58f27 1511 get_page(page);
71e3aac0
AA
1512
1513out:
1514 return page;
1515}
1516
d10e63f2 1517/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1518vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1519{
82b0f8c3 1520 struct vm_area_struct *vma = vmf->vma;
b8916634 1521 struct anon_vma *anon_vma = NULL;
b32967ff 1522 struct page *page;
82b0f8c3 1523 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1524 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1525 int target_nid, last_cpupid = -1;
8191acbd
MG
1526 bool page_locked;
1527 bool migrated = false;
b191f9b1 1528 bool was_writable;
6688cc05 1529 int flags = 0;
d10e63f2 1530
82b0f8c3
JK
1531 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1532 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1533 goto out_unlock;
1534
de466bd6
MG
1535 /*
1536 * If there are potential migrations, wait for completion and retry
1537 * without disrupting NUMA hinting information. Do not relock and
1538 * check_same as the page may no longer be mapped.
1539 */
82b0f8c3
JK
1540 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1541 page = pmd_page(*vmf->pmd);
3c226c63
MR
1542 if (!get_page_unless_zero(page))
1543 goto out_unlock;
82b0f8c3 1544 spin_unlock(vmf->ptl);
9a1ea439 1545 put_and_wait_on_page_locked(page);
de466bd6
MG
1546 goto out;
1547 }
1548
d10e63f2 1549 page = pmd_page(pmd);
a1a46184 1550 BUG_ON(is_huge_zero_page(page));
8191acbd 1551 page_nid = page_to_nid(page);
90572890 1552 last_cpupid = page_cpupid_last(page);
03c5a6e1 1553 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1554 if (page_nid == this_nid) {
03c5a6e1 1555 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1556 flags |= TNF_FAULT_LOCAL;
1557 }
4daae3b4 1558
bea66fbd 1559 /* See similar comment in do_numa_page for explanation */
288bc549 1560 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1561 flags |= TNF_NO_GROUP;
1562
ff9042b1
MG
1563 /*
1564 * Acquire the page lock to serialise THP migrations but avoid dropping
1565 * page_table_lock if at all possible
1566 */
b8916634
MG
1567 page_locked = trylock_page(page);
1568 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1569 if (target_nid == NUMA_NO_NODE) {
b8916634 1570 /* If the page was locked, there are no parallel migrations */
a54a407f 1571 if (page_locked)
b8916634 1572 goto clear_pmdnuma;
2b4847e7 1573 }
4daae3b4 1574
de466bd6 1575 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1576 if (!page_locked) {
98fa15f3 1577 page_nid = NUMA_NO_NODE;
3c226c63
MR
1578 if (!get_page_unless_zero(page))
1579 goto out_unlock;
82b0f8c3 1580 spin_unlock(vmf->ptl);
9a1ea439 1581 put_and_wait_on_page_locked(page);
b8916634
MG
1582 goto out;
1583 }
1584
2b4847e7
MG
1585 /*
1586 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1587 * to serialises splits
1588 */
b8916634 1589 get_page(page);
82b0f8c3 1590 spin_unlock(vmf->ptl);
b8916634 1591 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1592
c69307d5 1593 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1594 spin_lock(vmf->ptl);
1595 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1596 unlock_page(page);
1597 put_page(page);
98fa15f3 1598 page_nid = NUMA_NO_NODE;
4daae3b4 1599 goto out_unlock;
b32967ff 1600 }
ff9042b1 1601
c3a489ca
MG
1602 /* Bail if we fail to protect against THP splits for any reason */
1603 if (unlikely(!anon_vma)) {
1604 put_page(page);
98fa15f3 1605 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1606 goto clear_pmdnuma;
1607 }
1608
8b1b436d
PZ
1609 /*
1610 * Since we took the NUMA fault, we must have observed the !accessible
1611 * bit. Make sure all other CPUs agree with that, to avoid them
1612 * modifying the page we're about to migrate.
1613 *
1614 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1615 * inc_tlb_flush_pending().
1616 *
1617 * We are not sure a pending tlb flush here is for a huge page
1618 * mapping or not. Hence use the tlb range variant
8b1b436d 1619 */
7066f0f9 1620 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1621 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1622 /*
1623 * change_huge_pmd() released the pmd lock before
1624 * invalidating the secondary MMUs sharing the primary
1625 * MMU pagetables (with ->invalidate_range()). The
1626 * mmu_notifier_invalidate_range_end() (which
1627 * internally calls ->invalidate_range()) in
1628 * change_pmd_range() will run after us, so we can't
1629 * rely on it here and we need an explicit invalidate.
1630 */
1631 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1632 haddr + HPAGE_PMD_SIZE);
1633 }
8b1b436d 1634
a54a407f
MG
1635 /*
1636 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1637 * and access rights restored.
a54a407f 1638 */
82b0f8c3 1639 spin_unlock(vmf->ptl);
8b1b436d 1640
bae473a4 1641 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1642 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1643 if (migrated) {
1644 flags |= TNF_MIGRATED;
8191acbd 1645 page_nid = target_nid;
074c2381
MG
1646 } else
1647 flags |= TNF_MIGRATE_FAIL;
b32967ff 1648
8191acbd 1649 goto out;
b32967ff 1650clear_pmdnuma:
a54a407f 1651 BUG_ON(!PageLocked(page));
288bc549 1652 was_writable = pmd_savedwrite(pmd);
4d942466 1653 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1654 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1655 if (was_writable)
1656 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1657 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1658 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1659 unlock_page(page);
d10e63f2 1660out_unlock:
82b0f8c3 1661 spin_unlock(vmf->ptl);
b8916634
MG
1662
1663out:
1664 if (anon_vma)
1665 page_unlock_anon_vma_read(anon_vma);
1666
98fa15f3 1667 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1668 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1669 flags);
8191acbd 1670
d10e63f2
MG
1671 return 0;
1672}
1673
319904ad
HY
1674/*
1675 * Return true if we do MADV_FREE successfully on entire pmd page.
1676 * Otherwise, return false.
1677 */
1678bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1679 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1680{
1681 spinlock_t *ptl;
1682 pmd_t orig_pmd;
1683 struct page *page;
1684 struct mm_struct *mm = tlb->mm;
319904ad 1685 bool ret = false;
b8d3c4c3 1686
ed6a7935 1687 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1688
b6ec57f4
KS
1689 ptl = pmd_trans_huge_lock(pmd, vma);
1690 if (!ptl)
25eedabe 1691 goto out_unlocked;
b8d3c4c3
MK
1692
1693 orig_pmd = *pmd;
319904ad 1694 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1695 goto out;
b8d3c4c3 1696
84c3fc4e
ZY
1697 if (unlikely(!pmd_present(orig_pmd))) {
1698 VM_BUG_ON(thp_migration_supported() &&
1699 !is_pmd_migration_entry(orig_pmd));
1700 goto out;
1701 }
1702
b8d3c4c3
MK
1703 page = pmd_page(orig_pmd);
1704 /*
1705 * If other processes are mapping this page, we couldn't discard
1706 * the page unless they all do MADV_FREE so let's skip the page.
1707 */
1708 if (page_mapcount(page) != 1)
1709 goto out;
1710
1711 if (!trylock_page(page))
1712 goto out;
1713
1714 /*
1715 * If user want to discard part-pages of THP, split it so MADV_FREE
1716 * will deactivate only them.
1717 */
1718 if (next - addr != HPAGE_PMD_SIZE) {
1719 get_page(page);
1720 spin_unlock(ptl);
9818b8cd 1721 split_huge_page(page);
b8d3c4c3 1722 unlock_page(page);
bbf29ffc 1723 put_page(page);
b8d3c4c3
MK
1724 goto out_unlocked;
1725 }
1726
1727 if (PageDirty(page))
1728 ClearPageDirty(page);
1729 unlock_page(page);
1730
b8d3c4c3 1731 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1732 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1733 orig_pmd = pmd_mkold(orig_pmd);
1734 orig_pmd = pmd_mkclean(orig_pmd);
1735
1736 set_pmd_at(mm, addr, pmd, orig_pmd);
1737 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1738 }
802a3a92
SL
1739
1740 mark_page_lazyfree(page);
319904ad 1741 ret = true;
b8d3c4c3
MK
1742out:
1743 spin_unlock(ptl);
1744out_unlocked:
1745 return ret;
1746}
1747
953c66c2
AK
1748static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1749{
1750 pgtable_t pgtable;
1751
1752 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1753 pte_free(mm, pgtable);
c4812909 1754 mm_dec_nr_ptes(mm);
953c66c2
AK
1755}
1756
71e3aac0 1757int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1758 pmd_t *pmd, unsigned long addr)
71e3aac0 1759{
da146769 1760 pmd_t orig_pmd;
bf929152 1761 spinlock_t *ptl;
71e3aac0 1762
ed6a7935 1763 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1764
b6ec57f4
KS
1765 ptl = __pmd_trans_huge_lock(pmd, vma);
1766 if (!ptl)
da146769
KS
1767 return 0;
1768 /*
1769 * For architectures like ppc64 we look at deposited pgtable
1770 * when calling pmdp_huge_get_and_clear. So do the
1771 * pgtable_trans_huge_withdraw after finishing pmdp related
1772 * operations.
1773 */
1774 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1775 tlb->fullmm);
1776 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1777 if (vma_is_dax(vma)) {
3b6521f5
OH
1778 if (arch_needs_pgtable_deposit())
1779 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1780 spin_unlock(ptl);
1781 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1782 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1783 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1784 zap_deposited_table(tlb->mm, pmd);
da146769 1785 spin_unlock(ptl);
c0f2e176 1786 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1787 } else {
616b8371
ZY
1788 struct page *page = NULL;
1789 int flush_needed = 1;
1790
1791 if (pmd_present(orig_pmd)) {
1792 page = pmd_page(orig_pmd);
1793 page_remove_rmap(page, true);
1794 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1795 VM_BUG_ON_PAGE(!PageHead(page), page);
1796 } else if (thp_migration_supported()) {
1797 swp_entry_t entry;
1798
1799 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1800 entry = pmd_to_swp_entry(orig_pmd);
1801 page = pfn_to_page(swp_offset(entry));
1802 flush_needed = 0;
1803 } else
1804 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1805
b5072380 1806 if (PageAnon(page)) {
c14a6eb4 1807 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1808 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1809 } else {
953c66c2
AK
1810 if (arch_needs_pgtable_deposit())
1811 zap_deposited_table(tlb->mm, pmd);
fadae295 1812 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1813 }
616b8371 1814
da146769 1815 spin_unlock(ptl);
616b8371
ZY
1816 if (flush_needed)
1817 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1818 }
da146769 1819 return 1;
71e3aac0
AA
1820}
1821
1dd38b6c
AK
1822#ifndef pmd_move_must_withdraw
1823static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1824 spinlock_t *old_pmd_ptl,
1825 struct vm_area_struct *vma)
1826{
1827 /*
1828 * With split pmd lock we also need to move preallocated
1829 * PTE page table if new_pmd is on different PMD page table.
1830 *
1831 * We also don't deposit and withdraw tables for file pages.
1832 */
1833 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1834}
1835#endif
1836
ab6e3d09
NH
1837static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1838{
1839#ifdef CONFIG_MEM_SOFT_DIRTY
1840 if (unlikely(is_pmd_migration_entry(pmd)))
1841 pmd = pmd_swp_mksoft_dirty(pmd);
1842 else if (pmd_present(pmd))
1843 pmd = pmd_mksoft_dirty(pmd);
1844#endif
1845 return pmd;
1846}
1847
bf8616d5 1848bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1849 unsigned long new_addr, unsigned long old_end,
eb66ae03 1850 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1851{
bf929152 1852 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1853 pmd_t pmd;
37a1c49a 1854 struct mm_struct *mm = vma->vm_mm;
5d190420 1855 bool force_flush = false;
37a1c49a
AA
1856
1857 if ((old_addr & ~HPAGE_PMD_MASK) ||
1858 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1859 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1860 return false;
37a1c49a
AA
1861
1862 /*
1863 * The destination pmd shouldn't be established, free_pgtables()
1864 * should have release it.
1865 */
1866 if (WARN_ON(!pmd_none(*new_pmd))) {
1867 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1868 return false;
37a1c49a
AA
1869 }
1870
bf929152
KS
1871 /*
1872 * We don't have to worry about the ordering of src and dst
1873 * ptlocks because exclusive mmap_sem prevents deadlock.
1874 */
b6ec57f4
KS
1875 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1876 if (old_ptl) {
bf929152
KS
1877 new_ptl = pmd_lockptr(mm, new_pmd);
1878 if (new_ptl != old_ptl)
1879 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1880 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1881 if (pmd_present(pmd))
a2ce2666 1882 force_flush = true;
025c5b24 1883 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1884
1dd38b6c 1885 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1886 pgtable_t pgtable;
3592806c
KS
1887 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1888 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1889 }
ab6e3d09
NH
1890 pmd = move_soft_dirty_pmd(pmd);
1891 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1892 if (force_flush)
1893 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1894 if (new_ptl != old_ptl)
1895 spin_unlock(new_ptl);
bf929152 1896 spin_unlock(old_ptl);
4b471e88 1897 return true;
37a1c49a 1898 }
4b471e88 1899 return false;
37a1c49a
AA
1900}
1901
f123d74a
MG
1902/*
1903 * Returns
1904 * - 0 if PMD could not be locked
1905 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1906 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1907 */
cd7548ab 1908int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1909 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1910{
1911 struct mm_struct *mm = vma->vm_mm;
bf929152 1912 spinlock_t *ptl;
0a85e51d
KS
1913 pmd_t entry;
1914 bool preserve_write;
1915 int ret;
cd7548ab 1916
b6ec57f4 1917 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1918 if (!ptl)
1919 return 0;
e944fd67 1920
0a85e51d
KS
1921 preserve_write = prot_numa && pmd_write(*pmd);
1922 ret = 1;
e944fd67 1923
84c3fc4e
ZY
1924#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1925 if (is_swap_pmd(*pmd)) {
1926 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1927
1928 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1929 if (is_write_migration_entry(entry)) {
1930 pmd_t newpmd;
1931 /*
1932 * A protection check is difficult so
1933 * just be safe and disable write
1934 */
1935 make_migration_entry_read(&entry);
1936 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1937 if (pmd_swp_soft_dirty(*pmd))
1938 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1939 set_pmd_at(mm, addr, pmd, newpmd);
1940 }
1941 goto unlock;
1942 }
1943#endif
1944
0a85e51d
KS
1945 /*
1946 * Avoid trapping faults against the zero page. The read-only
1947 * data is likely to be read-cached on the local CPU and
1948 * local/remote hits to the zero page are not interesting.
1949 */
1950 if (prot_numa && is_huge_zero_pmd(*pmd))
1951 goto unlock;
025c5b24 1952
0a85e51d
KS
1953 if (prot_numa && pmd_protnone(*pmd))
1954 goto unlock;
1955
ced10803
KS
1956 /*
1957 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1958 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1959 * which is also under down_read(mmap_sem):
1960 *
1961 * CPU0: CPU1:
1962 * change_huge_pmd(prot_numa=1)
1963 * pmdp_huge_get_and_clear_notify()
1964 * madvise_dontneed()
1965 * zap_pmd_range()
1966 * pmd_trans_huge(*pmd) == 0 (without ptl)
1967 * // skip the pmd
1968 * set_pmd_at();
1969 * // pmd is re-established
1970 *
1971 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1972 * which may break userspace.
1973 *
1974 * pmdp_invalidate() is required to make sure we don't miss
1975 * dirty/young flags set by hardware.
1976 */
a3cf988f 1977 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1978
0a85e51d
KS
1979 entry = pmd_modify(entry, newprot);
1980 if (preserve_write)
1981 entry = pmd_mk_savedwrite(entry);
1982 ret = HPAGE_PMD_NR;
1983 set_pmd_at(mm, addr, pmd, entry);
1984 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1985unlock:
1986 spin_unlock(ptl);
025c5b24
NH
1987 return ret;
1988}
1989
1990/*
8f19b0c0 1991 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1992 *
8f19b0c0
HY
1993 * Note that if it returns page table lock pointer, this routine returns without
1994 * unlocking page table lock. So callers must unlock it.
025c5b24 1995 */
b6ec57f4 1996spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1997{
b6ec57f4
KS
1998 spinlock_t *ptl;
1999 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2000 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2001 pmd_devmap(*pmd)))
b6ec57f4
KS
2002 return ptl;
2003 spin_unlock(ptl);
2004 return NULL;
cd7548ab
JW
2005}
2006
a00cc7d9
MW
2007/*
2008 * Returns true if a given pud maps a thp, false otherwise.
2009 *
2010 * Note that if it returns true, this routine returns without unlocking page
2011 * table lock. So callers must unlock it.
2012 */
2013spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2014{
2015 spinlock_t *ptl;
2016
2017 ptl = pud_lock(vma->vm_mm, pud);
2018 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2019 return ptl;
2020 spin_unlock(ptl);
2021 return NULL;
2022}
2023
2024#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2025int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2026 pud_t *pud, unsigned long addr)
2027{
a00cc7d9
MW
2028 spinlock_t *ptl;
2029
2030 ptl = __pud_trans_huge_lock(pud, vma);
2031 if (!ptl)
2032 return 0;
2033 /*
2034 * For architectures like ppc64 we look at deposited pgtable
2035 * when calling pudp_huge_get_and_clear. So do the
2036 * pgtable_trans_huge_withdraw after finishing pudp related
2037 * operations.
2038 */
70516b93 2039 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2040 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2041 if (vma_is_dax(vma)) {
2042 spin_unlock(ptl);
2043 /* No zero page support yet */
2044 } else {
2045 /* No support for anonymous PUD pages yet */
2046 BUG();
2047 }
2048 return 1;
2049}
2050
2051static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2052 unsigned long haddr)
2053{
2054 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2055 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2056 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2057 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2058
ce9311cf 2059 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2060
2061 pudp_huge_clear_flush_notify(vma, haddr, pud);
2062}
2063
2064void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2065 unsigned long address)
2066{
2067 spinlock_t *ptl;
ac46d4f3 2068 struct mmu_notifier_range range;
a00cc7d9 2069
7269f999 2070 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2071 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2072 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2073 mmu_notifier_invalidate_range_start(&range);
2074 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2075 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2076 goto out;
ac46d4f3 2077 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2078
2079out:
2080 spin_unlock(ptl);
4645b9fe
JG
2081 /*
2082 * No need to double call mmu_notifier->invalidate_range() callback as
2083 * the above pudp_huge_clear_flush_notify() did already call it.
2084 */
ac46d4f3 2085 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2086}
2087#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2088
eef1b3ba
KS
2089static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2090 unsigned long haddr, pmd_t *pmd)
2091{
2092 struct mm_struct *mm = vma->vm_mm;
2093 pgtable_t pgtable;
2094 pmd_t _pmd;
2095 int i;
2096
0f10851e
JG
2097 /*
2098 * Leave pmd empty until pte is filled note that it is fine to delay
2099 * notification until mmu_notifier_invalidate_range_end() as we are
2100 * replacing a zero pmd write protected page with a zero pte write
2101 * protected page.
2102 *
ad56b738 2103 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2104 */
2105 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2106
2107 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2108 pmd_populate(mm, &_pmd, pgtable);
2109
2110 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2111 pte_t *pte, entry;
2112 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2113 entry = pte_mkspecial(entry);
2114 pte = pte_offset_map(&_pmd, haddr);
2115 VM_BUG_ON(!pte_none(*pte));
2116 set_pte_at(mm, haddr, pte, entry);
2117 pte_unmap(pte);
2118 }
2119 smp_wmb(); /* make pte visible before pmd */
2120 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2121}
2122
2123static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2124 unsigned long haddr, bool freeze)
eef1b3ba
KS
2125{
2126 struct mm_struct *mm = vma->vm_mm;
2127 struct page *page;
2128 pgtable_t pgtable;
423ac9af 2129 pmd_t old_pmd, _pmd;
a3cf988f 2130 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2131 unsigned long addr;
eef1b3ba
KS
2132 int i;
2133
2134 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2135 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2136 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2137 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2138 && !pmd_devmap(*pmd));
eef1b3ba
KS
2139
2140 count_vm_event(THP_SPLIT_PMD);
2141
d21b9e57
KS
2142 if (!vma_is_anonymous(vma)) {
2143 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2144 /*
2145 * We are going to unmap this huge page. So
2146 * just go ahead and zap it
2147 */
2148 if (arch_needs_pgtable_deposit())
2149 zap_deposited_table(mm, pmd);
d21b9e57
KS
2150 if (vma_is_dax(vma))
2151 return;
2152 page = pmd_page(_pmd);
e1f1b157
HD
2153 if (!PageDirty(page) && pmd_dirty(_pmd))
2154 set_page_dirty(page);
d21b9e57
KS
2155 if (!PageReferenced(page) && pmd_young(_pmd))
2156 SetPageReferenced(page);
2157 page_remove_rmap(page, true);
2158 put_page(page);
fadae295 2159 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2160 return;
2161 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2162 /*
2163 * FIXME: Do we want to invalidate secondary mmu by calling
2164 * mmu_notifier_invalidate_range() see comments below inside
2165 * __split_huge_pmd() ?
2166 *
2167 * We are going from a zero huge page write protected to zero
2168 * small page also write protected so it does not seems useful
2169 * to invalidate secondary mmu at this time.
2170 */
eef1b3ba
KS
2171 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2172 }
2173
423ac9af
AK
2174 /*
2175 * Up to this point the pmd is present and huge and userland has the
2176 * whole access to the hugepage during the split (which happens in
2177 * place). If we overwrite the pmd with the not-huge version pointing
2178 * to the pte here (which of course we could if all CPUs were bug
2179 * free), userland could trigger a small page size TLB miss on the
2180 * small sized TLB while the hugepage TLB entry is still established in
2181 * the huge TLB. Some CPU doesn't like that.
2182 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2183 * 383 on page 93. Intel should be safe but is also warns that it's
2184 * only safe if the permission and cache attributes of the two entries
2185 * loaded in the two TLB is identical (which should be the case here).
2186 * But it is generally safer to never allow small and huge TLB entries
2187 * for the same virtual address to be loaded simultaneously. So instead
2188 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2189 * current pmd notpresent (atomically because here the pmd_trans_huge
2190 * must remain set at all times on the pmd until the split is complete
2191 * for this pmd), then we flush the SMP TLB and finally we write the
2192 * non-huge version of the pmd entry with pmd_populate.
2193 */
2194 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2195
423ac9af 2196 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2197 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2198 swp_entry_t entry;
2199
423ac9af 2200 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2201 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2202 write = is_write_migration_entry(entry);
2203 young = false;
2204 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2205 } else {
423ac9af 2206 page = pmd_page(old_pmd);
2e83ee1d
PX
2207 if (pmd_dirty(old_pmd))
2208 SetPageDirty(page);
2209 write = pmd_write(old_pmd);
2210 young = pmd_young(old_pmd);
2211 soft_dirty = pmd_soft_dirty(old_pmd);
2212 }
eef1b3ba 2213 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2214 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2215
423ac9af
AK
2216 /*
2217 * Withdraw the table only after we mark the pmd entry invalid.
2218 * This's critical for some architectures (Power).
2219 */
eef1b3ba
KS
2220 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2221 pmd_populate(mm, &_pmd, pgtable);
2222
2ac015e2 2223 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2224 pte_t entry, *pte;
2225 /*
2226 * Note that NUMA hinting access restrictions are not
2227 * transferred to avoid any possibility of altering
2228 * permissions across VMAs.
2229 */
84c3fc4e 2230 if (freeze || pmd_migration) {
ba988280
KS
2231 swp_entry_t swp_entry;
2232 swp_entry = make_migration_entry(page + i, write);
2233 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2234 if (soft_dirty)
2235 entry = pte_swp_mksoft_dirty(entry);
ba988280 2236 } else {
6d2329f8 2237 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2238 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2239 if (!write)
2240 entry = pte_wrprotect(entry);
2241 if (!young)
2242 entry = pte_mkold(entry);
804dd150
AA
2243 if (soft_dirty)
2244 entry = pte_mksoft_dirty(entry);
ba988280 2245 }
2ac015e2 2246 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2247 BUG_ON(!pte_none(*pte));
2ac015e2 2248 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2249 atomic_inc(&page[i]._mapcount);
2250 pte_unmap(pte);
2251 }
2252
2253 /*
2254 * Set PG_double_map before dropping compound_mapcount to avoid
2255 * false-negative page_mapped().
2256 */
2257 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2258 for (i = 0; i < HPAGE_PMD_NR; i++)
2259 atomic_inc(&page[i]._mapcount);
2260 }
2261
2262 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2263 /* Last compound_mapcount is gone. */
11fb9989 2264 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2265 if (TestClearPageDoubleMap(page)) {
2266 /* No need in mapcount reference anymore */
2267 for (i = 0; i < HPAGE_PMD_NR; i++)
2268 atomic_dec(&page[i]._mapcount);
2269 }
2270 }
2271
2272 smp_wmb(); /* make pte visible before pmd */
2273 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2274
2275 if (freeze) {
2ac015e2 2276 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2277 page_remove_rmap(page + i, false);
2278 put_page(page + i);
2279 }
2280 }
eef1b3ba
KS
2281}
2282
2283void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2284 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2285{
2286 spinlock_t *ptl;
ac46d4f3 2287 struct mmu_notifier_range range;
eef1b3ba 2288
7269f999 2289 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2290 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2291 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2292 mmu_notifier_invalidate_range_start(&range);
2293 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2294
2295 /*
2296 * If caller asks to setup a migration entries, we need a page to check
2297 * pmd against. Otherwise we can end up replacing wrong page.
2298 */
2299 VM_BUG_ON(freeze && !page);
2300 if (page && page != pmd_page(*pmd))
2301 goto out;
2302
5c7fb56e 2303 if (pmd_trans_huge(*pmd)) {
33f4751e 2304 page = pmd_page(*pmd);
5c7fb56e 2305 if (PageMlocked(page))
5f737714 2306 clear_page_mlock(page);
84c3fc4e 2307 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2308 goto out;
ac46d4f3 2309 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2310out:
eef1b3ba 2311 spin_unlock(ptl);
4645b9fe
JG
2312 /*
2313 * No need to double call mmu_notifier->invalidate_range() callback.
2314 * They are 3 cases to consider inside __split_huge_pmd_locked():
2315 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2316 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2317 * fault will trigger a flush_notify before pointing to a new page
2318 * (it is fine if the secondary mmu keeps pointing to the old zero
2319 * page in the meantime)
2320 * 3) Split a huge pmd into pte pointing to the same page. No need
2321 * to invalidate secondary tlb entry they are all still valid.
2322 * any further changes to individual pte will notify. So no need
2323 * to call mmu_notifier->invalidate_range()
2324 */
ac46d4f3 2325 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2326}
2327
fec89c10
KS
2328void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2329 bool freeze, struct page *page)
94fcc585 2330{
f72e7dcd 2331 pgd_t *pgd;
c2febafc 2332 p4d_t *p4d;
f72e7dcd 2333 pud_t *pud;
94fcc585
AA
2334 pmd_t *pmd;
2335
78ddc534 2336 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2337 if (!pgd_present(*pgd))
2338 return;
2339
c2febafc
KS
2340 p4d = p4d_offset(pgd, address);
2341 if (!p4d_present(*p4d))
2342 return;
2343
2344 pud = pud_offset(p4d, address);
f72e7dcd
HD
2345 if (!pud_present(*pud))
2346 return;
2347
2348 pmd = pmd_offset(pud, address);
fec89c10 2349
33f4751e 2350 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2351}
2352
e1b9996b 2353void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2354 unsigned long start,
2355 unsigned long end,
2356 long adjust_next)
2357{
2358 /*
2359 * If the new start address isn't hpage aligned and it could
2360 * previously contain an hugepage: check if we need to split
2361 * an huge pmd.
2362 */
2363 if (start & ~HPAGE_PMD_MASK &&
2364 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2365 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2366 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2367
2368 /*
2369 * If the new end address isn't hpage aligned and it could
2370 * previously contain an hugepage: check if we need to split
2371 * an huge pmd.
2372 */
2373 if (end & ~HPAGE_PMD_MASK &&
2374 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2375 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2376 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2377
2378 /*
2379 * If we're also updating the vma->vm_next->vm_start, if the new
2380 * vm_next->vm_start isn't page aligned and it could previously
2381 * contain an hugepage: check if we need to split an huge pmd.
2382 */
2383 if (adjust_next > 0) {
2384 struct vm_area_struct *next = vma->vm_next;
2385 unsigned long nstart = next->vm_start;
2386 nstart += adjust_next << PAGE_SHIFT;
2387 if (nstart & ~HPAGE_PMD_MASK &&
2388 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2389 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2390 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2391 }
2392}
e9b61f19 2393
906f9cdf 2394static void unmap_page(struct page *page)
e9b61f19 2395{
baa355fd 2396 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2397 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2398 bool unmap_success;
e9b61f19
KS
2399
2400 VM_BUG_ON_PAGE(!PageHead(page), page);
2401
baa355fd 2402 if (PageAnon(page))
b5ff8161 2403 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2404
666e5a40
MK
2405 unmap_success = try_to_unmap(page, ttu_flags);
2406 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2407}
2408
906f9cdf 2409static void remap_page(struct page *page)
e9b61f19 2410{
fec89c10 2411 int i;
ace71a19
KS
2412 if (PageTransHuge(page)) {
2413 remove_migration_ptes(page, page, true);
2414 } else {
2415 for (i = 0; i < HPAGE_PMD_NR; i++)
2416 remove_migration_ptes(page + i, page + i, true);
2417 }
e9b61f19
KS
2418}
2419
8df651c7 2420static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2421 struct lruvec *lruvec, struct list_head *list)
2422{
e9b61f19
KS
2423 struct page *page_tail = head + tail;
2424
8df651c7 2425 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2426
2427 /*
605ca5ed
KK
2428 * Clone page flags before unfreezing refcount.
2429 *
2430 * After successful get_page_unless_zero() might follow flags change,
2431 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2432 */
e9b61f19
KS
2433 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2434 page_tail->flags |= (head->flags &
2435 ((1L << PG_referenced) |
2436 (1L << PG_swapbacked) |
38d8b4e6 2437 (1L << PG_swapcache) |
e9b61f19
KS
2438 (1L << PG_mlocked) |
2439 (1L << PG_uptodate) |
2440 (1L << PG_active) |
1899ad18 2441 (1L << PG_workingset) |
e9b61f19 2442 (1L << PG_locked) |
b8d3c4c3
MK
2443 (1L << PG_unevictable) |
2444 (1L << PG_dirty)));
e9b61f19 2445
173d9d9f
HD
2446 /* ->mapping in first tail page is compound_mapcount */
2447 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2448 page_tail);
2449 page_tail->mapping = head->mapping;
2450 page_tail->index = head->index + tail;
2451
605ca5ed 2452 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2453 smp_wmb();
2454
605ca5ed
KK
2455 /*
2456 * Clear PageTail before unfreezing page refcount.
2457 *
2458 * After successful get_page_unless_zero() might follow put_page()
2459 * which needs correct compound_head().
2460 */
e9b61f19
KS
2461 clear_compound_head(page_tail);
2462
605ca5ed
KK
2463 /* Finally unfreeze refcount. Additional reference from page cache. */
2464 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2465 PageSwapCache(head)));
2466
e9b61f19
KS
2467 if (page_is_young(head))
2468 set_page_young(page_tail);
2469 if (page_is_idle(head))
2470 set_page_idle(page_tail);
2471
e9b61f19 2472 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2473
2474 /*
2475 * always add to the tail because some iterators expect new
2476 * pages to show after the currently processed elements - e.g.
2477 * migrate_pages
2478 */
e9b61f19 2479 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2480}
2481
baa355fd 2482static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2483 pgoff_t end, unsigned long flags)
e9b61f19
KS
2484{
2485 struct page *head = compound_head(page);
f4b7e272 2486 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2487 struct lruvec *lruvec;
8df651c7 2488 int i;
e9b61f19 2489
f4b7e272 2490 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2491
2492 /* complete memcg works before add pages to LRU */
2493 mem_cgroup_split_huge_fixup(head);
2494
baa355fd 2495 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2496 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2497 /* Some pages can be beyond i_size: drop them from page cache */
2498 if (head[i].index >= end) {
2d077d4b 2499 ClearPageDirty(head + i);
baa355fd 2500 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2501 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2502 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2503 put_page(head + i);
2504 }
2505 }
e9b61f19
KS
2506
2507 ClearPageCompound(head);
baa355fd
KS
2508 /* See comment in __split_huge_page_tail() */
2509 if (PageAnon(head)) {
aa5dc07f 2510 /* Additional pin to swap cache */
38d8b4e6
HY
2511 if (PageSwapCache(head))
2512 page_ref_add(head, 2);
2513 else
2514 page_ref_inc(head);
baa355fd 2515 } else {
aa5dc07f 2516 /* Additional pin to page cache */
baa355fd 2517 page_ref_add(head, 2);
b93b0163 2518 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2519 }
2520
f4b7e272 2521 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2522
906f9cdf 2523 remap_page(head);
e9b61f19
KS
2524
2525 for (i = 0; i < HPAGE_PMD_NR; i++) {
2526 struct page *subpage = head + i;
2527 if (subpage == page)
2528 continue;
2529 unlock_page(subpage);
2530
2531 /*
2532 * Subpages may be freed if there wasn't any mapping
2533 * like if add_to_swap() is running on a lru page that
2534 * had its mapping zapped. And freeing these pages
2535 * requires taking the lru_lock so we do the put_page
2536 * of the tail pages after the split is complete.
2537 */
2538 put_page(subpage);
2539 }
2540}
2541
b20ce5e0
KS
2542int total_mapcount(struct page *page)
2543{
dd78fedd 2544 int i, compound, ret;
b20ce5e0
KS
2545
2546 VM_BUG_ON_PAGE(PageTail(page), page);
2547
2548 if (likely(!PageCompound(page)))
2549 return atomic_read(&page->_mapcount) + 1;
2550
dd78fedd 2551 compound = compound_mapcount(page);
b20ce5e0 2552 if (PageHuge(page))
dd78fedd
KS
2553 return compound;
2554 ret = compound;
b20ce5e0
KS
2555 for (i = 0; i < HPAGE_PMD_NR; i++)
2556 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2557 /* File pages has compound_mapcount included in _mapcount */
2558 if (!PageAnon(page))
2559 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2560 if (PageDoubleMap(page))
2561 ret -= HPAGE_PMD_NR;
2562 return ret;
2563}
2564
6d0a07ed
AA
2565/*
2566 * This calculates accurately how many mappings a transparent hugepage
2567 * has (unlike page_mapcount() which isn't fully accurate). This full
2568 * accuracy is primarily needed to know if copy-on-write faults can
2569 * reuse the page and change the mapping to read-write instead of
2570 * copying them. At the same time this returns the total_mapcount too.
2571 *
2572 * The function returns the highest mapcount any one of the subpages
2573 * has. If the return value is one, even if different processes are
2574 * mapping different subpages of the transparent hugepage, they can
2575 * all reuse it, because each process is reusing a different subpage.
2576 *
2577 * The total_mapcount is instead counting all virtual mappings of the
2578 * subpages. If the total_mapcount is equal to "one", it tells the
2579 * caller all mappings belong to the same "mm" and in turn the
2580 * anon_vma of the transparent hugepage can become the vma->anon_vma
2581 * local one as no other process may be mapping any of the subpages.
2582 *
2583 * It would be more accurate to replace page_mapcount() with
2584 * page_trans_huge_mapcount(), however we only use
2585 * page_trans_huge_mapcount() in the copy-on-write faults where we
2586 * need full accuracy to avoid breaking page pinning, because
2587 * page_trans_huge_mapcount() is slower than page_mapcount().
2588 */
2589int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2590{
2591 int i, ret, _total_mapcount, mapcount;
2592
2593 /* hugetlbfs shouldn't call it */
2594 VM_BUG_ON_PAGE(PageHuge(page), page);
2595
2596 if (likely(!PageTransCompound(page))) {
2597 mapcount = atomic_read(&page->_mapcount) + 1;
2598 if (total_mapcount)
2599 *total_mapcount = mapcount;
2600 return mapcount;
2601 }
2602
2603 page = compound_head(page);
2604
2605 _total_mapcount = ret = 0;
2606 for (i = 0; i < HPAGE_PMD_NR; i++) {
2607 mapcount = atomic_read(&page[i]._mapcount) + 1;
2608 ret = max(ret, mapcount);
2609 _total_mapcount += mapcount;
2610 }
2611 if (PageDoubleMap(page)) {
2612 ret -= 1;
2613 _total_mapcount -= HPAGE_PMD_NR;
2614 }
2615 mapcount = compound_mapcount(page);
2616 ret += mapcount;
2617 _total_mapcount += mapcount;
2618 if (total_mapcount)
2619 *total_mapcount = _total_mapcount;
2620 return ret;
2621}
2622
b8f593cd
HY
2623/* Racy check whether the huge page can be split */
2624bool can_split_huge_page(struct page *page, int *pextra_pins)
2625{
2626 int extra_pins;
2627
aa5dc07f 2628 /* Additional pins from page cache */
b8f593cd
HY
2629 if (PageAnon(page))
2630 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2631 else
2632 extra_pins = HPAGE_PMD_NR;
2633 if (pextra_pins)
2634 *pextra_pins = extra_pins;
2635 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2636}
2637
e9b61f19
KS
2638/*
2639 * This function splits huge page into normal pages. @page can point to any
2640 * subpage of huge page to split. Split doesn't change the position of @page.
2641 *
2642 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2643 * The huge page must be locked.
2644 *
2645 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2646 *
2647 * Both head page and tail pages will inherit mapping, flags, and so on from
2648 * the hugepage.
2649 *
2650 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2651 * they are not mapped.
2652 *
2653 * Returns 0 if the hugepage is split successfully.
2654 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2655 * us.
2656 */
2657int split_huge_page_to_list(struct page *page, struct list_head *list)
2658{
2659 struct page *head = compound_head(page);
a3d0a918 2660 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2661 struct anon_vma *anon_vma = NULL;
2662 struct address_space *mapping = NULL;
2663 int count, mapcount, extra_pins, ret;
d9654322 2664 bool mlocked;
0b9b6fff 2665 unsigned long flags;
006d3ff2 2666 pgoff_t end;
e9b61f19
KS
2667
2668 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2669 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2670 VM_BUG_ON_PAGE(!PageCompound(page), page);
2671
59807685
HY
2672 if (PageWriteback(page))
2673 return -EBUSY;
2674
baa355fd
KS
2675 if (PageAnon(head)) {
2676 /*
2677 * The caller does not necessarily hold an mmap_sem that would
2678 * prevent the anon_vma disappearing so we first we take a
2679 * reference to it and then lock the anon_vma for write. This
2680 * is similar to page_lock_anon_vma_read except the write lock
2681 * is taken to serialise against parallel split or collapse
2682 * operations.
2683 */
2684 anon_vma = page_get_anon_vma(head);
2685 if (!anon_vma) {
2686 ret = -EBUSY;
2687 goto out;
2688 }
006d3ff2 2689 end = -1;
baa355fd
KS
2690 mapping = NULL;
2691 anon_vma_lock_write(anon_vma);
2692 } else {
2693 mapping = head->mapping;
2694
2695 /* Truncated ? */
2696 if (!mapping) {
2697 ret = -EBUSY;
2698 goto out;
2699 }
2700
baa355fd
KS
2701 anon_vma = NULL;
2702 i_mmap_lock_read(mapping);
006d3ff2
HD
2703
2704 /*
2705 *__split_huge_page() may need to trim off pages beyond EOF:
2706 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2707 * which cannot be nested inside the page tree lock. So note
2708 * end now: i_size itself may be changed at any moment, but
2709 * head page lock is good enough to serialize the trimming.
2710 */
2711 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2712 }
e9b61f19
KS
2713
2714 /*
906f9cdf 2715 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2716 * split PMDs
2717 */
b8f593cd 2718 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2719 ret = -EBUSY;
2720 goto out_unlock;
2721 }
2722
d9654322 2723 mlocked = PageMlocked(page);
906f9cdf 2724 unmap_page(head);
e9b61f19
KS
2725 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2726
d9654322
KS
2727 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2728 if (mlocked)
2729 lru_add_drain();
2730
baa355fd 2731 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2732 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2733
2734 if (mapping) {
aa5dc07f 2735 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2736
baa355fd 2737 /*
aa5dc07f 2738 * Check if the head page is present in page cache.
baa355fd
KS
2739 * We assume all tail are present too, if head is there.
2740 */
aa5dc07f
MW
2741 xa_lock(&mapping->i_pages);
2742 if (xas_load(&xas) != head)
baa355fd
KS
2743 goto fail;
2744 }
2745
0139aa7b 2746 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2747 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2748 count = page_count(head);
2749 mapcount = total_mapcount(head);
baa355fd 2750 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2751 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2752 pgdata->split_queue_len--;
9a982250
KS
2753 list_del(page_deferred_list(head));
2754 }
65c45377 2755 if (mapping)
11fb9989 2756 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2757 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2758 __split_huge_page(page, list, end, flags);
59807685
HY
2759 if (PageSwapCache(head)) {
2760 swp_entry_t entry = { .val = page_private(head) };
2761
2762 ret = split_swap_cluster(entry);
2763 } else
2764 ret = 0;
e9b61f19 2765 } else {
baa355fd
KS
2766 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2767 pr_alert("total_mapcount: %u, page_count(): %u\n",
2768 mapcount, count);
2769 if (PageTail(page))
2770 dump_page(head, NULL);
2771 dump_page(page, "total_mapcount(head) > 0");
2772 BUG();
2773 }
2774 spin_unlock(&pgdata->split_queue_lock);
2775fail: if (mapping)
b93b0163 2776 xa_unlock(&mapping->i_pages);
f4b7e272 2777 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2778 remap_page(head);
e9b61f19
KS
2779 ret = -EBUSY;
2780 }
2781
2782out_unlock:
baa355fd
KS
2783 if (anon_vma) {
2784 anon_vma_unlock_write(anon_vma);
2785 put_anon_vma(anon_vma);
2786 }
2787 if (mapping)
2788 i_mmap_unlock_read(mapping);
e9b61f19
KS
2789out:
2790 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2791 return ret;
2792}
9a982250
KS
2793
2794void free_transhuge_page(struct page *page)
2795{
a3d0a918 2796 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2797 unsigned long flags;
2798
a3d0a918 2799 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2800 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2801 pgdata->split_queue_len--;
9a982250
KS
2802 list_del(page_deferred_list(page));
2803 }
a3d0a918 2804 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2805 free_compound_page(page);
2806}
2807
2808void deferred_split_huge_page(struct page *page)
2809{
a3d0a918 2810 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2811 unsigned long flags;
2812
2813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2814
a3d0a918 2815 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2816 if (list_empty(page_deferred_list(page))) {
f9719a03 2817 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2818 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2819 pgdata->split_queue_len++;
9a982250 2820 }
a3d0a918 2821 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2822}
2823
2824static unsigned long deferred_split_count(struct shrinker *shrink,
2825 struct shrink_control *sc)
2826{
a3d0a918 2827 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2828 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2829}
2830
2831static unsigned long deferred_split_scan(struct shrinker *shrink,
2832 struct shrink_control *sc)
2833{
a3d0a918 2834 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2835 unsigned long flags;
2836 LIST_HEAD(list), *pos, *next;
2837 struct page *page;
2838 int split = 0;
2839
a3d0a918 2840 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2841 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2842 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2843 page = list_entry((void *)pos, struct page, mapping);
2844 page = compound_head(page);
e3ae1953
KS
2845 if (get_page_unless_zero(page)) {
2846 list_move(page_deferred_list(page), &list);
2847 } else {
2848 /* We lost race with put_compound_page() */
9a982250 2849 list_del_init(page_deferred_list(page));
a3d0a918 2850 pgdata->split_queue_len--;
9a982250 2851 }
e3ae1953
KS
2852 if (!--sc->nr_to_scan)
2853 break;
9a982250 2854 }
a3d0a918 2855 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2856
2857 list_for_each_safe(pos, next, &list) {
2858 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2859 if (!trylock_page(page))
2860 goto next;
9a982250
KS
2861 /* split_huge_page() removes page from list on success */
2862 if (!split_huge_page(page))
2863 split++;
2864 unlock_page(page);
fa41b900 2865next:
9a982250
KS
2866 put_page(page);
2867 }
2868
a3d0a918
KS
2869 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2870 list_splice_tail(&list, &pgdata->split_queue);
2871 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2872
cb8d68ec
KS
2873 /*
2874 * Stop shrinker if we didn't split any page, but the queue is empty.
2875 * This can happen if pages were freed under us.
2876 */
2877 if (!split && list_empty(&pgdata->split_queue))
2878 return SHRINK_STOP;
2879 return split;
9a982250
KS
2880}
2881
2882static struct shrinker deferred_split_shrinker = {
2883 .count_objects = deferred_split_count,
2884 .scan_objects = deferred_split_scan,
2885 .seeks = DEFAULT_SEEKS,
a3d0a918 2886 .flags = SHRINKER_NUMA_AWARE,
9a982250 2887};
49071d43
KS
2888
2889#ifdef CONFIG_DEBUG_FS
2890static int split_huge_pages_set(void *data, u64 val)
2891{
2892 struct zone *zone;
2893 struct page *page;
2894 unsigned long pfn, max_zone_pfn;
2895 unsigned long total = 0, split = 0;
2896
2897 if (val != 1)
2898 return -EINVAL;
2899
2900 for_each_populated_zone(zone) {
2901 max_zone_pfn = zone_end_pfn(zone);
2902 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2903 if (!pfn_valid(pfn))
2904 continue;
2905
2906 page = pfn_to_page(pfn);
2907 if (!get_page_unless_zero(page))
2908 continue;
2909
2910 if (zone != page_zone(page))
2911 goto next;
2912
baa355fd 2913 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2914 goto next;
2915
2916 total++;
2917 lock_page(page);
2918 if (!split_huge_page(page))
2919 split++;
2920 unlock_page(page);
2921next:
2922 put_page(page);
2923 }
2924 }
2925
145bdaa1 2926 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2927
2928 return 0;
2929}
2930DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2931 "%llu\n");
2932
2933static int __init split_huge_pages_debugfs(void)
2934{
d9f7979c
GKH
2935 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2936 &split_huge_pages_fops);
49071d43
KS
2937 return 0;
2938}
2939late_initcall(split_huge_pages_debugfs);
2940#endif
616b8371
ZY
2941
2942#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2943void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2944 struct page *page)
2945{
2946 struct vm_area_struct *vma = pvmw->vma;
2947 struct mm_struct *mm = vma->vm_mm;
2948 unsigned long address = pvmw->address;
2949 pmd_t pmdval;
2950 swp_entry_t entry;
ab6e3d09 2951 pmd_t pmdswp;
616b8371
ZY
2952
2953 if (!(pvmw->pmd && !pvmw->pte))
2954 return;
2955
616b8371
ZY
2956 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2957 pmdval = *pvmw->pmd;
2958 pmdp_invalidate(vma, address, pvmw->pmd);
2959 if (pmd_dirty(pmdval))
2960 set_page_dirty(page);
2961 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2962 pmdswp = swp_entry_to_pmd(entry);
2963 if (pmd_soft_dirty(pmdval))
2964 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2965 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2966 page_remove_rmap(page, true);
2967 put_page(page);
616b8371
ZY
2968}
2969
2970void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2971{
2972 struct vm_area_struct *vma = pvmw->vma;
2973 struct mm_struct *mm = vma->vm_mm;
2974 unsigned long address = pvmw->address;
2975 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2976 pmd_t pmde;
2977 swp_entry_t entry;
2978
2979 if (!(pvmw->pmd && !pvmw->pte))
2980 return;
2981
2982 entry = pmd_to_swp_entry(*pvmw->pmd);
2983 get_page(new);
2984 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2985 if (pmd_swp_soft_dirty(*pvmw->pmd))
2986 pmde = pmd_mksoft_dirty(pmde);
616b8371 2987 if (is_write_migration_entry(entry))
f55e1014 2988 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2989
2990 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2991 if (PageAnon(new))
2992 page_add_anon_rmap(new, vma, mmun_start, true);
2993 else
2994 page_add_file_rmap(new, true);
616b8371 2995 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2996 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2997 mlock_vma_page(new);
2998 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2999}
3000#endif