]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memcontrol.c
mm/swapfile.c: tmp is always smaller than max
[thirdparty/linux.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
86daf94e 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
86daf94e 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
8965aa28 659 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
8380ce47
RG
779void mod_memcg_obj_state(void *p, int idx, int val)
780{
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788}
789
db9adbcb
JW
790/**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798{
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
806 struct mem_cgroup *mi;
807
766a4c19
YS
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818}
819
42a30035 820static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 821{
871789d4 822 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
823}
824
42a30035
JW
825static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826{
815744d7
JW
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
42a30035
JW
833}
834
c0ff4b85 835static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 836 struct page *page,
f627c2f5 837 bool compound, int nr_pages)
d52aa412 838{
b2402857
KH
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
0a31bc97 843 if (PageAnon(page))
c9019e9b 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 845 else {
c9019e9b 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 847 if (PageSwapBacked(page))
c9019e9b 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 849 }
55e462b0 850
f627c2f5
KS
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 854 }
b070e65c 855
e401f176
KH
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
c9019e9b 858 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 859 else {
c9019e9b 860 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
861 nr_pages = -nr_pages; /* for event */
862 }
e401f176 863
871789d4 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
865}
866
f53d7ce3
JW
867static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
7a159cc9
JW
869{
870 unsigned long val, next;
871
871789d4
CD
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 874 /* from time_after() in jiffies.h */
6a1a8b80 875 if ((long)(next - val) < 0) {
f53d7ce3
JW
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
bb4cc1a8
AM
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
f53d7ce3
JW
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
f53d7ce3 902
bb4cc1a8
AM
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 905 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
0a31bc97 908 }
d2265e6f
KH
909}
910
cf475ad2 911struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 912{
31a78f23
BS
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
073219e9 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 922}
33398cf2 923EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 924
d46eb14b
SB
925/**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 934{
d46eb14b
SB
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
0b7f569e 939
54595fe2
KH
940 rcu_read_lock();
941 do {
6f6acb00
MH
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
df381975 948 memcg = root_mem_cgroup;
6f6acb00
MH
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
00d484f3 954 } while (!css_tryget(&memcg->css));
54595fe2 955 rcu_read_unlock();
c0ff4b85 956 return memcg;
54595fe2 957}
d46eb14b
SB
958EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
f745c6f5
SB
960/**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968{
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
8965aa28
SB
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980}
981EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
d46eb14b
SB
983/**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987{
988 if (unlikely(current->active_memcg)) {
8965aa28 989 struct mem_cgroup *memcg;
d46eb14b
SB
990
991 rcu_read_lock();
8965aa28
SB
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
d46eb14b
SB
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
999 }
1000 return get_mem_cgroup_from_mm(current->mm);
1001}
54595fe2 1002
5660048c
JW
1003/**
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008 *
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1011 *
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1015 *
b213b54f 1016 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1017 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1018 * reclaimers operating on the same node and priority.
5660048c 1019 */
694fbc0f 1020struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1021 struct mem_cgroup *prev,
694fbc0f 1022 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1023{
33398cf2 1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1025 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1026 struct mem_cgroup *memcg = NULL;
5ac8fb31 1027 struct mem_cgroup *pos = NULL;
711d3d2c 1028
694fbc0f
AM
1029 if (mem_cgroup_disabled())
1030 return NULL;
5660048c 1031
9f3a0d09
JW
1032 if (!root)
1033 root = root_mem_cgroup;
7d74b06f 1034
9f3a0d09 1035 if (prev && !reclaim)
5ac8fb31 1036 pos = prev;
14067bb3 1037
9f3a0d09
JW
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
5ac8fb31 1040 goto out;
694fbc0f 1041 return root;
9f3a0d09 1042 }
14067bb3 1043
542f85f9 1044 rcu_read_lock();
5f578161 1045
5ac8fb31 1046 if (reclaim) {
ef8f2327 1047 struct mem_cgroup_per_node *mz;
5ac8fb31 1048
ef8f2327 1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1050 iter = &mz->iter;
5ac8fb31
JW
1051
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1054
6df38689 1055 while (1) {
4db0c3c2 1056 pos = READ_ONCE(iter->position);
6df38689
VD
1057 if (!pos || css_tryget(&pos->css))
1058 break;
5ac8fb31 1059 /*
6df38689
VD
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
5ac8fb31 1066 */
6df38689
VD
1067 (void)cmpxchg(&iter->position, pos, NULL);
1068 }
5ac8fb31
JW
1069 }
1070
1071 if (pos)
1072 css = &pos->css;
1073
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1077 /*
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1082 */
1083 if (!prev)
1084 continue;
1085 break;
527a5ec9 1086 }
7d74b06f 1087
5ac8fb31
JW
1088 /*
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1092 */
1093 memcg = mem_cgroup_from_css(css);
14067bb3 1094
5ac8fb31
JW
1095 if (css == &root->css)
1096 break;
14067bb3 1097
0b8f73e1
JW
1098 if (css_tryget(css))
1099 break;
9f3a0d09 1100
5ac8fb31 1101 memcg = NULL;
9f3a0d09 1102 }
5ac8fb31
JW
1103
1104 if (reclaim) {
5ac8fb31 1105 /*
6df38689
VD
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1109 */
6df38689
VD
1110 (void)cmpxchg(&iter->position, pos, memcg);
1111
5ac8fb31
JW
1112 if (pos)
1113 css_put(&pos->css);
1114
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
9f3a0d09 1119 }
5ac8fb31 1120
542f85f9
MH
1121out_unlock:
1122 rcu_read_unlock();
5ac8fb31 1123out:
c40046f3
MH
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
9f3a0d09 1127 return memcg;
14067bb3 1128}
7d74b06f 1129
5660048c
JW
1130/**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
9f3a0d09
JW
1137{
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142}
7d74b06f 1143
54a83d6b
MC
1144static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
6df38689 1146{
6df38689 1147 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
6df38689 1150
54a83d6b
MC
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1155 }
1156}
1157
54a83d6b
MC
1158static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159{
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177}
1178
7c5f64f8
VD
1179/**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194{
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
f168a9a5 1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214}
1215
925b7673 1216/**
dfe0e773 1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1218 * @page: the page
f144c390 1219 * @pgdat: pgdat of the page
dfe0e773
JW
1220 *
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1224 */
599d0c95 1225struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1226{
ef8f2327 1227 struct mem_cgroup_per_node *mz;
925b7673 1228 struct mem_cgroup *memcg;
bea8c150 1229 struct lruvec *lruvec;
6d12e2d8 1230
bea8c150 1231 if (mem_cgroup_disabled()) {
867e5e1d 1232 lruvec = &pgdat->__lruvec;
bea8c150
HD
1233 goto out;
1234 }
925b7673 1235
1306a85a 1236 memcg = page->mem_cgroup;
7512102c 1237 /*
dfe0e773 1238 * Swapcache readahead pages are added to the LRU - and
29833315 1239 * possibly migrated - before they are charged.
7512102c 1240 */
29833315
JW
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
7512102c 1243
ef8f2327 1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1245 lruvec = &mz->lruvec;
1246out:
1247 /*
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1251 */
599d0c95
MG
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
bea8c150 1254 return lruvec;
08e552c6 1255}
b69408e8 1256
925b7673 1257/**
fa9add64
HD
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
b4536f0c 1261 * @zid: zone id of the accounted pages
fa9add64 1262 * @nr_pages: positive when adding or negative when removing
925b7673 1263 *
ca707239
HD
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1267 */
fa9add64 1268void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1269 int zid, int nr_pages)
3f58a829 1270{
ef8f2327 1271 struct mem_cgroup_per_node *mz;
fa9add64 1272 unsigned long *lru_size;
ca707239 1273 long size;
3f58a829
MK
1274
1275 if (mem_cgroup_disabled())
1276 return;
1277
ef8f2327 1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1279 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1280
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1283
1284 size = *lru_size;
b4536f0c
MH
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1290 }
1291
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
08e552c6 1294}
544122e5 1295
19942822 1296/**
9d11ea9f 1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1298 * @memcg: the memory cgroup
19942822 1299 *
9d11ea9f 1300 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1301 * pages.
19942822 1302 */
c0ff4b85 1303static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1304{
3e32cb2e
JW
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
9d11ea9f 1308
3e32cb2e 1309 count = page_counter_read(&memcg->memory);
bbec2e15 1310 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1311 if (count < limit)
1312 margin = limit - count;
1313
7941d214 1314 if (do_memsw_account()) {
3e32cb2e 1315 count = page_counter_read(&memcg->memsw);
bbec2e15 1316 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1317 if (count <= limit)
1318 margin = min(margin, limit - count);
cbedbac3
LR
1319 else
1320 margin = 0;
3e32cb2e
JW
1321 }
1322
1323 return margin;
19942822
JW
1324}
1325
32047e2a 1326/*
bdcbb659 1327 * A routine for checking "mem" is under move_account() or not.
32047e2a 1328 *
bdcbb659
QH
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
32047e2a 1332 */
c0ff4b85 1333static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1334{
2bd9bb20
KH
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
4b534334 1337 bool ret = false;
2bd9bb20
KH
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
3e92041d 1347
2314b42d
JW
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1350unlock:
1351 spin_unlock(&mc.lock);
4b534334
KH
1352 return ret;
1353}
1354
c0ff4b85 1355static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1356{
1357 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1358 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369}
1370
c8713d0b
JW
1371static char *memory_stat_format(struct mem_cgroup *memcg)
1372{
1373 struct seq_buf s;
1374 int i;
71cd3113 1375
c8713d0b
JW
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1379
1380 /*
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1383 *
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 *
1388 * Current memory state:
1389 */
1390
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1407
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1420
1421 /*
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1426 */
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1430
1431 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1435
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1442
1443 /* Accumulated memory events */
1444
ebc5d83d
KK
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1449
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1456
ebc5d83d
KK
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1458 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1459 seq_buf_printf(&s, "pgscan %lu\n",
1460 memcg_events(memcg, PGSCAN_KSWAPD) +
1461 memcg_events(memcg, PGSCAN_DIRECT));
1462 seq_buf_printf(&s, "pgsteal %lu\n",
1463 memcg_events(memcg, PGSTEAL_KSWAPD) +
1464 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1466 memcg_events(memcg, PGACTIVATE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1468 memcg_events(memcg, PGDEACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1470 memcg_events(memcg, PGLAZYFREE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1472 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1473
1474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1476 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1478 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1479#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1480
1481 /* The above should easily fit into one page */
1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1483
1484 return s.buffer;
1485}
71cd3113 1486
58cf188e 1487#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1488/**
f0c867d9 1489 * mem_cgroup_print_oom_context: Print OOM information relevant to
1490 * memory controller.
e222432b
BS
1491 * @memcg: The memory cgroup that went over limit
1492 * @p: Task that is going to be killed
1493 *
1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1495 * enabled
1496 */
f0c867d9 1497void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1498{
e222432b
BS
1499 rcu_read_lock();
1500
f0c867d9 1501 if (memcg) {
1502 pr_cont(",oom_memcg=");
1503 pr_cont_cgroup_path(memcg->css.cgroup);
1504 } else
1505 pr_cont(",global_oom");
2415b9f5 1506 if (p) {
f0c867d9 1507 pr_cont(",task_memcg=");
2415b9f5 1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1509 }
e222432b 1510 rcu_read_unlock();
f0c867d9 1511}
1512
1513/**
1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1515 * memory controller.
1516 * @memcg: The memory cgroup that went over limit
1517 */
1518void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1519{
c8713d0b 1520 char *buf;
e222432b 1521
3e32cb2e
JW
1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->memory)),
15b42562 1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1529 else {
1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->memsw)),
1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1534 K((u64)page_counter_read(&memcg->kmem)),
1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1536 }
c8713d0b
JW
1537
1538 pr_info("Memory cgroup stats for ");
1539 pr_cont_cgroup_path(memcg->css.cgroup);
1540 pr_cont(":");
1541 buf = memory_stat_format(memcg);
1542 if (!buf)
1543 return;
1544 pr_info("%s", buf);
1545 kfree(buf);
e222432b
BS
1546}
1547
a63d83f4
DR
1548/*
1549 * Return the memory (and swap, if configured) limit for a memcg.
1550 */
bbec2e15 1551unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1552{
bbec2e15 1553 unsigned long max;
f3e8eb70 1554
15b42562 1555 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1556 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1557 unsigned long memsw_max;
1558 unsigned long swap_max;
9a5a8f19 1559
bbec2e15 1560 memsw_max = memcg->memsw.max;
32d087cd 1561 swap_max = READ_ONCE(memcg->swap.max);
bbec2e15
RG
1562 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1563 max = min(max + swap_max, memsw_max);
9a5a8f19 1564 }
bbec2e15 1565 return max;
a63d83f4
DR
1566}
1567
9783aa99
CD
1568unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1569{
1570 return page_counter_read(&memcg->memory);
1571}
1572
b6e6edcf 1573static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1574 int order)
9cbb78bb 1575{
6e0fc46d
DR
1576 struct oom_control oc = {
1577 .zonelist = NULL,
1578 .nodemask = NULL,
2a966b77 1579 .memcg = memcg,
6e0fc46d
DR
1580 .gfp_mask = gfp_mask,
1581 .order = order,
6e0fc46d 1582 };
7c5f64f8 1583 bool ret;
9cbb78bb 1584
7775face
TH
1585 if (mutex_lock_killable(&oom_lock))
1586 return true;
1587 /*
1588 * A few threads which were not waiting at mutex_lock_killable() can
1589 * fail to bail out. Therefore, check again after holding oom_lock.
1590 */
1591 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1592 mutex_unlock(&oom_lock);
7c5f64f8 1593 return ret;
9cbb78bb
DR
1594}
1595
0608f43d 1596static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1597 pg_data_t *pgdat,
0608f43d
AM
1598 gfp_t gfp_mask,
1599 unsigned long *total_scanned)
1600{
1601 struct mem_cgroup *victim = NULL;
1602 int total = 0;
1603 int loop = 0;
1604 unsigned long excess;
1605 unsigned long nr_scanned;
1606 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1607 .pgdat = pgdat,
0608f43d
AM
1608 };
1609
3e32cb2e 1610 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1611
1612 while (1) {
1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 if (!victim) {
1615 loop++;
1616 if (loop >= 2) {
1617 /*
1618 * If we have not been able to reclaim
1619 * anything, it might because there are
1620 * no reclaimable pages under this hierarchy
1621 */
1622 if (!total)
1623 break;
1624 /*
1625 * We want to do more targeted reclaim.
1626 * excess >> 2 is not to excessive so as to
1627 * reclaim too much, nor too less that we keep
1628 * coming back to reclaim from this cgroup
1629 */
1630 if (total >= (excess >> 2) ||
1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 break;
1633 }
1634 continue;
1635 }
a9dd0a83 1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1637 pgdat, &nr_scanned);
0608f43d 1638 *total_scanned += nr_scanned;
3e32cb2e 1639 if (!soft_limit_excess(root_memcg))
0608f43d 1640 break;
6d61ef40 1641 }
0608f43d
AM
1642 mem_cgroup_iter_break(root_memcg, victim);
1643 return total;
6d61ef40
BS
1644}
1645
0056f4e6
JW
1646#ifdef CONFIG_LOCKDEP
1647static struct lockdep_map memcg_oom_lock_dep_map = {
1648 .name = "memcg_oom_lock",
1649};
1650#endif
1651
fb2a6fc5
JW
1652static DEFINE_SPINLOCK(memcg_oom_lock);
1653
867578cb
KH
1654/*
1655 * Check OOM-Killer is already running under our hierarchy.
1656 * If someone is running, return false.
1657 */
fb2a6fc5 1658static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1659{
79dfdacc 1660 struct mem_cgroup *iter, *failed = NULL;
a636b327 1661
fb2a6fc5
JW
1662 spin_lock(&memcg_oom_lock);
1663
9f3a0d09 1664 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1665 if (iter->oom_lock) {
79dfdacc
MH
1666 /*
1667 * this subtree of our hierarchy is already locked
1668 * so we cannot give a lock.
1669 */
79dfdacc 1670 failed = iter;
9f3a0d09
JW
1671 mem_cgroup_iter_break(memcg, iter);
1672 break;
23751be0
JW
1673 } else
1674 iter->oom_lock = true;
7d74b06f 1675 }
867578cb 1676
fb2a6fc5
JW
1677 if (failed) {
1678 /*
1679 * OK, we failed to lock the whole subtree so we have
1680 * to clean up what we set up to the failing subtree
1681 */
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 if (iter == failed) {
1684 mem_cgroup_iter_break(memcg, iter);
1685 break;
1686 }
1687 iter->oom_lock = false;
79dfdacc 1688 }
0056f4e6
JW
1689 } else
1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1691
1692 spin_unlock(&memcg_oom_lock);
1693
1694 return !failed;
a636b327 1695}
0b7f569e 1696
fb2a6fc5 1697static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1698{
7d74b06f
KH
1699 struct mem_cgroup *iter;
1700
fb2a6fc5 1701 spin_lock(&memcg_oom_lock);
5facae4f 1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1703 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1704 iter->oom_lock = false;
fb2a6fc5 1705 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1706}
1707
c0ff4b85 1708static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1709{
1710 struct mem_cgroup *iter;
1711
c2b42d3c 1712 spin_lock(&memcg_oom_lock);
c0ff4b85 1713 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1714 iter->under_oom++;
1715 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1716}
1717
c0ff4b85 1718static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1719{
1720 struct mem_cgroup *iter;
1721
867578cb
KH
1722 /*
1723 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1725 */
c2b42d3c 1726 spin_lock(&memcg_oom_lock);
c0ff4b85 1727 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1728 if (iter->under_oom > 0)
1729 iter->under_oom--;
1730 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1731}
1732
867578cb
KH
1733static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1734
dc98df5a 1735struct oom_wait_info {
d79154bb 1736 struct mem_cgroup *memcg;
ac6424b9 1737 wait_queue_entry_t wait;
dc98df5a
KH
1738};
1739
ac6424b9 1740static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1741 unsigned mode, int sync, void *arg)
1742{
d79154bb
HD
1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1744 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1745 struct oom_wait_info *oom_wait_info;
1746
1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1748 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1749
2314b42d
JW
1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1752 return 0;
dc98df5a
KH
1753 return autoremove_wake_function(wait, mode, sync, arg);
1754}
1755
c0ff4b85 1756static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1757{
c2b42d3c
TH
1758 /*
1759 * For the following lockless ->under_oom test, the only required
1760 * guarantee is that it must see the state asserted by an OOM when
1761 * this function is called as a result of userland actions
1762 * triggered by the notification of the OOM. This is trivially
1763 * achieved by invoking mem_cgroup_mark_under_oom() before
1764 * triggering notification.
1765 */
1766 if (memcg && memcg->under_oom)
f4b90b70 1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1768}
1769
29ef680a
MH
1770enum oom_status {
1771 OOM_SUCCESS,
1772 OOM_FAILED,
1773 OOM_ASYNC,
1774 OOM_SKIPPED
1775};
1776
1777static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1778{
7056d3a3
MH
1779 enum oom_status ret;
1780 bool locked;
1781
29ef680a
MH
1782 if (order > PAGE_ALLOC_COSTLY_ORDER)
1783 return OOM_SKIPPED;
1784
7a1adfdd
RG
1785 memcg_memory_event(memcg, MEMCG_OOM);
1786
867578cb 1787 /*
49426420
JW
1788 * We are in the middle of the charge context here, so we
1789 * don't want to block when potentially sitting on a callstack
1790 * that holds all kinds of filesystem and mm locks.
1791 *
29ef680a
MH
1792 * cgroup1 allows disabling the OOM killer and waiting for outside
1793 * handling until the charge can succeed; remember the context and put
1794 * the task to sleep at the end of the page fault when all locks are
1795 * released.
49426420 1796 *
29ef680a
MH
1797 * On the other hand, in-kernel OOM killer allows for an async victim
1798 * memory reclaim (oom_reaper) and that means that we are not solely
1799 * relying on the oom victim to make a forward progress and we can
1800 * invoke the oom killer here.
1801 *
1802 * Please note that mem_cgroup_out_of_memory might fail to find a
1803 * victim and then we have to bail out from the charge path.
867578cb 1804 */
29ef680a
MH
1805 if (memcg->oom_kill_disable) {
1806 if (!current->in_user_fault)
1807 return OOM_SKIPPED;
1808 css_get(&memcg->css);
1809 current->memcg_in_oom = memcg;
1810 current->memcg_oom_gfp_mask = mask;
1811 current->memcg_oom_order = order;
1812
1813 return OOM_ASYNC;
1814 }
1815
7056d3a3
MH
1816 mem_cgroup_mark_under_oom(memcg);
1817
1818 locked = mem_cgroup_oom_trylock(memcg);
1819
1820 if (locked)
1821 mem_cgroup_oom_notify(memcg);
1822
1823 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1824 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1825 ret = OOM_SUCCESS;
1826 else
1827 ret = OOM_FAILED;
1828
1829 if (locked)
1830 mem_cgroup_oom_unlock(memcg);
29ef680a 1831
7056d3a3 1832 return ret;
3812c8c8
JW
1833}
1834
1835/**
1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1837 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1838 *
49426420
JW
1839 * This has to be called at the end of a page fault if the memcg OOM
1840 * handler was enabled.
3812c8c8 1841 *
49426420 1842 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1843 * sleep on a waitqueue until the userspace task resolves the
1844 * situation. Sleeping directly in the charge context with all kinds
1845 * of locks held is not a good idea, instead we remember an OOM state
1846 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1847 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1848 *
1849 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1850 * completed, %false otherwise.
3812c8c8 1851 */
49426420 1852bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1853{
626ebc41 1854 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1855 struct oom_wait_info owait;
49426420 1856 bool locked;
3812c8c8
JW
1857
1858 /* OOM is global, do not handle */
3812c8c8 1859 if (!memcg)
49426420 1860 return false;
3812c8c8 1861
7c5f64f8 1862 if (!handle)
49426420 1863 goto cleanup;
3812c8c8
JW
1864
1865 owait.memcg = memcg;
1866 owait.wait.flags = 0;
1867 owait.wait.func = memcg_oom_wake_function;
1868 owait.wait.private = current;
2055da97 1869 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1870
3812c8c8 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1872 mem_cgroup_mark_under_oom(memcg);
1873
1874 locked = mem_cgroup_oom_trylock(memcg);
1875
1876 if (locked)
1877 mem_cgroup_oom_notify(memcg);
1878
1879 if (locked && !memcg->oom_kill_disable) {
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1883 current->memcg_oom_order);
49426420 1884 } else {
3812c8c8 1885 schedule();
49426420
JW
1886 mem_cgroup_unmark_under_oom(memcg);
1887 finish_wait(&memcg_oom_waitq, &owait.wait);
1888 }
1889
1890 if (locked) {
fb2a6fc5
JW
1891 mem_cgroup_oom_unlock(memcg);
1892 /*
1893 * There is no guarantee that an OOM-lock contender
1894 * sees the wakeups triggered by the OOM kill
1895 * uncharges. Wake any sleepers explicitely.
1896 */
1897 memcg_oom_recover(memcg);
1898 }
49426420 1899cleanup:
626ebc41 1900 current->memcg_in_oom = NULL;
3812c8c8 1901 css_put(&memcg->css);
867578cb 1902 return true;
0b7f569e
KH
1903}
1904
3d8b38eb
RG
1905/**
1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1907 * @victim: task to be killed by the OOM killer
1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1909 *
1910 * Returns a pointer to a memory cgroup, which has to be cleaned up
1911 * by killing all belonging OOM-killable tasks.
1912 *
1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1914 */
1915struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1916 struct mem_cgroup *oom_domain)
1917{
1918 struct mem_cgroup *oom_group = NULL;
1919 struct mem_cgroup *memcg;
1920
1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1922 return NULL;
1923
1924 if (!oom_domain)
1925 oom_domain = root_mem_cgroup;
1926
1927 rcu_read_lock();
1928
1929 memcg = mem_cgroup_from_task(victim);
1930 if (memcg == root_mem_cgroup)
1931 goto out;
1932
48fe267c
RG
1933 /*
1934 * If the victim task has been asynchronously moved to a different
1935 * memory cgroup, we might end up killing tasks outside oom_domain.
1936 * In this case it's better to ignore memory.group.oom.
1937 */
1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1939 goto out;
1940
3d8b38eb
RG
1941 /*
1942 * Traverse the memory cgroup hierarchy from the victim task's
1943 * cgroup up to the OOMing cgroup (or root) to find the
1944 * highest-level memory cgroup with oom.group set.
1945 */
1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1947 if (memcg->oom_group)
1948 oom_group = memcg;
1949
1950 if (memcg == oom_domain)
1951 break;
1952 }
1953
1954 if (oom_group)
1955 css_get(&oom_group->css);
1956out:
1957 rcu_read_unlock();
1958
1959 return oom_group;
1960}
1961
1962void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1963{
1964 pr_info("Tasks in ");
1965 pr_cont_cgroup_path(memcg->css.cgroup);
1966 pr_cont(" are going to be killed due to memory.oom.group set\n");
1967}
1968
d7365e78 1969/**
81f8c3a4
JW
1970 * lock_page_memcg - lock a page->mem_cgroup binding
1971 * @page: the page
32047e2a 1972 *
81f8c3a4 1973 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1974 * another cgroup.
1975 *
1976 * It ensures lifetime of the returned memcg. Caller is responsible
1977 * for the lifetime of the page; __unlock_page_memcg() is available
1978 * when @page might get freed inside the locked section.
d69b042f 1979 */
739f79fc 1980struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1981{
1982 struct mem_cgroup *memcg;
6de22619 1983 unsigned long flags;
89c06bd5 1984
6de22619
JW
1985 /*
1986 * The RCU lock is held throughout the transaction. The fast
1987 * path can get away without acquiring the memcg->move_lock
1988 * because page moving starts with an RCU grace period.
739f79fc
JW
1989 *
1990 * The RCU lock also protects the memcg from being freed when
1991 * the page state that is going to change is the only thing
1992 * preventing the page itself from being freed. E.g. writeback
1993 * doesn't hold a page reference and relies on PG_writeback to
1994 * keep off truncation, migration and so forth.
1995 */
d7365e78
JW
1996 rcu_read_lock();
1997
1998 if (mem_cgroup_disabled())
739f79fc 1999 return NULL;
89c06bd5 2000again:
1306a85a 2001 memcg = page->mem_cgroup;
29833315 2002 if (unlikely(!memcg))
739f79fc 2003 return NULL;
d7365e78 2004
bdcbb659 2005 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2006 return memcg;
89c06bd5 2007
6de22619 2008 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2009 if (memcg != page->mem_cgroup) {
6de22619 2010 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2011 goto again;
2012 }
6de22619
JW
2013
2014 /*
2015 * When charge migration first begins, we can have locked and
2016 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2017 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2018 */
2019 memcg->move_lock_task = current;
2020 memcg->move_lock_flags = flags;
d7365e78 2021
739f79fc 2022 return memcg;
89c06bd5 2023}
81f8c3a4 2024EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2025
d7365e78 2026/**
739f79fc
JW
2027 * __unlock_page_memcg - unlock and unpin a memcg
2028 * @memcg: the memcg
2029 *
2030 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2031 */
739f79fc 2032void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2033{
6de22619
JW
2034 if (memcg && memcg->move_lock_task == current) {
2035 unsigned long flags = memcg->move_lock_flags;
2036
2037 memcg->move_lock_task = NULL;
2038 memcg->move_lock_flags = 0;
2039
2040 spin_unlock_irqrestore(&memcg->move_lock, flags);
2041 }
89c06bd5 2042
d7365e78 2043 rcu_read_unlock();
89c06bd5 2044}
739f79fc
JW
2045
2046/**
2047 * unlock_page_memcg - unlock a page->mem_cgroup binding
2048 * @page: the page
2049 */
2050void unlock_page_memcg(struct page *page)
2051{
2052 __unlock_page_memcg(page->mem_cgroup);
2053}
81f8c3a4 2054EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2055
cdec2e42
KH
2056struct memcg_stock_pcp {
2057 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2058 unsigned int nr_pages;
cdec2e42 2059 struct work_struct work;
26fe6168 2060 unsigned long flags;
a0db00fc 2061#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2062};
2063static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2064static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2065
a0956d54
SS
2066/**
2067 * consume_stock: Try to consume stocked charge on this cpu.
2068 * @memcg: memcg to consume from.
2069 * @nr_pages: how many pages to charge.
2070 *
2071 * The charges will only happen if @memcg matches the current cpu's memcg
2072 * stock, and at least @nr_pages are available in that stock. Failure to
2073 * service an allocation will refill the stock.
2074 *
2075 * returns true if successful, false otherwise.
cdec2e42 2076 */
a0956d54 2077static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2078{
2079 struct memcg_stock_pcp *stock;
db2ba40c 2080 unsigned long flags;
3e32cb2e 2081 bool ret = false;
cdec2e42 2082
a983b5eb 2083 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2084 return ret;
a0956d54 2085
db2ba40c
JW
2086 local_irq_save(flags);
2087
2088 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2090 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2091 ret = true;
2092 }
db2ba40c
JW
2093
2094 local_irq_restore(flags);
2095
cdec2e42
KH
2096 return ret;
2097}
2098
2099/*
3e32cb2e 2100 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2101 */
2102static void drain_stock(struct memcg_stock_pcp *stock)
2103{
2104 struct mem_cgroup *old = stock->cached;
2105
11c9ea4e 2106 if (stock->nr_pages) {
3e32cb2e 2107 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2108 if (do_memsw_account())
3e32cb2e 2109 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2110 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2111 stock->nr_pages = 0;
cdec2e42
KH
2112 }
2113 stock->cached = NULL;
cdec2e42
KH
2114}
2115
cdec2e42
KH
2116static void drain_local_stock(struct work_struct *dummy)
2117{
db2ba40c
JW
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2120
72f0184c
MH
2121 /*
2122 * The only protection from memory hotplug vs. drain_stock races is
2123 * that we always operate on local CPU stock here with IRQ disabled
2124 */
db2ba40c
JW
2125 local_irq_save(flags);
2126
2127 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2128 drain_stock(stock);
26fe6168 2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2130
2131 local_irq_restore(flags);
cdec2e42
KH
2132}
2133
2134/*
3e32cb2e 2135 * Cache charges(val) to local per_cpu area.
320cc51d 2136 * This will be consumed by consume_stock() function, later.
cdec2e42 2137 */
c0ff4b85 2138static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2139{
db2ba40c
JW
2140 struct memcg_stock_pcp *stock;
2141 unsigned long flags;
2142
2143 local_irq_save(flags);
cdec2e42 2144
db2ba40c 2145 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2146 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2147 drain_stock(stock);
c0ff4b85 2148 stock->cached = memcg;
cdec2e42 2149 }
11c9ea4e 2150 stock->nr_pages += nr_pages;
db2ba40c 2151
a983b5eb 2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2153 drain_stock(stock);
2154
db2ba40c 2155 local_irq_restore(flags);
cdec2e42
KH
2156}
2157
2158/*
c0ff4b85 2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2160 * of the hierarchy under it.
cdec2e42 2161 */
6d3d6aa2 2162static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2163{
26fe6168 2164 int cpu, curcpu;
d38144b7 2165
6d3d6aa2
JW
2166 /* If someone's already draining, avoid adding running more workers. */
2167 if (!mutex_trylock(&percpu_charge_mutex))
2168 return;
72f0184c
MH
2169 /*
2170 * Notify other cpus that system-wide "drain" is running
2171 * We do not care about races with the cpu hotplug because cpu down
2172 * as well as workers from this path always operate on the local
2173 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2174 */
5af12d0e 2175 curcpu = get_cpu();
cdec2e42
KH
2176 for_each_online_cpu(cpu) {
2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2178 struct mem_cgroup *memcg;
e1a366be 2179 bool flush = false;
26fe6168 2180
e1a366be 2181 rcu_read_lock();
c0ff4b85 2182 memcg = stock->cached;
e1a366be
RG
2183 if (memcg && stock->nr_pages &&
2184 mem_cgroup_is_descendant(memcg, root_memcg))
2185 flush = true;
2186 rcu_read_unlock();
2187
2188 if (flush &&
2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2190 if (cpu == curcpu)
2191 drain_local_stock(&stock->work);
2192 else
2193 schedule_work_on(cpu, &stock->work);
2194 }
cdec2e42 2195 }
5af12d0e 2196 put_cpu();
9f50fad6 2197 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2198}
2199
308167fc 2200static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2201{
cdec2e42 2202 struct memcg_stock_pcp *stock;
42a30035 2203 struct mem_cgroup *memcg, *mi;
cdec2e42 2204
cdec2e42
KH
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
a983b5eb
JW
2207
2208 for_each_mem_cgroup(memcg) {
2209 int i;
2210
2211 for (i = 0; i < MEMCG_NR_STAT; i++) {
2212 int nid;
2213 long x;
2214
871789d4 2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2216 if (x)
42a30035
JW
2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2218 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2219
2220 if (i >= NR_VM_NODE_STAT_ITEMS)
2221 continue;
2222
2223 for_each_node(nid) {
2224 struct mem_cgroup_per_node *pn;
2225
2226 pn = mem_cgroup_nodeinfo(memcg, nid);
2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2228 if (x)
42a30035
JW
2229 do {
2230 atomic_long_add(x, &pn->lruvec_stat[i]);
2231 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2232 }
2233 }
2234
e27be240 2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2236 long x;
2237
871789d4 2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2239 if (x)
42a30035
JW
2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2241 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2242 }
2243 }
2244
308167fc 2245 return 0;
cdec2e42
KH
2246}
2247
f7e1cb6e
JW
2248static void reclaim_high(struct mem_cgroup *memcg,
2249 unsigned int nr_pages,
2250 gfp_t gfp_mask)
2251{
2252 do {
f6f989c5 2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
f7e1cb6e 2254 continue;
e27be240 2255 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e 2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
4bf17307
CD
2257 } while ((memcg = parent_mem_cgroup(memcg)) &&
2258 !mem_cgroup_is_root(memcg));
f7e1cb6e
JW
2259}
2260
2261static void high_work_func(struct work_struct *work)
2262{
2263 struct mem_cgroup *memcg;
2264
2265 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2266 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2267}
2268
0e4b01df
CD
2269/*
2270 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2271 * enough to still cause a significant slowdown in most cases, while still
2272 * allowing diagnostics and tracing to proceed without becoming stuck.
2273 */
2274#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2275
2276/*
2277 * When calculating the delay, we use these either side of the exponentiation to
2278 * maintain precision and scale to a reasonable number of jiffies (see the table
2279 * below.
2280 *
2281 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2282 * overage ratio to a delay.
2283 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2284 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2285 * to produce a reasonable delay curve.
2286 *
2287 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2288 * reasonable delay curve compared to precision-adjusted overage, not
2289 * penalising heavily at first, but still making sure that growth beyond the
2290 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2291 * example, with a high of 100 megabytes:
2292 *
2293 * +-------+------------------------+
2294 * | usage | time to allocate in ms |
2295 * +-------+------------------------+
2296 * | 100M | 0 |
2297 * | 101M | 6 |
2298 * | 102M | 25 |
2299 * | 103M | 57 |
2300 * | 104M | 102 |
2301 * | 105M | 159 |
2302 * | 106M | 230 |
2303 * | 107M | 313 |
2304 * | 108M | 409 |
2305 * | 109M | 518 |
2306 * | 110M | 639 |
2307 * | 111M | 774 |
2308 * | 112M | 921 |
2309 * | 113M | 1081 |
2310 * | 114M | 1254 |
2311 * | 115M | 1439 |
2312 * | 116M | 1638 |
2313 * | 117M | 1849 |
2314 * | 118M | 2000 |
2315 * | 119M | 2000 |
2316 * | 120M | 2000 |
2317 * +-------+------------------------+
2318 */
2319 #define MEMCG_DELAY_PRECISION_SHIFT 20
2320 #define MEMCG_DELAY_SCALING_SHIFT 14
2321
b23afb93 2322/*
e26733e0
CD
2323 * Get the number of jiffies that we should penalise a mischievous cgroup which
2324 * is exceeding its memory.high by checking both it and its ancestors.
b23afb93 2325 */
e26733e0
CD
2326static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2327 unsigned int nr_pages)
b23afb93 2328{
e26733e0
CD
2329 unsigned long penalty_jiffies;
2330 u64 max_overage = 0;
b23afb93 2331
e26733e0
CD
2332 do {
2333 unsigned long usage, high;
2334 u64 overage;
b23afb93 2335
e26733e0
CD
2336 usage = page_counter_read(&memcg->memory);
2337 high = READ_ONCE(memcg->high);
2338
9b8b1754
JK
2339 if (usage <= high)
2340 continue;
2341
e26733e0
CD
2342 /*
2343 * Prevent division by 0 in overage calculation by acting as if
2344 * it was a threshold of 1 page
2345 */
2346 high = max(high, 1UL);
2347
2348 overage = usage - high;
2349 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2350 overage = div64_u64(overage, high);
2351
2352 if (overage > max_overage)
2353 max_overage = overage;
2354 } while ((memcg = parent_mem_cgroup(memcg)) &&
2355 !mem_cgroup_is_root(memcg));
2356
2357 if (!max_overage)
2358 return 0;
0e4b01df
CD
2359
2360 /*
0e4b01df
CD
2361 * We use overage compared to memory.high to calculate the number of
2362 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2363 * fairly lenient on small overages, and increasingly harsh when the
2364 * memcg in question makes it clear that it has no intention of stopping
2365 * its crazy behaviour, so we exponentially increase the delay based on
2366 * overage amount.
2367 */
e26733e0
CD
2368 penalty_jiffies = max_overage * max_overage * HZ;
2369 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2370 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2371
2372 /*
2373 * Factor in the task's own contribution to the overage, such that four
2374 * N-sized allocations are throttled approximately the same as one
2375 * 4N-sized allocation.
2376 *
2377 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2378 * larger the current charge patch is than that.
2379 */
2380 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2381
2382 /*
2383 * Clamp the max delay per usermode return so as to still keep the
2384 * application moving forwards and also permit diagnostics, albeit
2385 * extremely slowly.
2386 */
e26733e0
CD
2387 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2388}
2389
2390/*
2391 * Scheduled by try_charge() to be executed from the userland return path
2392 * and reclaims memory over the high limit.
2393 */
2394void mem_cgroup_handle_over_high(void)
2395{
2396 unsigned long penalty_jiffies;
2397 unsigned long pflags;
2398 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 struct mem_cgroup *memcg;
2400
2401 if (likely(!nr_pages))
2402 return;
2403
2404 memcg = get_mem_cgroup_from_mm(current->mm);
2405 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 current->memcg_nr_pages_over_high = 0;
2407
2408 /*
2409 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 * allocators proactively to slow down excessive growth.
2411 */
2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
0e4b01df
CD
2413
2414 /*
2415 * Don't sleep if the amount of jiffies this memcg owes us is so low
2416 * that it's not even worth doing, in an attempt to be nice to those who
2417 * go only a small amount over their memory.high value and maybe haven't
2418 * been aggressively reclaimed enough yet.
2419 */
2420 if (penalty_jiffies <= HZ / 100)
2421 goto out;
2422
2423 /*
2424 * If we exit early, we're guaranteed to die (since
2425 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2426 * need to account for any ill-begotten jiffies to pay them off later.
2427 */
2428 psi_memstall_enter(&pflags);
2429 schedule_timeout_killable(penalty_jiffies);
2430 psi_memstall_leave(&pflags);
2431
2432out:
2433 css_put(&memcg->css);
b23afb93
TH
2434}
2435
00501b53
JW
2436static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2437 unsigned int nr_pages)
8a9f3ccd 2438{
a983b5eb 2439 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2440 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2441 struct mem_cgroup *mem_over_limit;
3e32cb2e 2442 struct page_counter *counter;
6539cc05 2443 unsigned long nr_reclaimed;
b70a2a21
JW
2444 bool may_swap = true;
2445 bool drained = false;
29ef680a 2446 enum oom_status oom_status;
a636b327 2447
ce00a967 2448 if (mem_cgroup_is_root(memcg))
10d53c74 2449 return 0;
6539cc05 2450retry:
b6b6cc72 2451 if (consume_stock(memcg, nr_pages))
10d53c74 2452 return 0;
8a9f3ccd 2453
7941d214 2454 if (!do_memsw_account() ||
6071ca52
JW
2455 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2456 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2457 goto done_restock;
7941d214 2458 if (do_memsw_account())
3e32cb2e
JW
2459 page_counter_uncharge(&memcg->memsw, batch);
2460 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2461 } else {
3e32cb2e 2462 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2463 may_swap = false;
3fbe7244 2464 }
7a81b88c 2465
6539cc05
JW
2466 if (batch > nr_pages) {
2467 batch = nr_pages;
2468 goto retry;
2469 }
6d61ef40 2470
869712fd
JW
2471 /*
2472 * Memcg doesn't have a dedicated reserve for atomic
2473 * allocations. But like the global atomic pool, we need to
2474 * put the burden of reclaim on regular allocation requests
2475 * and let these go through as privileged allocations.
2476 */
2477 if (gfp_mask & __GFP_ATOMIC)
2478 goto force;
2479
06b078fc
JW
2480 /*
2481 * Unlike in global OOM situations, memcg is not in a physical
2482 * memory shortage. Allow dying and OOM-killed tasks to
2483 * bypass the last charges so that they can exit quickly and
2484 * free their memory.
2485 */
7775face 2486 if (unlikely(should_force_charge()))
10d53c74 2487 goto force;
06b078fc 2488
89a28483
JW
2489 /*
2490 * Prevent unbounded recursion when reclaim operations need to
2491 * allocate memory. This might exceed the limits temporarily,
2492 * but we prefer facilitating memory reclaim and getting back
2493 * under the limit over triggering OOM kills in these cases.
2494 */
2495 if (unlikely(current->flags & PF_MEMALLOC))
2496 goto force;
2497
06b078fc
JW
2498 if (unlikely(task_in_memcg_oom(current)))
2499 goto nomem;
2500
d0164adc 2501 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2502 goto nomem;
4b534334 2503
e27be240 2504 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2505
b70a2a21
JW
2506 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2507 gfp_mask, may_swap);
6539cc05 2508
61e02c74 2509 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2510 goto retry;
28c34c29 2511
b70a2a21 2512 if (!drained) {
6d3d6aa2 2513 drain_all_stock(mem_over_limit);
b70a2a21
JW
2514 drained = true;
2515 goto retry;
2516 }
2517
28c34c29
JW
2518 if (gfp_mask & __GFP_NORETRY)
2519 goto nomem;
6539cc05
JW
2520 /*
2521 * Even though the limit is exceeded at this point, reclaim
2522 * may have been able to free some pages. Retry the charge
2523 * before killing the task.
2524 *
2525 * Only for regular pages, though: huge pages are rather
2526 * unlikely to succeed so close to the limit, and we fall back
2527 * to regular pages anyway in case of failure.
2528 */
61e02c74 2529 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2530 goto retry;
2531 /*
2532 * At task move, charge accounts can be doubly counted. So, it's
2533 * better to wait until the end of task_move if something is going on.
2534 */
2535 if (mem_cgroup_wait_acct_move(mem_over_limit))
2536 goto retry;
2537
9b130619
JW
2538 if (nr_retries--)
2539 goto retry;
2540
38d38493 2541 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2542 goto nomem;
2543
06b078fc 2544 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2545 goto force;
06b078fc 2546
6539cc05 2547 if (fatal_signal_pending(current))
10d53c74 2548 goto force;
6539cc05 2549
29ef680a
MH
2550 /*
2551 * keep retrying as long as the memcg oom killer is able to make
2552 * a forward progress or bypass the charge if the oom killer
2553 * couldn't make any progress.
2554 */
2555 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2556 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2557 switch (oom_status) {
2558 case OOM_SUCCESS:
2559 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2560 goto retry;
2561 case OOM_FAILED:
2562 goto force;
2563 default:
2564 goto nomem;
2565 }
7a81b88c 2566nomem:
6d1fdc48 2567 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2568 return -ENOMEM;
10d53c74
TH
2569force:
2570 /*
2571 * The allocation either can't fail or will lead to more memory
2572 * being freed very soon. Allow memory usage go over the limit
2573 * temporarily by force charging it.
2574 */
2575 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2576 if (do_memsw_account())
10d53c74
TH
2577 page_counter_charge(&memcg->memsw, nr_pages);
2578 css_get_many(&memcg->css, nr_pages);
2579
2580 return 0;
6539cc05
JW
2581
2582done_restock:
e8ea14cc 2583 css_get_many(&memcg->css, batch);
6539cc05
JW
2584 if (batch > nr_pages)
2585 refill_stock(memcg, batch - nr_pages);
b23afb93 2586
241994ed 2587 /*
b23afb93
TH
2588 * If the hierarchy is above the normal consumption range, schedule
2589 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2590 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2591 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2592 * not recorded as it most likely matches current's and won't
2593 * change in the meantime. As high limit is checked again before
2594 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2595 */
2596 do {
f6f989c5 2597 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
f7e1cb6e
JW
2598 /* Don't bother a random interrupted task */
2599 if (in_interrupt()) {
2600 schedule_work(&memcg->high_work);
2601 break;
2602 }
9516a18a 2603 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2604 set_notify_resume(current);
2605 break;
2606 }
241994ed 2607 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2608
2609 return 0;
7a81b88c 2610}
8a9f3ccd 2611
00501b53 2612static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2613{
ce00a967
JW
2614 if (mem_cgroup_is_root(memcg))
2615 return;
2616
3e32cb2e 2617 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2618 if (do_memsw_account())
3e32cb2e 2619 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2620
e8ea14cc 2621 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2622}
2623
0a31bc97
JW
2624static void lock_page_lru(struct page *page, int *isolated)
2625{
f4b7e272 2626 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2627
f4b7e272 2628 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2629 if (PageLRU(page)) {
2630 struct lruvec *lruvec;
2631
f4b7e272 2632 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2633 ClearPageLRU(page);
2634 del_page_from_lru_list(page, lruvec, page_lru(page));
2635 *isolated = 1;
2636 } else
2637 *isolated = 0;
2638}
2639
2640static void unlock_page_lru(struct page *page, int isolated)
2641{
f4b7e272 2642 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2643
2644 if (isolated) {
2645 struct lruvec *lruvec;
2646
f4b7e272 2647 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2648 VM_BUG_ON_PAGE(PageLRU(page), page);
2649 SetPageLRU(page);
2650 add_page_to_lru_list(page, lruvec, page_lru(page));
2651 }
f4b7e272 2652 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2653}
2654
00501b53 2655static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2656 bool lrucare)
7a81b88c 2657{
0a31bc97 2658 int isolated;
9ce70c02 2659
1306a85a 2660 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2661
2662 /*
2663 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2664 * may already be on some other mem_cgroup's LRU. Take care of it.
2665 */
0a31bc97
JW
2666 if (lrucare)
2667 lock_page_lru(page, &isolated);
9ce70c02 2668
0a31bc97
JW
2669 /*
2670 * Nobody should be changing or seriously looking at
1306a85a 2671 * page->mem_cgroup at this point:
0a31bc97
JW
2672 *
2673 * - the page is uncharged
2674 *
2675 * - the page is off-LRU
2676 *
2677 * - an anonymous fault has exclusive page access, except for
2678 * a locked page table
2679 *
2680 * - a page cache insertion, a swapin fault, or a migration
2681 * have the page locked
2682 */
1306a85a 2683 page->mem_cgroup = memcg;
9ce70c02 2684
0a31bc97
JW
2685 if (lrucare)
2686 unlock_page_lru(page, isolated);
7a81b88c 2687}
66e1707b 2688
84c07d11 2689#ifdef CONFIG_MEMCG_KMEM
8380ce47
RG
2690/*
2691 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2692 *
2693 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2694 * cgroup_mutex, etc.
2695 */
2696struct mem_cgroup *mem_cgroup_from_obj(void *p)
2697{
2698 struct page *page;
2699
2700 if (mem_cgroup_disabled())
2701 return NULL;
2702
2703 page = virt_to_head_page(p);
2704
2705 /*
2706 * Slab pages don't have page->mem_cgroup set because corresponding
2707 * kmem caches can be reparented during the lifetime. That's why
2708 * memcg_from_slab_page() should be used instead.
2709 */
2710 if (PageSlab(page))
2711 return memcg_from_slab_page(page);
2712
2713 /* All other pages use page->mem_cgroup */
2714 return page->mem_cgroup;
2715}
2716
f3bb3043 2717static int memcg_alloc_cache_id(void)
55007d84 2718{
f3bb3043
VD
2719 int id, size;
2720 int err;
2721
dbcf73e2 2722 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2723 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2724 if (id < 0)
2725 return id;
55007d84 2726
dbcf73e2 2727 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2728 return id;
2729
2730 /*
2731 * There's no space for the new id in memcg_caches arrays,
2732 * so we have to grow them.
2733 */
05257a1a 2734 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2735
2736 size = 2 * (id + 1);
55007d84
GC
2737 if (size < MEMCG_CACHES_MIN_SIZE)
2738 size = MEMCG_CACHES_MIN_SIZE;
2739 else if (size > MEMCG_CACHES_MAX_SIZE)
2740 size = MEMCG_CACHES_MAX_SIZE;
2741
f3bb3043 2742 err = memcg_update_all_caches(size);
60d3fd32
VD
2743 if (!err)
2744 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2745 if (!err)
2746 memcg_nr_cache_ids = size;
2747
2748 up_write(&memcg_cache_ids_sem);
2749
f3bb3043 2750 if (err) {
dbcf73e2 2751 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2752 return err;
2753 }
2754 return id;
2755}
2756
2757static void memcg_free_cache_id(int id)
2758{
dbcf73e2 2759 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2760}
2761
d5b3cf71 2762struct memcg_kmem_cache_create_work {
5722d094
VD
2763 struct mem_cgroup *memcg;
2764 struct kmem_cache *cachep;
2765 struct work_struct work;
2766};
2767
d5b3cf71 2768static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2769{
d5b3cf71
VD
2770 struct memcg_kmem_cache_create_work *cw =
2771 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2772 struct mem_cgroup *memcg = cw->memcg;
2773 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2774
d5b3cf71 2775 memcg_create_kmem_cache(memcg, cachep);
bd673145 2776
5722d094 2777 css_put(&memcg->css);
d7f25f8a
GC
2778 kfree(cw);
2779}
2780
2781/*
2782 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2783 */
85cfb245 2784static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2785 struct kmem_cache *cachep)
d7f25f8a 2786{
d5b3cf71 2787 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2788
f0a3a24b
RG
2789 if (!css_tryget_online(&memcg->css))
2790 return;
2791
c892fd82 2792 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2793 if (!cw)
d7f25f8a 2794 return;
8135be5a 2795
d7f25f8a
GC
2796 cw->memcg = memcg;
2797 cw->cachep = cachep;
d5b3cf71 2798 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2799
17cc4dfe 2800 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2801}
2802
45264778
VD
2803static inline bool memcg_kmem_bypass(void)
2804{
2805 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2806 return true;
2807 return false;
2808}
2809
2810/**
2811 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2812 * @cachep: the original global kmem cache
2813 *
d7f25f8a
GC
2814 * Return the kmem_cache we're supposed to use for a slab allocation.
2815 * We try to use the current memcg's version of the cache.
2816 *
45264778
VD
2817 * If the cache does not exist yet, if we are the first user of it, we
2818 * create it asynchronously in a workqueue and let the current allocation
2819 * go through with the original cache.
d7f25f8a 2820 *
45264778
VD
2821 * This function takes a reference to the cache it returns to assure it
2822 * won't get destroyed while we are working with it. Once the caller is
2823 * done with it, memcg_kmem_put_cache() must be called to release the
2824 * reference.
d7f25f8a 2825 */
45264778 2826struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2827{
2828 struct mem_cgroup *memcg;
959c8963 2829 struct kmem_cache *memcg_cachep;
f0a3a24b 2830 struct memcg_cache_array *arr;
2a4db7eb 2831 int kmemcg_id;
d7f25f8a 2832
f7ce3190 2833 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2834
45264778 2835 if (memcg_kmem_bypass())
230e9fc2
VD
2836 return cachep;
2837
f0a3a24b
RG
2838 rcu_read_lock();
2839
2840 if (unlikely(current->active_memcg))
2841 memcg = current->active_memcg;
2842 else
2843 memcg = mem_cgroup_from_task(current);
2844
2845 if (!memcg || memcg == root_mem_cgroup)
2846 goto out_unlock;
2847
4db0c3c2 2848 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2849 if (kmemcg_id < 0)
f0a3a24b 2850 goto out_unlock;
d7f25f8a 2851
f0a3a24b
RG
2852 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2853
2854 /*
2855 * Make sure we will access the up-to-date value. The code updating
2856 * memcg_caches issues a write barrier to match the data dependency
2857 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2858 */
2859 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2860
2861 /*
2862 * If we are in a safe context (can wait, and not in interrupt
2863 * context), we could be be predictable and return right away.
2864 * This would guarantee that the allocation being performed
2865 * already belongs in the new cache.
2866 *
2867 * However, there are some clashes that can arrive from locking.
2868 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2869 * memcg_create_kmem_cache, this means no further allocation
2870 * could happen with the slab_mutex held. So it's better to
2871 * defer everything.
f0a3a24b
RG
2872 *
2873 * If the memcg is dying or memcg_cache is about to be released,
2874 * don't bother creating new kmem_caches. Because memcg_cachep
2875 * is ZEROed as the fist step of kmem offlining, we don't need
2876 * percpu_ref_tryget_live() here. css_tryget_online() check in
2877 * memcg_schedule_kmem_cache_create() will prevent us from
2878 * creation of a new kmem_cache.
ca0dde97 2879 */
f0a3a24b
RG
2880 if (unlikely(!memcg_cachep))
2881 memcg_schedule_kmem_cache_create(memcg, cachep);
2882 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2883 cachep = memcg_cachep;
2884out_unlock:
2885 rcu_read_unlock();
ca0dde97 2886 return cachep;
d7f25f8a 2887}
d7f25f8a 2888
45264778
VD
2889/**
2890 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2891 * @cachep: the cache returned by memcg_kmem_get_cache
2892 */
2893void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2894{
2895 if (!is_root_cache(cachep))
f0a3a24b 2896 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2897}
2898
45264778 2899/**
4b13f64d 2900 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2901 * @memcg: memory cgroup to charge
45264778 2902 * @gfp: reclaim mode
92d0510c 2903 * @nr_pages: number of pages to charge
45264778
VD
2904 *
2905 * Returns 0 on success, an error code on failure.
2906 */
4b13f64d
RG
2907int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2908 unsigned int nr_pages)
7ae1e1d0 2909{
f3ccb2c4 2910 struct page_counter *counter;
7ae1e1d0
GC
2911 int ret;
2912
f3ccb2c4 2913 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2914 if (ret)
f3ccb2c4 2915 return ret;
52c29b04
JW
2916
2917 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2918 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2919
2920 /*
2921 * Enforce __GFP_NOFAIL allocation because callers are not
2922 * prepared to see failures and likely do not have any failure
2923 * handling code.
2924 */
2925 if (gfp & __GFP_NOFAIL) {
2926 page_counter_charge(&memcg->kmem, nr_pages);
2927 return 0;
2928 }
52c29b04
JW
2929 cancel_charge(memcg, nr_pages);
2930 return -ENOMEM;
7ae1e1d0 2931 }
f3ccb2c4 2932 return 0;
7ae1e1d0
GC
2933}
2934
4b13f64d
RG
2935/**
2936 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2937 * @memcg: memcg to uncharge
2938 * @nr_pages: number of pages to uncharge
2939 */
2940void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2941{
2942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2943 page_counter_uncharge(&memcg->kmem, nr_pages);
2944
2945 page_counter_uncharge(&memcg->memory, nr_pages);
2946 if (do_memsw_account())
2947 page_counter_uncharge(&memcg->memsw, nr_pages);
2948}
2949
45264778 2950/**
f4b00eab 2951 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2952 * @page: page to charge
2953 * @gfp: reclaim mode
2954 * @order: allocation order
2955 *
2956 * Returns 0 on success, an error code on failure.
2957 */
f4b00eab 2958int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2959{
f3ccb2c4 2960 struct mem_cgroup *memcg;
fcff7d7e 2961 int ret = 0;
7ae1e1d0 2962
60cd4bcd 2963 if (memcg_kmem_bypass())
45264778
VD
2964 return 0;
2965
d46eb14b 2966 memcg = get_mem_cgroup_from_current();
c4159a75 2967 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 2968 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
2969 if (!ret) {
2970 page->mem_cgroup = memcg;
c4159a75 2971 __SetPageKmemcg(page);
4d96ba35 2972 }
c4159a75 2973 }
7ae1e1d0 2974 css_put(&memcg->css);
d05e83a6 2975 return ret;
7ae1e1d0 2976}
49a18eae 2977
45264778 2978/**
f4b00eab 2979 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
2980 * @page: page to uncharge
2981 * @order: allocation order
2982 */
f4b00eab 2983void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 2984{
1306a85a 2985 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2986 unsigned int nr_pages = 1 << order;
7ae1e1d0 2987
7ae1e1d0
GC
2988 if (!memcg)
2989 return;
2990
309381fe 2991 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 2992 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 2993 page->mem_cgroup = NULL;
c4159a75
VD
2994
2995 /* slab pages do not have PageKmemcg flag set */
2996 if (PageKmemcg(page))
2997 __ClearPageKmemcg(page);
2998
f3ccb2c4 2999 css_put_many(&memcg->css, nr_pages);
60d3fd32 3000}
84c07d11 3001#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3002
ca3e0214
KH
3003#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3004
ca3e0214
KH
3005/*
3006 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3007 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3008 */
e94c8a9c 3009void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3010{
e94c8a9c 3011 int i;
ca3e0214 3012
3d37c4a9
KH
3013 if (mem_cgroup_disabled())
3014 return;
b070e65c 3015
29833315 3016 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3017 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3018
c9019e9b 3019 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3020}
12d27107 3021#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3022
c255a458 3023#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3024/**
3025 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3026 * @entry: swap entry to be moved
3027 * @from: mem_cgroup which the entry is moved from
3028 * @to: mem_cgroup which the entry is moved to
3029 *
3030 * It succeeds only when the swap_cgroup's record for this entry is the same
3031 * as the mem_cgroup's id of @from.
3032 *
3033 * Returns 0 on success, -EINVAL on failure.
3034 *
3e32cb2e 3035 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3036 * both res and memsw, and called css_get().
3037 */
3038static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3039 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3040{
3041 unsigned short old_id, new_id;
3042
34c00c31
LZ
3043 old_id = mem_cgroup_id(from);
3044 new_id = mem_cgroup_id(to);
02491447
DN
3045
3046 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3047 mod_memcg_state(from, MEMCG_SWAP, -1);
3048 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3049 return 0;
3050 }
3051 return -EINVAL;
3052}
3053#else
3054static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3055 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3056{
3057 return -EINVAL;
3058}
8c7c6e34 3059#endif
d13d1443 3060
bbec2e15 3061static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3062
bbec2e15
RG
3063static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3064 unsigned long max, bool memsw)
628f4235 3065{
3e32cb2e 3066 bool enlarge = false;
bb4a7ea2 3067 bool drained = false;
3e32cb2e 3068 int ret;
c054a78c
YZ
3069 bool limits_invariant;
3070 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3071
3e32cb2e 3072 do {
628f4235
KH
3073 if (signal_pending(current)) {
3074 ret = -EINTR;
3075 break;
3076 }
3e32cb2e 3077
bbec2e15 3078 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3079 /*
3080 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3081 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3082 */
15b42562 3083 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3084 max <= memcg->memsw.max;
c054a78c 3085 if (!limits_invariant) {
bbec2e15 3086 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3087 ret = -EINVAL;
8c7c6e34
KH
3088 break;
3089 }
bbec2e15 3090 if (max > counter->max)
3e32cb2e 3091 enlarge = true;
bbec2e15
RG
3092 ret = page_counter_set_max(counter, max);
3093 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3094
3095 if (!ret)
3096 break;
3097
bb4a7ea2
SB
3098 if (!drained) {
3099 drain_all_stock(memcg);
3100 drained = true;
3101 continue;
3102 }
3103
1ab5c056
AR
3104 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3105 GFP_KERNEL, !memsw)) {
3106 ret = -EBUSY;
3107 break;
3108 }
3109 } while (true);
3e32cb2e 3110
3c11ecf4
KH
3111 if (!ret && enlarge)
3112 memcg_oom_recover(memcg);
3e32cb2e 3113
628f4235
KH
3114 return ret;
3115}
3116
ef8f2327 3117unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3118 gfp_t gfp_mask,
3119 unsigned long *total_scanned)
3120{
3121 unsigned long nr_reclaimed = 0;
ef8f2327 3122 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3123 unsigned long reclaimed;
3124 int loop = 0;
ef8f2327 3125 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3126 unsigned long excess;
0608f43d
AM
3127 unsigned long nr_scanned;
3128
3129 if (order > 0)
3130 return 0;
3131
ef8f2327 3132 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3133
3134 /*
3135 * Do not even bother to check the largest node if the root
3136 * is empty. Do it lockless to prevent lock bouncing. Races
3137 * are acceptable as soft limit is best effort anyway.
3138 */
bfc7228b 3139 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3140 return 0;
3141
0608f43d
AM
3142 /*
3143 * This loop can run a while, specially if mem_cgroup's continuously
3144 * keep exceeding their soft limit and putting the system under
3145 * pressure
3146 */
3147 do {
3148 if (next_mz)
3149 mz = next_mz;
3150 else
3151 mz = mem_cgroup_largest_soft_limit_node(mctz);
3152 if (!mz)
3153 break;
3154
3155 nr_scanned = 0;
ef8f2327 3156 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3157 gfp_mask, &nr_scanned);
3158 nr_reclaimed += reclaimed;
3159 *total_scanned += nr_scanned;
0a31bc97 3160 spin_lock_irq(&mctz->lock);
bc2f2e7f 3161 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3162
3163 /*
3164 * If we failed to reclaim anything from this memory cgroup
3165 * it is time to move on to the next cgroup
3166 */
3167 next_mz = NULL;
bc2f2e7f
VD
3168 if (!reclaimed)
3169 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3170
3e32cb2e 3171 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3172 /*
3173 * One school of thought says that we should not add
3174 * back the node to the tree if reclaim returns 0.
3175 * But our reclaim could return 0, simply because due
3176 * to priority we are exposing a smaller subset of
3177 * memory to reclaim from. Consider this as a longer
3178 * term TODO.
3179 */
3180 /* If excess == 0, no tree ops */
cf2c8127 3181 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3182 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3183 css_put(&mz->memcg->css);
3184 loop++;
3185 /*
3186 * Could not reclaim anything and there are no more
3187 * mem cgroups to try or we seem to be looping without
3188 * reclaiming anything.
3189 */
3190 if (!nr_reclaimed &&
3191 (next_mz == NULL ||
3192 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3193 break;
3194 } while (!nr_reclaimed);
3195 if (next_mz)
3196 css_put(&next_mz->memcg->css);
3197 return nr_reclaimed;
3198}
3199
ea280e7b
TH
3200/*
3201 * Test whether @memcg has children, dead or alive. Note that this
3202 * function doesn't care whether @memcg has use_hierarchy enabled and
3203 * returns %true if there are child csses according to the cgroup
3204 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3205 */
b5f99b53
GC
3206static inline bool memcg_has_children(struct mem_cgroup *memcg)
3207{
ea280e7b
TH
3208 bool ret;
3209
ea280e7b
TH
3210 rcu_read_lock();
3211 ret = css_next_child(NULL, &memcg->css);
3212 rcu_read_unlock();
3213 return ret;
b5f99b53
GC
3214}
3215
c26251f9 3216/*
51038171 3217 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3218 *
3219 * Caller is responsible for holding css reference for memcg.
3220 */
3221static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3222{
3223 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3224
c1e862c1
KH
3225 /* we call try-to-free pages for make this cgroup empty */
3226 lru_add_drain_all();
d12c60f6
JS
3227
3228 drain_all_stock(memcg);
3229
f817ed48 3230 /* try to free all pages in this cgroup */
3e32cb2e 3231 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3232 int progress;
c1e862c1 3233
c26251f9
MH
3234 if (signal_pending(current))
3235 return -EINTR;
3236
b70a2a21
JW
3237 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3238 GFP_KERNEL, true);
c1e862c1 3239 if (!progress) {
f817ed48 3240 nr_retries--;
c1e862c1 3241 /* maybe some writeback is necessary */
8aa7e847 3242 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3243 }
f817ed48
KH
3244
3245 }
ab5196c2
MH
3246
3247 return 0;
cc847582
KH
3248}
3249
6770c64e
TH
3250static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3251 char *buf, size_t nbytes,
3252 loff_t off)
c1e862c1 3253{
6770c64e 3254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3255
d8423011
MH
3256 if (mem_cgroup_is_root(memcg))
3257 return -EINVAL;
6770c64e 3258 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3259}
3260
182446d0
TH
3261static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3262 struct cftype *cft)
18f59ea7 3263{
182446d0 3264 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3265}
3266
182446d0
TH
3267static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3268 struct cftype *cft, u64 val)
18f59ea7
BS
3269{
3270 int retval = 0;
182446d0 3271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3272 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3273
567fb435 3274 if (memcg->use_hierarchy == val)
0b8f73e1 3275 return 0;
567fb435 3276
18f59ea7 3277 /*
af901ca1 3278 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3279 * in the child subtrees. If it is unset, then the change can
3280 * occur, provided the current cgroup has no children.
3281 *
3282 * For the root cgroup, parent_mem is NULL, we allow value to be
3283 * set if there are no children.
3284 */
c0ff4b85 3285 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3286 (val == 1 || val == 0)) {
ea280e7b 3287 if (!memcg_has_children(memcg))
c0ff4b85 3288 memcg->use_hierarchy = val;
18f59ea7
BS
3289 else
3290 retval = -EBUSY;
3291 } else
3292 retval = -EINVAL;
567fb435 3293
18f59ea7
BS
3294 return retval;
3295}
3296
6f646156 3297static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3298{
42a30035 3299 unsigned long val;
ce00a967 3300
3e32cb2e 3301 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3302 val = memcg_page_state(memcg, MEMCG_CACHE) +
3303 memcg_page_state(memcg, MEMCG_RSS);
3304 if (swap)
3305 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3306 } else {
ce00a967 3307 if (!swap)
3e32cb2e 3308 val = page_counter_read(&memcg->memory);
ce00a967 3309 else
3e32cb2e 3310 val = page_counter_read(&memcg->memsw);
ce00a967 3311 }
c12176d3 3312 return val;
ce00a967
JW
3313}
3314
3e32cb2e
JW
3315enum {
3316 RES_USAGE,
3317 RES_LIMIT,
3318 RES_MAX_USAGE,
3319 RES_FAILCNT,
3320 RES_SOFT_LIMIT,
3321};
ce00a967 3322
791badbd 3323static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3324 struct cftype *cft)
8cdea7c0 3325{
182446d0 3326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3327 struct page_counter *counter;
af36f906 3328
3e32cb2e 3329 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3330 case _MEM:
3e32cb2e
JW
3331 counter = &memcg->memory;
3332 break;
8c7c6e34 3333 case _MEMSWAP:
3e32cb2e
JW
3334 counter = &memcg->memsw;
3335 break;
510fc4e1 3336 case _KMEM:
3e32cb2e 3337 counter = &memcg->kmem;
510fc4e1 3338 break;
d55f90bf 3339 case _TCP:
0db15298 3340 counter = &memcg->tcpmem;
d55f90bf 3341 break;
8c7c6e34
KH
3342 default:
3343 BUG();
8c7c6e34 3344 }
3e32cb2e
JW
3345
3346 switch (MEMFILE_ATTR(cft->private)) {
3347 case RES_USAGE:
3348 if (counter == &memcg->memory)
c12176d3 3349 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3350 if (counter == &memcg->memsw)
c12176d3 3351 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3352 return (u64)page_counter_read(counter) * PAGE_SIZE;
3353 case RES_LIMIT:
bbec2e15 3354 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3355 case RES_MAX_USAGE:
3356 return (u64)counter->watermark * PAGE_SIZE;
3357 case RES_FAILCNT:
3358 return counter->failcnt;
3359 case RES_SOFT_LIMIT:
3360 return (u64)memcg->soft_limit * PAGE_SIZE;
3361 default:
3362 BUG();
3363 }
8cdea7c0 3364}
510fc4e1 3365
4a87e2a2 3366static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3367{
4a87e2a2 3368 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3369 struct mem_cgroup *mi;
3370 int node, cpu, i;
c350a99e
RG
3371
3372 for_each_online_cpu(cpu)
4a87e2a2 3373 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3374 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3375
3376 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3377 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3378 atomic_long_add(stat[i], &mi->vmstats[i]);
3379
3380 for_each_node(node) {
3381 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3382 struct mem_cgroup_per_node *pi;
3383
4a87e2a2 3384 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3385 stat[i] = 0;
3386
3387 for_each_online_cpu(cpu)
4a87e2a2 3388 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3389 stat[i] += per_cpu(
3390 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3391
3392 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3393 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3394 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3395 }
3396}
3397
bb65f89b
RG
3398static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3399{
3400 unsigned long events[NR_VM_EVENT_ITEMS];
3401 struct mem_cgroup *mi;
3402 int cpu, i;
3403
3404 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3405 events[i] = 0;
3406
3407 for_each_online_cpu(cpu)
3408 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3409 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3410 cpu);
bb65f89b
RG
3411
3412 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3413 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3414 atomic_long_add(events[i], &mi->vmevents[i]);
3415}
3416
84c07d11 3417#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3418static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3419{
d6441637
VD
3420 int memcg_id;
3421
b313aeee
VD
3422 if (cgroup_memory_nokmem)
3423 return 0;
3424
2a4db7eb 3425 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3426 BUG_ON(memcg->kmem_state);
d6441637 3427
f3bb3043 3428 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3429 if (memcg_id < 0)
3430 return memcg_id;
d6441637 3431
ef12947c 3432 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3433 /*
567e9ab2 3434 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3435 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3436 * guarantee no one starts accounting before all call sites are
3437 * patched.
3438 */
900a38f0 3439 memcg->kmemcg_id = memcg_id;
567e9ab2 3440 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3441 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3442
3443 return 0;
d6441637
VD
3444}
3445
8e0a8912
JW
3446static void memcg_offline_kmem(struct mem_cgroup *memcg)
3447{
3448 struct cgroup_subsys_state *css;
3449 struct mem_cgroup *parent, *child;
3450 int kmemcg_id;
3451
3452 if (memcg->kmem_state != KMEM_ONLINE)
3453 return;
3454 /*
3455 * Clear the online state before clearing memcg_caches array
3456 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3457 * guarantees that no cache will be created for this cgroup
3458 * after we are done (see memcg_create_kmem_cache()).
3459 */
3460 memcg->kmem_state = KMEM_ALLOCATED;
3461
8e0a8912
JW
3462 parent = parent_mem_cgroup(memcg);
3463 if (!parent)
3464 parent = root_mem_cgroup;
3465
bee07b33 3466 /*
4a87e2a2 3467 * Deactivate and reparent kmem_caches.
bee07b33 3468 */
fb2f2b0a
RG
3469 memcg_deactivate_kmem_caches(memcg, parent);
3470
3471 kmemcg_id = memcg->kmemcg_id;
3472 BUG_ON(kmemcg_id < 0);
3473
8e0a8912
JW
3474 /*
3475 * Change kmemcg_id of this cgroup and all its descendants to the
3476 * parent's id, and then move all entries from this cgroup's list_lrus
3477 * to ones of the parent. After we have finished, all list_lrus
3478 * corresponding to this cgroup are guaranteed to remain empty. The
3479 * ordering is imposed by list_lru_node->lock taken by
3480 * memcg_drain_all_list_lrus().
3481 */
3a06bb78 3482 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3483 css_for_each_descendant_pre(css, &memcg->css) {
3484 child = mem_cgroup_from_css(css);
3485 BUG_ON(child->kmemcg_id != kmemcg_id);
3486 child->kmemcg_id = parent->kmemcg_id;
3487 if (!memcg->use_hierarchy)
3488 break;
3489 }
3a06bb78
TH
3490 rcu_read_unlock();
3491
9bec5c35 3492 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3493
3494 memcg_free_cache_id(kmemcg_id);
3495}
3496
3497static void memcg_free_kmem(struct mem_cgroup *memcg)
3498{
0b8f73e1
JW
3499 /* css_alloc() failed, offlining didn't happen */
3500 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3501 memcg_offline_kmem(memcg);
3502
8e0a8912 3503 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3504 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3505 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3506 }
8e0a8912 3507}
d6441637 3508#else
0b8f73e1 3509static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3510{
3511 return 0;
3512}
3513static void memcg_offline_kmem(struct mem_cgroup *memcg)
3514{
3515}
3516static void memcg_free_kmem(struct mem_cgroup *memcg)
3517{
3518}
84c07d11 3519#endif /* CONFIG_MEMCG_KMEM */
127424c8 3520
bbec2e15
RG
3521static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3522 unsigned long max)
d6441637 3523{
b313aeee 3524 int ret;
127424c8 3525
bbec2e15
RG
3526 mutex_lock(&memcg_max_mutex);
3527 ret = page_counter_set_max(&memcg->kmem, max);
3528 mutex_unlock(&memcg_max_mutex);
127424c8 3529 return ret;
d6441637 3530}
510fc4e1 3531
bbec2e15 3532static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3533{
3534 int ret;
3535
bbec2e15 3536 mutex_lock(&memcg_max_mutex);
d55f90bf 3537
bbec2e15 3538 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3539 if (ret)
3540 goto out;
3541
0db15298 3542 if (!memcg->tcpmem_active) {
d55f90bf
VD
3543 /*
3544 * The active flag needs to be written after the static_key
3545 * update. This is what guarantees that the socket activation
2d758073
JW
3546 * function is the last one to run. See mem_cgroup_sk_alloc()
3547 * for details, and note that we don't mark any socket as
3548 * belonging to this memcg until that flag is up.
d55f90bf
VD
3549 *
3550 * We need to do this, because static_keys will span multiple
3551 * sites, but we can't control their order. If we mark a socket
3552 * as accounted, but the accounting functions are not patched in
3553 * yet, we'll lose accounting.
3554 *
2d758073 3555 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3556 * because when this value change, the code to process it is not
3557 * patched in yet.
3558 */
3559 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3560 memcg->tcpmem_active = true;
d55f90bf
VD
3561 }
3562out:
bbec2e15 3563 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3564 return ret;
3565}
d55f90bf 3566
628f4235
KH
3567/*
3568 * The user of this function is...
3569 * RES_LIMIT.
3570 */
451af504
TH
3571static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3572 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3573{
451af504 3574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3575 unsigned long nr_pages;
628f4235
KH
3576 int ret;
3577
451af504 3578 buf = strstrip(buf);
650c5e56 3579 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3580 if (ret)
3581 return ret;
af36f906 3582
3e32cb2e 3583 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3584 case RES_LIMIT:
4b3bde4c
BS
3585 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3586 ret = -EINVAL;
3587 break;
3588 }
3e32cb2e
JW
3589 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3590 case _MEM:
bbec2e15 3591 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3592 break;
3e32cb2e 3593 case _MEMSWAP:
bbec2e15 3594 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3595 break;
3e32cb2e 3596 case _KMEM:
0158115f
MH
3597 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3598 "Please report your usecase to linux-mm@kvack.org if you "
3599 "depend on this functionality.\n");
bbec2e15 3600 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3601 break;
d55f90bf 3602 case _TCP:
bbec2e15 3603 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3604 break;
3e32cb2e 3605 }
296c81d8 3606 break;
3e32cb2e
JW
3607 case RES_SOFT_LIMIT:
3608 memcg->soft_limit = nr_pages;
3609 ret = 0;
628f4235
KH
3610 break;
3611 }
451af504 3612 return ret ?: nbytes;
8cdea7c0
BS
3613}
3614
6770c64e
TH
3615static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3616 size_t nbytes, loff_t off)
c84872e1 3617{
6770c64e 3618 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3619 struct page_counter *counter;
c84872e1 3620
3e32cb2e
JW
3621 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3622 case _MEM:
3623 counter = &memcg->memory;
3624 break;
3625 case _MEMSWAP:
3626 counter = &memcg->memsw;
3627 break;
3628 case _KMEM:
3629 counter = &memcg->kmem;
3630 break;
d55f90bf 3631 case _TCP:
0db15298 3632 counter = &memcg->tcpmem;
d55f90bf 3633 break;
3e32cb2e
JW
3634 default:
3635 BUG();
3636 }
af36f906 3637
3e32cb2e 3638 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3639 case RES_MAX_USAGE:
3e32cb2e 3640 page_counter_reset_watermark(counter);
29f2a4da
PE
3641 break;
3642 case RES_FAILCNT:
3e32cb2e 3643 counter->failcnt = 0;
29f2a4da 3644 break;
3e32cb2e
JW
3645 default:
3646 BUG();
29f2a4da 3647 }
f64c3f54 3648
6770c64e 3649 return nbytes;
c84872e1
PE
3650}
3651
182446d0 3652static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3653 struct cftype *cft)
3654{
182446d0 3655 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3656}
3657
02491447 3658#ifdef CONFIG_MMU
182446d0 3659static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3660 struct cftype *cft, u64 val)
3661{
182446d0 3662 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3663
1dfab5ab 3664 if (val & ~MOVE_MASK)
7dc74be0 3665 return -EINVAL;
ee5e8472 3666
7dc74be0 3667 /*
ee5e8472
GC
3668 * No kind of locking is needed in here, because ->can_attach() will
3669 * check this value once in the beginning of the process, and then carry
3670 * on with stale data. This means that changes to this value will only
3671 * affect task migrations starting after the change.
7dc74be0 3672 */
c0ff4b85 3673 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3674 return 0;
3675}
02491447 3676#else
182446d0 3677static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3678 struct cftype *cft, u64 val)
3679{
3680 return -ENOSYS;
3681}
3682#endif
7dc74be0 3683
406eb0c9 3684#ifdef CONFIG_NUMA
113b7dfd
JW
3685
3686#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3687#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3688#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3689
3690static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3691 int nid, unsigned int lru_mask)
3692{
867e5e1d 3693 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3694 unsigned long nr = 0;
3695 enum lru_list lru;
3696
3697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3698
3699 for_each_lru(lru) {
3700 if (!(BIT(lru) & lru_mask))
3701 continue;
205b20cc 3702 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3703 }
3704 return nr;
3705}
3706
3707static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3708 unsigned int lru_mask)
3709{
3710 unsigned long nr = 0;
3711 enum lru_list lru;
3712
3713 for_each_lru(lru) {
3714 if (!(BIT(lru) & lru_mask))
3715 continue;
205b20cc 3716 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3717 }
3718 return nr;
3719}
3720
2da8ca82 3721static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3722{
25485de6
GT
3723 struct numa_stat {
3724 const char *name;
3725 unsigned int lru_mask;
3726 };
3727
3728 static const struct numa_stat stats[] = {
3729 { "total", LRU_ALL },
3730 { "file", LRU_ALL_FILE },
3731 { "anon", LRU_ALL_ANON },
3732 { "unevictable", BIT(LRU_UNEVICTABLE) },
3733 };
3734 const struct numa_stat *stat;
406eb0c9 3735 int nid;
25485de6 3736 unsigned long nr;
aa9694bb 3737 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3738
25485de6
GT
3739 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3740 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3741 seq_printf(m, "%s=%lu", stat->name, nr);
3742 for_each_node_state(nid, N_MEMORY) {
3743 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3744 stat->lru_mask);
3745 seq_printf(m, " N%d=%lu", nid, nr);
3746 }
3747 seq_putc(m, '\n');
406eb0c9 3748 }
406eb0c9 3749
071aee13
YH
3750 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3751 struct mem_cgroup *iter;
3752
3753 nr = 0;
3754 for_each_mem_cgroup_tree(iter, memcg)
3755 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3756 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3757 for_each_node_state(nid, N_MEMORY) {
3758 nr = 0;
3759 for_each_mem_cgroup_tree(iter, memcg)
3760 nr += mem_cgroup_node_nr_lru_pages(
3761 iter, nid, stat->lru_mask);
3762 seq_printf(m, " N%d=%lu", nid, nr);
3763 }
3764 seq_putc(m, '\n');
406eb0c9 3765 }
406eb0c9 3766
406eb0c9
YH
3767 return 0;
3768}
3769#endif /* CONFIG_NUMA */
3770
c8713d0b
JW
3771static const unsigned int memcg1_stats[] = {
3772 MEMCG_CACHE,
3773 MEMCG_RSS,
3774 MEMCG_RSS_HUGE,
3775 NR_SHMEM,
3776 NR_FILE_MAPPED,
3777 NR_FILE_DIRTY,
3778 NR_WRITEBACK,
3779 MEMCG_SWAP,
3780};
3781
3782static const char *const memcg1_stat_names[] = {
3783 "cache",
3784 "rss",
3785 "rss_huge",
3786 "shmem",
3787 "mapped_file",
3788 "dirty",
3789 "writeback",
3790 "swap",
3791};
3792
df0e53d0 3793/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3794static const unsigned int memcg1_events[] = {
df0e53d0
JW
3795 PGPGIN,
3796 PGPGOUT,
3797 PGFAULT,
3798 PGMAJFAULT,
3799};
3800
2da8ca82 3801static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3802{
aa9694bb 3803 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3804 unsigned long memory, memsw;
af7c4b0e
JW
3805 struct mem_cgroup *mi;
3806 unsigned int i;
406eb0c9 3807
71cd3113 3808 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3809
71cd3113
JW
3810 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3811 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3812 continue;
71cd3113 3813 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3814 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3815 PAGE_SIZE);
1dd3a273 3816 }
7b854121 3817
df0e53d0 3818 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3819 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3820 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3821
3822 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3823 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3824 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3825 PAGE_SIZE);
af7c4b0e 3826
14067bb3 3827 /* Hierarchical information */
3e32cb2e
JW
3828 memory = memsw = PAGE_COUNTER_MAX;
3829 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3830 memory = min(memory, READ_ONCE(mi->memory.max));
3831 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3832 }
3e32cb2e
JW
3833 seq_printf(m, "hierarchical_memory_limit %llu\n",
3834 (u64)memory * PAGE_SIZE);
7941d214 3835 if (do_memsw_account())
3e32cb2e
JW
3836 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3837 (u64)memsw * PAGE_SIZE);
7f016ee8 3838
8de7ecc6 3839 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3840 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3841 continue;
8de7ecc6 3842 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3843 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3844 PAGE_SIZE);
af7c4b0e
JW
3845 }
3846
8de7ecc6 3847 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3848 seq_printf(m, "total_%s %llu\n",
3849 vm_event_name(memcg1_events[i]),
dd923990 3850 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3851
8de7ecc6 3852 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3853 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3854 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3855 PAGE_SIZE);
14067bb3 3856
7f016ee8 3857#ifdef CONFIG_DEBUG_VM
7f016ee8 3858 {
ef8f2327
MG
3859 pg_data_t *pgdat;
3860 struct mem_cgroup_per_node *mz;
89abfab1 3861 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3862 unsigned long recent_rotated[2] = {0, 0};
3863 unsigned long recent_scanned[2] = {0, 0};
3864
ef8f2327
MG
3865 for_each_online_pgdat(pgdat) {
3866 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3867 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3868
ef8f2327
MG
3869 recent_rotated[0] += rstat->recent_rotated[0];
3870 recent_rotated[1] += rstat->recent_rotated[1];
3871 recent_scanned[0] += rstat->recent_scanned[0];
3872 recent_scanned[1] += rstat->recent_scanned[1];
3873 }
78ccf5b5
JW
3874 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3875 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3876 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3877 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3878 }
3879#endif
3880
d2ceb9b7
KH
3881 return 0;
3882}
3883
182446d0
TH
3884static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3885 struct cftype *cft)
a7885eb8 3886{
182446d0 3887 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3888
1f4c025b 3889 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3890}
3891
182446d0
TH
3892static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3893 struct cftype *cft, u64 val)
a7885eb8 3894{
182446d0 3895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3896
3dae7fec 3897 if (val > 100)
a7885eb8
KM
3898 return -EINVAL;
3899
14208b0e 3900 if (css->parent)
3dae7fec
JW
3901 memcg->swappiness = val;
3902 else
3903 vm_swappiness = val;
068b38c1 3904
a7885eb8
KM
3905 return 0;
3906}
3907
2e72b634
KS
3908static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3909{
3910 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3911 unsigned long usage;
2e72b634
KS
3912 int i;
3913
3914 rcu_read_lock();
3915 if (!swap)
2c488db2 3916 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3917 else
2c488db2 3918 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3919
3920 if (!t)
3921 goto unlock;
3922
ce00a967 3923 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3924
3925 /*
748dad36 3926 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3927 * If it's not true, a threshold was crossed after last
3928 * call of __mem_cgroup_threshold().
3929 */
5407a562 3930 i = t->current_threshold;
2e72b634
KS
3931
3932 /*
3933 * Iterate backward over array of thresholds starting from
3934 * current_threshold and check if a threshold is crossed.
3935 * If none of thresholds below usage is crossed, we read
3936 * only one element of the array here.
3937 */
3938 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3939 eventfd_signal(t->entries[i].eventfd, 1);
3940
3941 /* i = current_threshold + 1 */
3942 i++;
3943
3944 /*
3945 * Iterate forward over array of thresholds starting from
3946 * current_threshold+1 and check if a threshold is crossed.
3947 * If none of thresholds above usage is crossed, we read
3948 * only one element of the array here.
3949 */
3950 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3951 eventfd_signal(t->entries[i].eventfd, 1);
3952
3953 /* Update current_threshold */
5407a562 3954 t->current_threshold = i - 1;
2e72b634
KS
3955unlock:
3956 rcu_read_unlock();
3957}
3958
3959static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3960{
ad4ca5f4
KS
3961 while (memcg) {
3962 __mem_cgroup_threshold(memcg, false);
7941d214 3963 if (do_memsw_account())
ad4ca5f4
KS
3964 __mem_cgroup_threshold(memcg, true);
3965
3966 memcg = parent_mem_cgroup(memcg);
3967 }
2e72b634
KS
3968}
3969
3970static int compare_thresholds(const void *a, const void *b)
3971{
3972 const struct mem_cgroup_threshold *_a = a;
3973 const struct mem_cgroup_threshold *_b = b;
3974
2bff24a3
GT
3975 if (_a->threshold > _b->threshold)
3976 return 1;
3977
3978 if (_a->threshold < _b->threshold)
3979 return -1;
3980
3981 return 0;
2e72b634
KS
3982}
3983
c0ff4b85 3984static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3985{
3986 struct mem_cgroup_eventfd_list *ev;
3987
2bcf2e92
MH
3988 spin_lock(&memcg_oom_lock);
3989
c0ff4b85 3990 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3991 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3992
3993 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3994 return 0;
3995}
3996
c0ff4b85 3997static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3998{
7d74b06f
KH
3999 struct mem_cgroup *iter;
4000
c0ff4b85 4001 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4002 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4003}
4004
59b6f873 4005static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4006 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4007{
2c488db2
KS
4008 struct mem_cgroup_thresholds *thresholds;
4009 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4010 unsigned long threshold;
4011 unsigned long usage;
2c488db2 4012 int i, size, ret;
2e72b634 4013
650c5e56 4014 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4015 if (ret)
4016 return ret;
4017
4018 mutex_lock(&memcg->thresholds_lock);
2c488db2 4019
05b84301 4020 if (type == _MEM) {
2c488db2 4021 thresholds = &memcg->thresholds;
ce00a967 4022 usage = mem_cgroup_usage(memcg, false);
05b84301 4023 } else if (type == _MEMSWAP) {
2c488db2 4024 thresholds = &memcg->memsw_thresholds;
ce00a967 4025 usage = mem_cgroup_usage(memcg, true);
05b84301 4026 } else
2e72b634
KS
4027 BUG();
4028
2e72b634 4029 /* Check if a threshold crossed before adding a new one */
2c488db2 4030 if (thresholds->primary)
2e72b634
KS
4031 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4032
2c488db2 4033 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4034
4035 /* Allocate memory for new array of thresholds */
67b8046f 4036 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4037 if (!new) {
2e72b634
KS
4038 ret = -ENOMEM;
4039 goto unlock;
4040 }
2c488db2 4041 new->size = size;
2e72b634
KS
4042
4043 /* Copy thresholds (if any) to new array */
2c488db2
KS
4044 if (thresholds->primary) {
4045 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4046 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4047 }
4048
2e72b634 4049 /* Add new threshold */
2c488db2
KS
4050 new->entries[size - 1].eventfd = eventfd;
4051 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4052
4053 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4054 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4055 compare_thresholds, NULL);
4056
4057 /* Find current threshold */
2c488db2 4058 new->current_threshold = -1;
2e72b634 4059 for (i = 0; i < size; i++) {
748dad36 4060 if (new->entries[i].threshold <= usage) {
2e72b634 4061 /*
2c488db2
KS
4062 * new->current_threshold will not be used until
4063 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4064 * it here.
4065 */
2c488db2 4066 ++new->current_threshold;
748dad36
SZ
4067 } else
4068 break;
2e72b634
KS
4069 }
4070
2c488db2
KS
4071 /* Free old spare buffer and save old primary buffer as spare */
4072 kfree(thresholds->spare);
4073 thresholds->spare = thresholds->primary;
4074
4075 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4076
907860ed 4077 /* To be sure that nobody uses thresholds */
2e72b634
KS
4078 synchronize_rcu();
4079
2e72b634
KS
4080unlock:
4081 mutex_unlock(&memcg->thresholds_lock);
4082
4083 return ret;
4084}
4085
59b6f873 4086static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4087 struct eventfd_ctx *eventfd, const char *args)
4088{
59b6f873 4089 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4090}
4091
59b6f873 4092static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4093 struct eventfd_ctx *eventfd, const char *args)
4094{
59b6f873 4095 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4096}
4097
59b6f873 4098static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4099 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4100{
2c488db2
KS
4101 struct mem_cgroup_thresholds *thresholds;
4102 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4103 unsigned long usage;
7d36665a 4104 int i, j, size, entries;
2e72b634
KS
4105
4106 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4107
4108 if (type == _MEM) {
2c488db2 4109 thresholds = &memcg->thresholds;
ce00a967 4110 usage = mem_cgroup_usage(memcg, false);
05b84301 4111 } else if (type == _MEMSWAP) {
2c488db2 4112 thresholds = &memcg->memsw_thresholds;
ce00a967 4113 usage = mem_cgroup_usage(memcg, true);
05b84301 4114 } else
2e72b634
KS
4115 BUG();
4116
371528ca
AV
4117 if (!thresholds->primary)
4118 goto unlock;
4119
2e72b634
KS
4120 /* Check if a threshold crossed before removing */
4121 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4122
4123 /* Calculate new number of threshold */
7d36665a 4124 size = entries = 0;
2c488db2
KS
4125 for (i = 0; i < thresholds->primary->size; i++) {
4126 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4127 size++;
7d36665a
CX
4128 else
4129 entries++;
2e72b634
KS
4130 }
4131
2c488db2 4132 new = thresholds->spare;
907860ed 4133
7d36665a
CX
4134 /* If no items related to eventfd have been cleared, nothing to do */
4135 if (!entries)
4136 goto unlock;
4137
2e72b634
KS
4138 /* Set thresholds array to NULL if we don't have thresholds */
4139 if (!size) {
2c488db2
KS
4140 kfree(new);
4141 new = NULL;
907860ed 4142 goto swap_buffers;
2e72b634
KS
4143 }
4144
2c488db2 4145 new->size = size;
2e72b634
KS
4146
4147 /* Copy thresholds and find current threshold */
2c488db2
KS
4148 new->current_threshold = -1;
4149 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4150 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4151 continue;
4152
2c488db2 4153 new->entries[j] = thresholds->primary->entries[i];
748dad36 4154 if (new->entries[j].threshold <= usage) {
2e72b634 4155 /*
2c488db2 4156 * new->current_threshold will not be used
2e72b634
KS
4157 * until rcu_assign_pointer(), so it's safe to increment
4158 * it here.
4159 */
2c488db2 4160 ++new->current_threshold;
2e72b634
KS
4161 }
4162 j++;
4163 }
4164
907860ed 4165swap_buffers:
2c488db2
KS
4166 /* Swap primary and spare array */
4167 thresholds->spare = thresholds->primary;
8c757763 4168
2c488db2 4169 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4170
907860ed 4171 /* To be sure that nobody uses thresholds */
2e72b634 4172 synchronize_rcu();
6611d8d7
MC
4173
4174 /* If all events are unregistered, free the spare array */
4175 if (!new) {
4176 kfree(thresholds->spare);
4177 thresholds->spare = NULL;
4178 }
371528ca 4179unlock:
2e72b634 4180 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4181}
c1e862c1 4182
59b6f873 4183static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4184 struct eventfd_ctx *eventfd)
4185{
59b6f873 4186 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4187}
4188
59b6f873 4189static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4190 struct eventfd_ctx *eventfd)
4191{
59b6f873 4192 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4193}
4194
59b6f873 4195static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4196 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4197{
9490ff27 4198 struct mem_cgroup_eventfd_list *event;
9490ff27 4199
9490ff27
KH
4200 event = kmalloc(sizeof(*event), GFP_KERNEL);
4201 if (!event)
4202 return -ENOMEM;
4203
1af8efe9 4204 spin_lock(&memcg_oom_lock);
9490ff27
KH
4205
4206 event->eventfd = eventfd;
4207 list_add(&event->list, &memcg->oom_notify);
4208
4209 /* already in OOM ? */
c2b42d3c 4210 if (memcg->under_oom)
9490ff27 4211 eventfd_signal(eventfd, 1);
1af8efe9 4212 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4213
4214 return 0;
4215}
4216
59b6f873 4217static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4218 struct eventfd_ctx *eventfd)
9490ff27 4219{
9490ff27 4220 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4221
1af8efe9 4222 spin_lock(&memcg_oom_lock);
9490ff27 4223
c0ff4b85 4224 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4225 if (ev->eventfd == eventfd) {
4226 list_del(&ev->list);
4227 kfree(ev);
4228 }
4229 }
4230
1af8efe9 4231 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4232}
4233
2da8ca82 4234static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4235{
aa9694bb 4236 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4237
791badbd 4238 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4239 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4240 seq_printf(sf, "oom_kill %lu\n",
4241 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4242 return 0;
4243}
4244
182446d0 4245static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4246 struct cftype *cft, u64 val)
4247{
182446d0 4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4249
4250 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4251 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4252 return -EINVAL;
4253
c0ff4b85 4254 memcg->oom_kill_disable = val;
4d845ebf 4255 if (!val)
c0ff4b85 4256 memcg_oom_recover(memcg);
3dae7fec 4257
3c11ecf4
KH
4258 return 0;
4259}
4260
52ebea74
TH
4261#ifdef CONFIG_CGROUP_WRITEBACK
4262
3a8e9ac8
TH
4263#include <trace/events/writeback.h>
4264
841710aa
TH
4265static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4266{
4267 return wb_domain_init(&memcg->cgwb_domain, gfp);
4268}
4269
4270static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4271{
4272 wb_domain_exit(&memcg->cgwb_domain);
4273}
4274
2529bb3a
TH
4275static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4276{
4277 wb_domain_size_changed(&memcg->cgwb_domain);
4278}
4279
841710aa
TH
4280struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4281{
4282 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4283
4284 if (!memcg->css.parent)
4285 return NULL;
4286
4287 return &memcg->cgwb_domain;
4288}
4289
0b3d6e6f
GT
4290/*
4291 * idx can be of type enum memcg_stat_item or node_stat_item.
4292 * Keep in sync with memcg_exact_page().
4293 */
4294static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4295{
871789d4 4296 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4297 int cpu;
4298
4299 for_each_online_cpu(cpu)
871789d4 4300 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4301 if (x < 0)
4302 x = 0;
4303 return x;
4304}
4305
c2aa723a
TH
4306/**
4307 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4308 * @wb: bdi_writeback in question
c5edf9cd
TH
4309 * @pfilepages: out parameter for number of file pages
4310 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4311 * @pdirty: out parameter for number of dirty pages
4312 * @pwriteback: out parameter for number of pages under writeback
4313 *
c5edf9cd
TH
4314 * Determine the numbers of file, headroom, dirty, and writeback pages in
4315 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4316 * is a bit more involved.
c2aa723a 4317 *
c5edf9cd
TH
4318 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4319 * headroom is calculated as the lowest headroom of itself and the
4320 * ancestors. Note that this doesn't consider the actual amount of
4321 * available memory in the system. The caller should further cap
4322 * *@pheadroom accordingly.
c2aa723a 4323 */
c5edf9cd
TH
4324void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4325 unsigned long *pheadroom, unsigned long *pdirty,
4326 unsigned long *pwriteback)
c2aa723a
TH
4327{
4328 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4329 struct mem_cgroup *parent;
c2aa723a 4330
0b3d6e6f 4331 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4332
0b3d6e6f 4333 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4334 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4335 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4336 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4337
c2aa723a 4338 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4339 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
f6f989c5 4340 READ_ONCE(memcg->high));
c2aa723a
TH
4341 unsigned long used = page_counter_read(&memcg->memory);
4342
c5edf9cd 4343 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4344 memcg = parent;
4345 }
c2aa723a
TH
4346}
4347
97b27821
TH
4348/*
4349 * Foreign dirty flushing
4350 *
4351 * There's an inherent mismatch between memcg and writeback. The former
4352 * trackes ownership per-page while the latter per-inode. This was a
4353 * deliberate design decision because honoring per-page ownership in the
4354 * writeback path is complicated, may lead to higher CPU and IO overheads
4355 * and deemed unnecessary given that write-sharing an inode across
4356 * different cgroups isn't a common use-case.
4357 *
4358 * Combined with inode majority-writer ownership switching, this works well
4359 * enough in most cases but there are some pathological cases. For
4360 * example, let's say there are two cgroups A and B which keep writing to
4361 * different but confined parts of the same inode. B owns the inode and
4362 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4363 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4364 * triggering background writeback. A will be slowed down without a way to
4365 * make writeback of the dirty pages happen.
4366 *
4367 * Conditions like the above can lead to a cgroup getting repatedly and
4368 * severely throttled after making some progress after each
4369 * dirty_expire_interval while the underyling IO device is almost
4370 * completely idle.
4371 *
4372 * Solving this problem completely requires matching the ownership tracking
4373 * granularities between memcg and writeback in either direction. However,
4374 * the more egregious behaviors can be avoided by simply remembering the
4375 * most recent foreign dirtying events and initiating remote flushes on
4376 * them when local writeback isn't enough to keep the memory clean enough.
4377 *
4378 * The following two functions implement such mechanism. When a foreign
4379 * page - a page whose memcg and writeback ownerships don't match - is
4380 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4381 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4382 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4383 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4384 * foreign bdi_writebacks which haven't expired. Both the numbers of
4385 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4386 * limited to MEMCG_CGWB_FRN_CNT.
4387 *
4388 * The mechanism only remembers IDs and doesn't hold any object references.
4389 * As being wrong occasionally doesn't matter, updates and accesses to the
4390 * records are lockless and racy.
4391 */
4392void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4393 struct bdi_writeback *wb)
4394{
4395 struct mem_cgroup *memcg = page->mem_cgroup;
4396 struct memcg_cgwb_frn *frn;
4397 u64 now = get_jiffies_64();
4398 u64 oldest_at = now;
4399 int oldest = -1;
4400 int i;
4401
3a8e9ac8
TH
4402 trace_track_foreign_dirty(page, wb);
4403
97b27821
TH
4404 /*
4405 * Pick the slot to use. If there is already a slot for @wb, keep
4406 * using it. If not replace the oldest one which isn't being
4407 * written out.
4408 */
4409 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4410 frn = &memcg->cgwb_frn[i];
4411 if (frn->bdi_id == wb->bdi->id &&
4412 frn->memcg_id == wb->memcg_css->id)
4413 break;
4414 if (time_before64(frn->at, oldest_at) &&
4415 atomic_read(&frn->done.cnt) == 1) {
4416 oldest = i;
4417 oldest_at = frn->at;
4418 }
4419 }
4420
4421 if (i < MEMCG_CGWB_FRN_CNT) {
4422 /*
4423 * Re-using an existing one. Update timestamp lazily to
4424 * avoid making the cacheline hot. We want them to be
4425 * reasonably up-to-date and significantly shorter than
4426 * dirty_expire_interval as that's what expires the record.
4427 * Use the shorter of 1s and dirty_expire_interval / 8.
4428 */
4429 unsigned long update_intv =
4430 min_t(unsigned long, HZ,
4431 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4432
4433 if (time_before64(frn->at, now - update_intv))
4434 frn->at = now;
4435 } else if (oldest >= 0) {
4436 /* replace the oldest free one */
4437 frn = &memcg->cgwb_frn[oldest];
4438 frn->bdi_id = wb->bdi->id;
4439 frn->memcg_id = wb->memcg_css->id;
4440 frn->at = now;
4441 }
4442}
4443
4444/* issue foreign writeback flushes for recorded foreign dirtying events */
4445void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4446{
4447 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4448 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4449 u64 now = jiffies_64;
4450 int i;
4451
4452 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4453 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4454
4455 /*
4456 * If the record is older than dirty_expire_interval,
4457 * writeback on it has already started. No need to kick it
4458 * off again. Also, don't start a new one if there's
4459 * already one in flight.
4460 */
4461 if (time_after64(frn->at, now - intv) &&
4462 atomic_read(&frn->done.cnt) == 1) {
4463 frn->at = 0;
3a8e9ac8 4464 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4465 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4466 WB_REASON_FOREIGN_FLUSH,
4467 &frn->done);
4468 }
4469 }
4470}
4471
841710aa
TH
4472#else /* CONFIG_CGROUP_WRITEBACK */
4473
4474static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4475{
4476 return 0;
4477}
4478
4479static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4480{
4481}
4482
2529bb3a
TH
4483static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4484{
4485}
4486
52ebea74
TH
4487#endif /* CONFIG_CGROUP_WRITEBACK */
4488
3bc942f3
TH
4489/*
4490 * DO NOT USE IN NEW FILES.
4491 *
4492 * "cgroup.event_control" implementation.
4493 *
4494 * This is way over-engineered. It tries to support fully configurable
4495 * events for each user. Such level of flexibility is completely
4496 * unnecessary especially in the light of the planned unified hierarchy.
4497 *
4498 * Please deprecate this and replace with something simpler if at all
4499 * possible.
4500 */
4501
79bd9814
TH
4502/*
4503 * Unregister event and free resources.
4504 *
4505 * Gets called from workqueue.
4506 */
3bc942f3 4507static void memcg_event_remove(struct work_struct *work)
79bd9814 4508{
3bc942f3
TH
4509 struct mem_cgroup_event *event =
4510 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4511 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4512
4513 remove_wait_queue(event->wqh, &event->wait);
4514
59b6f873 4515 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4516
4517 /* Notify userspace the event is going away. */
4518 eventfd_signal(event->eventfd, 1);
4519
4520 eventfd_ctx_put(event->eventfd);
4521 kfree(event);
59b6f873 4522 css_put(&memcg->css);
79bd9814
TH
4523}
4524
4525/*
a9a08845 4526 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4527 *
4528 * Called with wqh->lock held and interrupts disabled.
4529 */
ac6424b9 4530static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4531 int sync, void *key)
79bd9814 4532{
3bc942f3
TH
4533 struct mem_cgroup_event *event =
4534 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4535 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4536 __poll_t flags = key_to_poll(key);
79bd9814 4537
a9a08845 4538 if (flags & EPOLLHUP) {
79bd9814
TH
4539 /*
4540 * If the event has been detached at cgroup removal, we
4541 * can simply return knowing the other side will cleanup
4542 * for us.
4543 *
4544 * We can't race against event freeing since the other
4545 * side will require wqh->lock via remove_wait_queue(),
4546 * which we hold.
4547 */
fba94807 4548 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4549 if (!list_empty(&event->list)) {
4550 list_del_init(&event->list);
4551 /*
4552 * We are in atomic context, but cgroup_event_remove()
4553 * may sleep, so we have to call it in workqueue.
4554 */
4555 schedule_work(&event->remove);
4556 }
fba94807 4557 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4558 }
4559
4560 return 0;
4561}
4562
3bc942f3 4563static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4564 wait_queue_head_t *wqh, poll_table *pt)
4565{
3bc942f3
TH
4566 struct mem_cgroup_event *event =
4567 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4568
4569 event->wqh = wqh;
4570 add_wait_queue(wqh, &event->wait);
4571}
4572
4573/*
3bc942f3
TH
4574 * DO NOT USE IN NEW FILES.
4575 *
79bd9814
TH
4576 * Parse input and register new cgroup event handler.
4577 *
4578 * Input must be in format '<event_fd> <control_fd> <args>'.
4579 * Interpretation of args is defined by control file implementation.
4580 */
451af504
TH
4581static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4582 char *buf, size_t nbytes, loff_t off)
79bd9814 4583{
451af504 4584 struct cgroup_subsys_state *css = of_css(of);
fba94807 4585 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4586 struct mem_cgroup_event *event;
79bd9814
TH
4587 struct cgroup_subsys_state *cfile_css;
4588 unsigned int efd, cfd;
4589 struct fd efile;
4590 struct fd cfile;
fba94807 4591 const char *name;
79bd9814
TH
4592 char *endp;
4593 int ret;
4594
451af504
TH
4595 buf = strstrip(buf);
4596
4597 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4598 if (*endp != ' ')
4599 return -EINVAL;
451af504 4600 buf = endp + 1;
79bd9814 4601
451af504 4602 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4603 if ((*endp != ' ') && (*endp != '\0'))
4604 return -EINVAL;
451af504 4605 buf = endp + 1;
79bd9814
TH
4606
4607 event = kzalloc(sizeof(*event), GFP_KERNEL);
4608 if (!event)
4609 return -ENOMEM;
4610
59b6f873 4611 event->memcg = memcg;
79bd9814 4612 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4613 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4614 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4615 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4616
4617 efile = fdget(efd);
4618 if (!efile.file) {
4619 ret = -EBADF;
4620 goto out_kfree;
4621 }
4622
4623 event->eventfd = eventfd_ctx_fileget(efile.file);
4624 if (IS_ERR(event->eventfd)) {
4625 ret = PTR_ERR(event->eventfd);
4626 goto out_put_efile;
4627 }
4628
4629 cfile = fdget(cfd);
4630 if (!cfile.file) {
4631 ret = -EBADF;
4632 goto out_put_eventfd;
4633 }
4634
4635 /* the process need read permission on control file */
4636 /* AV: shouldn't we check that it's been opened for read instead? */
4637 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4638 if (ret < 0)
4639 goto out_put_cfile;
4640
fba94807
TH
4641 /*
4642 * Determine the event callbacks and set them in @event. This used
4643 * to be done via struct cftype but cgroup core no longer knows
4644 * about these events. The following is crude but the whole thing
4645 * is for compatibility anyway.
3bc942f3
TH
4646 *
4647 * DO NOT ADD NEW FILES.
fba94807 4648 */
b583043e 4649 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4650
4651 if (!strcmp(name, "memory.usage_in_bytes")) {
4652 event->register_event = mem_cgroup_usage_register_event;
4653 event->unregister_event = mem_cgroup_usage_unregister_event;
4654 } else if (!strcmp(name, "memory.oom_control")) {
4655 event->register_event = mem_cgroup_oom_register_event;
4656 event->unregister_event = mem_cgroup_oom_unregister_event;
4657 } else if (!strcmp(name, "memory.pressure_level")) {
4658 event->register_event = vmpressure_register_event;
4659 event->unregister_event = vmpressure_unregister_event;
4660 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4661 event->register_event = memsw_cgroup_usage_register_event;
4662 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4663 } else {
4664 ret = -EINVAL;
4665 goto out_put_cfile;
4666 }
4667
79bd9814 4668 /*
b5557c4c
TH
4669 * Verify @cfile should belong to @css. Also, remaining events are
4670 * automatically removed on cgroup destruction but the removal is
4671 * asynchronous, so take an extra ref on @css.
79bd9814 4672 */
b583043e 4673 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4674 &memory_cgrp_subsys);
79bd9814 4675 ret = -EINVAL;
5a17f543 4676 if (IS_ERR(cfile_css))
79bd9814 4677 goto out_put_cfile;
5a17f543
TH
4678 if (cfile_css != css) {
4679 css_put(cfile_css);
79bd9814 4680 goto out_put_cfile;
5a17f543 4681 }
79bd9814 4682
451af504 4683 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4684 if (ret)
4685 goto out_put_css;
4686
9965ed17 4687 vfs_poll(efile.file, &event->pt);
79bd9814 4688
fba94807
TH
4689 spin_lock(&memcg->event_list_lock);
4690 list_add(&event->list, &memcg->event_list);
4691 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4692
4693 fdput(cfile);
4694 fdput(efile);
4695
451af504 4696 return nbytes;
79bd9814
TH
4697
4698out_put_css:
b5557c4c 4699 css_put(css);
79bd9814
TH
4700out_put_cfile:
4701 fdput(cfile);
4702out_put_eventfd:
4703 eventfd_ctx_put(event->eventfd);
4704out_put_efile:
4705 fdput(efile);
4706out_kfree:
4707 kfree(event);
4708
4709 return ret;
4710}
4711
241994ed 4712static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4713 {
0eea1030 4714 .name = "usage_in_bytes",
8c7c6e34 4715 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4716 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4717 },
c84872e1
PE
4718 {
4719 .name = "max_usage_in_bytes",
8c7c6e34 4720 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4721 .write = mem_cgroup_reset,
791badbd 4722 .read_u64 = mem_cgroup_read_u64,
c84872e1 4723 },
8cdea7c0 4724 {
0eea1030 4725 .name = "limit_in_bytes",
8c7c6e34 4726 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4727 .write = mem_cgroup_write,
791badbd 4728 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4729 },
296c81d8
BS
4730 {
4731 .name = "soft_limit_in_bytes",
4732 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4733 .write = mem_cgroup_write,
791badbd 4734 .read_u64 = mem_cgroup_read_u64,
296c81d8 4735 },
8cdea7c0
BS
4736 {
4737 .name = "failcnt",
8c7c6e34 4738 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4739 .write = mem_cgroup_reset,
791badbd 4740 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4741 },
d2ceb9b7
KH
4742 {
4743 .name = "stat",
2da8ca82 4744 .seq_show = memcg_stat_show,
d2ceb9b7 4745 },
c1e862c1
KH
4746 {
4747 .name = "force_empty",
6770c64e 4748 .write = mem_cgroup_force_empty_write,
c1e862c1 4749 },
18f59ea7
BS
4750 {
4751 .name = "use_hierarchy",
4752 .write_u64 = mem_cgroup_hierarchy_write,
4753 .read_u64 = mem_cgroup_hierarchy_read,
4754 },
79bd9814 4755 {
3bc942f3 4756 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4757 .write = memcg_write_event_control,
7dbdb199 4758 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4759 },
a7885eb8
KM
4760 {
4761 .name = "swappiness",
4762 .read_u64 = mem_cgroup_swappiness_read,
4763 .write_u64 = mem_cgroup_swappiness_write,
4764 },
7dc74be0
DN
4765 {
4766 .name = "move_charge_at_immigrate",
4767 .read_u64 = mem_cgroup_move_charge_read,
4768 .write_u64 = mem_cgroup_move_charge_write,
4769 },
9490ff27
KH
4770 {
4771 .name = "oom_control",
2da8ca82 4772 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4773 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4774 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4775 },
70ddf637
AV
4776 {
4777 .name = "pressure_level",
70ddf637 4778 },
406eb0c9
YH
4779#ifdef CONFIG_NUMA
4780 {
4781 .name = "numa_stat",
2da8ca82 4782 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4783 },
4784#endif
510fc4e1
GC
4785 {
4786 .name = "kmem.limit_in_bytes",
4787 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4788 .write = mem_cgroup_write,
791badbd 4789 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4790 },
4791 {
4792 .name = "kmem.usage_in_bytes",
4793 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4794 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4795 },
4796 {
4797 .name = "kmem.failcnt",
4798 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4799 .write = mem_cgroup_reset,
791badbd 4800 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4801 },
4802 {
4803 .name = "kmem.max_usage_in_bytes",
4804 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4805 .write = mem_cgroup_reset,
791badbd 4806 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4807 },
a87425a3
YS
4808#if defined(CONFIG_MEMCG_KMEM) && \
4809 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4810 {
4811 .name = "kmem.slabinfo",
bc2791f8
TH
4812 .seq_start = memcg_slab_start,
4813 .seq_next = memcg_slab_next,
4814 .seq_stop = memcg_slab_stop,
b047501c 4815 .seq_show = memcg_slab_show,
749c5415
GC
4816 },
4817#endif
d55f90bf
VD
4818 {
4819 .name = "kmem.tcp.limit_in_bytes",
4820 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4821 .write = mem_cgroup_write,
4822 .read_u64 = mem_cgroup_read_u64,
4823 },
4824 {
4825 .name = "kmem.tcp.usage_in_bytes",
4826 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4827 .read_u64 = mem_cgroup_read_u64,
4828 },
4829 {
4830 .name = "kmem.tcp.failcnt",
4831 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4832 .write = mem_cgroup_reset,
4833 .read_u64 = mem_cgroup_read_u64,
4834 },
4835 {
4836 .name = "kmem.tcp.max_usage_in_bytes",
4837 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4838 .write = mem_cgroup_reset,
4839 .read_u64 = mem_cgroup_read_u64,
4840 },
6bc10349 4841 { }, /* terminate */
af36f906 4842};
8c7c6e34 4843
73f576c0
JW
4844/*
4845 * Private memory cgroup IDR
4846 *
4847 * Swap-out records and page cache shadow entries need to store memcg
4848 * references in constrained space, so we maintain an ID space that is
4849 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4850 * memory-controlled cgroups to 64k.
4851 *
4852 * However, there usually are many references to the oflline CSS after
4853 * the cgroup has been destroyed, such as page cache or reclaimable
4854 * slab objects, that don't need to hang on to the ID. We want to keep
4855 * those dead CSS from occupying IDs, or we might quickly exhaust the
4856 * relatively small ID space and prevent the creation of new cgroups
4857 * even when there are much fewer than 64k cgroups - possibly none.
4858 *
4859 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4860 * be freed and recycled when it's no longer needed, which is usually
4861 * when the CSS is offlined.
4862 *
4863 * The only exception to that are records of swapped out tmpfs/shmem
4864 * pages that need to be attributed to live ancestors on swapin. But
4865 * those references are manageable from userspace.
4866 */
4867
4868static DEFINE_IDR(mem_cgroup_idr);
4869
7e97de0b
KT
4870static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4871{
4872 if (memcg->id.id > 0) {
4873 idr_remove(&mem_cgroup_idr, memcg->id.id);
4874 memcg->id.id = 0;
4875 }
4876}
4877
c1514c0a
VF
4878static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4879 unsigned int n)
73f576c0 4880{
1c2d479a 4881 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4882}
4883
615d66c3 4884static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4885{
1c2d479a 4886 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4887 mem_cgroup_id_remove(memcg);
73f576c0
JW
4888
4889 /* Memcg ID pins CSS */
4890 css_put(&memcg->css);
4891 }
4892}
4893
615d66c3
VD
4894static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4895{
4896 mem_cgroup_id_put_many(memcg, 1);
4897}
4898
73f576c0
JW
4899/**
4900 * mem_cgroup_from_id - look up a memcg from a memcg id
4901 * @id: the memcg id to look up
4902 *
4903 * Caller must hold rcu_read_lock().
4904 */
4905struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4906{
4907 WARN_ON_ONCE(!rcu_read_lock_held());
4908 return idr_find(&mem_cgroup_idr, id);
4909}
4910
ef8f2327 4911static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4912{
4913 struct mem_cgroup_per_node *pn;
ef8f2327 4914 int tmp = node;
1ecaab2b
KH
4915 /*
4916 * This routine is called against possible nodes.
4917 * But it's BUG to call kmalloc() against offline node.
4918 *
4919 * TODO: this routine can waste much memory for nodes which will
4920 * never be onlined. It's better to use memory hotplug callback
4921 * function.
4922 */
41e3355d
KH
4923 if (!node_state(node, N_NORMAL_MEMORY))
4924 tmp = -1;
17295c88 4925 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4926 if (!pn)
4927 return 1;
1ecaab2b 4928
815744d7
JW
4929 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4930 if (!pn->lruvec_stat_local) {
4931 kfree(pn);
4932 return 1;
4933 }
4934
a983b5eb
JW
4935 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4936 if (!pn->lruvec_stat_cpu) {
815744d7 4937 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4938 kfree(pn);
4939 return 1;
4940 }
4941
ef8f2327
MG
4942 lruvec_init(&pn->lruvec);
4943 pn->usage_in_excess = 0;
4944 pn->on_tree = false;
4945 pn->memcg = memcg;
4946
54f72fe0 4947 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4948 return 0;
4949}
4950
ef8f2327 4951static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4952{
00f3ca2c
JW
4953 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4954
4eaf431f
MH
4955 if (!pn)
4956 return;
4957
a983b5eb 4958 free_percpu(pn->lruvec_stat_cpu);
815744d7 4959 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4960 kfree(pn);
1ecaab2b
KH
4961}
4962
40e952f9 4963static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4964{
c8b2a36f 4965 int node;
59927fb9 4966
c8b2a36f 4967 for_each_node(node)
ef8f2327 4968 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4969 free_percpu(memcg->vmstats_percpu);
815744d7 4970 free_percpu(memcg->vmstats_local);
8ff69e2c 4971 kfree(memcg);
59927fb9 4972}
3afe36b1 4973
40e952f9
TE
4974static void mem_cgroup_free(struct mem_cgroup *memcg)
4975{
4976 memcg_wb_domain_exit(memcg);
7961eee3
SB
4977 /*
4978 * Flush percpu vmstats and vmevents to guarantee the value correctness
4979 * on parent's and all ancestor levels.
4980 */
4a87e2a2 4981 memcg_flush_percpu_vmstats(memcg);
7961eee3 4982 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
4983 __mem_cgroup_free(memcg);
4984}
4985
0b8f73e1 4986static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4987{
d142e3e6 4988 struct mem_cgroup *memcg;
b9726c26 4989 unsigned int size;
6d12e2d8 4990 int node;
97b27821 4991 int __maybe_unused i;
11d67612 4992 long error = -ENOMEM;
8cdea7c0 4993
0b8f73e1
JW
4994 size = sizeof(struct mem_cgroup);
4995 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4996
4997 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4998 if (!memcg)
11d67612 4999 return ERR_PTR(error);
0b8f73e1 5000
73f576c0
JW
5001 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5002 1, MEM_CGROUP_ID_MAX,
5003 GFP_KERNEL);
11d67612
YS
5004 if (memcg->id.id < 0) {
5005 error = memcg->id.id;
73f576c0 5006 goto fail;
11d67612 5007 }
73f576c0 5008
815744d7
JW
5009 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5010 if (!memcg->vmstats_local)
5011 goto fail;
5012
871789d4
CD
5013 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5014 if (!memcg->vmstats_percpu)
0b8f73e1 5015 goto fail;
78fb7466 5016
3ed28fa1 5017 for_each_node(node)
ef8f2327 5018 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5019 goto fail;
f64c3f54 5020
0b8f73e1
JW
5021 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5022 goto fail;
28dbc4b6 5023
f7e1cb6e 5024 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5025 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5026 mutex_init(&memcg->thresholds_lock);
5027 spin_lock_init(&memcg->move_lock);
70ddf637 5028 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5029 INIT_LIST_HEAD(&memcg->event_list);
5030 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5031 memcg->socket_pressure = jiffies;
84c07d11 5032#ifdef CONFIG_MEMCG_KMEM
900a38f0 5033 memcg->kmemcg_id = -1;
900a38f0 5034#endif
52ebea74
TH
5035#ifdef CONFIG_CGROUP_WRITEBACK
5036 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5037 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5038 memcg->cgwb_frn[i].done =
5039 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5040#endif
5041#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5042 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5043 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5044 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5045#endif
73f576c0 5046 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5047 return memcg;
5048fail:
7e97de0b 5049 mem_cgroup_id_remove(memcg);
40e952f9 5050 __mem_cgroup_free(memcg);
11d67612 5051 return ERR_PTR(error);
d142e3e6
GC
5052}
5053
0b8f73e1
JW
5054static struct cgroup_subsys_state * __ref
5055mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5056{
0b8f73e1
JW
5057 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5058 struct mem_cgroup *memcg;
5059 long error = -ENOMEM;
d142e3e6 5060
0b8f73e1 5061 memcg = mem_cgroup_alloc();
11d67612
YS
5062 if (IS_ERR(memcg))
5063 return ERR_CAST(memcg);
d142e3e6 5064
f6f989c5 5065 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
0b8f73e1
JW
5066 memcg->soft_limit = PAGE_COUNTER_MAX;
5067 if (parent) {
5068 memcg->swappiness = mem_cgroup_swappiness(parent);
5069 memcg->oom_kill_disable = parent->oom_kill_disable;
5070 }
5071 if (parent && parent->use_hierarchy) {
5072 memcg->use_hierarchy = true;
3e32cb2e 5073 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5074 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5075 page_counter_init(&memcg->memsw, &parent->memsw);
5076 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5077 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5078 } else {
3e32cb2e 5079 page_counter_init(&memcg->memory, NULL);
37e84351 5080 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5081 page_counter_init(&memcg->memsw, NULL);
5082 page_counter_init(&memcg->kmem, NULL);
0db15298 5083 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5084 /*
5085 * Deeper hierachy with use_hierarchy == false doesn't make
5086 * much sense so let cgroup subsystem know about this
5087 * unfortunate state in our controller.
5088 */
d142e3e6 5089 if (parent != root_mem_cgroup)
073219e9 5090 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5091 }
d6441637 5092
0b8f73e1
JW
5093 /* The following stuff does not apply to the root */
5094 if (!parent) {
fb2f2b0a
RG
5095#ifdef CONFIG_MEMCG_KMEM
5096 INIT_LIST_HEAD(&memcg->kmem_caches);
5097#endif
0b8f73e1
JW
5098 root_mem_cgroup = memcg;
5099 return &memcg->css;
5100 }
5101
b313aeee 5102 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5103 if (error)
5104 goto fail;
127424c8 5105
f7e1cb6e 5106 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5107 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5108
0b8f73e1
JW
5109 return &memcg->css;
5110fail:
7e97de0b 5111 mem_cgroup_id_remove(memcg);
0b8f73e1 5112 mem_cgroup_free(memcg);
11d67612 5113 return ERR_PTR(error);
0b8f73e1
JW
5114}
5115
73f576c0 5116static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5117{
58fa2a55
VD
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5119
0a4465d3
KT
5120 /*
5121 * A memcg must be visible for memcg_expand_shrinker_maps()
5122 * by the time the maps are allocated. So, we allocate maps
5123 * here, when for_each_mem_cgroup() can't skip it.
5124 */
5125 if (memcg_alloc_shrinker_maps(memcg)) {
5126 mem_cgroup_id_remove(memcg);
5127 return -ENOMEM;
5128 }
5129
73f576c0 5130 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5131 refcount_set(&memcg->id.ref, 1);
73f576c0 5132 css_get(css);
2f7dd7a4 5133 return 0;
8cdea7c0
BS
5134}
5135
eb95419b 5136static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5137{
eb95419b 5138 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5139 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5140
5141 /*
5142 * Unregister events and notify userspace.
5143 * Notify userspace about cgroup removing only after rmdir of cgroup
5144 * directory to avoid race between userspace and kernelspace.
5145 */
fba94807
TH
5146 spin_lock(&memcg->event_list_lock);
5147 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5148 list_del_init(&event->list);
5149 schedule_work(&event->remove);
5150 }
fba94807 5151 spin_unlock(&memcg->event_list_lock);
ec64f515 5152
bf8d5d52 5153 page_counter_set_min(&memcg->memory, 0);
23067153 5154 page_counter_set_low(&memcg->memory, 0);
63677c74 5155
567e9ab2 5156 memcg_offline_kmem(memcg);
52ebea74 5157 wb_memcg_offline(memcg);
73f576c0 5158
591edfb1
RG
5159 drain_all_stock(memcg);
5160
73f576c0 5161 mem_cgroup_id_put(memcg);
df878fb0
KH
5162}
5163
6df38689
VD
5164static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5165{
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5167
5168 invalidate_reclaim_iterators(memcg);
5169}
5170
eb95419b 5171static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5172{
eb95419b 5173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5174 int __maybe_unused i;
c268e994 5175
97b27821
TH
5176#ifdef CONFIG_CGROUP_WRITEBACK
5177 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5178 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5179#endif
f7e1cb6e 5180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5181 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5182
0db15298 5183 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5184 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5185
0b8f73e1
JW
5186 vmpressure_cleanup(&memcg->vmpressure);
5187 cancel_work_sync(&memcg->high_work);
5188 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5189 memcg_free_shrinker_maps(memcg);
d886f4e4 5190 memcg_free_kmem(memcg);
0b8f73e1 5191 mem_cgroup_free(memcg);
8cdea7c0
BS
5192}
5193
1ced953b
TH
5194/**
5195 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5196 * @css: the target css
5197 *
5198 * Reset the states of the mem_cgroup associated with @css. This is
5199 * invoked when the userland requests disabling on the default hierarchy
5200 * but the memcg is pinned through dependency. The memcg should stop
5201 * applying policies and should revert to the vanilla state as it may be
5202 * made visible again.
5203 *
5204 * The current implementation only resets the essential configurations.
5205 * This needs to be expanded to cover all the visible parts.
5206 */
5207static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5208{
5209 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5210
bbec2e15
RG
5211 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5212 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5213 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5214 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5215 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5216 page_counter_set_min(&memcg->memory, 0);
23067153 5217 page_counter_set_low(&memcg->memory, 0);
f6f989c5 5218 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
24d404dc 5219 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5220 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5221}
5222
02491447 5223#ifdef CONFIG_MMU
7dc74be0 5224/* Handlers for move charge at task migration. */
854ffa8d 5225static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5226{
05b84301 5227 int ret;
9476db97 5228
d0164adc
MG
5229 /* Try a single bulk charge without reclaim first, kswapd may wake */
5230 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5231 if (!ret) {
854ffa8d 5232 mc.precharge += count;
854ffa8d
DN
5233 return ret;
5234 }
9476db97 5235
3674534b 5236 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5237 while (count--) {
3674534b 5238 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5239 if (ret)
38c5d72f 5240 return ret;
854ffa8d 5241 mc.precharge++;
9476db97 5242 cond_resched();
854ffa8d 5243 }
9476db97 5244 return 0;
4ffef5fe
DN
5245}
5246
4ffef5fe
DN
5247union mc_target {
5248 struct page *page;
02491447 5249 swp_entry_t ent;
4ffef5fe
DN
5250};
5251
4ffef5fe 5252enum mc_target_type {
8d32ff84 5253 MC_TARGET_NONE = 0,
4ffef5fe 5254 MC_TARGET_PAGE,
02491447 5255 MC_TARGET_SWAP,
c733a828 5256 MC_TARGET_DEVICE,
4ffef5fe
DN
5257};
5258
90254a65
DN
5259static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5260 unsigned long addr, pte_t ptent)
4ffef5fe 5261{
25b2995a 5262 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5263
90254a65
DN
5264 if (!page || !page_mapped(page))
5265 return NULL;
5266 if (PageAnon(page)) {
1dfab5ab 5267 if (!(mc.flags & MOVE_ANON))
90254a65 5268 return NULL;
1dfab5ab
JW
5269 } else {
5270 if (!(mc.flags & MOVE_FILE))
5271 return NULL;
5272 }
90254a65
DN
5273 if (!get_page_unless_zero(page))
5274 return NULL;
5275
5276 return page;
5277}
5278
c733a828 5279#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5280static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5281 pte_t ptent, swp_entry_t *entry)
90254a65 5282{
90254a65
DN
5283 struct page *page = NULL;
5284 swp_entry_t ent = pte_to_swp_entry(ptent);
5285
1dfab5ab 5286 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5287 return NULL;
c733a828
JG
5288
5289 /*
5290 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5291 * a device and because they are not accessible by CPU they are store
5292 * as special swap entry in the CPU page table.
5293 */
5294 if (is_device_private_entry(ent)) {
5295 page = device_private_entry_to_page(ent);
5296 /*
5297 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5298 * a refcount of 1 when free (unlike normal page)
5299 */
5300 if (!page_ref_add_unless(page, 1, 1))
5301 return NULL;
5302 return page;
5303 }
5304
4b91355e
KH
5305 /*
5306 * Because lookup_swap_cache() updates some statistics counter,
5307 * we call find_get_page() with swapper_space directly.
5308 */
f6ab1f7f 5309 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5310 if (do_memsw_account())
90254a65
DN
5311 entry->val = ent.val;
5312
5313 return page;
5314}
4b91355e
KH
5315#else
5316static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5317 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5318{
5319 return NULL;
5320}
5321#endif
90254a65 5322
87946a72
DN
5323static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5324 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5325{
5326 struct page *page = NULL;
87946a72
DN
5327 struct address_space *mapping;
5328 pgoff_t pgoff;
5329
5330 if (!vma->vm_file) /* anonymous vma */
5331 return NULL;
1dfab5ab 5332 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5333 return NULL;
5334
87946a72 5335 mapping = vma->vm_file->f_mapping;
0661a336 5336 pgoff = linear_page_index(vma, addr);
87946a72
DN
5337
5338 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5339#ifdef CONFIG_SWAP
5340 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5341 if (shmem_mapping(mapping)) {
5342 page = find_get_entry(mapping, pgoff);
3159f943 5343 if (xa_is_value(page)) {
139b6a6f 5344 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5345 if (do_memsw_account())
139b6a6f 5346 *entry = swp;
f6ab1f7f
HY
5347 page = find_get_page(swap_address_space(swp),
5348 swp_offset(swp));
139b6a6f
JW
5349 }
5350 } else
5351 page = find_get_page(mapping, pgoff);
5352#else
5353 page = find_get_page(mapping, pgoff);
aa3b1895 5354#endif
87946a72
DN
5355 return page;
5356}
5357
b1b0deab
CG
5358/**
5359 * mem_cgroup_move_account - move account of the page
5360 * @page: the page
25843c2b 5361 * @compound: charge the page as compound or small page
b1b0deab
CG
5362 * @from: mem_cgroup which the page is moved from.
5363 * @to: mem_cgroup which the page is moved to. @from != @to.
5364 *
3ac808fd 5365 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5366 *
5367 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5368 * from old cgroup.
5369 */
5370static int mem_cgroup_move_account(struct page *page,
f627c2f5 5371 bool compound,
b1b0deab
CG
5372 struct mem_cgroup *from,
5373 struct mem_cgroup *to)
5374{
ae8af438
KK
5375 struct lruvec *from_vec, *to_vec;
5376 struct pglist_data *pgdat;
b1b0deab 5377 unsigned long flags;
f627c2f5 5378 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5379 int ret;
c4843a75 5380 bool anon;
b1b0deab
CG
5381
5382 VM_BUG_ON(from == to);
5383 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5384 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5385
5386 /*
6a93ca8f 5387 * Prevent mem_cgroup_migrate() from looking at
45637bab 5388 * page->mem_cgroup of its source page while we change it.
b1b0deab 5389 */
f627c2f5 5390 ret = -EBUSY;
b1b0deab
CG
5391 if (!trylock_page(page))
5392 goto out;
5393
5394 ret = -EINVAL;
5395 if (page->mem_cgroup != from)
5396 goto out_unlock;
5397
c4843a75
GT
5398 anon = PageAnon(page);
5399
ae8af438 5400 pgdat = page_pgdat(page);
867e5e1d
JW
5401 from_vec = mem_cgroup_lruvec(from, pgdat);
5402 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5403
b1b0deab
CG
5404 spin_lock_irqsave(&from->move_lock, flags);
5405
c4843a75 5406 if (!anon && page_mapped(page)) {
ae8af438
KK
5407 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5408 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5409 }
5410
c4843a75
GT
5411 /*
5412 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5413 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5414 * So mapping should be stable for dirty pages.
5415 */
5416 if (!anon && PageDirty(page)) {
5417 struct address_space *mapping = page_mapping(page);
5418
5419 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5420 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5421 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5422 }
5423 }
5424
b1b0deab 5425 if (PageWriteback(page)) {
ae8af438
KK
5426 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5427 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5428 }
5429
5430 /*
5431 * It is safe to change page->mem_cgroup here because the page
5432 * is referenced, charged, and isolated - we can't race with
5433 * uncharging, charging, migration, or LRU putback.
5434 */
5435
5436 /* caller should have done css_get */
5437 page->mem_cgroup = to;
87eaceb3 5438
b1b0deab
CG
5439 spin_unlock_irqrestore(&from->move_lock, flags);
5440
5441 ret = 0;
5442
5443 local_irq_disable();
f627c2f5 5444 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5445 memcg_check_events(to, page);
f627c2f5 5446 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5447 memcg_check_events(from, page);
5448 local_irq_enable();
5449out_unlock:
5450 unlock_page(page);
5451out:
5452 return ret;
5453}
5454
7cf7806c
LR
5455/**
5456 * get_mctgt_type - get target type of moving charge
5457 * @vma: the vma the pte to be checked belongs
5458 * @addr: the address corresponding to the pte to be checked
5459 * @ptent: the pte to be checked
5460 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5461 *
5462 * Returns
5463 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5464 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5465 * move charge. if @target is not NULL, the page is stored in target->page
5466 * with extra refcnt got(Callers should handle it).
5467 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5468 * target for charge migration. if @target is not NULL, the entry is stored
5469 * in target->ent.
25b2995a
CH
5470 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5471 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5472 * For now we such page is charge like a regular page would be as for all
5473 * intent and purposes it is just special memory taking the place of a
5474 * regular page.
c733a828
JG
5475 *
5476 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5477 *
5478 * Called with pte lock held.
5479 */
5480
8d32ff84 5481static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5482 unsigned long addr, pte_t ptent, union mc_target *target)
5483{
5484 struct page *page = NULL;
8d32ff84 5485 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5486 swp_entry_t ent = { .val = 0 };
5487
5488 if (pte_present(ptent))
5489 page = mc_handle_present_pte(vma, addr, ptent);
5490 else if (is_swap_pte(ptent))
48406ef8 5491 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5492 else if (pte_none(ptent))
87946a72 5493 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5494
5495 if (!page && !ent.val)
8d32ff84 5496 return ret;
02491447 5497 if (page) {
02491447 5498 /*
0a31bc97 5499 * Do only loose check w/o serialization.
1306a85a 5500 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5501 * not under LRU exclusion.
02491447 5502 */
1306a85a 5503 if (page->mem_cgroup == mc.from) {
02491447 5504 ret = MC_TARGET_PAGE;
25b2995a 5505 if (is_device_private_page(page))
c733a828 5506 ret = MC_TARGET_DEVICE;
02491447
DN
5507 if (target)
5508 target->page = page;
5509 }
5510 if (!ret || !target)
5511 put_page(page);
5512 }
3e14a57b
HY
5513 /*
5514 * There is a swap entry and a page doesn't exist or isn't charged.
5515 * But we cannot move a tail-page in a THP.
5516 */
5517 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5518 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5519 ret = MC_TARGET_SWAP;
5520 if (target)
5521 target->ent = ent;
4ffef5fe 5522 }
4ffef5fe
DN
5523 return ret;
5524}
5525
12724850
NH
5526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5527/*
d6810d73
HY
5528 * We don't consider PMD mapped swapping or file mapped pages because THP does
5529 * not support them for now.
12724850
NH
5530 * Caller should make sure that pmd_trans_huge(pmd) is true.
5531 */
5532static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5533 unsigned long addr, pmd_t pmd, union mc_target *target)
5534{
5535 struct page *page = NULL;
12724850
NH
5536 enum mc_target_type ret = MC_TARGET_NONE;
5537
84c3fc4e
ZY
5538 if (unlikely(is_swap_pmd(pmd))) {
5539 VM_BUG_ON(thp_migration_supported() &&
5540 !is_pmd_migration_entry(pmd));
5541 return ret;
5542 }
12724850 5543 page = pmd_page(pmd);
309381fe 5544 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5545 if (!(mc.flags & MOVE_ANON))
12724850 5546 return ret;
1306a85a 5547 if (page->mem_cgroup == mc.from) {
12724850
NH
5548 ret = MC_TARGET_PAGE;
5549 if (target) {
5550 get_page(page);
5551 target->page = page;
5552 }
5553 }
5554 return ret;
5555}
5556#else
5557static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5558 unsigned long addr, pmd_t pmd, union mc_target *target)
5559{
5560 return MC_TARGET_NONE;
5561}
5562#endif
5563
4ffef5fe
DN
5564static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5565 unsigned long addr, unsigned long end,
5566 struct mm_walk *walk)
5567{
26bcd64a 5568 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5569 pte_t *pte;
5570 spinlock_t *ptl;
5571
b6ec57f4
KS
5572 ptl = pmd_trans_huge_lock(pmd, vma);
5573 if (ptl) {
c733a828
JG
5574 /*
5575 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5576 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5577 * this might change.
c733a828 5578 */
12724850
NH
5579 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5580 mc.precharge += HPAGE_PMD_NR;
bf929152 5581 spin_unlock(ptl);
1a5a9906 5582 return 0;
12724850 5583 }
03319327 5584
45f83cef
AA
5585 if (pmd_trans_unstable(pmd))
5586 return 0;
4ffef5fe
DN
5587 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5588 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5589 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5590 mc.precharge++; /* increment precharge temporarily */
5591 pte_unmap_unlock(pte - 1, ptl);
5592 cond_resched();
5593
7dc74be0
DN
5594 return 0;
5595}
5596
7b86ac33
CH
5597static const struct mm_walk_ops precharge_walk_ops = {
5598 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5599};
5600
4ffef5fe
DN
5601static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5602{
5603 unsigned long precharge;
4ffef5fe 5604
dfe076b0 5605 down_read(&mm->mmap_sem);
7b86ac33 5606 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5607 up_read(&mm->mmap_sem);
4ffef5fe
DN
5608
5609 precharge = mc.precharge;
5610 mc.precharge = 0;
5611
5612 return precharge;
5613}
5614
4ffef5fe
DN
5615static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5616{
dfe076b0
DN
5617 unsigned long precharge = mem_cgroup_count_precharge(mm);
5618
5619 VM_BUG_ON(mc.moving_task);
5620 mc.moving_task = current;
5621 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5622}
5623
dfe076b0
DN
5624/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5625static void __mem_cgroup_clear_mc(void)
4ffef5fe 5626{
2bd9bb20
KH
5627 struct mem_cgroup *from = mc.from;
5628 struct mem_cgroup *to = mc.to;
5629
4ffef5fe 5630 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5631 if (mc.precharge) {
00501b53 5632 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5633 mc.precharge = 0;
5634 }
5635 /*
5636 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5637 * we must uncharge here.
5638 */
5639 if (mc.moved_charge) {
00501b53 5640 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5641 mc.moved_charge = 0;
4ffef5fe 5642 }
483c30b5
DN
5643 /* we must fixup refcnts and charges */
5644 if (mc.moved_swap) {
483c30b5 5645 /* uncharge swap account from the old cgroup */
ce00a967 5646 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5647 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5648
615d66c3
VD
5649 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5650
05b84301 5651 /*
3e32cb2e
JW
5652 * we charged both to->memory and to->memsw, so we
5653 * should uncharge to->memory.
05b84301 5654 */
ce00a967 5655 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5656 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5657
615d66c3
VD
5658 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5659 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5660
483c30b5
DN
5661 mc.moved_swap = 0;
5662 }
dfe076b0
DN
5663 memcg_oom_recover(from);
5664 memcg_oom_recover(to);
5665 wake_up_all(&mc.waitq);
5666}
5667
5668static void mem_cgroup_clear_mc(void)
5669{
264a0ae1
TH
5670 struct mm_struct *mm = mc.mm;
5671
dfe076b0
DN
5672 /*
5673 * we must clear moving_task before waking up waiters at the end of
5674 * task migration.
5675 */
5676 mc.moving_task = NULL;
5677 __mem_cgroup_clear_mc();
2bd9bb20 5678 spin_lock(&mc.lock);
4ffef5fe
DN
5679 mc.from = NULL;
5680 mc.to = NULL;
264a0ae1 5681 mc.mm = NULL;
2bd9bb20 5682 spin_unlock(&mc.lock);
264a0ae1
TH
5683
5684 mmput(mm);
4ffef5fe
DN
5685}
5686
1f7dd3e5 5687static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5688{
1f7dd3e5 5689 struct cgroup_subsys_state *css;
eed67d75 5690 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5691 struct mem_cgroup *from;
4530eddb 5692 struct task_struct *leader, *p;
9f2115f9 5693 struct mm_struct *mm;
1dfab5ab 5694 unsigned long move_flags;
9f2115f9 5695 int ret = 0;
7dc74be0 5696
1f7dd3e5
TH
5697 /* charge immigration isn't supported on the default hierarchy */
5698 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5699 return 0;
5700
4530eddb
TH
5701 /*
5702 * Multi-process migrations only happen on the default hierarchy
5703 * where charge immigration is not used. Perform charge
5704 * immigration if @tset contains a leader and whine if there are
5705 * multiple.
5706 */
5707 p = NULL;
1f7dd3e5 5708 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5709 WARN_ON_ONCE(p);
5710 p = leader;
1f7dd3e5 5711 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5712 }
5713 if (!p)
5714 return 0;
5715
1f7dd3e5
TH
5716 /*
5717 * We are now commited to this value whatever it is. Changes in this
5718 * tunable will only affect upcoming migrations, not the current one.
5719 * So we need to save it, and keep it going.
5720 */
5721 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5722 if (!move_flags)
5723 return 0;
5724
9f2115f9
TH
5725 from = mem_cgroup_from_task(p);
5726
5727 VM_BUG_ON(from == memcg);
5728
5729 mm = get_task_mm(p);
5730 if (!mm)
5731 return 0;
5732 /* We move charges only when we move a owner of the mm */
5733 if (mm->owner == p) {
5734 VM_BUG_ON(mc.from);
5735 VM_BUG_ON(mc.to);
5736 VM_BUG_ON(mc.precharge);
5737 VM_BUG_ON(mc.moved_charge);
5738 VM_BUG_ON(mc.moved_swap);
5739
5740 spin_lock(&mc.lock);
264a0ae1 5741 mc.mm = mm;
9f2115f9
TH
5742 mc.from = from;
5743 mc.to = memcg;
5744 mc.flags = move_flags;
5745 spin_unlock(&mc.lock);
5746 /* We set mc.moving_task later */
5747
5748 ret = mem_cgroup_precharge_mc(mm);
5749 if (ret)
5750 mem_cgroup_clear_mc();
264a0ae1
TH
5751 } else {
5752 mmput(mm);
7dc74be0
DN
5753 }
5754 return ret;
5755}
5756
1f7dd3e5 5757static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5758{
4e2f245d
JW
5759 if (mc.to)
5760 mem_cgroup_clear_mc();
7dc74be0
DN
5761}
5762
4ffef5fe
DN
5763static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5764 unsigned long addr, unsigned long end,
5765 struct mm_walk *walk)
7dc74be0 5766{
4ffef5fe 5767 int ret = 0;
26bcd64a 5768 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5769 pte_t *pte;
5770 spinlock_t *ptl;
12724850
NH
5771 enum mc_target_type target_type;
5772 union mc_target target;
5773 struct page *page;
4ffef5fe 5774
b6ec57f4
KS
5775 ptl = pmd_trans_huge_lock(pmd, vma);
5776 if (ptl) {
62ade86a 5777 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5778 spin_unlock(ptl);
12724850
NH
5779 return 0;
5780 }
5781 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5782 if (target_type == MC_TARGET_PAGE) {
5783 page = target.page;
5784 if (!isolate_lru_page(page)) {
f627c2f5 5785 if (!mem_cgroup_move_account(page, true,
1306a85a 5786 mc.from, mc.to)) {
12724850
NH
5787 mc.precharge -= HPAGE_PMD_NR;
5788 mc.moved_charge += HPAGE_PMD_NR;
5789 }
5790 putback_lru_page(page);
5791 }
5792 put_page(page);
c733a828
JG
5793 } else if (target_type == MC_TARGET_DEVICE) {
5794 page = target.page;
5795 if (!mem_cgroup_move_account(page, true,
5796 mc.from, mc.to)) {
5797 mc.precharge -= HPAGE_PMD_NR;
5798 mc.moved_charge += HPAGE_PMD_NR;
5799 }
5800 put_page(page);
12724850 5801 }
bf929152 5802 spin_unlock(ptl);
1a5a9906 5803 return 0;
12724850
NH
5804 }
5805
45f83cef
AA
5806 if (pmd_trans_unstable(pmd))
5807 return 0;
4ffef5fe
DN
5808retry:
5809 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5810 for (; addr != end; addr += PAGE_SIZE) {
5811 pte_t ptent = *(pte++);
c733a828 5812 bool device = false;
02491447 5813 swp_entry_t ent;
4ffef5fe
DN
5814
5815 if (!mc.precharge)
5816 break;
5817
8d32ff84 5818 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5819 case MC_TARGET_DEVICE:
5820 device = true;
e4a9bc58 5821 fallthrough;
4ffef5fe
DN
5822 case MC_TARGET_PAGE:
5823 page = target.page;
53f9263b
KS
5824 /*
5825 * We can have a part of the split pmd here. Moving it
5826 * can be done but it would be too convoluted so simply
5827 * ignore such a partial THP and keep it in original
5828 * memcg. There should be somebody mapping the head.
5829 */
5830 if (PageTransCompound(page))
5831 goto put;
c733a828 5832 if (!device && isolate_lru_page(page))
4ffef5fe 5833 goto put;
f627c2f5
KS
5834 if (!mem_cgroup_move_account(page, false,
5835 mc.from, mc.to)) {
4ffef5fe 5836 mc.precharge--;
854ffa8d
DN
5837 /* we uncharge from mc.from later. */
5838 mc.moved_charge++;
4ffef5fe 5839 }
c733a828
JG
5840 if (!device)
5841 putback_lru_page(page);
8d32ff84 5842put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5843 put_page(page);
5844 break;
02491447
DN
5845 case MC_TARGET_SWAP:
5846 ent = target.ent;
e91cbb42 5847 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5848 mc.precharge--;
483c30b5
DN
5849 /* we fixup refcnts and charges later. */
5850 mc.moved_swap++;
5851 }
02491447 5852 break;
4ffef5fe
DN
5853 default:
5854 break;
5855 }
5856 }
5857 pte_unmap_unlock(pte - 1, ptl);
5858 cond_resched();
5859
5860 if (addr != end) {
5861 /*
5862 * We have consumed all precharges we got in can_attach().
5863 * We try charge one by one, but don't do any additional
5864 * charges to mc.to if we have failed in charge once in attach()
5865 * phase.
5866 */
854ffa8d 5867 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5868 if (!ret)
5869 goto retry;
5870 }
5871
5872 return ret;
5873}
5874
7b86ac33
CH
5875static const struct mm_walk_ops charge_walk_ops = {
5876 .pmd_entry = mem_cgroup_move_charge_pte_range,
5877};
5878
264a0ae1 5879static void mem_cgroup_move_charge(void)
4ffef5fe 5880{
4ffef5fe 5881 lru_add_drain_all();
312722cb 5882 /*
81f8c3a4
JW
5883 * Signal lock_page_memcg() to take the memcg's move_lock
5884 * while we're moving its pages to another memcg. Then wait
5885 * for already started RCU-only updates to finish.
312722cb
JW
5886 */
5887 atomic_inc(&mc.from->moving_account);
5888 synchronize_rcu();
dfe076b0 5889retry:
264a0ae1 5890 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5891 /*
5892 * Someone who are holding the mmap_sem might be waiting in
5893 * waitq. So we cancel all extra charges, wake up all waiters,
5894 * and retry. Because we cancel precharges, we might not be able
5895 * to move enough charges, but moving charge is a best-effort
5896 * feature anyway, so it wouldn't be a big problem.
5897 */
5898 __mem_cgroup_clear_mc();
5899 cond_resched();
5900 goto retry;
5901 }
26bcd64a
NH
5902 /*
5903 * When we have consumed all precharges and failed in doing
5904 * additional charge, the page walk just aborts.
5905 */
7b86ac33
CH
5906 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5907 NULL);
0247f3f4 5908
264a0ae1 5909 up_read(&mc.mm->mmap_sem);
312722cb 5910 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5911}
5912
264a0ae1 5913static void mem_cgroup_move_task(void)
67e465a7 5914{
264a0ae1
TH
5915 if (mc.to) {
5916 mem_cgroup_move_charge();
a433658c 5917 mem_cgroup_clear_mc();
264a0ae1 5918 }
67e465a7 5919}
5cfb80a7 5920#else /* !CONFIG_MMU */
1f7dd3e5 5921static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5922{
5923 return 0;
5924}
1f7dd3e5 5925static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5926{
5927}
264a0ae1 5928static void mem_cgroup_move_task(void)
5cfb80a7
DN
5929{
5930}
5931#endif
67e465a7 5932
f00baae7
TH
5933/*
5934 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5935 * to verify whether we're attached to the default hierarchy on each mount
5936 * attempt.
f00baae7 5937 */
eb95419b 5938static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5939{
5940 /*
aa6ec29b 5941 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5942 * guarantees that @root doesn't have any children, so turning it
5943 * on for the root memcg is enough.
5944 */
9e10a130 5945 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5946 root_mem_cgroup->use_hierarchy = true;
5947 else
5948 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5949}
5950
677dc973
CD
5951static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5952{
5953 if (value == PAGE_COUNTER_MAX)
5954 seq_puts(m, "max\n");
5955 else
5956 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5957
5958 return 0;
5959}
5960
241994ed
JW
5961static u64 memory_current_read(struct cgroup_subsys_state *css,
5962 struct cftype *cft)
5963{
f5fc3c5d
JW
5964 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5965
5966 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5967}
5968
bf8d5d52
RG
5969static int memory_min_show(struct seq_file *m, void *v)
5970{
677dc973
CD
5971 return seq_puts_memcg_tunable(m,
5972 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5973}
5974
5975static ssize_t memory_min_write(struct kernfs_open_file *of,
5976 char *buf, size_t nbytes, loff_t off)
5977{
5978 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5979 unsigned long min;
5980 int err;
5981
5982 buf = strstrip(buf);
5983 err = page_counter_memparse(buf, "max", &min);
5984 if (err)
5985 return err;
5986
5987 page_counter_set_min(&memcg->memory, min);
5988
5989 return nbytes;
5990}
5991
241994ed
JW
5992static int memory_low_show(struct seq_file *m, void *v)
5993{
677dc973
CD
5994 return seq_puts_memcg_tunable(m,
5995 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5996}
5997
5998static ssize_t memory_low_write(struct kernfs_open_file *of,
5999 char *buf, size_t nbytes, loff_t off)
6000{
6001 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6002 unsigned long low;
6003 int err;
6004
6005 buf = strstrip(buf);
d2973697 6006 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6007 if (err)
6008 return err;
6009
23067153 6010 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6011
6012 return nbytes;
6013}
6014
6015static int memory_high_show(struct seq_file *m, void *v)
6016{
677dc973 6017 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
6018}
6019
6020static ssize_t memory_high_write(struct kernfs_open_file *of,
6021 char *buf, size_t nbytes, loff_t off)
6022{
6023 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6024 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6025 bool drained = false;
241994ed
JW
6026 unsigned long high;
6027 int err;
6028
6029 buf = strstrip(buf);
d2973697 6030 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6031 if (err)
6032 return err;
6033
f6f989c5 6034 WRITE_ONCE(memcg->high, high);
241994ed 6035
8c8c383c
JW
6036 for (;;) {
6037 unsigned long nr_pages = page_counter_read(&memcg->memory);
6038 unsigned long reclaimed;
6039
6040 if (nr_pages <= high)
6041 break;
6042
6043 if (signal_pending(current))
6044 break;
6045
6046 if (!drained) {
6047 drain_all_stock(memcg);
6048 drained = true;
6049 continue;
6050 }
6051
6052 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6053 GFP_KERNEL, true);
6054
6055 if (!reclaimed && !nr_retries--)
6056 break;
6057 }
588083bb 6058
241994ed
JW
6059 return nbytes;
6060}
6061
6062static int memory_max_show(struct seq_file *m, void *v)
6063{
677dc973
CD
6064 return seq_puts_memcg_tunable(m,
6065 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6066}
6067
6068static ssize_t memory_max_write(struct kernfs_open_file *of,
6069 char *buf, size_t nbytes, loff_t off)
6070{
6071 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6072 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6073 bool drained = false;
241994ed
JW
6074 unsigned long max;
6075 int err;
6076
6077 buf = strstrip(buf);
d2973697 6078 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6079 if (err)
6080 return err;
6081
bbec2e15 6082 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6083
6084 for (;;) {
6085 unsigned long nr_pages = page_counter_read(&memcg->memory);
6086
6087 if (nr_pages <= max)
6088 break;
6089
7249c9f0 6090 if (signal_pending(current))
b6e6edcf 6091 break;
b6e6edcf
JW
6092
6093 if (!drained) {
6094 drain_all_stock(memcg);
6095 drained = true;
6096 continue;
6097 }
6098
6099 if (nr_reclaims) {
6100 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6101 GFP_KERNEL, true))
6102 nr_reclaims--;
6103 continue;
6104 }
6105
e27be240 6106 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6107 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6108 break;
6109 }
241994ed 6110
2529bb3a 6111 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6112 return nbytes;
6113}
6114
1e577f97
SB
6115static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6116{
6117 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6118 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6119 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6120 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6121 seq_printf(m, "oom_kill %lu\n",
6122 atomic_long_read(&events[MEMCG_OOM_KILL]));
6123}
6124
241994ed
JW
6125static int memory_events_show(struct seq_file *m, void *v)
6126{
aa9694bb 6127 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6128
1e577f97
SB
6129 __memory_events_show(m, memcg->memory_events);
6130 return 0;
6131}
6132
6133static int memory_events_local_show(struct seq_file *m, void *v)
6134{
6135 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6136
1e577f97 6137 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6138 return 0;
6139}
6140
587d9f72
JW
6141static int memory_stat_show(struct seq_file *m, void *v)
6142{
aa9694bb 6143 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6144 char *buf;
1ff9e6e1 6145
c8713d0b
JW
6146 buf = memory_stat_format(memcg);
6147 if (!buf)
6148 return -ENOMEM;
6149 seq_puts(m, buf);
6150 kfree(buf);
587d9f72
JW
6151 return 0;
6152}
6153
3d8b38eb
RG
6154static int memory_oom_group_show(struct seq_file *m, void *v)
6155{
aa9694bb 6156 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6157
6158 seq_printf(m, "%d\n", memcg->oom_group);
6159
6160 return 0;
6161}
6162
6163static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6164 char *buf, size_t nbytes, loff_t off)
6165{
6166 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6167 int ret, oom_group;
6168
6169 buf = strstrip(buf);
6170 if (!buf)
6171 return -EINVAL;
6172
6173 ret = kstrtoint(buf, 0, &oom_group);
6174 if (ret)
6175 return ret;
6176
6177 if (oom_group != 0 && oom_group != 1)
6178 return -EINVAL;
6179
6180 memcg->oom_group = oom_group;
6181
6182 return nbytes;
6183}
6184
241994ed
JW
6185static struct cftype memory_files[] = {
6186 {
6187 .name = "current",
f5fc3c5d 6188 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6189 .read_u64 = memory_current_read,
6190 },
bf8d5d52
RG
6191 {
6192 .name = "min",
6193 .flags = CFTYPE_NOT_ON_ROOT,
6194 .seq_show = memory_min_show,
6195 .write = memory_min_write,
6196 },
241994ed
JW
6197 {
6198 .name = "low",
6199 .flags = CFTYPE_NOT_ON_ROOT,
6200 .seq_show = memory_low_show,
6201 .write = memory_low_write,
6202 },
6203 {
6204 .name = "high",
6205 .flags = CFTYPE_NOT_ON_ROOT,
6206 .seq_show = memory_high_show,
6207 .write = memory_high_write,
6208 },
6209 {
6210 .name = "max",
6211 .flags = CFTYPE_NOT_ON_ROOT,
6212 .seq_show = memory_max_show,
6213 .write = memory_max_write,
6214 },
6215 {
6216 .name = "events",
6217 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6218 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6219 .seq_show = memory_events_show,
6220 },
1e577f97
SB
6221 {
6222 .name = "events.local",
6223 .flags = CFTYPE_NOT_ON_ROOT,
6224 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6225 .seq_show = memory_events_local_show,
6226 },
587d9f72
JW
6227 {
6228 .name = "stat",
6229 .flags = CFTYPE_NOT_ON_ROOT,
6230 .seq_show = memory_stat_show,
6231 },
3d8b38eb
RG
6232 {
6233 .name = "oom.group",
6234 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6235 .seq_show = memory_oom_group_show,
6236 .write = memory_oom_group_write,
6237 },
241994ed
JW
6238 { } /* terminate */
6239};
6240
073219e9 6241struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6242 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6243 .css_online = mem_cgroup_css_online,
92fb9748 6244 .css_offline = mem_cgroup_css_offline,
6df38689 6245 .css_released = mem_cgroup_css_released,
92fb9748 6246 .css_free = mem_cgroup_css_free,
1ced953b 6247 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6248 .can_attach = mem_cgroup_can_attach,
6249 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6250 .post_attach = mem_cgroup_move_task,
f00baae7 6251 .bind = mem_cgroup_bind,
241994ed
JW
6252 .dfl_cftypes = memory_files,
6253 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6254 .early_init = 0,
8cdea7c0 6255};
c077719b 6256
bc50bcc6
JW
6257/*
6258 * This function calculates an individual cgroup's effective
6259 * protection which is derived from its own memory.min/low, its
6260 * parent's and siblings' settings, as well as the actual memory
6261 * distribution in the tree.
6262 *
6263 * The following rules apply to the effective protection values:
6264 *
6265 * 1. At the first level of reclaim, effective protection is equal to
6266 * the declared protection in memory.min and memory.low.
6267 *
6268 * 2. To enable safe delegation of the protection configuration, at
6269 * subsequent levels the effective protection is capped to the
6270 * parent's effective protection.
6271 *
6272 * 3. To make complex and dynamic subtrees easier to configure, the
6273 * user is allowed to overcommit the declared protection at a given
6274 * level. If that is the case, the parent's effective protection is
6275 * distributed to the children in proportion to how much protection
6276 * they have declared and how much of it they are utilizing.
6277 *
6278 * This makes distribution proportional, but also work-conserving:
6279 * if one cgroup claims much more protection than it uses memory,
6280 * the unused remainder is available to its siblings.
6281 *
6282 * 4. Conversely, when the declared protection is undercommitted at a
6283 * given level, the distribution of the larger parental protection
6284 * budget is NOT proportional. A cgroup's protection from a sibling
6285 * is capped to its own memory.min/low setting.
6286 *
8a931f80
JW
6287 * 5. However, to allow protecting recursive subtrees from each other
6288 * without having to declare each individual cgroup's fixed share
6289 * of the ancestor's claim to protection, any unutilized -
6290 * "floating" - protection from up the tree is distributed in
6291 * proportion to each cgroup's *usage*. This makes the protection
6292 * neutral wrt sibling cgroups and lets them compete freely over
6293 * the shared parental protection budget, but it protects the
6294 * subtree as a whole from neighboring subtrees.
6295 *
6296 * Note that 4. and 5. are not in conflict: 4. is about protecting
6297 * against immediate siblings whereas 5. is about protecting against
6298 * neighboring subtrees.
bc50bcc6
JW
6299 */
6300static unsigned long effective_protection(unsigned long usage,
8a931f80 6301 unsigned long parent_usage,
bc50bcc6
JW
6302 unsigned long setting,
6303 unsigned long parent_effective,
6304 unsigned long siblings_protected)
6305{
6306 unsigned long protected;
8a931f80 6307 unsigned long ep;
bc50bcc6
JW
6308
6309 protected = min(usage, setting);
6310 /*
6311 * If all cgroups at this level combined claim and use more
6312 * protection then what the parent affords them, distribute
6313 * shares in proportion to utilization.
6314 *
6315 * We are using actual utilization rather than the statically
6316 * claimed protection in order to be work-conserving: claimed
6317 * but unused protection is available to siblings that would
6318 * otherwise get a smaller chunk than what they claimed.
6319 */
6320 if (siblings_protected > parent_effective)
6321 return protected * parent_effective / siblings_protected;
6322
6323 /*
6324 * Ok, utilized protection of all children is within what the
6325 * parent affords them, so we know whatever this child claims
6326 * and utilizes is effectively protected.
6327 *
6328 * If there is unprotected usage beyond this value, reclaim
6329 * will apply pressure in proportion to that amount.
6330 *
6331 * If there is unutilized protection, the cgroup will be fully
6332 * shielded from reclaim, but we do return a smaller value for
6333 * protection than what the group could enjoy in theory. This
6334 * is okay. With the overcommit distribution above, effective
6335 * protection is always dependent on how memory is actually
6336 * consumed among the siblings anyway.
6337 */
8a931f80
JW
6338 ep = protected;
6339
6340 /*
6341 * If the children aren't claiming (all of) the protection
6342 * afforded to them by the parent, distribute the remainder in
6343 * proportion to the (unprotected) memory of each cgroup. That
6344 * way, cgroups that aren't explicitly prioritized wrt each
6345 * other compete freely over the allowance, but they are
6346 * collectively protected from neighboring trees.
6347 *
6348 * We're using unprotected memory for the weight so that if
6349 * some cgroups DO claim explicit protection, we don't protect
6350 * the same bytes twice.
6351 */
6352 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6353 return ep;
6354
6355 if (parent_effective > siblings_protected && usage > protected) {
6356 unsigned long unclaimed;
6357
6358 unclaimed = parent_effective - siblings_protected;
6359 unclaimed *= usage - protected;
6360 unclaimed /= parent_usage - siblings_protected;
6361
6362 ep += unclaimed;
6363 }
6364
6365 return ep;
bc50bcc6
JW
6366}
6367
241994ed 6368/**
bf8d5d52 6369 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6370 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6371 * @memcg: the memory cgroup to check
6372 *
23067153
RG
6373 * WARNING: This function is not stateless! It can only be used as part
6374 * of a top-down tree iteration, not for isolated queries.
34c81057 6375 *
bf8d5d52
RG
6376 * Returns one of the following:
6377 * MEMCG_PROT_NONE: cgroup memory is not protected
6378 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6379 * an unprotected supply of reclaimable memory from other cgroups.
6380 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6381 */
bf8d5d52
RG
6382enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6383 struct mem_cgroup *memcg)
241994ed 6384{
8a931f80 6385 unsigned long usage, parent_usage;
23067153
RG
6386 struct mem_cgroup *parent;
6387
241994ed 6388 if (mem_cgroup_disabled())
bf8d5d52 6389 return MEMCG_PROT_NONE;
241994ed 6390
34c81057
SC
6391 if (!root)
6392 root = root_mem_cgroup;
6393 if (memcg == root)
bf8d5d52 6394 return MEMCG_PROT_NONE;
241994ed 6395
23067153 6396 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6397 if (!usage)
6398 return MEMCG_PROT_NONE;
6399
bf8d5d52 6400 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6401 /* No parent means a non-hierarchical mode on v1 memcg */
6402 if (!parent)
6403 return MEMCG_PROT_NONE;
6404
bc50bcc6 6405 if (parent == root) {
c3d53200 6406 memcg->memory.emin = READ_ONCE(memcg->memory.min);
bc50bcc6
JW
6407 memcg->memory.elow = memcg->memory.low;
6408 goto out;
bf8d5d52
RG
6409 }
6410
8a931f80
JW
6411 parent_usage = page_counter_read(&parent->memory);
6412
b3a7822e 6413 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6414 READ_ONCE(memcg->memory.min),
6415 READ_ONCE(parent->memory.emin),
b3a7822e 6416 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6417
b3a7822e 6418 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
bc50bcc6 6419 memcg->memory.low, READ_ONCE(parent->memory.elow),
b3a7822e 6420 atomic_long_read(&parent->memory.children_low_usage)));
23067153 6421
bc50bcc6
JW
6422out:
6423 if (usage <= memcg->memory.emin)
bf8d5d52 6424 return MEMCG_PROT_MIN;
bc50bcc6 6425 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6426 return MEMCG_PROT_LOW;
6427 else
6428 return MEMCG_PROT_NONE;
241994ed
JW
6429}
6430
00501b53
JW
6431/**
6432 * mem_cgroup_try_charge - try charging a page
6433 * @page: page to charge
6434 * @mm: mm context of the victim
6435 * @gfp_mask: reclaim mode
6436 * @memcgp: charged memcg return
25843c2b 6437 * @compound: charge the page as compound or small page
00501b53
JW
6438 *
6439 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6440 * pages according to @gfp_mask if necessary.
6441 *
6442 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6443 * Otherwise, an error code is returned.
6444 *
6445 * After page->mapping has been set up, the caller must finalize the
6446 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6447 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6448 */
6449int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6450 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6451 bool compound)
00501b53
JW
6452{
6453 struct mem_cgroup *memcg = NULL;
f627c2f5 6454 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6455 int ret = 0;
6456
6457 if (mem_cgroup_disabled())
6458 goto out;
6459
6460 if (PageSwapCache(page)) {
00501b53
JW
6461 /*
6462 * Every swap fault against a single page tries to charge the
6463 * page, bail as early as possible. shmem_unuse() encounters
6464 * already charged pages, too. The USED bit is protected by
6465 * the page lock, which serializes swap cache removal, which
6466 * in turn serializes uncharging.
6467 */
e993d905 6468 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6469 if (compound_head(page)->mem_cgroup)
00501b53 6470 goto out;
e993d905 6471
37e84351 6472 if (do_swap_account) {
e993d905
VD
6473 swp_entry_t ent = { .val = page_private(page), };
6474 unsigned short id = lookup_swap_cgroup_id(ent);
6475
6476 rcu_read_lock();
6477 memcg = mem_cgroup_from_id(id);
6478 if (memcg && !css_tryget_online(&memcg->css))
6479 memcg = NULL;
6480 rcu_read_unlock();
6481 }
00501b53
JW
6482 }
6483
00501b53
JW
6484 if (!memcg)
6485 memcg = get_mem_cgroup_from_mm(mm);
6486
6487 ret = try_charge(memcg, gfp_mask, nr_pages);
6488
6489 css_put(&memcg->css);
00501b53
JW
6490out:
6491 *memcgp = memcg;
6492 return ret;
6493}
6494
2cf85583
TH
6495int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6496 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6497 bool compound)
6498{
6499 struct mem_cgroup *memcg;
6500 int ret;
6501
6502 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6503 memcg = *memcgp;
6504 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6505 return ret;
6506}
6507
00501b53
JW
6508/**
6509 * mem_cgroup_commit_charge - commit a page charge
6510 * @page: page to charge
6511 * @memcg: memcg to charge the page to
6512 * @lrucare: page might be on LRU already
25843c2b 6513 * @compound: charge the page as compound or small page
00501b53
JW
6514 *
6515 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6516 * after page->mapping has been set up. This must happen atomically
6517 * as part of the page instantiation, i.e. under the page table lock
6518 * for anonymous pages, under the page lock for page and swap cache.
6519 *
6520 * In addition, the page must not be on the LRU during the commit, to
6521 * prevent racing with task migration. If it might be, use @lrucare.
6522 *
6523 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6524 */
6525void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6526 bool lrucare, bool compound)
00501b53 6527{
f627c2f5 6528 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6529
6530 VM_BUG_ON_PAGE(!page->mapping, page);
6531 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6532
6533 if (mem_cgroup_disabled())
6534 return;
6535 /*
6536 * Swap faults will attempt to charge the same page multiple
6537 * times. But reuse_swap_page() might have removed the page
6538 * from swapcache already, so we can't check PageSwapCache().
6539 */
6540 if (!memcg)
6541 return;
6542
6abb5a86
JW
6543 commit_charge(page, memcg, lrucare);
6544
6abb5a86 6545 local_irq_disable();
f627c2f5 6546 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6547 memcg_check_events(memcg, page);
6548 local_irq_enable();
00501b53 6549
7941d214 6550 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6551 swp_entry_t entry = { .val = page_private(page) };
6552 /*
6553 * The swap entry might not get freed for a long time,
6554 * let's not wait for it. The page already received a
6555 * memory+swap charge, drop the swap entry duplicate.
6556 */
38d8b4e6 6557 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6558 }
6559}
6560
6561/**
6562 * mem_cgroup_cancel_charge - cancel a page charge
6563 * @page: page to charge
6564 * @memcg: memcg to charge the page to
25843c2b 6565 * @compound: charge the page as compound or small page
00501b53
JW
6566 *
6567 * Cancel a charge transaction started by mem_cgroup_try_charge().
6568 */
f627c2f5
KS
6569void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6570 bool compound)
00501b53 6571{
f627c2f5 6572 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6573
6574 if (mem_cgroup_disabled())
6575 return;
6576 /*
6577 * Swap faults will attempt to charge the same page multiple
6578 * times. But reuse_swap_page() might have removed the page
6579 * from swapcache already, so we can't check PageSwapCache().
6580 */
6581 if (!memcg)
6582 return;
6583
00501b53
JW
6584 cancel_charge(memcg, nr_pages);
6585}
6586
a9d5adee
JG
6587struct uncharge_gather {
6588 struct mem_cgroup *memcg;
6589 unsigned long pgpgout;
6590 unsigned long nr_anon;
6591 unsigned long nr_file;
6592 unsigned long nr_kmem;
6593 unsigned long nr_huge;
6594 unsigned long nr_shmem;
6595 struct page *dummy_page;
6596};
6597
6598static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6599{
a9d5adee
JG
6600 memset(ug, 0, sizeof(*ug));
6601}
6602
6603static void uncharge_batch(const struct uncharge_gather *ug)
6604{
6605 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6606 unsigned long flags;
6607
a9d5adee
JG
6608 if (!mem_cgroup_is_root(ug->memcg)) {
6609 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6610 if (do_memsw_account())
a9d5adee
JG
6611 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6613 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6614 memcg_oom_recover(ug->memcg);
ce00a967 6615 }
747db954
JW
6616
6617 local_irq_save(flags);
c9019e9b
JW
6618 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6619 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6620 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6621 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6622 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6623 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6624 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6625 local_irq_restore(flags);
e8ea14cc 6626
a9d5adee
JG
6627 if (!mem_cgroup_is_root(ug->memcg))
6628 css_put_many(&ug->memcg->css, nr_pages);
6629}
6630
6631static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6632{
6633 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6634 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6635 !PageHWPoison(page) , page);
a9d5adee
JG
6636
6637 if (!page->mem_cgroup)
6638 return;
6639
6640 /*
6641 * Nobody should be changing or seriously looking at
6642 * page->mem_cgroup at this point, we have fully
6643 * exclusive access to the page.
6644 */
6645
6646 if (ug->memcg != page->mem_cgroup) {
6647 if (ug->memcg) {
6648 uncharge_batch(ug);
6649 uncharge_gather_clear(ug);
6650 }
6651 ug->memcg = page->mem_cgroup;
6652 }
6653
6654 if (!PageKmemcg(page)) {
6655 unsigned int nr_pages = 1;
6656
6657 if (PageTransHuge(page)) {
d8c6546b 6658 nr_pages = compound_nr(page);
a9d5adee
JG
6659 ug->nr_huge += nr_pages;
6660 }
6661 if (PageAnon(page))
6662 ug->nr_anon += nr_pages;
6663 else {
6664 ug->nr_file += nr_pages;
6665 if (PageSwapBacked(page))
6666 ug->nr_shmem += nr_pages;
6667 }
6668 ug->pgpgout++;
6669 } else {
d8c6546b 6670 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6671 __ClearPageKmemcg(page);
6672 }
6673
6674 ug->dummy_page = page;
6675 page->mem_cgroup = NULL;
747db954
JW
6676}
6677
6678static void uncharge_list(struct list_head *page_list)
6679{
a9d5adee 6680 struct uncharge_gather ug;
747db954 6681 struct list_head *next;
a9d5adee
JG
6682
6683 uncharge_gather_clear(&ug);
747db954 6684
8b592656
JW
6685 /*
6686 * Note that the list can be a single page->lru; hence the
6687 * do-while loop instead of a simple list_for_each_entry().
6688 */
747db954
JW
6689 next = page_list->next;
6690 do {
a9d5adee
JG
6691 struct page *page;
6692
747db954
JW
6693 page = list_entry(next, struct page, lru);
6694 next = page->lru.next;
6695
a9d5adee 6696 uncharge_page(page, &ug);
747db954
JW
6697 } while (next != page_list);
6698
a9d5adee
JG
6699 if (ug.memcg)
6700 uncharge_batch(&ug);
747db954
JW
6701}
6702
0a31bc97
JW
6703/**
6704 * mem_cgroup_uncharge - uncharge a page
6705 * @page: page to uncharge
6706 *
6707 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6708 * mem_cgroup_commit_charge().
6709 */
6710void mem_cgroup_uncharge(struct page *page)
6711{
a9d5adee
JG
6712 struct uncharge_gather ug;
6713
0a31bc97
JW
6714 if (mem_cgroup_disabled())
6715 return;
6716
747db954 6717 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6718 if (!page->mem_cgroup)
0a31bc97
JW
6719 return;
6720
a9d5adee
JG
6721 uncharge_gather_clear(&ug);
6722 uncharge_page(page, &ug);
6723 uncharge_batch(&ug);
747db954 6724}
0a31bc97 6725
747db954
JW
6726/**
6727 * mem_cgroup_uncharge_list - uncharge a list of page
6728 * @page_list: list of pages to uncharge
6729 *
6730 * Uncharge a list of pages previously charged with
6731 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6732 */
6733void mem_cgroup_uncharge_list(struct list_head *page_list)
6734{
6735 if (mem_cgroup_disabled())
6736 return;
0a31bc97 6737
747db954
JW
6738 if (!list_empty(page_list))
6739 uncharge_list(page_list);
0a31bc97
JW
6740}
6741
6742/**
6a93ca8f
JW
6743 * mem_cgroup_migrate - charge a page's replacement
6744 * @oldpage: currently circulating page
6745 * @newpage: replacement page
0a31bc97 6746 *
6a93ca8f
JW
6747 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6748 * be uncharged upon free.
0a31bc97
JW
6749 *
6750 * Both pages must be locked, @newpage->mapping must be set up.
6751 */
6a93ca8f 6752void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6753{
29833315 6754 struct mem_cgroup *memcg;
44b7a8d3 6755 unsigned int nr_pages;
d93c4130 6756 unsigned long flags;
0a31bc97
JW
6757
6758 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6759 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6760 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6761 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6762 newpage);
0a31bc97
JW
6763
6764 if (mem_cgroup_disabled())
6765 return;
6766
6767 /* Page cache replacement: new page already charged? */
1306a85a 6768 if (newpage->mem_cgroup)
0a31bc97
JW
6769 return;
6770
45637bab 6771 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6772 memcg = oldpage->mem_cgroup;
29833315 6773 if (!memcg)
0a31bc97
JW
6774 return;
6775
44b7a8d3 6776 /* Force-charge the new page. The old one will be freed soon */
92855270 6777 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6778
6779 page_counter_charge(&memcg->memory, nr_pages);
6780 if (do_memsw_account())
6781 page_counter_charge(&memcg->memsw, nr_pages);
6782 css_get_many(&memcg->css, nr_pages);
0a31bc97 6783
9cf7666a 6784 commit_charge(newpage, memcg, false);
44b7a8d3 6785
d93c4130 6786 local_irq_save(flags);
92855270
KC
6787 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6788 nr_pages);
44b7a8d3 6789 memcg_check_events(memcg, newpage);
d93c4130 6790 local_irq_restore(flags);
0a31bc97
JW
6791}
6792
ef12947c 6793DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6794EXPORT_SYMBOL(memcg_sockets_enabled_key);
6795
2d758073 6796void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6797{
6798 struct mem_cgroup *memcg;
6799
2d758073
JW
6800 if (!mem_cgroup_sockets_enabled)
6801 return;
6802
e876ecc6
SB
6803 /* Do not associate the sock with unrelated interrupted task's memcg. */
6804 if (in_interrupt())
6805 return;
6806
11092087
JW
6807 rcu_read_lock();
6808 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6809 if (memcg == root_mem_cgroup)
6810 goto out;
0db15298 6811 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6812 goto out;
8965aa28 6813 if (css_tryget(&memcg->css))
11092087 6814 sk->sk_memcg = memcg;
f7e1cb6e 6815out:
11092087
JW
6816 rcu_read_unlock();
6817}
11092087 6818
2d758073 6819void mem_cgroup_sk_free(struct sock *sk)
11092087 6820{
2d758073
JW
6821 if (sk->sk_memcg)
6822 css_put(&sk->sk_memcg->css);
11092087
JW
6823}
6824
6825/**
6826 * mem_cgroup_charge_skmem - charge socket memory
6827 * @memcg: memcg to charge
6828 * @nr_pages: number of pages to charge
6829 *
6830 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6831 * @memcg's configured limit, %false if the charge had to be forced.
6832 */
6833bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6834{
f7e1cb6e 6835 gfp_t gfp_mask = GFP_KERNEL;
11092087 6836
f7e1cb6e 6837 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6838 struct page_counter *fail;
f7e1cb6e 6839
0db15298
JW
6840 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6841 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6842 return true;
6843 }
0db15298
JW
6844 page_counter_charge(&memcg->tcpmem, nr_pages);
6845 memcg->tcpmem_pressure = 1;
f7e1cb6e 6846 return false;
11092087 6847 }
d886f4e4 6848
f7e1cb6e
JW
6849 /* Don't block in the packet receive path */
6850 if (in_softirq())
6851 gfp_mask = GFP_NOWAIT;
6852
c9019e9b 6853 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6854
f7e1cb6e
JW
6855 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6856 return true;
6857
6858 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6859 return false;
6860}
6861
6862/**
6863 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6864 * @memcg: memcg to uncharge
6865 * @nr_pages: number of pages to uncharge
11092087
JW
6866 */
6867void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6868{
f7e1cb6e 6869 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6870 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6871 return;
6872 }
d886f4e4 6873
c9019e9b 6874 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6875
475d0487 6876 refill_stock(memcg, nr_pages);
11092087
JW
6877}
6878
f7e1cb6e
JW
6879static int __init cgroup_memory(char *s)
6880{
6881 char *token;
6882
6883 while ((token = strsep(&s, ",")) != NULL) {
6884 if (!*token)
6885 continue;
6886 if (!strcmp(token, "nosocket"))
6887 cgroup_memory_nosocket = true;
04823c83
VD
6888 if (!strcmp(token, "nokmem"))
6889 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6890 }
6891 return 0;
6892}
6893__setup("cgroup.memory=", cgroup_memory);
11092087 6894
2d11085e 6895/*
1081312f
MH
6896 * subsys_initcall() for memory controller.
6897 *
308167fc
SAS
6898 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6899 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6900 * basically everything that doesn't depend on a specific mem_cgroup structure
6901 * should be initialized from here.
2d11085e
MH
6902 */
6903static int __init mem_cgroup_init(void)
6904{
95a045f6
JW
6905 int cpu, node;
6906
84c07d11 6907#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6908 /*
6909 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6910 * so use a workqueue with limited concurrency to avoid stalling
6911 * all worker threads in case lots of cgroups are created and
6912 * destroyed simultaneously.
13583c3d 6913 */
17cc4dfe
TH
6914 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6915 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6916#endif
6917
308167fc
SAS
6918 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6919 memcg_hotplug_cpu_dead);
95a045f6
JW
6920
6921 for_each_possible_cpu(cpu)
6922 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6923 drain_local_stock);
6924
6925 for_each_node(node) {
6926 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6927
6928 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6929 node_online(node) ? node : NUMA_NO_NODE);
6930
ef8f2327 6931 rtpn->rb_root = RB_ROOT;
fa90b2fd 6932 rtpn->rb_rightmost = NULL;
ef8f2327 6933 spin_lock_init(&rtpn->lock);
95a045f6
JW
6934 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6935 }
6936
2d11085e
MH
6937 return 0;
6938}
6939subsys_initcall(mem_cgroup_init);
21afa38e
JW
6940
6941#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6942static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6943{
1c2d479a 6944 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6945 /*
6946 * The root cgroup cannot be destroyed, so it's refcount must
6947 * always be >= 1.
6948 */
6949 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6950 VM_BUG_ON(1);
6951 break;
6952 }
6953 memcg = parent_mem_cgroup(memcg);
6954 if (!memcg)
6955 memcg = root_mem_cgroup;
6956 }
6957 return memcg;
6958}
6959
21afa38e
JW
6960/**
6961 * mem_cgroup_swapout - transfer a memsw charge to swap
6962 * @page: page whose memsw charge to transfer
6963 * @entry: swap entry to move the charge to
6964 *
6965 * Transfer the memsw charge of @page to @entry.
6966 */
6967void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6968{
1f47b61f 6969 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6970 unsigned int nr_entries;
21afa38e
JW
6971 unsigned short oldid;
6972
6973 VM_BUG_ON_PAGE(PageLRU(page), page);
6974 VM_BUG_ON_PAGE(page_count(page), page);
6975
7941d214 6976 if (!do_memsw_account())
21afa38e
JW
6977 return;
6978
6979 memcg = page->mem_cgroup;
6980
6981 /* Readahead page, never charged */
6982 if (!memcg)
6983 return;
6984
1f47b61f
VD
6985 /*
6986 * In case the memcg owning these pages has been offlined and doesn't
6987 * have an ID allocated to it anymore, charge the closest online
6988 * ancestor for the swap instead and transfer the memory+swap charge.
6989 */
6990 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6991 nr_entries = hpage_nr_pages(page);
6992 /* Get references for the tail pages, too */
6993 if (nr_entries > 1)
6994 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6995 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6996 nr_entries);
21afa38e 6997 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6998 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6999
7000 page->mem_cgroup = NULL;
7001
7002 if (!mem_cgroup_is_root(memcg))
d6810d73 7003 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7004
1f47b61f
VD
7005 if (memcg != swap_memcg) {
7006 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7007 page_counter_charge(&swap_memcg->memsw, nr_entries);
7008 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7009 }
7010
ce9ce665
SAS
7011 /*
7012 * Interrupts should be disabled here because the caller holds the
b93b0163 7013 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7014 * important here to have the interrupts disabled because it is the
b93b0163 7015 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7016 */
7017 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
7018 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7019 -nr_entries);
21afa38e 7020 memcg_check_events(memcg, page);
73f576c0
JW
7021
7022 if (!mem_cgroup_is_root(memcg))
d08afa14 7023 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7024}
7025
38d8b4e6
HY
7026/**
7027 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7028 * @page: page being added to swap
7029 * @entry: swap entry to charge
7030 *
38d8b4e6 7031 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7032 *
7033 * Returns 0 on success, -ENOMEM on failure.
7034 */
7035int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7036{
38d8b4e6 7037 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7038 struct page_counter *counter;
38d8b4e6 7039 struct mem_cgroup *memcg;
37e84351
VD
7040 unsigned short oldid;
7041
7042 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7043 return 0;
7044
7045 memcg = page->mem_cgroup;
7046
7047 /* Readahead page, never charged */
7048 if (!memcg)
7049 return 0;
7050
f3a53a3a
TH
7051 if (!entry.val) {
7052 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7053 return 0;
f3a53a3a 7054 }
bb98f2c5 7055
1f47b61f
VD
7056 memcg = mem_cgroup_id_get_online(memcg);
7057
37e84351 7058 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7059 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7060 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7061 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7062 mem_cgroup_id_put(memcg);
37e84351 7063 return -ENOMEM;
1f47b61f 7064 }
37e84351 7065
38d8b4e6
HY
7066 /* Get references for the tail pages, too */
7067 if (nr_pages > 1)
7068 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7069 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7070 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7071 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7072
37e84351
VD
7073 return 0;
7074}
7075
21afa38e 7076/**
38d8b4e6 7077 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7078 * @entry: swap entry to uncharge
38d8b4e6 7079 * @nr_pages: the amount of swap space to uncharge
21afa38e 7080 */
38d8b4e6 7081void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7082{
7083 struct mem_cgroup *memcg;
7084 unsigned short id;
7085
37e84351 7086 if (!do_swap_account)
21afa38e
JW
7087 return;
7088
38d8b4e6 7089 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7090 rcu_read_lock();
adbe427b 7091 memcg = mem_cgroup_from_id(id);
21afa38e 7092 if (memcg) {
37e84351
VD
7093 if (!mem_cgroup_is_root(memcg)) {
7094 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7095 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7096 else
38d8b4e6 7097 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7098 }
c9019e9b 7099 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7100 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7101 }
7102 rcu_read_unlock();
7103}
7104
d8b38438
VD
7105long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7106{
7107 long nr_swap_pages = get_nr_swap_pages();
7108
7109 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7110 return nr_swap_pages;
7111 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7112 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7113 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7114 page_counter_read(&memcg->swap));
7115 return nr_swap_pages;
7116}
7117
5ccc5aba
VD
7118bool mem_cgroup_swap_full(struct page *page)
7119{
7120 struct mem_cgroup *memcg;
7121
7122 VM_BUG_ON_PAGE(!PageLocked(page), page);
7123
7124 if (vm_swap_full())
7125 return true;
7126 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7127 return false;
7128
7129 memcg = page->mem_cgroup;
7130 if (!memcg)
7131 return false;
7132
7133 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
32d087cd
CD
7134 if (page_counter_read(&memcg->swap) * 2 >=
7135 READ_ONCE(memcg->swap.max))
5ccc5aba
VD
7136 return true;
7137
7138 return false;
7139}
7140
21afa38e
JW
7141/* for remember boot option*/
7142#ifdef CONFIG_MEMCG_SWAP_ENABLED
7143static int really_do_swap_account __initdata = 1;
7144#else
7145static int really_do_swap_account __initdata;
7146#endif
7147
7148static int __init enable_swap_account(char *s)
7149{
7150 if (!strcmp(s, "1"))
7151 really_do_swap_account = 1;
7152 else if (!strcmp(s, "0"))
7153 really_do_swap_account = 0;
7154 return 1;
7155}
7156__setup("swapaccount=", enable_swap_account);
7157
37e84351
VD
7158static u64 swap_current_read(struct cgroup_subsys_state *css,
7159 struct cftype *cft)
7160{
7161 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7162
7163 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7164}
7165
7166static int swap_max_show(struct seq_file *m, void *v)
7167{
677dc973
CD
7168 return seq_puts_memcg_tunable(m,
7169 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7170}
7171
7172static ssize_t swap_max_write(struct kernfs_open_file *of,
7173 char *buf, size_t nbytes, loff_t off)
7174{
7175 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7176 unsigned long max;
7177 int err;
7178
7179 buf = strstrip(buf);
7180 err = page_counter_memparse(buf, "max", &max);
7181 if (err)
7182 return err;
7183
be09102b 7184 xchg(&memcg->swap.max, max);
37e84351
VD
7185
7186 return nbytes;
7187}
7188
f3a53a3a
TH
7189static int swap_events_show(struct seq_file *m, void *v)
7190{
aa9694bb 7191 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7192
7193 seq_printf(m, "max %lu\n",
7194 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7195 seq_printf(m, "fail %lu\n",
7196 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7197
7198 return 0;
7199}
7200
37e84351
VD
7201static struct cftype swap_files[] = {
7202 {
7203 .name = "swap.current",
7204 .flags = CFTYPE_NOT_ON_ROOT,
7205 .read_u64 = swap_current_read,
7206 },
7207 {
7208 .name = "swap.max",
7209 .flags = CFTYPE_NOT_ON_ROOT,
7210 .seq_show = swap_max_show,
7211 .write = swap_max_write,
7212 },
f3a53a3a
TH
7213 {
7214 .name = "swap.events",
7215 .flags = CFTYPE_NOT_ON_ROOT,
7216 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7217 .seq_show = swap_events_show,
7218 },
37e84351
VD
7219 { } /* terminate */
7220};
7221
21afa38e
JW
7222static struct cftype memsw_cgroup_files[] = {
7223 {
7224 .name = "memsw.usage_in_bytes",
7225 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7226 .read_u64 = mem_cgroup_read_u64,
7227 },
7228 {
7229 .name = "memsw.max_usage_in_bytes",
7230 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7231 .write = mem_cgroup_reset,
7232 .read_u64 = mem_cgroup_read_u64,
7233 },
7234 {
7235 .name = "memsw.limit_in_bytes",
7236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7237 .write = mem_cgroup_write,
7238 .read_u64 = mem_cgroup_read_u64,
7239 },
7240 {
7241 .name = "memsw.failcnt",
7242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7243 .write = mem_cgroup_reset,
7244 .read_u64 = mem_cgroup_read_u64,
7245 },
7246 { }, /* terminate */
7247};
7248
7249static int __init mem_cgroup_swap_init(void)
7250{
7251 if (!mem_cgroup_disabled() && really_do_swap_account) {
7252 do_swap_account = 1;
37e84351
VD
7253 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7254 swap_files));
21afa38e
JW
7255 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7256 memsw_cgroup_files));
7257 }
7258 return 0;
7259}
7260subsys_initcall(mem_cgroup_swap_init);
7261
7262#endif /* CONFIG_MEMCG_SWAP */