]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/swapfile.c
sysvipc: use non-racy method for proc entries creation
[thirdparty/linux.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4 29#include <linux/syscalls.h>
8a9f3ccd 30#include <linux/memcontrol.h>
1da177e4
LT
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
5d337b91 36DEFINE_SPINLOCK(swap_lock);
1da177e4
LT
37unsigned int nr_swapfiles;
38long total_swap_pages;
39static int swap_overflow;
40
1da177e4
LT
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
f577eb30 48static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 49
fc0abb14 50static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 54 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 55 * cannot be turned into a mutex.
1da177e4
LT
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
1da177e4
LT
59void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60{
61 swp_entry_t entry;
62
63 down_read(&swap_unplug_sem);
4c21e2f2 64 entry.val = page_private(page);
1da177e4
LT
65 if (PageSwapCache(page)) {
66 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 struct backing_dev_info *bdi;
68
69 /*
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
72 * count to avoid reading garbage from page_private(page) above.
73 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
76 */
77 WARN_ON(page_count(page) <= 1);
78
79 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 80 blk_run_backing_dev(bdi, page);
1da177e4
LT
81 }
82 up_read(&swap_unplug_sem);
83}
84
048c27fd
HD
85#define SWAPFILE_CLUSTER 256
86#define LATENCY_LIMIT 256
87
6eb396dc 88static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 89{
7dfad418 90 unsigned long offset, last_in_cluster;
048c27fd 91 int latency_ration = LATENCY_LIMIT;
7dfad418 92
1da177e4 93 /*
7dfad418
HD
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
101 */
102
52b7efdb 103 si->flags += SWP_SCANNING;
7dfad418
HD
104 if (unlikely(!si->cluster_nr)) {
105 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 goto lowest;
5d337b91 108 spin_unlock(&swap_lock);
7dfad418
HD
109
110 offset = si->lowest_bit;
111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 115 if (si->swap_map[offset])
7dfad418
HD
116 last_in_cluster = offset + SWAPFILE_CLUSTER;
117 else if (offset == last_in_cluster) {
5d337b91 118 spin_lock(&swap_lock);
9b65ef59 119 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
7dfad418 120 goto cluster;
1da177e4 121 }
048c27fd
HD
122 if (unlikely(--latency_ration < 0)) {
123 cond_resched();
124 latency_ration = LATENCY_LIMIT;
125 }
7dfad418 126 }
5d337b91 127 spin_lock(&swap_lock);
7dfad418 128 goto lowest;
1da177e4 129 }
7dfad418
HD
130
131 si->cluster_nr--;
132cluster:
133 offset = si->cluster_next;
134 if (offset > si->highest_bit)
135lowest: offset = si->lowest_bit;
52b7efdb
HD
136checks: if (!(si->flags & SWP_WRITEOK))
137 goto no_page;
7dfad418
HD
138 if (!si->highest_bit)
139 goto no_page;
140 if (!si->swap_map[offset]) {
52b7efdb 141 if (offset == si->lowest_bit)
1da177e4
LT
142 si->lowest_bit++;
143 if (offset == si->highest_bit)
144 si->highest_bit--;
7dfad418
HD
145 si->inuse_pages++;
146 if (si->inuse_pages == si->pages) {
1da177e4
LT
147 si->lowest_bit = si->max;
148 si->highest_bit = 0;
149 }
150 si->swap_map[offset] = 1;
7dfad418 151 si->cluster_next = offset + 1;
52b7efdb 152 si->flags -= SWP_SCANNING;
1da177e4
LT
153 return offset;
154 }
7dfad418 155
5d337b91 156 spin_unlock(&swap_lock);
7dfad418 157 while (++offset <= si->highest_bit) {
52b7efdb 158 if (!si->swap_map[offset]) {
5d337b91 159 spin_lock(&swap_lock);
52b7efdb
HD
160 goto checks;
161 }
048c27fd
HD
162 if (unlikely(--latency_ration < 0)) {
163 cond_resched();
164 latency_ration = LATENCY_LIMIT;
165 }
7dfad418 166 }
5d337b91 167 spin_lock(&swap_lock);
7dfad418
HD
168 goto lowest;
169
170no_page:
52b7efdb 171 si->flags -= SWP_SCANNING;
1da177e4
LT
172 return 0;
173}
174
175swp_entry_t get_swap_page(void)
176{
fb4f88dc
HD
177 struct swap_info_struct *si;
178 pgoff_t offset;
179 int type, next;
180 int wrapped = 0;
1da177e4 181
5d337b91 182 spin_lock(&swap_lock);
1da177e4 183 if (nr_swap_pages <= 0)
fb4f88dc
HD
184 goto noswap;
185 nr_swap_pages--;
186
187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 si = swap_info + type;
189 next = si->next;
190 if (next < 0 ||
191 (!wrapped && si->prio != swap_info[next].prio)) {
192 next = swap_list.head;
193 wrapped++;
1da177e4 194 }
fb4f88dc
HD
195
196 if (!si->highest_bit)
197 continue;
198 if (!(si->flags & SWP_WRITEOK))
199 continue;
200
201 swap_list.next = next;
fb4f88dc 202 offset = scan_swap_map(si);
5d337b91
HD
203 if (offset) {
204 spin_unlock(&swap_lock);
fb4f88dc 205 return swp_entry(type, offset);
5d337b91 206 }
fb4f88dc 207 next = swap_list.next;
1da177e4 208 }
fb4f88dc
HD
209
210 nr_swap_pages++;
211noswap:
5d337b91 212 spin_unlock(&swap_lock);
fb4f88dc 213 return (swp_entry_t) {0};
1da177e4
LT
214}
215
3a291a20
RW
216swp_entry_t get_swap_page_of_type(int type)
217{
218 struct swap_info_struct *si;
219 pgoff_t offset;
220
221 spin_lock(&swap_lock);
222 si = swap_info + type;
223 if (si->flags & SWP_WRITEOK) {
224 nr_swap_pages--;
225 offset = scan_swap_map(si);
226 if (offset) {
227 spin_unlock(&swap_lock);
228 return swp_entry(type, offset);
229 }
230 nr_swap_pages++;
231 }
232 spin_unlock(&swap_lock);
233 return (swp_entry_t) {0};
234}
235
1da177e4
LT
236static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237{
238 struct swap_info_struct * p;
239 unsigned long offset, type;
240
241 if (!entry.val)
242 goto out;
243 type = swp_type(entry);
244 if (type >= nr_swapfiles)
245 goto bad_nofile;
246 p = & swap_info[type];
247 if (!(p->flags & SWP_USED))
248 goto bad_device;
249 offset = swp_offset(entry);
250 if (offset >= p->max)
251 goto bad_offset;
252 if (!p->swap_map[offset])
253 goto bad_free;
5d337b91 254 spin_lock(&swap_lock);
1da177e4
LT
255 return p;
256
257bad_free:
258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259 goto out;
260bad_offset:
261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262 goto out;
263bad_device:
264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265 goto out;
266bad_nofile:
267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268out:
269 return NULL;
270}
271
1da177e4
LT
272static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273{
274 int count = p->swap_map[offset];
275
276 if (count < SWAP_MAP_MAX) {
277 count--;
278 p->swap_map[offset] = count;
279 if (!count) {
280 if (offset < p->lowest_bit)
281 p->lowest_bit = offset;
282 if (offset > p->highest_bit)
283 p->highest_bit = offset;
89d09a2c
HD
284 if (p->prio > swap_info[swap_list.next].prio)
285 swap_list.next = p - swap_info;
1da177e4
LT
286 nr_swap_pages++;
287 p->inuse_pages--;
288 }
289 }
290 return count;
291}
292
293/*
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
296 */
297void swap_free(swp_entry_t entry)
298{
299 struct swap_info_struct * p;
300
301 p = swap_info_get(entry);
302 if (p) {
303 swap_entry_free(p, swp_offset(entry));
5d337b91 304 spin_unlock(&swap_lock);
1da177e4
LT
305 }
306}
307
308/*
c475a8ab 309 * How many references to page are currently swapped out?
1da177e4 310 */
c475a8ab 311static inline int page_swapcount(struct page *page)
1da177e4 312{
c475a8ab
HD
313 int count = 0;
314 struct swap_info_struct *p;
1da177e4
LT
315 swp_entry_t entry;
316
4c21e2f2 317 entry.val = page_private(page);
1da177e4
LT
318 p = swap_info_get(entry);
319 if (p) {
c475a8ab
HD
320 /* Subtract the 1 for the swap cache itself */
321 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 322 spin_unlock(&swap_lock);
1da177e4 323 }
c475a8ab 324 return count;
1da177e4
LT
325}
326
327/*
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
1da177e4
LT
330 */
331int can_share_swap_page(struct page *page)
332{
c475a8ab
HD
333 int count;
334
335 BUG_ON(!PageLocked(page));
336 count = page_mapcount(page);
337 if (count <= 1 && PageSwapCache(page))
338 count += page_swapcount(page);
339 return count == 1;
1da177e4
LT
340}
341
342/*
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
345 */
346int remove_exclusive_swap_page(struct page *page)
347{
348 int retval;
349 struct swap_info_struct * p;
350 swp_entry_t entry;
351
352 BUG_ON(PagePrivate(page));
353 BUG_ON(!PageLocked(page));
354
355 if (!PageSwapCache(page))
356 return 0;
357 if (PageWriteback(page))
358 return 0;
359 if (page_count(page) != 2) /* 2: us + cache */
360 return 0;
361
4c21e2f2 362 entry.val = page_private(page);
1da177e4
LT
363 p = swap_info_get(entry);
364 if (!p)
365 return 0;
366
367 /* Is the only swap cache user the cache itself? */
368 retval = 0;
369 if (p->swap_map[swp_offset(entry)] == 1) {
370 /* Recheck the page count with the swapcache lock held.. */
371 write_lock_irq(&swapper_space.tree_lock);
372 if ((page_count(page) == 2) && !PageWriteback(page)) {
373 __delete_from_swap_cache(page);
374 SetPageDirty(page);
375 retval = 1;
376 }
377 write_unlock_irq(&swapper_space.tree_lock);
378 }
5d337b91 379 spin_unlock(&swap_lock);
1da177e4
LT
380
381 if (retval) {
382 swap_free(entry);
383 page_cache_release(page);
384 }
385
386 return retval;
387}
388
389/*
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
392 */
393void free_swap_and_cache(swp_entry_t entry)
394{
395 struct swap_info_struct * p;
396 struct page *page = NULL;
397
0697212a
CL
398 if (is_migration_entry(entry))
399 return;
400
1da177e4
LT
401 p = swap_info_get(entry);
402 if (p) {
93fac704
NP
403 if (swap_entry_free(p, swp_offset(entry)) == 1) {
404 page = find_get_page(&swapper_space, entry.val);
405 if (page && unlikely(TestSetPageLocked(page))) {
406 page_cache_release(page);
407 page = NULL;
408 }
409 }
5d337b91 410 spin_unlock(&swap_lock);
1da177e4
LT
411 }
412 if (page) {
413 int one_user;
414
415 BUG_ON(PagePrivate(page));
1da177e4
LT
416 one_user = (page_count(page) == 2);
417 /* Only cache user (+us), or swap space full? Free it! */
93fac704
NP
418 /* Also recheck PageSwapCache after page is locked (above) */
419 if (PageSwapCache(page) && !PageWriteback(page) &&
420 (one_user || vm_swap_full())) {
1da177e4
LT
421 delete_from_swap_cache(page);
422 SetPageDirty(page);
423 }
424 unlock_page(page);
425 page_cache_release(page);
426 }
427}
428
b0cb1a19 429#ifdef CONFIG_HIBERNATION
f577eb30 430/*
915bae9e 431 * Find the swap type that corresponds to given device (if any).
f577eb30 432 *
915bae9e
RW
433 * @offset - number of the PAGE_SIZE-sized block of the device, starting
434 * from 0, in which the swap header is expected to be located.
435 *
436 * This is needed for the suspend to disk (aka swsusp).
f577eb30 437 */
7bf23687 438int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 439{
915bae9e 440 struct block_device *bdev = NULL;
f577eb30
RW
441 int i;
442
915bae9e
RW
443 if (device)
444 bdev = bdget(device);
445
f577eb30
RW
446 spin_lock(&swap_lock);
447 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 448 struct swap_info_struct *sis = swap_info + i;
f577eb30 449
915bae9e 450 if (!(sis->flags & SWP_WRITEOK))
f577eb30 451 continue;
b6b5bce3 452
915bae9e 453 if (!bdev) {
7bf23687
RW
454 if (bdev_p)
455 *bdev_p = sis->bdev;
456
6e1819d6
RW
457 spin_unlock(&swap_lock);
458 return i;
459 }
915bae9e
RW
460 if (bdev == sis->bdev) {
461 struct swap_extent *se;
462
463 se = list_entry(sis->extent_list.next,
464 struct swap_extent, list);
465 if (se->start_block == offset) {
7bf23687
RW
466 if (bdev_p)
467 *bdev_p = sis->bdev;
468
915bae9e
RW
469 spin_unlock(&swap_lock);
470 bdput(bdev);
471 return i;
472 }
f577eb30
RW
473 }
474 }
475 spin_unlock(&swap_lock);
915bae9e
RW
476 if (bdev)
477 bdput(bdev);
478
f577eb30
RW
479 return -ENODEV;
480}
481
482/*
483 * Return either the total number of swap pages of given type, or the number
484 * of free pages of that type (depending on @free)
485 *
486 * This is needed for software suspend
487 */
488unsigned int count_swap_pages(int type, int free)
489{
490 unsigned int n = 0;
491
492 if (type < nr_swapfiles) {
493 spin_lock(&swap_lock);
494 if (swap_info[type].flags & SWP_WRITEOK) {
495 n = swap_info[type].pages;
496 if (free)
497 n -= swap_info[type].inuse_pages;
498 }
499 spin_unlock(&swap_lock);
500 }
501 return n;
502}
503#endif
504
1da177e4 505/*
72866f6f
HD
506 * No need to decide whether this PTE shares the swap entry with others,
507 * just let do_wp_page work it out if a write is requested later - to
508 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 509 */
044d66c1 510static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
511 unsigned long addr, swp_entry_t entry, struct page *page)
512{
044d66c1
HD
513 spinlock_t *ptl;
514 pte_t *pte;
515 int ret = 1;
516
e1a1cd59 517 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
044d66c1
HD
518 ret = -ENOMEM;
519
520 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
521 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
522 if (ret > 0)
523 mem_cgroup_uncharge_page(page);
524 ret = 0;
525 goto out;
526 }
8a9f3ccd 527
4294621f 528 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
529 get_page(page);
530 set_pte_at(vma->vm_mm, addr, pte,
531 pte_mkold(mk_pte(page, vma->vm_page_prot)));
532 page_add_anon_rmap(page, vma, addr);
533 swap_free(entry);
534 /*
535 * Move the page to the active list so it is not
536 * immediately swapped out again after swapon.
537 */
538 activate_page(page);
044d66c1
HD
539out:
540 pte_unmap_unlock(pte, ptl);
541 return ret;
1da177e4
LT
542}
543
544static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
545 unsigned long addr, unsigned long end,
546 swp_entry_t entry, struct page *page)
547{
1da177e4 548 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 549 pte_t *pte;
8a9f3ccd 550 int ret = 0;
1da177e4 551
044d66c1
HD
552 /*
553 * We don't actually need pte lock while scanning for swp_pte: since
554 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
555 * page table while we're scanning; though it could get zapped, and on
556 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
557 * of unmatched parts which look like swp_pte, so unuse_pte must
558 * recheck under pte lock. Scanning without pte lock lets it be
559 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
560 */
561 pte = pte_offset_map(pmd, addr);
1da177e4
LT
562 do {
563 /*
564 * swapoff spends a _lot_ of time in this loop!
565 * Test inline before going to call unuse_pte.
566 */
567 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
568 pte_unmap(pte);
569 ret = unuse_pte(vma, pmd, addr, entry, page);
570 if (ret)
571 goto out;
572 pte = pte_offset_map(pmd, addr);
1da177e4
LT
573 }
574 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
575 pte_unmap(pte - 1);
576out:
8a9f3ccd 577 return ret;
1da177e4
LT
578}
579
580static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
581 unsigned long addr, unsigned long end,
582 swp_entry_t entry, struct page *page)
583{
584 pmd_t *pmd;
585 unsigned long next;
8a9f3ccd 586 int ret;
1da177e4
LT
587
588 pmd = pmd_offset(pud, addr);
589 do {
590 next = pmd_addr_end(addr, end);
591 if (pmd_none_or_clear_bad(pmd))
592 continue;
8a9f3ccd
BS
593 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
594 if (ret)
595 return ret;
1da177e4
LT
596 } while (pmd++, addr = next, addr != end);
597 return 0;
598}
599
600static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
601 unsigned long addr, unsigned long end,
602 swp_entry_t entry, struct page *page)
603{
604 pud_t *pud;
605 unsigned long next;
8a9f3ccd 606 int ret;
1da177e4
LT
607
608 pud = pud_offset(pgd, addr);
609 do {
610 next = pud_addr_end(addr, end);
611 if (pud_none_or_clear_bad(pud))
612 continue;
8a9f3ccd
BS
613 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
614 if (ret)
615 return ret;
1da177e4
LT
616 } while (pud++, addr = next, addr != end);
617 return 0;
618}
619
620static int unuse_vma(struct vm_area_struct *vma,
621 swp_entry_t entry, struct page *page)
622{
623 pgd_t *pgd;
624 unsigned long addr, end, next;
8a9f3ccd 625 int ret;
1da177e4
LT
626
627 if (page->mapping) {
628 addr = page_address_in_vma(page, vma);
629 if (addr == -EFAULT)
630 return 0;
631 else
632 end = addr + PAGE_SIZE;
633 } else {
634 addr = vma->vm_start;
635 end = vma->vm_end;
636 }
637
638 pgd = pgd_offset(vma->vm_mm, addr);
639 do {
640 next = pgd_addr_end(addr, end);
641 if (pgd_none_or_clear_bad(pgd))
642 continue;
8a9f3ccd
BS
643 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
644 if (ret)
645 return ret;
1da177e4
LT
646 } while (pgd++, addr = next, addr != end);
647 return 0;
648}
649
650static int unuse_mm(struct mm_struct *mm,
651 swp_entry_t entry, struct page *page)
652{
653 struct vm_area_struct *vma;
8a9f3ccd 654 int ret = 0;
1da177e4
LT
655
656 if (!down_read_trylock(&mm->mmap_sem)) {
657 /*
c475a8ab
HD
658 * Activate page so shrink_cache is unlikely to unmap its
659 * ptes while lock is dropped, so swapoff can make progress.
1da177e4 660 */
c475a8ab 661 activate_page(page);
1da177e4
LT
662 unlock_page(page);
663 down_read(&mm->mmap_sem);
664 lock_page(page);
665 }
1da177e4 666 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 667 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
668 break;
669 }
1da177e4 670 up_read(&mm->mmap_sem);
8a9f3ccd 671 return (ret < 0)? ret: 0;
1da177e4
LT
672}
673
674/*
675 * Scan swap_map from current position to next entry still in use.
676 * Recycle to start on reaching the end, returning 0 when empty.
677 */
6eb396dc
HD
678static unsigned int find_next_to_unuse(struct swap_info_struct *si,
679 unsigned int prev)
1da177e4 680{
6eb396dc
HD
681 unsigned int max = si->max;
682 unsigned int i = prev;
1da177e4
LT
683 int count;
684
685 /*
5d337b91 686 * No need for swap_lock here: we're just looking
1da177e4
LT
687 * for whether an entry is in use, not modifying it; false
688 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 689 * allocations from this area (while holding swap_lock).
1da177e4
LT
690 */
691 for (;;) {
692 if (++i >= max) {
693 if (!prev) {
694 i = 0;
695 break;
696 }
697 /*
698 * No entries in use at top of swap_map,
699 * loop back to start and recheck there.
700 */
701 max = prev + 1;
702 prev = 0;
703 i = 1;
704 }
705 count = si->swap_map[i];
706 if (count && count != SWAP_MAP_BAD)
707 break;
708 }
709 return i;
710}
711
712/*
713 * We completely avoid races by reading each swap page in advance,
714 * and then search for the process using it. All the necessary
715 * page table adjustments can then be made atomically.
716 */
717static int try_to_unuse(unsigned int type)
718{
719 struct swap_info_struct * si = &swap_info[type];
720 struct mm_struct *start_mm;
721 unsigned short *swap_map;
722 unsigned short swcount;
723 struct page *page;
724 swp_entry_t entry;
6eb396dc 725 unsigned int i = 0;
1da177e4
LT
726 int retval = 0;
727 int reset_overflow = 0;
728 int shmem;
729
730 /*
731 * When searching mms for an entry, a good strategy is to
732 * start at the first mm we freed the previous entry from
733 * (though actually we don't notice whether we or coincidence
734 * freed the entry). Initialize this start_mm with a hold.
735 *
736 * A simpler strategy would be to start at the last mm we
737 * freed the previous entry from; but that would take less
738 * advantage of mmlist ordering, which clusters forked mms
739 * together, child after parent. If we race with dup_mmap(), we
740 * prefer to resolve parent before child, lest we miss entries
741 * duplicated after we scanned child: using last mm would invert
742 * that. Though it's only a serious concern when an overflowed
743 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
744 */
745 start_mm = &init_mm;
746 atomic_inc(&init_mm.mm_users);
747
748 /*
749 * Keep on scanning until all entries have gone. Usually,
750 * one pass through swap_map is enough, but not necessarily:
751 * there are races when an instance of an entry might be missed.
752 */
753 while ((i = find_next_to_unuse(si, i)) != 0) {
754 if (signal_pending(current)) {
755 retval = -EINTR;
756 break;
757 }
758
759 /*
760 * Get a page for the entry, using the existing swap
761 * cache page if there is one. Otherwise, get a clean
762 * page and read the swap into it.
763 */
764 swap_map = &si->swap_map[i];
765 entry = swp_entry(type, i);
02098fea
HD
766 page = read_swap_cache_async(entry,
767 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
768 if (!page) {
769 /*
770 * Either swap_duplicate() failed because entry
771 * has been freed independently, and will not be
772 * reused since sys_swapoff() already disabled
773 * allocation from here, or alloc_page() failed.
774 */
775 if (!*swap_map)
776 continue;
777 retval = -ENOMEM;
778 break;
779 }
780
781 /*
782 * Don't hold on to start_mm if it looks like exiting.
783 */
784 if (atomic_read(&start_mm->mm_users) == 1) {
785 mmput(start_mm);
786 start_mm = &init_mm;
787 atomic_inc(&init_mm.mm_users);
788 }
789
790 /*
791 * Wait for and lock page. When do_swap_page races with
792 * try_to_unuse, do_swap_page can handle the fault much
793 * faster than try_to_unuse can locate the entry. This
794 * apparently redundant "wait_on_page_locked" lets try_to_unuse
795 * defer to do_swap_page in such a case - in some tests,
796 * do_swap_page and try_to_unuse repeatedly compete.
797 */
798 wait_on_page_locked(page);
799 wait_on_page_writeback(page);
800 lock_page(page);
801 wait_on_page_writeback(page);
802
803 /*
804 * Remove all references to entry.
805 * Whenever we reach init_mm, there's no address space
806 * to search, but use it as a reminder to search shmem.
807 */
808 shmem = 0;
809 swcount = *swap_map;
810 if (swcount > 1) {
811 if (start_mm == &init_mm)
812 shmem = shmem_unuse(entry, page);
813 else
814 retval = unuse_mm(start_mm, entry, page);
815 }
816 if (*swap_map > 1) {
817 int set_start_mm = (*swap_map >= swcount);
818 struct list_head *p = &start_mm->mmlist;
819 struct mm_struct *new_start_mm = start_mm;
820 struct mm_struct *prev_mm = start_mm;
821 struct mm_struct *mm;
822
823 atomic_inc(&new_start_mm->mm_users);
824 atomic_inc(&prev_mm->mm_users);
825 spin_lock(&mmlist_lock);
2e0e26c7 826 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
827 (p = p->next) != &start_mm->mmlist) {
828 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 829 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 830 continue;
1da177e4
LT
831 spin_unlock(&mmlist_lock);
832 mmput(prev_mm);
833 prev_mm = mm;
834
835 cond_resched();
836
837 swcount = *swap_map;
838 if (swcount <= 1)
839 ;
840 else if (mm == &init_mm) {
841 set_start_mm = 1;
842 shmem = shmem_unuse(entry, page);
843 } else
844 retval = unuse_mm(mm, entry, page);
845 if (set_start_mm && *swap_map < swcount) {
846 mmput(new_start_mm);
847 atomic_inc(&mm->mm_users);
848 new_start_mm = mm;
849 set_start_mm = 0;
850 }
851 spin_lock(&mmlist_lock);
852 }
853 spin_unlock(&mmlist_lock);
854 mmput(prev_mm);
855 mmput(start_mm);
856 start_mm = new_start_mm;
857 }
2e0e26c7
HD
858 if (shmem) {
859 /* page has already been unlocked and released */
860 if (shmem > 0)
861 continue;
862 retval = shmem;
863 break;
864 }
1da177e4
LT
865 if (retval) {
866 unlock_page(page);
867 page_cache_release(page);
868 break;
869 }
870
871 /*
872 * How could swap count reach 0x7fff when the maximum
873 * pid is 0x7fff, and there's no way to repeat a swap
874 * page within an mm (except in shmem, where it's the
875 * shared object which takes the reference count)?
876 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
877 *
878 * If that's wrong, then we should worry more about
879 * exit_mmap() and do_munmap() cases described above:
880 * we might be resetting SWAP_MAP_MAX too early here.
881 * We know "Undead"s can happen, they're okay, so don't
882 * report them; but do report if we reset SWAP_MAP_MAX.
883 */
884 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 885 spin_lock(&swap_lock);
1da177e4 886 *swap_map = 1;
5d337b91 887 spin_unlock(&swap_lock);
1da177e4
LT
888 reset_overflow = 1;
889 }
890
891 /*
892 * If a reference remains (rare), we would like to leave
893 * the page in the swap cache; but try_to_unmap could
894 * then re-duplicate the entry once we drop page lock,
895 * so we might loop indefinitely; also, that page could
896 * not be swapped out to other storage meanwhile. So:
897 * delete from cache even if there's another reference,
898 * after ensuring that the data has been saved to disk -
899 * since if the reference remains (rarer), it will be
900 * read from disk into another page. Splitting into two
901 * pages would be incorrect if swap supported "shared
902 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
903 */
904 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
905 struct writeback_control wbc = {
906 .sync_mode = WB_SYNC_NONE,
907 };
908
909 swap_writepage(page, &wbc);
910 lock_page(page);
911 wait_on_page_writeback(page);
912 }
2e0e26c7
HD
913 if (PageSwapCache(page))
914 delete_from_swap_cache(page);
1da177e4
LT
915
916 /*
917 * So we could skip searching mms once swap count went
918 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 919 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
920 */
921 SetPageDirty(page);
922 unlock_page(page);
923 page_cache_release(page);
924
925 /*
926 * Make sure that we aren't completely killing
927 * interactive performance.
928 */
929 cond_resched();
930 }
931
932 mmput(start_mm);
933 if (reset_overflow) {
934 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
935 swap_overflow = 0;
936 }
937 return retval;
938}
939
940/*
5d337b91
HD
941 * After a successful try_to_unuse, if no swap is now in use, we know
942 * we can empty the mmlist. swap_lock must be held on entry and exit.
943 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
944 * added to the mmlist just after page_duplicate - before would be racy.
945 */
946static void drain_mmlist(void)
947{
948 struct list_head *p, *next;
949 unsigned int i;
950
951 for (i = 0; i < nr_swapfiles; i++)
952 if (swap_info[i].inuse_pages)
953 return;
954 spin_lock(&mmlist_lock);
955 list_for_each_safe(p, next, &init_mm.mmlist)
956 list_del_init(p);
957 spin_unlock(&mmlist_lock);
958}
959
960/*
961 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
962 * corresponds to page offset `offset'.
963 */
964sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
965{
966 struct swap_extent *se = sis->curr_swap_extent;
967 struct swap_extent *start_se = se;
968
969 for ( ; ; ) {
970 struct list_head *lh;
971
972 if (se->start_page <= offset &&
973 offset < (se->start_page + se->nr_pages)) {
974 return se->start_block + (offset - se->start_page);
975 }
11d31886 976 lh = se->list.next;
1da177e4 977 if (lh == &sis->extent_list)
11d31886 978 lh = lh->next;
1da177e4
LT
979 se = list_entry(lh, struct swap_extent, list);
980 sis->curr_swap_extent = se;
981 BUG_ON(se == start_se); /* It *must* be present */
982 }
983}
984
b0cb1a19 985#ifdef CONFIG_HIBERNATION
3aef83e0
RW
986/*
987 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
988 * corresponding to given index in swap_info (swap type).
989 */
990sector_t swapdev_block(int swap_type, pgoff_t offset)
991{
992 struct swap_info_struct *sis;
993
994 if (swap_type >= nr_swapfiles)
995 return 0;
996
997 sis = swap_info + swap_type;
998 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
999}
b0cb1a19 1000#endif /* CONFIG_HIBERNATION */
3aef83e0 1001
1da177e4
LT
1002/*
1003 * Free all of a swapdev's extent information
1004 */
1005static void destroy_swap_extents(struct swap_info_struct *sis)
1006{
1007 while (!list_empty(&sis->extent_list)) {
1008 struct swap_extent *se;
1009
1010 se = list_entry(sis->extent_list.next,
1011 struct swap_extent, list);
1012 list_del(&se->list);
1013 kfree(se);
1014 }
1da177e4
LT
1015}
1016
1017/*
1018 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1019 * extent list. The extent list is kept sorted in page order.
1da177e4 1020 *
11d31886 1021 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1022 */
1023static int
1024add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1025 unsigned long nr_pages, sector_t start_block)
1026{
1027 struct swap_extent *se;
1028 struct swap_extent *new_se;
1029 struct list_head *lh;
1030
11d31886
HD
1031 lh = sis->extent_list.prev; /* The highest page extent */
1032 if (lh != &sis->extent_list) {
1da177e4 1033 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1034 BUG_ON(se->start_page + se->nr_pages != start_page);
1035 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1036 /* Merge it */
1037 se->nr_pages += nr_pages;
1038 return 0;
1039 }
1da177e4
LT
1040 }
1041
1042 /*
1043 * No merge. Insert a new extent, preserving ordering.
1044 */
1045 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1046 if (new_se == NULL)
1047 return -ENOMEM;
1048 new_se->start_page = start_page;
1049 new_se->nr_pages = nr_pages;
1050 new_se->start_block = start_block;
1051
11d31886 1052 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1053 return 1;
1da177e4
LT
1054}
1055
1056/*
1057 * A `swap extent' is a simple thing which maps a contiguous range of pages
1058 * onto a contiguous range of disk blocks. An ordered list of swap extents
1059 * is built at swapon time and is then used at swap_writepage/swap_readpage
1060 * time for locating where on disk a page belongs.
1061 *
1062 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1063 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1064 * swap files identically.
1065 *
1066 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1067 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1068 * swapfiles are handled *identically* after swapon time.
1069 *
1070 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1071 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1072 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1073 * requirements, they are simply tossed out - we will never use those blocks
1074 * for swapping.
1075 *
b0d9bcd4 1076 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1077 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1078 * which will scribble on the fs.
1079 *
1080 * The amount of disk space which a single swap extent represents varies.
1081 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1082 * extents in the list. To avoid much list walking, we cache the previous
1083 * search location in `curr_swap_extent', and start new searches from there.
1084 * This is extremely effective. The average number of iterations in
1085 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1086 */
53092a74 1087static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1088{
1089 struct inode *inode;
1090 unsigned blocks_per_page;
1091 unsigned long page_no;
1092 unsigned blkbits;
1093 sector_t probe_block;
1094 sector_t last_block;
53092a74
HD
1095 sector_t lowest_block = -1;
1096 sector_t highest_block = 0;
1097 int nr_extents = 0;
1da177e4
LT
1098 int ret;
1099
1100 inode = sis->swap_file->f_mapping->host;
1101 if (S_ISBLK(inode->i_mode)) {
1102 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1103 *span = sis->pages;
1da177e4
LT
1104 goto done;
1105 }
1106
1107 blkbits = inode->i_blkbits;
1108 blocks_per_page = PAGE_SIZE >> blkbits;
1109
1110 /*
1111 * Map all the blocks into the extent list. This code doesn't try
1112 * to be very smart.
1113 */
1114 probe_block = 0;
1115 page_no = 0;
1116 last_block = i_size_read(inode) >> blkbits;
1117 while ((probe_block + blocks_per_page) <= last_block &&
1118 page_no < sis->max) {
1119 unsigned block_in_page;
1120 sector_t first_block;
1121
1122 first_block = bmap(inode, probe_block);
1123 if (first_block == 0)
1124 goto bad_bmap;
1125
1126 /*
1127 * It must be PAGE_SIZE aligned on-disk
1128 */
1129 if (first_block & (blocks_per_page - 1)) {
1130 probe_block++;
1131 goto reprobe;
1132 }
1133
1134 for (block_in_page = 1; block_in_page < blocks_per_page;
1135 block_in_page++) {
1136 sector_t block;
1137
1138 block = bmap(inode, probe_block + block_in_page);
1139 if (block == 0)
1140 goto bad_bmap;
1141 if (block != first_block + block_in_page) {
1142 /* Discontiguity */
1143 probe_block++;
1144 goto reprobe;
1145 }
1146 }
1147
53092a74
HD
1148 first_block >>= (PAGE_SHIFT - blkbits);
1149 if (page_no) { /* exclude the header page */
1150 if (first_block < lowest_block)
1151 lowest_block = first_block;
1152 if (first_block > highest_block)
1153 highest_block = first_block;
1154 }
1155
1da177e4
LT
1156 /*
1157 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1158 */
53092a74
HD
1159 ret = add_swap_extent(sis, page_no, 1, first_block);
1160 if (ret < 0)
1da177e4 1161 goto out;
53092a74 1162 nr_extents += ret;
1da177e4
LT
1163 page_no++;
1164 probe_block += blocks_per_page;
1165reprobe:
1166 continue;
1167 }
53092a74
HD
1168 ret = nr_extents;
1169 *span = 1 + highest_block - lowest_block;
1da177e4 1170 if (page_no == 0)
e2244ec2 1171 page_no = 1; /* force Empty message */
1da177e4 1172 sis->max = page_no;
e2244ec2 1173 sis->pages = page_no - 1;
1da177e4
LT
1174 sis->highest_bit = page_no - 1;
1175done:
1176 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1177 struct swap_extent, list);
1178 goto out;
1179bad_bmap:
1180 printk(KERN_ERR "swapon: swapfile has holes\n");
1181 ret = -EINVAL;
1182out:
1183 return ret;
1184}
1185
1186#if 0 /* We don't need this yet */
1187#include <linux/backing-dev.h>
1188int page_queue_congested(struct page *page)
1189{
1190 struct backing_dev_info *bdi;
1191
1192 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1193
1194 if (PageSwapCache(page)) {
4c21e2f2 1195 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1196 struct swap_info_struct *sis;
1197
1198 sis = get_swap_info_struct(swp_type(entry));
1199 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1200 } else
1201 bdi = page->mapping->backing_dev_info;
1202 return bdi_write_congested(bdi);
1203}
1204#endif
1205
1206asmlinkage long sys_swapoff(const char __user * specialfile)
1207{
1208 struct swap_info_struct * p = NULL;
1209 unsigned short *swap_map;
1210 struct file *swap_file, *victim;
1211 struct address_space *mapping;
1212 struct inode *inode;
1213 char * pathname;
1214 int i, type, prev;
1215 int err;
1216
1217 if (!capable(CAP_SYS_ADMIN))
1218 return -EPERM;
1219
1220 pathname = getname(specialfile);
1221 err = PTR_ERR(pathname);
1222 if (IS_ERR(pathname))
1223 goto out;
1224
1225 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1226 putname(pathname);
1227 err = PTR_ERR(victim);
1228 if (IS_ERR(victim))
1229 goto out;
1230
1231 mapping = victim->f_mapping;
1232 prev = -1;
5d337b91 1233 spin_lock(&swap_lock);
1da177e4
LT
1234 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1235 p = swap_info + type;
1236 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1237 if (p->swap_file->f_mapping == mapping)
1238 break;
1239 }
1240 prev = type;
1241 }
1242 if (type < 0) {
1243 err = -EINVAL;
5d337b91 1244 spin_unlock(&swap_lock);
1da177e4
LT
1245 goto out_dput;
1246 }
1247 if (!security_vm_enough_memory(p->pages))
1248 vm_unacct_memory(p->pages);
1249 else {
1250 err = -ENOMEM;
5d337b91 1251 spin_unlock(&swap_lock);
1da177e4
LT
1252 goto out_dput;
1253 }
1254 if (prev < 0) {
1255 swap_list.head = p->next;
1256 } else {
1257 swap_info[prev].next = p->next;
1258 }
1259 if (type == swap_list.next) {
1260 /* just pick something that's safe... */
1261 swap_list.next = swap_list.head;
1262 }
1263 nr_swap_pages -= p->pages;
1264 total_swap_pages -= p->pages;
1265 p->flags &= ~SWP_WRITEOK;
5d337b91 1266 spin_unlock(&swap_lock);
fb4f88dc 1267
1da177e4
LT
1268 current->flags |= PF_SWAPOFF;
1269 err = try_to_unuse(type);
1270 current->flags &= ~PF_SWAPOFF;
1271
1da177e4
LT
1272 if (err) {
1273 /* re-insert swap space back into swap_list */
5d337b91 1274 spin_lock(&swap_lock);
1da177e4
LT
1275 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1276 if (p->prio >= swap_info[i].prio)
1277 break;
1278 p->next = i;
1279 if (prev < 0)
1280 swap_list.head = swap_list.next = p - swap_info;
1281 else
1282 swap_info[prev].next = p - swap_info;
1283 nr_swap_pages += p->pages;
1284 total_swap_pages += p->pages;
1285 p->flags |= SWP_WRITEOK;
5d337b91 1286 spin_unlock(&swap_lock);
1da177e4
LT
1287 goto out_dput;
1288 }
52b7efdb
HD
1289
1290 /* wait for any unplug function to finish */
1291 down_write(&swap_unplug_sem);
1292 up_write(&swap_unplug_sem);
1293
5d337b91 1294 destroy_swap_extents(p);
fc0abb14 1295 mutex_lock(&swapon_mutex);
5d337b91
HD
1296 spin_lock(&swap_lock);
1297 drain_mmlist();
1298
52b7efdb 1299 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1300 p->highest_bit = 0; /* cuts scans short */
1301 while (p->flags >= SWP_SCANNING) {
5d337b91 1302 spin_unlock(&swap_lock);
13e4b57f 1303 schedule_timeout_uninterruptible(1);
5d337b91 1304 spin_lock(&swap_lock);
52b7efdb 1305 }
52b7efdb 1306
1da177e4
LT
1307 swap_file = p->swap_file;
1308 p->swap_file = NULL;
1309 p->max = 0;
1310 swap_map = p->swap_map;
1311 p->swap_map = NULL;
1312 p->flags = 0;
5d337b91 1313 spin_unlock(&swap_lock);
fc0abb14 1314 mutex_unlock(&swapon_mutex);
1da177e4
LT
1315 vfree(swap_map);
1316 inode = mapping->host;
1317 if (S_ISBLK(inode->i_mode)) {
1318 struct block_device *bdev = I_BDEV(inode);
1319 set_blocksize(bdev, p->old_block_size);
1320 bd_release(bdev);
1321 } else {
1b1dcc1b 1322 mutex_lock(&inode->i_mutex);
1da177e4 1323 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1324 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1325 }
1326 filp_close(swap_file, NULL);
1327 err = 0;
1328
1329out_dput:
1330 filp_close(victim, NULL);
1331out:
1332 return err;
1333}
1334
1335#ifdef CONFIG_PROC_FS
1336/* iterator */
1337static void *swap_start(struct seq_file *swap, loff_t *pos)
1338{
1339 struct swap_info_struct *ptr = swap_info;
1340 int i;
1341 loff_t l = *pos;
1342
fc0abb14 1343 mutex_lock(&swapon_mutex);
1da177e4 1344
881e4aab
SS
1345 if (!l)
1346 return SEQ_START_TOKEN;
1347
1da177e4
LT
1348 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1349 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1350 continue;
881e4aab 1351 if (!--l)
1da177e4
LT
1352 return ptr;
1353 }
1354
1355 return NULL;
1356}
1357
1358static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1359{
881e4aab 1360 struct swap_info_struct *ptr;
1da177e4
LT
1361 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1362
881e4aab
SS
1363 if (v == SEQ_START_TOKEN)
1364 ptr = swap_info;
1365 else {
1366 ptr = v;
1367 ptr++;
1368 }
1369
1370 for (; ptr < endptr; ptr++) {
1da177e4
LT
1371 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1372 continue;
1373 ++*pos;
1374 return ptr;
1375 }
1376
1377 return NULL;
1378}
1379
1380static void swap_stop(struct seq_file *swap, void *v)
1381{
fc0abb14 1382 mutex_unlock(&swapon_mutex);
1da177e4
LT
1383}
1384
1385static int swap_show(struct seq_file *swap, void *v)
1386{
1387 struct swap_info_struct *ptr = v;
1388 struct file *file;
1389 int len;
1390
881e4aab
SS
1391 if (ptr == SEQ_START_TOKEN) {
1392 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1393 return 0;
1394 }
1da177e4
LT
1395
1396 file = ptr->swap_file;
c32c2f63 1397 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1398 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4 1399 len < 40 ? 40 - len : 1, " ",
d3ac7f89 1400 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4
LT
1401 "partition" : "file\t",
1402 ptr->pages << (PAGE_SHIFT - 10),
1403 ptr->inuse_pages << (PAGE_SHIFT - 10),
1404 ptr->prio);
1405 return 0;
1406}
1407
15ad7cdc 1408static const struct seq_operations swaps_op = {
1da177e4
LT
1409 .start = swap_start,
1410 .next = swap_next,
1411 .stop = swap_stop,
1412 .show = swap_show
1413};
1414
1415static int swaps_open(struct inode *inode, struct file *file)
1416{
1417 return seq_open(file, &swaps_op);
1418}
1419
15ad7cdc 1420static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1421 .open = swaps_open,
1422 .read = seq_read,
1423 .llseek = seq_lseek,
1424 .release = seq_release,
1425};
1426
1427static int __init procswaps_init(void)
1428{
1429 struct proc_dir_entry *entry;
1430
1431 entry = create_proc_entry("swaps", 0, NULL);
1432 if (entry)
1433 entry->proc_fops = &proc_swaps_operations;
1434 return 0;
1435}
1436__initcall(procswaps_init);
1437#endif /* CONFIG_PROC_FS */
1438
1439/*
1440 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1441 *
1442 * The swapon system call
1443 */
1444asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1445{
1446 struct swap_info_struct * p;
1447 char *name = NULL;
1448 struct block_device *bdev = NULL;
1449 struct file *swap_file = NULL;
1450 struct address_space *mapping;
1451 unsigned int type;
1452 int i, prev;
1453 int error;
1454 static int least_priority;
1455 union swap_header *swap_header = NULL;
1456 int swap_header_version;
6eb396dc
HD
1457 unsigned int nr_good_pages = 0;
1458 int nr_extents = 0;
53092a74 1459 sector_t span;
1da177e4
LT
1460 unsigned long maxpages = 1;
1461 int swapfilesize;
1462 unsigned short *swap_map;
1463 struct page *page = NULL;
1464 struct inode *inode = NULL;
1465 int did_down = 0;
1466
1467 if (!capable(CAP_SYS_ADMIN))
1468 return -EPERM;
5d337b91 1469 spin_lock(&swap_lock);
1da177e4
LT
1470 p = swap_info;
1471 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1472 if (!(p->flags & SWP_USED))
1473 break;
1474 error = -EPERM;
0697212a 1475 if (type >= MAX_SWAPFILES) {
5d337b91 1476 spin_unlock(&swap_lock);
1da177e4
LT
1477 goto out;
1478 }
1479 if (type >= nr_swapfiles)
1480 nr_swapfiles = type+1;
1481 INIT_LIST_HEAD(&p->extent_list);
1482 p->flags = SWP_USED;
1da177e4
LT
1483 p->swap_file = NULL;
1484 p->old_block_size = 0;
1485 p->swap_map = NULL;
1486 p->lowest_bit = 0;
1487 p->highest_bit = 0;
1488 p->cluster_nr = 0;
1489 p->inuse_pages = 0;
1da177e4
LT
1490 p->next = -1;
1491 if (swap_flags & SWAP_FLAG_PREFER) {
1492 p->prio =
1493 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1494 } else {
1495 p->prio = --least_priority;
1496 }
5d337b91 1497 spin_unlock(&swap_lock);
1da177e4
LT
1498 name = getname(specialfile);
1499 error = PTR_ERR(name);
1500 if (IS_ERR(name)) {
1501 name = NULL;
1502 goto bad_swap_2;
1503 }
1504 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1505 error = PTR_ERR(swap_file);
1506 if (IS_ERR(swap_file)) {
1507 swap_file = NULL;
1508 goto bad_swap_2;
1509 }
1510
1511 p->swap_file = swap_file;
1512 mapping = swap_file->f_mapping;
1513 inode = mapping->host;
1514
1515 error = -EBUSY;
1516 for (i = 0; i < nr_swapfiles; i++) {
1517 struct swap_info_struct *q = &swap_info[i];
1518
1519 if (i == type || !q->swap_file)
1520 continue;
1521 if (mapping == q->swap_file->f_mapping)
1522 goto bad_swap;
1523 }
1524
1525 error = -EINVAL;
1526 if (S_ISBLK(inode->i_mode)) {
1527 bdev = I_BDEV(inode);
1528 error = bd_claim(bdev, sys_swapon);
1529 if (error < 0) {
1530 bdev = NULL;
f7b3a435 1531 error = -EINVAL;
1da177e4
LT
1532 goto bad_swap;
1533 }
1534 p->old_block_size = block_size(bdev);
1535 error = set_blocksize(bdev, PAGE_SIZE);
1536 if (error < 0)
1537 goto bad_swap;
1538 p->bdev = bdev;
1539 } else if (S_ISREG(inode->i_mode)) {
1540 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1541 mutex_lock(&inode->i_mutex);
1da177e4
LT
1542 did_down = 1;
1543 if (IS_SWAPFILE(inode)) {
1544 error = -EBUSY;
1545 goto bad_swap;
1546 }
1547 } else {
1548 goto bad_swap;
1549 }
1550
1551 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1552
1553 /*
1554 * Read the swap header.
1555 */
1556 if (!mapping->a_ops->readpage) {
1557 error = -EINVAL;
1558 goto bad_swap;
1559 }
090d2b18 1560 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1561 if (IS_ERR(page)) {
1562 error = PTR_ERR(page);
1563 goto bad_swap;
1564 }
1da177e4
LT
1565 kmap(page);
1566 swap_header = page_address(page);
1567
1568 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1569 swap_header_version = 1;
1570 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1571 swap_header_version = 2;
1572 else {
e97a3111 1573 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1574 error = -EINVAL;
1575 goto bad_swap;
1576 }
1577
1578 switch (swap_header_version) {
1579 case 1:
1580 printk(KERN_ERR "version 0 swap is no longer supported. "
1581 "Use mkswap -v1 %s\n", name);
1582 error = -EINVAL;
1583 goto bad_swap;
1584 case 2:
797df574
CD
1585 /* swap partition endianess hack... */
1586 if (swab32(swap_header->info.version) == 1) {
1587 swab32s(&swap_header->info.version);
1588 swab32s(&swap_header->info.last_page);
1589 swab32s(&swap_header->info.nr_badpages);
1590 for (i = 0; i < swap_header->info.nr_badpages; i++)
1591 swab32s(&swap_header->info.badpages[i]);
1592 }
1da177e4
LT
1593 /* Check the swap header's sub-version and the size of
1594 the swap file and bad block lists */
1595 if (swap_header->info.version != 1) {
1596 printk(KERN_WARNING
1597 "Unable to handle swap header version %d\n",
1598 swap_header->info.version);
1599 error = -EINVAL;
1600 goto bad_swap;
1601 }
1602
1603 p->lowest_bit = 1;
52b7efdb
HD
1604 p->cluster_next = 1;
1605
1da177e4
LT
1606 /*
1607 * Find out how many pages are allowed for a single swap
1608 * device. There are two limiting factors: 1) the number of
1609 * bits for the swap offset in the swp_entry_t type and
1610 * 2) the number of bits in the a swap pte as defined by
1611 * the different architectures. In order to find the
1612 * largest possible bit mask a swap entry with swap type 0
1613 * and swap offset ~0UL is created, encoded to a swap pte,
1614 * decoded to a swp_entry_t again and finally the swap
1615 * offset is extracted. This will mask all the bits from
1616 * the initial ~0UL mask that can't be encoded in either
1617 * the swp_entry_t or the architecture definition of a
1618 * swap pte.
1619 */
1620 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1621 if (maxpages > swap_header->info.last_page)
1622 maxpages = swap_header->info.last_page;
1623 p->highest_bit = maxpages - 1;
1624
1625 error = -EINVAL;
e2244ec2
HD
1626 if (!maxpages)
1627 goto bad_swap;
5d1854e1
ES
1628 if (swapfilesize && maxpages > swapfilesize) {
1629 printk(KERN_WARNING
1630 "Swap area shorter than signature indicates\n");
1631 goto bad_swap;
1632 }
e2244ec2
HD
1633 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1634 goto bad_swap;
1da177e4
LT
1635 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1636 goto bad_swap;
cd105df4 1637
1da177e4
LT
1638 /* OK, set up the swap map and apply the bad block list */
1639 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1640 error = -ENOMEM;
1641 goto bad_swap;
1642 }
1643
1644 error = 0;
1645 memset(p->swap_map, 0, maxpages * sizeof(short));
cd105df4
TK
1646 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1647 int page_nr = swap_header->info.badpages[i];
1648 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1da177e4
LT
1649 error = -EINVAL;
1650 else
cd105df4 1651 p->swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4
LT
1652 }
1653 nr_good_pages = swap_header->info.last_page -
1654 swap_header->info.nr_badpages -
1655 1 /* header page */;
cd105df4 1656 if (error)
1da177e4
LT
1657 goto bad_swap;
1658 }
e2244ec2 1659
e2244ec2
HD
1660 if (nr_good_pages) {
1661 p->swap_map[0] = SWAP_MAP_BAD;
1662 p->max = maxpages;
1663 p->pages = nr_good_pages;
53092a74
HD
1664 nr_extents = setup_swap_extents(p, &span);
1665 if (nr_extents < 0) {
1666 error = nr_extents;
e2244ec2 1667 goto bad_swap;
53092a74 1668 }
e2244ec2
HD
1669 nr_good_pages = p->pages;
1670 }
1da177e4
LT
1671 if (!nr_good_pages) {
1672 printk(KERN_WARNING "Empty swap-file\n");
1673 error = -EINVAL;
1674 goto bad_swap;
1675 }
1da177e4 1676
fc0abb14 1677 mutex_lock(&swapon_mutex);
5d337b91 1678 spin_lock(&swap_lock);
1da177e4
LT
1679 p->flags = SWP_ACTIVE;
1680 nr_swap_pages += nr_good_pages;
1681 total_swap_pages += nr_good_pages;
53092a74 1682
6eb396dc 1683 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1684 "Priority:%d extents:%d across:%lluk\n",
1685 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1686 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1687
1688 /* insert swap space into swap_list: */
1689 prev = -1;
1690 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1691 if (p->prio >= swap_info[i].prio) {
1692 break;
1693 }
1694 prev = i;
1695 }
1696 p->next = i;
1697 if (prev < 0) {
1698 swap_list.head = swap_list.next = p - swap_info;
1699 } else {
1700 swap_info[prev].next = p - swap_info;
1701 }
5d337b91 1702 spin_unlock(&swap_lock);
fc0abb14 1703 mutex_unlock(&swapon_mutex);
1da177e4
LT
1704 error = 0;
1705 goto out;
1706bad_swap:
1707 if (bdev) {
1708 set_blocksize(bdev, p->old_block_size);
1709 bd_release(bdev);
1710 }
4cd3bb10 1711 destroy_swap_extents(p);
1da177e4 1712bad_swap_2:
5d337b91 1713 spin_lock(&swap_lock);
1da177e4
LT
1714 swap_map = p->swap_map;
1715 p->swap_file = NULL;
1716 p->swap_map = NULL;
1717 p->flags = 0;
1718 if (!(swap_flags & SWAP_FLAG_PREFER))
1719 ++least_priority;
5d337b91 1720 spin_unlock(&swap_lock);
1da177e4
LT
1721 vfree(swap_map);
1722 if (swap_file)
1723 filp_close(swap_file, NULL);
1724out:
1725 if (page && !IS_ERR(page)) {
1726 kunmap(page);
1727 page_cache_release(page);
1728 }
1729 if (name)
1730 putname(name);
1731 if (did_down) {
1732 if (!error)
1733 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1734 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1735 }
1736 return error;
1737}
1738
1739void si_swapinfo(struct sysinfo *val)
1740{
1741 unsigned int i;
1742 unsigned long nr_to_be_unused = 0;
1743
5d337b91 1744 spin_lock(&swap_lock);
1da177e4
LT
1745 for (i = 0; i < nr_swapfiles; i++) {
1746 if (!(swap_info[i].flags & SWP_USED) ||
1747 (swap_info[i].flags & SWP_WRITEOK))
1748 continue;
1749 nr_to_be_unused += swap_info[i].inuse_pages;
1750 }
1751 val->freeswap = nr_swap_pages + nr_to_be_unused;
1752 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1753 spin_unlock(&swap_lock);
1da177e4
LT
1754}
1755
1756/*
1757 * Verify that a swap entry is valid and increment its swap map count.
1758 *
1759 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1760 * "permanent", but will be reclaimed by the next swapoff.
1761 */
1762int swap_duplicate(swp_entry_t entry)
1763{
1764 struct swap_info_struct * p;
1765 unsigned long offset, type;
1766 int result = 0;
1767
0697212a
CL
1768 if (is_migration_entry(entry))
1769 return 1;
1770
1da177e4
LT
1771 type = swp_type(entry);
1772 if (type >= nr_swapfiles)
1773 goto bad_file;
1774 p = type + swap_info;
1775 offset = swp_offset(entry);
1776
5d337b91 1777 spin_lock(&swap_lock);
1da177e4
LT
1778 if (offset < p->max && p->swap_map[offset]) {
1779 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1780 p->swap_map[offset]++;
1781 result = 1;
1782 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1783 if (swap_overflow++ < 5)
1784 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1785 p->swap_map[offset] = SWAP_MAP_MAX;
1786 result = 1;
1787 }
1788 }
5d337b91 1789 spin_unlock(&swap_lock);
1da177e4
LT
1790out:
1791 return result;
1792
1793bad_file:
1794 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1795 goto out;
1796}
1797
1798struct swap_info_struct *
1799get_swap_info_struct(unsigned type)
1800{
1801 return &swap_info[type];
1802}
1803
1804/*
5d337b91 1805 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1806 * reference on the swaphandle, it doesn't matter if it becomes unused.
1807 */
1808int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1809{
8952898b 1810 struct swap_info_struct *si;
3f9e7949 1811 int our_page_cluster = page_cluster;
8952898b
HD
1812 pgoff_t target, toff;
1813 pgoff_t base, end;
1814 int nr_pages = 0;
1da177e4 1815
3f9e7949 1816 if (!our_page_cluster) /* no readahead */
1da177e4 1817 return 0;
8952898b
HD
1818
1819 si = &swap_info[swp_type(entry)];
1820 target = swp_offset(entry);
1821 base = (target >> our_page_cluster) << our_page_cluster;
1822 end = base + (1 << our_page_cluster);
1823 if (!base) /* first page is swap header */
1824 base++;
1da177e4 1825
5d337b91 1826 spin_lock(&swap_lock);
8952898b
HD
1827 if (end > si->max) /* don't go beyond end of map */
1828 end = si->max;
1829
1830 /* Count contiguous allocated slots above our target */
1831 for (toff = target; ++toff < end; nr_pages++) {
1832 /* Don't read in free or bad pages */
1833 if (!si->swap_map[toff])
1834 break;
1835 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1836 break;
8952898b
HD
1837 }
1838 /* Count contiguous allocated slots below our target */
1839 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1840 /* Don't read in free or bad pages */
8952898b 1841 if (!si->swap_map[toff])
1da177e4 1842 break;
8952898b 1843 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1844 break;
8952898b 1845 }
5d337b91 1846 spin_unlock(&swap_lock);
8952898b
HD
1847
1848 /*
1849 * Indicate starting offset, and return number of pages to get:
1850 * if only 1, say 0, since there's then no readahead to be done.
1851 */
1852 *offset = ++toff;
1853 return nr_pages? ++nr_pages: 0;
1da177e4 1854}