]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm/vmalloc.c: remove unnecessary highmem_mask from parameter of gfpflags_allow_blocking()
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
db64fe02 332
db64fe02 333static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
334/* Export for kexec only */
335LIST_HEAD(vmap_area_list);
80c4bd7a 336static LLIST_HEAD(vmap_purge_list);
89699605 337static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 338static bool vmap_initialized __read_mostly;
89699605 339
68ad4a33
URS
340/*
341 * This kmem_cache is used for vmap_area objects. Instead of
342 * allocating from slab we reuse an object from this cache to
343 * make things faster. Especially in "no edge" splitting of
344 * free block.
345 */
346static struct kmem_cache *vmap_area_cachep;
347
348/*
349 * This linked list is used in pair with free_vmap_area_root.
350 * It gives O(1) access to prev/next to perform fast coalescing.
351 */
352static LIST_HEAD(free_vmap_area_list);
353
354/*
355 * This augment red-black tree represents the free vmap space.
356 * All vmap_area objects in this tree are sorted by va->va_start
357 * address. It is used for allocation and merging when a vmap
358 * object is released.
359 *
360 * Each vmap_area node contains a maximum available free block
361 * of its sub-tree, right or left. Therefore it is possible to
362 * find a lowest match of free area.
363 */
364static struct rb_root free_vmap_area_root = RB_ROOT;
365
82dd23e8
URS
366/*
367 * Preload a CPU with one object for "no edge" split case. The
368 * aim is to get rid of allocations from the atomic context, thus
369 * to use more permissive allocation masks.
370 */
371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
372
68ad4a33
URS
373static __always_inline unsigned long
374va_size(struct vmap_area *va)
375{
376 return (va->va_end - va->va_start);
377}
378
379static __always_inline unsigned long
380get_subtree_max_size(struct rb_node *node)
381{
382 struct vmap_area *va;
383
384 va = rb_entry_safe(node, struct vmap_area, rb_node);
385 return va ? va->subtree_max_size : 0;
386}
89699605 387
68ad4a33
URS
388/*
389 * Gets called when remove the node and rotate.
390 */
391static __always_inline unsigned long
392compute_subtree_max_size(struct vmap_area *va)
393{
394 return max3(va_size(va),
395 get_subtree_max_size(va->rb_node.rb_left),
396 get_subtree_max_size(va->rb_node.rb_right));
397}
398
315cc066
ML
399RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
400 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
401
402static void purge_vmap_area_lazy(void);
403static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
404static unsigned long lazy_max_pages(void);
db64fe02 405
97105f0a
RG
406static atomic_long_t nr_vmalloc_pages;
407
408unsigned long vmalloc_nr_pages(void)
409{
410 return atomic_long_read(&nr_vmalloc_pages);
411}
412
db64fe02 413static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 414{
db64fe02
NP
415 struct rb_node *n = vmap_area_root.rb_node;
416
417 while (n) {
418 struct vmap_area *va;
419
420 va = rb_entry(n, struct vmap_area, rb_node);
421 if (addr < va->va_start)
422 n = n->rb_left;
cef2ac3f 423 else if (addr >= va->va_end)
db64fe02
NP
424 n = n->rb_right;
425 else
426 return va;
427 }
428
429 return NULL;
430}
431
68ad4a33
URS
432/*
433 * This function returns back addresses of parent node
434 * and its left or right link for further processing.
435 */
436static __always_inline struct rb_node **
437find_va_links(struct vmap_area *va,
438 struct rb_root *root, struct rb_node *from,
439 struct rb_node **parent)
440{
441 struct vmap_area *tmp_va;
442 struct rb_node **link;
443
444 if (root) {
445 link = &root->rb_node;
446 if (unlikely(!*link)) {
447 *parent = NULL;
448 return link;
449 }
450 } else {
451 link = &from;
452 }
db64fe02 453
68ad4a33
URS
454 /*
455 * Go to the bottom of the tree. When we hit the last point
456 * we end up with parent rb_node and correct direction, i name
457 * it link, where the new va->rb_node will be attached to.
458 */
459 do {
460 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 461
68ad4a33
URS
462 /*
463 * During the traversal we also do some sanity check.
464 * Trigger the BUG() if there are sides(left/right)
465 * or full overlaps.
466 */
467 if (va->va_start < tmp_va->va_end &&
468 va->va_end <= tmp_va->va_start)
469 link = &(*link)->rb_left;
470 else if (va->va_end > tmp_va->va_start &&
471 va->va_start >= tmp_va->va_end)
472 link = &(*link)->rb_right;
db64fe02
NP
473 else
474 BUG();
68ad4a33
URS
475 } while (*link);
476
477 *parent = &tmp_va->rb_node;
478 return link;
479}
480
481static __always_inline struct list_head *
482get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
483{
484 struct list_head *list;
485
486 if (unlikely(!parent))
487 /*
488 * The red-black tree where we try to find VA neighbors
489 * before merging or inserting is empty, i.e. it means
490 * there is no free vmap space. Normally it does not
491 * happen but we handle this case anyway.
492 */
493 return NULL;
494
495 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
496 return (&parent->rb_right == link ? list->next : list);
497}
498
499static __always_inline void
500link_va(struct vmap_area *va, struct rb_root *root,
501 struct rb_node *parent, struct rb_node **link, struct list_head *head)
502{
503 /*
504 * VA is still not in the list, but we can
505 * identify its future previous list_head node.
506 */
507 if (likely(parent)) {
508 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
509 if (&parent->rb_right != link)
510 head = head->prev;
db64fe02
NP
511 }
512
68ad4a33
URS
513 /* Insert to the rb-tree */
514 rb_link_node(&va->rb_node, parent, link);
515 if (root == &free_vmap_area_root) {
516 /*
517 * Some explanation here. Just perform simple insertion
518 * to the tree. We do not set va->subtree_max_size to
519 * its current size before calling rb_insert_augmented().
520 * It is because of we populate the tree from the bottom
521 * to parent levels when the node _is_ in the tree.
522 *
523 * Therefore we set subtree_max_size to zero after insertion,
524 * to let __augment_tree_propagate_from() puts everything to
525 * the correct order later on.
526 */
527 rb_insert_augmented(&va->rb_node,
528 root, &free_vmap_area_rb_augment_cb);
529 va->subtree_max_size = 0;
530 } else {
531 rb_insert_color(&va->rb_node, root);
532 }
db64fe02 533
68ad4a33
URS
534 /* Address-sort this list */
535 list_add(&va->list, head);
db64fe02
NP
536}
537
68ad4a33
URS
538static __always_inline void
539unlink_va(struct vmap_area *va, struct rb_root *root)
540{
460e42d1
URS
541 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
542 return;
db64fe02 543
460e42d1
URS
544 if (root == &free_vmap_area_root)
545 rb_erase_augmented(&va->rb_node,
546 root, &free_vmap_area_rb_augment_cb);
547 else
548 rb_erase(&va->rb_node, root);
549
550 list_del(&va->list);
551 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
552}
553
bb850f4d
URS
554#if DEBUG_AUGMENT_PROPAGATE_CHECK
555static void
556augment_tree_propagate_check(struct rb_node *n)
557{
558 struct vmap_area *va;
559 struct rb_node *node;
560 unsigned long size;
561 bool found = false;
562
563 if (n == NULL)
564 return;
565
566 va = rb_entry(n, struct vmap_area, rb_node);
567 size = va->subtree_max_size;
568 node = n;
569
570 while (node) {
571 va = rb_entry(node, struct vmap_area, rb_node);
572
573 if (get_subtree_max_size(node->rb_left) == size) {
574 node = node->rb_left;
575 } else {
576 if (va_size(va) == size) {
577 found = true;
578 break;
579 }
580
581 node = node->rb_right;
582 }
583 }
584
585 if (!found) {
586 va = rb_entry(n, struct vmap_area, rb_node);
587 pr_emerg("tree is corrupted: %lu, %lu\n",
588 va_size(va), va->subtree_max_size);
589 }
590
591 augment_tree_propagate_check(n->rb_left);
592 augment_tree_propagate_check(n->rb_right);
593}
594#endif
595
68ad4a33
URS
596/*
597 * This function populates subtree_max_size from bottom to upper
598 * levels starting from VA point. The propagation must be done
599 * when VA size is modified by changing its va_start/va_end. Or
600 * in case of newly inserting of VA to the tree.
601 *
602 * It means that __augment_tree_propagate_from() must be called:
603 * - After VA has been inserted to the tree(free path);
604 * - After VA has been shrunk(allocation path);
605 * - After VA has been increased(merging path).
606 *
607 * Please note that, it does not mean that upper parent nodes
608 * and their subtree_max_size are recalculated all the time up
609 * to the root node.
610 *
611 * 4--8
612 * /\
613 * / \
614 * / \
615 * 2--2 8--8
616 *
617 * For example if we modify the node 4, shrinking it to 2, then
618 * no any modification is required. If we shrink the node 2 to 1
619 * its subtree_max_size is updated only, and set to 1. If we shrink
620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
621 * node becomes 4--6.
622 */
623static __always_inline void
624augment_tree_propagate_from(struct vmap_area *va)
625{
626 struct rb_node *node = &va->rb_node;
627 unsigned long new_va_sub_max_size;
628
629 while (node) {
630 va = rb_entry(node, struct vmap_area, rb_node);
631 new_va_sub_max_size = compute_subtree_max_size(va);
632
633 /*
634 * If the newly calculated maximum available size of the
635 * subtree is equal to the current one, then it means that
636 * the tree is propagated correctly. So we have to stop at
637 * this point to save cycles.
638 */
639 if (va->subtree_max_size == new_va_sub_max_size)
640 break;
641
642 va->subtree_max_size = new_va_sub_max_size;
643 node = rb_parent(&va->rb_node);
644 }
bb850f4d
URS
645
646#if DEBUG_AUGMENT_PROPAGATE_CHECK
647 augment_tree_propagate_check(free_vmap_area_root.rb_node);
648#endif
68ad4a33
URS
649}
650
651static void
652insert_vmap_area(struct vmap_area *va,
653 struct rb_root *root, struct list_head *head)
654{
655 struct rb_node **link;
656 struct rb_node *parent;
657
658 link = find_va_links(va, root, NULL, &parent);
659 link_va(va, root, parent, link, head);
660}
661
662static void
663insert_vmap_area_augment(struct vmap_area *va,
664 struct rb_node *from, struct rb_root *root,
665 struct list_head *head)
666{
667 struct rb_node **link;
668 struct rb_node *parent;
669
670 if (from)
671 link = find_va_links(va, NULL, from, &parent);
672 else
673 link = find_va_links(va, root, NULL, &parent);
674
675 link_va(va, root, parent, link, head);
676 augment_tree_propagate_from(va);
677}
678
679/*
680 * Merge de-allocated chunk of VA memory with previous
681 * and next free blocks. If coalesce is not done a new
682 * free area is inserted. If VA has been merged, it is
683 * freed.
684 */
685static __always_inline void
686merge_or_add_vmap_area(struct vmap_area *va,
687 struct rb_root *root, struct list_head *head)
688{
689 struct vmap_area *sibling;
690 struct list_head *next;
691 struct rb_node **link;
692 struct rb_node *parent;
693 bool merged = false;
694
695 /*
696 * Find a place in the tree where VA potentially will be
697 * inserted, unless it is merged with its sibling/siblings.
698 */
699 link = find_va_links(va, root, NULL, &parent);
700
701 /*
702 * Get next node of VA to check if merging can be done.
703 */
704 next = get_va_next_sibling(parent, link);
705 if (unlikely(next == NULL))
706 goto insert;
707
708 /*
709 * start end
710 * | |
711 * |<------VA------>|<-----Next----->|
712 * | |
713 * start end
714 */
715 if (next != head) {
716 sibling = list_entry(next, struct vmap_area, list);
717 if (sibling->va_start == va->va_end) {
718 sibling->va_start = va->va_start;
719
720 /* Check and update the tree if needed. */
721 augment_tree_propagate_from(sibling);
722
68ad4a33
URS
723 /* Free vmap_area object. */
724 kmem_cache_free(vmap_area_cachep, va);
725
726 /* Point to the new merged area. */
727 va = sibling;
728 merged = true;
729 }
730 }
731
732 /*
733 * start end
734 * | |
735 * |<-----Prev----->|<------VA------>|
736 * | |
737 * start end
738 */
739 if (next->prev != head) {
740 sibling = list_entry(next->prev, struct vmap_area, list);
741 if (sibling->va_end == va->va_start) {
742 sibling->va_end = va->va_end;
743
744 /* Check and update the tree if needed. */
745 augment_tree_propagate_from(sibling);
746
54f63d9d
URS
747 if (merged)
748 unlink_va(va, root);
68ad4a33
URS
749
750 /* Free vmap_area object. */
751 kmem_cache_free(vmap_area_cachep, va);
68ad4a33
URS
752 return;
753 }
754 }
755
756insert:
757 if (!merged) {
758 link_va(va, root, parent, link, head);
759 augment_tree_propagate_from(va);
760 }
761}
762
763static __always_inline bool
764is_within_this_va(struct vmap_area *va, unsigned long size,
765 unsigned long align, unsigned long vstart)
766{
767 unsigned long nva_start_addr;
768
769 if (va->va_start > vstart)
770 nva_start_addr = ALIGN(va->va_start, align);
771 else
772 nva_start_addr = ALIGN(vstart, align);
773
774 /* Can be overflowed due to big size or alignment. */
775 if (nva_start_addr + size < nva_start_addr ||
776 nva_start_addr < vstart)
777 return false;
778
779 return (nva_start_addr + size <= va->va_end);
780}
781
782/*
783 * Find the first free block(lowest start address) in the tree,
784 * that will accomplish the request corresponding to passing
785 * parameters.
786 */
787static __always_inline struct vmap_area *
788find_vmap_lowest_match(unsigned long size,
789 unsigned long align, unsigned long vstart)
790{
791 struct vmap_area *va;
792 struct rb_node *node;
793 unsigned long length;
794
795 /* Start from the root. */
796 node = free_vmap_area_root.rb_node;
797
798 /* Adjust the search size for alignment overhead. */
799 length = size + align - 1;
800
801 while (node) {
802 va = rb_entry(node, struct vmap_area, rb_node);
803
804 if (get_subtree_max_size(node->rb_left) >= length &&
805 vstart < va->va_start) {
806 node = node->rb_left;
807 } else {
808 if (is_within_this_va(va, size, align, vstart))
809 return va;
810
811 /*
812 * Does not make sense to go deeper towards the right
813 * sub-tree if it does not have a free block that is
814 * equal or bigger to the requested search length.
815 */
816 if (get_subtree_max_size(node->rb_right) >= length) {
817 node = node->rb_right;
818 continue;
819 }
820
821 /*
3806b041 822 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
823 * that will satisfy the search criteria. It can happen
824 * only once due to "vstart" restriction.
825 */
826 while ((node = rb_parent(node))) {
827 va = rb_entry(node, struct vmap_area, rb_node);
828 if (is_within_this_va(va, size, align, vstart))
829 return va;
830
831 if (get_subtree_max_size(node->rb_right) >= length &&
832 vstart <= va->va_start) {
833 node = node->rb_right;
834 break;
835 }
836 }
837 }
838 }
839
840 return NULL;
841}
842
a6cf4e0f
URS
843#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
844#include <linux/random.h>
845
846static struct vmap_area *
847find_vmap_lowest_linear_match(unsigned long size,
848 unsigned long align, unsigned long vstart)
849{
850 struct vmap_area *va;
851
852 list_for_each_entry(va, &free_vmap_area_list, list) {
853 if (!is_within_this_va(va, size, align, vstart))
854 continue;
855
856 return va;
857 }
858
859 return NULL;
860}
861
862static void
863find_vmap_lowest_match_check(unsigned long size)
864{
865 struct vmap_area *va_1, *va_2;
866 unsigned long vstart;
867 unsigned int rnd;
868
869 get_random_bytes(&rnd, sizeof(rnd));
870 vstart = VMALLOC_START + rnd;
871
872 va_1 = find_vmap_lowest_match(size, 1, vstart);
873 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
874
875 if (va_1 != va_2)
876 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
877 va_1, va_2, vstart);
878}
879#endif
880
68ad4a33
URS
881enum fit_type {
882 NOTHING_FIT = 0,
883 FL_FIT_TYPE = 1, /* full fit */
884 LE_FIT_TYPE = 2, /* left edge fit */
885 RE_FIT_TYPE = 3, /* right edge fit */
886 NE_FIT_TYPE = 4 /* no edge fit */
887};
888
889static __always_inline enum fit_type
890classify_va_fit_type(struct vmap_area *va,
891 unsigned long nva_start_addr, unsigned long size)
892{
893 enum fit_type type;
894
895 /* Check if it is within VA. */
896 if (nva_start_addr < va->va_start ||
897 nva_start_addr + size > va->va_end)
898 return NOTHING_FIT;
899
900 /* Now classify. */
901 if (va->va_start == nva_start_addr) {
902 if (va->va_end == nva_start_addr + size)
903 type = FL_FIT_TYPE;
904 else
905 type = LE_FIT_TYPE;
906 } else if (va->va_end == nva_start_addr + size) {
907 type = RE_FIT_TYPE;
908 } else {
909 type = NE_FIT_TYPE;
910 }
911
912 return type;
913}
914
915static __always_inline int
916adjust_va_to_fit_type(struct vmap_area *va,
917 unsigned long nva_start_addr, unsigned long size,
918 enum fit_type type)
919{
2c929233 920 struct vmap_area *lva = NULL;
68ad4a33
URS
921
922 if (type == FL_FIT_TYPE) {
923 /*
924 * No need to split VA, it fully fits.
925 *
926 * | |
927 * V NVA V
928 * |---------------|
929 */
930 unlink_va(va, &free_vmap_area_root);
931 kmem_cache_free(vmap_area_cachep, va);
932 } else if (type == LE_FIT_TYPE) {
933 /*
934 * Split left edge of fit VA.
935 *
936 * | |
937 * V NVA V R
938 * |-------|-------|
939 */
940 va->va_start += size;
941 } else if (type == RE_FIT_TYPE) {
942 /*
943 * Split right edge of fit VA.
944 *
945 * | |
946 * L V NVA V
947 * |-------|-------|
948 */
949 va->va_end = nva_start_addr;
950 } else if (type == NE_FIT_TYPE) {
951 /*
952 * Split no edge of fit VA.
953 *
954 * | |
955 * L V NVA V R
956 * |---|-------|---|
957 */
82dd23e8
URS
958 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
959 if (unlikely(!lva)) {
960 /*
961 * For percpu allocator we do not do any pre-allocation
962 * and leave it as it is. The reason is it most likely
963 * never ends up with NE_FIT_TYPE splitting. In case of
964 * percpu allocations offsets and sizes are aligned to
965 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
966 * are its main fitting cases.
967 *
968 * There are a few exceptions though, as an example it is
969 * a first allocation (early boot up) when we have "one"
970 * big free space that has to be split.
971 */
972 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
973 if (!lva)
974 return -1;
975 }
68ad4a33
URS
976
977 /*
978 * Build the remainder.
979 */
980 lva->va_start = va->va_start;
981 lva->va_end = nva_start_addr;
982
983 /*
984 * Shrink this VA to remaining size.
985 */
986 va->va_start = nva_start_addr + size;
987 } else {
988 return -1;
989 }
990
991 if (type != FL_FIT_TYPE) {
992 augment_tree_propagate_from(va);
993
2c929233 994 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
995 insert_vmap_area_augment(lva, &va->rb_node,
996 &free_vmap_area_root, &free_vmap_area_list);
997 }
998
999 return 0;
1000}
1001
1002/*
1003 * Returns a start address of the newly allocated area, if success.
1004 * Otherwise a vend is returned that indicates failure.
1005 */
1006static __always_inline unsigned long
1007__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1008 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1009{
1010 unsigned long nva_start_addr;
1011 struct vmap_area *va;
1012 enum fit_type type;
1013 int ret;
1014
1015 va = find_vmap_lowest_match(size, align, vstart);
1016 if (unlikely(!va))
1017 return vend;
1018
1019 if (va->va_start > vstart)
1020 nva_start_addr = ALIGN(va->va_start, align);
1021 else
1022 nva_start_addr = ALIGN(vstart, align);
1023
1024 /* Check the "vend" restriction. */
1025 if (nva_start_addr + size > vend)
1026 return vend;
1027
1028 /* Classify what we have found. */
1029 type = classify_va_fit_type(va, nva_start_addr, size);
1030 if (WARN_ON_ONCE(type == NOTHING_FIT))
1031 return vend;
1032
1033 /* Update the free vmap_area. */
1034 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1035 if (ret)
1036 return vend;
1037
a6cf4e0f
URS
1038#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1039 find_vmap_lowest_match_check(size);
1040#endif
1041
68ad4a33
URS
1042 return nva_start_addr;
1043}
4da56b99 1044
db64fe02
NP
1045/*
1046 * Allocate a region of KVA of the specified size and alignment, within the
1047 * vstart and vend.
1048 */
1049static struct vmap_area *alloc_vmap_area(unsigned long size,
1050 unsigned long align,
1051 unsigned long vstart, unsigned long vend,
1052 int node, gfp_t gfp_mask)
1053{
82dd23e8 1054 struct vmap_area *va, *pva;
1da177e4 1055 unsigned long addr;
db64fe02
NP
1056 int purged = 0;
1057
7766970c 1058 BUG_ON(!size);
891c49ab 1059 BUG_ON(offset_in_page(size));
89699605 1060 BUG_ON(!is_power_of_2(align));
db64fe02 1061
68ad4a33
URS
1062 if (unlikely(!vmap_initialized))
1063 return ERR_PTR(-EBUSY);
1064
5803ed29 1065 might_sleep();
4da56b99 1066
68ad4a33 1067 va = kmem_cache_alloc_node(vmap_area_cachep,
db64fe02
NP
1068 gfp_mask & GFP_RECLAIM_MASK, node);
1069 if (unlikely(!va))
1070 return ERR_PTR(-ENOMEM);
1071
7f88f88f
CM
1072 /*
1073 * Only scan the relevant parts containing pointers to other objects
1074 * to avoid false negatives.
1075 */
1076 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1077
db64fe02 1078retry:
82dd23e8
URS
1079 /*
1080 * Preload this CPU with one extra vmap_area object to ensure
1081 * that we have it available when fit type of free area is
1082 * NE_FIT_TYPE.
1083 *
1084 * The preload is done in non-atomic context, thus it allows us
1085 * to use more permissive allocation masks to be more stable under
1086 * low memory condition and high memory pressure.
1087 *
1088 * Even if it fails we do not really care about that. Just proceed
1089 * as it is. "overflow" path will refill the cache we allocate from.
1090 */
1091 preempt_disable();
1092 if (!__this_cpu_read(ne_fit_preload_node)) {
1093 preempt_enable();
1094 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1095 preempt_disable();
1096
1097 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1098 if (pva)
1099 kmem_cache_free(vmap_area_cachep, pva);
1100 }
1101 }
1102
db64fe02 1103 spin_lock(&vmap_area_lock);
82dd23e8 1104 preempt_enable();
89699605 1105
afd07389 1106 /*
68ad4a33
URS
1107 * If an allocation fails, the "vend" address is
1108 * returned. Therefore trigger the overflow path.
afd07389 1109 */
cacca6ba 1110 addr = __alloc_vmap_area(size, align, vstart, vend);
68ad4a33 1111 if (unlikely(addr == vend))
89699605 1112 goto overflow;
db64fe02
NP
1113
1114 va->va_start = addr;
1115 va->va_end = addr + size;
688fcbfc 1116 va->vm = NULL;
68ad4a33
URS
1117 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1118
db64fe02
NP
1119 spin_unlock(&vmap_area_lock);
1120
61e16557 1121 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1122 BUG_ON(va->va_start < vstart);
1123 BUG_ON(va->va_end > vend);
1124
db64fe02 1125 return va;
89699605
NP
1126
1127overflow:
1128 spin_unlock(&vmap_area_lock);
1129 if (!purged) {
1130 purge_vmap_area_lazy();
1131 purged = 1;
1132 goto retry;
1133 }
4da56b99
CW
1134
1135 if (gfpflags_allow_blocking(gfp_mask)) {
1136 unsigned long freed = 0;
1137 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1138 if (freed > 0) {
1139 purged = 0;
1140 goto retry;
1141 }
1142 }
1143
03497d76 1144 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1145 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1146 size);
68ad4a33
URS
1147
1148 kmem_cache_free(vmap_area_cachep, va);
89699605 1149 return ERR_PTR(-EBUSY);
db64fe02
NP
1150}
1151
4da56b99
CW
1152int register_vmap_purge_notifier(struct notifier_block *nb)
1153{
1154 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1155}
1156EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1157
1158int unregister_vmap_purge_notifier(struct notifier_block *nb)
1159{
1160 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1161}
1162EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1163
db64fe02
NP
1164static void __free_vmap_area(struct vmap_area *va)
1165{
ca23e405 1166 /*
68ad4a33 1167 * Remove from the busy tree/list.
ca23e405 1168 */
68ad4a33 1169 unlink_va(va, &vmap_area_root);
ca23e405 1170
68ad4a33
URS
1171 /*
1172 * Merge VA with its neighbors, otherwise just add it.
1173 */
1174 merge_or_add_vmap_area(va,
1175 &free_vmap_area_root, &free_vmap_area_list);
db64fe02
NP
1176}
1177
1178/*
1179 * Free a region of KVA allocated by alloc_vmap_area
1180 */
1181static void free_vmap_area(struct vmap_area *va)
1182{
1183 spin_lock(&vmap_area_lock);
1184 __free_vmap_area(va);
1185 spin_unlock(&vmap_area_lock);
1186}
1187
1188/*
1189 * Clear the pagetable entries of a given vmap_area
1190 */
1191static void unmap_vmap_area(struct vmap_area *va)
1192{
1193 vunmap_page_range(va->va_start, va->va_end);
1194}
1195
1196/*
1197 * lazy_max_pages is the maximum amount of virtual address space we gather up
1198 * before attempting to purge with a TLB flush.
1199 *
1200 * There is a tradeoff here: a larger number will cover more kernel page tables
1201 * and take slightly longer to purge, but it will linearly reduce the number of
1202 * global TLB flushes that must be performed. It would seem natural to scale
1203 * this number up linearly with the number of CPUs (because vmapping activity
1204 * could also scale linearly with the number of CPUs), however it is likely
1205 * that in practice, workloads might be constrained in other ways that mean
1206 * vmap activity will not scale linearly with CPUs. Also, I want to be
1207 * conservative and not introduce a big latency on huge systems, so go with
1208 * a less aggressive log scale. It will still be an improvement over the old
1209 * code, and it will be simple to change the scale factor if we find that it
1210 * becomes a problem on bigger systems.
1211 */
1212static unsigned long lazy_max_pages(void)
1213{
1214 unsigned int log;
1215
1216 log = fls(num_online_cpus());
1217
1218 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1219}
1220
4d36e6f8 1221static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1222
0574ecd1
CH
1223/*
1224 * Serialize vmap purging. There is no actual criticial section protected
1225 * by this look, but we want to avoid concurrent calls for performance
1226 * reasons and to make the pcpu_get_vm_areas more deterministic.
1227 */
f9e09977 1228static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1229
02b709df
NP
1230/* for per-CPU blocks */
1231static void purge_fragmented_blocks_allcpus(void);
1232
3ee48b6a
CW
1233/*
1234 * called before a call to iounmap() if the caller wants vm_area_struct's
1235 * immediately freed.
1236 */
1237void set_iounmap_nonlazy(void)
1238{
4d36e6f8 1239 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1240}
1241
db64fe02
NP
1242/*
1243 * Purges all lazily-freed vmap areas.
db64fe02 1244 */
0574ecd1 1245static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1246{
4d36e6f8 1247 unsigned long resched_threshold;
80c4bd7a 1248 struct llist_node *valist;
db64fe02 1249 struct vmap_area *va;
cbb76676 1250 struct vmap_area *n_va;
db64fe02 1251
0574ecd1 1252 lockdep_assert_held(&vmap_purge_lock);
02b709df 1253
80c4bd7a 1254 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1255 if (unlikely(valist == NULL))
1256 return false;
1257
3f8fd02b
JR
1258 /*
1259 * First make sure the mappings are removed from all page-tables
1260 * before they are freed.
1261 */
1262 vmalloc_sync_all();
1263
68571be9
URS
1264 /*
1265 * TODO: to calculate a flush range without looping.
1266 * The list can be up to lazy_max_pages() elements.
1267 */
80c4bd7a 1268 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1269 if (va->va_start < start)
1270 start = va->va_start;
1271 if (va->va_end > end)
1272 end = va->va_end;
db64fe02 1273 }
db64fe02 1274
0574ecd1 1275 flush_tlb_kernel_range(start, end);
4d36e6f8 1276 resched_threshold = lazy_max_pages() << 1;
db64fe02 1277
0574ecd1 1278 spin_lock(&vmap_area_lock);
763b218d 1279 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1280 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1281
dd3b8353
URS
1282 /*
1283 * Finally insert or merge lazily-freed area. It is
1284 * detached and there is no need to "unlink" it from
1285 * anything.
1286 */
1287 merge_or_add_vmap_area(va,
1288 &free_vmap_area_root, &free_vmap_area_list);
1289
4d36e6f8 1290 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1291
4d36e6f8 1292 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 1293 cond_resched_lock(&vmap_area_lock);
763b218d 1294 }
0574ecd1
CH
1295 spin_unlock(&vmap_area_lock);
1296 return true;
db64fe02
NP
1297}
1298
496850e5
NP
1299/*
1300 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1301 * is already purging.
1302 */
1303static void try_purge_vmap_area_lazy(void)
1304{
f9e09977 1305 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1306 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1307 mutex_unlock(&vmap_purge_lock);
0574ecd1 1308 }
496850e5
NP
1309}
1310
db64fe02
NP
1311/*
1312 * Kick off a purge of the outstanding lazy areas.
1313 */
1314static void purge_vmap_area_lazy(void)
1315{
f9e09977 1316 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1317 purge_fragmented_blocks_allcpus();
1318 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1319 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1320}
1321
1322/*
64141da5
JF
1323 * Free a vmap area, caller ensuring that the area has been unmapped
1324 * and flush_cache_vunmap had been called for the correct range
1325 * previously.
db64fe02 1326 */
64141da5 1327static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1328{
4d36e6f8 1329 unsigned long nr_lazy;
80c4bd7a 1330
dd3b8353
URS
1331 spin_lock(&vmap_area_lock);
1332 unlink_va(va, &vmap_area_root);
1333 spin_unlock(&vmap_area_lock);
1334
4d36e6f8
URS
1335 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1336 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1337
1338 /* After this point, we may free va at any time */
1339 llist_add(&va->purge_list, &vmap_purge_list);
1340
1341 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1342 try_purge_vmap_area_lazy();
db64fe02
NP
1343}
1344
b29acbdc
NP
1345/*
1346 * Free and unmap a vmap area
1347 */
1348static void free_unmap_vmap_area(struct vmap_area *va)
1349{
1350 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1351 unmap_vmap_area(va);
82a2e924
CP
1352 if (debug_pagealloc_enabled())
1353 flush_tlb_kernel_range(va->va_start, va->va_end);
1354
c8eef01e 1355 free_vmap_area_noflush(va);
b29acbdc
NP
1356}
1357
db64fe02
NP
1358static struct vmap_area *find_vmap_area(unsigned long addr)
1359{
1360 struct vmap_area *va;
1361
1362 spin_lock(&vmap_area_lock);
1363 va = __find_vmap_area(addr);
1364 spin_unlock(&vmap_area_lock);
1365
1366 return va;
1367}
1368
db64fe02
NP
1369/*** Per cpu kva allocator ***/
1370
1371/*
1372 * vmap space is limited especially on 32 bit architectures. Ensure there is
1373 * room for at least 16 percpu vmap blocks per CPU.
1374 */
1375/*
1376 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1377 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1378 * instead (we just need a rough idea)
1379 */
1380#if BITS_PER_LONG == 32
1381#define VMALLOC_SPACE (128UL*1024*1024)
1382#else
1383#define VMALLOC_SPACE (128UL*1024*1024*1024)
1384#endif
1385
1386#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1387#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1388#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1389#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1390#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1391#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1392#define VMAP_BBMAP_BITS \
1393 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1394 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1395 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1396
1397#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1398
1399struct vmap_block_queue {
1400 spinlock_t lock;
1401 struct list_head free;
db64fe02
NP
1402};
1403
1404struct vmap_block {
1405 spinlock_t lock;
1406 struct vmap_area *va;
db64fe02 1407 unsigned long free, dirty;
7d61bfe8 1408 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1409 struct list_head free_list;
1410 struct rcu_head rcu_head;
02b709df 1411 struct list_head purge;
db64fe02
NP
1412};
1413
1414/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1415static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1416
1417/*
1418 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1419 * in the free path. Could get rid of this if we change the API to return a
1420 * "cookie" from alloc, to be passed to free. But no big deal yet.
1421 */
1422static DEFINE_SPINLOCK(vmap_block_tree_lock);
1423static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1424
1425/*
1426 * We should probably have a fallback mechanism to allocate virtual memory
1427 * out of partially filled vmap blocks. However vmap block sizing should be
1428 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1429 * big problem.
1430 */
1431
1432static unsigned long addr_to_vb_idx(unsigned long addr)
1433{
1434 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1435 addr /= VMAP_BLOCK_SIZE;
1436 return addr;
1437}
1438
cf725ce2
RP
1439static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1440{
1441 unsigned long addr;
1442
1443 addr = va_start + (pages_off << PAGE_SHIFT);
1444 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1445 return (void *)addr;
1446}
1447
1448/**
1449 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1450 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1451 * @order: how many 2^order pages should be occupied in newly allocated block
1452 * @gfp_mask: flags for the page level allocator
1453 *
a862f68a 1454 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1455 */
1456static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1457{
1458 struct vmap_block_queue *vbq;
1459 struct vmap_block *vb;
1460 struct vmap_area *va;
1461 unsigned long vb_idx;
1462 int node, err;
cf725ce2 1463 void *vaddr;
db64fe02
NP
1464
1465 node = numa_node_id();
1466
1467 vb = kmalloc_node(sizeof(struct vmap_block),
1468 gfp_mask & GFP_RECLAIM_MASK, node);
1469 if (unlikely(!vb))
1470 return ERR_PTR(-ENOMEM);
1471
1472 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1473 VMALLOC_START, VMALLOC_END,
1474 node, gfp_mask);
ddf9c6d4 1475 if (IS_ERR(va)) {
db64fe02 1476 kfree(vb);
e7d86340 1477 return ERR_CAST(va);
db64fe02
NP
1478 }
1479
1480 err = radix_tree_preload(gfp_mask);
1481 if (unlikely(err)) {
1482 kfree(vb);
1483 free_vmap_area(va);
1484 return ERR_PTR(err);
1485 }
1486
cf725ce2 1487 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1488 spin_lock_init(&vb->lock);
1489 vb->va = va;
cf725ce2
RP
1490 /* At least something should be left free */
1491 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1492 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1493 vb->dirty = 0;
7d61bfe8
RP
1494 vb->dirty_min = VMAP_BBMAP_BITS;
1495 vb->dirty_max = 0;
db64fe02 1496 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1497
1498 vb_idx = addr_to_vb_idx(va->va_start);
1499 spin_lock(&vmap_block_tree_lock);
1500 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1501 spin_unlock(&vmap_block_tree_lock);
1502 BUG_ON(err);
1503 radix_tree_preload_end();
1504
1505 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1506 spin_lock(&vbq->lock);
68ac546f 1507 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1508 spin_unlock(&vbq->lock);
3f04ba85 1509 put_cpu_var(vmap_block_queue);
db64fe02 1510
cf725ce2 1511 return vaddr;
db64fe02
NP
1512}
1513
db64fe02
NP
1514static void free_vmap_block(struct vmap_block *vb)
1515{
1516 struct vmap_block *tmp;
1517 unsigned long vb_idx;
1518
db64fe02
NP
1519 vb_idx = addr_to_vb_idx(vb->va->va_start);
1520 spin_lock(&vmap_block_tree_lock);
1521 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1522 spin_unlock(&vmap_block_tree_lock);
1523 BUG_ON(tmp != vb);
1524
64141da5 1525 free_vmap_area_noflush(vb->va);
22a3c7d1 1526 kfree_rcu(vb, rcu_head);
db64fe02
NP
1527}
1528
02b709df
NP
1529static void purge_fragmented_blocks(int cpu)
1530{
1531 LIST_HEAD(purge);
1532 struct vmap_block *vb;
1533 struct vmap_block *n_vb;
1534 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1535
1536 rcu_read_lock();
1537 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1538
1539 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1540 continue;
1541
1542 spin_lock(&vb->lock);
1543 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1544 vb->free = 0; /* prevent further allocs after releasing lock */
1545 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1546 vb->dirty_min = 0;
1547 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1548 spin_lock(&vbq->lock);
1549 list_del_rcu(&vb->free_list);
1550 spin_unlock(&vbq->lock);
1551 spin_unlock(&vb->lock);
1552 list_add_tail(&vb->purge, &purge);
1553 } else
1554 spin_unlock(&vb->lock);
1555 }
1556 rcu_read_unlock();
1557
1558 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1559 list_del(&vb->purge);
1560 free_vmap_block(vb);
1561 }
1562}
1563
02b709df
NP
1564static void purge_fragmented_blocks_allcpus(void)
1565{
1566 int cpu;
1567
1568 for_each_possible_cpu(cpu)
1569 purge_fragmented_blocks(cpu);
1570}
1571
db64fe02
NP
1572static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1573{
1574 struct vmap_block_queue *vbq;
1575 struct vmap_block *vb;
cf725ce2 1576 void *vaddr = NULL;
db64fe02
NP
1577 unsigned int order;
1578
891c49ab 1579 BUG_ON(offset_in_page(size));
db64fe02 1580 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1581 if (WARN_ON(size == 0)) {
1582 /*
1583 * Allocating 0 bytes isn't what caller wants since
1584 * get_order(0) returns funny result. Just warn and terminate
1585 * early.
1586 */
1587 return NULL;
1588 }
db64fe02
NP
1589 order = get_order(size);
1590
db64fe02
NP
1591 rcu_read_lock();
1592 vbq = &get_cpu_var(vmap_block_queue);
1593 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1594 unsigned long pages_off;
db64fe02
NP
1595
1596 spin_lock(&vb->lock);
cf725ce2
RP
1597 if (vb->free < (1UL << order)) {
1598 spin_unlock(&vb->lock);
1599 continue;
1600 }
02b709df 1601
cf725ce2
RP
1602 pages_off = VMAP_BBMAP_BITS - vb->free;
1603 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1604 vb->free -= 1UL << order;
1605 if (vb->free == 0) {
1606 spin_lock(&vbq->lock);
1607 list_del_rcu(&vb->free_list);
1608 spin_unlock(&vbq->lock);
1609 }
cf725ce2 1610
02b709df
NP
1611 spin_unlock(&vb->lock);
1612 break;
db64fe02 1613 }
02b709df 1614
3f04ba85 1615 put_cpu_var(vmap_block_queue);
db64fe02
NP
1616 rcu_read_unlock();
1617
cf725ce2
RP
1618 /* Allocate new block if nothing was found */
1619 if (!vaddr)
1620 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1621
cf725ce2 1622 return vaddr;
db64fe02
NP
1623}
1624
1625static void vb_free(const void *addr, unsigned long size)
1626{
1627 unsigned long offset;
1628 unsigned long vb_idx;
1629 unsigned int order;
1630 struct vmap_block *vb;
1631
891c49ab 1632 BUG_ON(offset_in_page(size));
db64fe02 1633 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1634
1635 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1636
db64fe02
NP
1637 order = get_order(size);
1638
1639 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1640 offset >>= PAGE_SHIFT;
db64fe02
NP
1641
1642 vb_idx = addr_to_vb_idx((unsigned long)addr);
1643 rcu_read_lock();
1644 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1645 rcu_read_unlock();
1646 BUG_ON(!vb);
1647
64141da5
JF
1648 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1649
82a2e924
CP
1650 if (debug_pagealloc_enabled())
1651 flush_tlb_kernel_range((unsigned long)addr,
1652 (unsigned long)addr + size);
1653
db64fe02 1654 spin_lock(&vb->lock);
7d61bfe8
RP
1655
1656 /* Expand dirty range */
1657 vb->dirty_min = min(vb->dirty_min, offset);
1658 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1659
db64fe02
NP
1660 vb->dirty += 1UL << order;
1661 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1662 BUG_ON(vb->free);
db64fe02
NP
1663 spin_unlock(&vb->lock);
1664 free_vmap_block(vb);
1665 } else
1666 spin_unlock(&vb->lock);
1667}
1668
868b104d 1669static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1670{
db64fe02 1671 int cpu;
db64fe02 1672
9b463334
JF
1673 if (unlikely(!vmap_initialized))
1674 return;
1675
5803ed29
CH
1676 might_sleep();
1677
db64fe02
NP
1678 for_each_possible_cpu(cpu) {
1679 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1680 struct vmap_block *vb;
1681
1682 rcu_read_lock();
1683 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1684 spin_lock(&vb->lock);
7d61bfe8
RP
1685 if (vb->dirty) {
1686 unsigned long va_start = vb->va->va_start;
db64fe02 1687 unsigned long s, e;
b136be5e 1688
7d61bfe8
RP
1689 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1690 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1691
7d61bfe8
RP
1692 start = min(s, start);
1693 end = max(e, end);
db64fe02 1694
7d61bfe8 1695 flush = 1;
db64fe02
NP
1696 }
1697 spin_unlock(&vb->lock);
1698 }
1699 rcu_read_unlock();
1700 }
1701
f9e09977 1702 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1703 purge_fragmented_blocks_allcpus();
1704 if (!__purge_vmap_area_lazy(start, end) && flush)
1705 flush_tlb_kernel_range(start, end);
f9e09977 1706 mutex_unlock(&vmap_purge_lock);
db64fe02 1707}
868b104d
RE
1708
1709/**
1710 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1711 *
1712 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1713 * to amortize TLB flushing overheads. What this means is that any page you
1714 * have now, may, in a former life, have been mapped into kernel virtual
1715 * address by the vmap layer and so there might be some CPUs with TLB entries
1716 * still referencing that page (additional to the regular 1:1 kernel mapping).
1717 *
1718 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1719 * be sure that none of the pages we have control over will have any aliases
1720 * from the vmap layer.
1721 */
1722void vm_unmap_aliases(void)
1723{
1724 unsigned long start = ULONG_MAX, end = 0;
1725 int flush = 0;
1726
1727 _vm_unmap_aliases(start, end, flush);
1728}
db64fe02
NP
1729EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1730
1731/**
1732 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1733 * @mem: the pointer returned by vm_map_ram
1734 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1735 */
1736void vm_unmap_ram(const void *mem, unsigned int count)
1737{
65ee03c4 1738 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1739 unsigned long addr = (unsigned long)mem;
9c3acf60 1740 struct vmap_area *va;
db64fe02 1741
5803ed29 1742 might_sleep();
db64fe02
NP
1743 BUG_ON(!addr);
1744 BUG_ON(addr < VMALLOC_START);
1745 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1746 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1747
9c3acf60 1748 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1749 debug_check_no_locks_freed(mem, size);
db64fe02 1750 vb_free(mem, size);
9c3acf60
CH
1751 return;
1752 }
1753
1754 va = find_vmap_area(addr);
1755 BUG_ON(!va);
05e3ff95
CP
1756 debug_check_no_locks_freed((void *)va->va_start,
1757 (va->va_end - va->va_start));
9c3acf60 1758 free_unmap_vmap_area(va);
db64fe02
NP
1759}
1760EXPORT_SYMBOL(vm_unmap_ram);
1761
1762/**
1763 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1764 * @pages: an array of pointers to the pages to be mapped
1765 * @count: number of pages
1766 * @node: prefer to allocate data structures on this node
1767 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1768 *
36437638
GK
1769 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1770 * faster than vmap so it's good. But if you mix long-life and short-life
1771 * objects with vm_map_ram(), it could consume lots of address space through
1772 * fragmentation (especially on a 32bit machine). You could see failures in
1773 * the end. Please use this function for short-lived objects.
1774 *
e99c97ad 1775 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1776 */
1777void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1778{
65ee03c4 1779 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1780 unsigned long addr;
1781 void *mem;
1782
1783 if (likely(count <= VMAP_MAX_ALLOC)) {
1784 mem = vb_alloc(size, GFP_KERNEL);
1785 if (IS_ERR(mem))
1786 return NULL;
1787 addr = (unsigned long)mem;
1788 } else {
1789 struct vmap_area *va;
1790 va = alloc_vmap_area(size, PAGE_SIZE,
1791 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1792 if (IS_ERR(va))
1793 return NULL;
1794
1795 addr = va->va_start;
1796 mem = (void *)addr;
1797 }
1798 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1799 vm_unmap_ram(mem, count);
1800 return NULL;
1801 }
1802 return mem;
1803}
1804EXPORT_SYMBOL(vm_map_ram);
1805
4341fa45 1806static struct vm_struct *vmlist __initdata;
92eac168 1807
be9b7335
NP
1808/**
1809 * vm_area_add_early - add vmap area early during boot
1810 * @vm: vm_struct to add
1811 *
1812 * This function is used to add fixed kernel vm area to vmlist before
1813 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1814 * should contain proper values and the other fields should be zero.
1815 *
1816 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1817 */
1818void __init vm_area_add_early(struct vm_struct *vm)
1819{
1820 struct vm_struct *tmp, **p;
1821
1822 BUG_ON(vmap_initialized);
1823 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1824 if (tmp->addr >= vm->addr) {
1825 BUG_ON(tmp->addr < vm->addr + vm->size);
1826 break;
1827 } else
1828 BUG_ON(tmp->addr + tmp->size > vm->addr);
1829 }
1830 vm->next = *p;
1831 *p = vm;
1832}
1833
f0aa6617
TH
1834/**
1835 * vm_area_register_early - register vmap area early during boot
1836 * @vm: vm_struct to register
c0c0a293 1837 * @align: requested alignment
f0aa6617
TH
1838 *
1839 * This function is used to register kernel vm area before
1840 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1841 * proper values on entry and other fields should be zero. On return,
1842 * vm->addr contains the allocated address.
1843 *
1844 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1845 */
c0c0a293 1846void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1847{
1848 static size_t vm_init_off __initdata;
c0c0a293
TH
1849 unsigned long addr;
1850
1851 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1852 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1853
c0c0a293 1854 vm->addr = (void *)addr;
f0aa6617 1855
be9b7335 1856 vm_area_add_early(vm);
f0aa6617
TH
1857}
1858
68ad4a33
URS
1859static void vmap_init_free_space(void)
1860{
1861 unsigned long vmap_start = 1;
1862 const unsigned long vmap_end = ULONG_MAX;
1863 struct vmap_area *busy, *free;
1864
1865 /*
1866 * B F B B B F
1867 * -|-----|.....|-----|-----|-----|.....|-
1868 * | The KVA space |
1869 * |<--------------------------------->|
1870 */
1871 list_for_each_entry(busy, &vmap_area_list, list) {
1872 if (busy->va_start - vmap_start > 0) {
1873 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1874 if (!WARN_ON_ONCE(!free)) {
1875 free->va_start = vmap_start;
1876 free->va_end = busy->va_start;
1877
1878 insert_vmap_area_augment(free, NULL,
1879 &free_vmap_area_root,
1880 &free_vmap_area_list);
1881 }
1882 }
1883
1884 vmap_start = busy->va_end;
1885 }
1886
1887 if (vmap_end - vmap_start > 0) {
1888 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1889 if (!WARN_ON_ONCE(!free)) {
1890 free->va_start = vmap_start;
1891 free->va_end = vmap_end;
1892
1893 insert_vmap_area_augment(free, NULL,
1894 &free_vmap_area_root,
1895 &free_vmap_area_list);
1896 }
1897 }
1898}
1899
db64fe02
NP
1900void __init vmalloc_init(void)
1901{
822c18f2
IK
1902 struct vmap_area *va;
1903 struct vm_struct *tmp;
db64fe02
NP
1904 int i;
1905
68ad4a33
URS
1906 /*
1907 * Create the cache for vmap_area objects.
1908 */
1909 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1910
db64fe02
NP
1911 for_each_possible_cpu(i) {
1912 struct vmap_block_queue *vbq;
32fcfd40 1913 struct vfree_deferred *p;
db64fe02
NP
1914
1915 vbq = &per_cpu(vmap_block_queue, i);
1916 spin_lock_init(&vbq->lock);
1917 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1918 p = &per_cpu(vfree_deferred, i);
1919 init_llist_head(&p->list);
1920 INIT_WORK(&p->wq, free_work);
db64fe02 1921 }
9b463334 1922
822c18f2
IK
1923 /* Import existing vmlist entries. */
1924 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1925 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1926 if (WARN_ON_ONCE(!va))
1927 continue;
1928
822c18f2
IK
1929 va->va_start = (unsigned long)tmp->addr;
1930 va->va_end = va->va_start + tmp->size;
dbda591d 1931 va->vm = tmp;
68ad4a33 1932 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1933 }
ca23e405 1934
68ad4a33
URS
1935 /*
1936 * Now we can initialize a free vmap space.
1937 */
1938 vmap_init_free_space();
9b463334 1939 vmap_initialized = true;
db64fe02
NP
1940}
1941
8fc48985
TH
1942/**
1943 * map_kernel_range_noflush - map kernel VM area with the specified pages
1944 * @addr: start of the VM area to map
1945 * @size: size of the VM area to map
1946 * @prot: page protection flags to use
1947 * @pages: pages to map
1948 *
1949 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1950 * specify should have been allocated using get_vm_area() and its
1951 * friends.
1952 *
1953 * NOTE:
1954 * This function does NOT do any cache flushing. The caller is
1955 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1956 * before calling this function.
1957 *
1958 * RETURNS:
1959 * The number of pages mapped on success, -errno on failure.
1960 */
1961int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1962 pgprot_t prot, struct page **pages)
1963{
1964 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1965}
1966
1967/**
1968 * unmap_kernel_range_noflush - unmap kernel VM area
1969 * @addr: start of the VM area to unmap
1970 * @size: size of the VM area to unmap
1971 *
1972 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1973 * specify should have been allocated using get_vm_area() and its
1974 * friends.
1975 *
1976 * NOTE:
1977 * This function does NOT do any cache flushing. The caller is
1978 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1979 * before calling this function and flush_tlb_kernel_range() after.
1980 */
1981void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1982{
1983 vunmap_page_range(addr, addr + size);
1984}
81e88fdc 1985EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1986
1987/**
1988 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1989 * @addr: start of the VM area to unmap
1990 * @size: size of the VM area to unmap
1991 *
1992 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1993 * the unmapping and tlb after.
1994 */
db64fe02
NP
1995void unmap_kernel_range(unsigned long addr, unsigned long size)
1996{
1997 unsigned long end = addr + size;
f6fcba70
TH
1998
1999 flush_cache_vunmap(addr, end);
db64fe02
NP
2000 vunmap_page_range(addr, end);
2001 flush_tlb_kernel_range(addr, end);
2002}
93ef6d6c 2003EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 2004
f6f8ed47 2005int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2006{
2007 unsigned long addr = (unsigned long)area->addr;
762216ab 2008 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2009 int err;
2010
f6f8ed47 2011 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2012
f6f8ed47 2013 return err > 0 ? 0 : err;
db64fe02
NP
2014}
2015EXPORT_SYMBOL_GPL(map_vm_area);
2016
f5252e00 2017static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 2018 unsigned long flags, const void *caller)
cf88c790 2019{
c69480ad 2020 spin_lock(&vmap_area_lock);
cf88c790
TH
2021 vm->flags = flags;
2022 vm->addr = (void *)va->va_start;
2023 vm->size = va->va_end - va->va_start;
2024 vm->caller = caller;
db1aecaf 2025 va->vm = vm;
c69480ad 2026 spin_unlock(&vmap_area_lock);
f5252e00 2027}
cf88c790 2028
20fc02b4 2029static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2030{
d4033afd 2031 /*
20fc02b4 2032 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2033 * we should make sure that vm has proper values.
2034 * Pair with smp_rmb() in show_numa_info().
2035 */
2036 smp_wmb();
20fc02b4 2037 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2038}
2039
db64fe02 2040static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2041 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2042 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2043{
0006526d 2044 struct vmap_area *va;
db64fe02 2045 struct vm_struct *area;
1da177e4 2046
52fd24ca 2047 BUG_ON(in_interrupt());
1da177e4 2048 size = PAGE_ALIGN(size);
31be8309
OH
2049 if (unlikely(!size))
2050 return NULL;
1da177e4 2051
252e5c6e 2052 if (flags & VM_IOREMAP)
2053 align = 1ul << clamp_t(int, get_count_order_long(size),
2054 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2055
cf88c790 2056 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2057 if (unlikely(!area))
2058 return NULL;
2059
71394fe5
AR
2060 if (!(flags & VM_NO_GUARD))
2061 size += PAGE_SIZE;
1da177e4 2062
db64fe02
NP
2063 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2064 if (IS_ERR(va)) {
2065 kfree(area);
2066 return NULL;
1da177e4 2067 }
1da177e4 2068
d82b1d85 2069 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2070
1da177e4 2071 return area;
1da177e4
LT
2072}
2073
930fc45a
CL
2074struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2075 unsigned long start, unsigned long end)
2076{
00ef2d2f
DR
2077 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2078 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2079}
5992b6da 2080EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2081
c2968612
BH
2082struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2083 unsigned long start, unsigned long end,
5e6cafc8 2084 const void *caller)
c2968612 2085{
00ef2d2f
DR
2086 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2087 GFP_KERNEL, caller);
c2968612
BH
2088}
2089
1da177e4 2090/**
92eac168
MR
2091 * get_vm_area - reserve a contiguous kernel virtual area
2092 * @size: size of the area
2093 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2094 *
92eac168
MR
2095 * Search an area of @size in the kernel virtual mapping area,
2096 * and reserved it for out purposes. Returns the area descriptor
2097 * on success or %NULL on failure.
a862f68a
MR
2098 *
2099 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2100 */
2101struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2102{
2dca6999 2103 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2104 NUMA_NO_NODE, GFP_KERNEL,
2105 __builtin_return_address(0));
23016969
CL
2106}
2107
2108struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2109 const void *caller)
23016969 2110{
2dca6999 2111 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2112 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2113}
2114
e9da6e99 2115/**
92eac168
MR
2116 * find_vm_area - find a continuous kernel virtual area
2117 * @addr: base address
e9da6e99 2118 *
92eac168
MR
2119 * Search for the kernel VM area starting at @addr, and return it.
2120 * It is up to the caller to do all required locking to keep the returned
2121 * pointer valid.
a862f68a
MR
2122 *
2123 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2124 */
2125struct vm_struct *find_vm_area(const void *addr)
83342314 2126{
db64fe02 2127 struct vmap_area *va;
83342314 2128
db64fe02 2129 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2130 if (!va)
2131 return NULL;
1da177e4 2132
688fcbfc 2133 return va->vm;
1da177e4
LT
2134}
2135
7856dfeb 2136/**
92eac168
MR
2137 * remove_vm_area - find and remove a continuous kernel virtual area
2138 * @addr: base address
7856dfeb 2139 *
92eac168
MR
2140 * Search for the kernel VM area starting at @addr, and remove it.
2141 * This function returns the found VM area, but using it is NOT safe
2142 * on SMP machines, except for its size or flags.
a862f68a
MR
2143 *
2144 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2145 */
b3bdda02 2146struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2147{
db64fe02
NP
2148 struct vmap_area *va;
2149
5803ed29
CH
2150 might_sleep();
2151
dd3b8353
URS
2152 spin_lock(&vmap_area_lock);
2153 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2154 if (va && va->vm) {
db1aecaf 2155 struct vm_struct *vm = va->vm;
f5252e00 2156
c69480ad 2157 va->vm = NULL;
c69480ad
JK
2158 spin_unlock(&vmap_area_lock);
2159
a5af5aa8 2160 kasan_free_shadow(vm);
dd32c279 2161 free_unmap_vmap_area(va);
dd32c279 2162
db64fe02
NP
2163 return vm;
2164 }
dd3b8353
URS
2165
2166 spin_unlock(&vmap_area_lock);
db64fe02 2167 return NULL;
7856dfeb
AK
2168}
2169
868b104d
RE
2170static inline void set_area_direct_map(const struct vm_struct *area,
2171 int (*set_direct_map)(struct page *page))
2172{
2173 int i;
2174
2175 for (i = 0; i < area->nr_pages; i++)
2176 if (page_address(area->pages[i]))
2177 set_direct_map(area->pages[i]);
2178}
2179
2180/* Handle removing and resetting vm mappings related to the vm_struct. */
2181static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2182{
868b104d
RE
2183 unsigned long start = ULONG_MAX, end = 0;
2184 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2185 int flush_dmap = 0;
868b104d
RE
2186 int i;
2187
868b104d
RE
2188 remove_vm_area(area->addr);
2189
2190 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2191 if (!flush_reset)
2192 return;
2193
2194 /*
2195 * If not deallocating pages, just do the flush of the VM area and
2196 * return.
2197 */
2198 if (!deallocate_pages) {
2199 vm_unmap_aliases();
2200 return;
2201 }
2202
2203 /*
2204 * If execution gets here, flush the vm mapping and reset the direct
2205 * map. Find the start and end range of the direct mappings to make sure
2206 * the vm_unmap_aliases() flush includes the direct map.
2207 */
2208 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2209 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2210 if (addr) {
868b104d 2211 start = min(addr, start);
8e41f872 2212 end = max(addr + PAGE_SIZE, end);
31e67340 2213 flush_dmap = 1;
868b104d
RE
2214 }
2215 }
2216
2217 /*
2218 * Set direct map to something invalid so that it won't be cached if
2219 * there are any accesses after the TLB flush, then flush the TLB and
2220 * reset the direct map permissions to the default.
2221 */
2222 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2223 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2224 set_area_direct_map(area, set_direct_map_default_noflush);
2225}
2226
b3bdda02 2227static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2228{
2229 struct vm_struct *area;
2230
2231 if (!addr)
2232 return;
2233
e69e9d4a 2234 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2235 addr))
1da177e4 2236 return;
1da177e4 2237
6ade2032 2238 area = find_vm_area(addr);
1da177e4 2239 if (unlikely(!area)) {
4c8573e2 2240 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2241 addr);
1da177e4
LT
2242 return;
2243 }
2244
05e3ff95
CP
2245 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2246 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2247
868b104d
RE
2248 vm_remove_mappings(area, deallocate_pages);
2249
1da177e4
LT
2250 if (deallocate_pages) {
2251 int i;
2252
2253 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2254 struct page *page = area->pages[i];
2255
2256 BUG_ON(!page);
4949148a 2257 __free_pages(page, 0);
1da177e4 2258 }
97105f0a 2259 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2260
244d63ee 2261 kvfree(area->pages);
1da177e4
LT
2262 }
2263
2264 kfree(area);
2265 return;
2266}
bf22e37a
AR
2267
2268static inline void __vfree_deferred(const void *addr)
2269{
2270 /*
2271 * Use raw_cpu_ptr() because this can be called from preemptible
2272 * context. Preemption is absolutely fine here, because the llist_add()
2273 * implementation is lockless, so it works even if we are adding to
2274 * nother cpu's list. schedule_work() should be fine with this too.
2275 */
2276 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2277
2278 if (llist_add((struct llist_node *)addr, &p->list))
2279 schedule_work(&p->wq);
2280}
2281
2282/**
92eac168
MR
2283 * vfree_atomic - release memory allocated by vmalloc()
2284 * @addr: memory base address
bf22e37a 2285 *
92eac168
MR
2286 * This one is just like vfree() but can be called in any atomic context
2287 * except NMIs.
bf22e37a
AR
2288 */
2289void vfree_atomic(const void *addr)
2290{
2291 BUG_ON(in_nmi());
2292
2293 kmemleak_free(addr);
2294
2295 if (!addr)
2296 return;
2297 __vfree_deferred(addr);
2298}
2299
c67dc624
RP
2300static void __vfree(const void *addr)
2301{
2302 if (unlikely(in_interrupt()))
2303 __vfree_deferred(addr);
2304 else
2305 __vunmap(addr, 1);
2306}
2307
1da177e4 2308/**
92eac168
MR
2309 * vfree - release memory allocated by vmalloc()
2310 * @addr: memory base address
1da177e4 2311 *
92eac168
MR
2312 * Free the virtually continuous memory area starting at @addr, as
2313 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2314 * NULL, no operation is performed.
1da177e4 2315 *
92eac168
MR
2316 * Must not be called in NMI context (strictly speaking, only if we don't
2317 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2318 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2319 *
92eac168 2320 * May sleep if called *not* from interrupt context.
3ca4ea3a 2321 *
92eac168 2322 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2323 */
b3bdda02 2324void vfree(const void *addr)
1da177e4 2325{
32fcfd40 2326 BUG_ON(in_nmi());
89219d37
CM
2327
2328 kmemleak_free(addr);
2329
a8dda165
AR
2330 might_sleep_if(!in_interrupt());
2331
32fcfd40
AV
2332 if (!addr)
2333 return;
c67dc624
RP
2334
2335 __vfree(addr);
1da177e4 2336}
1da177e4
LT
2337EXPORT_SYMBOL(vfree);
2338
2339/**
92eac168
MR
2340 * vunmap - release virtual mapping obtained by vmap()
2341 * @addr: memory base address
1da177e4 2342 *
92eac168
MR
2343 * Free the virtually contiguous memory area starting at @addr,
2344 * which was created from the page array passed to vmap().
1da177e4 2345 *
92eac168 2346 * Must not be called in interrupt context.
1da177e4 2347 */
b3bdda02 2348void vunmap(const void *addr)
1da177e4
LT
2349{
2350 BUG_ON(in_interrupt());
34754b69 2351 might_sleep();
32fcfd40
AV
2352 if (addr)
2353 __vunmap(addr, 0);
1da177e4 2354}
1da177e4
LT
2355EXPORT_SYMBOL(vunmap);
2356
2357/**
92eac168
MR
2358 * vmap - map an array of pages into virtually contiguous space
2359 * @pages: array of page pointers
2360 * @count: number of pages to map
2361 * @flags: vm_area->flags
2362 * @prot: page protection for the mapping
2363 *
2364 * Maps @count pages from @pages into contiguous kernel virtual
2365 * space.
a862f68a
MR
2366 *
2367 * Return: the address of the area or %NULL on failure
1da177e4
LT
2368 */
2369void *vmap(struct page **pages, unsigned int count,
92eac168 2370 unsigned long flags, pgprot_t prot)
1da177e4
LT
2371{
2372 struct vm_struct *area;
65ee03c4 2373 unsigned long size; /* In bytes */
1da177e4 2374
34754b69
PZ
2375 might_sleep();
2376
ca79b0c2 2377 if (count > totalram_pages())
1da177e4
LT
2378 return NULL;
2379
65ee03c4
GJM
2380 size = (unsigned long)count << PAGE_SHIFT;
2381 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2382 if (!area)
2383 return NULL;
23016969 2384
f6f8ed47 2385 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2386 vunmap(area->addr);
2387 return NULL;
2388 }
2389
2390 return area->addr;
2391}
1da177e4
LT
2392EXPORT_SYMBOL(vmap);
2393
8594a21c
MH
2394static void *__vmalloc_node(unsigned long size, unsigned long align,
2395 gfp_t gfp_mask, pgprot_t prot,
2396 int node, const void *caller);
e31d9eb5 2397static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2398 pgprot_t prot, int node)
1da177e4
LT
2399{
2400 struct page **pages;
2401 unsigned int nr_pages, array_size, i;
930f036b 2402 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2403 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2404 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2405 0 :
2406 __GFP_HIGHMEM;
1da177e4 2407
762216ab 2408 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2409 array_size = (nr_pages * sizeof(struct page *));
2410
1da177e4 2411 /* Please note that the recursion is strictly bounded. */
8757d5fa 2412 if (array_size > PAGE_SIZE) {
704b862f 2413 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2414 PAGE_KERNEL, node, area->caller);
286e1ea3 2415 } else {
976d6dfb 2416 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2417 }
7ea36242
AK
2418
2419 if (!pages) {
1da177e4
LT
2420 remove_vm_area(area->addr);
2421 kfree(area);
2422 return NULL;
2423 }
1da177e4 2424
7ea36242
AK
2425 area->pages = pages;
2426 area->nr_pages = nr_pages;
2427
1da177e4 2428 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2429 struct page *page;
2430
4b90951c 2431 if (node == NUMA_NO_NODE)
704b862f 2432 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2433 else
704b862f 2434 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2435
2436 if (unlikely(!page)) {
1da177e4
LT
2437 /* Successfully allocated i pages, free them in __vunmap() */
2438 area->nr_pages = i;
97105f0a 2439 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2440 goto fail;
2441 }
bf53d6f8 2442 area->pages[i] = page;
dcf61ff0 2443 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2444 cond_resched();
1da177e4 2445 }
97105f0a 2446 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2447
f6f8ed47 2448 if (map_vm_area(area, prot, pages))
1da177e4
LT
2449 goto fail;
2450 return area->addr;
2451
2452fail:
a8e99259 2453 warn_alloc(gfp_mask, NULL,
7877cdcc 2454 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2455 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2456 __vfree(area->addr);
1da177e4
LT
2457 return NULL;
2458}
2459
2460/**
92eac168
MR
2461 * __vmalloc_node_range - allocate virtually contiguous memory
2462 * @size: allocation size
2463 * @align: desired alignment
2464 * @start: vm area range start
2465 * @end: vm area range end
2466 * @gfp_mask: flags for the page level allocator
2467 * @prot: protection mask for the allocated pages
2468 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2469 * @node: node to use for allocation or NUMA_NO_NODE
2470 * @caller: caller's return address
2471 *
2472 * Allocate enough pages to cover @size from the page level
2473 * allocator with @gfp_mask flags. Map them into contiguous
2474 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2475 *
2476 * Return: the address of the area or %NULL on failure
1da177e4 2477 */
d0a21265
DR
2478void *__vmalloc_node_range(unsigned long size, unsigned long align,
2479 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2480 pgprot_t prot, unsigned long vm_flags, int node,
2481 const void *caller)
1da177e4
LT
2482{
2483 struct vm_struct *area;
89219d37
CM
2484 void *addr;
2485 unsigned long real_size = size;
1da177e4
LT
2486
2487 size = PAGE_ALIGN(size);
ca79b0c2 2488 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2489 goto fail;
1da177e4 2490
cb9e3c29
AR
2491 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2492 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2493 if (!area)
de7d2b56 2494 goto fail;
1da177e4 2495
3722e13c 2496 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2497 if (!addr)
b82225f3 2498 return NULL;
89219d37 2499
f5252e00 2500 /*
20fc02b4
ZY
2501 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2502 * flag. It means that vm_struct is not fully initialized.
4341fa45 2503 * Now, it is fully initialized, so remove this flag here.
f5252e00 2504 */
20fc02b4 2505 clear_vm_uninitialized_flag(area);
f5252e00 2506
94f4a161 2507 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2508
2509 return addr;
de7d2b56
JP
2510
2511fail:
a8e99259 2512 warn_alloc(gfp_mask, NULL,
7877cdcc 2513 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2514 return NULL;
1da177e4
LT
2515}
2516
153178ed
URS
2517/*
2518 * This is only for performance analysis of vmalloc and stress purpose.
2519 * It is required by vmalloc test module, therefore do not use it other
2520 * than that.
2521 */
2522#ifdef CONFIG_TEST_VMALLOC_MODULE
2523EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2524#endif
2525
d0a21265 2526/**
92eac168
MR
2527 * __vmalloc_node - allocate virtually contiguous memory
2528 * @size: allocation size
2529 * @align: desired alignment
2530 * @gfp_mask: flags for the page level allocator
2531 * @prot: protection mask for the allocated pages
2532 * @node: node to use for allocation or NUMA_NO_NODE
2533 * @caller: caller's return address
a7c3e901 2534 *
92eac168
MR
2535 * Allocate enough pages to cover @size from the page level
2536 * allocator with @gfp_mask flags. Map them into contiguous
2537 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2538 *
92eac168
MR
2539 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2540 * and __GFP_NOFAIL are not supported
a7c3e901 2541 *
92eac168
MR
2542 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2543 * with mm people.
a862f68a
MR
2544 *
2545 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2546 */
8594a21c 2547static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2548 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2549 int node, const void *caller)
d0a21265
DR
2550{
2551 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2552 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2553}
2554
930fc45a
CL
2555void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2556{
00ef2d2f 2557 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2558 __builtin_return_address(0));
930fc45a 2559}
1da177e4
LT
2560EXPORT_SYMBOL(__vmalloc);
2561
8594a21c
MH
2562static inline void *__vmalloc_node_flags(unsigned long size,
2563 int node, gfp_t flags)
2564{
2565 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2566 node, __builtin_return_address(0));
2567}
2568
2569
2570void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2571 void *caller)
2572{
2573 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2574}
2575
1da177e4 2576/**
92eac168
MR
2577 * vmalloc - allocate virtually contiguous memory
2578 * @size: allocation size
2579 *
2580 * Allocate enough pages to cover @size from the page level
2581 * allocator and map them into contiguous kernel virtual space.
1da177e4 2582 *
92eac168
MR
2583 * For tight control over page level allocator and protection flags
2584 * use __vmalloc() instead.
a862f68a
MR
2585 *
2586 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2587 */
2588void *vmalloc(unsigned long size)
2589{
00ef2d2f 2590 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2591 GFP_KERNEL);
1da177e4 2592}
1da177e4
LT
2593EXPORT_SYMBOL(vmalloc);
2594
e1ca7788 2595/**
92eac168
MR
2596 * vzalloc - allocate virtually contiguous memory with zero fill
2597 * @size: allocation size
2598 *
2599 * Allocate enough pages to cover @size from the page level
2600 * allocator and map them into contiguous kernel virtual space.
2601 * The memory allocated is set to zero.
2602 *
2603 * For tight control over page level allocator and protection flags
2604 * use __vmalloc() instead.
a862f68a
MR
2605 *
2606 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2607 */
2608void *vzalloc(unsigned long size)
2609{
00ef2d2f 2610 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2611 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2612}
2613EXPORT_SYMBOL(vzalloc);
2614
83342314 2615/**
ead04089
REB
2616 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2617 * @size: allocation size
83342314 2618 *
ead04089
REB
2619 * The resulting memory area is zeroed so it can be mapped to userspace
2620 * without leaking data.
a862f68a
MR
2621 *
2622 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2623 */
2624void *vmalloc_user(unsigned long size)
2625{
bc84c535
RP
2626 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2627 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2628 VM_USERMAP, NUMA_NO_NODE,
2629 __builtin_return_address(0));
83342314
NP
2630}
2631EXPORT_SYMBOL(vmalloc_user);
2632
930fc45a 2633/**
92eac168
MR
2634 * vmalloc_node - allocate memory on a specific node
2635 * @size: allocation size
2636 * @node: numa node
930fc45a 2637 *
92eac168
MR
2638 * Allocate enough pages to cover @size from the page level
2639 * allocator and map them into contiguous kernel virtual space.
930fc45a 2640 *
92eac168
MR
2641 * For tight control over page level allocator and protection flags
2642 * use __vmalloc() instead.
a862f68a
MR
2643 *
2644 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2645 */
2646void *vmalloc_node(unsigned long size, int node)
2647{
19809c2d 2648 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2649 node, __builtin_return_address(0));
930fc45a
CL
2650}
2651EXPORT_SYMBOL(vmalloc_node);
2652
e1ca7788
DY
2653/**
2654 * vzalloc_node - allocate memory on a specific node with zero fill
2655 * @size: allocation size
2656 * @node: numa node
2657 *
2658 * Allocate enough pages to cover @size from the page level
2659 * allocator and map them into contiguous kernel virtual space.
2660 * The memory allocated is set to zero.
2661 *
2662 * For tight control over page level allocator and protection flags
2663 * use __vmalloc_node() instead.
a862f68a
MR
2664 *
2665 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2666 */
2667void *vzalloc_node(unsigned long size, int node)
2668{
2669 return __vmalloc_node_flags(size, node,
19809c2d 2670 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2671}
2672EXPORT_SYMBOL(vzalloc_node);
2673
fc970227
AN
2674/**
2675 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2676 * @size: allocation size
2677 * @node: numa node
2678 * @flags: flags for the page level allocator
2679 *
2680 * The resulting memory area is zeroed so it can be mapped to userspace
2681 * without leaking data.
2682 *
2683 * Return: pointer to the allocated memory or %NULL on error
2684 */
2685void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2686{
2687 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2688 flags | __GFP_ZERO, PAGE_KERNEL,
2689 VM_USERMAP, node,
2690 __builtin_return_address(0));
2691}
2692EXPORT_SYMBOL(vmalloc_user_node_flags);
2693
1da177e4 2694/**
92eac168
MR
2695 * vmalloc_exec - allocate virtually contiguous, executable memory
2696 * @size: allocation size
1da177e4 2697 *
92eac168
MR
2698 * Kernel-internal function to allocate enough pages to cover @size
2699 * the page level allocator and map them into contiguous and
2700 * executable kernel virtual space.
1da177e4 2701 *
92eac168
MR
2702 * For tight control over page level allocator and protection flags
2703 * use __vmalloc() instead.
a862f68a
MR
2704 *
2705 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2706 */
1da177e4
LT
2707void *vmalloc_exec(unsigned long size)
2708{
868b104d
RE
2709 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2710 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2711 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2712}
2713
0d08e0d3 2714#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2715#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2716#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2717#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2718#else
698d0831
MH
2719/*
2720 * 64b systems should always have either DMA or DMA32 zones. For others
2721 * GFP_DMA32 should do the right thing and use the normal zone.
2722 */
2723#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2724#endif
2725
1da177e4 2726/**
92eac168
MR
2727 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2728 * @size: allocation size
1da177e4 2729 *
92eac168
MR
2730 * Allocate enough 32bit PA addressable pages to cover @size from the
2731 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2732 *
2733 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2734 */
2735void *vmalloc_32(unsigned long size)
2736{
2dca6999 2737 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2738 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2739}
1da177e4
LT
2740EXPORT_SYMBOL(vmalloc_32);
2741
83342314 2742/**
ead04089 2743 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2744 * @size: allocation size
ead04089
REB
2745 *
2746 * The resulting memory area is 32bit addressable and zeroed so it can be
2747 * mapped to userspace without leaking data.
a862f68a
MR
2748 *
2749 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2750 */
2751void *vmalloc_32_user(unsigned long size)
2752{
bc84c535
RP
2753 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2754 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2755 VM_USERMAP, NUMA_NO_NODE,
2756 __builtin_return_address(0));
83342314
NP
2757}
2758EXPORT_SYMBOL(vmalloc_32_user);
2759
d0107eb0
KH
2760/*
2761 * small helper routine , copy contents to buf from addr.
2762 * If the page is not present, fill zero.
2763 */
2764
2765static int aligned_vread(char *buf, char *addr, unsigned long count)
2766{
2767 struct page *p;
2768 int copied = 0;
2769
2770 while (count) {
2771 unsigned long offset, length;
2772
891c49ab 2773 offset = offset_in_page(addr);
d0107eb0
KH
2774 length = PAGE_SIZE - offset;
2775 if (length > count)
2776 length = count;
2777 p = vmalloc_to_page(addr);
2778 /*
2779 * To do safe access to this _mapped_ area, we need
2780 * lock. But adding lock here means that we need to add
2781 * overhead of vmalloc()/vfree() calles for this _debug_
2782 * interface, rarely used. Instead of that, we'll use
2783 * kmap() and get small overhead in this access function.
2784 */
2785 if (p) {
2786 /*
2787 * we can expect USER0 is not used (see vread/vwrite's
2788 * function description)
2789 */
9b04c5fe 2790 void *map = kmap_atomic(p);
d0107eb0 2791 memcpy(buf, map + offset, length);
9b04c5fe 2792 kunmap_atomic(map);
d0107eb0
KH
2793 } else
2794 memset(buf, 0, length);
2795
2796 addr += length;
2797 buf += length;
2798 copied += length;
2799 count -= length;
2800 }
2801 return copied;
2802}
2803
2804static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2805{
2806 struct page *p;
2807 int copied = 0;
2808
2809 while (count) {
2810 unsigned long offset, length;
2811
891c49ab 2812 offset = offset_in_page(addr);
d0107eb0
KH
2813 length = PAGE_SIZE - offset;
2814 if (length > count)
2815 length = count;
2816 p = vmalloc_to_page(addr);
2817 /*
2818 * To do safe access to this _mapped_ area, we need
2819 * lock. But adding lock here means that we need to add
2820 * overhead of vmalloc()/vfree() calles for this _debug_
2821 * interface, rarely used. Instead of that, we'll use
2822 * kmap() and get small overhead in this access function.
2823 */
2824 if (p) {
2825 /*
2826 * we can expect USER0 is not used (see vread/vwrite's
2827 * function description)
2828 */
9b04c5fe 2829 void *map = kmap_atomic(p);
d0107eb0 2830 memcpy(map + offset, buf, length);
9b04c5fe 2831 kunmap_atomic(map);
d0107eb0
KH
2832 }
2833 addr += length;
2834 buf += length;
2835 copied += length;
2836 count -= length;
2837 }
2838 return copied;
2839}
2840
2841/**
92eac168
MR
2842 * vread() - read vmalloc area in a safe way.
2843 * @buf: buffer for reading data
2844 * @addr: vm address.
2845 * @count: number of bytes to be read.
2846 *
92eac168
MR
2847 * This function checks that addr is a valid vmalloc'ed area, and
2848 * copy data from that area to a given buffer. If the given memory range
2849 * of [addr...addr+count) includes some valid address, data is copied to
2850 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2851 * IOREMAP area is treated as memory hole and no copy is done.
2852 *
2853 * If [addr...addr+count) doesn't includes any intersects with alive
2854 * vm_struct area, returns 0. @buf should be kernel's buffer.
2855 *
2856 * Note: In usual ops, vread() is never necessary because the caller
2857 * should know vmalloc() area is valid and can use memcpy().
2858 * This is for routines which have to access vmalloc area without
d9009d67 2859 * any information, as /dev/kmem.
a862f68a
MR
2860 *
2861 * Return: number of bytes for which addr and buf should be increased
2862 * (same number as @count) or %0 if [addr...addr+count) doesn't
2863 * include any intersection with valid vmalloc area
d0107eb0 2864 */
1da177e4
LT
2865long vread(char *buf, char *addr, unsigned long count)
2866{
e81ce85f
JK
2867 struct vmap_area *va;
2868 struct vm_struct *vm;
1da177e4 2869 char *vaddr, *buf_start = buf;
d0107eb0 2870 unsigned long buflen = count;
1da177e4
LT
2871 unsigned long n;
2872
2873 /* Don't allow overflow */
2874 if ((unsigned long) addr + count < count)
2875 count = -(unsigned long) addr;
2876
e81ce85f
JK
2877 spin_lock(&vmap_area_lock);
2878 list_for_each_entry(va, &vmap_area_list, list) {
2879 if (!count)
2880 break;
2881
688fcbfc 2882 if (!va->vm)
e81ce85f
JK
2883 continue;
2884
2885 vm = va->vm;
2886 vaddr = (char *) vm->addr;
762216ab 2887 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2888 continue;
2889 while (addr < vaddr) {
2890 if (count == 0)
2891 goto finished;
2892 *buf = '\0';
2893 buf++;
2894 addr++;
2895 count--;
2896 }
762216ab 2897 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2898 if (n > count)
2899 n = count;
e81ce85f 2900 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2901 aligned_vread(buf, addr, n);
2902 else /* IOREMAP area is treated as memory hole */
2903 memset(buf, 0, n);
2904 buf += n;
2905 addr += n;
2906 count -= n;
1da177e4
LT
2907 }
2908finished:
e81ce85f 2909 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2910
2911 if (buf == buf_start)
2912 return 0;
2913 /* zero-fill memory holes */
2914 if (buf != buf_start + buflen)
2915 memset(buf, 0, buflen - (buf - buf_start));
2916
2917 return buflen;
1da177e4
LT
2918}
2919
d0107eb0 2920/**
92eac168
MR
2921 * vwrite() - write vmalloc area in a safe way.
2922 * @buf: buffer for source data
2923 * @addr: vm address.
2924 * @count: number of bytes to be read.
2925 *
92eac168
MR
2926 * This function checks that addr is a valid vmalloc'ed area, and
2927 * copy data from a buffer to the given addr. If specified range of
2928 * [addr...addr+count) includes some valid address, data is copied from
2929 * proper area of @buf. If there are memory holes, no copy to hole.
2930 * IOREMAP area is treated as memory hole and no copy is done.
2931 *
2932 * If [addr...addr+count) doesn't includes any intersects with alive
2933 * vm_struct area, returns 0. @buf should be kernel's buffer.
2934 *
2935 * Note: In usual ops, vwrite() is never necessary because the caller
2936 * should know vmalloc() area is valid and can use memcpy().
2937 * This is for routines which have to access vmalloc area without
d9009d67 2938 * any information, as /dev/kmem.
a862f68a
MR
2939 *
2940 * Return: number of bytes for which addr and buf should be
2941 * increased (same number as @count) or %0 if [addr...addr+count)
2942 * doesn't include any intersection with valid vmalloc area
d0107eb0 2943 */
1da177e4
LT
2944long vwrite(char *buf, char *addr, unsigned long count)
2945{
e81ce85f
JK
2946 struct vmap_area *va;
2947 struct vm_struct *vm;
d0107eb0
KH
2948 char *vaddr;
2949 unsigned long n, buflen;
2950 int copied = 0;
1da177e4
LT
2951
2952 /* Don't allow overflow */
2953 if ((unsigned long) addr + count < count)
2954 count = -(unsigned long) addr;
d0107eb0 2955 buflen = count;
1da177e4 2956
e81ce85f
JK
2957 spin_lock(&vmap_area_lock);
2958 list_for_each_entry(va, &vmap_area_list, list) {
2959 if (!count)
2960 break;
2961
688fcbfc 2962 if (!va->vm)
e81ce85f
JK
2963 continue;
2964
2965 vm = va->vm;
2966 vaddr = (char *) vm->addr;
762216ab 2967 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2968 continue;
2969 while (addr < vaddr) {
2970 if (count == 0)
2971 goto finished;
2972 buf++;
2973 addr++;
2974 count--;
2975 }
762216ab 2976 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2977 if (n > count)
2978 n = count;
e81ce85f 2979 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2980 aligned_vwrite(buf, addr, n);
2981 copied++;
2982 }
2983 buf += n;
2984 addr += n;
2985 count -= n;
1da177e4
LT
2986 }
2987finished:
e81ce85f 2988 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2989 if (!copied)
2990 return 0;
2991 return buflen;
1da177e4 2992}
83342314
NP
2993
2994/**
92eac168
MR
2995 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2996 * @vma: vma to cover
2997 * @uaddr: target user address to start at
2998 * @kaddr: virtual address of vmalloc kernel memory
2999 * @size: size of map area
7682486b 3000 *
92eac168 3001 * Returns: 0 for success, -Exxx on failure
83342314 3002 *
92eac168
MR
3003 * This function checks that @kaddr is a valid vmalloc'ed area,
3004 * and that it is big enough to cover the range starting at
3005 * @uaddr in @vma. Will return failure if that criteria isn't
3006 * met.
83342314 3007 *
92eac168 3008 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3009 */
e69e9d4a
HD
3010int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3011 void *kaddr, unsigned long size)
83342314
NP
3012{
3013 struct vm_struct *area;
83342314 3014
e69e9d4a
HD
3015 size = PAGE_ALIGN(size);
3016
3017 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3018 return -EINVAL;
3019
e69e9d4a 3020 area = find_vm_area(kaddr);
83342314 3021 if (!area)
db64fe02 3022 return -EINVAL;
83342314 3023
fe9041c2 3024 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3025 return -EINVAL;
83342314 3026
401592d2 3027 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 3028 return -EINVAL;
83342314 3029
83342314 3030 do {
e69e9d4a 3031 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3032 int ret;
3033
83342314
NP
3034 ret = vm_insert_page(vma, uaddr, page);
3035 if (ret)
3036 return ret;
3037
3038 uaddr += PAGE_SIZE;
e69e9d4a
HD
3039 kaddr += PAGE_SIZE;
3040 size -= PAGE_SIZE;
3041 } while (size > 0);
83342314 3042
314e51b9 3043 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3044
db64fe02 3045 return 0;
83342314 3046}
e69e9d4a
HD
3047EXPORT_SYMBOL(remap_vmalloc_range_partial);
3048
3049/**
92eac168
MR
3050 * remap_vmalloc_range - map vmalloc pages to userspace
3051 * @vma: vma to cover (map full range of vma)
3052 * @addr: vmalloc memory
3053 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3054 *
92eac168 3055 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3056 *
92eac168
MR
3057 * This function checks that addr is a valid vmalloc'ed area, and
3058 * that it is big enough to cover the vma. Will return failure if
3059 * that criteria isn't met.
e69e9d4a 3060 *
92eac168 3061 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3062 */
3063int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3064 unsigned long pgoff)
3065{
3066 return remap_vmalloc_range_partial(vma, vma->vm_start,
3067 addr + (pgoff << PAGE_SHIFT),
3068 vma->vm_end - vma->vm_start);
3069}
83342314
NP
3070EXPORT_SYMBOL(remap_vmalloc_range);
3071
1eeb66a1
CH
3072/*
3073 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3074 * have one.
3f8fd02b
JR
3075 *
3076 * The purpose of this function is to make sure the vmalloc area
3077 * mappings are identical in all page-tables in the system.
1eeb66a1 3078 */
3b32123d 3079void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3080{
3081}
5f4352fb
JF
3082
3083
8b1e0f81 3084static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3085{
cd12909c
DV
3086 pte_t ***p = data;
3087
3088 if (p) {
3089 *(*p) = pte;
3090 (*p)++;
3091 }
5f4352fb
JF
3092 return 0;
3093}
3094
3095/**
92eac168
MR
3096 * alloc_vm_area - allocate a range of kernel address space
3097 * @size: size of the area
3098 * @ptes: returns the PTEs for the address space
7682486b 3099 *
92eac168 3100 * Returns: NULL on failure, vm_struct on success
5f4352fb 3101 *
92eac168
MR
3102 * This function reserves a range of kernel address space, and
3103 * allocates pagetables to map that range. No actual mappings
3104 * are created.
cd12909c 3105 *
92eac168
MR
3106 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3107 * allocated for the VM area are returned.
5f4352fb 3108 */
cd12909c 3109struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3110{
3111 struct vm_struct *area;
3112
23016969
CL
3113 area = get_vm_area_caller(size, VM_IOREMAP,
3114 __builtin_return_address(0));
5f4352fb
JF
3115 if (area == NULL)
3116 return NULL;
3117
3118 /*
3119 * This ensures that page tables are constructed for this region
3120 * of kernel virtual address space and mapped into init_mm.
3121 */
3122 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3123 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3124 free_vm_area(area);
3125 return NULL;
3126 }
3127
5f4352fb
JF
3128 return area;
3129}
3130EXPORT_SYMBOL_GPL(alloc_vm_area);
3131
3132void free_vm_area(struct vm_struct *area)
3133{
3134 struct vm_struct *ret;
3135 ret = remove_vm_area(area->addr);
3136 BUG_ON(ret != area);
3137 kfree(area);
3138}
3139EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3140
4f8b02b4 3141#ifdef CONFIG_SMP
ca23e405
TH
3142static struct vmap_area *node_to_va(struct rb_node *n)
3143{
4583e773 3144 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3145}
3146
3147/**
68ad4a33
URS
3148 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3149 * @addr: target address
ca23e405 3150 *
68ad4a33
URS
3151 * Returns: vmap_area if it is found. If there is no such area
3152 * the first highest(reverse order) vmap_area is returned
3153 * i.e. va->va_start < addr && va->va_end < addr or NULL
3154 * if there are no any areas before @addr.
ca23e405 3155 */
68ad4a33
URS
3156static struct vmap_area *
3157pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3158{
68ad4a33
URS
3159 struct vmap_area *va, *tmp;
3160 struct rb_node *n;
3161
3162 n = free_vmap_area_root.rb_node;
3163 va = NULL;
ca23e405
TH
3164
3165 while (n) {
68ad4a33
URS
3166 tmp = rb_entry(n, struct vmap_area, rb_node);
3167 if (tmp->va_start <= addr) {
3168 va = tmp;
3169 if (tmp->va_end >= addr)
3170 break;
3171
ca23e405 3172 n = n->rb_right;
68ad4a33
URS
3173 } else {
3174 n = n->rb_left;
3175 }
ca23e405
TH
3176 }
3177
68ad4a33 3178 return va;
ca23e405
TH
3179}
3180
3181/**
68ad4a33
URS
3182 * pvm_determine_end_from_reverse - find the highest aligned address
3183 * of free block below VMALLOC_END
3184 * @va:
3185 * in - the VA we start the search(reverse order);
3186 * out - the VA with the highest aligned end address.
ca23e405 3187 *
68ad4a33 3188 * Returns: determined end address within vmap_area
ca23e405 3189 */
68ad4a33
URS
3190static unsigned long
3191pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3192{
68ad4a33 3193 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3194 unsigned long addr;
3195
68ad4a33
URS
3196 if (likely(*va)) {
3197 list_for_each_entry_from_reverse((*va),
3198 &free_vmap_area_list, list) {
3199 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3200 if ((*va)->va_start < addr)
3201 return addr;
3202 }
ca23e405
TH
3203 }
3204
68ad4a33 3205 return 0;
ca23e405
TH
3206}
3207
3208/**
3209 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3210 * @offsets: array containing offset of each area
3211 * @sizes: array containing size of each area
3212 * @nr_vms: the number of areas to allocate
3213 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3214 *
3215 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3216 * vm_structs on success, %NULL on failure
3217 *
3218 * Percpu allocator wants to use congruent vm areas so that it can
3219 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3220 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3221 * be scattered pretty far, distance between two areas easily going up
3222 * to gigabytes. To avoid interacting with regular vmallocs, these
3223 * areas are allocated from top.
ca23e405 3224 *
68ad4a33
URS
3225 * Despite its complicated look, this allocator is rather simple. It
3226 * does everything top-down and scans free blocks from the end looking
3227 * for matching base. While scanning, if any of the areas do not fit the
3228 * base address is pulled down to fit the area. Scanning is repeated till
3229 * all the areas fit and then all necessary data structures are inserted
3230 * and the result is returned.
ca23e405
TH
3231 */
3232struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3233 const size_t *sizes, int nr_vms,
ec3f64fc 3234 size_t align)
ca23e405
TH
3235{
3236 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3237 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3238 struct vmap_area **vas, *va;
ca23e405
TH
3239 struct vm_struct **vms;
3240 int area, area2, last_area, term_area;
68ad4a33 3241 unsigned long base, start, size, end, last_end;
ca23e405 3242 bool purged = false;
68ad4a33 3243 enum fit_type type;
ca23e405 3244
ca23e405 3245 /* verify parameters and allocate data structures */
891c49ab 3246 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3247 for (last_area = 0, area = 0; area < nr_vms; area++) {
3248 start = offsets[area];
3249 end = start + sizes[area];
3250
3251 /* is everything aligned properly? */
3252 BUG_ON(!IS_ALIGNED(offsets[area], align));
3253 BUG_ON(!IS_ALIGNED(sizes[area], align));
3254
3255 /* detect the area with the highest address */
3256 if (start > offsets[last_area])
3257 last_area = area;
3258
c568da28 3259 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3260 unsigned long start2 = offsets[area2];
3261 unsigned long end2 = start2 + sizes[area2];
3262
c568da28 3263 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3264 }
3265 }
3266 last_end = offsets[last_area] + sizes[last_area];
3267
3268 if (vmalloc_end - vmalloc_start < last_end) {
3269 WARN_ON(true);
3270 return NULL;
3271 }
3272
4d67d860
TM
3273 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3274 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3275 if (!vas || !vms)
f1db7afd 3276 goto err_free2;
ca23e405
TH
3277
3278 for (area = 0; area < nr_vms; area++) {
68ad4a33 3279 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3280 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3281 if (!vas[area] || !vms[area])
3282 goto err_free;
3283 }
3284retry:
3285 spin_lock(&vmap_area_lock);
3286
3287 /* start scanning - we scan from the top, begin with the last area */
3288 area = term_area = last_area;
3289 start = offsets[area];
3290 end = start + sizes[area];
3291
68ad4a33
URS
3292 va = pvm_find_va_enclose_addr(vmalloc_end);
3293 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3294
3295 while (true) {
ca23e405
TH
3296 /*
3297 * base might have underflowed, add last_end before
3298 * comparing.
3299 */
68ad4a33
URS
3300 if (base + last_end < vmalloc_start + last_end)
3301 goto overflow;
ca23e405
TH
3302
3303 /*
68ad4a33 3304 * Fitting base has not been found.
ca23e405 3305 */
68ad4a33
URS
3306 if (va == NULL)
3307 goto overflow;
ca23e405 3308
5336e52c
KS
3309 /*
3310 * If required width exeeds current VA block, move
3311 * base downwards and then recheck.
3312 */
3313 if (base + end > va->va_end) {
3314 base = pvm_determine_end_from_reverse(&va, align) - end;
3315 term_area = area;
3316 continue;
3317 }
3318
ca23e405 3319 /*
68ad4a33 3320 * If this VA does not fit, move base downwards and recheck.
ca23e405 3321 */
5336e52c 3322 if (base + start < va->va_start) {
68ad4a33
URS
3323 va = node_to_va(rb_prev(&va->rb_node));
3324 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3325 term_area = area;
3326 continue;
3327 }
3328
3329 /*
3330 * This area fits, move on to the previous one. If
3331 * the previous one is the terminal one, we're done.
3332 */
3333 area = (area + nr_vms - 1) % nr_vms;
3334 if (area == term_area)
3335 break;
68ad4a33 3336
ca23e405
TH
3337 start = offsets[area];
3338 end = start + sizes[area];
68ad4a33 3339 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3340 }
68ad4a33 3341
ca23e405
TH
3342 /* we've found a fitting base, insert all va's */
3343 for (area = 0; area < nr_vms; area++) {
68ad4a33 3344 int ret;
ca23e405 3345
68ad4a33
URS
3346 start = base + offsets[area];
3347 size = sizes[area];
ca23e405 3348
68ad4a33
URS
3349 va = pvm_find_va_enclose_addr(start);
3350 if (WARN_ON_ONCE(va == NULL))
3351 /* It is a BUG(), but trigger recovery instead. */
3352 goto recovery;
3353
3354 type = classify_va_fit_type(va, start, size);
3355 if (WARN_ON_ONCE(type == NOTHING_FIT))
3356 /* It is a BUG(), but trigger recovery instead. */
3357 goto recovery;
3358
3359 ret = adjust_va_to_fit_type(va, start, size, type);
3360 if (unlikely(ret))
3361 goto recovery;
3362
3363 /* Allocated area. */
3364 va = vas[area];
3365 va->va_start = start;
3366 va->va_end = start + size;
3367
3368 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3369 }
ca23e405
TH
3370
3371 spin_unlock(&vmap_area_lock);
3372
3373 /* insert all vm's */
3374 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
3375 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3376 pcpu_get_vm_areas);
ca23e405
TH
3377
3378 kfree(vas);
3379 return vms;
3380
68ad4a33
URS
3381recovery:
3382 /* Remove previously inserted areas. */
3383 while (area--) {
3384 __free_vmap_area(vas[area]);
3385 vas[area] = NULL;
3386 }
3387
3388overflow:
3389 spin_unlock(&vmap_area_lock);
3390 if (!purged) {
3391 purge_vmap_area_lazy();
3392 purged = true;
3393
3394 /* Before "retry", check if we recover. */
3395 for (area = 0; area < nr_vms; area++) {
3396 if (vas[area])
3397 continue;
3398
3399 vas[area] = kmem_cache_zalloc(
3400 vmap_area_cachep, GFP_KERNEL);
3401 if (!vas[area])
3402 goto err_free;
3403 }
3404
3405 goto retry;
3406 }
3407
ca23e405
TH
3408err_free:
3409 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3410 if (vas[area])
3411 kmem_cache_free(vmap_area_cachep, vas[area]);
3412
f1db7afd 3413 kfree(vms[area]);
ca23e405 3414 }
f1db7afd 3415err_free2:
ca23e405
TH
3416 kfree(vas);
3417 kfree(vms);
3418 return NULL;
3419}
3420
3421/**
3422 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3423 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3424 * @nr_vms: the number of allocated areas
3425 *
3426 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3427 */
3428void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3429{
3430 int i;
3431
3432 for (i = 0; i < nr_vms; i++)
3433 free_vm_area(vms[i]);
3434 kfree(vms);
3435}
4f8b02b4 3436#endif /* CONFIG_SMP */
a10aa579
CL
3437
3438#ifdef CONFIG_PROC_FS
3439static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 3440 __acquires(&vmap_area_lock)
a10aa579 3441{
d4033afd 3442 spin_lock(&vmap_area_lock);
3f500069 3443 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3444}
3445
3446static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3447{
3f500069 3448 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3449}
3450
3451static void s_stop(struct seq_file *m, void *p)
d4033afd 3452 __releases(&vmap_area_lock)
a10aa579 3453{
d4033afd 3454 spin_unlock(&vmap_area_lock);
a10aa579
CL
3455}
3456
a47a126a
ED
3457static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3458{
e5adfffc 3459 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3460 unsigned int nr, *counters = m->private;
3461
3462 if (!counters)
3463 return;
3464
af12346c
WL
3465 if (v->flags & VM_UNINITIALIZED)
3466 return;
7e5b528b
DV
3467 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3468 smp_rmb();
af12346c 3469
a47a126a
ED
3470 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3471
3472 for (nr = 0; nr < v->nr_pages; nr++)
3473 counters[page_to_nid(v->pages[nr])]++;
3474
3475 for_each_node_state(nr, N_HIGH_MEMORY)
3476 if (counters[nr])
3477 seq_printf(m, " N%u=%u", nr, counters[nr]);
3478 }
3479}
3480
dd3b8353
URS
3481static void show_purge_info(struct seq_file *m)
3482{
3483 struct llist_node *head;
3484 struct vmap_area *va;
3485
3486 head = READ_ONCE(vmap_purge_list.first);
3487 if (head == NULL)
3488 return;
3489
3490 llist_for_each_entry(va, head, purge_list) {
3491 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3492 (void *)va->va_start, (void *)va->va_end,
3493 va->va_end - va->va_start);
3494 }
3495}
3496
a10aa579
CL
3497static int s_show(struct seq_file *m, void *p)
3498{
3f500069 3499 struct vmap_area *va;
d4033afd
JK
3500 struct vm_struct *v;
3501
3f500069 3502 va = list_entry(p, struct vmap_area, list);
3503
c2ce8c14 3504 /*
688fcbfc
PL
3505 * s_show can encounter race with remove_vm_area, !vm on behalf
3506 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3507 */
688fcbfc 3508 if (!va->vm) {
dd3b8353 3509 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3510 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3511 va->va_end - va->va_start);
78c72746 3512
d4033afd 3513 return 0;
78c72746 3514 }
d4033afd
JK
3515
3516 v = va->vm;
a10aa579 3517
45ec1690 3518 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3519 v->addr, v->addr + v->size, v->size);
3520
62c70bce
JP
3521 if (v->caller)
3522 seq_printf(m, " %pS", v->caller);
23016969 3523
a10aa579
CL
3524 if (v->nr_pages)
3525 seq_printf(m, " pages=%d", v->nr_pages);
3526
3527 if (v->phys_addr)
199eaa05 3528 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3529
3530 if (v->flags & VM_IOREMAP)
f4527c90 3531 seq_puts(m, " ioremap");
a10aa579
CL
3532
3533 if (v->flags & VM_ALLOC)
f4527c90 3534 seq_puts(m, " vmalloc");
a10aa579
CL
3535
3536 if (v->flags & VM_MAP)
f4527c90 3537 seq_puts(m, " vmap");
a10aa579
CL
3538
3539 if (v->flags & VM_USERMAP)
f4527c90 3540 seq_puts(m, " user");
a10aa579 3541
fe9041c2
CH
3542 if (v->flags & VM_DMA_COHERENT)
3543 seq_puts(m, " dma-coherent");
3544
244d63ee 3545 if (is_vmalloc_addr(v->pages))
f4527c90 3546 seq_puts(m, " vpages");
a10aa579 3547
a47a126a 3548 show_numa_info(m, v);
a10aa579 3549 seq_putc(m, '\n');
dd3b8353
URS
3550
3551 /*
3552 * As a final step, dump "unpurged" areas. Note,
3553 * that entire "/proc/vmallocinfo" output will not
3554 * be address sorted, because the purge list is not
3555 * sorted.
3556 */
3557 if (list_is_last(&va->list, &vmap_area_list))
3558 show_purge_info(m);
3559
a10aa579
CL
3560 return 0;
3561}
3562
5f6a6a9c 3563static const struct seq_operations vmalloc_op = {
a10aa579
CL
3564 .start = s_start,
3565 .next = s_next,
3566 .stop = s_stop,
3567 .show = s_show,
3568};
5f6a6a9c 3569
5f6a6a9c
AD
3570static int __init proc_vmalloc_init(void)
3571{
fddda2b7 3572 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3573 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3574 &vmalloc_op,
3575 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3576 else
0825a6f9 3577 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3578 return 0;
3579}
3580module_init(proc_vmalloc_init);
db3808c1 3581
a10aa579 3582#endif