]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm: workingset: tell cache transitions from workingset thrashing
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
ee814fe2
JW
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
9e3b2f8c 73
f16015fb
JW
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
66e1707b 79
1276ad68 80 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
81 unsigned int may_writepage:1;
82
83 /* Can mapped pages be reclaimed? */
84 unsigned int may_unmap:1;
85
86 /* Can pages be swapped as part of reclaim? */
87 unsigned int may_swap:1;
88
d6622f63
YX
89 /*
90 * Cgroups are not reclaimed below their configured memory.low,
91 * unless we threaten to OOM. If any cgroups are skipped due to
92 * memory.low and nothing was reclaimed, go back for memory.low.
93 */
94 unsigned int memcg_low_reclaim:1;
95 unsigned int memcg_low_skipped:1;
241994ed 96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
bb451fdf
GT
102 /* Allocation order */
103 s8 order;
104
105 /* Scan (total_size >> priority) pages at once */
106 s8 priority;
107
108 /* The highest zone to isolate pages for reclaim from */
109 s8 reclaim_idx;
110
111 /* This context's GFP mask */
112 gfp_t gfp_mask;
113
ee814fe2
JW
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
d108c772
AR
119
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
1da177e4
LT
129};
130
1da177e4
LT
131#ifdef ARCH_HAS_PREFETCH
132#define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
136 \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
139 } \
140 } while (0)
141#else
142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143#endif
144
145#ifdef ARCH_HAS_PREFETCHW
146#define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
150 \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
153 } \
154 } while (0)
155#else
156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157#endif
158
159/*
160 * From 0 .. 100. Higher means more swappy.
161 */
162int vm_swappiness = 60;
d0480be4
WSH
163/*
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
166 */
167unsigned long vm_total_pages;
1da177e4
LT
168
169static LIST_HEAD(shrinker_list);
170static DECLARE_RWSEM(shrinker_rwsem);
171
b4c2b231 172#ifdef CONFIG_MEMCG_KMEM
7e010df5
KT
173
174/*
175 * We allow subsystems to populate their shrinker-related
176 * LRU lists before register_shrinker_prepared() is called
177 * for the shrinker, since we don't want to impose
178 * restrictions on their internal registration order.
179 * In this case shrink_slab_memcg() may find corresponding
180 * bit is set in the shrinkers map.
181 *
182 * This value is used by the function to detect registering
183 * shrinkers and to skip do_shrink_slab() calls for them.
184 */
185#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186
b4c2b231
KT
187static DEFINE_IDR(shrinker_idr);
188static int shrinker_nr_max;
189
190static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191{
192 int id, ret = -ENOMEM;
193
194 down_write(&shrinker_rwsem);
195 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
197 if (id < 0)
198 goto unlock;
199
0a4465d3
KT
200 if (id >= shrinker_nr_max) {
201 if (memcg_expand_shrinker_maps(id)) {
202 idr_remove(&shrinker_idr, id);
203 goto unlock;
204 }
205
b4c2b231 206 shrinker_nr_max = id + 1;
0a4465d3 207 }
b4c2b231
KT
208 shrinker->id = id;
209 ret = 0;
210unlock:
211 up_write(&shrinker_rwsem);
212 return ret;
213}
214
215static void unregister_memcg_shrinker(struct shrinker *shrinker)
216{
217 int id = shrinker->id;
218
219 BUG_ON(id < 0);
220
221 down_write(&shrinker_rwsem);
222 idr_remove(&shrinker_idr, id);
223 up_write(&shrinker_rwsem);
224}
225#else /* CONFIG_MEMCG_KMEM */
226static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227{
228 return 0;
229}
230
231static void unregister_memcg_shrinker(struct shrinker *shrinker)
232{
233}
234#endif /* CONFIG_MEMCG_KMEM */
235
c255a458 236#ifdef CONFIG_MEMCG
89b5fae5
JW
237static bool global_reclaim(struct scan_control *sc)
238{
f16015fb 239 return !sc->target_mem_cgroup;
89b5fae5 240}
97c9341f
TH
241
242/**
243 * sane_reclaim - is the usual dirty throttling mechanism operational?
244 * @sc: scan_control in question
245 *
246 * The normal page dirty throttling mechanism in balance_dirty_pages() is
247 * completely broken with the legacy memcg and direct stalling in
248 * shrink_page_list() is used for throttling instead, which lacks all the
249 * niceties such as fairness, adaptive pausing, bandwidth proportional
250 * allocation and configurability.
251 *
252 * This function tests whether the vmscan currently in progress can assume
253 * that the normal dirty throttling mechanism is operational.
254 */
255static bool sane_reclaim(struct scan_control *sc)
256{
257 struct mem_cgroup *memcg = sc->target_mem_cgroup;
258
259 if (!memcg)
260 return true;
261#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
263 return true;
264#endif
265 return false;
266}
e3c1ac58
AR
267
268static void set_memcg_congestion(pg_data_t *pgdat,
269 struct mem_cgroup *memcg,
270 bool congested)
271{
272 struct mem_cgroup_per_node *mn;
273
274 if (!memcg)
275 return;
276
277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 WRITE_ONCE(mn->congested, congested);
279}
280
281static bool memcg_congested(pg_data_t *pgdat,
282 struct mem_cgroup *memcg)
283{
284 struct mem_cgroup_per_node *mn;
285
286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 return READ_ONCE(mn->congested);
288
289}
91a45470 290#else
89b5fae5
JW
291static bool global_reclaim(struct scan_control *sc)
292{
293 return true;
294}
97c9341f
TH
295
296static bool sane_reclaim(struct scan_control *sc)
297{
298 return true;
299}
e3c1ac58
AR
300
301static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 struct mem_cgroup *memcg, bool congested)
303{
304}
305
306static inline bool memcg_congested(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg)
308{
309 return false;
310
311}
91a45470
KH
312#endif
313
5a1c84b4
MG
314/*
315 * This misses isolated pages which are not accounted for to save counters.
316 * As the data only determines if reclaim or compaction continues, it is
317 * not expected that isolated pages will be a dominating factor.
318 */
319unsigned long zone_reclaimable_pages(struct zone *zone)
320{
321 unsigned long nr;
322
323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 if (get_nr_swap_pages() > 0)
326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328
329 return nr;
330}
331
fd538803
MH
332/**
333 * lruvec_lru_size - Returns the number of pages on the given LRU list.
334 * @lruvec: lru vector
335 * @lru: lru to use
336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337 */
338unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 339{
fd538803
MH
340 unsigned long lru_size;
341 int zid;
342
c3c787e8 343 if (!mem_cgroup_disabled())
fd538803
MH
344 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 else
346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 347
fd538803
MH
348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 unsigned long size;
c9f299d9 351
fd538803
MH
352 if (!managed_zone(zone))
353 continue;
354
355 if (!mem_cgroup_disabled())
356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 else
358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 NR_ZONE_LRU_BASE + lru);
360 lru_size -= min(size, lru_size);
361 }
362
363 return lru_size;
b4536f0c 364
b4536f0c
MH
365}
366
1da177e4 367/*
1d3d4437 368 * Add a shrinker callback to be called from the vm.
1da177e4 369 */
8e04944f 370int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 371{
1d3d4437
GC
372 size_t size = sizeof(*shrinker->nr_deferred);
373
1d3d4437
GC
374 if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 size *= nr_node_ids;
376
377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 if (!shrinker->nr_deferred)
379 return -ENOMEM;
b4c2b231
KT
380
381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 if (prealloc_memcg_shrinker(shrinker))
383 goto free_deferred;
384 }
385
8e04944f 386 return 0;
b4c2b231
KT
387
388free_deferred:
389 kfree(shrinker->nr_deferred);
390 shrinker->nr_deferred = NULL;
391 return -ENOMEM;
8e04944f
TH
392}
393
394void free_prealloced_shrinker(struct shrinker *shrinker)
395{
b4c2b231
KT
396 if (!shrinker->nr_deferred)
397 return;
398
399 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 unregister_memcg_shrinker(shrinker);
401
8e04944f
TH
402 kfree(shrinker->nr_deferred);
403 shrinker->nr_deferred = NULL;
404}
1d3d4437 405
8e04944f
TH
406void register_shrinker_prepared(struct shrinker *shrinker)
407{
8e1f936b
RR
408 down_write(&shrinker_rwsem);
409 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 410#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
411 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 413#endif
8e1f936b 414 up_write(&shrinker_rwsem);
8e04944f
TH
415}
416
417int register_shrinker(struct shrinker *shrinker)
418{
419 int err = prealloc_shrinker(shrinker);
420
421 if (err)
422 return err;
423 register_shrinker_prepared(shrinker);
1d3d4437 424 return 0;
1da177e4 425}
8e1f936b 426EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
427
428/*
429 * Remove one
430 */
8e1f936b 431void unregister_shrinker(struct shrinker *shrinker)
1da177e4 432{
bb422a73
TH
433 if (!shrinker->nr_deferred)
434 return;
b4c2b231
KT
435 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 unregister_memcg_shrinker(shrinker);
1da177e4
LT
437 down_write(&shrinker_rwsem);
438 list_del(&shrinker->list);
439 up_write(&shrinker_rwsem);
ae393321 440 kfree(shrinker->nr_deferred);
bb422a73 441 shrinker->nr_deferred = NULL;
1da177e4 442}
8e1f936b 443EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
444
445#define SHRINK_BATCH 128
1d3d4437 446
cb731d6c 447static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 448 struct shrinker *shrinker, int priority)
1d3d4437
GC
449{
450 unsigned long freed = 0;
451 unsigned long long delta;
452 long total_scan;
d5bc5fd3 453 long freeable;
1d3d4437
GC
454 long nr;
455 long new_nr;
456 int nid = shrinkctl->nid;
457 long batch_size = shrinker->batch ? shrinker->batch
458 : SHRINK_BATCH;
5f33a080 459 long scanned = 0, next_deferred;
1d3d4437 460
ac7fb3ad
KT
461 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462 nid = 0;
463
d5bc5fd3 464 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
465 if (freeable == 0 || freeable == SHRINK_EMPTY)
466 return freeable;
1d3d4437
GC
467
468 /*
469 * copy the current shrinker scan count into a local variable
470 * and zero it so that other concurrent shrinker invocations
471 * don't also do this scanning work.
472 */
473 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474
475 total_scan = nr;
9092c71b
JB
476 delta = freeable >> priority;
477 delta *= 4;
478 do_div(delta, shrinker->seeks);
172b06c3
RG
479
480 /*
481 * Make sure we apply some minimal pressure on default priority
482 * even on small cgroups. Stale objects are not only consuming memory
483 * by themselves, but can also hold a reference to a dying cgroup,
484 * preventing it from being reclaimed. A dying cgroup with all
485 * corresponding structures like per-cpu stats and kmem caches
486 * can be really big, so it may lead to a significant waste of memory.
487 */
488 delta = max_t(unsigned long long, delta, min(freeable, batch_size));
489
1d3d4437
GC
490 total_scan += delta;
491 if (total_scan < 0) {
8612c663 492 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 493 shrinker->scan_objects, total_scan);
d5bc5fd3 494 total_scan = freeable;
5f33a080
SL
495 next_deferred = nr;
496 } else
497 next_deferred = total_scan;
1d3d4437
GC
498
499 /*
500 * We need to avoid excessive windup on filesystem shrinkers
501 * due to large numbers of GFP_NOFS allocations causing the
502 * shrinkers to return -1 all the time. This results in a large
503 * nr being built up so when a shrink that can do some work
504 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 505 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
506 * memory.
507 *
508 * Hence only allow the shrinker to scan the entire cache when
509 * a large delta change is calculated directly.
510 */
d5bc5fd3
VD
511 if (delta < freeable / 4)
512 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
513
514 /*
515 * Avoid risking looping forever due to too large nr value:
516 * never try to free more than twice the estimate number of
517 * freeable entries.
518 */
d5bc5fd3
VD
519 if (total_scan > freeable * 2)
520 total_scan = freeable * 2;
1d3d4437
GC
521
522 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 523 freeable, delta, total_scan, priority);
1d3d4437 524
0b1fb40a
VD
525 /*
526 * Normally, we should not scan less than batch_size objects in one
527 * pass to avoid too frequent shrinker calls, but if the slab has less
528 * than batch_size objects in total and we are really tight on memory,
529 * we will try to reclaim all available objects, otherwise we can end
530 * up failing allocations although there are plenty of reclaimable
531 * objects spread over several slabs with usage less than the
532 * batch_size.
533 *
534 * We detect the "tight on memory" situations by looking at the total
535 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 536 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
537 * scanning at high prio and therefore should try to reclaim as much as
538 * possible.
539 */
540 while (total_scan >= batch_size ||
d5bc5fd3 541 total_scan >= freeable) {
a0b02131 542 unsigned long ret;
0b1fb40a 543 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 544
0b1fb40a 545 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 546 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
547 ret = shrinker->scan_objects(shrinker, shrinkctl);
548 if (ret == SHRINK_STOP)
549 break;
550 freed += ret;
1d3d4437 551
d460acb5
CW
552 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
553 total_scan -= shrinkctl->nr_scanned;
554 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
555
556 cond_resched();
557 }
558
5f33a080
SL
559 if (next_deferred >= scanned)
560 next_deferred -= scanned;
561 else
562 next_deferred = 0;
1d3d4437
GC
563 /*
564 * move the unused scan count back into the shrinker in a
565 * manner that handles concurrent updates. If we exhausted the
566 * scan, there is no need to do an update.
567 */
5f33a080
SL
568 if (next_deferred > 0)
569 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
570 &shrinker->nr_deferred[nid]);
571 else
572 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
573
df9024a8 574 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 575 return freed;
1495f230
YH
576}
577
b0dedc49
KT
578#ifdef CONFIG_MEMCG_KMEM
579static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
580 struct mem_cgroup *memcg, int priority)
581{
582 struct memcg_shrinker_map *map;
b8e57efa
KT
583 unsigned long ret, freed = 0;
584 int i;
b0dedc49
KT
585
586 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
587 return 0;
588
589 if (!down_read_trylock(&shrinker_rwsem))
590 return 0;
591
592 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
593 true);
594 if (unlikely(!map))
595 goto unlock;
596
597 for_each_set_bit(i, map->map, shrinker_nr_max) {
598 struct shrink_control sc = {
599 .gfp_mask = gfp_mask,
600 .nid = nid,
601 .memcg = memcg,
602 };
603 struct shrinker *shrinker;
604
605 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
606 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
607 if (!shrinker)
608 clear_bit(i, map->map);
b0dedc49
KT
609 continue;
610 }
611
b0dedc49 612 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
613 if (ret == SHRINK_EMPTY) {
614 clear_bit(i, map->map);
615 /*
616 * After the shrinker reported that it had no objects to
617 * free, but before we cleared the corresponding bit in
618 * the memcg shrinker map, a new object might have been
619 * added. To make sure, we have the bit set in this
620 * case, we invoke the shrinker one more time and reset
621 * the bit if it reports that it is not empty anymore.
622 * The memory barrier here pairs with the barrier in
623 * memcg_set_shrinker_bit():
624 *
625 * list_lru_add() shrink_slab_memcg()
626 * list_add_tail() clear_bit()
627 * <MB> <MB>
628 * set_bit() do_shrink_slab()
629 */
630 smp_mb__after_atomic();
631 ret = do_shrink_slab(&sc, shrinker, priority);
632 if (ret == SHRINK_EMPTY)
633 ret = 0;
634 else
635 memcg_set_shrinker_bit(memcg, nid, i);
636 }
b0dedc49
KT
637 freed += ret;
638
639 if (rwsem_is_contended(&shrinker_rwsem)) {
640 freed = freed ? : 1;
641 break;
642 }
643 }
644unlock:
645 up_read(&shrinker_rwsem);
646 return freed;
647}
648#else /* CONFIG_MEMCG_KMEM */
649static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
650 struct mem_cgroup *memcg, int priority)
651{
652 return 0;
653}
654#endif /* CONFIG_MEMCG_KMEM */
655
6b4f7799 656/**
cb731d6c 657 * shrink_slab - shrink slab caches
6b4f7799
JW
658 * @gfp_mask: allocation context
659 * @nid: node whose slab caches to target
cb731d6c 660 * @memcg: memory cgroup whose slab caches to target
9092c71b 661 * @priority: the reclaim priority
1da177e4 662 *
6b4f7799 663 * Call the shrink functions to age shrinkable caches.
1da177e4 664 *
6b4f7799
JW
665 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
666 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 667 *
aeed1d32
VD
668 * @memcg specifies the memory cgroup to target. Unaware shrinkers
669 * are called only if it is the root cgroup.
cb731d6c 670 *
9092c71b
JB
671 * @priority is sc->priority, we take the number of objects and >> by priority
672 * in order to get the scan target.
b15e0905 673 *
6b4f7799 674 * Returns the number of reclaimed slab objects.
1da177e4 675 */
cb731d6c
VD
676static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
677 struct mem_cgroup *memcg,
9092c71b 678 int priority)
1da177e4 679{
b8e57efa 680 unsigned long ret, freed = 0;
1da177e4
LT
681 struct shrinker *shrinker;
682
aeed1d32 683 if (!mem_cgroup_is_root(memcg))
b0dedc49 684 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 685
e830c63a 686 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 687 goto out;
1da177e4
LT
688
689 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
690 struct shrink_control sc = {
691 .gfp_mask = gfp_mask,
692 .nid = nid,
cb731d6c 693 .memcg = memcg,
6b4f7799 694 };
ec97097b 695
9b996468
KT
696 ret = do_shrink_slab(&sc, shrinker, priority);
697 if (ret == SHRINK_EMPTY)
698 ret = 0;
699 freed += ret;
e496612c
MK
700 /*
701 * Bail out if someone want to register a new shrinker to
702 * prevent the regsitration from being stalled for long periods
703 * by parallel ongoing shrinking.
704 */
705 if (rwsem_is_contended(&shrinker_rwsem)) {
706 freed = freed ? : 1;
707 break;
708 }
1da177e4 709 }
6b4f7799 710
1da177e4 711 up_read(&shrinker_rwsem);
f06590bd
MK
712out:
713 cond_resched();
24f7c6b9 714 return freed;
1da177e4
LT
715}
716
cb731d6c
VD
717void drop_slab_node(int nid)
718{
719 unsigned long freed;
720
721 do {
722 struct mem_cgroup *memcg = NULL;
723
724 freed = 0;
aeed1d32 725 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 726 do {
9092c71b 727 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
728 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
729 } while (freed > 10);
730}
731
732void drop_slab(void)
733{
734 int nid;
735
736 for_each_online_node(nid)
737 drop_slab_node(nid);
738}
739
1da177e4
LT
740static inline int is_page_cache_freeable(struct page *page)
741{
ceddc3a5
JW
742 /*
743 * A freeable page cache page is referenced only by the caller
744 * that isolated the page, the page cache radix tree and
745 * optional buffer heads at page->private.
746 */
bd4c82c2
HY
747 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
748 HPAGE_PMD_NR : 1;
749 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
750}
751
703c2708 752static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 753{
930d9152 754 if (current->flags & PF_SWAPWRITE)
1da177e4 755 return 1;
703c2708 756 if (!inode_write_congested(inode))
1da177e4 757 return 1;
703c2708 758 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
759 return 1;
760 return 0;
761}
762
763/*
764 * We detected a synchronous write error writing a page out. Probably
765 * -ENOSPC. We need to propagate that into the address_space for a subsequent
766 * fsync(), msync() or close().
767 *
768 * The tricky part is that after writepage we cannot touch the mapping: nothing
769 * prevents it from being freed up. But we have a ref on the page and once
770 * that page is locked, the mapping is pinned.
771 *
772 * We're allowed to run sleeping lock_page() here because we know the caller has
773 * __GFP_FS.
774 */
775static void handle_write_error(struct address_space *mapping,
776 struct page *page, int error)
777{
7eaceacc 778 lock_page(page);
3e9f45bd
GC
779 if (page_mapping(page) == mapping)
780 mapping_set_error(mapping, error);
1da177e4
LT
781 unlock_page(page);
782}
783
04e62a29
CL
784/* possible outcome of pageout() */
785typedef enum {
786 /* failed to write page out, page is locked */
787 PAGE_KEEP,
788 /* move page to the active list, page is locked */
789 PAGE_ACTIVATE,
790 /* page has been sent to the disk successfully, page is unlocked */
791 PAGE_SUCCESS,
792 /* page is clean and locked */
793 PAGE_CLEAN,
794} pageout_t;
795
1da177e4 796/*
1742f19f
AM
797 * pageout is called by shrink_page_list() for each dirty page.
798 * Calls ->writepage().
1da177e4 799 */
c661b078 800static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 801 struct scan_control *sc)
1da177e4
LT
802{
803 /*
804 * If the page is dirty, only perform writeback if that write
805 * will be non-blocking. To prevent this allocation from being
806 * stalled by pagecache activity. But note that there may be
807 * stalls if we need to run get_block(). We could test
808 * PagePrivate for that.
809 *
8174202b 810 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
811 * this page's queue, we can perform writeback even if that
812 * will block.
813 *
814 * If the page is swapcache, write it back even if that would
815 * block, for some throttling. This happens by accident, because
816 * swap_backing_dev_info is bust: it doesn't reflect the
817 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
818 */
819 if (!is_page_cache_freeable(page))
820 return PAGE_KEEP;
821 if (!mapping) {
822 /*
823 * Some data journaling orphaned pages can have
824 * page->mapping == NULL while being dirty with clean buffers.
825 */
266cf658 826 if (page_has_private(page)) {
1da177e4
LT
827 if (try_to_free_buffers(page)) {
828 ClearPageDirty(page);
b1de0d13 829 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
830 return PAGE_CLEAN;
831 }
832 }
833 return PAGE_KEEP;
834 }
835 if (mapping->a_ops->writepage == NULL)
836 return PAGE_ACTIVATE;
703c2708 837 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
838 return PAGE_KEEP;
839
840 if (clear_page_dirty_for_io(page)) {
841 int res;
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
844 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
845 .range_start = 0,
846 .range_end = LLONG_MAX,
1da177e4
LT
847 .for_reclaim = 1,
848 };
849
850 SetPageReclaim(page);
851 res = mapping->a_ops->writepage(page, &wbc);
852 if (res < 0)
853 handle_write_error(mapping, page, res);
994fc28c 854 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
855 ClearPageReclaim(page);
856 return PAGE_ACTIVATE;
857 }
c661b078 858
1da177e4
LT
859 if (!PageWriteback(page)) {
860 /* synchronous write or broken a_ops? */
861 ClearPageReclaim(page);
862 }
3aa23851 863 trace_mm_vmscan_writepage(page);
c4a25635 864 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
865 return PAGE_SUCCESS;
866 }
867
868 return PAGE_CLEAN;
869}
870
a649fd92 871/*
e286781d
NP
872 * Same as remove_mapping, but if the page is removed from the mapping, it
873 * gets returned with a refcount of 0.
a649fd92 874 */
a528910e
JW
875static int __remove_mapping(struct address_space *mapping, struct page *page,
876 bool reclaimed)
49d2e9cc 877{
c4843a75 878 unsigned long flags;
bd4c82c2 879 int refcount;
c4843a75 880
28e4d965
NP
881 BUG_ON(!PageLocked(page));
882 BUG_ON(mapping != page_mapping(page));
49d2e9cc 883
b93b0163 884 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 885 /*
0fd0e6b0
NP
886 * The non racy check for a busy page.
887 *
888 * Must be careful with the order of the tests. When someone has
889 * a ref to the page, it may be possible that they dirty it then
890 * drop the reference. So if PageDirty is tested before page_count
891 * here, then the following race may occur:
892 *
893 * get_user_pages(&page);
894 * [user mapping goes away]
895 * write_to(page);
896 * !PageDirty(page) [good]
897 * SetPageDirty(page);
898 * put_page(page);
899 * !page_count(page) [good, discard it]
900 *
901 * [oops, our write_to data is lost]
902 *
903 * Reversing the order of the tests ensures such a situation cannot
904 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 905 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
906 *
907 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 908 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 909 */
bd4c82c2
HY
910 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
911 refcount = 1 + HPAGE_PMD_NR;
912 else
913 refcount = 2;
914 if (!page_ref_freeze(page, refcount))
49d2e9cc 915 goto cannot_free;
1c4c3b99 916 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 917 if (unlikely(PageDirty(page))) {
bd4c82c2 918 page_ref_unfreeze(page, refcount);
49d2e9cc 919 goto cannot_free;
e286781d 920 }
49d2e9cc
CL
921
922 if (PageSwapCache(page)) {
923 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 924 mem_cgroup_swapout(page, swap);
49d2e9cc 925 __delete_from_swap_cache(page);
b93b0163 926 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 927 put_swap_page(page, swap);
e286781d 928 } else {
6072d13c 929 void (*freepage)(struct page *);
a528910e 930 void *shadow = NULL;
6072d13c
LT
931
932 freepage = mapping->a_ops->freepage;
a528910e
JW
933 /*
934 * Remember a shadow entry for reclaimed file cache in
935 * order to detect refaults, thus thrashing, later on.
936 *
937 * But don't store shadows in an address space that is
938 * already exiting. This is not just an optizimation,
939 * inode reclaim needs to empty out the radix tree or
940 * the nodes are lost. Don't plant shadows behind its
941 * back.
f9fe48be
RZ
942 *
943 * We also don't store shadows for DAX mappings because the
944 * only page cache pages found in these are zero pages
945 * covering holes, and because we don't want to mix DAX
946 * exceptional entries and shadow exceptional entries in the
b93b0163 947 * same address_space.
a528910e
JW
948 */
949 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 950 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 951 shadow = workingset_eviction(mapping, page);
62cccb8c 952 __delete_from_page_cache(page, shadow);
b93b0163 953 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
954
955 if (freepage != NULL)
956 freepage(page);
49d2e9cc
CL
957 }
958
49d2e9cc
CL
959 return 1;
960
961cannot_free:
b93b0163 962 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
963 return 0;
964}
965
e286781d
NP
966/*
967 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
968 * someone else has a ref on the page, abort and return 0. If it was
969 * successfully detached, return 1. Assumes the caller has a single ref on
970 * this page.
971 */
972int remove_mapping(struct address_space *mapping, struct page *page)
973{
a528910e 974 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
975 /*
976 * Unfreezing the refcount with 1 rather than 2 effectively
977 * drops the pagecache ref for us without requiring another
978 * atomic operation.
979 */
fe896d18 980 page_ref_unfreeze(page, 1);
e286781d
NP
981 return 1;
982 }
983 return 0;
984}
985
894bc310
LS
986/**
987 * putback_lru_page - put previously isolated page onto appropriate LRU list
988 * @page: page to be put back to appropriate lru list
989 *
990 * Add previously isolated @page to appropriate LRU list.
991 * Page may still be unevictable for other reasons.
992 *
993 * lru_lock must not be held, interrupts must be enabled.
994 */
894bc310
LS
995void putback_lru_page(struct page *page)
996{
9c4e6b1a 997 lru_cache_add(page);
894bc310
LS
998 put_page(page); /* drop ref from isolate */
999}
1000
dfc8d636
JW
1001enum page_references {
1002 PAGEREF_RECLAIM,
1003 PAGEREF_RECLAIM_CLEAN,
64574746 1004 PAGEREF_KEEP,
dfc8d636
JW
1005 PAGEREF_ACTIVATE,
1006};
1007
1008static enum page_references page_check_references(struct page *page,
1009 struct scan_control *sc)
1010{
64574746 1011 int referenced_ptes, referenced_page;
dfc8d636 1012 unsigned long vm_flags;
dfc8d636 1013
c3ac9a8a
JW
1014 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1015 &vm_flags);
64574746 1016 referenced_page = TestClearPageReferenced(page);
dfc8d636 1017
dfc8d636
JW
1018 /*
1019 * Mlock lost the isolation race with us. Let try_to_unmap()
1020 * move the page to the unevictable list.
1021 */
1022 if (vm_flags & VM_LOCKED)
1023 return PAGEREF_RECLAIM;
1024
64574746 1025 if (referenced_ptes) {
e4898273 1026 if (PageSwapBacked(page))
64574746
JW
1027 return PAGEREF_ACTIVATE;
1028 /*
1029 * All mapped pages start out with page table
1030 * references from the instantiating fault, so we need
1031 * to look twice if a mapped file page is used more
1032 * than once.
1033 *
1034 * Mark it and spare it for another trip around the
1035 * inactive list. Another page table reference will
1036 * lead to its activation.
1037 *
1038 * Note: the mark is set for activated pages as well
1039 * so that recently deactivated but used pages are
1040 * quickly recovered.
1041 */
1042 SetPageReferenced(page);
1043
34dbc67a 1044 if (referenced_page || referenced_ptes > 1)
64574746
JW
1045 return PAGEREF_ACTIVATE;
1046
c909e993
KK
1047 /*
1048 * Activate file-backed executable pages after first usage.
1049 */
1050 if (vm_flags & VM_EXEC)
1051 return PAGEREF_ACTIVATE;
1052
64574746
JW
1053 return PAGEREF_KEEP;
1054 }
dfc8d636
JW
1055
1056 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1057 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1058 return PAGEREF_RECLAIM_CLEAN;
1059
1060 return PAGEREF_RECLAIM;
dfc8d636
JW
1061}
1062
e2be15f6
MG
1063/* Check if a page is dirty or under writeback */
1064static void page_check_dirty_writeback(struct page *page,
1065 bool *dirty, bool *writeback)
1066{
b4597226
MG
1067 struct address_space *mapping;
1068
e2be15f6
MG
1069 /*
1070 * Anonymous pages are not handled by flushers and must be written
1071 * from reclaim context. Do not stall reclaim based on them
1072 */
802a3a92
SL
1073 if (!page_is_file_cache(page) ||
1074 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1075 *dirty = false;
1076 *writeback = false;
1077 return;
1078 }
1079
1080 /* By default assume that the page flags are accurate */
1081 *dirty = PageDirty(page);
1082 *writeback = PageWriteback(page);
b4597226
MG
1083
1084 /* Verify dirty/writeback state if the filesystem supports it */
1085 if (!page_has_private(page))
1086 return;
1087
1088 mapping = page_mapping(page);
1089 if (mapping && mapping->a_ops->is_dirty_writeback)
1090 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1091}
1092
1da177e4 1093/*
1742f19f 1094 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1095 */
1742f19f 1096static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1097 struct pglist_data *pgdat,
f84f6e2b 1098 struct scan_control *sc,
02c6de8d 1099 enum ttu_flags ttu_flags,
3c710c1a 1100 struct reclaim_stat *stat,
02c6de8d 1101 bool force_reclaim)
1da177e4
LT
1102{
1103 LIST_HEAD(ret_pages);
abe4c3b5 1104 LIST_HEAD(free_pages);
1da177e4 1105 int pgactivate = 0;
3c710c1a
MH
1106 unsigned nr_unqueued_dirty = 0;
1107 unsigned nr_dirty = 0;
1108 unsigned nr_congested = 0;
1109 unsigned nr_reclaimed = 0;
1110 unsigned nr_writeback = 0;
1111 unsigned nr_immediate = 0;
5bccd166
MH
1112 unsigned nr_ref_keep = 0;
1113 unsigned nr_unmap_fail = 0;
1da177e4
LT
1114
1115 cond_resched();
1116
1da177e4
LT
1117 while (!list_empty(page_list)) {
1118 struct address_space *mapping;
1119 struct page *page;
1120 int may_enter_fs;
02c6de8d 1121 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1122 bool dirty, writeback;
1da177e4
LT
1123
1124 cond_resched();
1125
1126 page = lru_to_page(page_list);
1127 list_del(&page->lru);
1128
529ae9aa 1129 if (!trylock_page(page))
1da177e4
LT
1130 goto keep;
1131
309381fe 1132 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1133
1134 sc->nr_scanned++;
80e43426 1135
39b5f29a 1136 if (unlikely(!page_evictable(page)))
ad6b6704 1137 goto activate_locked;
894bc310 1138
a6dc60f8 1139 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1140 goto keep_locked;
1141
1da177e4 1142 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
1143 if ((page_mapped(page) || PageSwapCache(page)) &&
1144 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
1145 sc->nr_scanned++;
1146
c661b078
AW
1147 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1148 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1149
e2be15f6 1150 /*
894befec 1151 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1152 * reclaim_congested which affects wait_iff_congested. kswapd
1153 * will stall and start writing pages if the tail of the LRU
1154 * is all dirty unqueued pages.
1155 */
1156 page_check_dirty_writeback(page, &dirty, &writeback);
1157 if (dirty || writeback)
1158 nr_dirty++;
1159
1160 if (dirty && !writeback)
1161 nr_unqueued_dirty++;
1162
d04e8acd
MG
1163 /*
1164 * Treat this page as congested if the underlying BDI is or if
1165 * pages are cycling through the LRU so quickly that the
1166 * pages marked for immediate reclaim are making it to the
1167 * end of the LRU a second time.
1168 */
e2be15f6 1169 mapping = page_mapping(page);
1da58ee2 1170 if (((dirty || writeback) && mapping &&
703c2708 1171 inode_write_congested(mapping->host)) ||
d04e8acd 1172 (writeback && PageReclaim(page)))
e2be15f6
MG
1173 nr_congested++;
1174
283aba9f
MG
1175 /*
1176 * If a page at the tail of the LRU is under writeback, there
1177 * are three cases to consider.
1178 *
1179 * 1) If reclaim is encountering an excessive number of pages
1180 * under writeback and this page is both under writeback and
1181 * PageReclaim then it indicates that pages are being queued
1182 * for IO but are being recycled through the LRU before the
1183 * IO can complete. Waiting on the page itself risks an
1184 * indefinite stall if it is impossible to writeback the
1185 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1186 * note that the LRU is being scanned too quickly and the
1187 * caller can stall after page list has been processed.
283aba9f 1188 *
97c9341f 1189 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1190 * not marked for immediate reclaim, or the caller does not
1191 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1192 * not to fs). In this case mark the page for immediate
97c9341f 1193 * reclaim and continue scanning.
283aba9f 1194 *
ecf5fc6e
MH
1195 * Require may_enter_fs because we would wait on fs, which
1196 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1197 * enter reclaim, and deadlock if it waits on a page for
1198 * which it is needed to do the write (loop masks off
1199 * __GFP_IO|__GFP_FS for this reason); but more thought
1200 * would probably show more reasons.
1201 *
7fadc820 1202 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1203 * PageReclaim. memcg does not have any dirty pages
1204 * throttling so we could easily OOM just because too many
1205 * pages are in writeback and there is nothing else to
1206 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1207 *
1208 * In cases 1) and 2) we activate the pages to get them out of
1209 * the way while we continue scanning for clean pages on the
1210 * inactive list and refilling from the active list. The
1211 * observation here is that waiting for disk writes is more
1212 * expensive than potentially causing reloads down the line.
1213 * Since they're marked for immediate reclaim, they won't put
1214 * memory pressure on the cache working set any longer than it
1215 * takes to write them to disk.
283aba9f 1216 */
c661b078 1217 if (PageWriteback(page)) {
283aba9f
MG
1218 /* Case 1 above */
1219 if (current_is_kswapd() &&
1220 PageReclaim(page) &&
599d0c95 1221 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1222 nr_immediate++;
c55e8d03 1223 goto activate_locked;
283aba9f
MG
1224
1225 /* Case 2 above */
97c9341f 1226 } else if (sane_reclaim(sc) ||
ecf5fc6e 1227 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1228 /*
1229 * This is slightly racy - end_page_writeback()
1230 * might have just cleared PageReclaim, then
1231 * setting PageReclaim here end up interpreted
1232 * as PageReadahead - but that does not matter
1233 * enough to care. What we do want is for this
1234 * page to have PageReclaim set next time memcg
1235 * reclaim reaches the tests above, so it will
1236 * then wait_on_page_writeback() to avoid OOM;
1237 * and it's also appropriate in global reclaim.
1238 */
1239 SetPageReclaim(page);
e62e384e 1240 nr_writeback++;
c55e8d03 1241 goto activate_locked;
283aba9f
MG
1242
1243 /* Case 3 above */
1244 } else {
7fadc820 1245 unlock_page(page);
283aba9f 1246 wait_on_page_writeback(page);
7fadc820
HD
1247 /* then go back and try same page again */
1248 list_add_tail(&page->lru, page_list);
1249 continue;
e62e384e 1250 }
c661b078 1251 }
1da177e4 1252
02c6de8d
MK
1253 if (!force_reclaim)
1254 references = page_check_references(page, sc);
1255
dfc8d636
JW
1256 switch (references) {
1257 case PAGEREF_ACTIVATE:
1da177e4 1258 goto activate_locked;
64574746 1259 case PAGEREF_KEEP:
5bccd166 1260 nr_ref_keep++;
64574746 1261 goto keep_locked;
dfc8d636
JW
1262 case PAGEREF_RECLAIM:
1263 case PAGEREF_RECLAIM_CLEAN:
1264 ; /* try to reclaim the page below */
1265 }
1da177e4 1266
1da177e4
LT
1267 /*
1268 * Anonymous process memory has backing store?
1269 * Try to allocate it some swap space here.
802a3a92 1270 * Lazyfree page could be freed directly
1da177e4 1271 */
bd4c82c2
HY
1272 if (PageAnon(page) && PageSwapBacked(page)) {
1273 if (!PageSwapCache(page)) {
1274 if (!(sc->gfp_mask & __GFP_IO))
1275 goto keep_locked;
1276 if (PageTransHuge(page)) {
1277 /* cannot split THP, skip it */
1278 if (!can_split_huge_page(page, NULL))
1279 goto activate_locked;
1280 /*
1281 * Split pages without a PMD map right
1282 * away. Chances are some or all of the
1283 * tail pages can be freed without IO.
1284 */
1285 if (!compound_mapcount(page) &&
1286 split_huge_page_to_list(page,
1287 page_list))
1288 goto activate_locked;
1289 }
1290 if (!add_to_swap(page)) {
1291 if (!PageTransHuge(page))
1292 goto activate_locked;
1293 /* Fallback to swap normal pages */
1294 if (split_huge_page_to_list(page,
1295 page_list))
1296 goto activate_locked;
fe490cc0
HY
1297#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 count_vm_event(THP_SWPOUT_FALLBACK);
1299#endif
bd4c82c2
HY
1300 if (!add_to_swap(page))
1301 goto activate_locked;
1302 }
0f074658 1303
bd4c82c2 1304 may_enter_fs = 1;
1da177e4 1305
bd4c82c2
HY
1306 /* Adding to swap updated mapping */
1307 mapping = page_mapping(page);
1308 }
7751b2da
KS
1309 } else if (unlikely(PageTransHuge(page))) {
1310 /* Split file THP */
1311 if (split_huge_page_to_list(page, page_list))
1312 goto keep_locked;
e2be15f6 1313 }
1da177e4
LT
1314
1315 /*
1316 * The page is mapped into the page tables of one or more
1317 * processes. Try to unmap it here.
1318 */
802a3a92 1319 if (page_mapped(page)) {
bd4c82c2
HY
1320 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1321
1322 if (unlikely(PageTransHuge(page)))
1323 flags |= TTU_SPLIT_HUGE_PMD;
1324 if (!try_to_unmap(page, flags)) {
5bccd166 1325 nr_unmap_fail++;
1da177e4 1326 goto activate_locked;
1da177e4
LT
1327 }
1328 }
1329
1330 if (PageDirty(page)) {
ee72886d 1331 /*
4eda4823
JW
1332 * Only kswapd can writeback filesystem pages
1333 * to avoid risk of stack overflow. But avoid
1334 * injecting inefficient single-page IO into
1335 * flusher writeback as much as possible: only
1336 * write pages when we've encountered many
1337 * dirty pages, and when we've already scanned
1338 * the rest of the LRU for clean pages and see
1339 * the same dirty pages again (PageReclaim).
ee72886d 1340 */
f84f6e2b 1341 if (page_is_file_cache(page) &&
4eda4823
JW
1342 (!current_is_kswapd() || !PageReclaim(page) ||
1343 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1344 /*
1345 * Immediately reclaim when written back.
1346 * Similar in principal to deactivate_page()
1347 * except we already have the page isolated
1348 * and know it's dirty
1349 */
c4a25635 1350 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1351 SetPageReclaim(page);
1352
c55e8d03 1353 goto activate_locked;
ee72886d
MG
1354 }
1355
dfc8d636 1356 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1357 goto keep_locked;
4dd4b920 1358 if (!may_enter_fs)
1da177e4 1359 goto keep_locked;
52a8363e 1360 if (!sc->may_writepage)
1da177e4
LT
1361 goto keep_locked;
1362
d950c947
MG
1363 /*
1364 * Page is dirty. Flush the TLB if a writable entry
1365 * potentially exists to avoid CPU writes after IO
1366 * starts and then write it out here.
1367 */
1368 try_to_unmap_flush_dirty();
7d3579e8 1369 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1370 case PAGE_KEEP:
1371 goto keep_locked;
1372 case PAGE_ACTIVATE:
1373 goto activate_locked;
1374 case PAGE_SUCCESS:
7d3579e8 1375 if (PageWriteback(page))
41ac1999 1376 goto keep;
7d3579e8 1377 if (PageDirty(page))
1da177e4 1378 goto keep;
7d3579e8 1379
1da177e4
LT
1380 /*
1381 * A synchronous write - probably a ramdisk. Go
1382 * ahead and try to reclaim the page.
1383 */
529ae9aa 1384 if (!trylock_page(page))
1da177e4
LT
1385 goto keep;
1386 if (PageDirty(page) || PageWriteback(page))
1387 goto keep_locked;
1388 mapping = page_mapping(page);
1389 case PAGE_CLEAN:
1390 ; /* try to free the page below */
1391 }
1392 }
1393
1394 /*
1395 * If the page has buffers, try to free the buffer mappings
1396 * associated with this page. If we succeed we try to free
1397 * the page as well.
1398 *
1399 * We do this even if the page is PageDirty().
1400 * try_to_release_page() does not perform I/O, but it is
1401 * possible for a page to have PageDirty set, but it is actually
1402 * clean (all its buffers are clean). This happens if the
1403 * buffers were written out directly, with submit_bh(). ext3
894bc310 1404 * will do this, as well as the blockdev mapping.
1da177e4
LT
1405 * try_to_release_page() will discover that cleanness and will
1406 * drop the buffers and mark the page clean - it can be freed.
1407 *
1408 * Rarely, pages can have buffers and no ->mapping. These are
1409 * the pages which were not successfully invalidated in
1410 * truncate_complete_page(). We try to drop those buffers here
1411 * and if that worked, and the page is no longer mapped into
1412 * process address space (page_count == 1) it can be freed.
1413 * Otherwise, leave the page on the LRU so it is swappable.
1414 */
266cf658 1415 if (page_has_private(page)) {
1da177e4
LT
1416 if (!try_to_release_page(page, sc->gfp_mask))
1417 goto activate_locked;
e286781d
NP
1418 if (!mapping && page_count(page) == 1) {
1419 unlock_page(page);
1420 if (put_page_testzero(page))
1421 goto free_it;
1422 else {
1423 /*
1424 * rare race with speculative reference.
1425 * the speculative reference will free
1426 * this page shortly, so we may
1427 * increment nr_reclaimed here (and
1428 * leave it off the LRU).
1429 */
1430 nr_reclaimed++;
1431 continue;
1432 }
1433 }
1da177e4
LT
1434 }
1435
802a3a92
SL
1436 if (PageAnon(page) && !PageSwapBacked(page)) {
1437 /* follow __remove_mapping for reference */
1438 if (!page_ref_freeze(page, 1))
1439 goto keep_locked;
1440 if (PageDirty(page)) {
1441 page_ref_unfreeze(page, 1);
1442 goto keep_locked;
1443 }
1da177e4 1444
802a3a92 1445 count_vm_event(PGLAZYFREED);
2262185c 1446 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1447 } else if (!mapping || !__remove_mapping(mapping, page, true))
1448 goto keep_locked;
a978d6f5
NP
1449 /*
1450 * At this point, we have no other references and there is
1451 * no way to pick any more up (removed from LRU, removed
1452 * from pagecache). Can use non-atomic bitops now (and
1453 * we obviously don't have to worry about waking up a process
1454 * waiting on the page lock, because there are no references.
1455 */
48c935ad 1456 __ClearPageLocked(page);
e286781d 1457free_it:
05ff5137 1458 nr_reclaimed++;
abe4c3b5
MG
1459
1460 /*
1461 * Is there need to periodically free_page_list? It would
1462 * appear not as the counts should be low
1463 */
bd4c82c2
HY
1464 if (unlikely(PageTransHuge(page))) {
1465 mem_cgroup_uncharge(page);
1466 (*get_compound_page_dtor(page))(page);
1467 } else
1468 list_add(&page->lru, &free_pages);
1da177e4
LT
1469 continue;
1470
1471activate_locked:
68a22394 1472 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1473 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1474 PageMlocked(page)))
a2c43eed 1475 try_to_free_swap(page);
309381fe 1476 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1477 if (!PageMlocked(page)) {
1478 SetPageActive(page);
1479 pgactivate++;
2262185c 1480 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1481 }
1da177e4
LT
1482keep_locked:
1483 unlock_page(page);
1484keep:
1485 list_add(&page->lru, &ret_pages);
309381fe 1486 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1487 }
abe4c3b5 1488
747db954 1489 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1490 try_to_unmap_flush();
2d4894b5 1491 free_unref_page_list(&free_pages);
abe4c3b5 1492
1da177e4 1493 list_splice(&ret_pages, page_list);
f8891e5e 1494 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1495
3c710c1a
MH
1496 if (stat) {
1497 stat->nr_dirty = nr_dirty;
1498 stat->nr_congested = nr_congested;
1499 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1500 stat->nr_writeback = nr_writeback;
1501 stat->nr_immediate = nr_immediate;
5bccd166
MH
1502 stat->nr_activate = pgactivate;
1503 stat->nr_ref_keep = nr_ref_keep;
1504 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1505 }
05ff5137 1506 return nr_reclaimed;
1da177e4
LT
1507}
1508
02c6de8d
MK
1509unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1510 struct list_head *page_list)
1511{
1512 struct scan_control sc = {
1513 .gfp_mask = GFP_KERNEL,
1514 .priority = DEF_PRIORITY,
1515 .may_unmap = 1,
1516 };
3c710c1a 1517 unsigned long ret;
02c6de8d
MK
1518 struct page *page, *next;
1519 LIST_HEAD(clean_pages);
1520
1521 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1522 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1523 !__PageMovable(page)) {
02c6de8d
MK
1524 ClearPageActive(page);
1525 list_move(&page->lru, &clean_pages);
1526 }
1527 }
1528
599d0c95 1529 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1530 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1531 list_splice(&clean_pages, page_list);
599d0c95 1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1533 return ret;
1534}
1535
5ad333eb
AW
1536/*
1537 * Attempt to remove the specified page from its LRU. Only take this page
1538 * if it is of the appropriate PageActive status. Pages which are being
1539 * freed elsewhere are also ignored.
1540 *
1541 * page: page to consider
1542 * mode: one of the LRU isolation modes defined above
1543 *
1544 * returns 0 on success, -ve errno on failure.
1545 */
f3fd4a61 1546int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1547{
1548 int ret = -EINVAL;
1549
1550 /* Only take pages on the LRU. */
1551 if (!PageLRU(page))
1552 return ret;
1553
e46a2879
MK
1554 /* Compaction should not handle unevictable pages but CMA can do so */
1555 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1556 return ret;
1557
5ad333eb 1558 ret = -EBUSY;
08e552c6 1559
c8244935
MG
1560 /*
1561 * To minimise LRU disruption, the caller can indicate that it only
1562 * wants to isolate pages it will be able to operate on without
1563 * blocking - clean pages for the most part.
1564 *
c8244935
MG
1565 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1566 * that it is possible to migrate without blocking
1567 */
1276ad68 1568 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1569 /* All the caller can do on PageWriteback is block */
1570 if (PageWriteback(page))
1571 return ret;
1572
1573 if (PageDirty(page)) {
1574 struct address_space *mapping;
69d763fc 1575 bool migrate_dirty;
c8244935 1576
c8244935
MG
1577 /*
1578 * Only pages without mappings or that have a
1579 * ->migratepage callback are possible to migrate
69d763fc
MG
1580 * without blocking. However, we can be racing with
1581 * truncation so it's necessary to lock the page
1582 * to stabilise the mapping as truncation holds
1583 * the page lock until after the page is removed
1584 * from the page cache.
c8244935 1585 */
69d763fc
MG
1586 if (!trylock_page(page))
1587 return ret;
1588
c8244935 1589 mapping = page_mapping(page);
145e1a71 1590 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1591 unlock_page(page);
1592 if (!migrate_dirty)
c8244935
MG
1593 return ret;
1594 }
1595 }
39deaf85 1596
f80c0673
MK
1597 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1598 return ret;
1599
5ad333eb
AW
1600 if (likely(get_page_unless_zero(page))) {
1601 /*
1602 * Be careful not to clear PageLRU until after we're
1603 * sure the page is not being freed elsewhere -- the
1604 * page release code relies on it.
1605 */
1606 ClearPageLRU(page);
1607 ret = 0;
1608 }
1609
1610 return ret;
1611}
1612
7ee36a14
MG
1613
1614/*
1615 * Update LRU sizes after isolating pages. The LRU size updates must
1616 * be complete before mem_cgroup_update_lru_size due to a santity check.
1617 */
1618static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1619 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1620{
7ee36a14
MG
1621 int zid;
1622
7ee36a14
MG
1623 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1624 if (!nr_zone_taken[zid])
1625 continue;
1626
1627 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1628#ifdef CONFIG_MEMCG
b4536f0c 1629 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1630#endif
b4536f0c
MH
1631 }
1632
7ee36a14
MG
1633}
1634
1da177e4 1635/*
a52633d8 1636 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1637 * shrink the lists perform better by taking out a batch of pages
1638 * and working on them outside the LRU lock.
1639 *
1640 * For pagecache intensive workloads, this function is the hottest
1641 * spot in the kernel (apart from copy_*_user functions).
1642 *
1643 * Appropriate locks must be held before calling this function.
1644 *
791b48b6 1645 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1646 * @lruvec: The LRU vector to pull pages from.
1da177e4 1647 * @dst: The temp list to put pages on to.
f626012d 1648 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1649 * @sc: The scan_control struct for this reclaim session
5ad333eb 1650 * @mode: One of the LRU isolation modes
3cb99451 1651 * @lru: LRU list id for isolating
1da177e4
LT
1652 *
1653 * returns how many pages were moved onto *@dst.
1654 */
69e05944 1655static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1656 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1657 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1658 isolate_mode_t mode, enum lru_list lru)
1da177e4 1659{
75b00af7 1660 struct list_head *src = &lruvec->lists[lru];
69e05944 1661 unsigned long nr_taken = 0;
599d0c95 1662 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1663 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1664 unsigned long skipped = 0;
791b48b6 1665 unsigned long scan, total_scan, nr_pages;
b2e18757 1666 LIST_HEAD(pages_skipped);
1da177e4 1667
791b48b6
MK
1668 scan = 0;
1669 for (total_scan = 0;
1670 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1671 total_scan++) {
5ad333eb 1672 struct page *page;
5ad333eb 1673
1da177e4
LT
1674 page = lru_to_page(src);
1675 prefetchw_prev_lru_page(page, src, flags);
1676
309381fe 1677 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1678
b2e18757
MG
1679 if (page_zonenum(page) > sc->reclaim_idx) {
1680 list_move(&page->lru, &pages_skipped);
7cc30fcf 1681 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1682 continue;
1683 }
1684
791b48b6
MK
1685 /*
1686 * Do not count skipped pages because that makes the function
1687 * return with no isolated pages if the LRU mostly contains
1688 * ineligible pages. This causes the VM to not reclaim any
1689 * pages, triggering a premature OOM.
1690 */
1691 scan++;
f3fd4a61 1692 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1693 case 0:
599d0c95
MG
1694 nr_pages = hpage_nr_pages(page);
1695 nr_taken += nr_pages;
1696 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1697 list_move(&page->lru, dst);
5ad333eb
AW
1698 break;
1699
1700 case -EBUSY:
1701 /* else it is being freed elsewhere */
1702 list_move(&page->lru, src);
1703 continue;
46453a6e 1704
5ad333eb
AW
1705 default:
1706 BUG();
1707 }
1da177e4
LT
1708 }
1709
b2e18757
MG
1710 /*
1711 * Splice any skipped pages to the start of the LRU list. Note that
1712 * this disrupts the LRU order when reclaiming for lower zones but
1713 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1714 * scanning would soon rescan the same pages to skip and put the
1715 * system at risk of premature OOM.
1716 */
7cc30fcf
MG
1717 if (!list_empty(&pages_skipped)) {
1718 int zid;
1719
3db65812 1720 list_splice(&pages_skipped, src);
7cc30fcf
MG
1721 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1722 if (!nr_skipped[zid])
1723 continue;
1724
1725 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1726 skipped += nr_skipped[zid];
7cc30fcf
MG
1727 }
1728 }
791b48b6 1729 *nr_scanned = total_scan;
1265e3a6 1730 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1731 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1732 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1733 return nr_taken;
1734}
1735
62695a84
NP
1736/**
1737 * isolate_lru_page - tries to isolate a page from its LRU list
1738 * @page: page to isolate from its LRU list
1739 *
1740 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1741 * vmstat statistic corresponding to whatever LRU list the page was on.
1742 *
1743 * Returns 0 if the page was removed from an LRU list.
1744 * Returns -EBUSY if the page was not on an LRU list.
1745 *
1746 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1747 * the active list, it will have PageActive set. If it was found on
1748 * the unevictable list, it will have the PageUnevictable bit set. That flag
1749 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1750 *
1751 * The vmstat statistic corresponding to the list on which the page was
1752 * found will be decremented.
1753 *
1754 * Restrictions:
a5d09bed 1755 *
62695a84
NP
1756 * (1) Must be called with an elevated refcount on the page. This is a
1757 * fundamentnal difference from isolate_lru_pages (which is called
1758 * without a stable reference).
1759 * (2) the lru_lock must not be held.
1760 * (3) interrupts must be enabled.
1761 */
1762int isolate_lru_page(struct page *page)
1763{
1764 int ret = -EBUSY;
1765
309381fe 1766 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1767 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1768
62695a84
NP
1769 if (PageLRU(page)) {
1770 struct zone *zone = page_zone(page);
fa9add64 1771 struct lruvec *lruvec;
62695a84 1772
a52633d8 1773 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1774 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1775 if (PageLRU(page)) {
894bc310 1776 int lru = page_lru(page);
0c917313 1777 get_page(page);
62695a84 1778 ClearPageLRU(page);
fa9add64
HD
1779 del_page_from_lru_list(page, lruvec, lru);
1780 ret = 0;
62695a84 1781 }
a52633d8 1782 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1783 }
1784 return ret;
1785}
1786
35cd7815 1787/*
d37dd5dc
FW
1788 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1789 * then get resheduled. When there are massive number of tasks doing page
1790 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1791 * the LRU list will go small and be scanned faster than necessary, leading to
1792 * unnecessary swapping, thrashing and OOM.
35cd7815 1793 */
599d0c95 1794static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1795 struct scan_control *sc)
1796{
1797 unsigned long inactive, isolated;
1798
1799 if (current_is_kswapd())
1800 return 0;
1801
97c9341f 1802 if (!sane_reclaim(sc))
35cd7815
RR
1803 return 0;
1804
1805 if (file) {
599d0c95
MG
1806 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1807 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1808 } else {
599d0c95
MG
1809 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1810 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1811 }
1812
3cf23841
FW
1813 /*
1814 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1815 * won't get blocked by normal direct-reclaimers, forming a circular
1816 * deadlock.
1817 */
d0164adc 1818 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1819 inactive >>= 3;
1820
35cd7815
RR
1821 return isolated > inactive;
1822}
1823
66635629 1824static noinline_for_stack void
75b00af7 1825putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1826{
27ac81d8 1827 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1828 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1829 LIST_HEAD(pages_to_free);
66635629 1830
66635629
MG
1831 /*
1832 * Put back any unfreeable pages.
1833 */
66635629 1834 while (!list_empty(page_list)) {
3f79768f 1835 struct page *page = lru_to_page(page_list);
66635629 1836 int lru;
3f79768f 1837
309381fe 1838 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1839 list_del(&page->lru);
39b5f29a 1840 if (unlikely(!page_evictable(page))) {
599d0c95 1841 spin_unlock_irq(&pgdat->lru_lock);
66635629 1842 putback_lru_page(page);
599d0c95 1843 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1844 continue;
1845 }
fa9add64 1846
599d0c95 1847 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1848
7a608572 1849 SetPageLRU(page);
66635629 1850 lru = page_lru(page);
fa9add64
HD
1851 add_page_to_lru_list(page, lruvec, lru);
1852
66635629
MG
1853 if (is_active_lru(lru)) {
1854 int file = is_file_lru(lru);
9992af10
RR
1855 int numpages = hpage_nr_pages(page);
1856 reclaim_stat->recent_rotated[file] += numpages;
66635629 1857 }
2bcf8879
HD
1858 if (put_page_testzero(page)) {
1859 __ClearPageLRU(page);
1860 __ClearPageActive(page);
fa9add64 1861 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1862
1863 if (unlikely(PageCompound(page))) {
599d0c95 1864 spin_unlock_irq(&pgdat->lru_lock);
747db954 1865 mem_cgroup_uncharge(page);
2bcf8879 1866 (*get_compound_page_dtor(page))(page);
599d0c95 1867 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1868 } else
1869 list_add(&page->lru, &pages_to_free);
66635629
MG
1870 }
1871 }
66635629 1872
3f79768f
HD
1873 /*
1874 * To save our caller's stack, now use input list for pages to free.
1875 */
1876 list_splice(&pages_to_free, page_list);
66635629
MG
1877}
1878
399ba0b9
N
1879/*
1880 * If a kernel thread (such as nfsd for loop-back mounts) services
1881 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1882 * In that case we should only throttle if the backing device it is
1883 * writing to is congested. In other cases it is safe to throttle.
1884 */
1885static int current_may_throttle(void)
1886{
1887 return !(current->flags & PF_LESS_THROTTLE) ||
1888 current->backing_dev_info == NULL ||
1889 bdi_write_congested(current->backing_dev_info);
1890}
1891
1da177e4 1892/*
b2e18757 1893 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1894 * of reclaimed pages
1da177e4 1895 */
66635629 1896static noinline_for_stack unsigned long
1a93be0e 1897shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1898 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1899{
1900 LIST_HEAD(page_list);
e247dbce 1901 unsigned long nr_scanned;
05ff5137 1902 unsigned long nr_reclaimed = 0;
e247dbce 1903 unsigned long nr_taken;
3c710c1a 1904 struct reclaim_stat stat = {};
f3fd4a61 1905 isolate_mode_t isolate_mode = 0;
3cb99451 1906 int file = is_file_lru(lru);
599d0c95 1907 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1908 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1909 bool stalled = false;
78dc583d 1910
599d0c95 1911 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1912 if (stalled)
1913 return 0;
1914
1915 /* wait a bit for the reclaimer. */
1916 msleep(100);
1917 stalled = true;
35cd7815
RR
1918
1919 /* We are about to die and free our memory. Return now. */
1920 if (fatal_signal_pending(current))
1921 return SWAP_CLUSTER_MAX;
1922 }
1923
1da177e4 1924 lru_add_drain();
f80c0673
MK
1925
1926 if (!sc->may_unmap)
61317289 1927 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1928
599d0c95 1929 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1930
5dc35979
KK
1931 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1932 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1933
599d0c95 1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1935 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1936
2262185c
RG
1937 if (current_is_kswapd()) {
1938 if (global_reclaim(sc))
599d0c95 1939 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1940 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1941 nr_scanned);
1942 } else {
1943 if (global_reclaim(sc))
599d0c95 1944 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1945 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1946 nr_scanned);
e247dbce 1947 }
599d0c95 1948 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1949
d563c050 1950 if (nr_taken == 0)
66635629 1951 return 0;
5ad333eb 1952
a128ca71 1953 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1954 &stat, false);
c661b078 1955
599d0c95 1956 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1957
2262185c
RG
1958 if (current_is_kswapd()) {
1959 if (global_reclaim(sc))
599d0c95 1960 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1961 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1962 nr_reclaimed);
1963 } else {
1964 if (global_reclaim(sc))
599d0c95 1965 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1966 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1967 nr_reclaimed);
904249aa 1968 }
a74609fa 1969
27ac81d8 1970 putback_inactive_pages(lruvec, &page_list);
3f79768f 1971
599d0c95 1972 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1973
599d0c95 1974 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1975
747db954 1976 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1977 free_unref_page_list(&page_list);
e11da5b4 1978
1c610d5f
AR
1979 /*
1980 * If dirty pages are scanned that are not queued for IO, it
1981 * implies that flushers are not doing their job. This can
1982 * happen when memory pressure pushes dirty pages to the end of
1983 * the LRU before the dirty limits are breached and the dirty
1984 * data has expired. It can also happen when the proportion of
1985 * dirty pages grows not through writes but through memory
1986 * pressure reclaiming all the clean cache. And in some cases,
1987 * the flushers simply cannot keep up with the allocation
1988 * rate. Nudge the flusher threads in case they are asleep.
1989 */
1990 if (stat.nr_unqueued_dirty == nr_taken)
1991 wakeup_flusher_threads(WB_REASON_VMSCAN);
1992
d108c772
AR
1993 sc->nr.dirty += stat.nr_dirty;
1994 sc->nr.congested += stat.nr_congested;
1995 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1996 sc->nr.writeback += stat.nr_writeback;
1997 sc->nr.immediate += stat.nr_immediate;
1998 sc->nr.taken += nr_taken;
1999 if (file)
2000 sc->nr.file_taken += nr_taken;
8e950282 2001
599d0c95 2002 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2003 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2004 return nr_reclaimed;
1da177e4
LT
2005}
2006
2007/*
2008 * This moves pages from the active list to the inactive list.
2009 *
2010 * We move them the other way if the page is referenced by one or more
2011 * processes, from rmap.
2012 *
2013 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 2014 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 2015 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 2016 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
2017 * this, so instead we remove the pages from the LRU while processing them.
2018 * It is safe to rely on PG_active against the non-LRU pages in here because
2019 * nobody will play with that bit on a non-LRU page.
2020 *
0139aa7b 2021 * The downside is that we have to touch page->_refcount against each page.
1da177e4 2022 * But we had to alter page->flags anyway.
9d998b4f
MH
2023 *
2024 * Returns the number of pages moved to the given lru.
1da177e4 2025 */
1cfb419b 2026
9d998b4f 2027static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 2028 struct list_head *list,
2bcf8879 2029 struct list_head *pages_to_free,
3eb4140f
WF
2030 enum lru_list lru)
2031{
599d0c95 2032 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 2033 struct page *page;
fa9add64 2034 int nr_pages;
9d998b4f 2035 int nr_moved = 0;
3eb4140f 2036
3eb4140f
WF
2037 while (!list_empty(list)) {
2038 page = lru_to_page(list);
599d0c95 2039 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 2040
309381fe 2041 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
2042 SetPageLRU(page);
2043
fa9add64 2044 nr_pages = hpage_nr_pages(page);
599d0c95 2045 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 2046 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 2047
2bcf8879
HD
2048 if (put_page_testzero(page)) {
2049 __ClearPageLRU(page);
2050 __ClearPageActive(page);
fa9add64 2051 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
2052
2053 if (unlikely(PageCompound(page))) {
599d0c95 2054 spin_unlock_irq(&pgdat->lru_lock);
747db954 2055 mem_cgroup_uncharge(page);
2bcf8879 2056 (*get_compound_page_dtor(page))(page);
599d0c95 2057 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
2058 } else
2059 list_add(&page->lru, pages_to_free);
9d998b4f
MH
2060 } else {
2061 nr_moved += nr_pages;
3eb4140f
WF
2062 }
2063 }
9d5e6a9f 2064
2262185c 2065 if (!is_active_lru(lru)) {
f0958906 2066 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
2067 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2068 nr_moved);
2069 }
9d998b4f
MH
2070
2071 return nr_moved;
3eb4140f 2072}
1cfb419b 2073
f626012d 2074static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2075 struct lruvec *lruvec,
f16015fb 2076 struct scan_control *sc,
9e3b2f8c 2077 enum lru_list lru)
1da177e4 2078{
44c241f1 2079 unsigned long nr_taken;
f626012d 2080 unsigned long nr_scanned;
6fe6b7e3 2081 unsigned long vm_flags;
1da177e4 2082 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2083 LIST_HEAD(l_active);
b69408e8 2084 LIST_HEAD(l_inactive);
1da177e4 2085 struct page *page;
1a93be0e 2086 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2087 unsigned nr_deactivate, nr_activate;
2088 unsigned nr_rotated = 0;
f3fd4a61 2089 isolate_mode_t isolate_mode = 0;
3cb99451 2090 int file = is_file_lru(lru);
599d0c95 2091 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2092
2093 lru_add_drain();
f80c0673
MK
2094
2095 if (!sc->may_unmap)
61317289 2096 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 2097
599d0c95 2098 spin_lock_irq(&pgdat->lru_lock);
925b7673 2099
5dc35979
KK
2100 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2101 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 2102
599d0c95 2103 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2104 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2105
599d0c95 2106 __count_vm_events(PGREFILL, nr_scanned);
2262185c 2107 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2108
599d0c95 2109 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2110
1da177e4
LT
2111 while (!list_empty(&l_hold)) {
2112 cond_resched();
2113 page = lru_to_page(&l_hold);
2114 list_del(&page->lru);
7e9cd484 2115
39b5f29a 2116 if (unlikely(!page_evictable(page))) {
894bc310
LS
2117 putback_lru_page(page);
2118 continue;
2119 }
2120
cc715d99
MG
2121 if (unlikely(buffer_heads_over_limit)) {
2122 if (page_has_private(page) && trylock_page(page)) {
2123 if (page_has_private(page))
2124 try_to_release_page(page, 0);
2125 unlock_page(page);
2126 }
2127 }
2128
c3ac9a8a
JW
2129 if (page_referenced(page, 0, sc->target_mem_cgroup,
2130 &vm_flags)) {
9992af10 2131 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2132 /*
2133 * Identify referenced, file-backed active pages and
2134 * give them one more trip around the active list. So
2135 * that executable code get better chances to stay in
2136 * memory under moderate memory pressure. Anon pages
2137 * are not likely to be evicted by use-once streaming
2138 * IO, plus JVM can create lots of anon VM_EXEC pages,
2139 * so we ignore them here.
2140 */
41e20983 2141 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2142 list_add(&page->lru, &l_active);
2143 continue;
2144 }
2145 }
7e9cd484 2146
5205e56e 2147 ClearPageActive(page); /* we are de-activating */
1899ad18 2148 SetPageWorkingset(page);
1da177e4
LT
2149 list_add(&page->lru, &l_inactive);
2150 }
2151
b555749a 2152 /*
8cab4754 2153 * Move pages back to the lru list.
b555749a 2154 */
599d0c95 2155 spin_lock_irq(&pgdat->lru_lock);
556adecb 2156 /*
8cab4754
WF
2157 * Count referenced pages from currently used mappings as rotated,
2158 * even though only some of them are actually re-activated. This
2159 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2160 * get_scan_count.
7e9cd484 2161 */
b7c46d15 2162 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2163
9d998b4f
MH
2164 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2165 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2166 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2167 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2168
747db954 2169 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 2170 free_unref_page_list(&l_hold);
9d998b4f
MH
2171 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2172 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2173}
2174
59dc76b0
RR
2175/*
2176 * The inactive anon list should be small enough that the VM never has
2177 * to do too much work.
14797e23 2178 *
59dc76b0
RR
2179 * The inactive file list should be small enough to leave most memory
2180 * to the established workingset on the scan-resistant active list,
2181 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2182 *
59dc76b0
RR
2183 * Both inactive lists should also be large enough that each inactive
2184 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2185 *
2a2e4885
JW
2186 * If that fails and refaulting is observed, the inactive list grows.
2187 *
59dc76b0 2188 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2189 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2190 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2191 *
59dc76b0
RR
2192 * total target max
2193 * memory ratio inactive
2194 * -------------------------------------
2195 * 10MB 1 5MB
2196 * 100MB 1 50MB
2197 * 1GB 3 250MB
2198 * 10GB 10 0.9GB
2199 * 100GB 31 3GB
2200 * 1TB 101 10GB
2201 * 10TB 320 32GB
56e49d21 2202 */
f8d1a311 2203static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2204 struct mem_cgroup *memcg,
2205 struct scan_control *sc, bool actual_reclaim)
56e49d21 2206{
fd538803 2207 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2208 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2209 enum lru_list inactive_lru = file * LRU_FILE;
2210 unsigned long inactive, active;
2211 unsigned long inactive_ratio;
2212 unsigned long refaults;
59dc76b0 2213 unsigned long gb;
e3790144 2214
59dc76b0
RR
2215 /*
2216 * If we don't have swap space, anonymous page deactivation
2217 * is pointless.
2218 */
2219 if (!file && !total_swap_pages)
2220 return false;
56e49d21 2221
fd538803
MH
2222 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2223 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2224
2a2e4885 2225 if (memcg)
ccda7f43 2226 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2227 else
2a2e4885
JW
2228 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2229
2230 /*
2231 * When refaults are being observed, it means a new workingset
2232 * is being established. Disable active list protection to get
2233 * rid of the stale workingset quickly.
2234 */
2235 if (file && actual_reclaim && lruvec->refaults != refaults) {
2236 inactive_ratio = 0;
2237 } else {
2238 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2239 if (gb)
2240 inactive_ratio = int_sqrt(10 * gb);
2241 else
2242 inactive_ratio = 1;
2243 }
59dc76b0 2244
2a2e4885
JW
2245 if (actual_reclaim)
2246 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2247 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2248 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2249 inactive_ratio, file);
fd538803 2250
59dc76b0 2251 return inactive * inactive_ratio < active;
b39415b2
RR
2252}
2253
4f98a2fe 2254static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2255 struct lruvec *lruvec, struct mem_cgroup *memcg,
2256 struct scan_control *sc)
b69408e8 2257{
b39415b2 2258 if (is_active_lru(lru)) {
2a2e4885
JW
2259 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2260 memcg, sc, true))
1a93be0e 2261 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2262 return 0;
2263 }
2264
1a93be0e 2265 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2266}
2267
9a265114
JW
2268enum scan_balance {
2269 SCAN_EQUAL,
2270 SCAN_FRACT,
2271 SCAN_ANON,
2272 SCAN_FILE,
2273};
2274
4f98a2fe
RR
2275/*
2276 * Determine how aggressively the anon and file LRU lists should be
2277 * scanned. The relative value of each set of LRU lists is determined
2278 * by looking at the fraction of the pages scanned we did rotate back
2279 * onto the active list instead of evict.
2280 *
be7bd59d
WL
2281 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2282 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2283 */
33377678 2284static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2285 struct scan_control *sc, unsigned long *nr,
2286 unsigned long *lru_pages)
4f98a2fe 2287{
33377678 2288 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2289 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2290 u64 fraction[2];
2291 u64 denominator = 0; /* gcc */
599d0c95 2292 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2293 unsigned long anon_prio, file_prio;
9a265114 2294 enum scan_balance scan_balance;
0bf1457f 2295 unsigned long anon, file;
4f98a2fe 2296 unsigned long ap, fp;
4111304d 2297 enum lru_list lru;
76a33fc3
SL
2298
2299 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2300 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2301 scan_balance = SCAN_FILE;
76a33fc3
SL
2302 goto out;
2303 }
4f98a2fe 2304
10316b31
JW
2305 /*
2306 * Global reclaim will swap to prevent OOM even with no
2307 * swappiness, but memcg users want to use this knob to
2308 * disable swapping for individual groups completely when
2309 * using the memory controller's swap limit feature would be
2310 * too expensive.
2311 */
02695175 2312 if (!global_reclaim(sc) && !swappiness) {
9a265114 2313 scan_balance = SCAN_FILE;
10316b31
JW
2314 goto out;
2315 }
2316
2317 /*
2318 * Do not apply any pressure balancing cleverness when the
2319 * system is close to OOM, scan both anon and file equally
2320 * (unless the swappiness setting disagrees with swapping).
2321 */
02695175 2322 if (!sc->priority && swappiness) {
9a265114 2323 scan_balance = SCAN_EQUAL;
10316b31
JW
2324 goto out;
2325 }
2326
62376251
JW
2327 /*
2328 * Prevent the reclaimer from falling into the cache trap: as
2329 * cache pages start out inactive, every cache fault will tip
2330 * the scan balance towards the file LRU. And as the file LRU
2331 * shrinks, so does the window for rotation from references.
2332 * This means we have a runaway feedback loop where a tiny
2333 * thrashing file LRU becomes infinitely more attractive than
2334 * anon pages. Try to detect this based on file LRU size.
2335 */
2336 if (global_reclaim(sc)) {
599d0c95
MG
2337 unsigned long pgdatfile;
2338 unsigned long pgdatfree;
2339 int z;
2340 unsigned long total_high_wmark = 0;
2ab051e1 2341
599d0c95
MG
2342 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2343 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2344 node_page_state(pgdat, NR_INACTIVE_FILE);
2345
2346 for (z = 0; z < MAX_NR_ZONES; z++) {
2347 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2348 if (!managed_zone(zone))
599d0c95
MG
2349 continue;
2350
2351 total_high_wmark += high_wmark_pages(zone);
2352 }
62376251 2353
599d0c95 2354 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2355 /*
2356 * Force SCAN_ANON if there are enough inactive
2357 * anonymous pages on the LRU in eligible zones.
2358 * Otherwise, the small LRU gets thrashed.
2359 */
2360 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2361 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2362 >> sc->priority) {
2363 scan_balance = SCAN_ANON;
2364 goto out;
2365 }
62376251
JW
2366 }
2367 }
2368
7c5bd705 2369 /*
316bda0e
VD
2370 * If there is enough inactive page cache, i.e. if the size of the
2371 * inactive list is greater than that of the active list *and* the
2372 * inactive list actually has some pages to scan on this priority, we
2373 * do not reclaim anything from the anonymous working set right now.
2374 * Without the second condition we could end up never scanning an
2375 * lruvec even if it has plenty of old anonymous pages unless the
2376 * system is under heavy pressure.
7c5bd705 2377 */
2a2e4885 2378 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2379 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2380 scan_balance = SCAN_FILE;
7c5bd705
JW
2381 goto out;
2382 }
2383
9a265114
JW
2384 scan_balance = SCAN_FRACT;
2385
58c37f6e
KM
2386 /*
2387 * With swappiness at 100, anonymous and file have the same priority.
2388 * This scanning priority is essentially the inverse of IO cost.
2389 */
02695175 2390 anon_prio = swappiness;
75b00af7 2391 file_prio = 200 - anon_prio;
58c37f6e 2392
4f98a2fe
RR
2393 /*
2394 * OK, so we have swap space and a fair amount of page cache
2395 * pages. We use the recently rotated / recently scanned
2396 * ratios to determine how valuable each cache is.
2397 *
2398 * Because workloads change over time (and to avoid overflow)
2399 * we keep these statistics as a floating average, which ends
2400 * up weighing recent references more than old ones.
2401 *
2402 * anon in [0], file in [1]
2403 */
2ab051e1 2404
fd538803
MH
2405 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2406 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2407 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2408 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2409
599d0c95 2410 spin_lock_irq(&pgdat->lru_lock);
6e901571 2411 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2412 reclaim_stat->recent_scanned[0] /= 2;
2413 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2414 }
2415
6e901571 2416 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2417 reclaim_stat->recent_scanned[1] /= 2;
2418 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2419 }
2420
4f98a2fe 2421 /*
00d8089c
RR
2422 * The amount of pressure on anon vs file pages is inversely
2423 * proportional to the fraction of recently scanned pages on
2424 * each list that were recently referenced and in active use.
4f98a2fe 2425 */
fe35004f 2426 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2427 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2428
fe35004f 2429 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2430 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2431 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2432
76a33fc3
SL
2433 fraction[0] = ap;
2434 fraction[1] = fp;
2435 denominator = ap + fp + 1;
2436out:
688035f7
JW
2437 *lru_pages = 0;
2438 for_each_evictable_lru(lru) {
2439 int file = is_file_lru(lru);
2440 unsigned long size;
2441 unsigned long scan;
6b4f7799 2442
688035f7
JW
2443 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2444 scan = size >> sc->priority;
2445 /*
2446 * If the cgroup's already been deleted, make sure to
2447 * scrape out the remaining cache.
2448 */
2449 if (!scan && !mem_cgroup_online(memcg))
2450 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2451
688035f7
JW
2452 switch (scan_balance) {
2453 case SCAN_EQUAL:
2454 /* Scan lists relative to size */
2455 break;
2456 case SCAN_FRACT:
9a265114 2457 /*
688035f7
JW
2458 * Scan types proportional to swappiness and
2459 * their relative recent reclaim efficiency.
68600f62
RG
2460 * Make sure we don't miss the last page
2461 * because of a round-off error.
9a265114 2462 */
68600f62
RG
2463 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2464 denominator);
688035f7
JW
2465 break;
2466 case SCAN_FILE:
2467 case SCAN_ANON:
2468 /* Scan one type exclusively */
2469 if ((scan_balance == SCAN_FILE) != file) {
2470 size = 0;
2471 scan = 0;
2472 }
2473 break;
2474 default:
2475 /* Look ma, no brain */
2476 BUG();
9a265114 2477 }
688035f7
JW
2478
2479 *lru_pages += size;
2480 nr[lru] = scan;
76a33fc3 2481 }
6e08a369 2482}
4f98a2fe 2483
9b4f98cd 2484/*
a9dd0a83 2485 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2486 */
a9dd0a83 2487static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2488 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2489{
ef8f2327 2490 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2491 unsigned long nr[NR_LRU_LISTS];
e82e0561 2492 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2493 unsigned long nr_to_scan;
2494 enum lru_list lru;
2495 unsigned long nr_reclaimed = 0;
2496 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2497 struct blk_plug plug;
1a501907 2498 bool scan_adjusted;
9b4f98cd 2499
33377678 2500 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2501
e82e0561
MG
2502 /* Record the original scan target for proportional adjustments later */
2503 memcpy(targets, nr, sizeof(nr));
2504
1a501907
MG
2505 /*
2506 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2507 * event that can occur when there is little memory pressure e.g.
2508 * multiple streaming readers/writers. Hence, we do not abort scanning
2509 * when the requested number of pages are reclaimed when scanning at
2510 * DEF_PRIORITY on the assumption that the fact we are direct
2511 * reclaiming implies that kswapd is not keeping up and it is best to
2512 * do a batch of work at once. For memcg reclaim one check is made to
2513 * abort proportional reclaim if either the file or anon lru has already
2514 * dropped to zero at the first pass.
2515 */
2516 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2517 sc->priority == DEF_PRIORITY);
2518
9b4f98cd
JW
2519 blk_start_plug(&plug);
2520 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2521 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2522 unsigned long nr_anon, nr_file, percentage;
2523 unsigned long nr_scanned;
2524
9b4f98cd
JW
2525 for_each_evictable_lru(lru) {
2526 if (nr[lru]) {
2527 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2528 nr[lru] -= nr_to_scan;
2529
2530 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2531 lruvec, memcg, sc);
9b4f98cd
JW
2532 }
2533 }
e82e0561 2534
bd041733
MH
2535 cond_resched();
2536
e82e0561
MG
2537 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2538 continue;
2539
e82e0561
MG
2540 /*
2541 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2542 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2543 * proportionally what was requested by get_scan_count(). We
2544 * stop reclaiming one LRU and reduce the amount scanning
2545 * proportional to the original scan target.
2546 */
2547 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2548 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2549
1a501907
MG
2550 /*
2551 * It's just vindictive to attack the larger once the smaller
2552 * has gone to zero. And given the way we stop scanning the
2553 * smaller below, this makes sure that we only make one nudge
2554 * towards proportionality once we've got nr_to_reclaim.
2555 */
2556 if (!nr_file || !nr_anon)
2557 break;
2558
e82e0561
MG
2559 if (nr_file > nr_anon) {
2560 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2561 targets[LRU_ACTIVE_ANON] + 1;
2562 lru = LRU_BASE;
2563 percentage = nr_anon * 100 / scan_target;
2564 } else {
2565 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2566 targets[LRU_ACTIVE_FILE] + 1;
2567 lru = LRU_FILE;
2568 percentage = nr_file * 100 / scan_target;
2569 }
2570
2571 /* Stop scanning the smaller of the LRU */
2572 nr[lru] = 0;
2573 nr[lru + LRU_ACTIVE] = 0;
2574
2575 /*
2576 * Recalculate the other LRU scan count based on its original
2577 * scan target and the percentage scanning already complete
2578 */
2579 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2580 nr_scanned = targets[lru] - nr[lru];
2581 nr[lru] = targets[lru] * (100 - percentage) / 100;
2582 nr[lru] -= min(nr[lru], nr_scanned);
2583
2584 lru += LRU_ACTIVE;
2585 nr_scanned = targets[lru] - nr[lru];
2586 nr[lru] = targets[lru] * (100 - percentage) / 100;
2587 nr[lru] -= min(nr[lru], nr_scanned);
2588
2589 scan_adjusted = true;
9b4f98cd
JW
2590 }
2591 blk_finish_plug(&plug);
2592 sc->nr_reclaimed += nr_reclaimed;
2593
2594 /*
2595 * Even if we did not try to evict anon pages at all, we want to
2596 * rebalance the anon lru active/inactive ratio.
2597 */
2a2e4885 2598 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2599 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2600 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2601}
2602
23b9da55 2603/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2604static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2605{
d84da3f9 2606 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2607 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2608 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2609 return true;
2610
2611 return false;
2612}
2613
3e7d3449 2614/*
23b9da55
MG
2615 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2616 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2617 * true if more pages should be reclaimed such that when the page allocator
2618 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2619 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2620 */
a9dd0a83 2621static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2622 unsigned long nr_reclaimed,
2623 unsigned long nr_scanned,
2624 struct scan_control *sc)
2625{
2626 unsigned long pages_for_compaction;
2627 unsigned long inactive_lru_pages;
a9dd0a83 2628 int z;
3e7d3449
MG
2629
2630 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2631 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2632 return false;
2633
2876592f 2634 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2635 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2636 /*
dcda9b04 2637 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2638 * full LRU list has been scanned and we are still failing
2639 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2640 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2641 */
2642 if (!nr_reclaimed && !nr_scanned)
2643 return false;
2644 } else {
2645 /*
dcda9b04 2646 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2647 * fail without consequence, stop if we failed to reclaim
2648 * any pages from the last SWAP_CLUSTER_MAX number of
2649 * pages that were scanned. This will return to the
2650 * caller faster at the risk reclaim/compaction and
2651 * the resulting allocation attempt fails
2652 */
2653 if (!nr_reclaimed)
2654 return false;
2655 }
3e7d3449
MG
2656
2657 /*
2658 * If we have not reclaimed enough pages for compaction and the
2659 * inactive lists are large enough, continue reclaiming
2660 */
9861a62c 2661 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2662 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2663 if (get_nr_swap_pages() > 0)
a9dd0a83 2664 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2665 if (sc->nr_reclaimed < pages_for_compaction &&
2666 inactive_lru_pages > pages_for_compaction)
2667 return true;
2668
2669 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2670 for (z = 0; z <= sc->reclaim_idx; z++) {
2671 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2672 if (!managed_zone(zone))
a9dd0a83
MG
2673 continue;
2674
2675 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2676 case COMPACT_SUCCESS:
a9dd0a83
MG
2677 case COMPACT_CONTINUE:
2678 return false;
2679 default:
2680 /* check next zone */
2681 ;
2682 }
3e7d3449 2683 }
a9dd0a83 2684 return true;
3e7d3449
MG
2685}
2686
e3c1ac58
AR
2687static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2688{
2689 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2690 (memcg && memcg_congested(pgdat, memcg));
2691}
2692
970a39a3 2693static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2694{
cb731d6c 2695 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2696 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2697 bool reclaimable = false;
1da177e4 2698
9b4f98cd
JW
2699 do {
2700 struct mem_cgroup *root = sc->target_mem_cgroup;
2701 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2702 .pgdat = pgdat,
9b4f98cd
JW
2703 .priority = sc->priority,
2704 };
a9dd0a83 2705 unsigned long node_lru_pages = 0;
694fbc0f 2706 struct mem_cgroup *memcg;
3e7d3449 2707
d108c772
AR
2708 memset(&sc->nr, 0, sizeof(sc->nr));
2709
9b4f98cd
JW
2710 nr_reclaimed = sc->nr_reclaimed;
2711 nr_scanned = sc->nr_scanned;
1da177e4 2712
694fbc0f
AM
2713 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2714 do {
6b4f7799 2715 unsigned long lru_pages;
8e8ae645 2716 unsigned long reclaimed;
cb731d6c 2717 unsigned long scanned;
5660048c 2718
bf8d5d52
RG
2719 switch (mem_cgroup_protected(root, memcg)) {
2720 case MEMCG_PROT_MIN:
2721 /*
2722 * Hard protection.
2723 * If there is no reclaimable memory, OOM.
2724 */
2725 continue;
2726 case MEMCG_PROT_LOW:
2727 /*
2728 * Soft protection.
2729 * Respect the protection only as long as
2730 * there is an unprotected supply
2731 * of reclaimable memory from other cgroups.
2732 */
d6622f63
YX
2733 if (!sc->memcg_low_reclaim) {
2734 sc->memcg_low_skipped = 1;
241994ed 2735 continue;
d6622f63 2736 }
e27be240 2737 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2738 break;
2739 case MEMCG_PROT_NONE:
2740 break;
241994ed
JW
2741 }
2742
8e8ae645 2743 reclaimed = sc->nr_reclaimed;
cb731d6c 2744 scanned = sc->nr_scanned;
a9dd0a83
MG
2745 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2746 node_lru_pages += lru_pages;
f16015fb 2747
aeed1d32
VD
2748 shrink_slab(sc->gfp_mask, pgdat->node_id,
2749 memcg, sc->priority);
cb731d6c 2750
8e8ae645
JW
2751 /* Record the group's reclaim efficiency */
2752 vmpressure(sc->gfp_mask, memcg, false,
2753 sc->nr_scanned - scanned,
2754 sc->nr_reclaimed - reclaimed);
2755
9b4f98cd 2756 /*
a394cb8e
MH
2757 * Direct reclaim and kswapd have to scan all memory
2758 * cgroups to fulfill the overall scan target for the
a9dd0a83 2759 * node.
a394cb8e
MH
2760 *
2761 * Limit reclaim, on the other hand, only cares about
2762 * nr_to_reclaim pages to be reclaimed and it will
2763 * retry with decreasing priority if one round over the
2764 * whole hierarchy is not sufficient.
9b4f98cd 2765 */
a394cb8e
MH
2766 if (!global_reclaim(sc) &&
2767 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2768 mem_cgroup_iter_break(root, memcg);
2769 break;
2770 }
241994ed 2771 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2772
cb731d6c
VD
2773 if (reclaim_state) {
2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2775 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2776 }
2777
8e8ae645
JW
2778 /* Record the subtree's reclaim efficiency */
2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2780 sc->nr_scanned - nr_scanned,
2781 sc->nr_reclaimed - nr_reclaimed);
2782
2344d7e4
JW
2783 if (sc->nr_reclaimed - nr_reclaimed)
2784 reclaimable = true;
2785
e3c1ac58
AR
2786 if (current_is_kswapd()) {
2787 /*
2788 * If reclaim is isolating dirty pages under writeback,
2789 * it implies that the long-lived page allocation rate
2790 * is exceeding the page laundering rate. Either the
2791 * global limits are not being effective at throttling
2792 * processes due to the page distribution throughout
2793 * zones or there is heavy usage of a slow backing
2794 * device. The only option is to throttle from reclaim
2795 * context which is not ideal as there is no guarantee
2796 * the dirtying process is throttled in the same way
2797 * balance_dirty_pages() manages.
2798 *
2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 * count the number of pages under pages flagged for
2801 * immediate reclaim and stall if any are encountered
2802 * in the nr_immediate check below.
2803 */
2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2806
d108c772
AR
2807 /*
2808 * Tag a node as congested if all the dirty pages
2809 * scanned were backed by a congested BDI and
2810 * wait_iff_congested will stall.
2811 */
2812 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2813 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2814
2815 /* Allow kswapd to start writing pages during reclaim.*/
2816 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2817 set_bit(PGDAT_DIRTY, &pgdat->flags);
2818
2819 /*
2820 * If kswapd scans pages marked marked for immediate
2821 * reclaim and under writeback (nr_immediate), it
2822 * implies that pages are cycling through the LRU
2823 * faster than they are written so also forcibly stall.
2824 */
2825 if (sc->nr.immediate)
2826 congestion_wait(BLK_RW_ASYNC, HZ/10);
2827 }
2828
e3c1ac58
AR
2829 /*
2830 * Legacy memcg will stall in page writeback so avoid forcibly
2831 * stalling in wait_iff_congested().
2832 */
2833 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2834 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2835 set_memcg_congestion(pgdat, root, true);
2836
d108c772
AR
2837 /*
2838 * Stall direct reclaim for IO completions if underlying BDIs
2839 * and node is congested. Allow kswapd to continue until it
2840 * starts encountering unqueued dirty pages or cycling through
2841 * the LRU too quickly.
2842 */
2843 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2844 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2845 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2846
a9dd0a83 2847 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2848 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2849
c73322d0
JW
2850 /*
2851 * Kswapd gives up on balancing particular nodes after too
2852 * many failures to reclaim anything from them and goes to
2853 * sleep. On reclaim progress, reset the failure counter. A
2854 * successful direct reclaim run will revive a dormant kswapd.
2855 */
2856 if (reclaimable)
2857 pgdat->kswapd_failures = 0;
2858
2344d7e4 2859 return reclaimable;
f16015fb
JW
2860}
2861
53853e2d 2862/*
fdd4c614
VB
2863 * Returns true if compaction should go ahead for a costly-order request, or
2864 * the allocation would already succeed without compaction. Return false if we
2865 * should reclaim first.
53853e2d 2866 */
4f588331 2867static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2868{
31483b6a 2869 unsigned long watermark;
fdd4c614 2870 enum compact_result suitable;
fe4b1b24 2871
fdd4c614
VB
2872 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2873 if (suitable == COMPACT_SUCCESS)
2874 /* Allocation should succeed already. Don't reclaim. */
2875 return true;
2876 if (suitable == COMPACT_SKIPPED)
2877 /* Compaction cannot yet proceed. Do reclaim. */
2878 return false;
fe4b1b24 2879
53853e2d 2880 /*
fdd4c614
VB
2881 * Compaction is already possible, but it takes time to run and there
2882 * are potentially other callers using the pages just freed. So proceed
2883 * with reclaim to make a buffer of free pages available to give
2884 * compaction a reasonable chance of completing and allocating the page.
2885 * Note that we won't actually reclaim the whole buffer in one attempt
2886 * as the target watermark in should_continue_reclaim() is lower. But if
2887 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2888 */
fdd4c614 2889 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2890
fdd4c614 2891 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2892}
2893
1da177e4
LT
2894/*
2895 * This is the direct reclaim path, for page-allocating processes. We only
2896 * try to reclaim pages from zones which will satisfy the caller's allocation
2897 * request.
2898 *
1da177e4
LT
2899 * If a zone is deemed to be full of pinned pages then just give it a light
2900 * scan then give up on it.
2901 */
0a0337e0 2902static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2903{
dd1a239f 2904 struct zoneref *z;
54a6eb5c 2905 struct zone *zone;
0608f43d
AM
2906 unsigned long nr_soft_reclaimed;
2907 unsigned long nr_soft_scanned;
619d0d76 2908 gfp_t orig_mask;
79dafcdc 2909 pg_data_t *last_pgdat = NULL;
1cfb419b 2910
cc715d99
MG
2911 /*
2912 * If the number of buffer_heads in the machine exceeds the maximum
2913 * allowed level, force direct reclaim to scan the highmem zone as
2914 * highmem pages could be pinning lowmem pages storing buffer_heads
2915 */
619d0d76 2916 orig_mask = sc->gfp_mask;
b2e18757 2917 if (buffer_heads_over_limit) {
cc715d99 2918 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2919 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2920 }
cc715d99 2921
d4debc66 2922 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2923 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2924 /*
2925 * Take care memory controller reclaiming has small influence
2926 * to global LRU.
2927 */
89b5fae5 2928 if (global_reclaim(sc)) {
344736f2
VD
2929 if (!cpuset_zone_allowed(zone,
2930 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2931 continue;
65ec02cb 2932
0b06496a
JW
2933 /*
2934 * If we already have plenty of memory free for
2935 * compaction in this zone, don't free any more.
2936 * Even though compaction is invoked for any
2937 * non-zero order, only frequent costly order
2938 * reclamation is disruptive enough to become a
2939 * noticeable problem, like transparent huge
2940 * page allocations.
2941 */
2942 if (IS_ENABLED(CONFIG_COMPACTION) &&
2943 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2944 compaction_ready(zone, sc)) {
0b06496a
JW
2945 sc->compaction_ready = true;
2946 continue;
e0887c19 2947 }
0b06496a 2948
79dafcdc
MG
2949 /*
2950 * Shrink each node in the zonelist once. If the
2951 * zonelist is ordered by zone (not the default) then a
2952 * node may be shrunk multiple times but in that case
2953 * the user prefers lower zones being preserved.
2954 */
2955 if (zone->zone_pgdat == last_pgdat)
2956 continue;
2957
0608f43d
AM
2958 /*
2959 * This steals pages from memory cgroups over softlimit
2960 * and returns the number of reclaimed pages and
2961 * scanned pages. This works for global memory pressure
2962 * and balancing, not for a memcg's limit.
2963 */
2964 nr_soft_scanned = 0;
ef8f2327 2965 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2966 sc->order, sc->gfp_mask,
2967 &nr_soft_scanned);
2968 sc->nr_reclaimed += nr_soft_reclaimed;
2969 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2970 /* need some check for avoid more shrink_zone() */
1cfb419b 2971 }
408d8544 2972
79dafcdc
MG
2973 /* See comment about same check for global reclaim above */
2974 if (zone->zone_pgdat == last_pgdat)
2975 continue;
2976 last_pgdat = zone->zone_pgdat;
970a39a3 2977 shrink_node(zone->zone_pgdat, sc);
1da177e4 2978 }
e0c23279 2979
619d0d76
WY
2980 /*
2981 * Restore to original mask to avoid the impact on the caller if we
2982 * promoted it to __GFP_HIGHMEM.
2983 */
2984 sc->gfp_mask = orig_mask;
1da177e4 2985}
4f98a2fe 2986
2a2e4885
JW
2987static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2988{
2989 struct mem_cgroup *memcg;
2990
2991 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2992 do {
2993 unsigned long refaults;
2994 struct lruvec *lruvec;
2995
2996 if (memcg)
ccda7f43 2997 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2998 else
2999 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3000
3001 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3002 lruvec->refaults = refaults;
3003 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3004}
3005
1da177e4
LT
3006/*
3007 * This is the main entry point to direct page reclaim.
3008 *
3009 * If a full scan of the inactive list fails to free enough memory then we
3010 * are "out of memory" and something needs to be killed.
3011 *
3012 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3013 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3014 * caller can't do much about. We kick the writeback threads and take explicit
3015 * naps in the hope that some of these pages can be written. But if the
3016 * allocating task holds filesystem locks which prevent writeout this might not
3017 * work, and the allocation attempt will fail.
a41f24ea
NA
3018 *
3019 * returns: 0, if no pages reclaimed
3020 * else, the number of pages reclaimed
1da177e4 3021 */
dac1d27b 3022static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3023 struct scan_control *sc)
1da177e4 3024{
241994ed 3025 int initial_priority = sc->priority;
2a2e4885
JW
3026 pg_data_t *last_pgdat;
3027 struct zoneref *z;
3028 struct zone *zone;
241994ed 3029retry:
873b4771
KK
3030 delayacct_freepages_start();
3031
89b5fae5 3032 if (global_reclaim(sc))
7cc30fcf 3033 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3034
9e3b2f8c 3035 do {
70ddf637
AV
3036 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3037 sc->priority);
66e1707b 3038 sc->nr_scanned = 0;
0a0337e0 3039 shrink_zones(zonelist, sc);
c6a8a8c5 3040
bb21c7ce 3041 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3042 break;
3043
3044 if (sc->compaction_ready)
3045 break;
1da177e4 3046
0e50ce3b
MK
3047 /*
3048 * If we're getting trouble reclaiming, start doing
3049 * writepage even in laptop mode.
3050 */
3051 if (sc->priority < DEF_PRIORITY - 2)
3052 sc->may_writepage = 1;
0b06496a 3053 } while (--sc->priority >= 0);
bb21c7ce 3054
2a2e4885
JW
3055 last_pgdat = NULL;
3056 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3057 sc->nodemask) {
3058 if (zone->zone_pgdat == last_pgdat)
3059 continue;
3060 last_pgdat = zone->zone_pgdat;
3061 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3062 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3063 }
3064
873b4771
KK
3065 delayacct_freepages_end();
3066
bb21c7ce
KM
3067 if (sc->nr_reclaimed)
3068 return sc->nr_reclaimed;
3069
0cee34fd 3070 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3071 if (sc->compaction_ready)
7335084d
MG
3072 return 1;
3073
241994ed 3074 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3075 if (sc->memcg_low_skipped) {
241994ed 3076 sc->priority = initial_priority;
d6622f63
YX
3077 sc->memcg_low_reclaim = 1;
3078 sc->memcg_low_skipped = 0;
241994ed
JW
3079 goto retry;
3080 }
3081
bb21c7ce 3082 return 0;
1da177e4
LT
3083}
3084
c73322d0 3085static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3086{
3087 struct zone *zone;
3088 unsigned long pfmemalloc_reserve = 0;
3089 unsigned long free_pages = 0;
3090 int i;
3091 bool wmark_ok;
3092
c73322d0
JW
3093 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3094 return true;
3095
5515061d
MG
3096 for (i = 0; i <= ZONE_NORMAL; i++) {
3097 zone = &pgdat->node_zones[i];
d450abd8
JW
3098 if (!managed_zone(zone))
3099 continue;
3100
3101 if (!zone_reclaimable_pages(zone))
675becce
MG
3102 continue;
3103
5515061d
MG
3104 pfmemalloc_reserve += min_wmark_pages(zone);
3105 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3106 }
3107
675becce
MG
3108 /* If there are no reserves (unexpected config) then do not throttle */
3109 if (!pfmemalloc_reserve)
3110 return true;
3111
5515061d
MG
3112 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3113
3114 /* kswapd must be awake if processes are being throttled */
3115 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3116 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3117 (enum zone_type)ZONE_NORMAL);
3118 wake_up_interruptible(&pgdat->kswapd_wait);
3119 }
3120
3121 return wmark_ok;
3122}
3123
3124/*
3125 * Throttle direct reclaimers if backing storage is backed by the network
3126 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3127 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3128 * when the low watermark is reached.
3129 *
3130 * Returns true if a fatal signal was delivered during throttling. If this
3131 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3132 */
50694c28 3133static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3134 nodemask_t *nodemask)
3135{
675becce 3136 struct zoneref *z;
5515061d 3137 struct zone *zone;
675becce 3138 pg_data_t *pgdat = NULL;
5515061d
MG
3139
3140 /*
3141 * Kernel threads should not be throttled as they may be indirectly
3142 * responsible for cleaning pages necessary for reclaim to make forward
3143 * progress. kjournald for example may enter direct reclaim while
3144 * committing a transaction where throttling it could forcing other
3145 * processes to block on log_wait_commit().
3146 */
3147 if (current->flags & PF_KTHREAD)
50694c28
MG
3148 goto out;
3149
3150 /*
3151 * If a fatal signal is pending, this process should not throttle.
3152 * It should return quickly so it can exit and free its memory
3153 */
3154 if (fatal_signal_pending(current))
3155 goto out;
5515061d 3156
675becce
MG
3157 /*
3158 * Check if the pfmemalloc reserves are ok by finding the first node
3159 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3160 * GFP_KERNEL will be required for allocating network buffers when
3161 * swapping over the network so ZONE_HIGHMEM is unusable.
3162 *
3163 * Throttling is based on the first usable node and throttled processes
3164 * wait on a queue until kswapd makes progress and wakes them. There
3165 * is an affinity then between processes waking up and where reclaim
3166 * progress has been made assuming the process wakes on the same node.
3167 * More importantly, processes running on remote nodes will not compete
3168 * for remote pfmemalloc reserves and processes on different nodes
3169 * should make reasonable progress.
3170 */
3171 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3172 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3173 if (zone_idx(zone) > ZONE_NORMAL)
3174 continue;
3175
3176 /* Throttle based on the first usable node */
3177 pgdat = zone->zone_pgdat;
c73322d0 3178 if (allow_direct_reclaim(pgdat))
675becce
MG
3179 goto out;
3180 break;
3181 }
3182
3183 /* If no zone was usable by the allocation flags then do not throttle */
3184 if (!pgdat)
50694c28 3185 goto out;
5515061d 3186
68243e76
MG
3187 /* Account for the throttling */
3188 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3189
5515061d
MG
3190 /*
3191 * If the caller cannot enter the filesystem, it's possible that it
3192 * is due to the caller holding an FS lock or performing a journal
3193 * transaction in the case of a filesystem like ext[3|4]. In this case,
3194 * it is not safe to block on pfmemalloc_wait as kswapd could be
3195 * blocked waiting on the same lock. Instead, throttle for up to a
3196 * second before continuing.
3197 */
3198 if (!(gfp_mask & __GFP_FS)) {
3199 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3200 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3201
3202 goto check_pending;
5515061d
MG
3203 }
3204
3205 /* Throttle until kswapd wakes the process */
3206 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3207 allow_direct_reclaim(pgdat));
50694c28
MG
3208
3209check_pending:
3210 if (fatal_signal_pending(current))
3211 return true;
3212
3213out:
3214 return false;
5515061d
MG
3215}
3216
dac1d27b 3217unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3218 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3219{
33906bc5 3220 unsigned long nr_reclaimed;
66e1707b 3221 struct scan_control sc = {
ee814fe2 3222 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3223 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3224 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3225 .order = order,
3226 .nodemask = nodemask,
3227 .priority = DEF_PRIORITY,
66e1707b 3228 .may_writepage = !laptop_mode,
a6dc60f8 3229 .may_unmap = 1,
2e2e4259 3230 .may_swap = 1,
66e1707b
BS
3231 };
3232
bb451fdf
GT
3233 /*
3234 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3235 * Confirm they are large enough for max values.
3236 */
3237 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3238 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3239 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3240
5515061d 3241 /*
50694c28
MG
3242 * Do not enter reclaim if fatal signal was delivered while throttled.
3243 * 1 is returned so that the page allocator does not OOM kill at this
3244 * point.
5515061d 3245 */
f2f43e56 3246 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3247 return 1;
3248
33906bc5
MG
3249 trace_mm_vmscan_direct_reclaim_begin(order,
3250 sc.may_writepage,
f2f43e56 3251 sc.gfp_mask,
e5146b12 3252 sc.reclaim_idx);
33906bc5 3253
3115cd91 3254 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3255
3256 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3257
3258 return nr_reclaimed;
66e1707b
BS
3259}
3260
c255a458 3261#ifdef CONFIG_MEMCG
66e1707b 3262
a9dd0a83 3263unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3264 gfp_t gfp_mask, bool noswap,
ef8f2327 3265 pg_data_t *pgdat,
0ae5e89c 3266 unsigned long *nr_scanned)
4e416953
BS
3267{
3268 struct scan_control sc = {
b8f5c566 3269 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3270 .target_mem_cgroup = memcg,
4e416953
BS
3271 .may_writepage = !laptop_mode,
3272 .may_unmap = 1,
b2e18757 3273 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3274 .may_swap = !noswap,
4e416953 3275 };
6b4f7799 3276 unsigned long lru_pages;
0ae5e89c 3277
4e416953
BS
3278 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3279 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3280
9e3b2f8c 3281 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3282 sc.may_writepage,
e5146b12
MG
3283 sc.gfp_mask,
3284 sc.reclaim_idx);
bdce6d9e 3285
4e416953
BS
3286 /*
3287 * NOTE: Although we can get the priority field, using it
3288 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3289 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3290 * will pick up pages from other mem cgroup's as well. We hack
3291 * the priority and make it zero.
3292 */
ef8f2327 3293 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3294
3295 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3296
0ae5e89c 3297 *nr_scanned = sc.nr_scanned;
4e416953
BS
3298 return sc.nr_reclaimed;
3299}
3300
72835c86 3301unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3302 unsigned long nr_pages,
a7885eb8 3303 gfp_t gfp_mask,
b70a2a21 3304 bool may_swap)
66e1707b 3305{
4e416953 3306 struct zonelist *zonelist;
bdce6d9e 3307 unsigned long nr_reclaimed;
889976db 3308 int nid;
499118e9 3309 unsigned int noreclaim_flag;
66e1707b 3310 struct scan_control sc = {
b70a2a21 3311 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3312 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3313 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3314 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3315 .target_mem_cgroup = memcg,
3316 .priority = DEF_PRIORITY,
3317 .may_writepage = !laptop_mode,
3318 .may_unmap = 1,
b70a2a21 3319 .may_swap = may_swap,
a09ed5e0 3320 };
66e1707b 3321
889976db
YH
3322 /*
3323 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3324 * take care of from where we get pages. So the node where we start the
3325 * scan does not need to be the current node.
3326 */
72835c86 3327 nid = mem_cgroup_select_victim_node(memcg);
889976db 3328
c9634cf0 3329 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3330
3331 trace_mm_vmscan_memcg_reclaim_begin(0,
3332 sc.may_writepage,
e5146b12
MG
3333 sc.gfp_mask,
3334 sc.reclaim_idx);
bdce6d9e 3335
499118e9 3336 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3337 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3338 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3339
3340 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3341
3342 return nr_reclaimed;
66e1707b
BS
3343}
3344#endif
3345
1d82de61 3346static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3347 struct scan_control *sc)
f16015fb 3348{
b95a2f2d 3349 struct mem_cgroup *memcg;
f16015fb 3350
b95a2f2d
JW
3351 if (!total_swap_pages)
3352 return;
3353
3354 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3355 do {
ef8f2327 3356 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3357
2a2e4885 3358 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3359 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3360 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3361
3362 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3363 } while (memcg);
f16015fb
JW
3364}
3365
e716f2eb
MG
3366/*
3367 * Returns true if there is an eligible zone balanced for the request order
3368 * and classzone_idx
3369 */
3370static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3371{
e716f2eb
MG
3372 int i;
3373 unsigned long mark = -1;
3374 struct zone *zone;
60cefed4 3375
e716f2eb
MG
3376 for (i = 0; i <= classzone_idx; i++) {
3377 zone = pgdat->node_zones + i;
6256c6b4 3378
e716f2eb
MG
3379 if (!managed_zone(zone))
3380 continue;
3381
3382 mark = high_wmark_pages(zone);
3383 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3384 return true;
3385 }
3386
3387 /*
3388 * If a node has no populated zone within classzone_idx, it does not
3389 * need balancing by definition. This can happen if a zone-restricted
3390 * allocation tries to wake a remote kswapd.
3391 */
3392 if (mark == -1)
3393 return true;
3394
3395 return false;
60cefed4
JW
3396}
3397
631b6e08
MG
3398/* Clear pgdat state for congested, dirty or under writeback. */
3399static void clear_pgdat_congested(pg_data_t *pgdat)
3400{
3401 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3402 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3403 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3404}
3405
5515061d
MG
3406/*
3407 * Prepare kswapd for sleeping. This verifies that there are no processes
3408 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3409 *
3410 * Returns true if kswapd is ready to sleep
3411 */
d9f21d42 3412static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3413{
5515061d 3414 /*
9e5e3661 3415 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3416 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3417 * race between when kswapd checks the watermarks and a process gets
3418 * throttled. There is also a potential race if processes get
3419 * throttled, kswapd wakes, a large process exits thereby balancing the
3420 * zones, which causes kswapd to exit balance_pgdat() before reaching
3421 * the wake up checks. If kswapd is going to sleep, no process should
3422 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3423 * the wake up is premature, processes will wake kswapd and get
3424 * throttled again. The difference from wake ups in balance_pgdat() is
3425 * that here we are under prepare_to_wait().
5515061d 3426 */
9e5e3661
VB
3427 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3428 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3429
c73322d0
JW
3430 /* Hopeless node, leave it to direct reclaim */
3431 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3432 return true;
3433
e716f2eb
MG
3434 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3435 clear_pgdat_congested(pgdat);
3436 return true;
1d82de61
MG
3437 }
3438
333b0a45 3439 return false;
f50de2d3
MG
3440}
3441
75485363 3442/*
1d82de61
MG
3443 * kswapd shrinks a node of pages that are at or below the highest usable
3444 * zone that is currently unbalanced.
b8e83b94
MG
3445 *
3446 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3447 * reclaim or if the lack of progress was due to pages under writeback.
3448 * This is used to determine if the scanning priority needs to be raised.
75485363 3449 */
1d82de61 3450static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3451 struct scan_control *sc)
75485363 3452{
1d82de61
MG
3453 struct zone *zone;
3454 int z;
75485363 3455
1d82de61
MG
3456 /* Reclaim a number of pages proportional to the number of zones */
3457 sc->nr_to_reclaim = 0;
970a39a3 3458 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3459 zone = pgdat->node_zones + z;
6aa303de 3460 if (!managed_zone(zone))
1d82de61 3461 continue;
7c954f6d 3462
1d82de61
MG
3463 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3464 }
7c954f6d
MG
3465
3466 /*
1d82de61
MG
3467 * Historically care was taken to put equal pressure on all zones but
3468 * now pressure is applied based on node LRU order.
7c954f6d 3469 */
970a39a3 3470 shrink_node(pgdat, sc);
283aba9f 3471
7c954f6d 3472 /*
1d82de61
MG
3473 * Fragmentation may mean that the system cannot be rebalanced for
3474 * high-order allocations. If twice the allocation size has been
3475 * reclaimed then recheck watermarks only at order-0 to prevent
3476 * excessive reclaim. Assume that a process requested a high-order
3477 * can direct reclaim/compact.
7c954f6d 3478 */
9861a62c 3479 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3480 sc->order = 0;
7c954f6d 3481
b8e83b94 3482 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3483}
3484
1da177e4 3485/*
1d82de61
MG
3486 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3487 * that are eligible for use by the caller until at least one zone is
3488 * balanced.
1da177e4 3489 *
1d82de61 3490 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3491 *
3492 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3493 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3494 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3495 * or lower is eligible for reclaim until at least one usable zone is
3496 * balanced.
1da177e4 3497 */
accf6242 3498static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3499{
1da177e4 3500 int i;
0608f43d
AM
3501 unsigned long nr_soft_reclaimed;
3502 unsigned long nr_soft_scanned;
1d82de61 3503 struct zone *zone;
179e9639
AM
3504 struct scan_control sc = {
3505 .gfp_mask = GFP_KERNEL,
ee814fe2 3506 .order = order,
b8e83b94 3507 .priority = DEF_PRIORITY,
ee814fe2 3508 .may_writepage = !laptop_mode,
a6dc60f8 3509 .may_unmap = 1,
2e2e4259 3510 .may_swap = 1,
179e9639 3511 };
93781325
OS
3512
3513 __fs_reclaim_acquire();
3514
f8891e5e 3515 count_vm_event(PAGEOUTRUN);
1da177e4 3516
9e3b2f8c 3517 do {
c73322d0 3518 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3519 bool raise_priority = true;
93781325 3520 bool ret;
b8e83b94 3521
84c7a777 3522 sc.reclaim_idx = classzone_idx;
1da177e4 3523
86c79f6b 3524 /*
84c7a777
MG
3525 * If the number of buffer_heads exceeds the maximum allowed
3526 * then consider reclaiming from all zones. This has a dual
3527 * purpose -- on 64-bit systems it is expected that
3528 * buffer_heads are stripped during active rotation. On 32-bit
3529 * systems, highmem pages can pin lowmem memory and shrinking
3530 * buffers can relieve lowmem pressure. Reclaim may still not
3531 * go ahead if all eligible zones for the original allocation
3532 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3533 */
3534 if (buffer_heads_over_limit) {
3535 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3536 zone = pgdat->node_zones + i;
6aa303de 3537 if (!managed_zone(zone))
86c79f6b 3538 continue;
cc715d99 3539
970a39a3 3540 sc.reclaim_idx = i;
e1dbeda6 3541 break;
1da177e4 3542 }
1da177e4 3543 }
dafcb73e 3544
86c79f6b 3545 /*
e716f2eb
MG
3546 * Only reclaim if there are no eligible zones. Note that
3547 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3548 * have adjusted it.
86c79f6b 3549 */
e716f2eb
MG
3550 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3551 goto out;
e1dbeda6 3552
1d82de61
MG
3553 /*
3554 * Do some background aging of the anon list, to give
3555 * pages a chance to be referenced before reclaiming. All
3556 * pages are rotated regardless of classzone as this is
3557 * about consistent aging.
3558 */
ef8f2327 3559 age_active_anon(pgdat, &sc);
1d82de61 3560
b7ea3c41
MG
3561 /*
3562 * If we're getting trouble reclaiming, start doing writepage
3563 * even in laptop mode.
3564 */
047d72c3 3565 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3566 sc.may_writepage = 1;
3567
1d82de61
MG
3568 /* Call soft limit reclaim before calling shrink_node. */
3569 sc.nr_scanned = 0;
3570 nr_soft_scanned = 0;
ef8f2327 3571 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3572 sc.gfp_mask, &nr_soft_scanned);
3573 sc.nr_reclaimed += nr_soft_reclaimed;
3574
1da177e4 3575 /*
1d82de61
MG
3576 * There should be no need to raise the scanning priority if
3577 * enough pages are already being scanned that that high
3578 * watermark would be met at 100% efficiency.
1da177e4 3579 */
970a39a3 3580 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3581 raise_priority = false;
5515061d
MG
3582
3583 /*
3584 * If the low watermark is met there is no need for processes
3585 * to be throttled on pfmemalloc_wait as they should not be
3586 * able to safely make forward progress. Wake them
3587 */
3588 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3589 allow_direct_reclaim(pgdat))
cfc51155 3590 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3591
b8e83b94 3592 /* Check if kswapd should be suspending */
93781325
OS
3593 __fs_reclaim_release();
3594 ret = try_to_freeze();
3595 __fs_reclaim_acquire();
3596 if (ret || kthread_should_stop())
b8e83b94 3597 break;
8357376d 3598
73ce02e9 3599 /*
b8e83b94
MG
3600 * Raise priority if scanning rate is too low or there was no
3601 * progress in reclaiming pages
73ce02e9 3602 */
c73322d0
JW
3603 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3604 if (raise_priority || !nr_reclaimed)
b8e83b94 3605 sc.priority--;
1d82de61 3606 } while (sc.priority >= 1);
1da177e4 3607
c73322d0
JW
3608 if (!sc.nr_reclaimed)
3609 pgdat->kswapd_failures++;
3610
b8e83b94 3611out:
2a2e4885 3612 snapshot_refaults(NULL, pgdat);
93781325 3613 __fs_reclaim_release();
0abdee2b 3614 /*
1d82de61
MG
3615 * Return the order kswapd stopped reclaiming at as
3616 * prepare_kswapd_sleep() takes it into account. If another caller
3617 * entered the allocator slow path while kswapd was awake, order will
3618 * remain at the higher level.
0abdee2b 3619 */
1d82de61 3620 return sc.order;
1da177e4
LT
3621}
3622
e716f2eb
MG
3623/*
3624 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3625 * allocation request woke kswapd for. When kswapd has not woken recently,
3626 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3627 * given classzone and returns it or the highest classzone index kswapd
3628 * was recently woke for.
3629 */
3630static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3631 enum zone_type classzone_idx)
3632{
3633 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3634 return classzone_idx;
3635
3636 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3637}
3638
38087d9b
MG
3639static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3640 unsigned int classzone_idx)
f0bc0a60
KM
3641{
3642 long remaining = 0;
3643 DEFINE_WAIT(wait);
3644
3645 if (freezing(current) || kthread_should_stop())
3646 return;
3647
3648 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3649
333b0a45
SG
3650 /*
3651 * Try to sleep for a short interval. Note that kcompactd will only be
3652 * woken if it is possible to sleep for a short interval. This is
3653 * deliberate on the assumption that if reclaim cannot keep an
3654 * eligible zone balanced that it's also unlikely that compaction will
3655 * succeed.
3656 */
d9f21d42 3657 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3658 /*
3659 * Compaction records what page blocks it recently failed to
3660 * isolate pages from and skips them in the future scanning.
3661 * When kswapd is going to sleep, it is reasonable to assume
3662 * that pages and compaction may succeed so reset the cache.
3663 */
3664 reset_isolation_suitable(pgdat);
3665
3666 /*
3667 * We have freed the memory, now we should compact it to make
3668 * allocation of the requested order possible.
3669 */
38087d9b 3670 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3671
f0bc0a60 3672 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3673
3674 /*
3675 * If woken prematurely then reset kswapd_classzone_idx and
3676 * order. The values will either be from a wakeup request or
3677 * the previous request that slept prematurely.
3678 */
3679 if (remaining) {
e716f2eb 3680 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3681 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3682 }
3683
f0bc0a60
KM
3684 finish_wait(&pgdat->kswapd_wait, &wait);
3685 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3686 }
3687
3688 /*
3689 * After a short sleep, check if it was a premature sleep. If not, then
3690 * go fully to sleep until explicitly woken up.
3691 */
d9f21d42
MG
3692 if (!remaining &&
3693 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3694 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3695
3696 /*
3697 * vmstat counters are not perfectly accurate and the estimated
3698 * value for counters such as NR_FREE_PAGES can deviate from the
3699 * true value by nr_online_cpus * threshold. To avoid the zone
3700 * watermarks being breached while under pressure, we reduce the
3701 * per-cpu vmstat threshold while kswapd is awake and restore
3702 * them before going back to sleep.
3703 */
3704 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3705
3706 if (!kthread_should_stop())
3707 schedule();
3708
f0bc0a60
KM
3709 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3710 } else {
3711 if (remaining)
3712 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3713 else
3714 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3715 }
3716 finish_wait(&pgdat->kswapd_wait, &wait);
3717}
3718
1da177e4
LT
3719/*
3720 * The background pageout daemon, started as a kernel thread
4f98a2fe 3721 * from the init process.
1da177e4
LT
3722 *
3723 * This basically trickles out pages so that we have _some_
3724 * free memory available even if there is no other activity
3725 * that frees anything up. This is needed for things like routing
3726 * etc, where we otherwise might have all activity going on in
3727 * asynchronous contexts that cannot page things out.
3728 *
3729 * If there are applications that are active memory-allocators
3730 * (most normal use), this basically shouldn't matter.
3731 */
3732static int kswapd(void *p)
3733{
e716f2eb
MG
3734 unsigned int alloc_order, reclaim_order;
3735 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3736 pg_data_t *pgdat = (pg_data_t*)p;
3737 struct task_struct *tsk = current;
f0bc0a60 3738
1da177e4
LT
3739 struct reclaim_state reclaim_state = {
3740 .reclaimed_slab = 0,
3741 };
a70f7302 3742 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3743
174596a0 3744 if (!cpumask_empty(cpumask))
c5f59f08 3745 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3746 current->reclaim_state = &reclaim_state;
3747
3748 /*
3749 * Tell the memory management that we're a "memory allocator",
3750 * and that if we need more memory we should get access to it
3751 * regardless (see "__alloc_pages()"). "kswapd" should
3752 * never get caught in the normal page freeing logic.
3753 *
3754 * (Kswapd normally doesn't need memory anyway, but sometimes
3755 * you need a small amount of memory in order to be able to
3756 * page out something else, and this flag essentially protects
3757 * us from recursively trying to free more memory as we're
3758 * trying to free the first piece of memory in the first place).
3759 */
930d9152 3760 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3761 set_freezable();
1da177e4 3762
e716f2eb
MG
3763 pgdat->kswapd_order = 0;
3764 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3765 for ( ; ; ) {
6f6313d4 3766 bool ret;
3e1d1d28 3767
e716f2eb
MG
3768 alloc_order = reclaim_order = pgdat->kswapd_order;
3769 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3770
38087d9b
MG
3771kswapd_try_sleep:
3772 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3773 classzone_idx);
215ddd66 3774
38087d9b
MG
3775 /* Read the new order and classzone_idx */
3776 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3777 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3778 pgdat->kswapd_order = 0;
e716f2eb 3779 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3780
8fe23e05
DR
3781 ret = try_to_freeze();
3782 if (kthread_should_stop())
3783 break;
3784
3785 /*
3786 * We can speed up thawing tasks if we don't call balance_pgdat
3787 * after returning from the refrigerator
3788 */
38087d9b
MG
3789 if (ret)
3790 continue;
3791
3792 /*
3793 * Reclaim begins at the requested order but if a high-order
3794 * reclaim fails then kswapd falls back to reclaiming for
3795 * order-0. If that happens, kswapd will consider sleeping
3796 * for the order it finished reclaiming at (reclaim_order)
3797 * but kcompactd is woken to compact for the original
3798 * request (alloc_order).
3799 */
e5146b12
MG
3800 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3801 alloc_order);
38087d9b
MG
3802 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3803 if (reclaim_order < alloc_order)
3804 goto kswapd_try_sleep;
1da177e4 3805 }
b0a8cc58 3806
71abdc15 3807 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3808 current->reclaim_state = NULL;
71abdc15 3809
1da177e4
LT
3810 return 0;
3811}
3812
3813/*
5ecd9d40
DR
3814 * A zone is low on free memory or too fragmented for high-order memory. If
3815 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3816 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3817 * has failed or is not needed, still wake up kcompactd if only compaction is
3818 * needed.
1da177e4 3819 */
5ecd9d40
DR
3820void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3821 enum zone_type classzone_idx)
1da177e4
LT
3822{
3823 pg_data_t *pgdat;
3824
6aa303de 3825 if (!managed_zone(zone))
1da177e4
LT
3826 return;
3827
5ecd9d40 3828 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3829 return;
88f5acf8 3830 pgdat = zone->zone_pgdat;
e716f2eb
MG
3831 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3832 classzone_idx);
38087d9b 3833 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3834 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3835 return;
e1a55637 3836
5ecd9d40
DR
3837 /* Hopeless node, leave it to direct reclaim if possible */
3838 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3839 pgdat_balanced(pgdat, order, classzone_idx)) {
3840 /*
3841 * There may be plenty of free memory available, but it's too
3842 * fragmented for high-order allocations. Wake up kcompactd
3843 * and rely on compaction_suitable() to determine if it's
3844 * needed. If it fails, it will defer subsequent attempts to
3845 * ratelimit its work.
3846 */
3847 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3848 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3849 return;
5ecd9d40 3850 }
88f5acf8 3851
5ecd9d40
DR
3852 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3853 gfp_flags);
8d0986e2 3854 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3855}
3856
c6f37f12 3857#ifdef CONFIG_HIBERNATION
1da177e4 3858/*
7b51755c 3859 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3860 * freed pages.
3861 *
3862 * Rather than trying to age LRUs the aim is to preserve the overall
3863 * LRU order by reclaiming preferentially
3864 * inactive > active > active referenced > active mapped
1da177e4 3865 */
7b51755c 3866unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3867{
d6277db4 3868 struct reclaim_state reclaim_state;
d6277db4 3869 struct scan_control sc = {
ee814fe2 3870 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3871 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3872 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3873 .priority = DEF_PRIORITY,
d6277db4 3874 .may_writepage = 1,
ee814fe2
JW
3875 .may_unmap = 1,
3876 .may_swap = 1,
7b51755c 3877 .hibernation_mode = 1,
1da177e4 3878 };
a09ed5e0 3879 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3880 struct task_struct *p = current;
3881 unsigned long nr_reclaimed;
499118e9 3882 unsigned int noreclaim_flag;
1da177e4 3883
d92a8cfc 3884 fs_reclaim_acquire(sc.gfp_mask);
93781325 3885 noreclaim_flag = memalloc_noreclaim_save();
7b51755c
KM
3886 reclaim_state.reclaimed_slab = 0;
3887 p->reclaim_state = &reclaim_state;
d6277db4 3888
3115cd91 3889 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3890
7b51755c 3891 p->reclaim_state = NULL;
499118e9 3892 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3893 fs_reclaim_release(sc.gfp_mask);
d6277db4 3894
7b51755c 3895 return nr_reclaimed;
1da177e4 3896}
c6f37f12 3897#endif /* CONFIG_HIBERNATION */
1da177e4 3898
1da177e4
LT
3899/* It's optimal to keep kswapds on the same CPUs as their memory, but
3900 not required for correctness. So if the last cpu in a node goes
3901 away, we get changed to run anywhere: as the first one comes back,
3902 restore their cpu bindings. */
517bbed9 3903static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3904{
58c0a4a7 3905 int nid;
1da177e4 3906
517bbed9
SAS
3907 for_each_node_state(nid, N_MEMORY) {
3908 pg_data_t *pgdat = NODE_DATA(nid);
3909 const struct cpumask *mask;
a70f7302 3910
517bbed9 3911 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3912
517bbed9
SAS
3913 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3914 /* One of our CPUs online: restore mask */
3915 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3916 }
517bbed9 3917 return 0;
1da177e4 3918}
1da177e4 3919
3218ae14
YG
3920/*
3921 * This kswapd start function will be called by init and node-hot-add.
3922 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3923 */
3924int kswapd_run(int nid)
3925{
3926 pg_data_t *pgdat = NODE_DATA(nid);
3927 int ret = 0;
3928
3929 if (pgdat->kswapd)
3930 return 0;
3931
3932 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3933 if (IS_ERR(pgdat->kswapd)) {
3934 /* failure at boot is fatal */
c6202adf 3935 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3936 pr_err("Failed to start kswapd on node %d\n", nid);
3937 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3938 pgdat->kswapd = NULL;
3218ae14
YG
3939 }
3940 return ret;
3941}
3942
8fe23e05 3943/*
d8adde17 3944 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3945 * hold mem_hotplug_begin/end().
8fe23e05
DR
3946 */
3947void kswapd_stop(int nid)
3948{
3949 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3950
d8adde17 3951 if (kswapd) {
8fe23e05 3952 kthread_stop(kswapd);
d8adde17
JL
3953 NODE_DATA(nid)->kswapd = NULL;
3954 }
8fe23e05
DR
3955}
3956
1da177e4
LT
3957static int __init kswapd_init(void)
3958{
517bbed9 3959 int nid, ret;
69e05944 3960
1da177e4 3961 swap_setup();
48fb2e24 3962 for_each_node_state(nid, N_MEMORY)
3218ae14 3963 kswapd_run(nid);
517bbed9
SAS
3964 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3965 "mm/vmscan:online", kswapd_cpu_online,
3966 NULL);
3967 WARN_ON(ret < 0);
1da177e4
LT
3968 return 0;
3969}
3970
3971module_init(kswapd_init)
9eeff239
CL
3972
3973#ifdef CONFIG_NUMA
3974/*
a5f5f91d 3975 * Node reclaim mode
9eeff239 3976 *
a5f5f91d 3977 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3978 * the watermarks.
9eeff239 3979 */
a5f5f91d 3980int node_reclaim_mode __read_mostly;
9eeff239 3981
1b2ffb78 3982#define RECLAIM_OFF 0
7d03431c 3983#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3984#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3985#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3986
a92f7126 3987/*
a5f5f91d 3988 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3989 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3990 * a zone.
3991 */
a5f5f91d 3992#define NODE_RECLAIM_PRIORITY 4
a92f7126 3993
9614634f 3994/*
a5f5f91d 3995 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3996 * occur.
3997 */
3998int sysctl_min_unmapped_ratio = 1;
3999
0ff38490
CL
4000/*
4001 * If the number of slab pages in a zone grows beyond this percentage then
4002 * slab reclaim needs to occur.
4003 */
4004int sysctl_min_slab_ratio = 5;
4005
11fb9989 4006static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4007{
11fb9989
MG
4008 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4009 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4010 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4011
4012 /*
4013 * It's possible for there to be more file mapped pages than
4014 * accounted for by the pages on the file LRU lists because
4015 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4016 */
4017 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4018}
4019
4020/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4021static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4022{
d031a157
AM
4023 unsigned long nr_pagecache_reclaimable;
4024 unsigned long delta = 0;
90afa5de
MG
4025
4026 /*
95bbc0c7 4027 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4028 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4029 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4030 * a better estimate
4031 */
a5f5f91d
MG
4032 if (node_reclaim_mode & RECLAIM_UNMAP)
4033 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4034 else
a5f5f91d 4035 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4036
4037 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4038 if (!(node_reclaim_mode & RECLAIM_WRITE))
4039 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4040
4041 /* Watch for any possible underflows due to delta */
4042 if (unlikely(delta > nr_pagecache_reclaimable))
4043 delta = nr_pagecache_reclaimable;
4044
4045 return nr_pagecache_reclaimable - delta;
4046}
4047
9eeff239 4048/*
a5f5f91d 4049 * Try to free up some pages from this node through reclaim.
9eeff239 4050 */
a5f5f91d 4051static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4052{
7fb2d46d 4053 /* Minimum pages needed in order to stay on node */
69e05944 4054 const unsigned long nr_pages = 1 << order;
9eeff239
CL
4055 struct task_struct *p = current;
4056 struct reclaim_state reclaim_state;
499118e9 4057 unsigned int noreclaim_flag;
179e9639 4058 struct scan_control sc = {
62b726c1 4059 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4060 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4061 .order = order,
a5f5f91d
MG
4062 .priority = NODE_RECLAIM_PRIORITY,
4063 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4064 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4065 .may_swap = 1,
f2f43e56 4066 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4067 };
9eeff239 4068
9eeff239 4069 cond_resched();
93781325 4070 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4071 /*
95bbc0c7 4072 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4073 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4074 * and RECLAIM_UNMAP.
d4f7796e 4075 */
499118e9
VB
4076 noreclaim_flag = memalloc_noreclaim_save();
4077 p->flags |= PF_SWAPWRITE;
9eeff239
CL
4078 reclaim_state.reclaimed_slab = 0;
4079 p->reclaim_state = &reclaim_state;
c84db23c 4080
a5f5f91d 4081 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4082 /*
894befec 4083 * Free memory by calling shrink node with increasing
0ff38490
CL
4084 * priorities until we have enough memory freed.
4085 */
0ff38490 4086 do {
970a39a3 4087 shrink_node(pgdat, &sc);
9e3b2f8c 4088 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4089 }
c84db23c 4090
9eeff239 4091 p->reclaim_state = NULL;
499118e9
VB
4092 current->flags &= ~PF_SWAPWRITE;
4093 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4094 fs_reclaim_release(sc.gfp_mask);
a79311c1 4095 return sc.nr_reclaimed >= nr_pages;
9eeff239 4096}
179e9639 4097
a5f5f91d 4098int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4099{
d773ed6b 4100 int ret;
179e9639
AM
4101
4102 /*
a5f5f91d 4103 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4104 * slab pages if we are over the defined limits.
34aa1330 4105 *
9614634f
CL
4106 * A small portion of unmapped file backed pages is needed for
4107 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4108 * thrown out if the node is overallocated. So we do not reclaim
4109 * if less than a specified percentage of the node is used by
9614634f 4110 * unmapped file backed pages.
179e9639 4111 */
a5f5f91d 4112 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4113 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4114 return NODE_RECLAIM_FULL;
179e9639
AM
4115
4116 /*
d773ed6b 4117 * Do not scan if the allocation should not be delayed.
179e9639 4118 */
d0164adc 4119 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4120 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4121
4122 /*
a5f5f91d 4123 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4124 * have associated processors. This will favor the local processor
4125 * over remote processors and spread off node memory allocations
4126 * as wide as possible.
4127 */
a5f5f91d
MG
4128 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4129 return NODE_RECLAIM_NOSCAN;
d773ed6b 4130
a5f5f91d
MG
4131 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4132 return NODE_RECLAIM_NOSCAN;
fa5e084e 4133
a5f5f91d
MG
4134 ret = __node_reclaim(pgdat, gfp_mask, order);
4135 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4136
24cf7251
MG
4137 if (!ret)
4138 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4139
d773ed6b 4140 return ret;
179e9639 4141}
9eeff239 4142#endif
894bc310 4143
894bc310
LS
4144/*
4145 * page_evictable - test whether a page is evictable
4146 * @page: the page to test
894bc310
LS
4147 *
4148 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4149 * lists vs unevictable list.
894bc310
LS
4150 *
4151 * Reasons page might not be evictable:
ba9ddf49 4152 * (1) page's mapping marked unevictable
b291f000 4153 * (2) page is part of an mlocked VMA
ba9ddf49 4154 *
894bc310 4155 */
39b5f29a 4156int page_evictable(struct page *page)
894bc310 4157{
e92bb4dd
HY
4158 int ret;
4159
4160 /* Prevent address_space of inode and swap cache from being freed */
4161 rcu_read_lock();
4162 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4163 rcu_read_unlock();
4164 return ret;
894bc310 4165}
89e004ea 4166
85046579 4167#ifdef CONFIG_SHMEM
89e004ea 4168/**
24513264
HD
4169 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4170 * @pages: array of pages to check
4171 * @nr_pages: number of pages to check
89e004ea 4172 *
24513264 4173 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
4174 *
4175 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 4176 */
24513264 4177void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 4178{
925b7673 4179 struct lruvec *lruvec;
785b99fe 4180 struct pglist_data *pgdat = NULL;
24513264
HD
4181 int pgscanned = 0;
4182 int pgrescued = 0;
4183 int i;
89e004ea 4184
24513264
HD
4185 for (i = 0; i < nr_pages; i++) {
4186 struct page *page = pages[i];
785b99fe 4187 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4188
24513264 4189 pgscanned++;
785b99fe
MG
4190 if (pagepgdat != pgdat) {
4191 if (pgdat)
4192 spin_unlock_irq(&pgdat->lru_lock);
4193 pgdat = pagepgdat;
4194 spin_lock_irq(&pgdat->lru_lock);
24513264 4195 }
785b99fe 4196 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4197
24513264
HD
4198 if (!PageLRU(page) || !PageUnevictable(page))
4199 continue;
89e004ea 4200
39b5f29a 4201 if (page_evictable(page)) {
24513264
HD
4202 enum lru_list lru = page_lru_base_type(page);
4203
309381fe 4204 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4205 ClearPageUnevictable(page);
fa9add64
HD
4206 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4207 add_page_to_lru_list(page, lruvec, lru);
24513264 4208 pgrescued++;
89e004ea 4209 }
24513264 4210 }
89e004ea 4211
785b99fe 4212 if (pgdat) {
24513264
HD
4213 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4214 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4215 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4216 }
89e004ea 4217}
85046579 4218#endif /* CONFIG_SHMEM */