]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Generic support for --consistency-policy and PPL
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
bbab0940
TM
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
418f9b36
N
86
87/* Define attributes that are unused but not harmful */
88#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 89
8e59f3d8 90#define MPB_SECTOR_CNT 2210
c2c087e6 91#define IMSM_RESERVED_SECTORS 4096
b81221b7 92#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 93#define SECT_PER_MB_SHIFT 11
f36a9ecd 94#define MAX_SECTOR_SIZE 4096
cdddbdbc
DW
95
96/* Disk configuration info. */
97#define IMSM_MAX_DEVICES 255
98struct imsm_disk {
99 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 100 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 101 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
102#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
103#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
104#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 105 __u32 status; /* 0xF0 - 0xF3 */
1011e834 106 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
107 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
108#define IMSM_DISK_FILLERS 3
109 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
110};
111
3b451610
AK
112/* map selector for map managment
113 */
238c0a71
AK
114#define MAP_0 0
115#define MAP_1 1
116#define MAP_X -1
3b451610 117
cdddbdbc
DW
118/* RAID map configuration infos. */
119struct imsm_map {
5551b113
CA
120 __u32 pba_of_lba0_lo; /* start address of partition */
121 __u32 blocks_per_member_lo;/* blocks per member */
122 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
123 __u16 blocks_per_strip;
124 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
125#define IMSM_T_STATE_NORMAL 0
126#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
127#define IMSM_T_STATE_DEGRADED 2
128#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
129 __u8 raid_level;
130#define IMSM_T_RAID0 0
131#define IMSM_T_RAID1 1
132#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
133 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
134 __u8 num_domains; /* number of parity domains */
135 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 136 __u8 ddf;
5551b113
CA
137 __u32 pba_of_lba0_hi;
138 __u32 blocks_per_member_hi;
139 __u32 num_data_stripes_hi;
140 __u32 filler[4]; /* expansion area */
7eef0453 141#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 142 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
143 * top byte contains some flags
144 */
cdddbdbc
DW
145} __attribute__ ((packed));
146
147struct imsm_vol {
f8f603f1 148 __u32 curr_migr_unit;
fe7ed8cb 149 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 150 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
151#define MIGR_INIT 0
152#define MIGR_REBUILD 1
153#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
154#define MIGR_GEN_MIGR 3
155#define MIGR_STATE_CHANGE 4
1484e727 156#define MIGR_REPAIR 5
cdddbdbc
DW
157 __u8 migr_type; /* Initializing, Rebuilding, ... */
158 __u8 dirty;
fe7ed8cb
DW
159 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
160 __u16 verify_errors; /* number of mismatches */
161 __u16 bad_blocks; /* number of bad blocks during verify */
162 __u32 filler[4];
cdddbdbc
DW
163 struct imsm_map map[1];
164 /* here comes another one if migr_state */
165} __attribute__ ((packed));
166
167struct imsm_dev {
fe7ed8cb 168 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
169 __u32 size_low;
170 __u32 size_high;
fe7ed8cb
DW
171#define DEV_BOOTABLE __cpu_to_le32(0x01)
172#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
173#define DEV_READ_COALESCING __cpu_to_le32(0x04)
174#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
175#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
176#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
177#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
178#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
179#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
180#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
181#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
182#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
183#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
184 __u32 status; /* Persistent RaidDev status */
185 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
186 __u8 migr_priority;
187 __u8 num_sub_vols;
188 __u8 tid;
189 __u8 cng_master_disk;
190 __u16 cache_policy;
191 __u8 cng_state;
192 __u8 cng_sub_state;
193#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
194 __u32 filler[IMSM_DEV_FILLERS];
195 struct imsm_vol vol;
196} __attribute__ ((packed));
197
198struct imsm_super {
199 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
200 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
201 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
202 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
203 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
204 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
205 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
206 __u8 num_disks; /* 0x38 Number of configured disks */
207 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
208 __u8 error_log_pos; /* 0x3A */
209 __u8 fill[1]; /* 0x3B */
210 __u32 cache_size; /* 0x3c - 0x40 in mb */
211 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
212 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
213 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
214#define IMSM_FILLERS 35
215 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
216 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
217 /* here comes imsm_dev[num_raid_devs] */
604b746f 218 /* here comes BBM logs */
cdddbdbc
DW
219} __attribute__ ((packed));
220
604b746f 221#define BBM_LOG_MAX_ENTRIES 254
8d67477f
TM
222#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
223#define BBM_LOG_SIGNATURE 0xabadb10c
224
225struct bbm_log_block_addr {
226 __u16 w1;
227 __u32 dw1;
228} __attribute__ ((__packed__));
604b746f
JD
229
230struct bbm_log_entry {
8d67477f
TM
231 __u8 marked_count; /* Number of blocks marked - 1 */
232 __u8 disk_ordinal; /* Disk entry within the imsm_super */
233 struct bbm_log_block_addr defective_block_start;
604b746f
JD
234} __attribute__ ((__packed__));
235
236struct bbm_log {
237 __u32 signature; /* 0xABADB10C */
238 __u32 entry_count;
8d67477f 239 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
604b746f
JD
240} __attribute__ ((__packed__));
241
cdddbdbc
DW
242#ifndef MDASSEMBLE
243static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
244#endif
245
8e59f3d8
AK
246#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
247
248#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
249
de44e46f
PB
250#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
251#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
252 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
17a4eaf9
AK
253 */
254
8e59f3d8
AK
255#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
256 * be recovered using srcMap */
257#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
258 * already been migrated and must
259 * be recovered from checkpoint area */
260struct migr_record {
261 __u32 rec_status; /* Status used to determine how to restart
262 * migration in case it aborts
263 * in some fashion */
264 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
265 __u32 family_num; /* Family number of MPB
266 * containing the RaidDev
267 * that is migrating */
268 __u32 ascending_migr; /* True if migrating in increasing
269 * order of lbas */
270 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
271 __u32 dest_depth_per_unit; /* Num member blocks each destMap
272 * member disk
273 * advances per unit-of-operation */
274 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
275 __u32 dest_1st_member_lba; /* First member lba on first
276 * stripe of destination */
277 __u32 num_migr_units; /* Total num migration units-of-op */
278 __u32 post_migr_vol_cap; /* Size of volume after
279 * migration completes */
280 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
281 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
282 * migration ckpt record was read from
283 * (for recovered migrations) */
284} __attribute__ ((__packed__));
285
ec50f7b6
LM
286struct md_list {
287 /* usage marker:
288 * 1: load metadata
289 * 2: metadata does not match
290 * 4: already checked
291 */
292 int used;
293 char *devname;
294 int found;
295 int container;
296 dev_t st_rdev;
297 struct md_list *next;
298};
299
e7b84f9d 300#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 301
1484e727
DW
302static __u8 migr_type(struct imsm_dev *dev)
303{
304 if (dev->vol.migr_type == MIGR_VERIFY &&
305 dev->status & DEV_VERIFY_AND_FIX)
306 return MIGR_REPAIR;
307 else
308 return dev->vol.migr_type;
309}
310
311static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
312{
313 /* for compatibility with older oroms convert MIGR_REPAIR, into
314 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
315 */
316 if (migr_type == MIGR_REPAIR) {
317 dev->vol.migr_type = MIGR_VERIFY;
318 dev->status |= DEV_VERIFY_AND_FIX;
319 } else {
320 dev->vol.migr_type = migr_type;
321 dev->status &= ~DEV_VERIFY_AND_FIX;
322 }
323}
324
f36a9ecd 325static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
cdddbdbc 326{
f36a9ecd 327 return ROUND_UP(bytes, sector_size) / sector_size;
87eb16df 328}
cdddbdbc 329
f36a9ecd
PB
330static unsigned int mpb_sectors(struct imsm_super *mpb,
331 unsigned int sector_size)
87eb16df 332{
f36a9ecd 333 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
cdddbdbc
DW
334}
335
ba2de7ba
DW
336struct intel_dev {
337 struct imsm_dev *dev;
338 struct intel_dev *next;
f21e18ca 339 unsigned index;
ba2de7ba
DW
340};
341
88654014
LM
342struct intel_hba {
343 enum sys_dev_type type;
344 char *path;
345 char *pci_id;
346 struct intel_hba *next;
347};
348
1a64be56
LM
349enum action {
350 DISK_REMOVE = 1,
351 DISK_ADD
352};
cdddbdbc
DW
353/* internal representation of IMSM metadata */
354struct intel_super {
355 union {
949c47a0
DW
356 void *buf; /* O_DIRECT buffer for reading/writing metadata */
357 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 358 };
8e59f3d8
AK
359 union {
360 void *migr_rec_buf; /* buffer for I/O operations */
361 struct migr_record *migr_rec; /* migration record */
362 };
51d83f5d
AK
363 int clean_migration_record_by_mdmon; /* when reshape is switched to next
364 array, it indicates that mdmon is allowed to clean migration
365 record */
949c47a0 366 size_t len; /* size of the 'buf' allocation */
bbab0940 367 size_t extra_space; /* extra space in 'buf' that is not used yet */
4d7b1503
DW
368 void *next_buf; /* for realloc'ing buf from the manager */
369 size_t next_len;
c2c087e6 370 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 371 int current_vol; /* index of raid device undergoing creation */
5551b113 372 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 373 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 374 struct intel_dev *devlist;
fa7bb6f8 375 unsigned int sector_size; /* sector size of used member drives */
cdddbdbc
DW
376 struct dl {
377 struct dl *next;
378 int index;
379 __u8 serial[MAX_RAID_SERIAL_LEN];
380 int major, minor;
381 char *devname;
b9f594fe 382 struct imsm_disk disk;
cdddbdbc 383 int fd;
0dcecb2e
DW
384 int extent_cnt;
385 struct extent *e; /* for determining freespace @ create */
efb30e7f 386 int raiddisk; /* slot to fill in autolayout */
1a64be56 387 enum action action;
ca0748fa 388 } *disks, *current_disk;
1a64be56
LM
389 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
390 active */
47ee5a45 391 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 392 struct bbm_log *bbm_log;
88654014 393 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 394 const struct imsm_orom *orom; /* platform firmware support */
a2b97981 395 struct intel_super *next; /* (temp) list for disambiguating family_num */
928f1424 396 struct md_bb bb; /* memory for get_bad_blocks call */
a2b97981
DW
397};
398
399struct intel_disk {
400 struct imsm_disk disk;
401 #define IMSM_UNKNOWN_OWNER (-1)
402 int owner;
403 struct intel_disk *next;
cdddbdbc
DW
404};
405
c2c087e6
DW
406struct extent {
407 unsigned long long start, size;
408};
409
694575e7
KW
410/* definitions of reshape process types */
411enum imsm_reshape_type {
412 CH_TAKEOVER,
b5347799 413 CH_MIGRATION,
7abc9871 414 CH_ARRAY_SIZE,
694575e7
KW
415};
416
88758e9d
DW
417/* definition of messages passed to imsm_process_update */
418enum imsm_update_type {
419 update_activate_spare,
8273f55e 420 update_create_array,
33414a01 421 update_kill_array,
aa534678 422 update_rename_array,
1a64be56 423 update_add_remove_disk,
78b10e66 424 update_reshape_container_disks,
48c5303a 425 update_reshape_migration,
2d40f3a1
AK
426 update_takeover,
427 update_general_migration_checkpoint,
f3871fdc 428 update_size_change,
bbab0940 429 update_prealloc_badblocks_mem,
88758e9d
DW
430};
431
432struct imsm_update_activate_spare {
433 enum imsm_update_type type;
d23fe947 434 struct dl *dl;
88758e9d
DW
435 int slot;
436 int array;
437 struct imsm_update_activate_spare *next;
438};
439
78b10e66 440struct geo_params {
4dd2df09 441 char devnm[32];
78b10e66 442 char *dev_name;
d04f65f4 443 unsigned long long size;
78b10e66
N
444 int level;
445 int layout;
446 int chunksize;
447 int raid_disks;
448};
449
bb025c2f
KW
450enum takeover_direction {
451 R10_TO_R0,
452 R0_TO_R10
453};
454struct imsm_update_takeover {
455 enum imsm_update_type type;
456 int subarray;
457 enum takeover_direction direction;
458};
78b10e66
N
459
460struct imsm_update_reshape {
461 enum imsm_update_type type;
462 int old_raid_disks;
463 int new_raid_disks;
48c5303a
PC
464
465 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
466};
467
468struct imsm_update_reshape_migration {
469 enum imsm_update_type type;
470 int old_raid_disks;
471 int new_raid_disks;
472 /* fields for array migration changes
473 */
474 int subdev;
475 int new_level;
476 int new_layout;
4bba0439 477 int new_chunksize;
48c5303a 478
d195167d 479 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
480};
481
f3871fdc
AK
482struct imsm_update_size_change {
483 enum imsm_update_type type;
484 int subdev;
485 long long new_size;
486};
487
2d40f3a1
AK
488struct imsm_update_general_migration_checkpoint {
489 enum imsm_update_type type;
490 __u32 curr_migr_unit;
491};
492
54c2c1ea
DW
493struct disk_info {
494 __u8 serial[MAX_RAID_SERIAL_LEN];
495};
496
8273f55e
DW
497struct imsm_update_create_array {
498 enum imsm_update_type type;
8273f55e 499 int dev_idx;
6a3e913e 500 struct imsm_dev dev;
8273f55e
DW
501};
502
33414a01
DW
503struct imsm_update_kill_array {
504 enum imsm_update_type type;
505 int dev_idx;
506};
507
aa534678
DW
508struct imsm_update_rename_array {
509 enum imsm_update_type type;
510 __u8 name[MAX_RAID_SERIAL_LEN];
511 int dev_idx;
512};
513
1a64be56 514struct imsm_update_add_remove_disk {
43dad3d6
DW
515 enum imsm_update_type type;
516};
517
bbab0940
TM
518struct imsm_update_prealloc_bb_mem {
519 enum imsm_update_type type;
520};
521
88654014
LM
522static const char *_sys_dev_type[] = {
523 [SYS_DEV_UNKNOWN] = "Unknown",
524 [SYS_DEV_SAS] = "SAS",
614902f6 525 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
526 [SYS_DEV_NVME] = "NVMe",
527 [SYS_DEV_VMD] = "VMD"
88654014
LM
528};
529
530const char *get_sys_dev_type(enum sys_dev_type type)
531{
532 if (type >= SYS_DEV_MAX)
533 type = SYS_DEV_UNKNOWN;
534
535 return _sys_dev_type[type];
536}
537
538static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
539{
503975b9
N
540 struct intel_hba *result = xmalloc(sizeof(*result));
541
542 result->type = device->type;
543 result->path = xstrdup(device->path);
544 result->next = NULL;
545 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
546 result->pci_id++;
547
88654014
LM
548 return result;
549}
550
551static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
552{
594dc1b8
JS
553 struct intel_hba *result;
554
88654014
LM
555 for (result = hba; result; result = result->next) {
556 if (result->type == device->type && strcmp(result->path, device->path) == 0)
557 break;
558 }
559 return result;
560}
561
b4cf4cba 562static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
563{
564 struct intel_hba *hba;
565
566 /* check if disk attached to Intel HBA */
567 hba = find_intel_hba(super->hba, device);
568 if (hba != NULL)
569 return 1;
570 /* Check if HBA is already attached to super */
571 if (super->hba == NULL) {
572 super->hba = alloc_intel_hba(device);
573 return 1;
6b781d33
AP
574 }
575
576 hba = super->hba;
577 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 578 * Do not support HBA types mixing
6b781d33
AP
579 */
580 if (device->type != hba->type)
88654014 581 return 2;
6b781d33
AP
582
583 /* Multiple same type HBAs can be used if they share the same OROM */
584 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
585
586 if (device_orom != super->orom)
587 return 2;
588
589 while (hba->next)
590 hba = hba->next;
591
592 hba->next = alloc_intel_hba(device);
593 return 1;
88654014
LM
594}
595
596static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
597{
9bc4ae77 598 struct sys_dev *list, *elem;
88654014
LM
599 char *disk_path;
600
601 if ((list = find_intel_devices()) == NULL)
602 return 0;
603
604 if (fd < 0)
605 disk_path = (char *) devname;
606 else
607 disk_path = diskfd_to_devpath(fd);
608
9bc4ae77 609 if (!disk_path)
88654014 610 return 0;
88654014 611
9bc4ae77
N
612 for (elem = list; elem; elem = elem->next)
613 if (path_attached_to_hba(disk_path, elem->path))
88654014 614 return elem;
9bc4ae77 615
88654014
LM
616 if (disk_path != devname)
617 free(disk_path);
88654014
LM
618
619 return NULL;
620}
621
d424212e
N
622static int find_intel_hba_capability(int fd, struct intel_super *super,
623 char *devname);
f2f5c343 624
cdddbdbc
DW
625static struct supertype *match_metadata_desc_imsm(char *arg)
626{
627 struct supertype *st;
628
629 if (strcmp(arg, "imsm") != 0 &&
630 strcmp(arg, "default") != 0
631 )
632 return NULL;
633
503975b9 634 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
635 st->ss = &super_imsm;
636 st->max_devs = IMSM_MAX_DEVICES;
637 st->minor_version = 0;
638 st->sb = NULL;
639 return st;
640}
641
0e600426 642#ifndef MDASSEMBLE
cdddbdbc
DW
643static __u8 *get_imsm_version(struct imsm_super *mpb)
644{
645 return &mpb->sig[MPB_SIG_LEN];
646}
9e2d750d 647#endif
cdddbdbc 648
949c47a0
DW
649/* retrieve a disk directly from the anchor when the anchor is known to be
650 * up-to-date, currently only at load time
651 */
652static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 653{
949c47a0 654 if (index >= mpb->num_disks)
cdddbdbc
DW
655 return NULL;
656 return &mpb->disk[index];
657}
658
95d07a2c
LM
659/* retrieve the disk description based on a index of the disk
660 * in the sub-array
661 */
662static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 663{
b9f594fe
DW
664 struct dl *d;
665
666 for (d = super->disks; d; d = d->next)
667 if (d->index == index)
95d07a2c
LM
668 return d;
669
670 return NULL;
671}
672/* retrieve a disk from the parsed metadata */
673static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
674{
675 struct dl *dl;
676
677 dl = get_imsm_dl_disk(super, index);
678 if (dl)
679 return &dl->disk;
680
b9f594fe 681 return NULL;
949c47a0
DW
682}
683
684/* generate a checksum directly from the anchor when the anchor is known to be
685 * up-to-date, currently only at load or write_super after coalescing
686 */
687static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
688{
689 __u32 end = mpb->mpb_size / sizeof(end);
690 __u32 *p = (__u32 *) mpb;
691 __u32 sum = 0;
692
5d500228
N
693 while (end--) {
694 sum += __le32_to_cpu(*p);
97f734fd
N
695 p++;
696 }
cdddbdbc 697
5d500228 698 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
699}
700
a965f303
DW
701static size_t sizeof_imsm_map(struct imsm_map *map)
702{
703 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
704}
705
706struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 707{
5e7b0330
AK
708 /* A device can have 2 maps if it is in the middle of a migration.
709 * If second_map is:
238c0a71
AK
710 * MAP_0 - we return the first map
711 * MAP_1 - we return the second map if it exists, else NULL
712 * MAP_X - we return the second map if it exists, else the first
5e7b0330 713 */
a965f303 714 struct imsm_map *map = &dev->vol.map[0];
9535fc47 715 struct imsm_map *map2 = NULL;
a965f303 716
9535fc47
AK
717 if (dev->vol.migr_state)
718 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 719
9535fc47 720 switch (second_map) {
3b451610 721 case MAP_0:
9535fc47 722 break;
3b451610 723 case MAP_1:
9535fc47
AK
724 map = map2;
725 break;
238c0a71 726 case MAP_X:
9535fc47
AK
727 if (map2)
728 map = map2;
729 break;
9535fc47
AK
730 default:
731 map = NULL;
732 }
733 return map;
5e7b0330 734
a965f303 735}
cdddbdbc 736
3393c6af
DW
737/* return the size of the device.
738 * migr_state increases the returned size if map[0] were to be duplicated
739 */
740static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
741{
742 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 743 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
744
745 /* migrating means an additional map */
a965f303 746 if (dev->vol.migr_state)
238c0a71 747 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 748 else if (migr_state)
238c0a71 749 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
750
751 return size;
752}
753
54c2c1ea
DW
754#ifndef MDASSEMBLE
755/* retrieve disk serial number list from a metadata update */
756static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
757{
758 void *u = update;
759 struct disk_info *inf;
760
761 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
762 sizeof_imsm_dev(&update->dev, 0);
763
764 return inf;
765}
766#endif
767
949c47a0 768static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
769{
770 int offset;
771 int i;
772 void *_mpb = mpb;
773
949c47a0 774 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
775 return NULL;
776
777 /* devices start after all disks */
778 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
779
780 for (i = 0; i <= index; i++)
781 if (i == index)
782 return _mpb + offset;
783 else
3393c6af 784 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
785
786 return NULL;
787}
788
949c47a0
DW
789static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
790{
ba2de7ba
DW
791 struct intel_dev *dv;
792
949c47a0
DW
793 if (index >= super->anchor->num_raid_devs)
794 return NULL;
ba2de7ba
DW
795 for (dv = super->devlist; dv; dv = dv->next)
796 if (dv->index == index)
797 return dv->dev;
798 return NULL;
949c47a0
DW
799}
800
8d67477f
TM
801static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
802 *addr)
803{
804 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
805 __le16_to_cpu(addr->w1));
806}
807
808static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
809{
810 struct bbm_log_block_addr addr;
811
812 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
813 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
814 return addr;
815}
816
817#ifndef MDASSEMBLE
818/* get size of the bbm log */
819static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
820{
821 if (!log || log->entry_count == 0)
822 return 0;
823
824 return sizeof(log->signature) +
825 sizeof(log->entry_count) +
826 log->entry_count * sizeof(struct bbm_log_entry);
827}
6f50473f
TM
828
829/* check if bad block is not partially stored in bbm log */
830static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
831 long long sector, const int length, __u32 *pos)
832{
833 __u32 i;
834
835 for (i = *pos; i < log->entry_count; i++) {
836 struct bbm_log_entry *entry = &log->marked_block_entries[i];
837 unsigned long long bb_start;
838 unsigned long long bb_end;
839
840 bb_start = __le48_to_cpu(&entry->defective_block_start);
841 bb_end = bb_start + (entry->marked_count + 1);
842
843 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
844 (bb_end <= sector + length)) {
845 *pos = i;
846 return 1;
847 }
848 }
849 return 0;
850}
851
852/* record new bad block in bbm log */
853static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
854 long long sector, int length)
855{
856 int new_bb = 0;
857 __u32 pos = 0;
858 struct bbm_log_entry *entry = NULL;
859
860 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
861 struct bbm_log_entry *e = &log->marked_block_entries[pos];
862
863 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
864 (__le48_to_cpu(&e->defective_block_start) == sector)) {
865 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
866 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
867 pos = pos + 1;
868 continue;
869 }
870 entry = e;
871 break;
872 }
873
874 if (entry) {
875 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
876 BBM_LOG_MAX_LBA_ENTRY_VAL;
877 entry->defective_block_start = __cpu_to_le48(sector);
878 entry->marked_count = cnt - 1;
879 if (cnt == length)
880 return 1;
881 sector += cnt;
882 length -= cnt;
883 }
884
885 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
886 BBM_LOG_MAX_LBA_ENTRY_VAL;
887 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
888 return 0;
889
890 while (length > 0) {
891 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
892 BBM_LOG_MAX_LBA_ENTRY_VAL;
893 struct bbm_log_entry *entry =
894 &log->marked_block_entries[log->entry_count];
895
896 entry->defective_block_start = __cpu_to_le48(sector);
897 entry->marked_count = cnt - 1;
898 entry->disk_ordinal = idx;
899
900 sector += cnt;
901 length -= cnt;
902
903 log->entry_count++;
904 }
905
906 return new_bb;
907}
c07a5a4f 908
4c9e8c1e
TM
909/* clear all bad blocks for given disk */
910static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
911{
912 __u32 i = 0;
913
914 while (i < log->entry_count) {
915 struct bbm_log_entry *entries = log->marked_block_entries;
916
917 if (entries[i].disk_ordinal == idx) {
918 if (i < log->entry_count - 1)
919 entries[i] = entries[log->entry_count - 1];
920 log->entry_count--;
921 } else {
922 i++;
923 }
924 }
925}
926
c07a5a4f
TM
927/* clear given bad block */
928static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
929 long long sector, const int length) {
930 __u32 i = 0;
931
932 while (i < log->entry_count) {
933 struct bbm_log_entry *entries = log->marked_block_entries;
934
935 if ((entries[i].disk_ordinal == idx) &&
936 (__le48_to_cpu(&entries[i].defective_block_start) ==
937 sector) && (entries[i].marked_count + 1 == length)) {
938 if (i < log->entry_count - 1)
939 entries[i] = entries[log->entry_count - 1];
940 log->entry_count--;
941 break;
942 }
943 i++;
944 }
945
946 return 1;
947}
8d67477f
TM
948#endif /* MDASSEMBLE */
949
950/* allocate and load BBM log from metadata */
951static int load_bbm_log(struct intel_super *super)
952{
953 struct imsm_super *mpb = super->anchor;
954 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
955
956 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
957 if (!super->bbm_log)
958 return 1;
959
960 if (bbm_log_size) {
961 struct bbm_log *log = (void *)mpb +
962 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
963
964 __u32 entry_count;
965
966 if (bbm_log_size < sizeof(log->signature) +
967 sizeof(log->entry_count))
968 return 2;
969
970 entry_count = __le32_to_cpu(log->entry_count);
971 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
972 (entry_count > BBM_LOG_MAX_ENTRIES))
973 return 3;
974
975 if (bbm_log_size !=
976 sizeof(log->signature) + sizeof(log->entry_count) +
977 entry_count * sizeof(struct bbm_log_entry))
978 return 4;
979
980 memcpy(super->bbm_log, log, bbm_log_size);
981 } else {
982 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
983 super->bbm_log->entry_count = 0;
984 }
985
986 return 0;
987}
988
b12796be
TM
989/* checks if bad block is within volume boundaries */
990static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
991 const unsigned long long start_sector,
992 const unsigned long long size)
993{
994 unsigned long long bb_start;
995 unsigned long long bb_end;
996
997 bb_start = __le48_to_cpu(&entry->defective_block_start);
998 bb_end = bb_start + (entry->marked_count + 1);
999
1000 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1001 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1002 return 1;
1003
1004 return 0;
1005}
1006
1007/* get list of bad blocks on a drive for a volume */
1008static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1009 const unsigned long long start_sector,
1010 const unsigned long long size,
1011 struct md_bb *bbs)
1012{
1013 __u32 count = 0;
1014 __u32 i;
1015
1016 for (i = 0; i < log->entry_count; i++) {
1017 const struct bbm_log_entry *ent =
1018 &log->marked_block_entries[i];
1019 struct md_bb_entry *bb;
1020
1021 if ((ent->disk_ordinal == idx) &&
1022 is_bad_block_in_volume(ent, start_sector, size)) {
1023
1024 if (!bbs->entries) {
1025 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1026 sizeof(*bb));
1027 if (!bbs->entries)
1028 break;
1029 }
1030
1031 bb = &bbs->entries[count++];
1032 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1033 bb->length = ent->marked_count + 1;
1034 }
1035 }
1036 bbs->count = count;
1037}
1038
98130f40
AK
1039/*
1040 * for second_map:
238c0a71
AK
1041 * == MAP_0 get first map
1042 * == MAP_1 get second map
1043 * == MAP_X than get map according to the current migr_state
98130f40
AK
1044 */
1045static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1046 int slot,
1047 int second_map)
7eef0453
DW
1048{
1049 struct imsm_map *map;
1050
5e7b0330 1051 map = get_imsm_map(dev, second_map);
7eef0453 1052
ff077194
DW
1053 /* top byte identifies disk under rebuild */
1054 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1055}
1056
1057#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 1058static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 1059{
98130f40 1060 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
1061
1062 return ord_to_idx(ord);
7eef0453
DW
1063}
1064
be73972f
DW
1065static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1066{
1067 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1068}
1069
f21e18ca 1070static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
1071{
1072 int slot;
1073 __u32 ord;
1074
1075 for (slot = 0; slot < map->num_members; slot++) {
1076 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1077 if (ord_to_idx(ord) == idx)
1078 return slot;
1079 }
1080
1081 return -1;
1082}
1083
cdddbdbc
DW
1084static int get_imsm_raid_level(struct imsm_map *map)
1085{
1086 if (map->raid_level == 1) {
1087 if (map->num_members == 2)
1088 return 1;
1089 else
1090 return 10;
1091 }
1092
1093 return map->raid_level;
1094}
1095
c2c087e6
DW
1096static int cmp_extent(const void *av, const void *bv)
1097{
1098 const struct extent *a = av;
1099 const struct extent *b = bv;
1100 if (a->start < b->start)
1101 return -1;
1102 if (a->start > b->start)
1103 return 1;
1104 return 0;
1105}
1106
0dcecb2e 1107static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 1108{
c2c087e6 1109 int memberships = 0;
620b1713 1110 int i;
c2c087e6 1111
949c47a0
DW
1112 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1113 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1114 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1115
620b1713
DW
1116 if (get_imsm_disk_slot(map, dl->index) >= 0)
1117 memberships++;
c2c087e6 1118 }
0dcecb2e
DW
1119
1120 return memberships;
1121}
1122
b81221b7
CA
1123static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1124
5551b113
CA
1125static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1126{
1127 if (lo == 0 || hi == 0)
1128 return 1;
1129 *lo = __le32_to_cpu((unsigned)n);
1130 *hi = __le32_to_cpu((unsigned)(n >> 32));
1131 return 0;
1132}
1133
1134static unsigned long long join_u32(__u32 lo, __u32 hi)
1135{
1136 return (unsigned long long)__le32_to_cpu(lo) |
1137 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1138}
1139
1140static unsigned long long total_blocks(struct imsm_disk *disk)
1141{
1142 if (disk == NULL)
1143 return 0;
1144 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1145}
1146
1147static unsigned long long pba_of_lba0(struct imsm_map *map)
1148{
1149 if (map == NULL)
1150 return 0;
1151 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1152}
1153
1154static unsigned long long blocks_per_member(struct imsm_map *map)
1155{
1156 if (map == NULL)
1157 return 0;
1158 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1159}
1160
1161static unsigned long long num_data_stripes(struct imsm_map *map)
1162{
1163 if (map == NULL)
1164 return 0;
1165 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1166}
1167
1168static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1169{
1170 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1171}
1172
1173static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1174{
1175 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1176}
1177
1178static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1179{
1180 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1181}
1182
1183static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1184{
1185 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1186}
1187
0dcecb2e
DW
1188static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1189{
1190 /* find a list of used extents on the given physical device */
1191 struct extent *rv, *e;
620b1713 1192 int i;
0dcecb2e 1193 int memberships = count_memberships(dl, super);
b276dd33
DW
1194 __u32 reservation;
1195
1196 /* trim the reserved area for spares, so they can join any array
1197 * regardless of whether the OROM has assigned sectors from the
1198 * IMSM_RESERVED_SECTORS region
1199 */
1200 if (dl->index == -1)
b81221b7 1201 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
1202 else
1203 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 1204
503975b9 1205 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
1206 e = rv;
1207
949c47a0
DW
1208 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1209 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 1210 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 1211
620b1713 1212 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
1213 e->start = pba_of_lba0(map);
1214 e->size = blocks_per_member(map);
620b1713 1215 e++;
c2c087e6
DW
1216 }
1217 }
1218 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1219
1011e834 1220 /* determine the start of the metadata
14e8215b
DW
1221 * when no raid devices are defined use the default
1222 * ...otherwise allow the metadata to truncate the value
1223 * as is the case with older versions of imsm
1224 */
1225 if (memberships) {
1226 struct extent *last = &rv[memberships - 1];
5551b113 1227 unsigned long long remainder;
14e8215b 1228
5551b113 1229 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
1230 /* round down to 1k block to satisfy precision of the kernel
1231 * 'size' interface
1232 */
1233 remainder &= ~1UL;
1234 /* make sure remainder is still sane */
f21e18ca 1235 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 1236 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
1237 if (reservation > remainder)
1238 reservation = remainder;
1239 }
5551b113 1240 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
1241 e->size = 0;
1242 return rv;
1243}
1244
14e8215b
DW
1245/* try to determine how much space is reserved for metadata from
1246 * the last get_extents() entry, otherwise fallback to the
1247 * default
1248 */
1249static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1250{
1251 struct extent *e;
1252 int i;
1253 __u32 rv;
1254
1255 /* for spares just return a minimal reservation which will grow
1256 * once the spare is picked up by an array
1257 */
1258 if (dl->index == -1)
1259 return MPB_SECTOR_CNT;
1260
1261 e = get_extents(super, dl);
1262 if (!e)
1263 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1264
1265 /* scroll to last entry */
1266 for (i = 0; e[i].size; i++)
1267 continue;
1268
5551b113 1269 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1270
1271 free(e);
1272
1273 return rv;
1274}
1275
25ed7e59
DW
1276static int is_spare(struct imsm_disk *disk)
1277{
1278 return (disk->status & SPARE_DISK) == SPARE_DISK;
1279}
1280
1281static int is_configured(struct imsm_disk *disk)
1282{
1283 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1284}
1285
1286static int is_failed(struct imsm_disk *disk)
1287{
1288 return (disk->status & FAILED_DISK) == FAILED_DISK;
1289}
1290
b81221b7
CA
1291/* try to determine how much space is reserved for metadata from
1292 * the last get_extents() entry on the smallest active disk,
1293 * otherwise fallback to the default
1294 */
1295static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1296{
1297 struct extent *e;
1298 int i;
5551b113
CA
1299 unsigned long long min_active;
1300 __u32 remainder;
b81221b7
CA
1301 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1302 struct dl *dl, *dl_min = NULL;
1303
1304 if (!super)
1305 return rv;
1306
1307 min_active = 0;
1308 for (dl = super->disks; dl; dl = dl->next) {
1309 if (dl->index < 0)
1310 continue;
5551b113
CA
1311 unsigned long long blocks = total_blocks(&dl->disk);
1312 if (blocks < min_active || min_active == 0) {
b81221b7 1313 dl_min = dl;
5551b113 1314 min_active = blocks;
b81221b7
CA
1315 }
1316 }
1317 if (!dl_min)
1318 return rv;
1319
1320 /* find last lba used by subarrays on the smallest active disk */
1321 e = get_extents(super, dl_min);
1322 if (!e)
1323 return rv;
1324 for (i = 0; e[i].size; i++)
1325 continue;
1326
1327 remainder = min_active - e[i].start;
1328 free(e);
1329
1330 /* to give priority to recovery we should not require full
1331 IMSM_RESERVED_SECTORS from the spare */
1332 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1333
1334 /* if real reservation is smaller use that value */
1335 return (remainder < rv) ? remainder : rv;
1336}
1337
80e7f8c3
AC
1338/* Return minimum size of a spare that can be used in this array*/
1339static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1340{
1341 struct intel_super *super = st->sb;
1342 struct dl *dl;
1343 struct extent *e;
1344 int i;
1345 unsigned long long rv = 0;
1346
1347 if (!super)
1348 return rv;
1349 /* find first active disk in array */
1350 dl = super->disks;
1351 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1352 dl = dl->next;
1353 if (!dl)
1354 return rv;
1355 /* find last lba used by subarrays */
1356 e = get_extents(super, dl);
1357 if (!e)
1358 return rv;
1359 for (i = 0; e[i].size; i++)
1360 continue;
1361 if (i > 0)
1362 rv = e[i-1].start + e[i-1].size;
1363 free(e);
b81221b7 1364
80e7f8c3 1365 /* add the amount of space needed for metadata */
b81221b7
CA
1366 rv = rv + imsm_min_reserved_sectors(super);
1367
80e7f8c3
AC
1368 return rv * 512;
1369}
1370
d1e02575
AK
1371static int is_gen_migration(struct imsm_dev *dev);
1372
f36a9ecd
PB
1373#define IMSM_4K_DIV 8
1374
1799c9e8 1375#ifndef MDASSEMBLE
c47b0ff6
AK
1376static __u64 blocks_per_migr_unit(struct intel_super *super,
1377 struct imsm_dev *dev);
1e5c6983 1378
c47b0ff6
AK
1379static void print_imsm_dev(struct intel_super *super,
1380 struct imsm_dev *dev,
1381 char *uuid,
1382 int disk_idx)
cdddbdbc
DW
1383{
1384 __u64 sz;
0d80bb2f 1385 int slot, i;
238c0a71
AK
1386 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1387 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1388 __u32 ord;
cdddbdbc
DW
1389
1390 printf("\n");
1e7bc0ed 1391 printf("[%.16s]:\n", dev->volume);
44470971 1392 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1393 printf(" RAID Level : %d", get_imsm_raid_level(map));
1394 if (map2)
1395 printf(" <-- %d", get_imsm_raid_level(map2));
1396 printf("\n");
1397 printf(" Members : %d", map->num_members);
1398 if (map2)
1399 printf(" <-- %d", map2->num_members);
1400 printf("\n");
0d80bb2f
DW
1401 printf(" Slots : [");
1402 for (i = 0; i < map->num_members; i++) {
238c0a71 1403 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1404 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1405 }
dd8bcb3b
AK
1406 printf("]");
1407 if (map2) {
1408 printf(" <-- [");
1409 for (i = 0; i < map2->num_members; i++) {
238c0a71 1410 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1411 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1412 }
1413 printf("]");
1414 }
1415 printf("\n");
7095bccb
AK
1416 printf(" Failed disk : ");
1417 if (map->failed_disk_num == 0xff)
1418 printf("none");
1419 else
1420 printf("%i", map->failed_disk_num);
1421 printf("\n");
620b1713
DW
1422 slot = get_imsm_disk_slot(map, disk_idx);
1423 if (slot >= 0) {
238c0a71 1424 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1425 printf(" This Slot : %d%s\n", slot,
1426 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1427 } else
cdddbdbc
DW
1428 printf(" This Slot : ?\n");
1429 sz = __le32_to_cpu(dev->size_high);
1430 sz <<= 32;
1431 sz += __le32_to_cpu(dev->size_low);
1432 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1433 human_size(sz * 512));
5551b113 1434 sz = blocks_per_member(map);
cdddbdbc
DW
1435 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1436 human_size(sz * 512));
5551b113
CA
1437 printf(" Sector Offset : %llu\n",
1438 pba_of_lba0(map));
1439 printf(" Num Stripes : %llu\n",
1440 num_data_stripes(map));
dd8bcb3b 1441 printf(" Chunk Size : %u KiB",
cdddbdbc 1442 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1443 if (map2)
1444 printf(" <-- %u KiB",
1445 __le16_to_cpu(map2->blocks_per_strip) / 2);
1446 printf("\n");
cdddbdbc 1447 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1448 printf(" Migrate State : ");
1484e727
DW
1449 if (dev->vol.migr_state) {
1450 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1451 printf("initialize\n");
1484e727 1452 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1453 printf("rebuild\n");
1484e727 1454 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1455 printf("check\n");
1484e727 1456 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1457 printf("general migration\n");
1484e727 1458 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1459 printf("state change\n");
1484e727 1460 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1461 printf("repair\n");
1484e727 1462 else
8655a7b1
DW
1463 printf("<unknown:%d>\n", migr_type(dev));
1464 } else
1465 printf("idle\n");
3393c6af
DW
1466 printf(" Map State : %s", map_state_str[map->map_state]);
1467 if (dev->vol.migr_state) {
238c0a71 1468 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1469
b10b37b8 1470 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1471 printf("\n Checkpoint : %u ",
1472 __le32_to_cpu(dev->vol.curr_migr_unit));
089f9d79 1473 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
464d40e8
LD
1474 printf("(N/A)");
1475 else
1476 printf("(%llu)", (unsigned long long)
1477 blocks_per_migr_unit(super, dev));
3393c6af
DW
1478 }
1479 printf("\n");
cdddbdbc 1480 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1481}
1482
ef5c214e
MK
1483static void print_imsm_disk(struct imsm_disk *disk,
1484 int index,
1485 __u32 reserved,
1486 unsigned int sector_size) {
1f24f035 1487 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1488 __u64 sz;
1489
0ec1f4e8 1490 if (index < -1 || !disk)
e9d82038
DW
1491 return;
1492
cdddbdbc 1493 printf("\n");
1f24f035 1494 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1495 if (index >= 0)
1496 printf(" Disk%02d Serial : %s\n", index, str);
1497 else
1498 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1499 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1500 is_configured(disk) ? " active" : "",
1501 is_failed(disk) ? " failed" : "");
cdddbdbc 1502 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1503 sz = total_blocks(disk) - reserved;
ef5c214e
MK
1504 printf(" Usable Size : %llu%s\n",
1505 (unsigned long long)sz * 512 / sector_size,
cdddbdbc
DW
1506 human_size(sz * 512));
1507}
1508
de44e46f
PB
1509void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1510{
1511 struct migr_record *migr_rec = super->migr_rec;
1512
1513 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1514 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1515 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1516 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1517 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1518 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1519 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1520}
1521
f36a9ecd
PB
1522void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1523{
1524 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1525}
1526
1527void convert_to_4k(struct intel_super *super)
1528{
1529 struct imsm_super *mpb = super->anchor;
1530 struct imsm_disk *disk;
1531 int i;
e4467bc7 1532 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1533
1534 for (i = 0; i < mpb->num_disks ; i++) {
1535 disk = __get_imsm_disk(mpb, i);
1536 /* disk */
1537 convert_to_4k_imsm_disk(disk);
1538 }
1539 for (i = 0; i < mpb->num_raid_devs; i++) {
1540 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1541 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1542 /* dev */
1543 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1544 &dev->size_low, &dev->size_high);
1545 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1546
1547 /* map0 */
1548 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1549 map->blocks_per_strip /= IMSM_4K_DIV;
1550 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1551
1552 if (dev->vol.migr_state) {
1553 /* map1 */
1554 map = get_imsm_map(dev, MAP_1);
1555 set_blocks_per_member(map,
1556 blocks_per_member(map)/IMSM_4K_DIV);
1557 map->blocks_per_strip /= IMSM_4K_DIV;
1558 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1559 }
1560 }
e4467bc7
TM
1561 if (bbm_log_size) {
1562 struct bbm_log *log = (void *)mpb +
1563 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1564 __u32 i;
1565
1566 for (i = 0; i < log->entry_count; i++) {
1567 struct bbm_log_entry *entry =
1568 &log->marked_block_entries[i];
1569
1570 __u8 count = entry->marked_count + 1;
1571 unsigned long long sector =
1572 __le48_to_cpu(&entry->defective_block_start);
1573
1574 entry->defective_block_start =
1575 __cpu_to_le48(sector/IMSM_4K_DIV);
1576 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1577 }
1578 }
f36a9ecd
PB
1579
1580 mpb->check_sum = __gen_imsm_checksum(mpb);
1581}
1582
520e69e2
AK
1583void examine_migr_rec_imsm(struct intel_super *super)
1584{
1585 struct migr_record *migr_rec = super->migr_rec;
1586 struct imsm_super *mpb = super->anchor;
1587 int i;
1588
1589 for (i = 0; i < mpb->num_raid_devs; i++) {
1590 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1591 struct imsm_map *map;
b4ab44d8 1592 int slot = -1;
3136abe5 1593
520e69e2
AK
1594 if (is_gen_migration(dev) == 0)
1595 continue;
1596
1597 printf("\nMigration Record Information:");
3136abe5 1598
44bfe6df
AK
1599 /* first map under migration */
1600 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1601 if (map)
1602 slot = get_imsm_disk_slot(map, super->disks->index);
089f9d79 1603 if (map == NULL || slot > 1 || slot < 0) {
520e69e2
AK
1604 printf(" Empty\n ");
1605 printf("Examine one of first two disks in array\n");
1606 break;
1607 }
1608 printf("\n Status : ");
1609 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1610 printf("Normal\n");
1611 else
1612 printf("Contains Data\n");
1613 printf(" Current Unit : %u\n",
1614 __le32_to_cpu(migr_rec->curr_migr_unit));
1615 printf(" Family : %u\n",
1616 __le32_to_cpu(migr_rec->family_num));
1617 printf(" Ascending : %u\n",
1618 __le32_to_cpu(migr_rec->ascending_migr));
1619 printf(" Blocks Per Unit : %u\n",
1620 __le32_to_cpu(migr_rec->blocks_per_unit));
1621 printf(" Dest. Depth Per Unit : %u\n",
1622 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1623 printf(" Checkpoint Area pba : %u\n",
1624 __le32_to_cpu(migr_rec->ckpt_area_pba));
1625 printf(" First member lba : %u\n",
1626 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1627 printf(" Total Number of Units : %u\n",
1628 __le32_to_cpu(migr_rec->num_migr_units));
1629 printf(" Size of volume : %u\n",
1630 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1631 printf(" Expansion space for LBA64 : %u\n",
1632 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1633 printf(" Record was read from : %u\n",
1634 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1635
1636 break;
1637 }
1638}
9e2d750d 1639#endif /* MDASSEMBLE */
f36a9ecd 1640
de44e46f
PB
1641void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1642{
1643 struct migr_record *migr_rec = super->migr_rec;
1644
1645 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1646 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1647 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1648 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1649 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1650 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1651 &migr_rec->post_migr_vol_cap,
1652 &migr_rec->post_migr_vol_cap_hi);
1653}
1654
f36a9ecd
PB
1655void convert_from_4k(struct intel_super *super)
1656{
1657 struct imsm_super *mpb = super->anchor;
1658 struct imsm_disk *disk;
1659 int i;
e4467bc7 1660 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
f36a9ecd
PB
1661
1662 for (i = 0; i < mpb->num_disks ; i++) {
1663 disk = __get_imsm_disk(mpb, i);
1664 /* disk */
1665 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1666 }
1667
1668 for (i = 0; i < mpb->num_raid_devs; i++) {
1669 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1670 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1671 /* dev */
1672 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1673 &dev->size_low, &dev->size_high);
1674 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1675
1676 /* map0 */
1677 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1678 map->blocks_per_strip *= IMSM_4K_DIV;
1679 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1680
1681 if (dev->vol.migr_state) {
1682 /* map1 */
1683 map = get_imsm_map(dev, MAP_1);
1684 set_blocks_per_member(map,
1685 blocks_per_member(map)*IMSM_4K_DIV);
1686 map->blocks_per_strip *= IMSM_4K_DIV;
1687 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1688 }
1689 }
e4467bc7
TM
1690 if (bbm_log_size) {
1691 struct bbm_log *log = (void *)mpb +
1692 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1693 __u32 i;
1694
1695 for (i = 0; i < log->entry_count; i++) {
1696 struct bbm_log_entry *entry =
1697 &log->marked_block_entries[i];
1698
1699 __u8 count = entry->marked_count + 1;
1700 unsigned long long sector =
1701 __le48_to_cpu(&entry->defective_block_start);
1702
1703 entry->defective_block_start =
1704 __cpu_to_le48(sector*IMSM_4K_DIV);
1705 entry->marked_count = count*IMSM_4K_DIV - 1;
1706 }
1707 }
f36a9ecd
PB
1708
1709 mpb->check_sum = __gen_imsm_checksum(mpb);
1710}
1711
19482bcc
AK
1712/*******************************************************************************
1713 * function: imsm_check_attributes
1714 * Description: Function checks if features represented by attributes flags
1011e834 1715 * are supported by mdadm.
19482bcc
AK
1716 * Parameters:
1717 * attributes - Attributes read from metadata
1718 * Returns:
1011e834
N
1719 * 0 - passed attributes contains unsupported features flags
1720 * 1 - all features are supported
19482bcc
AK
1721 ******************************************************************************/
1722static int imsm_check_attributes(__u32 attributes)
1723{
1724 int ret_val = 1;
418f9b36
N
1725 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1726
1727 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1728
1729 not_supported &= attributes;
1730 if (not_supported) {
e7b84f9d 1731 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1732 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1733 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1734 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1735 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1736 }
1737 if (not_supported & MPB_ATTRIB_2TB) {
1738 dprintf("\t\tMPB_ATTRIB_2TB\n");
1739 not_supported ^= MPB_ATTRIB_2TB;
1740 }
1741 if (not_supported & MPB_ATTRIB_RAID0) {
1742 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1743 not_supported ^= MPB_ATTRIB_RAID0;
1744 }
1745 if (not_supported & MPB_ATTRIB_RAID1) {
1746 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1747 not_supported ^= MPB_ATTRIB_RAID1;
1748 }
1749 if (not_supported & MPB_ATTRIB_RAID10) {
1750 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1751 not_supported ^= MPB_ATTRIB_RAID10;
1752 }
1753 if (not_supported & MPB_ATTRIB_RAID1E) {
1754 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1755 not_supported ^= MPB_ATTRIB_RAID1E;
1756 }
1757 if (not_supported & MPB_ATTRIB_RAID5) {
1758 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1759 not_supported ^= MPB_ATTRIB_RAID5;
1760 }
1761 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1762 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1763 not_supported ^= MPB_ATTRIB_RAIDCNG;
1764 }
1765 if (not_supported & MPB_ATTRIB_BBM) {
1766 dprintf("\t\tMPB_ATTRIB_BBM\n");
1767 not_supported ^= MPB_ATTRIB_BBM;
1768 }
1769 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1770 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1771 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1772 }
1773 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1774 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1775 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1776 }
1777 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1778 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1779 not_supported ^= MPB_ATTRIB_2TB_DISK;
1780 }
1781 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1782 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1783 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1784 }
1785 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1786 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1787 not_supported ^= MPB_ATTRIB_NEVER_USE;
1788 }
1789
1790 if (not_supported)
1ade5cc1 1791 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
1792
1793 ret_val = 0;
1794 }
1795
1796 return ret_val;
1797}
1798
9e2d750d 1799#ifndef MDASSEMBLE
a5d85af7 1800static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1801
cdddbdbc
DW
1802static void examine_super_imsm(struct supertype *st, char *homehost)
1803{
1804 struct intel_super *super = st->sb;
949c47a0 1805 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1806 char str[MAX_SIGNATURE_LENGTH];
1807 int i;
27fd6274
DW
1808 struct mdinfo info;
1809 char nbuf[64];
cdddbdbc 1810 __u32 sum;
14e8215b 1811 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1812 struct dl *dl;
27fd6274 1813
618f4e6d
XN
1814 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1815 str[MPB_SIG_LEN-1] = '\0';
cdddbdbc
DW
1816 printf(" Magic : %s\n", str);
1817 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1818 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1819 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1820 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1821 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1822 printf(" Attributes : ");
1823 if (imsm_check_attributes(mpb->attributes))
1824 printf("All supported\n");
1825 else
1826 printf("not supported\n");
a5d85af7 1827 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1828 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1829 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1830 sum = __le32_to_cpu(mpb->check_sum);
1831 printf(" Checksum : %08x %s\n", sum,
949c47a0 1832 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
f36a9ecd 1833 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
cdddbdbc
DW
1834 printf(" Disks : %d\n", mpb->num_disks);
1835 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
ef5c214e
MK
1836 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1837 super->disks->index, reserved, super->sector_size);
8d67477f 1838 if (get_imsm_bbm_log_size(super->bbm_log)) {
604b746f
JD
1839 struct bbm_log *log = super->bbm_log;
1840
1841 printf("\n");
1842 printf("Bad Block Management Log:\n");
1843 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1844 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1845 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
604b746f 1846 }
44470971
DW
1847 for (i = 0; i < mpb->num_raid_devs; i++) {
1848 struct mdinfo info;
1849 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1850
1851 super->current_vol = i;
a5d85af7 1852 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1853 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1854 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1855 }
cdddbdbc
DW
1856 for (i = 0; i < mpb->num_disks; i++) {
1857 if (i == super->disks->index)
1858 continue;
ef5c214e
MK
1859 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1860 super->sector_size);
cdddbdbc 1861 }
94827db3 1862
0ec1f4e8
DW
1863 for (dl = super->disks; dl; dl = dl->next)
1864 if (dl->index == -1)
ef5c214e
MK
1865 print_imsm_disk(&dl->disk, -1, reserved,
1866 super->sector_size);
520e69e2
AK
1867
1868 examine_migr_rec_imsm(super);
cdddbdbc
DW
1869}
1870
061f2c6a 1871static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1872{
27fd6274 1873 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1874 struct mdinfo info;
1875 char nbuf[64];
1e7bc0ed 1876 struct intel_super *super = st->sb;
1e7bc0ed 1877
0d5a423f
DW
1878 if (!super->anchor->num_raid_devs) {
1879 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1880 return;
0d5a423f 1881 }
ff54de6e 1882
a5d85af7 1883 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1884 fname_from_uuid(st, &info, nbuf, ':');
1885 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1886}
1887
1888static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1889{
1890 /* We just write a generic IMSM ARRAY entry */
1891 struct mdinfo info;
1892 char nbuf[64];
1893 char nbuf1[64];
1894 struct intel_super *super = st->sb;
1895 int i;
1896
1897 if (!super->anchor->num_raid_devs)
1898 return;
1899
a5d85af7 1900 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1901 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1902 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1903 struct imsm_dev *dev = get_imsm_dev(super, i);
1904
1905 super->current_vol = i;
a5d85af7 1906 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1907 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1908 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1909 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1910 }
cdddbdbc
DW
1911}
1912
9d84c8ea
DW
1913static void export_examine_super_imsm(struct supertype *st)
1914{
1915 struct intel_super *super = st->sb;
1916 struct imsm_super *mpb = super->anchor;
1917 struct mdinfo info;
1918 char nbuf[64];
1919
a5d85af7 1920 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1921 fname_from_uuid(st, &info, nbuf, ':');
1922 printf("MD_METADATA=imsm\n");
1923 printf("MD_LEVEL=container\n");
1924 printf("MD_UUID=%s\n", nbuf+5);
1925 printf("MD_DEVICES=%u\n", mpb->num_disks);
1926}
1927
74db60b0
N
1928static int copy_metadata_imsm(struct supertype *st, int from, int to)
1929{
f36a9ecd 1930 /* The second last sector of the device contains
74db60b0
N
1931 * the "struct imsm_super" metadata.
1932 * This contains mpb_size which is the size in bytes of the
1933 * extended metadata. This is located immediately before
1934 * the imsm_super.
1935 * We want to read all that, plus the last sector which
1936 * may contain a migration record, and write it all
1937 * to the target.
1938 */
1939 void *buf;
1940 unsigned long long dsize, offset;
1941 int sectors;
1942 struct imsm_super *sb;
f36a9ecd
PB
1943 struct intel_super *super = st->sb;
1944 unsigned int sector_size = super->sector_size;
1945 unsigned int written = 0;
74db60b0 1946
de44e46f 1947 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
74db60b0
N
1948 return 1;
1949
1950 if (!get_dev_size(from, NULL, &dsize))
1951 goto err;
1952
f36a9ecd 1953 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
74db60b0 1954 goto err;
466070ad 1955 if ((unsigned int)read(from, buf, sector_size) != sector_size)
74db60b0
N
1956 goto err;
1957 sb = buf;
1958 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1959 goto err;
1960
f36a9ecd
PB
1961 sectors = mpb_sectors(sb, sector_size) + 2;
1962 offset = dsize - sectors * sector_size;
74db60b0
N
1963 if (lseek64(from, offset, 0) < 0 ||
1964 lseek64(to, offset, 0) < 0)
1965 goto err;
f36a9ecd
PB
1966 while (written < sectors * sector_size) {
1967 int n = sectors*sector_size - written;
74db60b0
N
1968 if (n > 4096)
1969 n = 4096;
1970 if (read(from, buf, n) != n)
1971 goto err;
1972 if (write(to, buf, n) != n)
1973 goto err;
1974 written += n;
1975 }
1976 free(buf);
1977 return 0;
1978err:
1979 free(buf);
1980 return 1;
1981}
1982
cdddbdbc
DW
1983static void detail_super_imsm(struct supertype *st, char *homehost)
1984{
3ebe00a1
DW
1985 struct mdinfo info;
1986 char nbuf[64];
1987
a5d85af7 1988 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1989 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1990 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1991}
1992
1993static void brief_detail_super_imsm(struct supertype *st)
1994{
ff54de6e
N
1995 struct mdinfo info;
1996 char nbuf[64];
a5d85af7 1997 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1998 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1999 printf(" UUID=%s", nbuf + 5);
cdddbdbc 2000}
d665cc31
DW
2001
2002static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2003static void fd2devname(int fd, char *name);
2004
120dc887 2005static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 2006{
120dc887
LM
2007 /* dump an unsorted list of devices attached to AHCI Intel storage
2008 * controller, as well as non-connected ports
d665cc31
DW
2009 */
2010 int hba_len = strlen(hba_path) + 1;
2011 struct dirent *ent;
2012 DIR *dir;
2013 char *path = NULL;
2014 int err = 0;
2015 unsigned long port_mask = (1 << port_count) - 1;
2016
f21e18ca 2017 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 2018 if (verbose > 0)
e7b84f9d 2019 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
2020 return 2;
2021 }
2022
2023 /* scroll through /sys/dev/block looking for devices attached to
2024 * this hba
2025 */
2026 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
2027 if (!dir)
2028 return 1;
2029
2030 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
2031 int fd;
2032 char model[64];
2033 char vendor[64];
2034 char buf[1024];
2035 int major, minor;
2036 char *device;
2037 char *c;
2038 int port;
2039 int type;
2040
2041 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2042 continue;
2043 path = devt_to_devpath(makedev(major, minor));
2044 if (!path)
2045 continue;
2046 if (!path_attached_to_hba(path, hba_path)) {
2047 free(path);
2048 path = NULL;
2049 continue;
2050 }
2051
2052 /* retrieve the scsi device type */
2053 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 2054 if (verbose > 0)
e7b84f9d 2055 pr_err("failed to allocate 'device'\n");
d665cc31
DW
2056 err = 2;
2057 break;
2058 }
2059 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
193b6c0b 2060 if (load_sys(device, buf, sizeof(buf)) != 0) {
ba728be7 2061 if (verbose > 0)
e7b84f9d 2062 pr_err("failed to read device type for %s\n",
d665cc31
DW
2063 path);
2064 err = 2;
2065 free(device);
2066 break;
2067 }
2068 type = strtoul(buf, NULL, 10);
2069
2070 /* if it's not a disk print the vendor and model */
2071 if (!(type == 0 || type == 7 || type == 14)) {
2072 vendor[0] = '\0';
2073 model[0] = '\0';
2074 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
193b6c0b 2075 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2076 strncpy(vendor, buf, sizeof(vendor));
2077 vendor[sizeof(vendor) - 1] = '\0';
2078 c = (char *) &vendor[sizeof(vendor) - 1];
2079 while (isspace(*c) || *c == '\0')
2080 *c-- = '\0';
2081
2082 }
2083 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
193b6c0b 2084 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
2085 strncpy(model, buf, sizeof(model));
2086 model[sizeof(model) - 1] = '\0';
2087 c = (char *) &model[sizeof(model) - 1];
2088 while (isspace(*c) || *c == '\0')
2089 *c-- = '\0';
2090 }
2091
2092 if (vendor[0] && model[0])
2093 sprintf(buf, "%.64s %.64s", vendor, model);
2094 else
2095 switch (type) { /* numbers from hald/linux/device.c */
2096 case 1: sprintf(buf, "tape"); break;
2097 case 2: sprintf(buf, "printer"); break;
2098 case 3: sprintf(buf, "processor"); break;
2099 case 4:
2100 case 5: sprintf(buf, "cdrom"); break;
2101 case 6: sprintf(buf, "scanner"); break;
2102 case 8: sprintf(buf, "media_changer"); break;
2103 case 9: sprintf(buf, "comm"); break;
2104 case 12: sprintf(buf, "raid"); break;
2105 default: sprintf(buf, "unknown");
2106 }
2107 } else
2108 buf[0] = '\0';
2109 free(device);
2110
2111 /* chop device path to 'host%d' and calculate the port number */
2112 c = strchr(&path[hba_len], '/');
4e5e717d 2113 if (!c) {
ba728be7 2114 if (verbose > 0)
e7b84f9d 2115 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
2116 err = 2;
2117 break;
2118 }
d665cc31 2119 *c = '\0';
0858eccf
AP
2120 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2121 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
2122 port -= host_base;
2123 else {
ba728be7 2124 if (verbose > 0) {
d665cc31 2125 *c = '/'; /* repair the full string */
e7b84f9d 2126 pr_err("failed to determine port number for %s\n",
d665cc31
DW
2127 path);
2128 }
2129 err = 2;
2130 break;
2131 }
2132
2133 /* mark this port as used */
2134 port_mask &= ~(1 << port);
2135
2136 /* print out the device information */
2137 if (buf[0]) {
2138 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2139 continue;
2140 }
2141
2142 fd = dev_open(ent->d_name, O_RDONLY);
2143 if (fd < 0)
2144 printf(" Port%d : - disk info unavailable -\n", port);
2145 else {
2146 fd2devname(fd, buf);
2147 printf(" Port%d : %s", port, buf);
2148 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 2149 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 2150 else
664d5325 2151 printf(" ()\n");
4dab422a 2152 close(fd);
d665cc31 2153 }
d665cc31
DW
2154 free(path);
2155 path = NULL;
2156 }
2157 if (path)
2158 free(path);
2159 if (dir)
2160 closedir(dir);
2161 if (err == 0) {
2162 int i;
2163
2164 for (i = 0; i < port_count; i++)
2165 if (port_mask & (1 << i))
2166 printf(" Port%d : - no device attached -\n", i);
2167 }
2168
2169 return err;
2170}
2171
b5eece69 2172static int print_vmd_attached_devs(struct sys_dev *hba)
60f0f54d
PB
2173{
2174 struct dirent *ent;
2175 DIR *dir;
2176 char path[292];
2177 char link[256];
2178 char *c, *rp;
2179
2180 if (hba->type != SYS_DEV_VMD)
b5eece69 2181 return 1;
60f0f54d
PB
2182
2183 /* scroll through /sys/dev/block looking for devices attached to
2184 * this hba
2185 */
2186 dir = opendir("/sys/bus/pci/drivers/nvme");
b9135011 2187 if (!dir)
b5eece69 2188 return 1;
b9135011
JS
2189
2190 for (ent = readdir(dir); ent; ent = readdir(dir)) {
60f0f54d
PB
2191 int n;
2192
2193 /* is 'ent' a device? check that the 'subsystem' link exists and
2194 * that its target matches 'bus'
2195 */
2196 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2197 ent->d_name);
2198 n = readlink(path, link, sizeof(link));
2199 if (n < 0 || n >= (int)sizeof(link))
2200 continue;
2201 link[n] = '\0';
2202 c = strrchr(link, '/');
2203 if (!c)
2204 continue;
2205 if (strncmp("pci", c+1, strlen("pci")) != 0)
2206 continue;
2207
2208 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
60f0f54d
PB
2209
2210 rp = realpath(path, NULL);
2211 if (!rp)
2212 continue;
2213
2214 if (path_attached_to_hba(rp, hba->path)) {
2215 printf(" NVMe under VMD : %s\n", rp);
2216 }
2217 free(rp);
2218 }
2219
b9135011 2220 closedir(dir);
b5eece69 2221 return 0;
60f0f54d
PB
2222}
2223
120dc887
LM
2224static void print_found_intel_controllers(struct sys_dev *elem)
2225{
2226 for (; elem; elem = elem->next) {
e7b84f9d 2227 pr_err("found Intel(R) ");
120dc887
LM
2228 if (elem->type == SYS_DEV_SATA)
2229 fprintf(stderr, "SATA ");
155cbb4c
LM
2230 else if (elem->type == SYS_DEV_SAS)
2231 fprintf(stderr, "SAS ");
0858eccf
AP
2232 else if (elem->type == SYS_DEV_NVME)
2233 fprintf(stderr, "NVMe ");
60f0f54d
PB
2234
2235 if (elem->type == SYS_DEV_VMD)
2236 fprintf(stderr, "VMD domain");
2237 else
2238 fprintf(stderr, "RAID controller");
2239
120dc887
LM
2240 if (elem->pci_id)
2241 fprintf(stderr, " at %s", elem->pci_id);
2242 fprintf(stderr, ".\n");
2243 }
2244 fflush(stderr);
2245}
2246
120dc887
LM
2247static int ahci_get_port_count(const char *hba_path, int *port_count)
2248{
2249 struct dirent *ent;
2250 DIR *dir;
2251 int host_base = -1;
2252
2253 *port_count = 0;
2254 if ((dir = opendir(hba_path)) == NULL)
2255 return -1;
2256
2257 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2258 int host;
2259
0858eccf
AP
2260 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2261 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
2262 continue;
2263 if (*port_count == 0)
2264 host_base = host;
2265 else if (host < host_base)
2266 host_base = host;
2267
2268 if (host + 1 > *port_count + host_base)
2269 *port_count = host + 1 - host_base;
2270 }
2271 closedir(dir);
2272 return host_base;
2273}
2274
a891a3c2
LM
2275static void print_imsm_capability(const struct imsm_orom *orom)
2276{
0858eccf
AP
2277 printf(" Platform : Intel(R) ");
2278 if (orom->capabilities == 0 && orom->driver_features == 0)
2279 printf("Matrix Storage Manager\n");
2280 else
2281 printf("Rapid Storage Technology%s\n",
2282 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2283 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2284 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2285 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
2286 printf(" RAID Levels :%s%s%s%s%s\n",
2287 imsm_orom_has_raid0(orom) ? " raid0" : "",
2288 imsm_orom_has_raid1(orom) ? " raid1" : "",
2289 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2290 imsm_orom_has_raid10(orom) ? " raid10" : "",
2291 imsm_orom_has_raid5(orom) ? " raid5" : "");
2292 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2293 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2294 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2295 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2296 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2297 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2298 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2299 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2300 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2301 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2302 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2303 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2304 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2305 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2306 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2307 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2308 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
2309 printf(" 2TB volumes :%s supported\n",
2310 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2311 printf(" 2TB disks :%s supported\n",
2312 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 2313 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
2314 printf(" Max Volumes : %d per array, %d per %s\n",
2315 orom->vpa, orom->vphba,
2316 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
2317 return;
2318}
2319
e50cf220
MN
2320static void print_imsm_capability_export(const struct imsm_orom *orom)
2321{
2322 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
2323 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2324 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2325 orom->hotfix_ver, orom->build);
e50cf220
MN
2326 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2327 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2328 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2329 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2330 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2331 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2332 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2333 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2334 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2335 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2336 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2337 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2338 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2339 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2340 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2341 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2342 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2343 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2344 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2345 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2346 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2347 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2348 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2349 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2350 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2351 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2352 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2353 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2354}
2355
9eafa1de 2356static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
2357{
2358 /* There are two components to imsm platform support, the ahci SATA
2359 * controller and the option-rom. To find the SATA controller we
2360 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2361 * controller with the Intel vendor id is present. This approach
2362 * allows mdadm to leverage the kernel's ahci detection logic, with the
2363 * caveat that if ahci.ko is not loaded mdadm will not be able to
2364 * detect platform raid capabilities. The option-rom resides in a
2365 * platform "Adapter ROM". We scan for its signature to retrieve the
2366 * platform capabilities. If raid support is disabled in the BIOS the
2367 * option-rom capability structure will not be available.
2368 */
d665cc31 2369 struct sys_dev *list, *hba;
d665cc31
DW
2370 int host_base = 0;
2371 int port_count = 0;
9eafa1de 2372 int result=1;
d665cc31 2373
5615172f 2374 if (enumerate_only) {
a891a3c2 2375 if (check_env("IMSM_NO_PLATFORM"))
5615172f 2376 return 0;
a891a3c2
LM
2377 list = find_intel_devices();
2378 if (!list)
2379 return 2;
2380 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
2381 if (find_imsm_capability(hba)) {
2382 result = 0;
a891a3c2
LM
2383 break;
2384 }
9eafa1de 2385 else
6b781d33 2386 result = 2;
a891a3c2 2387 }
a891a3c2 2388 return result;
5615172f
DW
2389 }
2390
155cbb4c
LM
2391 list = find_intel_devices();
2392 if (!list) {
ba728be7 2393 if (verbose > 0)
7a862a02 2394 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 2395 return 2;
ba728be7 2396 } else if (verbose > 0)
155cbb4c 2397 print_found_intel_controllers(list);
d665cc31 2398
a891a3c2 2399 for (hba = list; hba; hba = hba->next) {
0858eccf 2400 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2401 continue;
0858eccf 2402 if (!find_imsm_capability(hba)) {
60f0f54d 2403 char buf[PATH_MAX];
e7b84f9d 2404 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2405 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2406 get_sys_dev_type(hba->type));
0858eccf
AP
2407 continue;
2408 }
2409 result = 0;
2410 }
2411
2412 if (controller_path && result == 1) {
2413 pr_err("no active Intel(R) RAID controller found under %s\n",
2414 controller_path);
2415 return result;
2416 }
2417
5e1d6128 2418 const struct orom_entry *entry;
0858eccf 2419
5e1d6128 2420 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d 2421 if (entry->type == SYS_DEV_VMD) {
07cb1e57 2422 print_imsm_capability(&entry->orom);
32716c51
PB
2423 printf(" 3rd party NVMe :%s supported\n",
2424 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
60f0f54d
PB
2425 for (hba = list; hba; hba = hba->next) {
2426 if (hba->type == SYS_DEV_VMD) {
2427 char buf[PATH_MAX];
60f0f54d
PB
2428 printf(" I/O Controller : %s (%s)\n",
2429 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
b5eece69
PB
2430 if (print_vmd_attached_devs(hba)) {
2431 if (verbose > 0)
2432 pr_err("failed to get devices attached to VMD domain.\n");
2433 result |= 2;
2434 }
60f0f54d
PB
2435 }
2436 }
07cb1e57 2437 printf("\n");
60f0f54d
PB
2438 continue;
2439 }
0858eccf 2440
60f0f54d
PB
2441 print_imsm_capability(&entry->orom);
2442 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2443 for (hba = list; hba; hba = hba->next) {
2444 if (hba->type == SYS_DEV_NVME)
2445 printf(" NVMe Device : %s\n", hba->path);
2446 }
60f0f54d 2447 printf("\n");
0858eccf
AP
2448 continue;
2449 }
2450
2451 struct devid_list *devid;
5e1d6128 2452 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2453 hba = device_by_id(devid->devid);
2454 if (!hba)
2455 continue;
2456
9eafa1de
MN
2457 printf(" I/O Controller : %s (%s)\n",
2458 hba->path, get_sys_dev_type(hba->type));
2459 if (hba->type == SYS_DEV_SATA) {
2460 host_base = ahci_get_port_count(hba->path, &port_count);
2461 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2462 if (verbose > 0)
7a862a02 2463 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2464 result |= 2;
2465 }
120dc887
LM
2466 }
2467 }
0858eccf 2468 printf("\n");
d665cc31 2469 }
155cbb4c 2470
120dc887 2471 return result;
d665cc31 2472}
e50cf220 2473
9eafa1de 2474static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2475{
e50cf220
MN
2476 struct sys_dev *list, *hba;
2477 int result=1;
2478
2479 list = find_intel_devices();
2480 if (!list) {
2481 if (verbose > 0)
2482 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2483 result = 2;
e50cf220
MN
2484 return result;
2485 }
2486
2487 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2488 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2489 continue;
60f0f54d
PB
2490 if (!find_imsm_capability(hba) && verbose > 0) {
2491 char buf[PATH_MAX];
2492 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2493 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2494 }
0858eccf 2495 else
e50cf220 2496 result = 0;
e50cf220
MN
2497 }
2498
5e1d6128 2499 const struct orom_entry *entry;
0858eccf 2500
60f0f54d
PB
2501 for (entry = orom_entries; entry; entry = entry->next) {
2502 if (entry->type == SYS_DEV_VMD) {
2503 for (hba = list; hba; hba = hba->next)
2504 print_imsm_capability_export(&entry->orom);
2505 continue;
2506 }
5e1d6128 2507 print_imsm_capability_export(&entry->orom);
60f0f54d 2508 }
0858eccf 2509
e50cf220
MN
2510 return result;
2511}
2512
cdddbdbc
DW
2513#endif
2514
2515static int match_home_imsm(struct supertype *st, char *homehost)
2516{
5115ca67
DW
2517 /* the imsm metadata format does not specify any host
2518 * identification information. We return -1 since we can never
2519 * confirm nor deny whether a given array is "meant" for this
148acb7b 2520 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2521 * exclude member disks that do not belong, and we rely on
2522 * mdadm.conf to specify the arrays that should be assembled.
2523 * Auto-assembly may still pick up "foreign" arrays.
2524 */
cdddbdbc 2525
9362c1c8 2526 return -1;
cdddbdbc
DW
2527}
2528
2529static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2530{
51006d85
N
2531 /* The uuid returned here is used for:
2532 * uuid to put into bitmap file (Create, Grow)
2533 * uuid for backup header when saving critical section (Grow)
2534 * comparing uuids when re-adding a device into an array
2535 * In these cases the uuid required is that of the data-array,
2536 * not the device-set.
2537 * uuid to recognise same set when adding a missing device back
2538 * to an array. This is a uuid for the device-set.
1011e834 2539 *
51006d85
N
2540 * For each of these we can make do with a truncated
2541 * or hashed uuid rather than the original, as long as
2542 * everyone agrees.
2543 * In each case the uuid required is that of the data-array,
2544 * not the device-set.
43dad3d6 2545 */
51006d85
N
2546 /* imsm does not track uuid's so we synthesis one using sha1 on
2547 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2548 * - the orig_family_num of the container
51006d85
N
2549 * - the index number of the volume
2550 * - the 'serial' number of the volume.
2551 * Hopefully these are all constant.
2552 */
2553 struct intel_super *super = st->sb;
43dad3d6 2554
51006d85
N
2555 char buf[20];
2556 struct sha1_ctx ctx;
2557 struct imsm_dev *dev = NULL;
148acb7b 2558 __u32 family_num;
51006d85 2559
148acb7b
DW
2560 /* some mdadm versions failed to set ->orig_family_num, in which
2561 * case fall back to ->family_num. orig_family_num will be
2562 * fixed up with the first metadata update.
2563 */
2564 family_num = super->anchor->orig_family_num;
2565 if (family_num == 0)
2566 family_num = super->anchor->family_num;
51006d85 2567 sha1_init_ctx(&ctx);
92bd8f8d 2568 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2569 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2570 if (super->current_vol >= 0)
2571 dev = get_imsm_dev(super, super->current_vol);
2572 if (dev) {
2573 __u32 vol = super->current_vol;
2574 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2575 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2576 }
2577 sha1_finish_ctx(&ctx, buf);
2578 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2579}
2580
0d481d37 2581#if 0
4f5bc454
DW
2582static void
2583get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2584{
cdddbdbc
DW
2585 __u8 *v = get_imsm_version(mpb);
2586 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2587 char major[] = { 0, 0, 0 };
2588 char minor[] = { 0 ,0, 0 };
2589 char patch[] = { 0, 0, 0 };
2590 char *ver_parse[] = { major, minor, patch };
2591 int i, j;
2592
2593 i = j = 0;
2594 while (*v != '\0' && v < end) {
2595 if (*v != '.' && j < 2)
2596 ver_parse[i][j++] = *v;
2597 else {
2598 i++;
2599 j = 0;
2600 }
2601 v++;
2602 }
2603
4f5bc454
DW
2604 *m = strtol(minor, NULL, 0);
2605 *p = strtol(patch, NULL, 0);
2606}
0d481d37 2607#endif
4f5bc454 2608
1e5c6983
DW
2609static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2610{
2611 /* migr_strip_size when repairing or initializing parity */
238c0a71 2612 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2613 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2614
2615 switch (get_imsm_raid_level(map)) {
2616 case 5:
2617 case 10:
2618 return chunk;
2619 default:
2620 return 128*1024 >> 9;
2621 }
2622}
2623
2624static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2625{
2626 /* migr_strip_size when rebuilding a degraded disk, no idea why
2627 * this is different than migr_strip_size_resync(), but it's good
2628 * to be compatible
2629 */
238c0a71 2630 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2631 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2632
2633 switch (get_imsm_raid_level(map)) {
2634 case 1:
2635 case 10:
2636 if (map->num_members % map->num_domains == 0)
2637 return 128*1024 >> 9;
2638 else
2639 return chunk;
2640 case 5:
2641 return max((__u32) 64*1024 >> 9, chunk);
2642 default:
2643 return 128*1024 >> 9;
2644 }
2645}
2646
2647static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2648{
238c0a71
AK
2649 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2650 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2651 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2652 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2653
2654 return max((__u32) 1, hi_chunk / lo_chunk);
2655}
2656
2657static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2658{
238c0a71 2659 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2660 int level = get_imsm_raid_level(lo);
2661
2662 if (level == 1 || level == 10) {
238c0a71 2663 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2664
2665 return hi->num_domains;
2666 } else
2667 return num_stripes_per_unit_resync(dev);
2668}
2669
98130f40 2670static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2671{
2672 /* named 'imsm_' because raid0, raid1 and raid10
2673 * counter-intuitively have the same number of data disks
2674 */
98130f40 2675 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2676
2677 switch (get_imsm_raid_level(map)) {
2678 case 0:
36fd8ccc
AK
2679 return map->num_members;
2680 break;
1e5c6983
DW
2681 case 1:
2682 case 10:
36fd8ccc 2683 return map->num_members/2;
1e5c6983
DW
2684 case 5:
2685 return map->num_members - 1;
2686 default:
1ade5cc1 2687 dprintf("unsupported raid level\n");
1e5c6983
DW
2688 return 0;
2689 }
2690}
2691
2692static __u32 parity_segment_depth(struct imsm_dev *dev)
2693{
238c0a71 2694 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2695 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2696
2697 switch(get_imsm_raid_level(map)) {
2698 case 1:
2699 case 10:
2700 return chunk * map->num_domains;
2701 case 5:
2702 return chunk * map->num_members;
2703 default:
2704 return chunk;
2705 }
2706}
2707
2708static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2709{
238c0a71 2710 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2711 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2712 __u32 strip = block / chunk;
2713
2714 switch (get_imsm_raid_level(map)) {
2715 case 1:
2716 case 10: {
2717 __u32 vol_strip = (strip * map->num_domains) + 1;
2718 __u32 vol_stripe = vol_strip / map->num_members;
2719
2720 return vol_stripe * chunk + block % chunk;
2721 } case 5: {
2722 __u32 stripe = strip / (map->num_members - 1);
2723
2724 return stripe * chunk + block % chunk;
2725 }
2726 default:
2727 return 0;
2728 }
2729}
2730
c47b0ff6
AK
2731static __u64 blocks_per_migr_unit(struct intel_super *super,
2732 struct imsm_dev *dev)
1e5c6983
DW
2733{
2734 /* calculate the conversion factor between per member 'blocks'
2735 * (md/{resync,rebuild}_start) and imsm migration units, return
2736 * 0 for the 'not migrating' and 'unsupported migration' cases
2737 */
2738 if (!dev->vol.migr_state)
2739 return 0;
2740
2741 switch (migr_type(dev)) {
c47b0ff6
AK
2742 case MIGR_GEN_MIGR: {
2743 struct migr_record *migr_rec = super->migr_rec;
2744 return __le32_to_cpu(migr_rec->blocks_per_unit);
2745 }
1e5c6983
DW
2746 case MIGR_VERIFY:
2747 case MIGR_REPAIR:
2748 case MIGR_INIT: {
238c0a71 2749 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2750 __u32 stripes_per_unit;
2751 __u32 blocks_per_unit;
2752 __u32 parity_depth;
2753 __u32 migr_chunk;
2754 __u32 block_map;
2755 __u32 block_rel;
2756 __u32 segment;
2757 __u32 stripe;
2758 __u8 disks;
2759
2760 /* yes, this is really the translation of migr_units to
2761 * per-member blocks in the 'resync' case
2762 */
2763 stripes_per_unit = num_stripes_per_unit_resync(dev);
2764 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2765 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2766 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2767 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2768 segment = blocks_per_unit / stripe;
2769 block_rel = blocks_per_unit - segment * stripe;
2770 parity_depth = parity_segment_depth(dev);
2771 block_map = map_migr_block(dev, block_rel);
2772 return block_map + parity_depth * segment;
2773 }
2774 case MIGR_REBUILD: {
2775 __u32 stripes_per_unit;
2776 __u32 migr_chunk;
2777
2778 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2779 migr_chunk = migr_strip_blocks_rebuild(dev);
2780 return migr_chunk * stripes_per_unit;
2781 }
1e5c6983
DW
2782 case MIGR_STATE_CHANGE:
2783 default:
2784 return 0;
2785 }
2786}
2787
c2c087e6
DW
2788static int imsm_level_to_layout(int level)
2789{
2790 switch (level) {
2791 case 0:
2792 case 1:
2793 return 0;
2794 case 5:
2795 case 6:
a380c027 2796 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2797 case 10:
c92a2527 2798 return 0x102;
c2c087e6 2799 }
a18a888e 2800 return UnSet;
c2c087e6
DW
2801}
2802
8e59f3d8
AK
2803/*******************************************************************************
2804 * Function: read_imsm_migr_rec
2805 * Description: Function reads imsm migration record from last sector of disk
2806 * Parameters:
2807 * fd : disk descriptor
2808 * super : metadata info
2809 * Returns:
2810 * 0 : success,
2811 * -1 : fail
2812 ******************************************************************************/
2813static int read_imsm_migr_rec(int fd, struct intel_super *super)
2814{
2815 int ret_val = -1;
de44e46f 2816 unsigned int sector_size = super->sector_size;
8e59f3d8
AK
2817 unsigned long long dsize;
2818
2819 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
2820 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2821 SEEK_SET) < 0) {
e7b84f9d
N
2822 pr_err("Cannot seek to anchor block: %s\n",
2823 strerror(errno));
8e59f3d8
AK
2824 goto out;
2825 }
466070ad 2826 if ((unsigned int)read(fd, super->migr_rec_buf,
de44e46f
PB
2827 MIGR_REC_BUF_SECTORS*sector_size) !=
2828 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
2829 pr_err("Cannot read migr record block: %s\n",
2830 strerror(errno));
8e59f3d8
AK
2831 goto out;
2832 }
2833 ret_val = 0;
de44e46f
PB
2834 if (sector_size == 4096)
2835 convert_from_4k_imsm_migr_rec(super);
8e59f3d8
AK
2836
2837out:
2838 return ret_val;
2839}
2840
3136abe5
AK
2841static struct imsm_dev *imsm_get_device_during_migration(
2842 struct intel_super *super)
2843{
2844
2845 struct intel_dev *dv;
2846
2847 for (dv = super->devlist; dv; dv = dv->next) {
2848 if (is_gen_migration(dv->dev))
2849 return dv->dev;
2850 }
2851 return NULL;
2852}
2853
8e59f3d8
AK
2854/*******************************************************************************
2855 * Function: load_imsm_migr_rec
2856 * Description: Function reads imsm migration record (it is stored at the last
2857 * sector of disk)
2858 * Parameters:
2859 * super : imsm internal array info
2860 * info : general array info
2861 * Returns:
2862 * 0 : success
2863 * -1 : fail
4c965cc9 2864 * -2 : no migration in progress
8e59f3d8
AK
2865 ******************************************************************************/
2866static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2867{
2868 struct mdinfo *sd;
594dc1b8 2869 struct dl *dl;
8e59f3d8
AK
2870 char nm[30];
2871 int retval = -1;
2872 int fd = -1;
3136abe5 2873 struct imsm_dev *dev;
594dc1b8 2874 struct imsm_map *map;
b4ab44d8 2875 int slot = -1;
3136abe5
AK
2876
2877 /* find map under migration */
2878 dev = imsm_get_device_during_migration(super);
2879 /* nothing to load,no migration in progress?
2880 */
2881 if (dev == NULL)
4c965cc9 2882 return -2;
8e59f3d8
AK
2883
2884 if (info) {
2885 for (sd = info->devs ; sd ; sd = sd->next) {
2886 /* read only from one of the first two slots */
12fe93e9
TM
2887 if ((sd->disk.raid_disk < 0) ||
2888 (sd->disk.raid_disk > 1))
8e59f3d8 2889 continue;
3136abe5 2890
8e59f3d8
AK
2891 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2892 fd = dev_open(nm, O_RDONLY);
2893 if (fd >= 0)
2894 break;
2895 }
2896 }
2897 if (fd < 0) {
12fe93e9 2898 map = get_imsm_map(dev, MAP_0);
8e59f3d8 2899 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2900 /* skip spare and failed disks
2901 */
2902 if (dl->index < 0)
2903 continue;
8e59f3d8 2904 /* read only from one of the first two slots */
3136abe5
AK
2905 if (map)
2906 slot = get_imsm_disk_slot(map, dl->index);
089f9d79 2907 if (map == NULL || slot > 1 || slot < 0)
8e59f3d8
AK
2908 continue;
2909 sprintf(nm, "%d:%d", dl->major, dl->minor);
2910 fd = dev_open(nm, O_RDONLY);
2911 if (fd >= 0)
2912 break;
2913 }
2914 }
2915 if (fd < 0)
2916 goto out;
2917 retval = read_imsm_migr_rec(fd, super);
2918
2919out:
2920 if (fd >= 0)
2921 close(fd);
2922 return retval;
2923}
2924
9e2d750d 2925#ifndef MDASSEMBLE
c17608ea
AK
2926/*******************************************************************************
2927 * function: imsm_create_metadata_checkpoint_update
2928 * Description: It creates update for checkpoint change.
2929 * Parameters:
2930 * super : imsm internal array info
2931 * u : pointer to prepared update
2932 * Returns:
2933 * Uptate length.
2934 * If length is equal to 0, input pointer u contains no update
2935 ******************************************************************************/
2936static int imsm_create_metadata_checkpoint_update(
2937 struct intel_super *super,
2938 struct imsm_update_general_migration_checkpoint **u)
2939{
2940
2941 int update_memory_size = 0;
2942
1ade5cc1 2943 dprintf("(enter)\n");
c17608ea
AK
2944
2945 if (u == NULL)
2946 return 0;
2947 *u = NULL;
2948
2949 /* size of all update data without anchor */
2950 update_memory_size =
2951 sizeof(struct imsm_update_general_migration_checkpoint);
2952
503975b9 2953 *u = xcalloc(1, update_memory_size);
c17608ea 2954 if (*u == NULL) {
1ade5cc1 2955 dprintf("error: cannot get memory\n");
c17608ea
AK
2956 return 0;
2957 }
2958 (*u)->type = update_general_migration_checkpoint;
2959 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1ade5cc1 2960 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
c17608ea
AK
2961
2962 return update_memory_size;
2963}
2964
c17608ea
AK
2965static void imsm_update_metadata_locally(struct supertype *st,
2966 void *buf, int len);
2967
687629c2
AK
2968/*******************************************************************************
2969 * Function: write_imsm_migr_rec
2970 * Description: Function writes imsm migration record
2971 * (at the last sector of disk)
2972 * Parameters:
2973 * super : imsm internal array info
2974 * Returns:
2975 * 0 : success
2976 * -1 : if fail
2977 ******************************************************************************/
2978static int write_imsm_migr_rec(struct supertype *st)
2979{
2980 struct intel_super *super = st->sb;
de44e46f 2981 unsigned int sector_size = super->sector_size;
687629c2
AK
2982 unsigned long long dsize;
2983 char nm[30];
2984 int fd = -1;
2985 int retval = -1;
2986 struct dl *sd;
c17608ea
AK
2987 int len;
2988 struct imsm_update_general_migration_checkpoint *u;
3136abe5 2989 struct imsm_dev *dev;
594dc1b8 2990 struct imsm_map *map;
3136abe5
AK
2991
2992 /* find map under migration */
2993 dev = imsm_get_device_during_migration(super);
2994 /* if no migration, write buffer anyway to clear migr_record
2995 * on disk based on first available device
2996 */
2997 if (dev == NULL)
2998 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2999 super->current_vol);
3000
44bfe6df 3001 map = get_imsm_map(dev, MAP_0);
687629c2 3002
de44e46f
PB
3003 if (sector_size == 4096)
3004 convert_to_4k_imsm_migr_rec(super);
687629c2 3005 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 3006 int slot = -1;
3136abe5
AK
3007
3008 /* skip failed and spare devices */
3009 if (sd->index < 0)
3010 continue;
687629c2 3011 /* write to 2 first slots only */
3136abe5
AK
3012 if (map)
3013 slot = get_imsm_disk_slot(map, sd->index);
089f9d79 3014 if (map == NULL || slot > 1 || slot < 0)
687629c2 3015 continue;
3136abe5 3016
687629c2
AK
3017 sprintf(nm, "%d:%d", sd->major, sd->minor);
3018 fd = dev_open(nm, O_RDWR);
3019 if (fd < 0)
3020 continue;
3021 get_dev_size(fd, NULL, &dsize);
de44e46f
PB
3022 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3023 SEEK_SET) < 0) {
e7b84f9d
N
3024 pr_err("Cannot seek to anchor block: %s\n",
3025 strerror(errno));
687629c2
AK
3026 goto out;
3027 }
466070ad 3028 if ((unsigned int)write(fd, super->migr_rec_buf,
de44e46f
PB
3029 MIGR_REC_BUF_SECTORS*sector_size) !=
3030 MIGR_REC_BUF_SECTORS*sector_size) {
e7b84f9d
N
3031 pr_err("Cannot write migr record block: %s\n",
3032 strerror(errno));
687629c2
AK
3033 goto out;
3034 }
3035 close(fd);
3036 fd = -1;
3037 }
de44e46f
PB
3038 if (sector_size == 4096)
3039 convert_from_4k_imsm_migr_rec(super);
c17608ea
AK
3040 /* update checkpoint information in metadata */
3041 len = imsm_create_metadata_checkpoint_update(super, &u);
c17608ea
AK
3042 if (len <= 0) {
3043 dprintf("imsm: Cannot prepare update\n");
3044 goto out;
3045 }
3046 /* update metadata locally */
3047 imsm_update_metadata_locally(st, u, len);
3048 /* and possibly remotely */
3049 if (st->update_tail) {
3050 append_metadata_update(st, u, len);
3051 /* during reshape we do all work inside metadata handler
3052 * manage_reshape(), so metadata update has to be triggered
3053 * insida it
3054 */
3055 flush_metadata_updates(st);
3056 st->update_tail = &st->updates;
3057 } else
3058 free(u);
687629c2
AK
3059
3060 retval = 0;
3061 out:
3062 if (fd >= 0)
3063 close(fd);
3064 return retval;
3065}
9e2d750d 3066#endif /* MDASSEMBLE */
687629c2 3067
e2962bfc
AK
3068/* spare/missing disks activations are not allowe when
3069 * array/container performs reshape operation, because
3070 * all arrays in container works on the same disks set
3071 */
3072int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3073{
3074 int rv = 0;
3075 struct intel_dev *i_dev;
3076 struct imsm_dev *dev;
3077
3078 /* check whole container
3079 */
3080 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3081 dev = i_dev->dev;
3ad25638 3082 if (is_gen_migration(dev)) {
e2962bfc
AK
3083 /* No repair during any migration in container
3084 */
3085 rv = 1;
3086 break;
3087 }
3088 }
3089 return rv;
3090}
c41e00b2
AK
3091static unsigned long long imsm_component_size_aligment_check(int level,
3092 int chunk_size,
f36a9ecd 3093 unsigned int sector_size,
c41e00b2
AK
3094 unsigned long long component_size)
3095{
3096 unsigned int component_size_alligment;
3097
3098 /* check component size aligment
3099 */
f36a9ecd 3100 component_size_alligment = component_size % (chunk_size/sector_size);
c41e00b2 3101
1ade5cc1 3102 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
c41e00b2
AK
3103 level, chunk_size, component_size,
3104 component_size_alligment);
3105
3106 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3107 dprintf("imsm: reported component size alligned from %llu ",
3108 component_size);
3109 component_size -= component_size_alligment;
1ade5cc1 3110 dprintf_cont("to %llu (%i).\n",
c41e00b2
AK
3111 component_size, component_size_alligment);
3112 }
3113
3114 return component_size;
3115}
e2962bfc 3116
a5d85af7 3117static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
3118{
3119 struct intel_super *super = st->sb;
c47b0ff6 3120 struct migr_record *migr_rec = super->migr_rec;
949c47a0 3121 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
3122 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3123 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 3124 struct imsm_map *map_to_analyse = map;
efb30e7f 3125 struct dl *dl;
a5d85af7 3126 int map_disks = info->array.raid_disks;
bf5a934a 3127
95eeceeb 3128 memset(info, 0, sizeof(*info));
b335e593
AK
3129 if (prev_map)
3130 map_to_analyse = prev_map;
3131
ca0748fa 3132 dl = super->current_disk;
9894ec0d 3133
bf5a934a 3134 info->container_member = super->current_vol;
cd0430a1 3135 info->array.raid_disks = map->num_members;
b335e593 3136 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
3137 info->array.layout = imsm_level_to_layout(info->array.level);
3138 info->array.md_minor = -1;
3139 info->array.ctime = 0;
3140 info->array.utime = 0;
b335e593
AK
3141 info->array.chunk_size =
3142 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 3143 info->array.state = !dev->vol.dirty;
da9b4a62
DW
3144 info->custom_array_size = __le32_to_cpu(dev->size_high);
3145 info->custom_array_size <<= 32;
3146 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
3147 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3148
3f510843 3149 if (is_gen_migration(dev)) {
3f83228a 3150 info->reshape_active = 1;
b335e593
AK
3151 info->new_level = get_imsm_raid_level(map);
3152 info->new_layout = imsm_level_to_layout(info->new_level);
3153 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 3154 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
3155 if (info->delta_disks) {
3156 /* this needs to be applied to every array
3157 * in the container.
3158 */
81219e70 3159 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 3160 }
3f83228a
N
3161 /* We shape information that we give to md might have to be
3162 * modify to cope with md's requirement for reshaping arrays.
3163 * For example, when reshaping a RAID0, md requires it to be
3164 * presented as a degraded RAID4.
3165 * Also if a RAID0 is migrating to a RAID5 we need to specify
3166 * the array as already being RAID5, but the 'before' layout
3167 * is a RAID4-like layout.
3168 */
3169 switch (info->array.level) {
3170 case 0:
3171 switch(info->new_level) {
3172 case 0:
3173 /* conversion is happening as RAID4 */
3174 info->array.level = 4;
3175 info->array.raid_disks += 1;
3176 break;
3177 case 5:
3178 /* conversion is happening as RAID5 */
3179 info->array.level = 5;
3180 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
3181 info->delta_disks -= 1;
3182 break;
3183 default:
3184 /* FIXME error message */
3185 info->array.level = UnSet;
3186 break;
3187 }
3188 break;
3189 }
b335e593
AK
3190 } else {
3191 info->new_level = UnSet;
3192 info->new_layout = UnSet;
3193 info->new_chunk = info->array.chunk_size;
3f83228a 3194 info->delta_disks = 0;
b335e593 3195 }
ca0748fa 3196
efb30e7f
DW
3197 if (dl) {
3198 info->disk.major = dl->major;
3199 info->disk.minor = dl->minor;
ca0748fa 3200 info->disk.number = dl->index;
656b6b5a
N
3201 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3202 dl->index);
efb30e7f 3203 }
bf5a934a 3204
5551b113 3205 info->data_offset = pba_of_lba0(map_to_analyse);
06fb291a
PB
3206
3207 if (info->array.level == 5) {
3208 info->component_size = num_data_stripes(map_to_analyse) *
3209 map_to_analyse->blocks_per_strip;
3210 } else {
3211 info->component_size = blocks_per_member(map_to_analyse);
3212 }
139dae11 3213
c41e00b2
AK
3214 info->component_size = imsm_component_size_aligment_check(
3215 info->array.level,
3216 info->array.chunk_size,
f36a9ecd 3217 super->sector_size,
c41e00b2 3218 info->component_size);
5e46202e 3219 info->bb.supported = 1;
139dae11 3220
301406c9 3221 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 3222 info->recovery_start = MaxSector;
bf5a934a 3223
d2e6d5d6 3224 info->reshape_progress = 0;
b6796ce1 3225 info->resync_start = MaxSector;
b9172665
AK
3226 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3227 dev->vol.dirty) &&
3228 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 3229 info->resync_start = 0;
b6796ce1
AK
3230 }
3231 if (dev->vol.migr_state) {
1e5c6983
DW
3232 switch (migr_type(dev)) {
3233 case MIGR_REPAIR:
3234 case MIGR_INIT: {
c47b0ff6
AK
3235 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3236 dev);
1e5c6983
DW
3237 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3238
3239 info->resync_start = blocks_per_unit * units;
3240 break;
3241 }
d2e6d5d6 3242 case MIGR_GEN_MIGR: {
c47b0ff6
AK
3243 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3244 dev);
3245 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
3246 unsigned long long array_blocks;
3247 int used_disks;
d2e6d5d6 3248
befb629b
AK
3249 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3250 (units <
3251 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3252 (super->migr_rec->rec_status ==
3253 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3254 units++;
3255
d2e6d5d6 3256 info->reshape_progress = blocks_per_unit * units;
6289d1e0 3257
7a862a02 3258 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
3259 (unsigned long long)units,
3260 (unsigned long long)blocks_per_unit,
3261 info->reshape_progress);
75156c46 3262
238c0a71 3263 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 3264 if (used_disks > 0) {
5551b113 3265 array_blocks = blocks_per_member(map) *
75156c46
AK
3266 used_disks;
3267 /* round array size down to closest MB
3268 */
3269 info->custom_array_size = (array_blocks
3270 >> SECT_PER_MB_SHIFT)
3271 << SECT_PER_MB_SHIFT;
3272 }
d2e6d5d6 3273 }
1e5c6983
DW
3274 case MIGR_VERIFY:
3275 /* we could emulate the checkpointing of
3276 * 'sync_action=check' migrations, but for now
3277 * we just immediately complete them
3278 */
3279 case MIGR_REBUILD:
3280 /* this is handled by container_content_imsm() */
1e5c6983
DW
3281 case MIGR_STATE_CHANGE:
3282 /* FIXME handle other migrations */
3283 default:
3284 /* we are not dirty, so... */
3285 info->resync_start = MaxSector;
3286 }
b6796ce1 3287 }
301406c9
DW
3288
3289 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3290 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 3291
f35f2525
N
3292 info->array.major_version = -1;
3293 info->array.minor_version = -2;
4dd2df09 3294 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 3295 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 3296 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
3297
3298 if (dmap) {
3299 int i, j;
3300 for (i=0; i<map_disks; i++) {
3301 dmap[i] = 0;
3302 if (i < info->array.raid_disks) {
3303 struct imsm_disk *dsk;
238c0a71 3304 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
3305 dsk = get_imsm_disk(super, j);
3306 if (dsk && (dsk->status & CONFIGURED_DISK))
3307 dmap[i] = 1;
3308 }
3309 }
3310 }
81ac8b4d 3311}
bf5a934a 3312
3b451610
AK
3313static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3314 int failed, int look_in_map);
3315
3316static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3317 int look_in_map);
3318
b4ab44d8 3319#ifndef MDASSEMBLE
3b451610
AK
3320static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3321{
3322 if (is_gen_migration(dev)) {
3323 int failed;
3324 __u8 map_state;
3325 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3326
3327 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 3328 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
3329 if (map2->map_state != map_state) {
3330 map2->map_state = map_state;
3331 super->updates_pending++;
3332 }
3333 }
3334}
b4ab44d8 3335#endif
97b4d0e9
DW
3336
3337static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3338{
3339 struct dl *d;
3340
3341 for (d = super->missing; d; d = d->next)
3342 if (d->index == index)
3343 return &d->disk;
3344 return NULL;
3345}
3346
a5d85af7 3347static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
3348{
3349 struct intel_super *super = st->sb;
4f5bc454 3350 struct imsm_disk *disk;
a5d85af7 3351 int map_disks = info->array.raid_disks;
ab3cb6b3
N
3352 int max_enough = -1;
3353 int i;
3354 struct imsm_super *mpb;
4f5bc454 3355
bf5a934a 3356 if (super->current_vol >= 0) {
a5d85af7 3357 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
3358 return;
3359 }
95eeceeb 3360 memset(info, 0, sizeof(*info));
d23fe947
DW
3361
3362 /* Set raid_disks to zero so that Assemble will always pull in valid
3363 * spares
3364 */
3365 info->array.raid_disks = 0;
cdddbdbc
DW
3366 info->array.level = LEVEL_CONTAINER;
3367 info->array.layout = 0;
3368 info->array.md_minor = -1;
1011e834 3369 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
3370 info->array.utime = 0;
3371 info->array.chunk_size = 0;
3372
3373 info->disk.major = 0;
3374 info->disk.minor = 0;
cdddbdbc 3375 info->disk.raid_disk = -1;
c2c087e6 3376 info->reshape_active = 0;
f35f2525
N
3377 info->array.major_version = -1;
3378 info->array.minor_version = -2;
c2c087e6 3379 strcpy(info->text_version, "imsm");
a67dd8cc 3380 info->safe_mode_delay = 0;
c2c087e6
DW
3381 info->disk.number = -1;
3382 info->disk.state = 0;
c5afc314 3383 info->name[0] = 0;
921d9e16 3384 info->recovery_start = MaxSector;
3ad25638 3385 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
5e46202e 3386 info->bb.supported = 1;
c2c087e6 3387
97b4d0e9 3388 /* do we have the all the insync disks that we expect? */
ab3cb6b3 3389 mpb = super->anchor;
b7d81a38 3390 info->events = __le32_to_cpu(mpb->generation_num);
97b4d0e9 3391
ab3cb6b3
N
3392 for (i = 0; i < mpb->num_raid_devs; i++) {
3393 struct imsm_dev *dev = get_imsm_dev(super, i);
3394 int failed, enough, j, missing = 0;
3395 struct imsm_map *map;
3396 __u8 state;
97b4d0e9 3397
3b451610
AK
3398 failed = imsm_count_failed(super, dev, MAP_0);
3399 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 3400 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
3401
3402 /* any newly missing disks?
3403 * (catches single-degraded vs double-degraded)
3404 */
3405 for (j = 0; j < map->num_members; j++) {
238c0a71 3406 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
3407 __u32 idx = ord_to_idx(ord);
3408
3409 if (!(ord & IMSM_ORD_REBUILD) &&
3410 get_imsm_missing(super, idx)) {
3411 missing = 1;
3412 break;
3413 }
97b4d0e9 3414 }
ab3cb6b3
N
3415
3416 if (state == IMSM_T_STATE_FAILED)
3417 enough = -1;
3418 else if (state == IMSM_T_STATE_DEGRADED &&
3419 (state != map->map_state || missing))
3420 enough = 0;
3421 else /* we're normal, or already degraded */
3422 enough = 1;
d2bde6d3
AK
3423 if (is_gen_migration(dev) && missing) {
3424 /* during general migration we need all disks
3425 * that process is running on.
3426 * No new missing disk is allowed.
3427 */
3428 max_enough = -1;
3429 enough = -1;
3430 /* no more checks necessary
3431 */
3432 break;
3433 }
ab3cb6b3
N
3434 /* in the missing/failed disk case check to see
3435 * if at least one array is runnable
3436 */
3437 max_enough = max(max_enough, enough);
3438 }
1ade5cc1 3439 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3440 info->container_enough = max_enough;
97b4d0e9 3441
4a04ec6c 3442 if (super->disks) {
14e8215b
DW
3443 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3444
b9f594fe 3445 disk = &super->disks->disk;
5551b113 3446 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3447 info->component_size = reserved;
25ed7e59 3448 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3449 /* we don't change info->disk.raid_disk here because
3450 * this state will be finalized in mdmon after we have
3451 * found the 'most fresh' version of the metadata
3452 */
25ed7e59
DW
3453 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3454 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3455 }
a575e2a7
DW
3456
3457 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3458 * ->compare_super may have updated the 'num_raid_devs' field for spares
3459 */
3460 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3461 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3462 else
3463 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3464
3465 /* I don't know how to compute 'map' on imsm, so use safe default */
3466 if (map) {
3467 int i;
3468 for (i = 0; i < map_disks; i++)
3469 map[i] = 1;
3470 }
3471
cdddbdbc
DW
3472}
3473
5c4cd5da
AC
3474/* allocates memory and fills disk in mdinfo structure
3475 * for each disk in array */
3476struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3477{
594dc1b8 3478 struct mdinfo *mddev;
5c4cd5da
AC
3479 struct intel_super *super = st->sb;
3480 struct imsm_disk *disk;
3481 int count = 0;
3482 struct dl *dl;
3483 if (!super || !super->disks)
3484 return NULL;
3485 dl = super->disks;
503975b9 3486 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3487 while (dl) {
3488 struct mdinfo *tmp;
3489 disk = &dl->disk;
503975b9 3490 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3491 if (mddev->devs)
3492 tmp->next = mddev->devs;
3493 mddev->devs = tmp;
3494 tmp->disk.number = count++;
3495 tmp->disk.major = dl->major;
3496 tmp->disk.minor = dl->minor;
3497 tmp->disk.state = is_configured(disk) ?
3498 (1 << MD_DISK_ACTIVE) : 0;
3499 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3500 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3501 tmp->disk.raid_disk = -1;
3502 dl = dl->next;
3503 }
3504 return mddev;
3505}
3506
cdddbdbc
DW
3507static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3508 char *update, char *devname, int verbose,
3509 int uuid_set, char *homehost)
3510{
f352c545
DW
3511 /* For 'assemble' and 'force' we need to return non-zero if any
3512 * change was made. For others, the return value is ignored.
3513 * Update options are:
3514 * force-one : This device looks a bit old but needs to be included,
3515 * update age info appropriately.
3516 * assemble: clear any 'faulty' flag to allow this device to
3517 * be assembled.
3518 * force-array: Array is degraded but being forced, mark it clean
3519 * if that will be needed to assemble it.
3520 *
3521 * newdev: not used ????
3522 * grow: Array has gained a new device - this is currently for
3523 * linear only
3524 * resync: mark as dirty so a resync will happen.
3525 * name: update the name - preserving the homehost
6e46bf34 3526 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3527 *
3528 * Following are not relevant for this imsm:
3529 * sparc2.2 : update from old dodgey metadata
3530 * super-minor: change the preferred_minor number
3531 * summaries: update redundant counters.
f352c545
DW
3532 * homehost: update the recorded homehost
3533 * _reshape_progress: record new reshape_progress position.
3534 */
6e46bf34
DW
3535 int rv = 1;
3536 struct intel_super *super = st->sb;
3537 struct imsm_super *mpb;
f352c545 3538
6e46bf34
DW
3539 /* we can only update container info */
3540 if (!super || super->current_vol >= 0 || !super->anchor)
3541 return 1;
3542
3543 mpb = super->anchor;
3544
81a5b4f5
N
3545 if (strcmp(update, "uuid") == 0) {
3546 /* We take this to mean that the family_num should be updated.
3547 * However that is much smaller than the uuid so we cannot really
3548 * allow an explicit uuid to be given. And it is hard to reliably
3549 * know if one was.
3550 * So if !uuid_set we know the current uuid is random and just used
3551 * the first 'int' and copy it to the other 3 positions.
3552 * Otherwise we require the 4 'int's to be the same as would be the
3553 * case if we are using a random uuid. So an explicit uuid will be
3554 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3555 */
81a5b4f5
N
3556 if (!uuid_set) {
3557 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3558 rv = 0;
81a5b4f5
N
3559 } else {
3560 if (info->uuid[0] != info->uuid[1] ||
3561 info->uuid[1] != info->uuid[2] ||
3562 info->uuid[2] != info->uuid[3])
3563 rv = -1;
3564 else
3565 rv = 0;
6e46bf34 3566 }
81a5b4f5
N
3567 if (rv == 0)
3568 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3569 } else if (strcmp(update, "assemble") == 0)
3570 rv = 0;
3571 else
1e2b2765 3572 rv = -1;
f352c545 3573
6e46bf34
DW
3574 /* successful update? recompute checksum */
3575 if (rv == 0)
3576 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3577
3578 return rv;
cdddbdbc
DW
3579}
3580
c2c087e6 3581static size_t disks_to_mpb_size(int disks)
cdddbdbc 3582{
c2c087e6 3583 size_t size;
cdddbdbc 3584
c2c087e6
DW
3585 size = sizeof(struct imsm_super);
3586 size += (disks - 1) * sizeof(struct imsm_disk);
3587 size += 2 * sizeof(struct imsm_dev);
3588 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3589 size += (4 - 2) * sizeof(struct imsm_map);
3590 /* 4 possible disk_ord_tbl's */
3591 size += 4 * (disks - 1) * sizeof(__u32);
bbab0940
TM
3592 /* maximum bbm log */
3593 size += sizeof(struct bbm_log);
c2c087e6
DW
3594
3595 return size;
3596}
3597
387fcd59
N
3598static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3599 unsigned long long data_offset)
c2c087e6
DW
3600{
3601 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3602 return 0;
3603
3604 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3605}
3606
ba2de7ba
DW
3607static void free_devlist(struct intel_super *super)
3608{
3609 struct intel_dev *dv;
3610
3611 while (super->devlist) {
3612 dv = super->devlist->next;
3613 free(super->devlist->dev);
3614 free(super->devlist);
3615 super->devlist = dv;
3616 }
3617}
3618
3619static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3620{
3621 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3622}
3623
cdddbdbc
DW
3624static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3625{
3626 /*
3627 * return:
3628 * 0 same, or first was empty, and second was copied
3629 * 1 second had wrong number
3630 * 2 wrong uuid
3631 * 3 wrong other info
3632 */
3633 struct intel_super *first = st->sb;
3634 struct intel_super *sec = tst->sb;
3635
5d500228
N
3636 if (!first) {
3637 st->sb = tst->sb;
3638 tst->sb = NULL;
3639 return 0;
3640 }
8603ea6f
LM
3641 /* in platform dependent environment test if the disks
3642 * use the same Intel hba
cb8f6859 3643 * If not on Intel hba at all, allow anything.
8603ea6f 3644 */
6b781d33
AP
3645 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3646 if (first->hba->type != sec->hba->type) {
8603ea6f 3647 fprintf(stderr,
6b781d33
AP
3648 "HBAs of devices do not match %s != %s\n",
3649 get_sys_dev_type(first->hba->type),
3650 get_sys_dev_type(sec->hba->type));
3651 return 3;
3652 }
3653 if (first->orom != sec->orom) {
3654 fprintf(stderr,
3655 "HBAs of devices do not match %s != %s\n",
3656 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3657 return 3;
3658 }
3659 }
cdddbdbc 3660
d23fe947
DW
3661 /* if an anchor does not have num_raid_devs set then it is a free
3662 * floating spare
3663 */
3664 if (first->anchor->num_raid_devs > 0 &&
3665 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3666 /* Determine if these disks might ever have been
3667 * related. Further disambiguation can only take place
3668 * in load_super_imsm_all
3669 */
3670 __u32 first_family = first->anchor->orig_family_num;
3671 __u32 sec_family = sec->anchor->orig_family_num;
3672
f796af5d
DW
3673 if (memcmp(first->anchor->sig, sec->anchor->sig,
3674 MAX_SIGNATURE_LENGTH) != 0)
3675 return 3;
3676
a2b97981
DW
3677 if (first_family == 0)
3678 first_family = first->anchor->family_num;
3679 if (sec_family == 0)
3680 sec_family = sec->anchor->family_num;
3681
3682 if (first_family != sec_family)
d23fe947 3683 return 3;
f796af5d 3684
d23fe947 3685 }
cdddbdbc 3686
3e372e5a
DW
3687 /* if 'first' is a spare promote it to a populated mpb with sec's
3688 * family number
3689 */
3690 if (first->anchor->num_raid_devs == 0 &&
3691 sec->anchor->num_raid_devs > 0) {
78d30f94 3692 int i;
ba2de7ba
DW
3693 struct intel_dev *dv;
3694 struct imsm_dev *dev;
78d30f94
DW
3695
3696 /* we need to copy raid device info from sec if an allocation
3697 * fails here we don't associate the spare
3698 */
3699 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3700 dv = xmalloc(sizeof(*dv));
3701 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3702 dv->dev = dev;
3703 dv->index = i;
3704 dv->next = first->devlist;
3705 first->devlist = dv;
78d30f94 3706 }
709743c5 3707 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3708 /* allocation failure */
3709 free_devlist(first);
e12b3daa 3710 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3711 return 3;
78d30f94 3712 }
3e372e5a 3713 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3714 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3715 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3716 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3717 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3718 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3719 }
3720
cdddbdbc
DW
3721 return 0;
3722}
3723
0030e8d6
DW
3724static void fd2devname(int fd, char *name)
3725{
3726 struct stat st;
3727 char path[256];
33a6535d 3728 char dname[PATH_MAX];
0030e8d6
DW
3729 char *nm;
3730 int rv;
3731
3732 name[0] = '\0';
3733 if (fstat(fd, &st) != 0)
3734 return;
3735 sprintf(path, "/sys/dev/block/%d:%d",
3736 major(st.st_rdev), minor(st.st_rdev));
3737
9cf014ec 3738 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3739 if (rv <= 0)
3740 return;
9587c373 3741
0030e8d6
DW
3742 dname[rv] = '\0';
3743 nm = strrchr(dname, '/');
7897de29
JS
3744 if (nm) {
3745 nm++;
3746 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3747 }
0030e8d6
DW
3748}
3749
21e9380b
AP
3750static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3751{
3752 char path[60];
3753 char *name = fd2kname(fd);
3754
3755 if (!name)
3756 return 1;
3757
3758 if (strncmp(name, "nvme", 4) != 0)
3759 return 1;
3760
3761 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3762
3763 return load_sys(path, buf, buf_len);
3764}
3765
cdddbdbc
DW
3766extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3767
3768static int imsm_read_serial(int fd, char *devname,
3769 __u8 serial[MAX_RAID_SERIAL_LEN])
3770{
21e9380b 3771 char buf[50];
cdddbdbc 3772 int rv;
1f24f035 3773 int len;
316e2bf4
DW
3774 char *dest;
3775 char *src;
21e9380b
AP
3776 unsigned int i;
3777
3778 memset(buf, 0, sizeof(buf));
cdddbdbc 3779
21e9380b 3780 rv = nvme_get_serial(fd, buf, sizeof(buf));
cdddbdbc 3781
21e9380b
AP
3782 if (rv)
3783 rv = scsi_get_serial(fd, buf, sizeof(buf));
f9ba0ff1 3784
40ebbb9c 3785 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3786 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3787 fd2devname(fd, (char *) serial);
0030e8d6
DW
3788 return 0;
3789 }
3790
cdddbdbc
DW
3791 if (rv != 0) {
3792 if (devname)
e7b84f9d
N
3793 pr_err("Failed to retrieve serial for %s\n",
3794 devname);
cdddbdbc
DW
3795 return rv;
3796 }
3797
316e2bf4
DW
3798 /* trim all whitespace and non-printable characters and convert
3799 * ':' to ';'
3800 */
21e9380b
AP
3801 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3802 src = &buf[i];
316e2bf4
DW
3803 if (*src > 0x20) {
3804 /* ':' is reserved for use in placeholder serial
3805 * numbers for missing disks
3806 */
3807 if (*src == ':')
3808 *dest++ = ';';
3809 else
3810 *dest++ = *src;
3811 }
3812 }
21e9380b
AP
3813 len = dest - buf;
3814 dest = buf;
316e2bf4
DW
3815
3816 /* truncate leading characters */
3817 if (len > MAX_RAID_SERIAL_LEN) {
3818 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3819 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3820 }
5c3db629 3821
5c3db629 3822 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3823 memcpy(serial, dest, len);
cdddbdbc
DW
3824
3825 return 0;
3826}
3827
1f24f035
DW
3828static int serialcmp(__u8 *s1, __u8 *s2)
3829{
3830 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3831}
3832
3833static void serialcpy(__u8 *dest, __u8 *src)
3834{
3835 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3836}
3837
54c2c1ea
DW
3838static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3839{
3840 struct dl *dl;
3841
3842 for (dl = super->disks; dl; dl = dl->next)
3843 if (serialcmp(dl->serial, serial) == 0)
3844 break;
3845
3846 return dl;
3847}
3848
a2b97981
DW
3849static struct imsm_disk *
3850__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3851{
3852 int i;
3853
3854 for (i = 0; i < mpb->num_disks; i++) {
3855 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3856
3857 if (serialcmp(disk->serial, serial) == 0) {
3858 if (idx)
3859 *idx = i;
3860 return disk;
3861 }
3862 }
3863
3864 return NULL;
3865}
3866
cdddbdbc
DW
3867static int
3868load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3869{
a2b97981 3870 struct imsm_disk *disk;
cdddbdbc
DW
3871 struct dl *dl;
3872 struct stat stb;
cdddbdbc 3873 int rv;
a2b97981 3874 char name[40];
d23fe947
DW
3875 __u8 serial[MAX_RAID_SERIAL_LEN];
3876
3877 rv = imsm_read_serial(fd, devname, serial);
3878
3879 if (rv != 0)
3880 return 2;
3881
503975b9 3882 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3883
a2b97981
DW
3884 fstat(fd, &stb);
3885 dl->major = major(stb.st_rdev);
3886 dl->minor = minor(stb.st_rdev);
3887 dl->next = super->disks;
3888 dl->fd = keep_fd ? fd : -1;
3889 assert(super->disks == NULL);
3890 super->disks = dl;
3891 serialcpy(dl->serial, serial);
3892 dl->index = -2;
3893 dl->e = NULL;
3894 fd2devname(fd, name);
3895 if (devname)
503975b9 3896 dl->devname = xstrdup(devname);
a2b97981 3897 else
503975b9 3898 dl->devname = xstrdup(name);
cdddbdbc 3899
d23fe947 3900 /* look up this disk's index in the current anchor */
a2b97981
DW
3901 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3902 if (disk) {
3903 dl->disk = *disk;
3904 /* only set index on disks that are a member of a
3905 * populated contianer, i.e. one with raid_devs
3906 */
3907 if (is_failed(&dl->disk))
3f6efecc 3908 dl->index = -2;
a2b97981
DW
3909 else if (is_spare(&dl->disk))
3910 dl->index = -1;
3f6efecc
DW
3911 }
3912
949c47a0
DW
3913 return 0;
3914}
3915
0e600426 3916#ifndef MDASSEMBLE
0c046afd
DW
3917/* When migrating map0 contains the 'destination' state while map1
3918 * contains the current state. When not migrating map0 contains the
3919 * current state. This routine assumes that map[0].map_state is set to
3920 * the current array state before being called.
3921 *
3922 * Migration is indicated by one of the following states
3923 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3924 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3925 * map1state=unitialized)
1484e727 3926 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3927 * map1state=normal)
e3bba0e0 3928 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3929 * map1state=degraded)
8e59f3d8
AK
3930 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3931 * map1state=normal)
0c046afd 3932 */
8e59f3d8
AK
3933static void migrate(struct imsm_dev *dev, struct intel_super *super,
3934 __u8 to_state, int migr_type)
3393c6af 3935{
0c046afd 3936 struct imsm_map *dest;
238c0a71 3937 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 3938
0c046afd 3939 dev->vol.migr_state = 1;
1484e727 3940 set_migr_type(dev, migr_type);
f8f603f1 3941 dev->vol.curr_migr_unit = 0;
238c0a71 3942 dest = get_imsm_map(dev, MAP_1);
0c046afd 3943
0556e1a2 3944 /* duplicate and then set the target end state in map[0] */
3393c6af 3945 memcpy(dest, src, sizeof_imsm_map(src));
089f9d79 3946 if (migr_type == MIGR_REBUILD || migr_type == MIGR_GEN_MIGR) {
0556e1a2
DW
3947 __u32 ord;
3948 int i;
3949
3950 for (i = 0; i < src->num_members; i++) {
3951 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3952 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3953 }
3954 }
3955
8e59f3d8
AK
3956 if (migr_type == MIGR_GEN_MIGR)
3957 /* Clear migration record */
3958 memset(super->migr_rec, 0, sizeof(struct migr_record));
3959
0c046afd 3960 src->map_state = to_state;
949c47a0 3961}
f8f603f1 3962
809da78e
AK
3963static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3964 __u8 map_state)
f8f603f1 3965{
238c0a71
AK
3966 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3967 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3968 MAP_0 : MAP_1);
28bce06f 3969 int i, j;
0556e1a2
DW
3970
3971 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3972 * completed in the last migration.
3973 *
28bce06f 3974 * FIXME add support for raid-level-migration
0556e1a2 3975 */
089f9d79
JS
3976 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
3977 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
809da78e
AK
3978 /* when final map state is other than expected
3979 * merge maps (not for migration)
3980 */
3981 int failed;
3982
3983 for (i = 0; i < prev->num_members; i++)
3984 for (j = 0; j < map->num_members; j++)
3985 /* during online capacity expansion
3986 * disks position can be changed
3987 * if takeover is used
3988 */
3989 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3990 ord_to_idx(prev->disk_ord_tbl[i])) {
3991 map->disk_ord_tbl[j] |=
3992 prev->disk_ord_tbl[i];
3993 break;
3994 }
3995 failed = imsm_count_failed(super, dev, MAP_0);
3996 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3997 }
f8f603f1
DW
3998
3999 dev->vol.migr_state = 0;
ea672ee1 4000 set_migr_type(dev, 0);
f8f603f1
DW
4001 dev->vol.curr_migr_unit = 0;
4002 map->map_state = map_state;
4003}
0e600426 4004#endif
949c47a0
DW
4005
4006static int parse_raid_devices(struct intel_super *super)
4007{
4008 int i;
4009 struct imsm_dev *dev_new;
4d7b1503 4010 size_t len, len_migr;
401d313b 4011 size_t max_len = 0;
4d7b1503
DW
4012 size_t space_needed = 0;
4013 struct imsm_super *mpb = super->anchor;
949c47a0
DW
4014
4015 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4016 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 4017 struct intel_dev *dv;
949c47a0 4018
4d7b1503
DW
4019 len = sizeof_imsm_dev(dev_iter, 0);
4020 len_migr = sizeof_imsm_dev(dev_iter, 1);
4021 if (len_migr > len)
4022 space_needed += len_migr - len;
ca9de185 4023
503975b9 4024 dv = xmalloc(sizeof(*dv));
401d313b
AK
4025 if (max_len < len_migr)
4026 max_len = len_migr;
4027 if (max_len > len_migr)
4028 space_needed += max_len - len_migr;
503975b9 4029 dev_new = xmalloc(max_len);
949c47a0 4030 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
4031 dv->dev = dev_new;
4032 dv->index = i;
4033 dv->next = super->devlist;
4034 super->devlist = dv;
949c47a0 4035 }
cdddbdbc 4036
4d7b1503
DW
4037 /* ensure that super->buf is large enough when all raid devices
4038 * are migrating
4039 */
4040 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4041 void *buf;
4042
f36a9ecd
PB
4043 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4044 super->sector_size);
4045 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4d7b1503
DW
4046 return 1;
4047
1f45a8ad
DW
4048 memcpy(buf, super->buf, super->len);
4049 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
4050 free(super->buf);
4051 super->buf = buf;
4052 super->len = len;
4053 }
ca9de185 4054
bbab0940
TM
4055 super->extra_space += space_needed;
4056
cdddbdbc
DW
4057 return 0;
4058}
4059
e2f41b2c
AK
4060/*******************************************************************************
4061 * Function: check_mpb_migr_compatibility
4062 * Description: Function checks for unsupported migration features:
4063 * - migration optimization area (pba_of_lba0)
4064 * - descending reshape (ascending_migr)
4065 * Parameters:
4066 * super : imsm metadata information
4067 * Returns:
4068 * 0 : migration is compatible
4069 * -1 : migration is not compatible
4070 ******************************************************************************/
4071int check_mpb_migr_compatibility(struct intel_super *super)
4072{
4073 struct imsm_map *map0, *map1;
4074 struct migr_record *migr_rec = super->migr_rec;
4075 int i;
4076
4077 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4078 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4079
4080 if (dev_iter &&
4081 dev_iter->vol.migr_state == 1 &&
4082 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4083 /* This device is migrating */
238c0a71
AK
4084 map0 = get_imsm_map(dev_iter, MAP_0);
4085 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 4086 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
4087 /* migration optimization area was used */
4088 return -1;
4089 if (migr_rec->ascending_migr == 0
4090 && migr_rec->dest_depth_per_unit > 0)
4091 /* descending reshape not supported yet */
4092 return -1;
4093 }
4094 }
4095 return 0;
4096}
4097
d23fe947 4098static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 4099
cdddbdbc 4100/* load_imsm_mpb - read matrix metadata
f2f5c343 4101 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
4102 */
4103static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4104{
4105 unsigned long long dsize;
cdddbdbc 4106 unsigned long long sectors;
f36a9ecd 4107 unsigned int sector_size = super->sector_size;
cdddbdbc 4108 struct stat;
6416d527 4109 struct imsm_super *anchor;
cdddbdbc
DW
4110 __u32 check_sum;
4111
cdddbdbc 4112 get_dev_size(fd, NULL, &dsize);
f36a9ecd 4113 if (dsize < 2*sector_size) {
64436f06 4114 if (devname)
e7b84f9d
N
4115 pr_err("%s: device to small for imsm\n",
4116 devname);
64436f06
N
4117 return 1;
4118 }
cdddbdbc 4119
f36a9ecd 4120 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
cdddbdbc 4121 if (devname)
e7b84f9d
N
4122 pr_err("Cannot seek to anchor block on %s: %s\n",
4123 devname, strerror(errno));
cdddbdbc
DW
4124 return 1;
4125 }
4126
f36a9ecd 4127 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
ad97895e 4128 if (devname)
7a862a02 4129 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
4130 return 1;
4131 }
466070ad 4132 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
cdddbdbc 4133 if (devname)
e7b84f9d
N
4134 pr_err("Cannot read anchor block on %s: %s\n",
4135 devname, strerror(errno));
6416d527 4136 free(anchor);
cdddbdbc
DW
4137 return 1;
4138 }
4139
6416d527 4140 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 4141 if (devname)
e7b84f9d 4142 pr_err("no IMSM anchor on %s\n", devname);
6416d527 4143 free(anchor);
cdddbdbc
DW
4144 return 2;
4145 }
4146
d23fe947 4147 __free_imsm(super, 0);
f2f5c343
LM
4148 /* reload capability and hba */
4149
4150 /* capability and hba must be updated with new super allocation */
d424212e 4151 find_intel_hba_capability(fd, super, devname);
f36a9ecd
PB
4152 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4153 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
cdddbdbc 4154 if (devname)
e7b84f9d
N
4155 pr_err("unable to allocate %zu byte mpb buffer\n",
4156 super->len);
6416d527 4157 free(anchor);
cdddbdbc
DW
4158 return 2;
4159 }
f36a9ecd 4160 memcpy(super->buf, anchor, sector_size);
cdddbdbc 4161
f36a9ecd 4162 sectors = mpb_sectors(anchor, sector_size) - 1;
6416d527 4163 free(anchor);
8e59f3d8 4164
de44e46f
PB
4165 if (posix_memalign(&super->migr_rec_buf, sector_size,
4166 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
1ade5cc1 4167 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4168 free(super->buf);
4169 return 2;
4170 }
51d83f5d 4171 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 4172
949c47a0 4173 if (!sectors) {
ecf45690
DW
4174 check_sum = __gen_imsm_checksum(super->anchor);
4175 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4176 if (devname)
e7b84f9d
N
4177 pr_err("IMSM checksum %x != %x on %s\n",
4178 check_sum,
4179 __le32_to_cpu(super->anchor->check_sum),
4180 devname);
ecf45690
DW
4181 return 2;
4182 }
4183
a2b97981 4184 return 0;
949c47a0 4185 }
cdddbdbc
DW
4186
4187 /* read the extended mpb */
f36a9ecd 4188 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
cdddbdbc 4189 if (devname)
e7b84f9d
N
4190 pr_err("Cannot seek to extended mpb on %s: %s\n",
4191 devname, strerror(errno));
cdddbdbc
DW
4192 return 1;
4193 }
4194
f36a9ecd
PB
4195 if ((unsigned int)read(fd, super->buf + sector_size,
4196 super->len - sector_size) != super->len - sector_size) {
cdddbdbc 4197 if (devname)
e7b84f9d
N
4198 pr_err("Cannot read extended mpb on %s: %s\n",
4199 devname, strerror(errno));
cdddbdbc
DW
4200 return 2;
4201 }
4202
949c47a0
DW
4203 check_sum = __gen_imsm_checksum(super->anchor);
4204 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 4205 if (devname)
e7b84f9d
N
4206 pr_err("IMSM checksum %x != %x on %s\n",
4207 check_sum, __le32_to_cpu(super->anchor->check_sum),
4208 devname);
db575f3b 4209 return 3;
cdddbdbc
DW
4210 }
4211
a2b97981
DW
4212 return 0;
4213}
4214
8e59f3d8
AK
4215static int read_imsm_migr_rec(int fd, struct intel_super *super);
4216
97f81ee2
CA
4217/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4218static void clear_hi(struct intel_super *super)
4219{
4220 struct imsm_super *mpb = super->anchor;
4221 int i, n;
4222 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4223 return;
4224 for (i = 0; i < mpb->num_disks; ++i) {
4225 struct imsm_disk *disk = &mpb->disk[i];
4226 disk->total_blocks_hi = 0;
4227 }
4228 for (i = 0; i < mpb->num_raid_devs; ++i) {
4229 struct imsm_dev *dev = get_imsm_dev(super, i);
4230 if (!dev)
4231 return;
4232 for (n = 0; n < 2; ++n) {
4233 struct imsm_map *map = get_imsm_map(dev, n);
4234 if (!map)
4235 continue;
4236 map->pba_of_lba0_hi = 0;
4237 map->blocks_per_member_hi = 0;
4238 map->num_data_stripes_hi = 0;
4239 }
4240 }
4241}
4242
a2b97981
DW
4243static int
4244load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4245{
4246 int err;
4247
4248 err = load_imsm_mpb(fd, super, devname);
4249 if (err)
4250 return err;
f36a9ecd
PB
4251 if (super->sector_size == 4096)
4252 convert_from_4k(super);
a2b97981
DW
4253 err = load_imsm_disk(fd, super, devname, keep_fd);
4254 if (err)
4255 return err;
4256 err = parse_raid_devices(super);
8d67477f
TM
4257 if (err)
4258 return err;
4259 err = load_bbm_log(super);
97f81ee2 4260 clear_hi(super);
a2b97981 4261 return err;
cdddbdbc
DW
4262}
4263
ae6aad82
DW
4264static void __free_imsm_disk(struct dl *d)
4265{
4266 if (d->fd >= 0)
4267 close(d->fd);
4268 if (d->devname)
4269 free(d->devname);
0dcecb2e
DW
4270 if (d->e)
4271 free(d->e);
ae6aad82
DW
4272 free(d);
4273
4274}
1a64be56 4275
cdddbdbc
DW
4276static void free_imsm_disks(struct intel_super *super)
4277{
47ee5a45 4278 struct dl *d;
cdddbdbc 4279
47ee5a45
DW
4280 while (super->disks) {
4281 d = super->disks;
cdddbdbc 4282 super->disks = d->next;
ae6aad82 4283 __free_imsm_disk(d);
cdddbdbc 4284 }
cb82edca
AK
4285 while (super->disk_mgmt_list) {
4286 d = super->disk_mgmt_list;
4287 super->disk_mgmt_list = d->next;
4288 __free_imsm_disk(d);
4289 }
47ee5a45
DW
4290 while (super->missing) {
4291 d = super->missing;
4292 super->missing = d->next;
4293 __free_imsm_disk(d);
4294 }
4295
cdddbdbc
DW
4296}
4297
9ca2c81c 4298/* free all the pieces hanging off of a super pointer */
d23fe947 4299static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 4300{
88654014
LM
4301 struct intel_hba *elem, *next;
4302
9ca2c81c 4303 if (super->buf) {
949c47a0 4304 free(super->buf);
9ca2c81c
DW
4305 super->buf = NULL;
4306 }
f2f5c343
LM
4307 /* unlink capability description */
4308 super->orom = NULL;
8e59f3d8
AK
4309 if (super->migr_rec_buf) {
4310 free(super->migr_rec_buf);
4311 super->migr_rec_buf = NULL;
4312 }
d23fe947
DW
4313 if (free_disks)
4314 free_imsm_disks(super);
ba2de7ba 4315 free_devlist(super);
88654014
LM
4316 elem = super->hba;
4317 while (elem) {
4318 if (elem->path)
4319 free((void *)elem->path);
4320 next = elem->next;
4321 free(elem);
4322 elem = next;
88c32bb1 4323 }
8d67477f
TM
4324 if (super->bbm_log)
4325 free(super->bbm_log);
88654014 4326 super->hba = NULL;
cdddbdbc
DW
4327}
4328
9ca2c81c
DW
4329static void free_imsm(struct intel_super *super)
4330{
d23fe947 4331 __free_imsm(super, 1);
928f1424 4332 free(super->bb.entries);
9ca2c81c
DW
4333 free(super);
4334}
cdddbdbc
DW
4335
4336static void free_super_imsm(struct supertype *st)
4337{
4338 struct intel_super *super = st->sb;
4339
4340 if (!super)
4341 return;
4342
4343 free_imsm(super);
4344 st->sb = NULL;
4345}
4346
49133e57 4347static struct intel_super *alloc_super(void)
c2c087e6 4348{
503975b9 4349 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 4350
503975b9
N
4351 super->current_vol = -1;
4352 super->create_offset = ~((unsigned long long) 0);
928f1424
TM
4353
4354 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4355 sizeof(struct md_bb_entry));
4356 if (!super->bb.entries) {
4357 free(super);
4358 return NULL;
4359 }
4360
c2c087e6
DW
4361 return super;
4362}
4363
f0f5a016
LM
4364/*
4365 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4366 */
d424212e 4367static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
4368{
4369 struct sys_dev *hba_name;
4370 int rv = 0;
4371
089f9d79 4372 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 4373 super->orom = NULL;
f0f5a016
LM
4374 super->hba = NULL;
4375 return 0;
4376 }
4377 hba_name = find_disk_attached_hba(fd, NULL);
4378 if (!hba_name) {
d424212e 4379 if (devname)
e7b84f9d
N
4380 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4381 devname);
f0f5a016
LM
4382 return 1;
4383 }
4384 rv = attach_hba_to_super(super, hba_name);
4385 if (rv == 2) {
d424212e
N
4386 if (devname) {
4387 struct intel_hba *hba = super->hba;
f0f5a016 4388
60f0f54d
PB
4389 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4390 " but the container is assigned to Intel(R) %s %s (",
d424212e 4391 devname,
614902f6 4392 get_sys_dev_type(hba_name->type),
60f0f54d 4393 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 4394 hba_name->pci_id ? : "Err!",
60f0f54d
PB
4395 get_sys_dev_type(super->hba->type),
4396 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 4397
f0f5a016
LM
4398 while (hba) {
4399 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4400 if (hba->next)
4401 fprintf(stderr, ", ");
4402 hba = hba->next;
4403 }
6b781d33 4404 fprintf(stderr, ").\n"
60f0f54d
PB
4405 " Mixing devices attached to different %s is not allowed.\n",
4406 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
f0f5a016 4407 }
f0f5a016
LM
4408 return 2;
4409 }
6b781d33 4410 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
4411 if (!super->orom)
4412 return 3;
614902f6 4413
f0f5a016
LM
4414 return 0;
4415}
4416
47ee5a45
DW
4417/* find_missing - helper routine for load_super_imsm_all that identifies
4418 * disks that have disappeared from the system. This routine relies on
4419 * the mpb being uptodate, which it is at load time.
4420 */
4421static int find_missing(struct intel_super *super)
4422{
4423 int i;
4424 struct imsm_super *mpb = super->anchor;
4425 struct dl *dl;
4426 struct imsm_disk *disk;
47ee5a45
DW
4427
4428 for (i = 0; i < mpb->num_disks; i++) {
4429 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4430 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4431 if (dl)
4432 continue;
47ee5a45 4433
503975b9 4434 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4435 dl->major = 0;
4436 dl->minor = 0;
4437 dl->fd = -1;
503975b9 4438 dl->devname = xstrdup("missing");
47ee5a45
DW
4439 dl->index = i;
4440 serialcpy(dl->serial, disk->serial);
4441 dl->disk = *disk;
689c9bf3 4442 dl->e = NULL;
47ee5a45
DW
4443 dl->next = super->missing;
4444 super->missing = dl;
4445 }
4446
4447 return 0;
4448}
4449
3960e579 4450#ifndef MDASSEMBLE
a2b97981
DW
4451static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4452{
4453 struct intel_disk *idisk = disk_list;
4454
4455 while (idisk) {
4456 if (serialcmp(idisk->disk.serial, serial) == 0)
4457 break;
4458 idisk = idisk->next;
4459 }
4460
4461 return idisk;
4462}
4463
4464static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4465 struct intel_super *super,
4466 struct intel_disk **disk_list)
4467{
4468 struct imsm_disk *d = &super->disks->disk;
4469 struct imsm_super *mpb = super->anchor;
4470 int i, j;
4471
4472 for (i = 0; i < tbl_size; i++) {
4473 struct imsm_super *tbl_mpb = table[i]->anchor;
4474 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4475
4476 if (tbl_mpb->family_num == mpb->family_num) {
4477 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4478 dprintf("mpb from %d:%d matches %d:%d\n",
4479 super->disks->major,
a2b97981
DW
4480 super->disks->minor,
4481 table[i]->disks->major,
4482 table[i]->disks->minor);
4483 break;
4484 }
4485
4486 if (((is_configured(d) && !is_configured(tbl_d)) ||
4487 is_configured(d) == is_configured(tbl_d)) &&
4488 tbl_mpb->generation_num < mpb->generation_num) {
4489 /* current version of the mpb is a
4490 * better candidate than the one in
4491 * super_table, but copy over "cross
4492 * generational" status
4493 */
4494 struct intel_disk *idisk;
4495
1ade5cc1
N
4496 dprintf("mpb from %d:%d replaces %d:%d\n",
4497 super->disks->major,
a2b97981
DW
4498 super->disks->minor,
4499 table[i]->disks->major,
4500 table[i]->disks->minor);
4501
4502 idisk = disk_list_get(tbl_d->serial, *disk_list);
4503 if (idisk && is_failed(&idisk->disk))
4504 tbl_d->status |= FAILED_DISK;
4505 break;
4506 } else {
4507 struct intel_disk *idisk;
4508 struct imsm_disk *disk;
4509
4510 /* tbl_mpb is more up to date, but copy
4511 * over cross generational status before
4512 * returning
4513 */
4514 disk = __serial_to_disk(d->serial, mpb, NULL);
4515 if (disk && is_failed(disk))
4516 d->status |= FAILED_DISK;
4517
4518 idisk = disk_list_get(d->serial, *disk_list);
4519 if (idisk) {
4520 idisk->owner = i;
4521 if (disk && is_configured(disk))
4522 idisk->disk.status |= CONFIGURED_DISK;
4523 }
4524
1ade5cc1
N
4525 dprintf("mpb from %d:%d prefer %d:%d\n",
4526 super->disks->major,
a2b97981
DW
4527 super->disks->minor,
4528 table[i]->disks->major,
4529 table[i]->disks->minor);
4530
4531 return tbl_size;
4532 }
4533 }
4534 }
4535
4536 if (i >= tbl_size)
4537 table[tbl_size++] = super;
4538 else
4539 table[i] = super;
4540
4541 /* update/extend the merged list of imsm_disk records */
4542 for (j = 0; j < mpb->num_disks; j++) {
4543 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4544 struct intel_disk *idisk;
4545
4546 idisk = disk_list_get(disk->serial, *disk_list);
4547 if (idisk) {
4548 idisk->disk.status |= disk->status;
4549 if (is_configured(&idisk->disk) ||
4550 is_failed(&idisk->disk))
4551 idisk->disk.status &= ~(SPARE_DISK);
4552 } else {
503975b9 4553 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4554 idisk->owner = IMSM_UNKNOWN_OWNER;
4555 idisk->disk = *disk;
4556 idisk->next = *disk_list;
4557 *disk_list = idisk;
4558 }
4559
4560 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4561 idisk->owner = i;
4562 }
4563
4564 return tbl_size;
4565}
4566
4567static struct intel_super *
4568validate_members(struct intel_super *super, struct intel_disk *disk_list,
4569 const int owner)
4570{
4571 struct imsm_super *mpb = super->anchor;
4572 int ok_count = 0;
4573 int i;
4574
4575 for (i = 0; i < mpb->num_disks; i++) {
4576 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4577 struct intel_disk *idisk;
4578
4579 idisk = disk_list_get(disk->serial, disk_list);
4580 if (idisk) {
4581 if (idisk->owner == owner ||
4582 idisk->owner == IMSM_UNKNOWN_OWNER)
4583 ok_count++;
4584 else
1ade5cc1
N
4585 dprintf("'%.16s' owner %d != %d\n",
4586 disk->serial, idisk->owner,
a2b97981
DW
4587 owner);
4588 } else {
1ade5cc1
N
4589 dprintf("unknown disk %x [%d]: %.16s\n",
4590 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4591 disk->serial);
4592 break;
4593 }
4594 }
4595
4596 if (ok_count == mpb->num_disks)
4597 return super;
4598 return NULL;
4599}
4600
4601static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4602{
4603 struct intel_super *s;
4604
4605 for (s = super_list; s; s = s->next) {
4606 if (family_num != s->anchor->family_num)
4607 continue;
e12b3daa 4608 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4609 __le32_to_cpu(family_num), s->disks->devname);
4610 }
4611}
4612
4613static struct intel_super *
4614imsm_thunderdome(struct intel_super **super_list, int len)
4615{
4616 struct intel_super *super_table[len];
4617 struct intel_disk *disk_list = NULL;
4618 struct intel_super *champion, *spare;
4619 struct intel_super *s, **del;
4620 int tbl_size = 0;
4621 int conflict;
4622 int i;
4623
4624 memset(super_table, 0, sizeof(super_table));
4625 for (s = *super_list; s; s = s->next)
4626 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4627
4628 for (i = 0; i < tbl_size; i++) {
4629 struct imsm_disk *d;
4630 struct intel_disk *idisk;
4631 struct imsm_super *mpb = super_table[i]->anchor;
4632
4633 s = super_table[i];
4634 d = &s->disks->disk;
4635
4636 /* 'd' must appear in merged disk list for its
4637 * configuration to be valid
4638 */
4639 idisk = disk_list_get(d->serial, disk_list);
4640 if (idisk && idisk->owner == i)
4641 s = validate_members(s, disk_list, i);
4642 else
4643 s = NULL;
4644
4645 if (!s)
1ade5cc1
N
4646 dprintf("marking family: %#x from %d:%d offline\n",
4647 mpb->family_num,
a2b97981
DW
4648 super_table[i]->disks->major,
4649 super_table[i]->disks->minor);
4650 super_table[i] = s;
4651 }
4652
4653 /* This is where the mdadm implementation differs from the Windows
4654 * driver which has no strict concept of a container. We can only
4655 * assemble one family from a container, so when returning a prodigal
4656 * array member to this system the code will not be able to disambiguate
4657 * the container contents that should be assembled ("foreign" versus
4658 * "local"). It requires user intervention to set the orig_family_num
4659 * to a new value to establish a new container. The Windows driver in
4660 * this situation fixes up the volume name in place and manages the
4661 * foreign array as an independent entity.
4662 */
4663 s = NULL;
4664 spare = NULL;
4665 conflict = 0;
4666 for (i = 0; i < tbl_size; i++) {
4667 struct intel_super *tbl_ent = super_table[i];
4668 int is_spare = 0;
4669
4670 if (!tbl_ent)
4671 continue;
4672
4673 if (tbl_ent->anchor->num_raid_devs == 0) {
4674 spare = tbl_ent;
4675 is_spare = 1;
4676 }
4677
4678 if (s && !is_spare) {
4679 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4680 conflict++;
4681 } else if (!s && !is_spare)
4682 s = tbl_ent;
4683 }
4684
4685 if (!s)
4686 s = spare;
4687 if (!s) {
4688 champion = NULL;
4689 goto out;
4690 }
4691 champion = s;
4692
4693 if (conflict)
7a862a02 4694 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4695 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4696
4697 /* collect all dl's onto 'champion', and update them to
4698 * champion's version of the status
4699 */
4700 for (s = *super_list; s; s = s->next) {
4701 struct imsm_super *mpb = champion->anchor;
4702 struct dl *dl = s->disks;
4703
4704 if (s == champion)
4705 continue;
4706
5d7b407a
CA
4707 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4708
a2b97981
DW
4709 for (i = 0; i < mpb->num_disks; i++) {
4710 struct imsm_disk *disk;
4711
4712 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4713 if (disk) {
4714 dl->disk = *disk;
4715 /* only set index on disks that are a member of
4716 * a populated contianer, i.e. one with
4717 * raid_devs
4718 */
4719 if (is_failed(&dl->disk))
4720 dl->index = -2;
4721 else if (is_spare(&dl->disk))
4722 dl->index = -1;
4723 break;
4724 }
4725 }
4726
4727 if (i >= mpb->num_disks) {
4728 struct intel_disk *idisk;
4729
4730 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4731 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4732 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4733 dl->index = -1;
4734 else {
4735 dl->index = -2;
4736 continue;
4737 }
4738 }
4739
4740 dl->next = champion->disks;
4741 champion->disks = dl;
4742 s->disks = NULL;
4743 }
4744
4745 /* delete 'champion' from super_list */
4746 for (del = super_list; *del; ) {
4747 if (*del == champion) {
4748 *del = (*del)->next;
4749 break;
4750 } else
4751 del = &(*del)->next;
4752 }
4753 champion->next = NULL;
4754
4755 out:
4756 while (disk_list) {
4757 struct intel_disk *idisk = disk_list;
4758
4759 disk_list = disk_list->next;
4760 free(idisk);
4761 }
4762
4763 return champion;
4764}
4765
9587c373
LM
4766static int
4767get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4768static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4769 int major, int minor, int keep_fd);
ec50f7b6
LM
4770static int
4771get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4772 int *max, int keep_fd);
4773
cdddbdbc 4774static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4775 char *devname, struct md_list *devlist,
4776 int keep_fd)
cdddbdbc 4777{
a2b97981
DW
4778 struct intel_super *super_list = NULL;
4779 struct intel_super *super = NULL;
a2b97981 4780 int err = 0;
9587c373 4781 int i = 0;
dab4a513 4782
9587c373
LM
4783 if (fd >= 0)
4784 /* 'fd' is an opened container */
4785 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4786 else
ec50f7b6
LM
4787 /* get super block from devlist devices */
4788 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4789 if (err)
1602d52c 4790 goto error;
a2b97981
DW
4791 /* all mpbs enter, maybe one leaves */
4792 super = imsm_thunderdome(&super_list, i);
4793 if (!super) {
4794 err = 1;
4795 goto error;
cdddbdbc
DW
4796 }
4797
47ee5a45
DW
4798 if (find_missing(super) != 0) {
4799 free_imsm(super);
a2b97981
DW
4800 err = 2;
4801 goto error;
47ee5a45 4802 }
8e59f3d8
AK
4803
4804 /* load migration record */
4805 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4806 if (err == -1) {
4807 /* migration is in progress,
4808 * but migr_rec cannot be loaded,
4809 */
8e59f3d8
AK
4810 err = 4;
4811 goto error;
4812 }
e2f41b2c
AK
4813
4814 /* Check migration compatibility */
089f9d79 4815 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4816 pr_err("Unsupported migration detected");
e2f41b2c
AK
4817 if (devname)
4818 fprintf(stderr, " on %s\n", devname);
4819 else
4820 fprintf(stderr, " (IMSM).\n");
4821
4822 err = 5;
4823 goto error;
4824 }
4825
a2b97981
DW
4826 err = 0;
4827
4828 error:
4829 while (super_list) {
4830 struct intel_super *s = super_list;
4831
4832 super_list = super_list->next;
4833 free_imsm(s);
4834 }
9587c373 4835
a2b97981
DW
4836 if (err)
4837 return err;
f7e7067b 4838
cdddbdbc 4839 *sbp = super;
9587c373 4840 if (fd >= 0)
4dd2df09 4841 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4842 else
4dd2df09 4843 st->container_devnm[0] = 0;
a2b97981 4844 if (err == 0 && st->ss == NULL) {
bf5a934a 4845 st->ss = &super_imsm;
cdddbdbc
DW
4846 st->minor_version = 0;
4847 st->max_devs = IMSM_MAX_DEVICES;
4848 }
cdddbdbc
DW
4849 return 0;
4850}
2b959fbf 4851
ec50f7b6
LM
4852static int
4853get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4854 int *max, int keep_fd)
4855{
4856 struct md_list *tmpdev;
4857 int err = 0;
4858 int i = 0;
9587c373 4859
ec50f7b6
LM
4860 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4861 if (tmpdev->used != 1)
4862 continue;
4863 if (tmpdev->container == 1) {
ca9de185 4864 int lmax = 0;
ec50f7b6
LM
4865 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4866 if (fd < 0) {
e7b84f9d 4867 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4868 tmpdev->devname, strerror(errno));
4869 err = 8;
4870 goto error;
4871 }
4872 err = get_sra_super_block(fd, super_list,
4873 tmpdev->devname, &lmax,
4874 keep_fd);
4875 i += lmax;
4876 close(fd);
4877 if (err) {
4878 err = 7;
4879 goto error;
4880 }
4881 } else {
4882 int major = major(tmpdev->st_rdev);
4883 int minor = minor(tmpdev->st_rdev);
4884 err = get_super_block(super_list,
4dd2df09 4885 NULL,
ec50f7b6
LM
4886 tmpdev->devname,
4887 major, minor,
4888 keep_fd);
4889 i++;
4890 if (err) {
4891 err = 6;
4892 goto error;
4893 }
4894 }
4895 }
4896 error:
4897 *max = i;
4898 return err;
4899}
9587c373 4900
4dd2df09 4901static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
4902 int major, int minor, int keep_fd)
4903{
594dc1b8 4904 struct intel_super *s;
9587c373
LM
4905 char nm[32];
4906 int dfd = -1;
9587c373
LM
4907 int err = 0;
4908 int retry;
4909
4910 s = alloc_super();
4911 if (!s) {
4912 err = 1;
4913 goto error;
4914 }
4915
4916 sprintf(nm, "%d:%d", major, minor);
4917 dfd = dev_open(nm, O_RDWR);
4918 if (dfd < 0) {
4919 err = 2;
4920 goto error;
4921 }
4922
fa7bb6f8 4923 get_dev_sector_size(dfd, NULL, &s->sector_size);
cb8f6859 4924 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
4925 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4926
4927 /* retry the load if we might have raced against mdmon */
4dd2df09 4928 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
4929 for (retry = 0; retry < 3; retry++) {
4930 usleep(3000);
4931 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4932 if (err != 3)
4933 break;
4934 }
4935 error:
4936 if (!err) {
4937 s->next = *super_list;
4938 *super_list = s;
4939 } else {
4940 if (s)
8d67477f 4941 free_imsm(s);
36614e95 4942 if (dfd >= 0)
9587c373
LM
4943 close(dfd);
4944 }
089f9d79 4945 if (dfd >= 0 && !keep_fd)
9587c373
LM
4946 close(dfd);
4947 return err;
4948
4949}
4950
4951static int
4952get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4953{
4954 struct mdinfo *sra;
4dd2df09 4955 char *devnm;
9587c373
LM
4956 struct mdinfo *sd;
4957 int err = 0;
4958 int i = 0;
4dd2df09 4959 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
4960 if (!sra)
4961 return 1;
4962
4963 if (sra->array.major_version != -1 ||
4964 sra->array.minor_version != -2 ||
4965 strcmp(sra->text_version, "imsm") != 0) {
4966 err = 1;
4967 goto error;
4968 }
4969 /* load all mpbs */
4dd2df09 4970 devnm = fd2devnm(fd);
9587c373 4971 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 4972 if (get_super_block(super_list, devnm, devname,
9587c373
LM
4973 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4974 err = 7;
4975 goto error;
4976 }
4977 }
4978 error:
4979 sysfs_free(sra);
4980 *max = i;
4981 return err;
4982}
4983
2b959fbf
N
4984static int load_container_imsm(struct supertype *st, int fd, char *devname)
4985{
ec50f7b6 4986 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 4987}
cdddbdbc
DW
4988#endif
4989
4990static int load_super_imsm(struct supertype *st, int fd, char *devname)
4991{
4992 struct intel_super *super;
4993 int rv;
8a3544f8 4994 int retry;
cdddbdbc 4995
357ac106 4996 if (test_partition(fd))
691c6ee1
N
4997 /* IMSM not allowed on partitions */
4998 return 1;
4999
37424f13
DW
5000 free_super_imsm(st);
5001
49133e57 5002 super = alloc_super();
fa7bb6f8 5003 get_dev_sector_size(fd, NULL, &super->sector_size);
8d67477f
TM
5004 if (!super)
5005 return 1;
ea2bc72b
LM
5006 /* Load hba and capabilities if they exist.
5007 * But do not preclude loading metadata in case capabilities or hba are
5008 * non-compliant and ignore_hw_compat is set.
5009 */
d424212e 5010 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5011 /* no orom/efi or non-intel hba of the disk */
089f9d79 5012 if (rv != 0 && st->ignore_hw_compat == 0) {
f2f5c343 5013 if (devname)
e7b84f9d 5014 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
5015 free_imsm(super);
5016 return 2;
5017 }
a2b97981 5018 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 5019
8a3544f8
AP
5020 /* retry the load if we might have raced against mdmon */
5021 if (rv == 3) {
f96b1302
AP
5022 struct mdstat_ent *mdstat = NULL;
5023 char *name = fd2kname(fd);
5024
5025 if (name)
5026 mdstat = mdstat_by_component(name);
8a3544f8
AP
5027
5028 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5029 for (retry = 0; retry < 3; retry++) {
5030 usleep(3000);
5031 rv = load_and_parse_mpb(fd, super, devname, 0);
5032 if (rv != 3)
5033 break;
5034 }
5035 }
5036
5037 free_mdstat(mdstat);
5038 }
5039
cdddbdbc
DW
5040 if (rv) {
5041 if (devname)
7a862a02 5042 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
5043 free_imsm(super);
5044 return rv;
5045 }
5046
5047 st->sb = super;
5048 if (st->ss == NULL) {
5049 st->ss = &super_imsm;
5050 st->minor_version = 0;
5051 st->max_devs = IMSM_MAX_DEVICES;
5052 }
8e59f3d8
AK
5053
5054 /* load migration record */
2e062e82
AK
5055 if (load_imsm_migr_rec(super, NULL) == 0) {
5056 /* Check for unsupported migration features */
5057 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 5058 pr_err("Unsupported migration detected");
2e062e82
AK
5059 if (devname)
5060 fprintf(stderr, " on %s\n", devname);
5061 else
5062 fprintf(stderr, " (IMSM).\n");
5063 return 3;
5064 }
e2f41b2c
AK
5065 }
5066
cdddbdbc
DW
5067 return 0;
5068}
5069
ef6ffade
DW
5070static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5071{
5072 if (info->level == 1)
5073 return 128;
5074 return info->chunk_size >> 9;
5075}
5076
5551b113
CA
5077static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5078 unsigned long long size)
fcfd9599 5079{
4025c288 5080 if (info->level == 1)
5551b113 5081 return size * 2;
4025c288 5082 else
5551b113 5083 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
5084}
5085
4d1313e9
DW
5086static void imsm_update_version_info(struct intel_super *super)
5087{
5088 /* update the version and attributes */
5089 struct imsm_super *mpb = super->anchor;
5090 char *version;
5091 struct imsm_dev *dev;
5092 struct imsm_map *map;
5093 int i;
5094
5095 for (i = 0; i < mpb->num_raid_devs; i++) {
5096 dev = get_imsm_dev(super, i);
238c0a71 5097 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
5098 if (__le32_to_cpu(dev->size_high) > 0)
5099 mpb->attributes |= MPB_ATTRIB_2TB;
5100
5101 /* FIXME detect when an array spans a port multiplier */
5102 #if 0
5103 mpb->attributes |= MPB_ATTRIB_PM;
5104 #endif
5105
5106 if (mpb->num_raid_devs > 1 ||
5107 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5108 version = MPB_VERSION_ATTRIBS;
5109 switch (get_imsm_raid_level(map)) {
5110 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5111 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5112 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5113 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5114 }
5115 } else {
5116 if (map->num_members >= 5)
5117 version = MPB_VERSION_5OR6_DISK_ARRAY;
5118 else if (dev->status == DEV_CLONE_N_GO)
5119 version = MPB_VERSION_CNG;
5120 else if (get_imsm_raid_level(map) == 5)
5121 version = MPB_VERSION_RAID5;
5122 else if (map->num_members >= 3)
5123 version = MPB_VERSION_3OR4_DISK_ARRAY;
5124 else if (get_imsm_raid_level(map) == 1)
5125 version = MPB_VERSION_RAID1;
5126 else
5127 version = MPB_VERSION_RAID0;
5128 }
5129 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5130 }
5131}
5132
aa534678
DW
5133static int check_name(struct intel_super *super, char *name, int quiet)
5134{
5135 struct imsm_super *mpb = super->anchor;
5136 char *reason = NULL;
5137 int i;
5138
5139 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5140 reason = "must be 16 characters or less";
5141
5142 for (i = 0; i < mpb->num_raid_devs; i++) {
5143 struct imsm_dev *dev = get_imsm_dev(super, i);
5144
5145 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5146 reason = "already exists";
5147 break;
5148 }
5149 }
5150
5151 if (reason && !quiet)
e7b84f9d 5152 pr_err("imsm volume name %s\n", reason);
aa534678
DW
5153
5154 return !reason;
5155}
5156
8b353278 5157static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5308f117 5158 struct shape *s, char *name,
83cd1e97
N
5159 char *homehost, int *uuid,
5160 long long data_offset)
cdddbdbc 5161{
c2c087e6
DW
5162 /* We are creating a volume inside a pre-existing container.
5163 * so st->sb is already set.
5164 */
5165 struct intel_super *super = st->sb;
f36a9ecd 5166 unsigned int sector_size = super->sector_size;
949c47a0 5167 struct imsm_super *mpb = super->anchor;
ba2de7ba 5168 struct intel_dev *dv;
c2c087e6
DW
5169 struct imsm_dev *dev;
5170 struct imsm_vol *vol;
5171 struct imsm_map *map;
5172 int idx = mpb->num_raid_devs;
5173 int i;
5174 unsigned long long array_blocks;
2c092cad 5175 size_t size_old, size_new;
5551b113 5176 unsigned long long num_data_stripes;
cdddbdbc 5177
88c32bb1 5178 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 5179 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
5180 return 0;
5181 }
5182
2c092cad
DW
5183 /* ensure the mpb is large enough for the new data */
5184 size_old = __le32_to_cpu(mpb->mpb_size);
5185 size_new = disks_to_mpb_size(info->nr_disks);
5186 if (size_new > size_old) {
5187 void *mpb_new;
f36a9ecd 5188 size_t size_round = ROUND_UP(size_new, sector_size);
2c092cad 5189
f36a9ecd 5190 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
e7b84f9d 5191 pr_err("could not allocate new mpb\n");
2c092cad
DW
5192 return 0;
5193 }
de44e46f
PB
5194 if (posix_memalign(&super->migr_rec_buf, sector_size,
5195 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
1ade5cc1 5196 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
5197 free(super->buf);
5198 free(super);
ea944c8f 5199 free(mpb_new);
8e59f3d8
AK
5200 return 0;
5201 }
2c092cad
DW
5202 memcpy(mpb_new, mpb, size_old);
5203 free(mpb);
5204 mpb = mpb_new;
949c47a0 5205 super->anchor = mpb_new;
2c092cad
DW
5206 mpb->mpb_size = __cpu_to_le32(size_new);
5207 memset(mpb_new + size_old, 0, size_round - size_old);
bbab0940 5208 super->len = size_round;
2c092cad 5209 }
bf5a934a 5210 super->current_vol = idx;
3960e579
DW
5211
5212 /* handle 'failed_disks' by either:
5213 * a) create dummy disk entries in the table if this the first
5214 * volume in the array. We add them here as this is the only
5215 * opportunity to add them. add_to_super_imsm_volume()
5216 * handles the non-failed disks and continues incrementing
5217 * mpb->num_disks.
5218 * b) validate that 'failed_disks' matches the current number
5219 * of missing disks if the container is populated
d23fe947 5220 */
3960e579 5221 if (super->current_vol == 0) {
d23fe947 5222 mpb->num_disks = 0;
3960e579
DW
5223 for (i = 0; i < info->failed_disks; i++) {
5224 struct imsm_disk *disk;
5225
5226 mpb->num_disks++;
5227 disk = __get_imsm_disk(mpb, i);
5228 disk->status = CONFIGURED_DISK | FAILED_DISK;
5229 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5230 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5b975129 5231 "missing:%d", (__u8)i);
3960e579
DW
5232 }
5233 find_missing(super);
5234 } else {
5235 int missing = 0;
5236 struct dl *d;
5237
5238 for (d = super->missing; d; d = d->next)
5239 missing++;
5240 if (info->failed_disks > missing) {
e7b84f9d 5241 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
5242 return 0;
5243 }
5244 }
5a038140 5245
aa534678
DW
5246 if (!check_name(super, name, 0))
5247 return 0;
503975b9
N
5248 dv = xmalloc(sizeof(*dv));
5249 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 5250 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 5251 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 5252 info->layout, info->chunk_size,
5308f117 5253 s->size * 2);
979d38be
DW
5254 /* round array size down to closest MB */
5255 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5256
c2c087e6
DW
5257 dev->size_low = __cpu_to_le32((__u32) array_blocks);
5258 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 5259 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
5260 vol = &dev->vol;
5261 vol->migr_state = 0;
1484e727 5262 set_migr_type(dev, MIGR_INIT);
3960e579 5263 vol->dirty = !info->state;
f8f603f1 5264 vol->curr_migr_unit = 0;
238c0a71 5265 map = get_imsm_map(dev, MAP_0);
5551b113 5266 set_pba_of_lba0(map, super->create_offset);
5308f117 5267 set_blocks_per_member(map, info_to_blocks_per_member(info, s->size));
ef6ffade 5268 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 5269 map->failed_disk_num = ~0;
bf4442ab 5270 if (info->level > 0)
fffaf1ff
N
5271 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5272 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
5273 else
5274 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5275 IMSM_T_STATE_NORMAL;
252d23c0 5276 map->ddf = 1;
ef6ffade
DW
5277
5278 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
5279 free(dev);
5280 free(dv);
7a862a02 5281 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
5282 return 0;
5283 }
81062a36
DW
5284
5285 map->raid_level = info->level;
4d1313e9 5286 if (info->level == 10) {
c2c087e6 5287 map->raid_level = 1;
4d1313e9 5288 map->num_domains = info->raid_disks / 2;
81062a36
DW
5289 } else if (info->level == 1)
5290 map->num_domains = info->raid_disks;
5291 else
ff596308 5292 map->num_domains = 1;
81062a36 5293
5551b113 5294 /* info->size is only int so use the 'size' parameter instead */
5308f117 5295 num_data_stripes = (s->size * 2) / info_to_blocks_per_strip(info);
5551b113
CA
5296 num_data_stripes /= map->num_domains;
5297 set_num_data_stripes(map, num_data_stripes);
ef6ffade 5298
c2c087e6
DW
5299 map->num_members = info->raid_disks;
5300 for (i = 0; i < map->num_members; i++) {
5301 /* initialized in add_to_super */
4eb26970 5302 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 5303 }
949c47a0 5304 mpb->num_raid_devs++;
ba2de7ba
DW
5305
5306 dv->dev = dev;
5307 dv->index = super->current_vol;
5308 dv->next = super->devlist;
5309 super->devlist = dv;
c2c087e6 5310
4d1313e9
DW
5311 imsm_update_version_info(super);
5312
c2c087e6 5313 return 1;
cdddbdbc
DW
5314}
5315
bf5a934a 5316static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5308f117 5317 struct shape *s, char *name,
83cd1e97
N
5318 char *homehost, int *uuid,
5319 unsigned long long data_offset)
bf5a934a
DW
5320{
5321 /* This is primarily called by Create when creating a new array.
5322 * We will then get add_to_super called for each component, and then
5323 * write_init_super called to write it out to each device.
5324 * For IMSM, Create can create on fresh devices or on a pre-existing
5325 * array.
5326 * To create on a pre-existing array a different method will be called.
5327 * This one is just for fresh drives.
5328 */
5329 struct intel_super *super;
5330 struct imsm_super *mpb;
5331 size_t mpb_size;
4d1313e9 5332 char *version;
bf5a934a 5333
83cd1e97 5334 if (data_offset != INVALID_SECTORS) {
ed503f89 5335 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
5336 return 0;
5337 }
5338
bf5a934a 5339 if (st->sb)
5308f117 5340 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
83cd1e97 5341 data_offset);
e683ca88
DW
5342
5343 if (info)
5344 mpb_size = disks_to_mpb_size(info->nr_disks);
5345 else
f36a9ecd 5346 mpb_size = MAX_SECTOR_SIZE;
bf5a934a 5347
49133e57 5348 super = alloc_super();
f36a9ecd
PB
5349 if (super &&
5350 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
8d67477f 5351 free_imsm(super);
e683ca88
DW
5352 super = NULL;
5353 }
5354 if (!super) {
1ade5cc1 5355 pr_err("could not allocate superblock\n");
bf5a934a
DW
5356 return 0;
5357 }
de44e46f
PB
5358 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5359 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
1ade5cc1 5360 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8 5361 free(super->buf);
8d67477f 5362 free_imsm(super);
8e59f3d8
AK
5363 return 0;
5364 }
e683ca88 5365 memset(super->buf, 0, mpb_size);
ef649044 5366 mpb = super->buf;
e683ca88
DW
5367 mpb->mpb_size = __cpu_to_le32(mpb_size);
5368 st->sb = super;
5369
5370 if (info == NULL) {
5371 /* zeroing superblock */
5372 return 0;
5373 }
bf5a934a 5374
4d1313e9
DW
5375 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5376
5377 version = (char *) mpb->sig;
5378 strcpy(version, MPB_SIGNATURE);
5379 version += strlen(MPB_SIGNATURE);
5380 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 5381
bf5a934a
DW
5382 return 1;
5383}
5384
0e600426 5385#ifndef MDASSEMBLE
f20c3968 5386static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
5387 int fd, char *devname)
5388{
5389 struct intel_super *super = st->sb;
d23fe947 5390 struct imsm_super *mpb = super->anchor;
3960e579 5391 struct imsm_disk *_disk;
bf5a934a
DW
5392 struct imsm_dev *dev;
5393 struct imsm_map *map;
3960e579 5394 struct dl *dl, *df;
4eb26970 5395 int slot;
bf5a934a 5396
949c47a0 5397 dev = get_imsm_dev(super, super->current_vol);
238c0a71 5398 map = get_imsm_map(dev, MAP_0);
bf5a934a 5399
208933a7 5400 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 5401 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
5402 devname);
5403 return 1;
5404 }
5405
efb30e7f
DW
5406 if (fd == -1) {
5407 /* we're doing autolayout so grab the pre-marked (in
5408 * validate_geometry) raid_disk
5409 */
5410 for (dl = super->disks; dl; dl = dl->next)
5411 if (dl->raiddisk == dk->raid_disk)
5412 break;
5413 } else {
5414 for (dl = super->disks; dl ; dl = dl->next)
5415 if (dl->major == dk->major &&
5416 dl->minor == dk->minor)
5417 break;
5418 }
d23fe947 5419
208933a7 5420 if (!dl) {
e7b84f9d 5421 pr_err("%s is not a member of the same container\n", devname);
f20c3968 5422 return 1;
208933a7 5423 }
bf5a934a 5424
d23fe947
DW
5425 /* add a pristine spare to the metadata */
5426 if (dl->index < 0) {
5427 dl->index = super->anchor->num_disks;
5428 super->anchor->num_disks++;
5429 }
4eb26970
DW
5430 /* Check the device has not already been added */
5431 slot = get_imsm_disk_slot(map, dl->index);
5432 if (slot >= 0 &&
238c0a71 5433 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5434 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5435 devname);
5436 return 1;
5437 }
656b6b5a 5438 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5439 dl->disk.status = CONFIGURED_DISK;
d23fe947 5440
3960e579
DW
5441 /* update size of 'missing' disks to be at least as large as the
5442 * largest acitve member (we only have dummy missing disks when
5443 * creating the first volume)
5444 */
5445 if (super->current_vol == 0) {
5446 for (df = super->missing; df; df = df->next) {
5551b113
CA
5447 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5448 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5449 _disk = __get_imsm_disk(mpb, df->index);
5450 *_disk = df->disk;
5451 }
5452 }
5453
5454 /* refresh unset/failed slots to point to valid 'missing' entries */
5455 for (df = super->missing; df; df = df->next)
5456 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5457 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5458
5459 if ((ord & IMSM_ORD_REBUILD) == 0)
5460 continue;
5461 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5462 if (is_gen_migration(dev)) {
238c0a71
AK
5463 struct imsm_map *map2 = get_imsm_map(dev,
5464 MAP_1);
0a108d63 5465 int slot2 = get_imsm_disk_slot(map2, df->index);
089f9d79 5466 if (slot2 < map2->num_members && slot2 >= 0) {
1ace8403 5467 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5468 slot2,
5469 MAP_1);
1ace8403
AK
5470 if ((unsigned)df->index ==
5471 ord_to_idx(ord2))
5472 set_imsm_ord_tbl_ent(map2,
0a108d63 5473 slot2,
1ace8403
AK
5474 df->index |
5475 IMSM_ORD_REBUILD);
5476 }
5477 }
3960e579
DW
5478 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5479 break;
5480 }
5481
d23fe947
DW
5482 /* if we are creating the first raid device update the family number */
5483 if (super->current_vol == 0) {
5484 __u32 sum;
5485 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5486
3960e579 5487 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5488 if (!_dev || !_disk) {
e7b84f9d 5489 pr_err("BUG mpb setup error\n");
791b666a
AW
5490 return 1;
5491 }
d23fe947
DW
5492 *_dev = *dev;
5493 *_disk = dl->disk;
148acb7b
DW
5494 sum = random32();
5495 sum += __gen_imsm_checksum(mpb);
d23fe947 5496 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5497 mpb->orig_family_num = mpb->family_num;
d23fe947 5498 }
ca0748fa 5499 super->current_disk = dl;
f20c3968 5500 return 0;
bf5a934a
DW
5501}
5502
a8619d23
AK
5503/* mark_spare()
5504 * Function marks disk as spare and restores disk serial
5505 * in case it was previously marked as failed by takeover operation
5506 * reruns:
5507 * -1 : critical error
5508 * 0 : disk is marked as spare but serial is not set
5509 * 1 : success
5510 */
5511int mark_spare(struct dl *disk)
5512{
5513 __u8 serial[MAX_RAID_SERIAL_LEN];
5514 int ret_val = -1;
5515
5516 if (!disk)
5517 return ret_val;
5518
5519 ret_val = 0;
5520 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5521 /* Restore disk serial number, because takeover marks disk
5522 * as failed and adds to serial ':0' before it becomes
5523 * a spare disk.
5524 */
5525 serialcpy(disk->serial, serial);
5526 serialcpy(disk->disk.serial, serial);
5527 ret_val = 1;
5528 }
5529 disk->disk.status = SPARE_DISK;
5530 disk->index = -1;
5531
5532 return ret_val;
5533}
88654014 5534
f20c3968 5535static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5536 int fd, char *devname,
5537 unsigned long long data_offset)
cdddbdbc 5538{
c2c087e6 5539 struct intel_super *super = st->sb;
c2c087e6
DW
5540 struct dl *dd;
5541 unsigned long long size;
fa7bb6f8 5542 unsigned int member_sector_size;
f2f27e63 5543 __u32 id;
c2c087e6
DW
5544 int rv;
5545 struct stat stb;
5546
88654014
LM
5547 /* If we are on an RAID enabled platform check that the disk is
5548 * attached to the raid controller.
5549 * We do not need to test disks attachment for container based additions,
5550 * they shall be already tested when container was created/assembled.
88c32bb1 5551 */
d424212e 5552 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5553 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5554 if (rv != 0) {
5555 dprintf("capability: %p fd: %d ret: %d\n",
5556 super->orom, fd, rv);
5557 return 1;
88c32bb1
DW
5558 }
5559
f20c3968
DW
5560 if (super->current_vol >= 0)
5561 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5562
c2c087e6 5563 fstat(fd, &stb);
503975b9 5564 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5565 dd->major = major(stb.st_rdev);
5566 dd->minor = minor(stb.st_rdev);
503975b9 5567 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5568 dd->fd = fd;
689c9bf3 5569 dd->e = NULL;
1a64be56 5570 dd->action = DISK_ADD;
c2c087e6 5571 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5572 if (rv) {
e7b84f9d 5573 pr_err("failed to retrieve scsi serial, aborting\n");
20bee0f8
PB
5574 if (dd->devname)
5575 free(dd->devname);
949c47a0 5576 free(dd);
0030e8d6 5577 abort();
c2c087e6 5578 }
20bee0f8
PB
5579 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5580 (super->hba->type == SYS_DEV_VMD))) {
5581 int i;
5582 char *devpath = diskfd_to_devpath(fd);
5583 char controller_path[PATH_MAX];
5584
5585 if (!devpath) {
5586 pr_err("failed to get devpath, aborting\n");
5587 if (dd->devname)
5588 free(dd->devname);
5589 free(dd);
5590 return 1;
5591 }
5592
5593 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5594 free(devpath);
5595
5596 if (devpath_to_vendor(controller_path) == 0x8086) {
5597 /*
5598 * If Intel's NVMe drive has serial ended with
5599 * "-A","-B","-1" or "-2" it means that this is "x8"
5600 * device (double drive on single PCIe card).
5601 * User should be warned about potential data loss.
5602 */
5603 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5604 /* Skip empty character at the end */
5605 if (dd->serial[i] == 0)
5606 continue;
5607
5608 if (((dd->serial[i] == 'A') ||
5609 (dd->serial[i] == 'B') ||
5610 (dd->serial[i] == '1') ||
5611 (dd->serial[i] == '2')) &&
5612 (dd->serial[i-1] == '-'))
5613 pr_err("\tThe action you are about to take may put your data at risk.\n"
5614 "\tPlease note that x8 devices may consist of two separate x4 devices "
5615 "located on a single PCIe port.\n"
5616 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5617 break;
5618 }
32716c51
PB
5619 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5620 !imsm_orom_has_tpv_support(super->orom)) {
5621 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5622 "\tPlease refer to Intel(R) RSTe user guide.\n");
5623 free(dd->devname);
5624 free(dd);
5625 return 1;
20bee0f8
PB
5626 }
5627 }
c2c087e6 5628
c2c087e6 5629 get_dev_size(fd, NULL, &size);
fa7bb6f8
PB
5630 get_dev_sector_size(fd, NULL, &member_sector_size);
5631
5632 if (super->sector_size == 0) {
5633 /* this a first device, so sector_size is not set yet */
5634 super->sector_size = member_sector_size;
5635 } else if (member_sector_size != super->sector_size) {
5636 pr_err("Mixing between different sector size is forbidden, aborting...\n");
5637 if (dd->devname)
5638 free(dd->devname);
5639 free(dd);
5640 return 1;
5641 }
5642
71e5411e 5643 /* clear migr_rec when adding disk to container */
de44e46f
PB
5644 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*super->sector_size);
5645 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*super->sector_size,
5646 SEEK_SET) >= 0) {
466070ad 5647 if ((unsigned int)write(fd, super->migr_rec_buf,
de44e46f
PB
5648 MIGR_REC_BUF_SECTORS*super->sector_size) !=
5649 MIGR_REC_BUF_SECTORS*super->sector_size)
71e5411e
PB
5650 perror("Write migr_rec failed");
5651 }
5652
c2c087e6 5653 size /= 512;
1f24f035 5654 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5655 set_total_blocks(&dd->disk, size);
5656 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5657 struct imsm_super *mpb = super->anchor;
5658 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5659 }
a8619d23 5660 mark_spare(dd);
c2c087e6 5661 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5662 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5663 else
b9f594fe 5664 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5665
5666 if (st->update_tail) {
1a64be56
LM
5667 dd->next = super->disk_mgmt_list;
5668 super->disk_mgmt_list = dd;
43dad3d6
DW
5669 } else {
5670 dd->next = super->disks;
5671 super->disks = dd;
ceaf0ee1 5672 super->updates_pending++;
43dad3d6 5673 }
f20c3968
DW
5674
5675 return 0;
cdddbdbc
DW
5676}
5677
1a64be56
LM
5678static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5679{
5680 struct intel_super *super = st->sb;
5681 struct dl *dd;
5682
5683 /* remove from super works only in mdmon - for communication
5684 * manager - monitor. Check if communication memory buffer
5685 * is prepared.
5686 */
5687 if (!st->update_tail) {
1ade5cc1 5688 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
5689 return 1;
5690 }
503975b9 5691 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5692 dd->major = dk->major;
5693 dd->minor = dk->minor;
1a64be56 5694 dd->fd = -1;
a8619d23 5695 mark_spare(dd);
1a64be56
LM
5696 dd->action = DISK_REMOVE;
5697
5698 dd->next = super->disk_mgmt_list;
5699 super->disk_mgmt_list = dd;
5700
1a64be56
LM
5701 return 0;
5702}
5703
f796af5d
DW
5704static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5705
5706static union {
f36a9ecd 5707 char buf[MAX_SECTOR_SIZE];
f796af5d 5708 struct imsm_super anchor;
f36a9ecd 5709} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
c2c087e6 5710
d23fe947
DW
5711/* spare records have their own family number and do not have any defined raid
5712 * devices
5713 */
5714static int write_super_imsm_spares(struct intel_super *super, int doclose)
5715{
d23fe947 5716 struct imsm_super *mpb = super->anchor;
f796af5d 5717 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5718 __u32 sum;
5719 struct dl *d;
5720
68641cdb
JS
5721 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5722 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 5723 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
5724 spare->num_disks = 1;
5725 spare->num_raid_devs = 0;
5726 spare->cache_size = mpb->cache_size;
5727 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
5728
5729 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5730 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5731
5732 for (d = super->disks; d; d = d->next) {
8796fdc4 5733 if (d->index != -1)
d23fe947
DW
5734 continue;
5735
f796af5d 5736 spare->disk[0] = d->disk;
027c374f
CA
5737 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5738 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5739
f36a9ecd
PB
5740 if (super->sector_size == 4096)
5741 convert_to_4k_imsm_disk(&spare->disk[0]);
5742
f796af5d
DW
5743 sum = __gen_imsm_checksum(spare);
5744 spare->family_num = __cpu_to_le32(sum);
5745 spare->orig_family_num = 0;
5746 sum = __gen_imsm_checksum(spare);
5747 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5748
f796af5d 5749 if (store_imsm_mpb(d->fd, spare)) {
1ade5cc1
N
5750 pr_err("failed for device %d:%d %s\n",
5751 d->major, d->minor, strerror(errno));
e74255d9 5752 return 1;
d23fe947
DW
5753 }
5754 if (doclose) {
5755 close(d->fd);
5756 d->fd = -1;
5757 }
5758 }
5759
e74255d9 5760 return 0;
d23fe947
DW
5761}
5762
36988a3d 5763static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5764{
36988a3d 5765 struct intel_super *super = st->sb;
f36a9ecd 5766 unsigned int sector_size = super->sector_size;
949c47a0 5767 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5768 struct dl *d;
5769 __u32 generation;
5770 __u32 sum;
d23fe947 5771 int spares = 0;
949c47a0 5772 int i;
a48ac0a8 5773 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5774 int num_disks = 0;
146c6260 5775 int clear_migration_record = 1;
bbab0940 5776 __u32 bbm_log_size;
cdddbdbc 5777
c2c087e6
DW
5778 /* 'generation' is incremented everytime the metadata is written */
5779 generation = __le32_to_cpu(mpb->generation_num);
5780 generation++;
5781 mpb->generation_num = __cpu_to_le32(generation);
5782
148acb7b
DW
5783 /* fix up cases where previous mdadm releases failed to set
5784 * orig_family_num
5785 */
5786 if (mpb->orig_family_num == 0)
5787 mpb->orig_family_num = mpb->family_num;
5788
d23fe947 5789 for (d = super->disks; d; d = d->next) {
8796fdc4 5790 if (d->index == -1)
d23fe947 5791 spares++;
36988a3d 5792 else {
d23fe947 5793 mpb->disk[d->index] = d->disk;
36988a3d
AK
5794 num_disks++;
5795 }
d23fe947 5796 }
36988a3d 5797 for (d = super->missing; d; d = d->next) {
47ee5a45 5798 mpb->disk[d->index] = d->disk;
36988a3d
AK
5799 num_disks++;
5800 }
5801 mpb->num_disks = num_disks;
5802 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5803
949c47a0
DW
5804 for (i = 0; i < mpb->num_raid_devs; i++) {
5805 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5806 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5807 if (dev && dev2) {
5808 imsm_copy_dev(dev, dev2);
5809 mpb_size += sizeof_imsm_dev(dev, 0);
5810 }
146c6260
AK
5811 if (is_gen_migration(dev2))
5812 clear_migration_record = 0;
949c47a0 5813 }
bbab0940
TM
5814
5815 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5816
5817 if (bbm_log_size) {
5818 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5819 mpb->attributes |= MPB_ATTRIB_BBM;
5820 } else
5821 mpb->attributes &= ~MPB_ATTRIB_BBM;
5822
5823 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5824 mpb_size += bbm_log_size;
a48ac0a8 5825 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5826
bbab0940
TM
5827#ifdef DEBUG
5828 assert(super->len == 0 || mpb_size <= super->len);
5829#endif
5830
c2c087e6 5831 /* recalculate checksum */
949c47a0 5832 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5833 mpb->check_sum = __cpu_to_le32(sum);
5834
51d83f5d
AK
5835 if (super->clean_migration_record_by_mdmon) {
5836 clear_migration_record = 1;
5837 super->clean_migration_record_by_mdmon = 0;
5838 }
146c6260 5839 if (clear_migration_record)
de44e46f
PB
5840 memset(super->migr_rec_buf, 0,
5841 MIGR_REC_BUF_SECTORS*sector_size);
146c6260 5842
f36a9ecd
PB
5843 if (sector_size == 4096)
5844 convert_to_4k(super);
5845
d23fe947 5846 /* write the mpb for disks that compose raid devices */
c2c087e6 5847 for (d = super->disks; d ; d = d->next) {
86c54047 5848 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5849 continue;
30602f53 5850
146c6260
AK
5851 if (clear_migration_record) {
5852 unsigned long long dsize;
5853
5854 get_dev_size(d->fd, NULL, &dsize);
de44e46f
PB
5855 if (lseek64(d->fd, dsize - sector_size,
5856 SEEK_SET) >= 0) {
466070ad
PB
5857 if ((unsigned int)write(d->fd,
5858 super->migr_rec_buf,
de44e46f
PB
5859 MIGR_REC_BUF_SECTORS*sector_size) !=
5860 MIGR_REC_BUF_SECTORS*sector_size)
9e2d750d 5861 perror("Write migr_rec failed");
146c6260
AK
5862 }
5863 }
51d83f5d
AK
5864
5865 if (store_imsm_mpb(d->fd, mpb))
5866 fprintf(stderr,
1ade5cc1
N
5867 "failed for device %d:%d (fd: %d)%s\n",
5868 d->major, d->minor,
51d83f5d
AK
5869 d->fd, strerror(errno));
5870
c2c087e6
DW
5871 if (doclose) {
5872 close(d->fd);
5873 d->fd = -1;
5874 }
5875 }
5876
d23fe947
DW
5877 if (spares)
5878 return write_super_imsm_spares(super, doclose);
5879
e74255d9 5880 return 0;
c2c087e6
DW
5881}
5882
9b1fb677 5883static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
5884{
5885 size_t len;
5886 struct imsm_update_create_array *u;
5887 struct intel_super *super = st->sb;
9b1fb677 5888 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 5889 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
5890 struct disk_info *inf;
5891 struct imsm_disk *disk;
5892 int i;
43dad3d6 5893
54c2c1ea
DW
5894 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5895 sizeof(*inf) * map->num_members;
503975b9 5896 u = xmalloc(len);
43dad3d6 5897 u->type = update_create_array;
9b1fb677 5898 u->dev_idx = dev_idx;
43dad3d6 5899 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
5900 inf = get_disk_info(u);
5901 for (i = 0; i < map->num_members; i++) {
238c0a71 5902 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 5903
54c2c1ea 5904 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
5905 if (!disk)
5906 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
5907 serialcpy(inf[i].serial, disk->serial);
5908 }
43dad3d6
DW
5909 append_metadata_update(st, u, len);
5910
5911 return 0;
5912}
5913
1a64be56 5914static int mgmt_disk(struct supertype *st)
43dad3d6
DW
5915{
5916 struct intel_super *super = st->sb;
5917 size_t len;
1a64be56 5918 struct imsm_update_add_remove_disk *u;
43dad3d6 5919
1a64be56 5920 if (!super->disk_mgmt_list)
43dad3d6
DW
5921 return 0;
5922
5923 len = sizeof(*u);
503975b9 5924 u = xmalloc(len);
1a64be56 5925 u->type = update_add_remove_disk;
43dad3d6
DW
5926 append_metadata_update(st, u, len);
5927
5928 return 0;
5929}
5930
c2c087e6
DW
5931static int write_init_super_imsm(struct supertype *st)
5932{
9b1fb677
DW
5933 struct intel_super *super = st->sb;
5934 int current_vol = super->current_vol;
5935
5936 /* we are done with current_vol reset it to point st at the container */
5937 super->current_vol = -1;
5938
8273f55e 5939 if (st->update_tail) {
43dad3d6
DW
5940 /* queue the recently created array / added disk
5941 * as a metadata update */
43dad3d6 5942 int rv;
8273f55e 5943
43dad3d6 5944 /* determine if we are creating a volume or adding a disk */
9b1fb677 5945 if (current_vol < 0) {
1a64be56
LM
5946 /* in the mgmt (add/remove) disk case we are running
5947 * in mdmon context, so don't close fd's
43dad3d6 5948 */
1a64be56 5949 return mgmt_disk(st);
43dad3d6 5950 } else
9b1fb677 5951 rv = create_array(st, current_vol);
8273f55e 5952
43dad3d6 5953 return rv;
d682f344
N
5954 } else {
5955 struct dl *d;
5956 for (d = super->disks; d; d = d->next)
ba728be7 5957 Kill(d->devname, NULL, 0, -1, 1);
36988a3d 5958 return write_super_imsm(st, 1);
d682f344 5959 }
cdddbdbc 5960}
0e600426 5961#endif
cdddbdbc 5962
e683ca88 5963static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 5964{
e683ca88
DW
5965 struct intel_super *super = st->sb;
5966 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 5967
e683ca88 5968 if (!mpb)
ad97895e
DW
5969 return 1;
5970
1799c9e8 5971#ifndef MDASSEMBLE
f36a9ecd
PB
5972 if (super->sector_size == 4096)
5973 convert_to_4k(super);
e683ca88 5974 return store_imsm_mpb(fd, mpb);
1799c9e8
N
5975#else
5976 return 1;
5977#endif
cdddbdbc
DW
5978}
5979
0e600426 5980#ifndef MDASSEMBLE
cdddbdbc
DW
5981static int validate_geometry_imsm_container(struct supertype *st, int level,
5982 int layout, int raiddisks, int chunk,
af4348dd
N
5983 unsigned long long size,
5984 unsigned long long data_offset,
5985 char *dev,
2c514b71
NB
5986 unsigned long long *freesize,
5987 int verbose)
cdddbdbc 5988{
c2c087e6
DW
5989 int fd;
5990 unsigned long long ldsize;
594dc1b8 5991 struct intel_super *super;
f2f5c343 5992 int rv = 0;
cdddbdbc 5993
c2c087e6
DW
5994 if (level != LEVEL_CONTAINER)
5995 return 0;
5996 if (!dev)
5997 return 1;
5998
5999 fd = open(dev, O_RDONLY|O_EXCL, 0);
6000 if (fd < 0) {
ba728be7 6001 if (verbose > 0)
e7b84f9d 6002 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 6003 dev, strerror(errno));
c2c087e6
DW
6004 return 0;
6005 }
6006 if (!get_dev_size(fd, dev, &ldsize)) {
6007 close(fd);
6008 return 0;
6009 }
f2f5c343
LM
6010
6011 /* capabilities retrieve could be possible
6012 * note that there is no fd for the disks in array.
6013 */
6014 super = alloc_super();
8d67477f
TM
6015 if (!super) {
6016 close(fd);
6017 return 0;
6018 }
fa7bb6f8
PB
6019 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6020 close(fd);
6021 free_imsm(super);
6022 return 0;
6023 }
6024
ba728be7 6025 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
6026 if (rv != 0) {
6027#if DEBUG
6028 char str[256];
6029 fd2devname(fd, str);
1ade5cc1 6030 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
6031 fd, str, super->orom, rv, raiddisks);
6032#endif
6033 /* no orom/efi or non-intel hba of the disk */
6034 close(fd);
6035 free_imsm(super);
6036 return 0;
6037 }
c2c087e6 6038 close(fd);
9126b9a8
CA
6039 if (super->orom) {
6040 if (raiddisks > super->orom->tds) {
6041 if (verbose)
7a862a02 6042 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8
CA
6043 raiddisks, super->orom->tds);
6044 free_imsm(super);
6045 return 0;
6046 }
6047 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6048 (ldsize >> 9) >> 32 > 0) {
6049 if (verbose)
e7b84f9d 6050 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
6051 free_imsm(super);
6052 return 0;
6053 }
f2f5c343 6054 }
c2c087e6 6055
af4348dd 6056 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 6057 free_imsm(super);
c2c087e6
DW
6058
6059 return 1;
cdddbdbc
DW
6060}
6061
0dcecb2e
DW
6062static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6063{
6064 const unsigned long long base_start = e[*idx].start;
6065 unsigned long long end = base_start + e[*idx].size;
6066 int i;
6067
6068 if (base_start == end)
6069 return 0;
6070
6071 *idx = *idx + 1;
6072 for (i = *idx; i < num_extents; i++) {
6073 /* extend overlapping extents */
6074 if (e[i].start >= base_start &&
6075 e[i].start <= end) {
6076 if (e[i].size == 0)
6077 return 0;
6078 if (e[i].start + e[i].size > end)
6079 end = e[i].start + e[i].size;
6080 } else if (e[i].start > end) {
6081 *idx = i;
6082 break;
6083 }
6084 }
6085
6086 return end - base_start;
6087}
6088
6089static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6090{
6091 /* build a composite disk with all known extents and generate a new
6092 * 'maxsize' given the "all disks in an array must share a common start
6093 * offset" constraint
6094 */
503975b9 6095 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
6096 struct dl *dl;
6097 int i, j;
6098 int start_extent;
6099 unsigned long long pos;
b9d77223 6100 unsigned long long start = 0;
0dcecb2e
DW
6101 unsigned long long maxsize;
6102 unsigned long reserve;
6103
0dcecb2e
DW
6104 /* coalesce and sort all extents. also, check to see if we need to
6105 * reserve space between member arrays
6106 */
6107 j = 0;
6108 for (dl = super->disks; dl; dl = dl->next) {
6109 if (!dl->e)
6110 continue;
6111 for (i = 0; i < dl->extent_cnt; i++)
6112 e[j++] = dl->e[i];
6113 }
6114 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6115
6116 /* merge extents */
6117 i = 0;
6118 j = 0;
6119 while (i < sum_extents) {
6120 e[j].start = e[i].start;
6121 e[j].size = find_size(e, &i, sum_extents);
6122 j++;
6123 if (e[j-1].size == 0)
6124 break;
6125 }
6126
6127 pos = 0;
6128 maxsize = 0;
6129 start_extent = 0;
6130 i = 0;
6131 do {
6132 unsigned long long esize;
6133
6134 esize = e[i].start - pos;
6135 if (esize >= maxsize) {
6136 maxsize = esize;
6137 start = pos;
6138 start_extent = i;
6139 }
6140 pos = e[i].start + e[i].size;
6141 i++;
6142 } while (e[i-1].size);
6143 free(e);
6144
a7dd165b
DW
6145 if (maxsize == 0)
6146 return 0;
6147
6148 /* FIXME assumes volume at offset 0 is the first volume in a
6149 * container
6150 */
0dcecb2e
DW
6151 if (start_extent > 0)
6152 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6153 else
6154 reserve = 0;
6155
6156 if (maxsize < reserve)
a7dd165b 6157 return 0;
0dcecb2e 6158
5551b113 6159 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 6160 if (start + reserve > super->create_offset)
a7dd165b 6161 return 0; /* start overflows create_offset */
0dcecb2e
DW
6162 super->create_offset = start + reserve;
6163
6164 return maxsize - reserve;
6165}
6166
88c32bb1
DW
6167static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6168{
6169 if (level < 0 || level == 6 || level == 4)
6170 return 0;
6171
6172 /* if we have an orom prevent invalid raid levels */
6173 if (orom)
6174 switch (level) {
6175 case 0: return imsm_orom_has_raid0(orom);
6176 case 1:
6177 if (raiddisks > 2)
6178 return imsm_orom_has_raid1e(orom);
1c556e92
DW
6179 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6180 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6181 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
6182 }
6183 else
6184 return 1; /* not on an Intel RAID platform so anything goes */
6185
6186 return 0;
6187}
6188
ca9de185
LM
6189static int
6190active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6191 int dpa, int verbose)
6192{
6193 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 6194 struct mdstat_ent *memb;
ca9de185
LM
6195 int count = 0;
6196 int num = 0;
594dc1b8 6197 struct md_list *dv;
ca9de185
LM
6198 int found;
6199
6200 for (memb = mdstat ; memb ; memb = memb->next) {
6201 if (memb->metadata_version &&
6202 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6203 (strcmp(&memb->metadata_version[9], name) == 0) &&
6204 !is_subarray(memb->metadata_version+9) &&
6205 memb->members) {
6206 struct dev_member *dev = memb->members;
6207 int fd = -1;
6208 while(dev && (fd < 0)) {
503975b9
N
6209 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6210 num = sprintf(path, "%s%s", "/dev/", dev->name);
6211 if (num > 0)
6212 fd = open(path, O_RDONLY, 0);
089f9d79 6213 if (num <= 0 || fd < 0) {
676e87a8 6214 pr_vrb("Cannot open %s: %s\n",
503975b9 6215 dev->name, strerror(errno));
ca9de185 6216 }
503975b9 6217 free(path);
ca9de185
LM
6218 dev = dev->next;
6219 }
6220 found = 0;
089f9d79 6221 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
ca9de185
LM
6222 struct mdstat_ent *vol;
6223 for (vol = mdstat ; vol ; vol = vol->next) {
089f9d79 6224 if (vol->active > 0 &&
ca9de185 6225 vol->metadata_version &&
9581efb1 6226 is_container_member(vol, memb->devnm)) {
ca9de185
LM
6227 found++;
6228 count++;
6229 }
6230 }
6231 if (*devlist && (found < dpa)) {
503975b9 6232 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
6233 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6234 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
6235 dv->found = found;
6236 dv->used = 0;
6237 dv->next = *devlist;
6238 *devlist = dv;
ca9de185
LM
6239 }
6240 }
6241 if (fd >= 0)
6242 close(fd);
6243 }
6244 }
6245 free_mdstat(mdstat);
6246 return count;
6247}
6248
6249#ifdef DEBUG_LOOP
6250static struct md_list*
6251get_loop_devices(void)
6252{
6253 int i;
6254 struct md_list *devlist = NULL;
594dc1b8 6255 struct md_list *dv;
ca9de185
LM
6256
6257 for(i = 0; i < 12; i++) {
503975b9
N
6258 dv = xcalloc(1, sizeof(*dv));
6259 dv->devname = xmalloc(40);
ca9de185
LM
6260 sprintf(dv->devname, "/dev/loop%d", i);
6261 dv->next = devlist;
6262 devlist = dv;
6263 }
6264 return devlist;
6265}
6266#endif
6267
6268static struct md_list*
6269get_devices(const char *hba_path)
6270{
6271 struct md_list *devlist = NULL;
594dc1b8 6272 struct md_list *dv;
ca9de185
LM
6273 struct dirent *ent;
6274 DIR *dir;
6275 int err = 0;
6276
6277#if DEBUG_LOOP
6278 devlist = get_loop_devices();
6279 return devlist;
6280#endif
6281 /* scroll through /sys/dev/block looking for devices attached to
6282 * this hba
6283 */
6284 dir = opendir("/sys/dev/block");
6285 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6286 int fd;
6287 char buf[1024];
6288 int major, minor;
6289 char *path = NULL;
6290 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6291 continue;
6292 path = devt_to_devpath(makedev(major, minor));
6293 if (!path)
6294 continue;
6295 if (!path_attached_to_hba(path, hba_path)) {
6296 free(path);
6297 path = NULL;
6298 continue;
6299 }
6300 free(path);
6301 path = NULL;
6302 fd = dev_open(ent->d_name, O_RDONLY);
6303 if (fd >= 0) {
6304 fd2devname(fd, buf);
6305 close(fd);
6306 } else {
e7b84f9d 6307 pr_err("cannot open device: %s\n",
ca9de185
LM
6308 ent->d_name);
6309 continue;
6310 }
6311
503975b9
N
6312 dv = xcalloc(1, sizeof(*dv));
6313 dv->devname = xstrdup(buf);
ca9de185
LM
6314 dv->next = devlist;
6315 devlist = dv;
6316 }
6317 if (err) {
6318 while(devlist) {
6319 dv = devlist;
6320 devlist = devlist->next;
6321 free(dv->devname);
6322 free(dv);
6323 }
6324 }
562aa102 6325 closedir(dir);
ca9de185
LM
6326 return devlist;
6327}
6328
6329static int
6330count_volumes_list(struct md_list *devlist, char *homehost,
6331 int verbose, int *found)
6332{
6333 struct md_list *tmpdev;
6334 int count = 0;
594dc1b8 6335 struct supertype *st;
ca9de185
LM
6336
6337 /* first walk the list of devices to find a consistent set
6338 * that match the criterea, if that is possible.
6339 * We flag the ones we like with 'used'.
6340 */
6341 *found = 0;
6342 st = match_metadata_desc_imsm("imsm");
6343 if (st == NULL) {
676e87a8 6344 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6345 return 0;
6346 }
6347
6348 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6349 char *devname = tmpdev->devname;
6350 struct stat stb;
6351 struct supertype *tst;
6352 int dfd;
6353 if (tmpdev->used > 1)
6354 continue;
6355 tst = dup_super(st);
6356 if (tst == NULL) {
676e87a8 6357 pr_vrb("cannot allocate memory for imsm supertype\n");
ca9de185
LM
6358 goto err_1;
6359 }
6360 tmpdev->container = 0;
6361 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6362 if (dfd < 0) {
1ade5cc1 6363 dprintf("cannot open device %s: %s\n",
ca9de185
LM
6364 devname, strerror(errno));
6365 tmpdev->used = 2;
6366 } else if (fstat(dfd, &stb)< 0) {
6367 /* Impossible! */
1ade5cc1 6368 dprintf("fstat failed for %s: %s\n",
ca9de185
LM
6369 devname, strerror(errno));
6370 tmpdev->used = 2;
6371 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
1ade5cc1 6372 dprintf("%s is not a block device.\n",
ca9de185
LM
6373 devname);
6374 tmpdev->used = 2;
6375 } else if (must_be_container(dfd)) {
6376 struct supertype *cst;
6377 cst = super_by_fd(dfd, NULL);
6378 if (cst == NULL) {
1ade5cc1 6379 dprintf("cannot recognize container type %s\n",
ca9de185
LM
6380 devname);
6381 tmpdev->used = 2;
6382 } else if (tst->ss != st->ss) {
1ade5cc1 6383 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
6384 devname);
6385 tmpdev->used = 2;
6386 } else if (!tst->ss->load_container ||
6387 tst->ss->load_container(tst, dfd, NULL))
6388 tmpdev->used = 2;
6389 else {
6390 tmpdev->container = 1;
6391 }
6392 if (cst)
6393 cst->ss->free_super(cst);
6394 } else {
6395 tmpdev->st_rdev = stb.st_rdev;
6396 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 6397 dprintf("no RAID superblock on %s\n",
ca9de185
LM
6398 devname);
6399 tmpdev->used = 2;
6400 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 6401 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
6402 tst->ss->name, devname);
6403 tmpdev->used = 2;
6404 }
6405 }
6406 if (dfd >= 0)
6407 close(dfd);
6408 if (tmpdev->used == 2 || tmpdev->used == 4) {
6409 /* Ignore unrecognised devices during auto-assembly */
6410 goto loop;
6411 }
6412 else {
6413 struct mdinfo info;
6414 tst->ss->getinfo_super(tst, &info, NULL);
6415
6416 if (st->minor_version == -1)
6417 st->minor_version = tst->minor_version;
6418
6419 if (memcmp(info.uuid, uuid_zero,
6420 sizeof(int[4])) == 0) {
6421 /* this is a floating spare. It cannot define
6422 * an array unless there are no more arrays of
6423 * this type to be found. It can be included
6424 * in an array of this type though.
6425 */
6426 tmpdev->used = 3;
6427 goto loop;
6428 }
6429
6430 if (st->ss != tst->ss ||
6431 st->minor_version != tst->minor_version ||
6432 st->ss->compare_super(st, tst) != 0) {
6433 /* Some mismatch. If exactly one array matches this host,
6434 * we can resolve on that one.
6435 * Or, if we are auto assembling, we just ignore the second
6436 * for now.
6437 */
1ade5cc1 6438 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
6439 devname);
6440 goto loop;
6441 }
6442 tmpdev->used = 1;
6443 *found = 1;
6444 dprintf("found: devname: %s\n", devname);
6445 }
6446 loop:
6447 if (tst)
6448 tst->ss->free_super(tst);
6449 }
6450 if (*found != 0) {
6451 int err;
6452 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6453 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6454 for (iter = head; iter; iter = iter->next) {
6455 dprintf("content->text_version: %s vol\n",
6456 iter->text_version);
6457 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6458 /* do not assemble arrays with unsupported
6459 configurations */
1ade5cc1 6460 dprintf("Cannot activate member %s.\n",
ca9de185
LM
6461 iter->text_version);
6462 } else
6463 count++;
6464 }
6465 sysfs_free(head);
6466
6467 } else {
1ade5cc1 6468 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
6469 err, st->sb);
6470 }
6471 } else {
1ade5cc1 6472 dprintf("no more devices to examine\n");
ca9de185
LM
6473 }
6474
6475 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
089f9d79 6476 if (tmpdev->used == 1 && tmpdev->found) {
ca9de185
LM
6477 if (count) {
6478 if (count < tmpdev->found)
6479 count = 0;
6480 else
6481 count -= tmpdev->found;
6482 }
6483 }
6484 if (tmpdev->used == 1)
6485 tmpdev->used = 4;
6486 }
6487 err_1:
6488 if (st)
6489 st->ss->free_super(st);
6490 return count;
6491}
6492
d3c11416
AO
6493static int __count_volumes(char *hba_path, int dpa, int verbose,
6494 int cmp_hba_path)
ca9de185 6495{
72a45777 6496 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 6497 int count = 0;
72a45777
PB
6498 const struct orom_entry *entry;
6499 struct devid_list *dv, *devid_list;
ca9de185 6500
d3c11416 6501 if (!hba_path)
ca9de185
LM
6502 return 0;
6503
72a45777 6504 for (idev = intel_devices; idev; idev = idev->next) {
d3c11416
AO
6505 if (strstr(idev->path, hba_path))
6506 break;
72a45777
PB
6507 }
6508
6509 if (!idev || !idev->dev_id)
ca9de185 6510 return 0;
72a45777
PB
6511
6512 entry = get_orom_entry_by_device_id(idev->dev_id);
6513
6514 if (!entry || !entry->devid_list)
6515 return 0;
6516
6517 devid_list = entry->devid_list;
6518 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 6519 struct md_list *devlist;
d3c11416
AO
6520 struct sys_dev *device = NULL;
6521 char *hpath;
72a45777
PB
6522 int found = 0;
6523
d3c11416
AO
6524 if (cmp_hba_path)
6525 device = device_by_id_and_path(dv->devid, hba_path);
6526 else
6527 device = device_by_id(dv->devid);
6528
72a45777 6529 if (device)
d3c11416 6530 hpath = device->path;
72a45777
PB
6531 else
6532 return 0;
6533
d3c11416 6534 devlist = get_devices(hpath);
72a45777
PB
6535 /* if no intel devices return zero volumes */
6536 if (devlist == NULL)
6537 return 0;
6538
d3c11416
AO
6539 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6540 verbose);
6541 dprintf("path: %s active arrays: %d\n", hpath, count);
72a45777
PB
6542 if (devlist == NULL)
6543 return 0;
6544 do {
6545 found = 0;
6546 count += count_volumes_list(devlist,
6547 NULL,
6548 verbose,
6549 &found);
6550 dprintf("found %d count: %d\n", found, count);
6551 } while (found);
6552
d3c11416 6553 dprintf("path: %s total number of volumes: %d\n", hpath, count);
72a45777
PB
6554
6555 while (devlist) {
6556 struct md_list *dv = devlist;
6557 devlist = devlist->next;
6558 free(dv->devname);
6559 free(dv);
6560 }
ca9de185
LM
6561 }
6562 return count;
6563}
6564
d3c11416
AO
6565static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6566{
6567 if (!hba)
6568 return 0;
6569 if (hba->type == SYS_DEV_VMD) {
6570 struct sys_dev *dev;
6571 int count = 0;
6572
6573 for (dev = find_intel_devices(); dev; dev = dev->next) {
6574 if (dev->type == SYS_DEV_VMD)
6575 count += __count_volumes(dev->path, dpa,
6576 verbose, 1);
6577 }
6578 return count;
6579 }
6580 return __count_volumes(hba->path, dpa, verbose, 0);
6581}
6582
cd9d1ac7
DW
6583static int imsm_default_chunk(const struct imsm_orom *orom)
6584{
6585 /* up to 512 if the plaform supports it, otherwise the platform max.
6586 * 128 if no platform detected
6587 */
6588 int fs = max(7, orom ? fls(orom->sss) : 0);
6589
6590 return min(512, (1 << fs));
6591}
73408129 6592
6592ce37
DW
6593static int
6594validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 6595 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 6596{
660260d0
DW
6597 /* check/set platform and metadata limits/defaults */
6598 if (super->orom && raiddisks > super->orom->dpa) {
676e87a8 6599 pr_vrb("platform supports a maximum of %d disks per array\n",
660260d0 6600 super->orom->dpa);
73408129
LM
6601 return 0;
6602 }
6603
5d500228 6604 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 6605 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
676e87a8 6606 pr_vrb("platform does not support raid%d with %d disk%s\n",
6592ce37
DW
6607 level, raiddisks, raiddisks > 1 ? "s" : "");
6608 return 0;
6609 }
cd9d1ac7 6610
7ccc4cc4 6611 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
6612 *chunk = imsm_default_chunk(super->orom);
6613
7ccc4cc4 6614 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
676e87a8 6615 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 6616 return 0;
6592ce37 6617 }
cd9d1ac7 6618
6592ce37
DW
6619 if (layout != imsm_level_to_layout(level)) {
6620 if (level == 5)
676e87a8 6621 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6592ce37 6622 else if (level == 10)
676e87a8 6623 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6592ce37 6624 else
676e87a8 6625 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6592ce37
DW
6626 layout, level);
6627 return 0;
6628 }
2cc699af 6629
7ccc4cc4 6630 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af 6631 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
676e87a8 6632 pr_vrb("platform does not support a volume size over 2TB\n");
2cc699af
CA
6633 return 0;
6634 }
614902f6 6635
6592ce37
DW
6636 return 1;
6637}
6638
1011e834 6639/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
6640 * FIX ME add ahci details
6641 */
8b353278 6642static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 6643 int layout, int raiddisks, int *chunk,
af4348dd
N
6644 unsigned long long size,
6645 unsigned long long data_offset,
6646 char *dev,
2c514b71
NB
6647 unsigned long long *freesize,
6648 int verbose)
cdddbdbc 6649{
c2c087e6
DW
6650 struct stat stb;
6651 struct intel_super *super = st->sb;
b2916f25 6652 struct imsm_super *mpb;
c2c087e6
DW
6653 struct dl *dl;
6654 unsigned long long pos = 0;
6655 unsigned long long maxsize;
6656 struct extent *e;
6657 int i;
cdddbdbc 6658
88c32bb1
DW
6659 /* We must have the container info already read in. */
6660 if (!super)
c2c087e6
DW
6661 return 0;
6662
b2916f25
JS
6663 mpb = super->anchor;
6664
2cc699af 6665 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7a862a02 6666 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 6667 return 0;
d54559f0 6668 }
c2c087e6
DW
6669 if (!dev) {
6670 /* General test: make sure there is space for
2da8544a
DW
6671 * 'raiddisks' device extents of size 'size' at a given
6672 * offset
c2c087e6 6673 */
e46273eb 6674 unsigned long long minsize = size;
b7528a20 6675 unsigned long long start_offset = MaxSector;
c2c087e6
DW
6676 int dcnt = 0;
6677 if (minsize == 0)
6678 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6679 for (dl = super->disks; dl ; dl = dl->next) {
6680 int found = 0;
6681
bf5a934a 6682 pos = 0;
c2c087e6
DW
6683 i = 0;
6684 e = get_extents(super, dl);
6685 if (!e) continue;
6686 do {
6687 unsigned long long esize;
6688 esize = e[i].start - pos;
6689 if (esize >= minsize)
6690 found = 1;
b7528a20 6691 if (found && start_offset == MaxSector) {
2da8544a
DW
6692 start_offset = pos;
6693 break;
6694 } else if (found && pos != start_offset) {
6695 found = 0;
6696 break;
6697 }
c2c087e6
DW
6698 pos = e[i].start + e[i].size;
6699 i++;
6700 } while (e[i-1].size);
6701 if (found)
6702 dcnt++;
6703 free(e);
6704 }
6705 if (dcnt < raiddisks) {
2c514b71 6706 if (verbose)
7a862a02 6707 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 6708 dcnt, raiddisks);
c2c087e6
DW
6709 return 0;
6710 }
6711 return 1;
6712 }
0dcecb2e 6713
c2c087e6
DW
6714 /* This device must be a member of the set */
6715 if (stat(dev, &stb) < 0)
6716 return 0;
6717 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6718 return 0;
6719 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
6720 if (dl->major == (int)major(stb.st_rdev) &&
6721 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
6722 break;
6723 }
6724 if (!dl) {
2c514b71 6725 if (verbose)
7a862a02 6726 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 6727 return 0;
a20d2ba5
DW
6728 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6729 /* If a volume is present then the current creation attempt
6730 * cannot incorporate new spares because the orom may not
6731 * understand this configuration (all member disks must be
6732 * members of each array in the container).
6733 */
7a862a02
N
6734 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6735 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 6736 return 0;
5fe62b94
WD
6737 } else if (super->orom && mpb->num_raid_devs > 0 &&
6738 mpb->num_disks != raiddisks) {
7a862a02 6739 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 6740 return 0;
c2c087e6 6741 }
0dcecb2e
DW
6742
6743 /* retrieve the largest free space block */
c2c087e6
DW
6744 e = get_extents(super, dl);
6745 maxsize = 0;
6746 i = 0;
0dcecb2e
DW
6747 if (e) {
6748 do {
6749 unsigned long long esize;
6750
6751 esize = e[i].start - pos;
6752 if (esize >= maxsize)
6753 maxsize = esize;
6754 pos = e[i].start + e[i].size;
6755 i++;
6756 } while (e[i-1].size);
6757 dl->e = e;
6758 dl->extent_cnt = i;
6759 } else {
6760 if (verbose)
e7b84f9d 6761 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
6762 dev);
6763 return 0;
6764 }
6765 if (maxsize < size) {
6766 if (verbose)
e7b84f9d 6767 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
6768 dev, maxsize, size);
6769 return 0;
6770 }
6771
6772 /* count total number of extents for merge */
6773 i = 0;
6774 for (dl = super->disks; dl; dl = dl->next)
6775 if (dl->e)
6776 i += dl->extent_cnt;
6777
6778 maxsize = merge_extents(super, i);
3baa56ab
LO
6779
6780 if (!check_env("IMSM_NO_PLATFORM") &&
6781 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 6782 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
3baa56ab
LO
6783 return 0;
6784 }
6785
a7dd165b 6786 if (maxsize < size || maxsize == 0) {
b3071342
LD
6787 if (verbose) {
6788 if (maxsize == 0)
7a862a02 6789 pr_err("no free space left on device. Aborting...\n");
b3071342 6790 else
7a862a02 6791 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
6792 maxsize, size);
6793 }
0dcecb2e 6794 return 0;
0dcecb2e
DW
6795 }
6796
c2c087e6
DW
6797 *freesize = maxsize;
6798
ca9de185 6799 if (super->orom) {
72a45777 6800 int count = count_volumes(super->hba,
ca9de185
LM
6801 super->orom->dpa, verbose);
6802 if (super->orom->vphba <= count) {
676e87a8 6803 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
6804 super->orom->vphba);
6805 return 0;
6806 }
6807 }
c2c087e6 6808 return 1;
cdddbdbc
DW
6809}
6810
13bcac90 6811static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
6812 unsigned long long size, int chunk,
6813 unsigned long long *freesize)
6814{
6815 struct intel_super *super = st->sb;
6816 struct imsm_super *mpb = super->anchor;
6817 struct dl *dl;
6818 int i;
6819 int extent_cnt;
6820 struct extent *e;
6821 unsigned long long maxsize;
6822 unsigned long long minsize;
6823 int cnt;
6824 int used;
6825
6826 /* find the largest common start free region of the possible disks */
6827 used = 0;
6828 extent_cnt = 0;
6829 cnt = 0;
6830 for (dl = super->disks; dl; dl = dl->next) {
6831 dl->raiddisk = -1;
6832
6833 if (dl->index >= 0)
6834 used++;
6835
6836 /* don't activate new spares if we are orom constrained
6837 * and there is already a volume active in the container
6838 */
6839 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6840 continue;
6841
6842 e = get_extents(super, dl);
6843 if (!e)
6844 continue;
6845 for (i = 1; e[i-1].size; i++)
6846 ;
6847 dl->e = e;
6848 dl->extent_cnt = i;
6849 extent_cnt += i;
6850 cnt++;
6851 }
6852
6853 maxsize = merge_extents(super, extent_cnt);
6854 minsize = size;
6855 if (size == 0)
612e59d8
CA
6856 /* chunk is in K */
6857 minsize = chunk * 2;
efb30e7f
DW
6858
6859 if (cnt < raiddisks ||
6860 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
6861 maxsize < minsize ||
6862 maxsize == 0) {
e7b84f9d 6863 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
6864 return 0; /* No enough free spaces large enough */
6865 }
6866
6867 if (size == 0) {
6868 size = maxsize;
6869 if (chunk) {
612e59d8
CA
6870 size /= 2 * chunk;
6871 size *= 2 * chunk;
efb30e7f 6872 }
f878b242
LM
6873 maxsize = size;
6874 }
6875 if (!check_env("IMSM_NO_PLATFORM") &&
6876 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 6877 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
f878b242 6878 return 0;
efb30e7f 6879 }
efb30e7f
DW
6880 cnt = 0;
6881 for (dl = super->disks; dl; dl = dl->next)
6882 if (dl->e)
6883 dl->raiddisk = cnt++;
6884
6885 *freesize = size;
6886
13bcac90
AK
6887 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6888
efb30e7f
DW
6889 return 1;
6890}
6891
13bcac90
AK
6892static int reserve_space(struct supertype *st, int raiddisks,
6893 unsigned long long size, int chunk,
6894 unsigned long long *freesize)
6895{
6896 struct intel_super *super = st->sb;
6897 struct dl *dl;
6898 int cnt;
6899 int rv = 0;
6900
6901 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6902 if (rv) {
6903 cnt = 0;
6904 for (dl = super->disks; dl; dl = dl->next)
6905 if (dl->e)
6906 dl->raiddisk = cnt++;
6907 rv = 1;
6908 }
6909
6910 return rv;
6911}
6912
bf5a934a 6913static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 6914 int raiddisks, int *chunk, unsigned long long size,
af4348dd 6915 unsigned long long data_offset,
bf5a934a 6916 char *dev, unsigned long long *freesize,
5308f117 6917 int consistency_policy, int verbose)
bf5a934a
DW
6918{
6919 int fd, cfd;
6920 struct mdinfo *sra;
20cbe8d2 6921 int is_member = 0;
bf5a934a 6922
d54559f0
LM
6923 /* load capability
6924 * if given unused devices create a container
bf5a934a
DW
6925 * if given given devices in a container create a member volume
6926 */
6927 if (level == LEVEL_CONTAINER) {
6928 /* Must be a fresh device to add to a container */
6929 return validate_geometry_imsm_container(st, level, layout,
c21e737b 6930 raiddisks,
7ccc4cc4 6931 *chunk,
af4348dd 6932 size, data_offset,
bf5a934a
DW
6933 dev, freesize,
6934 verbose);
6935 }
9587c373 6936
8592f29d 6937 if (!dev) {
e91a3bad 6938 if (st->sb) {
ca9de185 6939 struct intel_super *super = st->sb;
e91a3bad 6940 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 6941 raiddisks, chunk, size,
e91a3bad
LM
6942 verbose))
6943 return 0;
efb30e7f
DW
6944 /* we are being asked to automatically layout a
6945 * new volume based on the current contents of
6946 * the container. If the the parameters can be
6947 * satisfied reserve_space will record the disks,
6948 * start offset, and size of the volume to be
6949 * created. add_to_super and getinfo_super
6950 * detect when autolayout is in progress.
6951 */
ca9de185
LM
6952 /* assuming that freesize is always given when array is
6953 created */
6954 if (super->orom && freesize) {
6955 int count;
72a45777 6956 count = count_volumes(super->hba,
ca9de185
LM
6957 super->orom->dpa, verbose);
6958 if (super->orom->vphba <= count) {
676e87a8 6959 pr_vrb("platform does not support more than %d raid volumes.\n",
ca9de185
LM
6960 super->orom->vphba);
6961 return 0;
6962 }
6963 }
e91a3bad
LM
6964 if (freesize)
6965 return reserve_space(st, raiddisks, size,
7ccc4cc4 6966 *chunk, freesize);
8592f29d
N
6967 }
6968 return 1;
6969 }
bf5a934a
DW
6970 if (st->sb) {
6971 /* creating in a given container */
6972 return validate_geometry_imsm_volume(st, level, layout,
6973 raiddisks, chunk, size,
af4348dd 6974 data_offset,
bf5a934a
DW
6975 dev, freesize, verbose);
6976 }
6977
bf5a934a
DW
6978 /* This device needs to be a device in an 'imsm' container */
6979 fd = open(dev, O_RDONLY|O_EXCL, 0);
6980 if (fd >= 0) {
6981 if (verbose)
e7b84f9d
N
6982 pr_err("Cannot create this array on device %s\n",
6983 dev);
bf5a934a
DW
6984 close(fd);
6985 return 0;
6986 }
6987 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6988 if (verbose)
e7b84f9d 6989 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
6990 dev, strerror(errno));
6991 return 0;
6992 }
6993 /* Well, it is in use by someone, maybe an 'imsm' container. */
6994 cfd = open_container(fd);
20cbe8d2 6995 close(fd);
bf5a934a 6996 if (cfd < 0) {
bf5a934a 6997 if (verbose)
e7b84f9d 6998 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
6999 dev);
7000 return 0;
7001 }
4dd2df09 7002 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 7003 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
7004 strcmp(sra->text_version, "imsm") == 0)
7005 is_member = 1;
7006 sysfs_free(sra);
7007 if (is_member) {
bf5a934a
DW
7008 /* This is a member of a imsm container. Load the container
7009 * and try to create a volume
7010 */
7011 struct intel_super *super;
7012
ec50f7b6 7013 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 7014 st->sb = super;
4dd2df09 7015 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
7016 close(cfd);
7017 return validate_geometry_imsm_volume(st, level, layout,
7018 raiddisks, chunk,
af4348dd 7019 size, data_offset, dev,
ecbd9e81
N
7020 freesize, 1)
7021 ? 1 : -1;
bf5a934a 7022 }
20cbe8d2 7023 }
bf5a934a 7024
20cbe8d2 7025 if (verbose)
e7b84f9d 7026 pr_err("failed container membership check\n");
20cbe8d2
AW
7027
7028 close(cfd);
7029 return 0;
bf5a934a 7030}
0bd16cf2 7031
30f58b22 7032static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
7033{
7034 struct intel_super *super = st->sb;
7035
30f58b22
DW
7036 if (level && *level == UnSet)
7037 *level = LEVEL_CONTAINER;
7038
7039 if (level && layout && *layout == UnSet)
7040 *layout = imsm_level_to_layout(*level);
0bd16cf2 7041
cd9d1ac7
DW
7042 if (chunk && (*chunk == UnSet || *chunk == 0))
7043 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
7044}
7045
33414a01
DW
7046static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7047
7048static int kill_subarray_imsm(struct supertype *st)
7049{
7050 /* remove the subarray currently referenced by ->current_vol */
7051 __u8 i;
7052 struct intel_dev **dp;
7053 struct intel_super *super = st->sb;
7054 __u8 current_vol = super->current_vol;
7055 struct imsm_super *mpb = super->anchor;
7056
7057 if (super->current_vol < 0)
7058 return 2;
7059 super->current_vol = -1; /* invalidate subarray cursor */
7060
7061 /* block deletions that would change the uuid of active subarrays
7062 *
7063 * FIXME when immutable ids are available, but note that we'll
7064 * also need to fixup the invalidated/active subarray indexes in
7065 * mdstat
7066 */
7067 for (i = 0; i < mpb->num_raid_devs; i++) {
7068 char subarray[4];
7069
7070 if (i < current_vol)
7071 continue;
7072 sprintf(subarray, "%u", i);
4dd2df09 7073 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
7074 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7075 current_vol, i);
33414a01
DW
7076
7077 return 2;
7078 }
7079 }
7080
7081 if (st->update_tail) {
503975b9 7082 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 7083
33414a01
DW
7084 u->type = update_kill_array;
7085 u->dev_idx = current_vol;
7086 append_metadata_update(st, u, sizeof(*u));
7087
7088 return 0;
7089 }
7090
7091 for (dp = &super->devlist; *dp;)
7092 if ((*dp)->index == current_vol) {
7093 *dp = (*dp)->next;
7094 } else {
7095 handle_missing(super, (*dp)->dev);
7096 if ((*dp)->index > current_vol)
7097 (*dp)->index--;
7098 dp = &(*dp)->next;
7099 }
7100
7101 /* no more raid devices, all active components are now spares,
7102 * but of course failed are still failed
7103 */
7104 if (--mpb->num_raid_devs == 0) {
7105 struct dl *d;
7106
7107 for (d = super->disks; d; d = d->next)
a8619d23
AK
7108 if (d->index > -2)
7109 mark_spare(d);
33414a01
DW
7110 }
7111
7112 super->updates_pending++;
7113
7114 return 0;
7115}
aa534678 7116
a951a4f7 7117static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 7118 char *update, struct mddev_ident *ident)
aa534678
DW
7119{
7120 /* update the subarray currently referenced by ->current_vol */
7121 struct intel_super *super = st->sb;
7122 struct imsm_super *mpb = super->anchor;
7123
aa534678
DW
7124 if (strcmp(update, "name") == 0) {
7125 char *name = ident->name;
a951a4f7
N
7126 char *ep;
7127 int vol;
aa534678 7128
4dd2df09 7129 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 7130 pr_err("Unable to update name of active subarray\n");
aa534678
DW
7131 return 2;
7132 }
7133
7134 if (!check_name(super, name, 0))
7135 return 2;
7136
a951a4f7
N
7137 vol = strtoul(subarray, &ep, 10);
7138 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7139 return 2;
7140
aa534678 7141 if (st->update_tail) {
503975b9 7142 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 7143
aa534678 7144 u->type = update_rename_array;
a951a4f7 7145 u->dev_idx = vol;
618f4e6d
XN
7146 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7147 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7148 append_metadata_update(st, u, sizeof(*u));
7149 } else {
7150 struct imsm_dev *dev;
7151 int i;
7152
a951a4f7 7153 dev = get_imsm_dev(super, vol);
618f4e6d
XN
7154 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7155 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
aa534678
DW
7156 for (i = 0; i < mpb->num_raid_devs; i++) {
7157 dev = get_imsm_dev(super, i);
7158 handle_missing(super, dev);
7159 }
7160 super->updates_pending++;
7161 }
7162 } else
7163 return 2;
7164
7165 return 0;
7166}
d1e02575 7167#endif /* MDASSEMBLE */
bf5a934a 7168
28bce06f
AK
7169static int is_gen_migration(struct imsm_dev *dev)
7170{
7534230b
AK
7171 if (dev == NULL)
7172 return 0;
7173
28bce06f
AK
7174 if (!dev->vol.migr_state)
7175 return 0;
7176
7177 if (migr_type(dev) == MIGR_GEN_MIGR)
7178 return 1;
7179
7180 return 0;
7181}
7182
1e5c6983
DW
7183static int is_rebuilding(struct imsm_dev *dev)
7184{
7185 struct imsm_map *migr_map;
7186
7187 if (!dev->vol.migr_state)
7188 return 0;
7189
7190 if (migr_type(dev) != MIGR_REBUILD)
7191 return 0;
7192
238c0a71 7193 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
7194
7195 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7196 return 1;
7197 else
7198 return 0;
7199}
7200
b4ab44d8 7201#ifndef MDASSEMBLE
6ce1fbf1
AK
7202static int is_initializing(struct imsm_dev *dev)
7203{
7204 struct imsm_map *migr_map;
7205
7206 if (!dev->vol.migr_state)
7207 return 0;
7208
7209 if (migr_type(dev) != MIGR_INIT)
7210 return 0;
7211
238c0a71 7212 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
7213
7214 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7215 return 1;
7216
7217 return 0;
6ce1fbf1 7218}
b4ab44d8 7219#endif
6ce1fbf1 7220
c47b0ff6
AK
7221static void update_recovery_start(struct intel_super *super,
7222 struct imsm_dev *dev,
7223 struct mdinfo *array)
1e5c6983
DW
7224{
7225 struct mdinfo *rebuild = NULL;
7226 struct mdinfo *d;
7227 __u32 units;
7228
7229 if (!is_rebuilding(dev))
7230 return;
7231
7232 /* Find the rebuild target, but punt on the dual rebuild case */
7233 for (d = array->devs; d; d = d->next)
7234 if (d->recovery_start == 0) {
7235 if (rebuild)
7236 return;
7237 rebuild = d;
7238 }
7239
4363fd80
DW
7240 if (!rebuild) {
7241 /* (?) none of the disks are marked with
7242 * IMSM_ORD_REBUILD, so assume they are missing and the
7243 * disk_ord_tbl was not correctly updated
7244 */
1ade5cc1 7245 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
7246 return;
7247 }
7248
1e5c6983 7249 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 7250 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
7251}
7252
9e2d750d 7253#ifndef MDASSEMBLE
276d77db 7254static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 7255#endif
1e5c6983 7256
00bbdbda 7257static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 7258{
4f5bc454
DW
7259 /* Given a container loaded by load_super_imsm_all,
7260 * extract information about all the arrays into
7261 * an mdinfo tree.
00bbdbda 7262 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
7263 *
7264 * For each imsm_dev create an mdinfo, fill it in,
7265 * then look for matching devices in super->disks
7266 * and create appropriate device mdinfo.
7267 */
7268 struct intel_super *super = st->sb;
949c47a0 7269 struct imsm_super *mpb = super->anchor;
4f5bc454 7270 struct mdinfo *rest = NULL;
00bbdbda 7271 unsigned int i;
81219e70 7272 int sb_errors = 0;
abef11a3
AK
7273 struct dl *d;
7274 int spare_disks = 0;
cdddbdbc 7275
19482bcc
AK
7276 /* do not assemble arrays when not all attributes are supported */
7277 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 7278 sb_errors = 1;
7a862a02 7279 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
7280 }
7281
abef11a3
AK
7282 /* count spare devices, not used in maps
7283 */
7284 for (d = super->disks; d; d = d->next)
7285 if (d->index == -1)
7286 spare_disks++;
7287
4f5bc454 7288 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
7289 struct imsm_dev *dev;
7290 struct imsm_map *map;
86e3692b 7291 struct imsm_map *map2;
4f5bc454 7292 struct mdinfo *this;
a6482415
N
7293 int slot;
7294#ifndef MDASSEMBLE
7295 int chunk;
7296#endif
00bbdbda
N
7297 char *ep;
7298
7299 if (subarray &&
7300 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7301 continue;
7302
7303 dev = get_imsm_dev(super, i);
238c0a71
AK
7304 map = get_imsm_map(dev, MAP_0);
7305 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 7306
1ce0101c
DW
7307 /* do not publish arrays that are in the middle of an
7308 * unsupported migration
7309 */
7310 if (dev->vol.migr_state &&
28bce06f 7311 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 7312 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
7313 dev->volume);
7314 continue;
7315 }
2db86302
LM
7316 /* do not publish arrays that are not support by controller's
7317 * OROM/EFI
7318 */
1ce0101c 7319
503975b9 7320 this = xmalloc(sizeof(*this));
4f5bc454 7321
301406c9 7322 super->current_vol = i;
a5d85af7 7323 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 7324 this->next = rest;
81219e70 7325#ifndef MDASSEMBLE
a6482415 7326 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
7327 /* mdadm does not support all metadata features- set the bit in all arrays state */
7328 if (!validate_geometry_imsm_orom(super,
7329 get_imsm_raid_level(map), /* RAID level */
7330 imsm_level_to_layout(get_imsm_raid_level(map)),
7331 map->num_members, /* raid disks */
2cc699af 7332 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 7333 1 /* verbose */)) {
7a862a02 7334 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
7335 dev->volume);
7336 this->array.state |=
7337 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7338 (1<<MD_SB_BLOCK_VOLUME);
7339 }
7340#endif
7341
7342 /* if array has bad blocks, set suitable bit in all arrays state */
7343 if (sb_errors)
7344 this->array.state |=
7345 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7346 (1<<MD_SB_BLOCK_VOLUME);
7347
4f5bc454 7348 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 7349 unsigned long long recovery_start;
4f5bc454
DW
7350 struct mdinfo *info_d;
7351 struct dl *d;
7352 int idx;
9a1608e5 7353 int skip;
7eef0453 7354 __u32 ord;
4f5bc454 7355
9a1608e5 7356 skip = 0;
238c0a71
AK
7357 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7358 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
7359 for (d = super->disks; d ; d = d->next)
7360 if (d->index == idx)
0fbd635c 7361 break;
4f5bc454 7362
1e5c6983 7363 recovery_start = MaxSector;
4f5bc454 7364 if (d == NULL)
9a1608e5 7365 skip = 1;
25ed7e59 7366 if (d && is_failed(&d->disk))
9a1608e5 7367 skip = 1;
7eef0453 7368 if (ord & IMSM_ORD_REBUILD)
1e5c6983 7369 recovery_start = 0;
9a1608e5 7370
1011e834 7371 /*
9a1608e5 7372 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
7373 * reset resync start to avoid a dirty-degraded
7374 * situation when performing the intial sync
9a1608e5
DW
7375 *
7376 * FIXME handle dirty degraded
7377 */
1e5c6983 7378 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 7379 this->resync_start = MaxSector;
9a1608e5
DW
7380 if (skip)
7381 continue;
4f5bc454 7382
503975b9 7383 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
7384 info_d->next = this->devs;
7385 this->devs = info_d;
7386
4f5bc454
DW
7387 info_d->disk.number = d->index;
7388 info_d->disk.major = d->major;
7389 info_d->disk.minor = d->minor;
7390 info_d->disk.raid_disk = slot;
1e5c6983 7391 info_d->recovery_start = recovery_start;
86e3692b
AK
7392 if (map2) {
7393 if (slot < map2->num_members)
7394 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7395 else
7396 this->array.spare_disks++;
86e3692b
AK
7397 } else {
7398 if (slot < map->num_members)
7399 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
7400 else
7401 this->array.spare_disks++;
86e3692b 7402 }
1e5c6983
DW
7403 if (info_d->recovery_start == MaxSector)
7404 this->array.working_disks++;
4f5bc454
DW
7405
7406 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113 7407 info_d->data_offset = pba_of_lba0(map);
06fb291a
PB
7408
7409 if (map->raid_level == 5) {
7410 info_d->component_size =
7411 num_data_stripes(map) *
7412 map->blocks_per_strip;
7413 } else {
7414 info_d->component_size = blocks_per_member(map);
7415 }
b12796be 7416
5e46202e 7417 info_d->bb.supported = 1;
b12796be
TM
7418 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7419 info_d->data_offset,
7420 info_d->component_size,
7421 &info_d->bb);
4f5bc454 7422 }
1e5c6983 7423 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 7424 update_recovery_start(super, dev, this);
abef11a3 7425 this->array.spare_disks += spare_disks;
276d77db 7426
9e2d750d 7427#ifndef MDASSEMBLE
276d77db
AK
7428 /* check for reshape */
7429 if (this->reshape_active == 1)
7430 recover_backup_imsm(st, this);
9e2d750d 7431#endif
9a1608e5 7432 rest = this;
4f5bc454
DW
7433 }
7434
7435 return rest;
cdddbdbc
DW
7436}
7437
3b451610
AK
7438static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7439 int failed, int look_in_map)
c2a1e7da 7440{
3b451610
AK
7441 struct imsm_map *map;
7442
7443 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
7444
7445 if (!failed)
1011e834 7446 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 7447 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
7448
7449 switch (get_imsm_raid_level(map)) {
7450 case 0:
7451 return IMSM_T_STATE_FAILED;
7452 break;
7453 case 1:
7454 if (failed < map->num_members)
7455 return IMSM_T_STATE_DEGRADED;
7456 else
7457 return IMSM_T_STATE_FAILED;
7458 break;
7459 case 10:
7460 {
7461 /**
c92a2527
DW
7462 * check to see if any mirrors have failed, otherwise we
7463 * are degraded. Even numbered slots are mirrored on
7464 * slot+1
c2a1e7da 7465 */
c2a1e7da 7466 int i;
d9b420a5
N
7467 /* gcc -Os complains that this is unused */
7468 int insync = insync;
c2a1e7da
DW
7469
7470 for (i = 0; i < map->num_members; i++) {
238c0a71 7471 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
7472 int idx = ord_to_idx(ord);
7473 struct imsm_disk *disk;
c2a1e7da 7474
c92a2527 7475 /* reset the potential in-sync count on even-numbered
1011e834 7476 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
7477 */
7478 if ((i & 1) == 0)
7479 insync = 2;
c2a1e7da 7480
c92a2527 7481 disk = get_imsm_disk(super, idx);
25ed7e59 7482 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 7483 insync--;
c2a1e7da 7484
c92a2527
DW
7485 /* no in-sync disks left in this mirror the
7486 * array has failed
7487 */
7488 if (insync == 0)
7489 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
7490 }
7491
7492 return IMSM_T_STATE_DEGRADED;
7493 }
7494 case 5:
7495 if (failed < 2)
7496 return IMSM_T_STATE_DEGRADED;
7497 else
7498 return IMSM_T_STATE_FAILED;
7499 break;
7500 default:
7501 break;
7502 }
7503
7504 return map->map_state;
7505}
7506
3b451610
AK
7507static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7508 int look_in_map)
c2a1e7da
DW
7509{
7510 int i;
7511 int failed = 0;
7512 struct imsm_disk *disk;
d5985138
AK
7513 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7514 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 7515 struct imsm_map *map_for_loop;
0556e1a2
DW
7516 __u32 ord;
7517 int idx;
d5985138 7518 int idx_1;
c2a1e7da 7519
0556e1a2
DW
7520 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7521 * disks that are being rebuilt. New failures are recorded to
7522 * map[0]. So we look through all the disks we started with and
7523 * see if any failures are still present, or if any new ones
7524 * have arrived
0556e1a2 7525 */
d5985138
AK
7526 map_for_loop = map;
7527 if (prev && (map->num_members < prev->num_members))
7528 map_for_loop = prev;
68fe4598
LD
7529
7530 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 7531 idx_1 = -255;
238c0a71
AK
7532 /* when MAP_X is passed both maps failures are counted
7533 */
d5985138 7534 if (prev &&
089f9d79
JS
7535 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7536 i < prev->num_members) {
d5985138
AK
7537 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7538 idx_1 = ord_to_idx(ord);
c2a1e7da 7539
d5985138
AK
7540 disk = get_imsm_disk(super, idx_1);
7541 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7542 failed++;
7543 }
089f9d79
JS
7544 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7545 i < map->num_members) {
d5985138
AK
7546 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7547 idx = ord_to_idx(ord);
7548
7549 if (idx != idx_1) {
7550 disk = get_imsm_disk(super, idx);
7551 if (!disk || is_failed(disk) ||
7552 ord & IMSM_ORD_REBUILD)
7553 failed++;
7554 }
7555 }
c2a1e7da
DW
7556 }
7557
7558 return failed;
845dea95
NB
7559}
7560
97b4d0e9
DW
7561#ifndef MDASSEMBLE
7562static int imsm_open_new(struct supertype *c, struct active_array *a,
7563 char *inst)
7564{
7565 struct intel_super *super = c->sb;
7566 struct imsm_super *mpb = super->anchor;
bbab0940 7567 struct imsm_update_prealloc_bb_mem u;
9587c373 7568
97b4d0e9 7569 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 7570 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
7571 return -ENODEV;
7572 }
7573
7574 dprintf("imsm: open_new %s\n", inst);
7575 a->info.container_member = atoi(inst);
bbab0940
TM
7576
7577 u.type = update_prealloc_badblocks_mem;
7578 imsm_update_metadata_locally(c, &u, sizeof(u));
7579
97b4d0e9
DW
7580 return 0;
7581}
7582
0c046afd
DW
7583static int is_resyncing(struct imsm_dev *dev)
7584{
7585 struct imsm_map *migr_map;
7586
7587 if (!dev->vol.migr_state)
7588 return 0;
7589
1484e727
DW
7590 if (migr_type(dev) == MIGR_INIT ||
7591 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
7592 return 1;
7593
4c9bc37b
AK
7594 if (migr_type(dev) == MIGR_GEN_MIGR)
7595 return 0;
7596
238c0a71 7597 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 7598
089f9d79
JS
7599 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7600 dev->vol.migr_type != MIGR_GEN_MIGR)
0c046afd
DW
7601 return 1;
7602 else
7603 return 0;
7604}
7605
0556e1a2 7606/* return true if we recorded new information */
4c9e8c1e
TM
7607static int mark_failure(struct intel_super *super,
7608 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 7609{
0556e1a2
DW
7610 __u32 ord;
7611 int slot;
7612 struct imsm_map *map;
86c54047
DW
7613 char buf[MAX_RAID_SERIAL_LEN+3];
7614 unsigned int len, shift = 0;
0556e1a2
DW
7615
7616 /* new failures are always set in map[0] */
238c0a71 7617 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
7618
7619 slot = get_imsm_disk_slot(map, idx);
7620 if (slot < 0)
7621 return 0;
7622
7623 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 7624 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
7625 return 0;
7626
7d0c5e24
LD
7627 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7628 buf[MAX_RAID_SERIAL_LEN] = '\000';
7629 strcat(buf, ":0");
86c54047
DW
7630 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7631 shift = len - MAX_RAID_SERIAL_LEN + 1;
7632 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7633
f2f27e63 7634 disk->status |= FAILED_DISK;
0556e1a2 7635 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
7636 /* mark failures in second map if second map exists and this disk
7637 * in this slot.
7638 * This is valid for migration, initialization and rebuild
7639 */
7640 if (dev->vol.migr_state) {
238c0a71 7641 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
7642 int slot2 = get_imsm_disk_slot(map2, idx);
7643
089f9d79 7644 if (slot2 < map2->num_members && slot2 >= 0)
0a108d63 7645 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
7646 idx | IMSM_ORD_REBUILD);
7647 }
f21e18ca 7648 if (map->failed_disk_num == 0xff)
0556e1a2 7649 map->failed_disk_num = slot;
4c9e8c1e
TM
7650
7651 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
7652
0556e1a2
DW
7653 return 1;
7654}
7655
4c9e8c1e
TM
7656static void mark_missing(struct intel_super *super,
7657 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
0556e1a2 7658{
4c9e8c1e 7659 mark_failure(super, dev, disk, idx);
0556e1a2
DW
7660
7661 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7662 return;
7663
47ee5a45
DW
7664 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7665 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7666}
7667
33414a01
DW
7668static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7669{
33414a01 7670 struct dl *dl;
33414a01
DW
7671
7672 if (!super->missing)
7673 return;
33414a01 7674
79b68f1b
PC
7675 /* When orom adds replacement for missing disk it does
7676 * not remove entry of missing disk, but just updates map with
7677 * new added disk. So it is not enough just to test if there is
7678 * any missing disk, we have to look if there are any failed disks
7679 * in map to stop migration */
7680
33414a01 7681 dprintf("imsm: mark missing\n");
3d59f0c0
AK
7682 /* end process for initialization and rebuild only
7683 */
7684 if (is_gen_migration(dev) == 0) {
7685 __u8 map_state;
7686 int failed;
7687
7688 failed = imsm_count_failed(super, dev, MAP_0);
7689 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7690
79b68f1b
PC
7691 if (failed)
7692 end_migration(dev, super, map_state);
3d59f0c0 7693 }
33414a01 7694 for (dl = super->missing; dl; dl = dl->next)
4c9e8c1e 7695 mark_missing(super, dev, &dl->disk, dl->index);
33414a01
DW
7696 super->updates_pending++;
7697}
7698
f3871fdc
AK
7699static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7700 long long new_size)
70bdf0dc 7701{
238c0a71 7702 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
7703 unsigned long long array_blocks;
7704 struct imsm_map *map;
7705
7706 if (used_disks == 0) {
7707 /* when problems occures
7708 * return current array_blocks value
7709 */
7710 array_blocks = __le32_to_cpu(dev->size_high);
7711 array_blocks = array_blocks << 32;
7712 array_blocks += __le32_to_cpu(dev->size_low);
7713
7714 return array_blocks;
7715 }
7716
7717 /* set array size in metadata
7718 */
f3871fdc
AK
7719 if (new_size <= 0) {
7720 /* OLCE size change is caused by added disks
7721 */
7722 map = get_imsm_map(dev, MAP_0);
7723 array_blocks = blocks_per_member(map) * used_disks;
7724 } else {
7725 /* Online Volume Size Change
7726 * Using available free space
7727 */
7728 array_blocks = new_size;
7729 }
70bdf0dc
AK
7730
7731 /* round array size down to closest MB
7732 */
7733 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7734 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7735 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7736
7737 return array_blocks;
7738}
7739
28bce06f
AK
7740static void imsm_set_disk(struct active_array *a, int n, int state);
7741
0e2d1a4e
AK
7742static void imsm_progress_container_reshape(struct intel_super *super)
7743{
7744 /* if no device has a migr_state, but some device has a
7745 * different number of members than the previous device, start
7746 * changing the number of devices in this device to match
7747 * previous.
7748 */
7749 struct imsm_super *mpb = super->anchor;
7750 int prev_disks = -1;
7751 int i;
1dfaa380 7752 int copy_map_size;
0e2d1a4e
AK
7753
7754 for (i = 0; i < mpb->num_raid_devs; i++) {
7755 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 7756 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
7757 struct imsm_map *map2;
7758 int prev_num_members;
0e2d1a4e
AK
7759
7760 if (dev->vol.migr_state)
7761 return;
7762
7763 if (prev_disks == -1)
7764 prev_disks = map->num_members;
7765 if (prev_disks == map->num_members)
7766 continue;
7767
7768 /* OK, this array needs to enter reshape mode.
7769 * i.e it needs a migr_state
7770 */
7771
1dfaa380 7772 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
7773 prev_num_members = map->num_members;
7774 map->num_members = prev_disks;
7775 dev->vol.migr_state = 1;
7776 dev->vol.curr_migr_unit = 0;
ea672ee1 7777 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
7778 for (i = prev_num_members;
7779 i < map->num_members; i++)
7780 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 7781 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 7782 /* Copy the current map */
1dfaa380 7783 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
7784 map2->num_members = prev_num_members;
7785
f3871fdc 7786 imsm_set_array_size(dev, -1);
51d83f5d 7787 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
7788 super->updates_pending++;
7789 }
7790}
7791
aad6f216 7792/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
7793 * states are handled in imsm_set_disk() with one exception, when a
7794 * resync is stopped due to a new failure this routine will set the
7795 * 'degraded' state for the array.
7796 */
01f157d7 7797static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
7798{
7799 int inst = a->info.container_member;
7800 struct intel_super *super = a->container->sb;
949c47a0 7801 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7802 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
7803 int failed = imsm_count_failed(super, dev, MAP_0);
7804 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 7805 __u32 blocks_per_unit;
a862209d 7806
1af97990
AK
7807 if (dev->vol.migr_state &&
7808 dev->vol.migr_type == MIGR_GEN_MIGR) {
7809 /* array state change is blocked due to reshape action
aad6f216
N
7810 * We might need to
7811 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7812 * - finish the reshape (if last_checkpoint is big and action != reshape)
7813 * - update curr_migr_unit
1af97990 7814 */
aad6f216
N
7815 if (a->curr_action == reshape) {
7816 /* still reshaping, maybe update curr_migr_unit */
633b5610 7817 goto mark_checkpoint;
aad6f216
N
7818 } else {
7819 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7820 /* for some reason we aborted the reshape.
b66e591b
AK
7821 *
7822 * disable automatic metadata rollback
7823 * user action is required to recover process
aad6f216 7824 */
b66e591b 7825 if (0) {
238c0a71
AK
7826 struct imsm_map *map2 =
7827 get_imsm_map(dev, MAP_1);
7828 dev->vol.migr_state = 0;
7829 set_migr_type(dev, 0);
7830 dev->vol.curr_migr_unit = 0;
7831 memcpy(map, map2,
7832 sizeof_imsm_map(map2));
7833 super->updates_pending++;
b66e591b 7834 }
aad6f216
N
7835 }
7836 if (a->last_checkpoint >= a->info.component_size) {
7837 unsigned long long array_blocks;
7838 int used_disks;
e154ced3 7839 struct mdinfo *mdi;
aad6f216 7840
238c0a71 7841 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
7842 if (used_disks > 0) {
7843 array_blocks =
5551b113 7844 blocks_per_member(map) *
d55adef9
AK
7845 used_disks;
7846 /* round array size down to closest MB
7847 */
7848 array_blocks = (array_blocks
7849 >> SECT_PER_MB_SHIFT)
7850 << SECT_PER_MB_SHIFT;
d55adef9
AK
7851 a->info.custom_array_size = array_blocks;
7852 /* encourage manager to update array
7853 * size
7854 */
e154ced3 7855
d55adef9 7856 a->check_reshape = 1;
633b5610 7857 }
e154ced3
AK
7858 /* finalize online capacity expansion/reshape */
7859 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7860 imsm_set_disk(a,
7861 mdi->disk.raid_disk,
7862 mdi->curr_state);
7863
0e2d1a4e 7864 imsm_progress_container_reshape(super);
e154ced3 7865 }
aad6f216 7866 }
1af97990
AK
7867 }
7868
47ee5a45 7869 /* before we activate this array handle any missing disks */
33414a01
DW
7870 if (consistent == 2)
7871 handle_missing(super, dev);
1e5c6983 7872
0c046afd 7873 if (consistent == 2 &&
b7941fd6 7874 (!is_resync_complete(&a->info) ||
0c046afd
DW
7875 map_state != IMSM_T_STATE_NORMAL ||
7876 dev->vol.migr_state))
01f157d7 7877 consistent = 0;
272906ef 7878
b7941fd6 7879 if (is_resync_complete(&a->info)) {
0c046afd 7880 /* complete intialization / resync,
0556e1a2
DW
7881 * recovery and interrupted recovery is completed in
7882 * ->set_disk
0c046afd
DW
7883 */
7884 if (is_resyncing(dev)) {
7885 dprintf("imsm: mark resync done\n");
809da78e 7886 end_migration(dev, super, map_state);
115c3803 7887 super->updates_pending++;
484240d8 7888 a->last_checkpoint = 0;
115c3803 7889 }
b9172665
AK
7890 } else if ((!is_resyncing(dev) && !failed) &&
7891 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 7892 /* mark the start of the init process if nothing is failed */
b7941fd6 7893 dprintf("imsm: mark resync start\n");
1484e727 7894 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 7895 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 7896 else
8e59f3d8 7897 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 7898 super->updates_pending++;
115c3803 7899 }
a862209d 7900
633b5610 7901mark_checkpoint:
5b83bacf
AK
7902 /* skip checkpointing for general migration,
7903 * it is controlled in mdadm
7904 */
7905 if (is_gen_migration(dev))
7906 goto skip_mark_checkpoint;
7907
1e5c6983 7908 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 7909 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 7910 if (blocks_per_unit) {
1e5c6983
DW
7911 __u32 units32;
7912 __u64 units;
7913
4f0a7acc 7914 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
7915 units32 = units;
7916
7917 /* check that we did not overflow 32-bits, and that
7918 * curr_migr_unit needs updating
7919 */
7920 if (units32 == units &&
bfd80a56 7921 units32 != 0 &&
1e5c6983
DW
7922 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7923 dprintf("imsm: mark checkpoint (%u)\n", units32);
7924 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7925 super->updates_pending++;
7926 }
7927 }
f8f603f1 7928
5b83bacf 7929skip_mark_checkpoint:
3393c6af 7930 /* mark dirty / clean */
0c046afd 7931 if (dev->vol.dirty != !consistent) {
b7941fd6 7932 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
7933 if (consistent)
7934 dev->vol.dirty = 0;
7935 else
7936 dev->vol.dirty = 1;
a862209d
DW
7937 super->updates_pending++;
7938 }
28bce06f 7939
01f157d7 7940 return consistent;
a862209d
DW
7941}
7942
6f50473f
TM
7943static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
7944{
7945 int inst = a->info.container_member;
7946 struct intel_super *super = a->container->sb;
7947 struct imsm_dev *dev = get_imsm_dev(super, inst);
7948 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7949
7950 if (slot > map->num_members) {
7951 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
7952 slot, map->num_members - 1);
7953 return -1;
7954 }
7955
7956 if (slot < 0)
7957 return -1;
7958
7959 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
7960}
7961
8d45d196 7962static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 7963{
8d45d196
DW
7964 int inst = a->info.container_member;
7965 struct intel_super *super = a->container->sb;
949c47a0 7966 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7967 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 7968 struct imsm_disk *disk;
7ce05701
LD
7969 struct mdinfo *mdi;
7970 int recovery_not_finished = 0;
0c046afd 7971 int failed;
6f50473f 7972 int ord;
0c046afd 7973 __u8 map_state;
8d45d196 7974
6f50473f
TM
7975 ord = imsm_disk_slot_to_ord(a, n);
7976 if (ord < 0)
8d45d196
DW
7977 return;
7978
4e6e574a 7979 dprintf("imsm: set_disk %d:%x\n", n, state);
b10b37b8 7980 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 7981
5802a811 7982 /* check for new failures */
0556e1a2 7983 if (state & DS_FAULTY) {
4c9e8c1e 7984 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
0556e1a2 7985 super->updates_pending++;
8d45d196 7986 }
47ee5a45 7987
19859edc 7988 /* check if in_sync */
0556e1a2 7989 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 7990 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
7991
7992 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
7993 super->updates_pending++;
7994 }
8d45d196 7995
3b451610
AK
7996 failed = imsm_count_failed(super, dev, MAP_0);
7997 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 7998
0c046afd 7999 /* check if recovery complete, newly degraded, or failed */
94002678
AK
8000 dprintf("imsm: Detected transition to state ");
8001 switch (map_state) {
8002 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8003 dprintf("normal: ");
8004 if (is_rebuilding(dev)) {
1ade5cc1 8005 dprintf_cont("while rebuilding");
7ce05701
LD
8006 /* check if recovery is really finished */
8007 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8008 if (mdi->recovery_start != MaxSector) {
8009 recovery_not_finished = 1;
8010 break;
8011 }
8012 if (recovery_not_finished) {
1ade5cc1
N
8013 dprintf_cont("\n");
8014 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
8015 if (a->last_checkpoint < mdi->recovery_start) {
8016 a->last_checkpoint = mdi->recovery_start;
8017 super->updates_pending++;
8018 }
8019 break;
8020 }
94002678 8021 end_migration(dev, super, map_state);
238c0a71 8022 map = get_imsm_map(dev, MAP_0);
94002678
AK
8023 map->failed_disk_num = ~0;
8024 super->updates_pending++;
8025 a->last_checkpoint = 0;
8026 break;
8027 }
8028 if (is_gen_migration(dev)) {
1ade5cc1 8029 dprintf_cont("while general migration");
bf2f0071 8030 if (a->last_checkpoint >= a->info.component_size)
809da78e 8031 end_migration(dev, super, map_state);
94002678
AK
8032 else
8033 map->map_state = map_state;
238c0a71 8034 map = get_imsm_map(dev, MAP_0);
28bce06f 8035 map->failed_disk_num = ~0;
94002678 8036 super->updates_pending++;
bf2f0071 8037 break;
94002678
AK
8038 }
8039 break;
8040 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 8041 dprintf_cont("degraded: ");
089f9d79 8042 if (map->map_state != map_state && !dev->vol.migr_state) {
1ade5cc1 8043 dprintf_cont("mark degraded");
94002678
AK
8044 map->map_state = map_state;
8045 super->updates_pending++;
8046 a->last_checkpoint = 0;
8047 break;
8048 }
8049 if (is_rebuilding(dev)) {
1ade5cc1 8050 dprintf_cont("while rebuilding.");
94002678 8051 if (map->map_state != map_state) {
1ade5cc1 8052 dprintf_cont(" Map state change");
94002678
AK
8053 end_migration(dev, super, map_state);
8054 super->updates_pending++;
8055 }
8056 break;
8057 }
8058 if (is_gen_migration(dev)) {
1ade5cc1 8059 dprintf_cont("while general migration");
bf2f0071 8060 if (a->last_checkpoint >= a->info.component_size)
809da78e 8061 end_migration(dev, super, map_state);
94002678
AK
8062 else {
8063 map->map_state = map_state;
3b451610 8064 manage_second_map(super, dev);
94002678
AK
8065 }
8066 super->updates_pending++;
bf2f0071 8067 break;
28bce06f 8068 }
6ce1fbf1 8069 if (is_initializing(dev)) {
1ade5cc1 8070 dprintf_cont("while initialization.");
6ce1fbf1
AK
8071 map->map_state = map_state;
8072 super->updates_pending++;
8073 break;
8074 }
94002678
AK
8075 break;
8076 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 8077 dprintf_cont("failed: ");
94002678 8078 if (is_gen_migration(dev)) {
1ade5cc1 8079 dprintf_cont("while general migration");
94002678
AK
8080 map->map_state = map_state;
8081 super->updates_pending++;
8082 break;
8083 }
8084 if (map->map_state != map_state) {
1ade5cc1 8085 dprintf_cont("mark failed");
94002678
AK
8086 end_migration(dev, super, map_state);
8087 super->updates_pending++;
8088 a->last_checkpoint = 0;
8089 break;
8090 }
8091 break;
8092 default:
1ade5cc1 8093 dprintf_cont("state %i\n", map_state);
5802a811 8094 }
1ade5cc1 8095 dprintf_cont("\n");
845dea95
NB
8096}
8097
f796af5d 8098static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 8099{
f796af5d 8100 void *buf = mpb;
c2a1e7da
DW
8101 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8102 unsigned long long dsize;
8103 unsigned long long sectors;
f36a9ecd 8104 unsigned int sector_size;
c2a1e7da 8105
f36a9ecd 8106 get_dev_sector_size(fd, NULL, &sector_size);
c2a1e7da
DW
8107 get_dev_size(fd, NULL, &dsize);
8108
f36a9ecd 8109 if (mpb_size > sector_size) {
272f648f 8110 /* -1 to account for anchor */
f36a9ecd 8111 sectors = mpb_sectors(mpb, sector_size) - 1;
c2a1e7da 8112
272f648f 8113 /* write the extended mpb to the sectors preceeding the anchor */
f36a9ecd
PB
8114 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8115 SEEK_SET) < 0)
272f648f 8116 return 1;
c2a1e7da 8117
f36a9ecd
PB
8118 if ((unsigned long long)write(fd, buf + sector_size,
8119 sector_size * sectors) != sector_size * sectors)
272f648f
DW
8120 return 1;
8121 }
c2a1e7da 8122
272f648f 8123 /* first block is stored on second to last sector of the disk */
f36a9ecd 8124 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
c2a1e7da
DW
8125 return 1;
8126
466070ad 8127 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
c2a1e7da
DW
8128 return 1;
8129
c2a1e7da
DW
8130 return 0;
8131}
8132
2e735d19 8133static void imsm_sync_metadata(struct supertype *container)
845dea95 8134{
2e735d19 8135 struct intel_super *super = container->sb;
c2a1e7da 8136
1a64be56 8137 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
8138 if (!super->updates_pending)
8139 return;
8140
36988a3d 8141 write_super_imsm(container, 0);
c2a1e7da
DW
8142
8143 super->updates_pending = 0;
845dea95
NB
8144}
8145
272906ef
DW
8146static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8147{
8148 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8149 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
8150 struct dl *dl;
8151
8152 for (dl = super->disks; dl; dl = dl->next)
8153 if (dl->index == i)
8154 break;
8155
25ed7e59 8156 if (dl && is_failed(&dl->disk))
272906ef
DW
8157 dl = NULL;
8158
8159 if (dl)
1ade5cc1 8160 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
8161
8162 return dl;
8163}
8164
a20d2ba5 8165static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
8166 struct active_array *a, int activate_new,
8167 struct mdinfo *additional_test_list)
272906ef
DW
8168{
8169 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8170 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
8171 struct imsm_super *mpb = super->anchor;
8172 struct imsm_map *map;
272906ef
DW
8173 unsigned long long pos;
8174 struct mdinfo *d;
8175 struct extent *ex;
a20d2ba5 8176 int i, j;
272906ef 8177 int found;
569cc43f
DW
8178 __u32 array_start = 0;
8179 __u32 array_end = 0;
272906ef 8180 struct dl *dl;
6c932028 8181 struct mdinfo *test_list;
272906ef
DW
8182
8183 for (dl = super->disks; dl; dl = dl->next) {
8184 /* If in this array, skip */
8185 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
8186 if (d->state_fd >= 0 &&
8187 d->disk.major == dl->major &&
272906ef 8188 d->disk.minor == dl->minor) {
8ba77d32
AK
8189 dprintf("%x:%x already in array\n",
8190 dl->major, dl->minor);
272906ef
DW
8191 break;
8192 }
8193 if (d)
8194 continue;
6c932028
AK
8195 test_list = additional_test_list;
8196 while (test_list) {
8197 if (test_list->disk.major == dl->major &&
8198 test_list->disk.minor == dl->minor) {
8ba77d32
AK
8199 dprintf("%x:%x already in additional test list\n",
8200 dl->major, dl->minor);
8201 break;
8202 }
6c932028 8203 test_list = test_list->next;
8ba77d32 8204 }
6c932028 8205 if (test_list)
8ba77d32 8206 continue;
272906ef 8207
e553d2a4 8208 /* skip in use or failed drives */
25ed7e59 8209 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
8210 dl->index == -2) {
8211 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 8212 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
8213 continue;
8214 }
8215
a20d2ba5
DW
8216 /* skip pure spares when we are looking for partially
8217 * assimilated drives
8218 */
8219 if (dl->index == -1 && !activate_new)
8220 continue;
8221
272906ef 8222 /* Does this unused device have the requisite free space?
a20d2ba5 8223 * It needs to be able to cover all member volumes
272906ef
DW
8224 */
8225 ex = get_extents(super, dl);
8226 if (!ex) {
8227 dprintf("cannot get extents\n");
8228 continue;
8229 }
a20d2ba5
DW
8230 for (i = 0; i < mpb->num_raid_devs; i++) {
8231 dev = get_imsm_dev(super, i);
238c0a71 8232 map = get_imsm_map(dev, MAP_0);
272906ef 8233
a20d2ba5
DW
8234 /* check if this disk is already a member of
8235 * this array
272906ef 8236 */
620b1713 8237 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
8238 continue;
8239
8240 found = 0;
8241 j = 0;
8242 pos = 0;
5551b113 8243 array_start = pba_of_lba0(map);
329c8278 8244 array_end = array_start +
5551b113 8245 blocks_per_member(map) - 1;
a20d2ba5
DW
8246
8247 do {
8248 /* check that we can start at pba_of_lba0 with
8249 * blocks_per_member of space
8250 */
329c8278 8251 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
8252 found = 1;
8253 break;
8254 }
8255 pos = ex[j].start + ex[j].size;
8256 j++;
8257 } while (ex[j-1].size);
8258
8259 if (!found)
272906ef 8260 break;
a20d2ba5 8261 }
272906ef
DW
8262
8263 free(ex);
a20d2ba5 8264 if (i < mpb->num_raid_devs) {
329c8278
DW
8265 dprintf("%x:%x does not have %u to %u available\n",
8266 dl->major, dl->minor, array_start, array_end);
272906ef
DW
8267 /* No room */
8268 continue;
a20d2ba5
DW
8269 }
8270 return dl;
272906ef
DW
8271 }
8272
8273 return dl;
8274}
8275
95d07a2c
LM
8276static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8277{
8278 struct imsm_dev *dev2;
8279 struct imsm_map *map;
8280 struct dl *idisk;
8281 int slot;
8282 int idx;
8283 __u8 state;
8284
8285 dev2 = get_imsm_dev(cont->sb, dev_idx);
8286 if (dev2) {
238c0a71 8287 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 8288 if (state == IMSM_T_STATE_FAILED) {
238c0a71 8289 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
8290 if (!map)
8291 return 1;
8292 for (slot = 0; slot < map->num_members; slot++) {
8293 /*
8294 * Check if failed disks are deleted from intel
8295 * disk list or are marked to be deleted
8296 */
238c0a71 8297 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
8298 idisk = get_imsm_dl_disk(cont->sb, idx);
8299 /*
8300 * Do not rebuild the array if failed disks
8301 * from failed sub-array are not removed from
8302 * container.
8303 */
8304 if (idisk &&
8305 is_failed(&idisk->disk) &&
8306 (idisk->action != DISK_REMOVE))
8307 return 0;
8308 }
8309 }
8310 }
8311 return 1;
8312}
8313
88758e9d
DW
8314static struct mdinfo *imsm_activate_spare(struct active_array *a,
8315 struct metadata_update **updates)
8316{
8317 /**
d23fe947
DW
8318 * Find a device with unused free space and use it to replace a
8319 * failed/vacant region in an array. We replace failed regions one a
8320 * array at a time. The result is that a new spare disk will be added
8321 * to the first failed array and after the monitor has finished
8322 * propagating failures the remainder will be consumed.
88758e9d 8323 *
d23fe947
DW
8324 * FIXME add a capability for mdmon to request spares from another
8325 * container.
88758e9d
DW
8326 */
8327
8328 struct intel_super *super = a->container->sb;
88758e9d 8329 int inst = a->info.container_member;
949c47a0 8330 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 8331 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
8332 int failed = a->info.array.raid_disks;
8333 struct mdinfo *rv = NULL;
8334 struct mdinfo *d;
8335 struct mdinfo *di;
8336 struct metadata_update *mu;
8337 struct dl *dl;
8338 struct imsm_update_activate_spare *u;
8339 int num_spares = 0;
8340 int i;
95d07a2c 8341 int allowed;
88758e9d
DW
8342
8343 for (d = a->info.devs ; d ; d = d->next) {
8344 if ((d->curr_state & DS_FAULTY) &&
8345 d->state_fd >= 0)
8346 /* wait for Removal to happen */
8347 return NULL;
8348 if (d->state_fd >= 0)
8349 failed--;
8350 }
8351
8352 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8353 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 8354
e2962bfc
AK
8355 if (imsm_reshape_blocks_arrays_changes(super))
8356 return NULL;
1af97990 8357
fc8ca064
AK
8358 /* Cannot activate another spare if rebuild is in progress already
8359 */
8360 if (is_rebuilding(dev)) {
7a862a02 8361 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
8362 return NULL;
8363 }
8364
89c67882
AK
8365 if (a->info.array.level == 4)
8366 /* No repair for takeovered array
8367 * imsm doesn't support raid4
8368 */
8369 return NULL;
8370
3b451610
AK
8371 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8372 IMSM_T_STATE_DEGRADED)
88758e9d
DW
8373 return NULL;
8374
83ca7d45
AP
8375 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8376 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8377 return NULL;
8378 }
8379
95d07a2c
LM
8380 /*
8381 * If there are any failed disks check state of the other volume.
8382 * Block rebuild if the another one is failed until failed disks
8383 * are removed from container.
8384 */
8385 if (failed) {
7a862a02 8386 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 8387 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
8388 /* check if states of the other volumes allow for rebuild */
8389 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8390 if (i != inst) {
8391 allowed = imsm_rebuild_allowed(a->container,
8392 i, failed);
8393 if (!allowed)
8394 return NULL;
8395 }
8396 }
8397 }
8398
88758e9d 8399 /* For each slot, if it is not working, find a spare */
88758e9d
DW
8400 for (i = 0; i < a->info.array.raid_disks; i++) {
8401 for (d = a->info.devs ; d ; d = d->next)
8402 if (d->disk.raid_disk == i)
8403 break;
8404 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8405 if (d && (d->state_fd >= 0))
8406 continue;
8407
272906ef 8408 /*
a20d2ba5
DW
8409 * OK, this device needs recovery. Try to re-add the
8410 * previous occupant of this slot, if this fails see if
8411 * we can continue the assimilation of a spare that was
8412 * partially assimilated, finally try to activate a new
8413 * spare.
272906ef
DW
8414 */
8415 dl = imsm_readd(super, i, a);
8416 if (!dl)
b303fe21 8417 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 8418 if (!dl)
b303fe21 8419 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
8420 if (!dl)
8421 continue;
1011e834 8422
272906ef 8423 /* found a usable disk with enough space */
503975b9 8424 di = xcalloc(1, sizeof(*di));
272906ef
DW
8425
8426 /* dl->index will be -1 in the case we are activating a
8427 * pristine spare. imsm_process_update() will create a
8428 * new index in this case. Once a disk is found to be
8429 * failed in all member arrays it is kicked from the
8430 * metadata
8431 */
8432 di->disk.number = dl->index;
d23fe947 8433
272906ef
DW
8434 /* (ab)use di->devs to store a pointer to the device
8435 * we chose
8436 */
8437 di->devs = (struct mdinfo *) dl;
8438
8439 di->disk.raid_disk = i;
8440 di->disk.major = dl->major;
8441 di->disk.minor = dl->minor;
8442 di->disk.state = 0;
d23534e4 8443 di->recovery_start = 0;
5551b113 8444 di->data_offset = pba_of_lba0(map);
272906ef
DW
8445 di->component_size = a->info.component_size;
8446 di->container_member = inst;
5e46202e 8447 di->bb.supported = 1;
148acb7b 8448 super->random = random32();
272906ef
DW
8449 di->next = rv;
8450 rv = di;
8451 num_spares++;
8452 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8453 i, di->data_offset);
88758e9d
DW
8454 }
8455
8456 if (!rv)
8457 /* No spares found */
8458 return rv;
8459 /* Now 'rv' has a list of devices to return.
8460 * Create a metadata_update record to update the
8461 * disk_ord_tbl for the array
8462 */
503975b9 8463 mu = xmalloc(sizeof(*mu));
1011e834 8464 mu->buf = xcalloc(num_spares,
503975b9 8465 sizeof(struct imsm_update_activate_spare));
88758e9d 8466 mu->space = NULL;
cb23f1f4 8467 mu->space_list = NULL;
88758e9d
DW
8468 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8469 mu->next = *updates;
8470 u = (struct imsm_update_activate_spare *) mu->buf;
8471
8472 for (di = rv ; di ; di = di->next) {
8473 u->type = update_activate_spare;
d23fe947
DW
8474 u->dl = (struct dl *) di->devs;
8475 di->devs = NULL;
88758e9d
DW
8476 u->slot = di->disk.raid_disk;
8477 u->array = inst;
8478 u->next = u + 1;
8479 u++;
8480 }
8481 (u-1)->next = NULL;
8482 *updates = mu;
8483
8484 return rv;
8485}
8486
54c2c1ea 8487static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 8488{
54c2c1ea 8489 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
8490 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8491 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
8492 struct disk_info *inf = get_disk_info(u);
8493 struct imsm_disk *disk;
8273f55e
DW
8494 int i;
8495 int j;
8273f55e 8496
54c2c1ea 8497 for (i = 0; i < map->num_members; i++) {
238c0a71 8498 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
8499 for (j = 0; j < new_map->num_members; j++)
8500 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
8501 return 1;
8502 }
8503
8504 return 0;
8505}
8506
1a64be56
LM
8507static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8508{
594dc1b8
JS
8509 struct dl *dl;
8510
1a64be56 8511 for (dl = super->disks; dl; dl = dl->next)
089f9d79 8512 if (dl->major == major && dl->minor == minor)
1a64be56
LM
8513 return dl;
8514 return NULL;
8515}
8516
8517static int remove_disk_super(struct intel_super *super, int major, int minor)
8518{
594dc1b8 8519 struct dl *prev;
1a64be56
LM
8520 struct dl *dl;
8521
8522 prev = NULL;
8523 for (dl = super->disks; dl; dl = dl->next) {
089f9d79 8524 if (dl->major == major && dl->minor == minor) {
1a64be56
LM
8525 /* remove */
8526 if (prev)
8527 prev->next = dl->next;
8528 else
8529 super->disks = dl->next;
8530 dl->next = NULL;
8531 __free_imsm_disk(dl);
1ade5cc1 8532 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
8533 break;
8534 }
8535 prev = dl;
8536 }
8537 return 0;
8538}
8539
f21e18ca 8540static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 8541
1a64be56
LM
8542static int add_remove_disk_update(struct intel_super *super)
8543{
8544 int check_degraded = 0;
594dc1b8
JS
8545 struct dl *disk;
8546
1a64be56
LM
8547 /* add/remove some spares to/from the metadata/contrainer */
8548 while (super->disk_mgmt_list) {
8549 struct dl *disk_cfg;
8550
8551 disk_cfg = super->disk_mgmt_list;
8552 super->disk_mgmt_list = disk_cfg->next;
8553 disk_cfg->next = NULL;
8554
8555 if (disk_cfg->action == DISK_ADD) {
8556 disk_cfg->next = super->disks;
8557 super->disks = disk_cfg;
8558 check_degraded = 1;
1ade5cc1
N
8559 dprintf("added %x:%x\n",
8560 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
8561 } else if (disk_cfg->action == DISK_REMOVE) {
8562 dprintf("Disk remove action processed: %x.%x\n",
8563 disk_cfg->major, disk_cfg->minor);
8564 disk = get_disk_super(super,
8565 disk_cfg->major,
8566 disk_cfg->minor);
8567 if (disk) {
8568 /* store action status */
8569 disk->action = DISK_REMOVE;
8570 /* remove spare disks only */
8571 if (disk->index == -1) {
8572 remove_disk_super(super,
8573 disk_cfg->major,
8574 disk_cfg->minor);
8575 }
8576 }
8577 /* release allocate disk structure */
8578 __free_imsm_disk(disk_cfg);
8579 }
8580 }
8581 return check_degraded;
8582}
8583
a29911da
PC
8584static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8585 struct intel_super *super,
8586 void ***space_list)
8587{
8588 struct intel_dev *id;
8589 void **tofree = NULL;
8590 int ret_val = 0;
8591
1ade5cc1 8592 dprintf("(enter)\n");
089f9d79 8593 if (u->subdev < 0 || u->subdev > 1) {
a29911da
PC
8594 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8595 return ret_val;
8596 }
089f9d79 8597 if (space_list == NULL || *space_list == NULL) {
a29911da
PC
8598 dprintf("imsm: Error: Memory is not allocated\n");
8599 return ret_val;
8600 }
8601
8602 for (id = super->devlist ; id; id = id->next) {
8603 if (id->index == (unsigned)u->subdev) {
8604 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8605 struct imsm_map *map;
8606 struct imsm_dev *new_dev =
8607 (struct imsm_dev *)*space_list;
238c0a71 8608 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
8609 int to_state;
8610 struct dl *new_disk;
8611
8612 if (new_dev == NULL)
8613 return ret_val;
8614 *space_list = **space_list;
8615 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 8616 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
8617 if (migr_map) {
8618 dprintf("imsm: Error: migration in progress");
8619 return ret_val;
8620 }
8621
8622 to_state = map->map_state;
8623 if ((u->new_level == 5) && (map->raid_level == 0)) {
8624 map->num_members++;
8625 /* this should not happen */
8626 if (u->new_disks[0] < 0) {
8627 map->failed_disk_num =
8628 map->num_members - 1;
8629 to_state = IMSM_T_STATE_DEGRADED;
8630 } else
8631 to_state = IMSM_T_STATE_NORMAL;
8632 }
8e59f3d8 8633 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
8634 if (u->new_level > -1)
8635 map->raid_level = u->new_level;
238c0a71 8636 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
8637 if ((u->new_level == 5) &&
8638 (migr_map->raid_level == 0)) {
8639 int ord = map->num_members - 1;
8640 migr_map->num_members--;
8641 if (u->new_disks[0] < 0)
8642 ord |= IMSM_ORD_REBUILD;
8643 set_imsm_ord_tbl_ent(map,
8644 map->num_members - 1,
8645 ord);
8646 }
8647 id->dev = new_dev;
8648 tofree = (void **)dev;
8649
4bba0439
PC
8650 /* update chunk size
8651 */
06fb291a
PB
8652 if (u->new_chunksize > 0) {
8653 unsigned long long num_data_stripes;
8654 int used_disks =
8655 imsm_num_data_members(dev, MAP_0);
8656
8657 if (used_disks == 0)
8658 return ret_val;
8659
4bba0439
PC
8660 map->blocks_per_strip =
8661 __cpu_to_le16(u->new_chunksize * 2);
06fb291a
PB
8662 num_data_stripes =
8663 (join_u32(dev->size_low, dev->size_high)
8664 / used_disks);
8665 num_data_stripes /= map->blocks_per_strip;
8666 num_data_stripes /= map->num_domains;
8667 set_num_data_stripes(map, num_data_stripes);
8668 }
4bba0439 8669
a29911da
PC
8670 /* add disk
8671 */
089f9d79
JS
8672 if (u->new_level != 5 || migr_map->raid_level != 0 ||
8673 migr_map->raid_level == map->raid_level)
a29911da
PC
8674 goto skip_disk_add;
8675
8676 if (u->new_disks[0] >= 0) {
8677 /* use passes spare
8678 */
8679 new_disk = get_disk_super(super,
8680 major(u->new_disks[0]),
8681 minor(u->new_disks[0]));
7a862a02 8682 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
8683 major(u->new_disks[0]),
8684 minor(u->new_disks[0]),
8685 new_disk, new_disk->index);
8686 if (new_disk == NULL)
8687 goto error_disk_add;
8688
8689 new_disk->index = map->num_members - 1;
8690 /* slot to fill in autolayout
8691 */
8692 new_disk->raiddisk = new_disk->index;
8693 new_disk->disk.status |= CONFIGURED_DISK;
8694 new_disk->disk.status &= ~SPARE_DISK;
8695 } else
8696 goto error_disk_add;
8697
8698skip_disk_add:
8699 *tofree = *space_list;
8700 /* calculate new size
8701 */
f3871fdc 8702 imsm_set_array_size(new_dev, -1);
a29911da
PC
8703
8704 ret_val = 1;
8705 }
8706 }
8707
8708 if (tofree)
8709 *space_list = tofree;
8710 return ret_val;
8711
8712error_disk_add:
8713 dprintf("Error: imsm: Cannot find disk.\n");
8714 return ret_val;
8715}
8716
f3871fdc
AK
8717static int apply_size_change_update(struct imsm_update_size_change *u,
8718 struct intel_super *super)
8719{
8720 struct intel_dev *id;
8721 int ret_val = 0;
8722
1ade5cc1 8723 dprintf("(enter)\n");
089f9d79 8724 if (u->subdev < 0 || u->subdev > 1) {
f3871fdc
AK
8725 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8726 return ret_val;
8727 }
8728
8729 for (id = super->devlist ; id; id = id->next) {
8730 if (id->index == (unsigned)u->subdev) {
8731 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8732 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8733 int used_disks = imsm_num_data_members(dev, MAP_0);
8734 unsigned long long blocks_per_member;
06fb291a 8735 unsigned long long num_data_stripes;
f3871fdc
AK
8736
8737 /* calculate new size
8738 */
8739 blocks_per_member = u->new_size / used_disks;
06fb291a
PB
8740 num_data_stripes = blocks_per_member /
8741 map->blocks_per_strip;
8742 num_data_stripes /= map->num_domains;
8743 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
8744 u->new_size, blocks_per_member,
8745 num_data_stripes);
f3871fdc 8746 set_blocks_per_member(map, blocks_per_member);
06fb291a 8747 set_num_data_stripes(map, num_data_stripes);
f3871fdc
AK
8748 imsm_set_array_size(dev, u->new_size);
8749
8750 ret_val = 1;
8751 break;
8752 }
8753 }
8754
8755 return ret_val;
8756}
8757
061d7da3 8758static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 8759 struct intel_super *super,
061d7da3
LO
8760 struct active_array *active_array)
8761{
8762 struct imsm_super *mpb = super->anchor;
8763 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 8764 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
8765 struct imsm_map *migr_map;
8766 struct active_array *a;
8767 struct imsm_disk *disk;
8768 __u8 to_state;
8769 struct dl *dl;
8770 unsigned int found;
8771 int failed;
5961eeec 8772 int victim;
061d7da3 8773 int i;
5961eeec 8774 int second_map_created = 0;
061d7da3 8775
5961eeec 8776 for (; u; u = u->next) {
238c0a71 8777 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 8778
5961eeec 8779 if (victim < 0)
8780 return 0;
061d7da3 8781
5961eeec 8782 for (dl = super->disks; dl; dl = dl->next)
8783 if (dl == u->dl)
8784 break;
061d7da3 8785
5961eeec 8786 if (!dl) {
7a862a02 8787 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 8788 u->dl->index);
8789 return 0;
8790 }
061d7da3 8791
5961eeec 8792 /* count failures (excluding rebuilds and the victim)
8793 * to determine map[0] state
8794 */
8795 failed = 0;
8796 for (i = 0; i < map->num_members; i++) {
8797 if (i == u->slot)
8798 continue;
8799 disk = get_imsm_disk(super,
238c0a71 8800 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 8801 if (!disk || is_failed(disk))
8802 failed++;
8803 }
061d7da3 8804
5961eeec 8805 /* adding a pristine spare, assign a new index */
8806 if (dl->index < 0) {
8807 dl->index = super->anchor->num_disks;
8808 super->anchor->num_disks++;
8809 }
8810 disk = &dl->disk;
8811 disk->status |= CONFIGURED_DISK;
8812 disk->status &= ~SPARE_DISK;
8813
8814 /* mark rebuild */
238c0a71 8815 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 8816 if (!second_map_created) {
8817 second_map_created = 1;
8818 map->map_state = IMSM_T_STATE_DEGRADED;
8819 migrate(dev, super, to_state, MIGR_REBUILD);
8820 } else
8821 map->map_state = to_state;
238c0a71 8822 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 8823 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8824 set_imsm_ord_tbl_ent(migr_map, u->slot,
8825 dl->index | IMSM_ORD_REBUILD);
8826
8827 /* update the family_num to mark a new container
8828 * generation, being careful to record the existing
8829 * family_num in orig_family_num to clean up after
8830 * earlier mdadm versions that neglected to set it.
8831 */
8832 if (mpb->orig_family_num == 0)
8833 mpb->orig_family_num = mpb->family_num;
8834 mpb->family_num += super->random;
8835
8836 /* count arrays using the victim in the metadata */
8837 found = 0;
8838 for (a = active_array; a ; a = a->next) {
8839 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8840 map = get_imsm_map(dev, MAP_0);
061d7da3 8841
5961eeec 8842 if (get_imsm_disk_slot(map, victim) >= 0)
8843 found++;
8844 }
061d7da3 8845
5961eeec 8846 /* delete the victim if it is no longer being
8847 * utilized anywhere
061d7da3 8848 */
5961eeec 8849 if (!found) {
8850 struct dl **dlp;
061d7da3 8851
5961eeec 8852 /* We know that 'manager' isn't touching anything,
8853 * so it is safe to delete
8854 */
8855 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
8856 if ((*dlp)->index == victim)
8857 break;
5961eeec 8858
8859 /* victim may be on the missing list */
8860 if (!*dlp)
8861 for (dlp = &super->missing; *dlp;
8862 dlp = &(*dlp)->next)
8863 if ((*dlp)->index == victim)
8864 break;
8865 imsm_delete(super, dlp, victim);
8866 }
061d7da3
LO
8867 }
8868
8869 return 1;
8870}
a29911da 8871
2e5dc010
N
8872static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8873 struct intel_super *super,
8874 void ***space_list)
8875{
8876 struct dl *new_disk;
8877 struct intel_dev *id;
8878 int i;
8879 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 8880 int disk_count = u->old_raid_disks;
2e5dc010
N
8881 void **tofree = NULL;
8882 int devices_to_reshape = 1;
8883 struct imsm_super *mpb = super->anchor;
8884 int ret_val = 0;
d098291a 8885 unsigned int dev_id;
2e5dc010 8886
1ade5cc1 8887 dprintf("(enter)\n");
2e5dc010
N
8888
8889 /* enable spares to use in array */
8890 for (i = 0; i < delta_disks; i++) {
8891 new_disk = get_disk_super(super,
8892 major(u->new_disks[i]),
8893 minor(u->new_disks[i]));
7a862a02 8894 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
8895 major(u->new_disks[i]), minor(u->new_disks[i]),
8896 new_disk, new_disk->index);
089f9d79
JS
8897 if (new_disk == NULL ||
8898 (new_disk->index >= 0 &&
8899 new_disk->index < u->old_raid_disks))
2e5dc010 8900 goto update_reshape_exit;
ee4beede 8901 new_disk->index = disk_count++;
2e5dc010
N
8902 /* slot to fill in autolayout
8903 */
8904 new_disk->raiddisk = new_disk->index;
8905 new_disk->disk.status |=
8906 CONFIGURED_DISK;
8907 new_disk->disk.status &= ~SPARE_DISK;
8908 }
8909
ed7333bd
AK
8910 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8911 mpb->num_raid_devs);
2e5dc010
N
8912 /* manage changes in volume
8913 */
d098291a 8914 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
8915 void **sp = *space_list;
8916 struct imsm_dev *newdev;
8917 struct imsm_map *newmap, *oldmap;
8918
d098291a
AK
8919 for (id = super->devlist ; id; id = id->next) {
8920 if (id->index == dev_id)
8921 break;
8922 }
8923 if (id == NULL)
8924 break;
2e5dc010
N
8925 if (!sp)
8926 continue;
8927 *space_list = *sp;
8928 newdev = (void*)sp;
8929 /* Copy the dev, but not (all of) the map */
8930 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
8931 oldmap = get_imsm_map(id->dev, MAP_0);
8932 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
8933 /* Copy the current map */
8934 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8935 /* update one device only
8936 */
8937 if (devices_to_reshape) {
ed7333bd
AK
8938 dprintf("imsm: modifying subdev: %i\n",
8939 id->index);
2e5dc010
N
8940 devices_to_reshape--;
8941 newdev->vol.migr_state = 1;
8942 newdev->vol.curr_migr_unit = 0;
ea672ee1 8943 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
8944 newmap->num_members = u->new_raid_disks;
8945 for (i = 0; i < delta_disks; i++) {
8946 set_imsm_ord_tbl_ent(newmap,
8947 u->old_raid_disks + i,
8948 u->old_raid_disks + i);
8949 }
8950 /* New map is correct, now need to save old map
8951 */
238c0a71 8952 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
8953 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8954
f3871fdc 8955 imsm_set_array_size(newdev, -1);
2e5dc010
N
8956 }
8957
8958 sp = (void **)id->dev;
8959 id->dev = newdev;
8960 *sp = tofree;
8961 tofree = sp;
8e59f3d8
AK
8962
8963 /* Clear migration record */
8964 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 8965 }
819bc634
AK
8966 if (tofree)
8967 *space_list = tofree;
2e5dc010
N
8968 ret_val = 1;
8969
8970update_reshape_exit:
8971
8972 return ret_val;
8973}
8974
bb025c2f 8975static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
8976 struct intel_super *super,
8977 void ***space_list)
bb025c2f
KW
8978{
8979 struct imsm_dev *dev = NULL;
8ca6df95
KW
8980 struct intel_dev *dv;
8981 struct imsm_dev *dev_new;
bb025c2f
KW
8982 struct imsm_map *map;
8983 struct dl *dm, *du;
8ca6df95 8984 int i;
bb025c2f
KW
8985
8986 for (dv = super->devlist; dv; dv = dv->next)
8987 if (dv->index == (unsigned int)u->subarray) {
8988 dev = dv->dev;
8989 break;
8990 }
8991
8992 if (dev == NULL)
8993 return 0;
8994
238c0a71 8995 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
8996
8997 if (u->direction == R10_TO_R0) {
06fb291a
PB
8998 unsigned long long num_data_stripes;
8999
9000 map->num_domains = 1;
9001 num_data_stripes = blocks_per_member(map);
9002 num_data_stripes /= map->blocks_per_strip;
9003 num_data_stripes /= map->num_domains;
9004 set_num_data_stripes(map, num_data_stripes);
9005
43d5ec18 9006 /* Number of failed disks must be half of initial disk number */
3b451610
AK
9007 if (imsm_count_failed(super, dev, MAP_0) !=
9008 (map->num_members / 2))
43d5ec18
KW
9009 return 0;
9010
bb025c2f
KW
9011 /* iterate through devices to mark removed disks as spare */
9012 for (dm = super->disks; dm; dm = dm->next) {
9013 if (dm->disk.status & FAILED_DISK) {
9014 int idx = dm->index;
9015 /* update indexes on the disk list */
9016/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9017 the index values will end up being correct.... NB */
9018 for (du = super->disks; du; du = du->next)
9019 if (du->index > idx)
9020 du->index--;
9021 /* mark as spare disk */
a8619d23 9022 mark_spare(dm);
bb025c2f
KW
9023 }
9024 }
bb025c2f
KW
9025 /* update map */
9026 map->num_members = map->num_members / 2;
9027 map->map_state = IMSM_T_STATE_NORMAL;
9028 map->num_domains = 1;
9029 map->raid_level = 0;
9030 map->failed_disk_num = -1;
9031 }
9032
8ca6df95
KW
9033 if (u->direction == R0_TO_R10) {
9034 void **space;
9035 /* update slots in current disk list */
9036 for (dm = super->disks; dm; dm = dm->next) {
9037 if (dm->index >= 0)
9038 dm->index *= 2;
9039 }
9040 /* create new *missing* disks */
9041 for (i = 0; i < map->num_members; i++) {
9042 space = *space_list;
9043 if (!space)
9044 continue;
9045 *space_list = *space;
9046 du = (void *)space;
9047 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
9048 du->fd = -1;
9049 du->minor = 0;
9050 du->major = 0;
9051 du->index = (i * 2) + 1;
9052 sprintf((char *)du->disk.serial,
9053 " MISSING_%d", du->index);
9054 sprintf((char *)du->serial,
9055 "MISSING_%d", du->index);
9056 du->next = super->missing;
9057 super->missing = du;
9058 }
9059 /* create new dev and map */
9060 space = *space_list;
9061 if (!space)
9062 return 0;
9063 *space_list = *space;
9064 dev_new = (void *)space;
9065 memcpy(dev_new, dev, sizeof(*dev));
9066 /* update new map */
238c0a71 9067 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 9068 map->num_members = map->num_members * 2;
1a2487c2 9069 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
9070 map->num_domains = 2;
9071 map->raid_level = 1;
9072 /* replace dev<->dev_new */
9073 dv->dev = dev_new;
9074 }
bb025c2f
KW
9075 /* update disk order table */
9076 for (du = super->disks; du; du = du->next)
9077 if (du->index >= 0)
9078 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 9079 for (du = super->missing; du; du = du->next)
1a2487c2
KW
9080 if (du->index >= 0) {
9081 set_imsm_ord_tbl_ent(map, du->index, du->index);
4c9e8c1e 9082 mark_missing(super, dv->dev, &du->disk, du->index);
1a2487c2 9083 }
bb025c2f
KW
9084
9085 return 1;
9086}
9087
e8319a19
DW
9088static void imsm_process_update(struct supertype *st,
9089 struct metadata_update *update)
9090{
9091 /**
9092 * crack open the metadata_update envelope to find the update record
9093 * update can be one of:
d195167d
AK
9094 * update_reshape_container_disks - all the arrays in the container
9095 * are being reshaped to have more devices. We need to mark
9096 * the arrays for general migration and convert selected spares
9097 * into active devices.
9098 * update_activate_spare - a spare device has replaced a failed
1011e834
N
9099 * device in an array, update the disk_ord_tbl. If this disk is
9100 * present in all member arrays then also clear the SPARE_DISK
9101 * flag
d195167d
AK
9102 * update_create_array
9103 * update_kill_array
9104 * update_rename_array
9105 * update_add_remove_disk
e8319a19
DW
9106 */
9107 struct intel_super *super = st->sb;
4d7b1503 9108 struct imsm_super *mpb;
e8319a19
DW
9109 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9110
4d7b1503
DW
9111 /* update requires a larger buf but the allocation failed */
9112 if (super->next_len && !super->next_buf) {
9113 super->next_len = 0;
9114 return;
9115 }
9116
9117 if (super->next_buf) {
9118 memcpy(super->next_buf, super->buf, super->len);
9119 free(super->buf);
9120 super->len = super->next_len;
9121 super->buf = super->next_buf;
9122
9123 super->next_len = 0;
9124 super->next_buf = NULL;
9125 }
9126
9127 mpb = super->anchor;
9128
e8319a19 9129 switch (type) {
0ec5d470
AK
9130 case update_general_migration_checkpoint: {
9131 struct intel_dev *id;
9132 struct imsm_update_general_migration_checkpoint *u =
9133 (void *)update->buf;
9134
1ade5cc1 9135 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
9136
9137 /* find device under general migration */
9138 for (id = super->devlist ; id; id = id->next) {
9139 if (is_gen_migration(id->dev)) {
9140 id->dev->vol.curr_migr_unit =
9141 __cpu_to_le32(u->curr_migr_unit);
9142 super->updates_pending++;
9143 }
9144 }
9145 break;
9146 }
bb025c2f
KW
9147 case update_takeover: {
9148 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
9149 if (apply_takeover_update(u, super, &update->space_list)) {
9150 imsm_update_version_info(super);
bb025c2f 9151 super->updates_pending++;
1a2487c2 9152 }
bb025c2f
KW
9153 break;
9154 }
9155
78b10e66 9156 case update_reshape_container_disks: {
d195167d 9157 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
9158 if (apply_reshape_container_disks_update(
9159 u, super, &update->space_list))
9160 super->updates_pending++;
78b10e66
N
9161 break;
9162 }
48c5303a 9163 case update_reshape_migration: {
a29911da
PC
9164 struct imsm_update_reshape_migration *u = (void *)update->buf;
9165 if (apply_reshape_migration_update(
9166 u, super, &update->space_list))
9167 super->updates_pending++;
48c5303a
PC
9168 break;
9169 }
f3871fdc
AK
9170 case update_size_change: {
9171 struct imsm_update_size_change *u = (void *)update->buf;
9172 if (apply_size_change_update(u, super))
9173 super->updates_pending++;
9174 break;
9175 }
e8319a19 9176 case update_activate_spare: {
1011e834 9177 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
9178 if (apply_update_activate_spare(u, super, st->arrays))
9179 super->updates_pending++;
8273f55e
DW
9180 break;
9181 }
9182 case update_create_array: {
9183 /* someone wants to create a new array, we need to be aware of
9184 * a few races/collisions:
9185 * 1/ 'Create' called by two separate instances of mdadm
9186 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9187 * devices that have since been assimilated via
9188 * activate_spare.
9189 * In the event this update can not be carried out mdadm will
9190 * (FIX ME) notice that its update did not take hold.
9191 */
9192 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9193 struct intel_dev *dv;
8273f55e
DW
9194 struct imsm_dev *dev;
9195 struct imsm_map *map, *new_map;
9196 unsigned long long start, end;
9197 unsigned long long new_start, new_end;
9198 int i;
54c2c1ea
DW
9199 struct disk_info *inf;
9200 struct dl *dl;
8273f55e
DW
9201
9202 /* handle racing creates: first come first serve */
9203 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 9204 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 9205 goto create_error;
8273f55e
DW
9206 }
9207
9208 /* check update is next in sequence */
9209 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
9210 dprintf("can not create array %d expected index %d\n",
9211 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 9212 goto create_error;
8273f55e
DW
9213 }
9214
238c0a71 9215 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
9216 new_start = pba_of_lba0(new_map);
9217 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 9218 inf = get_disk_info(u);
8273f55e
DW
9219
9220 /* handle activate_spare versus create race:
9221 * check to make sure that overlapping arrays do not include
9222 * overalpping disks
9223 */
9224 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 9225 dev = get_imsm_dev(super, i);
238c0a71 9226 map = get_imsm_map(dev, MAP_0);
5551b113
CA
9227 start = pba_of_lba0(map);
9228 end = start + blocks_per_member(map);
8273f55e
DW
9229 if ((new_start >= start && new_start <= end) ||
9230 (start >= new_start && start <= new_end))
54c2c1ea
DW
9231 /* overlap */;
9232 else
9233 continue;
9234
9235 if (disks_overlap(super, i, u)) {
1ade5cc1 9236 dprintf("arrays overlap\n");
ba2de7ba 9237 goto create_error;
8273f55e
DW
9238 }
9239 }
8273f55e 9240
949c47a0
DW
9241 /* check that prepare update was successful */
9242 if (!update->space) {
1ade5cc1 9243 dprintf("prepare update failed\n");
ba2de7ba 9244 goto create_error;
949c47a0
DW
9245 }
9246
54c2c1ea
DW
9247 /* check that all disks are still active before committing
9248 * changes. FIXME: could we instead handle this by creating a
9249 * degraded array? That's probably not what the user expects,
9250 * so better to drop this update on the floor.
9251 */
9252 for (i = 0; i < new_map->num_members; i++) {
9253 dl = serial_to_dl(inf[i].serial, super);
9254 if (!dl) {
1ade5cc1 9255 dprintf("disk disappeared\n");
ba2de7ba 9256 goto create_error;
54c2c1ea 9257 }
949c47a0
DW
9258 }
9259
8273f55e 9260 super->updates_pending++;
54c2c1ea
DW
9261
9262 /* convert spares to members and fixup ord_tbl */
9263 for (i = 0; i < new_map->num_members; i++) {
9264 dl = serial_to_dl(inf[i].serial, super);
9265 if (dl->index == -1) {
9266 dl->index = mpb->num_disks;
9267 mpb->num_disks++;
9268 dl->disk.status |= CONFIGURED_DISK;
9269 dl->disk.status &= ~SPARE_DISK;
9270 }
9271 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9272 }
9273
ba2de7ba
DW
9274 dv = update->space;
9275 dev = dv->dev;
949c47a0
DW
9276 update->space = NULL;
9277 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
9278 dv->index = u->dev_idx;
9279 dv->next = super->devlist;
9280 super->devlist = dv;
8273f55e 9281 mpb->num_raid_devs++;
8273f55e 9282
4d1313e9 9283 imsm_update_version_info(super);
8273f55e 9284 break;
ba2de7ba
DW
9285 create_error:
9286 /* mdmon knows how to release update->space, but not
9287 * ((struct intel_dev *) update->space)->dev
9288 */
9289 if (update->space) {
9290 dv = update->space;
9291 free(dv->dev);
9292 }
8273f55e 9293 break;
e8319a19 9294 }
33414a01
DW
9295 case update_kill_array: {
9296 struct imsm_update_kill_array *u = (void *) update->buf;
9297 int victim = u->dev_idx;
9298 struct active_array *a;
9299 struct intel_dev **dp;
9300 struct imsm_dev *dev;
9301
9302 /* sanity check that we are not affecting the uuid of
9303 * active arrays, or deleting an active array
9304 *
9305 * FIXME when immutable ids are available, but note that
9306 * we'll also need to fixup the invalidated/active
9307 * subarray indexes in mdstat
9308 */
9309 for (a = st->arrays; a; a = a->next)
9310 if (a->info.container_member >= victim)
9311 break;
9312 /* by definition if mdmon is running at least one array
9313 * is active in the container, so checking
9314 * mpb->num_raid_devs is just extra paranoia
9315 */
9316 dev = get_imsm_dev(super, victim);
9317 if (a || !dev || mpb->num_raid_devs == 1) {
9318 dprintf("failed to delete subarray-%d\n", victim);
9319 break;
9320 }
9321
9322 for (dp = &super->devlist; *dp;)
f21e18ca 9323 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
9324 *dp = (*dp)->next;
9325 } else {
f21e18ca 9326 if ((*dp)->index > (unsigned)victim)
33414a01
DW
9327 (*dp)->index--;
9328 dp = &(*dp)->next;
9329 }
9330 mpb->num_raid_devs--;
9331 super->updates_pending++;
9332 break;
9333 }
aa534678
DW
9334 case update_rename_array: {
9335 struct imsm_update_rename_array *u = (void *) update->buf;
9336 char name[MAX_RAID_SERIAL_LEN+1];
9337 int target = u->dev_idx;
9338 struct active_array *a;
9339 struct imsm_dev *dev;
9340
9341 /* sanity check that we are not affecting the uuid of
9342 * an active array
9343 */
9344 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9345 name[MAX_RAID_SERIAL_LEN] = '\0';
9346 for (a = st->arrays; a; a = a->next)
9347 if (a->info.container_member == target)
9348 break;
9349 dev = get_imsm_dev(super, u->dev_idx);
9350 if (a || !dev || !check_name(super, name, 1)) {
9351 dprintf("failed to rename subarray-%d\n", target);
9352 break;
9353 }
9354
cdbe98cd 9355 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
9356 super->updates_pending++;
9357 break;
9358 }
1a64be56 9359 case update_add_remove_disk: {
43dad3d6 9360 /* we may be able to repair some arrays if disks are
095b8088 9361 * being added, check the status of add_remove_disk
1a64be56
LM
9362 * if discs has been added.
9363 */
9364 if (add_remove_disk_update(super)) {
43dad3d6 9365 struct active_array *a;
072b727f
DW
9366
9367 super->updates_pending++;
1a64be56 9368 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
9369 a->check_degraded = 1;
9370 }
43dad3d6 9371 break;
e8319a19 9372 }
bbab0940
TM
9373 case update_prealloc_badblocks_mem:
9374 break;
1a64be56 9375 default:
7a862a02 9376 pr_err("error: unsuported process update type:(type: %d)\n", type);
1a64be56 9377 }
e8319a19 9378}
88758e9d 9379
bc0b9d34
PC
9380static struct mdinfo *get_spares_for_grow(struct supertype *st);
9381
5fe6f031
N
9382static int imsm_prepare_update(struct supertype *st,
9383 struct metadata_update *update)
8273f55e 9384{
949c47a0 9385 /**
4d7b1503
DW
9386 * Allocate space to hold new disk entries, raid-device entries or a new
9387 * mpb if necessary. The manager synchronously waits for updates to
9388 * complete in the monitor, so new mpb buffers allocated here can be
9389 * integrated by the monitor thread without worrying about live pointers
9390 * in the manager thread.
8273f55e 9391 */
095b8088 9392 enum imsm_update_type type;
4d7b1503 9393 struct intel_super *super = st->sb;
f36a9ecd 9394 unsigned int sector_size = super->sector_size;
4d7b1503
DW
9395 struct imsm_super *mpb = super->anchor;
9396 size_t buf_len;
9397 size_t len = 0;
949c47a0 9398
095b8088
N
9399 if (update->len < (int)sizeof(type))
9400 return 0;
9401
9402 type = *(enum imsm_update_type *) update->buf;
9403
949c47a0 9404 switch (type) {
0ec5d470 9405 case update_general_migration_checkpoint:
095b8088
N
9406 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9407 return 0;
1ade5cc1 9408 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 9409 break;
abedf5fc
KW
9410 case update_takeover: {
9411 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
9412 if (update->len < (int)sizeof(*u))
9413 return 0;
abedf5fc
KW
9414 if (u->direction == R0_TO_R10) {
9415 void **tail = (void **)&update->space_list;
9416 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 9417 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
9418 int num_members = map->num_members;
9419 void *space;
9420 int size, i;
abedf5fc
KW
9421 /* allocate memory for added disks */
9422 for (i = 0; i < num_members; i++) {
9423 size = sizeof(struct dl);
503975b9 9424 space = xmalloc(size);
abedf5fc
KW
9425 *tail = space;
9426 tail = space;
9427 *tail = NULL;
9428 }
9429 /* allocate memory for new device */
9430 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9431 (num_members * sizeof(__u32));
503975b9
N
9432 space = xmalloc(size);
9433 *tail = space;
9434 tail = space;
9435 *tail = NULL;
9436 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
9437 }
9438
9439 break;
9440 }
78b10e66 9441 case update_reshape_container_disks: {
d195167d
AK
9442 /* Every raid device in the container is about to
9443 * gain some more devices, and we will enter a
9444 * reconfiguration.
9445 * So each 'imsm_map' will be bigger, and the imsm_vol
9446 * will now hold 2 of them.
9447 * Thus we need new 'struct imsm_dev' allocations sized
9448 * as sizeof_imsm_dev but with more devices in both maps.
9449 */
9450 struct imsm_update_reshape *u = (void *)update->buf;
9451 struct intel_dev *dl;
9452 void **space_tail = (void**)&update->space_list;
9453
095b8088
N
9454 if (update->len < (int)sizeof(*u))
9455 return 0;
9456
1ade5cc1 9457 dprintf("for update_reshape\n");
d195167d
AK
9458
9459 for (dl = super->devlist; dl; dl = dl->next) {
9460 int size = sizeof_imsm_dev(dl->dev, 1);
9461 void *s;
d677e0b8
AK
9462 if (u->new_raid_disks > u->old_raid_disks)
9463 size += sizeof(__u32)*2*
9464 (u->new_raid_disks - u->old_raid_disks);
503975b9 9465 s = xmalloc(size);
d195167d
AK
9466 *space_tail = s;
9467 space_tail = s;
9468 *space_tail = NULL;
9469 }
9470
9471 len = disks_to_mpb_size(u->new_raid_disks);
9472 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
9473 break;
9474 }
48c5303a 9475 case update_reshape_migration: {
bc0b9d34
PC
9476 /* for migration level 0->5 we need to add disks
9477 * so the same as for container operation we will copy
9478 * device to the bigger location.
9479 * in memory prepared device and new disk area are prepared
9480 * for usage in process update
9481 */
9482 struct imsm_update_reshape_migration *u = (void *)update->buf;
9483 struct intel_dev *id;
9484 void **space_tail = (void **)&update->space_list;
9485 int size;
9486 void *s;
9487 int current_level = -1;
9488
095b8088
N
9489 if (update->len < (int)sizeof(*u))
9490 return 0;
9491
1ade5cc1 9492 dprintf("for update_reshape\n");
bc0b9d34
PC
9493
9494 /* add space for bigger array in update
9495 */
9496 for (id = super->devlist; id; id = id->next) {
9497 if (id->index == (unsigned)u->subdev) {
9498 size = sizeof_imsm_dev(id->dev, 1);
9499 if (u->new_raid_disks > u->old_raid_disks)
9500 size += sizeof(__u32)*2*
9501 (u->new_raid_disks - u->old_raid_disks);
503975b9 9502 s = xmalloc(size);
bc0b9d34
PC
9503 *space_tail = s;
9504 space_tail = s;
9505 *space_tail = NULL;
9506 break;
9507 }
9508 }
9509 if (update->space_list == NULL)
9510 break;
9511
9512 /* add space for disk in update
9513 */
9514 size = sizeof(struct dl);
503975b9 9515 s = xmalloc(size);
bc0b9d34
PC
9516 *space_tail = s;
9517 space_tail = s;
9518 *space_tail = NULL;
9519
9520 /* add spare device to update
9521 */
9522 for (id = super->devlist ; id; id = id->next)
9523 if (id->index == (unsigned)u->subdev) {
9524 struct imsm_dev *dev;
9525 struct imsm_map *map;
9526
9527 dev = get_imsm_dev(super, u->subdev);
238c0a71 9528 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
9529 current_level = map->raid_level;
9530 break;
9531 }
089f9d79 9532 if (u->new_level == 5 && u->new_level != current_level) {
bc0b9d34
PC
9533 struct mdinfo *spares;
9534
9535 spares = get_spares_for_grow(st);
9536 if (spares) {
9537 struct dl *dl;
9538 struct mdinfo *dev;
9539
9540 dev = spares->devs;
9541 if (dev) {
9542 u->new_disks[0] =
9543 makedev(dev->disk.major,
9544 dev->disk.minor);
9545 dl = get_disk_super(super,
9546 dev->disk.major,
9547 dev->disk.minor);
9548 dl->index = u->old_raid_disks;
9549 dev = dev->next;
9550 }
9551 sysfs_free(spares);
9552 }
9553 }
9554 len = disks_to_mpb_size(u->new_raid_disks);
9555 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
9556 break;
9557 }
f3871fdc 9558 case update_size_change: {
095b8088
N
9559 if (update->len < (int)sizeof(struct imsm_update_size_change))
9560 return 0;
9561 break;
9562 }
9563 case update_activate_spare: {
9564 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9565 return 0;
f3871fdc
AK
9566 break;
9567 }
949c47a0
DW
9568 case update_create_array: {
9569 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 9570 struct intel_dev *dv;
54c2c1ea 9571 struct imsm_dev *dev = &u->dev;
238c0a71 9572 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
9573 struct dl *dl;
9574 struct disk_info *inf;
9575 int i;
9576 int activate = 0;
949c47a0 9577
095b8088
N
9578 if (update->len < (int)sizeof(*u))
9579 return 0;
9580
54c2c1ea
DW
9581 inf = get_disk_info(u);
9582 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 9583 /* allocate a new super->devlist entry */
503975b9
N
9584 dv = xmalloc(sizeof(*dv));
9585 dv->dev = xmalloc(len);
9586 update->space = dv;
949c47a0 9587
54c2c1ea
DW
9588 /* count how many spares will be converted to members */
9589 for (i = 0; i < map->num_members; i++) {
9590 dl = serial_to_dl(inf[i].serial, super);
9591 if (!dl) {
9592 /* hmm maybe it failed?, nothing we can do about
9593 * it here
9594 */
9595 continue;
9596 }
9597 if (count_memberships(dl, super) == 0)
9598 activate++;
9599 }
9600 len += activate * sizeof(struct imsm_disk);
949c47a0 9601 break;
095b8088
N
9602 }
9603 case update_kill_array: {
9604 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9605 return 0;
949c47a0
DW
9606 break;
9607 }
095b8088
N
9608 case update_rename_array: {
9609 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9610 return 0;
9611 break;
9612 }
9613 case update_add_remove_disk:
9614 /* no update->len needed */
9615 break;
bbab0940
TM
9616 case update_prealloc_badblocks_mem:
9617 super->extra_space += sizeof(struct bbm_log) -
9618 get_imsm_bbm_log_size(super->bbm_log);
9619 break;
095b8088
N
9620 default:
9621 return 0;
949c47a0 9622 }
8273f55e 9623
4d7b1503
DW
9624 /* check if we need a larger metadata buffer */
9625 if (super->next_buf)
9626 buf_len = super->next_len;
9627 else
9628 buf_len = super->len;
9629
bbab0940 9630 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
4d7b1503
DW
9631 /* ok we need a larger buf than what is currently allocated
9632 * if this allocation fails process_update will notice that
9633 * ->next_len is set and ->next_buf is NULL
9634 */
bbab0940
TM
9635 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
9636 super->extra_space + len, sector_size);
4d7b1503
DW
9637 if (super->next_buf)
9638 free(super->next_buf);
9639
9640 super->next_len = buf_len;
f36a9ecd 9641 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
1f45a8ad
DW
9642 memset(super->next_buf, 0, buf_len);
9643 else
4d7b1503
DW
9644 super->next_buf = NULL;
9645 }
5fe6f031 9646 return 1;
8273f55e
DW
9647}
9648
ae6aad82 9649/* must be called while manager is quiesced */
f21e18ca 9650static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
9651{
9652 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
9653 struct dl *iter;
9654 struct imsm_dev *dev;
9655 struct imsm_map *map;
4c9e8c1e 9656 unsigned int i, j, num_members;
24565c9a 9657 __u32 ord;
4c9e8c1e 9658 struct bbm_log *log = super->bbm_log;
ae6aad82 9659
1ade5cc1 9660 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
9661
9662 /* shift all indexes down one */
9663 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 9664 if (iter->index > (int)index)
ae6aad82 9665 iter->index--;
47ee5a45 9666 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 9667 if (iter->index > (int)index)
47ee5a45 9668 iter->index--;
ae6aad82
DW
9669
9670 for (i = 0; i < mpb->num_raid_devs; i++) {
9671 dev = get_imsm_dev(super, i);
238c0a71 9672 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
9673 num_members = map->num_members;
9674 for (j = 0; j < num_members; j++) {
9675 /* update ord entries being careful not to propagate
9676 * ord-flags to the first map
9677 */
238c0a71 9678 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 9679
24565c9a
DW
9680 if (ord_to_idx(ord) <= index)
9681 continue;
ae6aad82 9682
238c0a71 9683 map = get_imsm_map(dev, MAP_0);
24565c9a 9684 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 9685 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
9686 if (map)
9687 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
9688 }
9689 }
9690
4c9e8c1e
TM
9691 for (i = 0; i < log->entry_count; i++) {
9692 struct bbm_log_entry *entry = &log->marked_block_entries[i];
9693
9694 if (entry->disk_ordinal <= index)
9695 continue;
9696 entry->disk_ordinal--;
9697 }
9698
ae6aad82
DW
9699 mpb->num_disks--;
9700 super->updates_pending++;
24565c9a
DW
9701 if (*dlp) {
9702 struct dl *dl = *dlp;
9703
9704 *dlp = (*dlp)->next;
9705 __free_imsm_disk(dl);
9706 }
ae6aad82 9707}
9e2d750d 9708#endif /* MDASSEMBLE */
9a717282
AK
9709
9710static void close_targets(int *targets, int new_disks)
9711{
9712 int i;
9713
9714 if (!targets)
9715 return;
9716
9717 for (i = 0; i < new_disks; i++) {
9718 if (targets[i] >= 0) {
9719 close(targets[i]);
9720 targets[i] = -1;
9721 }
9722 }
9723}
9724
9725static int imsm_get_allowed_degradation(int level, int raid_disks,
9726 struct intel_super *super,
9727 struct imsm_dev *dev)
9728{
9729 switch (level) {
bf5cf7c7 9730 case 1:
9a717282
AK
9731 case 10:{
9732 int ret_val = 0;
9733 struct imsm_map *map;
9734 int i;
9735
9736 ret_val = raid_disks/2;
9737 /* check map if all disks pairs not failed
9738 * in both maps
9739 */
238c0a71 9740 map = get_imsm_map(dev, MAP_0);
9a717282
AK
9741 for (i = 0; i < ret_val; i++) {
9742 int degradation = 0;
9743 if (get_imsm_disk(super, i) == NULL)
9744 degradation++;
9745 if (get_imsm_disk(super, i + 1) == NULL)
9746 degradation++;
9747 if (degradation == 2)
9748 return 0;
9749 }
238c0a71 9750 map = get_imsm_map(dev, MAP_1);
9a717282
AK
9751 /* if there is no second map
9752 * result can be returned
9753 */
9754 if (map == NULL)
9755 return ret_val;
9756 /* check degradation in second map
9757 */
9758 for (i = 0; i < ret_val; i++) {
9759 int degradation = 0;
9760 if (get_imsm_disk(super, i) == NULL)
9761 degradation++;
9762 if (get_imsm_disk(super, i + 1) == NULL)
9763 degradation++;
9764 if (degradation == 2)
9765 return 0;
9766 }
9767 return ret_val;
9768 }
9769 case 5:
9770 return 1;
9771 case 6:
9772 return 2;
9773 default:
9774 return 0;
9775 }
9776}
9777
687629c2
AK
9778/*******************************************************************************
9779 * Function: open_backup_targets
9780 * Description: Function opens file descriptors for all devices given in
9781 * info->devs
9782 * Parameters:
9783 * info : general array info
9784 * raid_disks : number of disks
9785 * raid_fds : table of device's file descriptors
9a717282
AK
9786 * super : intel super for raid10 degradation check
9787 * dev : intel device for raid10 degradation check
687629c2
AK
9788 * Returns:
9789 * 0 : success
9790 * -1 : fail
9791 ******************************************************************************/
9a717282
AK
9792int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9793 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
9794{
9795 struct mdinfo *sd;
f627f5ad 9796 int i;
9a717282 9797 int opened = 0;
f627f5ad
AK
9798
9799 for (i = 0; i < raid_disks; i++)
9800 raid_fds[i] = -1;
687629c2
AK
9801
9802 for (sd = info->devs ; sd ; sd = sd->next) {
9803 char *dn;
9804
9805 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9806 dprintf("disk is faulty!!\n");
9807 continue;
9808 }
9809
089f9d79 9810 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
687629c2
AK
9811 continue;
9812
9813 dn = map_dev(sd->disk.major,
9814 sd->disk.minor, 1);
9815 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9816 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 9817 pr_err("cannot open component\n");
9a717282 9818 continue;
687629c2 9819 }
9a717282
AK
9820 opened++;
9821 }
9822 /* check if maximum array degradation level is not exceeded
9823 */
9824 if ((raid_disks - opened) >
089f9d79
JS
9825 imsm_get_allowed_degradation(info->new_level, raid_disks,
9826 super, dev)) {
e12b3daa 9827 pr_err("Not enough disks can be opened.\n");
9a717282
AK
9828 close_targets(raid_fds, raid_disks);
9829 return -2;
687629c2
AK
9830 }
9831 return 0;
9832}
9833
d31ad643
PB
9834/*******************************************************************************
9835 * Function: validate_container_imsm
9836 * Description: This routine validates container after assemble,
9837 * eg. if devices in container are under the same controller.
9838 *
9839 * Parameters:
9840 * info : linked list with info about devices used in array
9841 * Returns:
9842 * 1 : HBA mismatch
9843 * 0 : Success
9844 ******************************************************************************/
9845int validate_container_imsm(struct mdinfo *info)
9846{
6b781d33
AP
9847 if (check_env("IMSM_NO_PLATFORM"))
9848 return 0;
d31ad643 9849
6b781d33
AP
9850 struct sys_dev *idev;
9851 struct sys_dev *hba = NULL;
9852 struct sys_dev *intel_devices = find_intel_devices();
9853 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9854 info->disk.minor));
9855
9856 for (idev = intel_devices; idev; idev = idev->next) {
9857 if (dev_path && strstr(dev_path, idev->path)) {
9858 hba = idev;
9859 break;
d31ad643 9860 }
6b781d33
AP
9861 }
9862 if (dev_path)
d31ad643
PB
9863 free(dev_path);
9864
6b781d33
AP
9865 if (!hba) {
9866 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9867 devid2kname(makedev(info->disk.major, info->disk.minor)));
9868 return 1;
9869 }
9870
9871 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9872 struct mdinfo *dev;
9873
9874 for (dev = info->next; dev; dev = dev->next) {
9875 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9876
9877 struct sys_dev *hba2 = NULL;
9878 for (idev = intel_devices; idev; idev = idev->next) {
9879 if (dev_path && strstr(dev_path, idev->path)) {
9880 hba2 = idev;
9881 break;
d31ad643
PB
9882 }
9883 }
6b781d33
AP
9884 if (dev_path)
9885 free(dev_path);
9886
9887 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9888 get_orom_by_device_id(hba2->dev_id);
9889
9890 if (hba2 && hba->type != hba2->type) {
9891 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9892 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9893 return 1;
9894 }
9895
07cb1e57 9896 if (orom != orom2) {
6b781d33
AP
9897 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9898 " This operation is not supported and can lead to data loss.\n");
9899 return 1;
9900 }
9901
9902 if (!orom) {
9903 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9904 " This operation is not supported and can lead to data loss.\n");
9905 return 1;
9906 }
d31ad643 9907 }
6b781d33 9908
d31ad643
PB
9909 return 0;
9910}
9e2d750d 9911#ifndef MDASSEMBLE
6f50473f
TM
9912/*******************************************************************************
9913* Function: imsm_record_badblock
9914* Description: This routine stores new bad block record in BBM log
9915*
9916* Parameters:
9917* a : array containing a bad block
9918* slot : disk number containing a bad block
9919* sector : bad block sector
9920* length : bad block sectors range
9921* Returns:
9922* 1 : Success
9923* 0 : Error
9924******************************************************************************/
9925static int imsm_record_badblock(struct active_array *a, int slot,
9926 unsigned long long sector, int length)
9927{
9928 struct intel_super *super = a->container->sb;
9929 int ord;
9930 int ret;
9931
9932 ord = imsm_disk_slot_to_ord(a, slot);
9933 if (ord < 0)
9934 return 0;
9935
9936 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
9937 length);
9938 if (ret)
9939 super->updates_pending++;
9940
9941 return ret;
9942}
c07a5a4f
TM
9943/*******************************************************************************
9944* Function: imsm_clear_badblock
9945* Description: This routine clears bad block record from BBM log
9946*
9947* Parameters:
9948* a : array containing a bad block
9949* slot : disk number containing a bad block
9950* sector : bad block sector
9951* length : bad block sectors range
9952* Returns:
9953* 1 : Success
9954* 0 : Error
9955******************************************************************************/
9956static int imsm_clear_badblock(struct active_array *a, int slot,
9957 unsigned long long sector, int length)
9958{
9959 struct intel_super *super = a->container->sb;
9960 int ord;
9961 int ret;
9962
9963 ord = imsm_disk_slot_to_ord(a, slot);
9964 if (ord < 0)
9965 return 0;
9966
9967 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
9968 if (ret)
9969 super->updates_pending++;
9970
9971 return ret;
9972}
928f1424
TM
9973/*******************************************************************************
9974* Function: imsm_get_badblocks
9975* Description: This routine get list of bad blocks for an array
9976*
9977* Parameters:
9978* a : array
9979* slot : disk number
9980* Returns:
9981* bb : structure containing bad blocks
9982* NULL : error
9983******************************************************************************/
9984static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
9985{
9986 int inst = a->info.container_member;
9987 struct intel_super *super = a->container->sb;
9988 struct imsm_dev *dev = get_imsm_dev(super, inst);
9989 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9990 int ord;
9991
9992 ord = imsm_disk_slot_to_ord(a, slot);
9993 if (ord < 0)
9994 return NULL;
9995
9996 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
9997 blocks_per_member(map), &super->bb);
9998
9999 return &super->bb;
10000}
27156a57
TM
10001/*******************************************************************************
10002* Function: examine_badblocks_imsm
10003* Description: Prints list of bad blocks on a disk to the standard output
10004*
10005* Parameters:
10006* st : metadata handler
10007* fd : open file descriptor for device
10008* devname : device name
10009* Returns:
10010* 0 : Success
10011* 1 : Error
10012******************************************************************************/
10013static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10014{
10015 struct intel_super *super = st->sb;
10016 struct bbm_log *log = super->bbm_log;
10017 struct dl *d = NULL;
10018 int any = 0;
10019
10020 for (d = super->disks; d ; d = d->next) {
10021 if (strcmp(d->devname, devname) == 0)
10022 break;
10023 }
10024
10025 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10026 pr_err("%s doesn't appear to be part of a raid array\n",
10027 devname);
10028 return 1;
10029 }
10030
10031 if (log != NULL) {
10032 unsigned int i;
10033 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10034
10035 for (i = 0; i < log->entry_count; i++) {
10036 if (entry[i].disk_ordinal == d->index) {
10037 unsigned long long sector = __le48_to_cpu(
10038 &entry[i].defective_block_start);
10039 int cnt = entry[i].marked_count + 1;
10040
10041 if (!any) {
10042 printf("Bad-blocks on %s:\n", devname);
10043 any = 1;
10044 }
10045
10046 printf("%20llu for %d sectors\n", sector, cnt);
10047 }
10048 }
10049 }
10050
10051 if (!any)
10052 printf("No bad-blocks list configured on %s\n", devname);
10053
10054 return 0;
10055}
687629c2
AK
10056/*******************************************************************************
10057 * Function: init_migr_record_imsm
10058 * Description: Function inits imsm migration record
10059 * Parameters:
10060 * super : imsm internal array info
10061 * dev : device under migration
10062 * info : general array info to find the smallest device
10063 * Returns:
10064 * none
10065 ******************************************************************************/
10066void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10067 struct mdinfo *info)
10068{
10069 struct intel_super *super = st->sb;
10070 struct migr_record *migr_rec = super->migr_rec;
10071 int new_data_disks;
10072 unsigned long long dsize, dev_sectors;
10073 long long unsigned min_dev_sectors = -1LLU;
10074 struct mdinfo *sd;
10075 char nm[30];
10076 int fd;
238c0a71
AK
10077 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10078 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 10079 unsigned long long num_migr_units;
3ef4403c 10080 unsigned long long array_blocks;
687629c2
AK
10081
10082 memset(migr_rec, 0, sizeof(struct migr_record));
10083 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10084
10085 /* only ascending reshape supported now */
10086 migr_rec->ascending_migr = __cpu_to_le32(1);
10087
10088 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10089 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
10090 migr_rec->dest_depth_per_unit *=
10091 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 10092 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
10093 migr_rec->blocks_per_unit =
10094 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10095 migr_rec->dest_depth_per_unit =
10096 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 10097 array_blocks = info->component_size * new_data_disks;
687629c2
AK
10098 num_migr_units =
10099 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10100
10101 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10102 num_migr_units++;
10103 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10104
10105 migr_rec->post_migr_vol_cap = dev->size_low;
10106 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10107
687629c2
AK
10108 /* Find the smallest dev */
10109 for (sd = info->devs ; sd ; sd = sd->next) {
10110 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10111 fd = dev_open(nm, O_RDONLY);
10112 if (fd < 0)
10113 continue;
10114 get_dev_size(fd, NULL, &dsize);
10115 dev_sectors = dsize / 512;
10116 if (dev_sectors < min_dev_sectors)
10117 min_dev_sectors = dev_sectors;
10118 close(fd);
10119 }
10120 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10121 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10122
10123 write_imsm_migr_rec(st);
10124
10125 return;
10126}
10127
10128/*******************************************************************************
10129 * Function: save_backup_imsm
10130 * Description: Function saves critical data stripes to Migration Copy Area
10131 * and updates the current migration unit status.
10132 * Use restore_stripes() to form a destination stripe,
10133 * and to write it to the Copy Area.
10134 * Parameters:
10135 * st : supertype information
aea93171 10136 * dev : imsm device that backup is saved for
687629c2
AK
10137 * info : general array info
10138 * buf : input buffer
687629c2
AK
10139 * length : length of data to backup (blocks_per_unit)
10140 * Returns:
10141 * 0 : success
10142 *, -1 : fail
10143 ******************************************************************************/
10144int save_backup_imsm(struct supertype *st,
10145 struct imsm_dev *dev,
10146 struct mdinfo *info,
10147 void *buf,
687629c2
AK
10148 int length)
10149{
10150 int rv = -1;
10151 struct intel_super *super = st->sb;
594dc1b8
JS
10152 unsigned long long *target_offsets;
10153 int *targets;
687629c2 10154 int i;
238c0a71 10155 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 10156 int new_disks = map_dest->num_members;
ab724b98
AK
10157 int dest_layout = 0;
10158 int dest_chunk;
d1877f69 10159 unsigned long long start;
238c0a71 10160 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 10161
503975b9 10162 targets = xmalloc(new_disks * sizeof(int));
687629c2 10163
7e45b550
AK
10164 for (i = 0; i < new_disks; i++)
10165 targets[i] = -1;
10166
503975b9 10167 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 10168
d1877f69 10169 start = info->reshape_progress * 512;
687629c2 10170 for (i = 0; i < new_disks; i++) {
687629c2
AK
10171 target_offsets[i] = (unsigned long long)
10172 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
10173 /* move back copy area adderss, it will be moved forward
10174 * in restore_stripes() using start input variable
10175 */
10176 target_offsets[i] -= start/data_disks;
687629c2
AK
10177 }
10178
9a717282
AK
10179 if (open_backup_targets(info, new_disks, targets,
10180 super, dev))
687629c2
AK
10181 goto abort;
10182
68eb8bc6 10183 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
10184 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10185
687629c2
AK
10186 if (restore_stripes(targets, /* list of dest devices */
10187 target_offsets, /* migration record offsets */
10188 new_disks,
ab724b98
AK
10189 dest_chunk,
10190 map_dest->raid_level,
10191 dest_layout,
10192 -1, /* source backup file descriptor */
10193 0, /* input buf offset
10194 * always 0 buf is already offseted */
d1877f69 10195 start,
687629c2
AK
10196 length,
10197 buf) != 0) {
e7b84f9d 10198 pr_err("Error restoring stripes\n");
687629c2
AK
10199 goto abort;
10200 }
10201
10202 rv = 0;
10203
10204abort:
10205 if (targets) {
9a717282 10206 close_targets(targets, new_disks);
687629c2
AK
10207 free(targets);
10208 }
10209 free(target_offsets);
10210
10211 return rv;
10212}
10213
10214/*******************************************************************************
10215 * Function: save_checkpoint_imsm
10216 * Description: Function called for current unit status update
10217 * in the migration record. It writes it to disk.
10218 * Parameters:
10219 * super : imsm internal array info
10220 * info : general array info
10221 * Returns:
10222 * 0: success
10223 * 1: failure
0228d92c
AK
10224 * 2: failure, means no valid migration record
10225 * / no general migration in progress /
687629c2
AK
10226 ******************************************************************************/
10227int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10228{
10229 struct intel_super *super = st->sb;
f8b72ef5
AK
10230 unsigned long long blocks_per_unit;
10231 unsigned long long curr_migr_unit;
10232
2e062e82 10233 if (load_imsm_migr_rec(super, info) != 0) {
7a862a02 10234 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
10235 return 1;
10236 }
10237
f8b72ef5
AK
10238 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10239 if (blocks_per_unit == 0) {
0228d92c
AK
10240 dprintf("imsm: no migration in progress.\n");
10241 return 2;
687629c2 10242 }
f8b72ef5
AK
10243 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10244 /* check if array is alligned to copy area
10245 * if it is not alligned, add one to current migration unit value
10246 * this can happend on array reshape finish only
10247 */
10248 if (info->reshape_progress % blocks_per_unit)
10249 curr_migr_unit++;
687629c2
AK
10250
10251 super->migr_rec->curr_migr_unit =
f8b72ef5 10252 __cpu_to_le32(curr_migr_unit);
687629c2
AK
10253 super->migr_rec->rec_status = __cpu_to_le32(state);
10254 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
10255 __cpu_to_le32(curr_migr_unit *
10256 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2 10257 if (write_imsm_migr_rec(st) < 0) {
7a862a02 10258 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
10259 return 1;
10260 }
10261
10262 return 0;
10263}
10264
276d77db
AK
10265/*******************************************************************************
10266 * Function: recover_backup_imsm
10267 * Description: Function recovers critical data from the Migration Copy Area
10268 * while assembling an array.
10269 * Parameters:
10270 * super : imsm internal array info
10271 * info : general array info
10272 * Returns:
10273 * 0 : success (or there is no data to recover)
10274 * 1 : fail
10275 ******************************************************************************/
10276int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10277{
10278 struct intel_super *super = st->sb;
10279 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 10280 struct imsm_map *map_dest;
276d77db
AK
10281 struct intel_dev *id = NULL;
10282 unsigned long long read_offset;
10283 unsigned long long write_offset;
10284 unsigned unit_len;
10285 int *targets = NULL;
10286 int new_disks, i, err;
10287 char *buf = NULL;
10288 int retval = 1;
f36a9ecd 10289 unsigned int sector_size = super->sector_size;
276d77db
AK
10290 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10291 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 10292 char buffer[20];
6c3560c0 10293 int skipped_disks = 0;
276d77db
AK
10294
10295 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10296 if (err < 1)
10297 return 1;
10298
10299 /* recover data only during assemblation */
10300 if (strncmp(buffer, "inactive", 8) != 0)
10301 return 0;
10302 /* no data to recover */
10303 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10304 return 0;
10305 if (curr_migr_unit >= num_migr_units)
10306 return 1;
10307
10308 /* find device during reshape */
10309 for (id = super->devlist; id; id = id->next)
10310 if (is_gen_migration(id->dev))
10311 break;
10312 if (id == NULL)
10313 return 1;
10314
238c0a71 10315 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
10316 new_disks = map_dest->num_members;
10317
10318 read_offset = (unsigned long long)
10319 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10320
10321 write_offset = ((unsigned long long)
10322 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 10323 pba_of_lba0(map_dest)) * 512;
276d77db
AK
10324
10325 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
f36a9ecd 10326 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
276d77db 10327 goto abort;
503975b9 10328 targets = xcalloc(new_disks, sizeof(int));
276d77db 10329
9a717282 10330 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 10331 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
10332 goto abort;
10333 }
276d77db
AK
10334
10335 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
10336 if (targets[i] < 0) {
10337 skipped_disks++;
10338 continue;
10339 }
276d77db 10340 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
10341 pr_err("Cannot seek to block: %s\n",
10342 strerror(errno));
137debce
AK
10343 skipped_disks++;
10344 continue;
276d77db 10345 }
9ec11d1a 10346 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10347 pr_err("Cannot read copy area block: %s\n",
10348 strerror(errno));
137debce
AK
10349 skipped_disks++;
10350 continue;
276d77db
AK
10351 }
10352 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
10353 pr_err("Cannot seek to block: %s\n",
10354 strerror(errno));
137debce
AK
10355 skipped_disks++;
10356 continue;
276d77db 10357 }
9ec11d1a 10358 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
10359 pr_err("Cannot restore block: %s\n",
10360 strerror(errno));
137debce
AK
10361 skipped_disks++;
10362 continue;
276d77db
AK
10363 }
10364 }
10365
137debce
AK
10366 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10367 new_disks,
10368 super,
10369 id->dev)) {
7a862a02 10370 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
10371 goto abort;
10372 }
10373
befb629b
AK
10374 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10375 /* ignore error == 2, this can mean end of reshape here
10376 */
7a862a02 10377 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 10378 } else
276d77db 10379 retval = 0;
276d77db
AK
10380
10381abort:
10382 if (targets) {
10383 for (i = 0; i < new_disks; i++)
10384 if (targets[i])
10385 close(targets[i]);
10386 free(targets);
10387 }
10388 free(buf);
10389 return retval;
10390}
10391
2cda7640
ML
10392static char disk_by_path[] = "/dev/disk/by-path/";
10393
10394static const char *imsm_get_disk_controller_domain(const char *path)
10395{
2cda7640 10396 char disk_path[PATH_MAX];
96234762
LM
10397 char *drv=NULL;
10398 struct stat st;
2cda7640 10399
6d8d290a 10400 strcpy(disk_path, disk_by_path);
96234762
LM
10401 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10402 if (stat(disk_path, &st) == 0) {
10403 struct sys_dev* hba;
594dc1b8 10404 char *path;
96234762
LM
10405
10406 path = devt_to_devpath(st.st_rdev);
10407 if (path == NULL)
10408 return "unknown";
10409 hba = find_disk_attached_hba(-1, path);
10410 if (hba && hba->type == SYS_DEV_SAS)
10411 drv = "isci";
10412 else if (hba && hba->type == SYS_DEV_SATA)
10413 drv = "ahci";
1011e834 10414 else
96234762
LM
10415 drv = "unknown";
10416 dprintf("path: %s hba: %s attached: %s\n",
10417 path, (hba) ? hba->path : "NULL", drv);
10418 free(path);
2cda7640 10419 }
96234762 10420 return drv;
2cda7640
ML
10421}
10422
4dd2df09 10423static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 10424{
4dd2df09 10425 static char devnm[32];
78b10e66
N
10426 char subdev_name[20];
10427 struct mdstat_ent *mdstat;
10428
10429 sprintf(subdev_name, "%d", subdev);
10430 mdstat = mdstat_by_subdev(subdev_name, container);
10431 if (!mdstat)
4dd2df09 10432 return NULL;
78b10e66 10433
4dd2df09 10434 strcpy(devnm, mdstat->devnm);
78b10e66 10435 free_mdstat(mdstat);
4dd2df09 10436 return devnm;
78b10e66
N
10437}
10438
10439static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10440 struct geo_params *geo,
fbf3d202
AK
10441 int *old_raid_disks,
10442 int direction)
78b10e66 10443{
694575e7
KW
10444 /* currently we only support increasing the number of devices
10445 * for a container. This increases the number of device for each
10446 * member array. They must all be RAID0 or RAID5.
10447 */
78b10e66
N
10448 int ret_val = 0;
10449 struct mdinfo *info, *member;
10450 int devices_that_can_grow = 0;
10451
7a862a02 10452 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 10453
d04f65f4 10454 if (geo->size > 0 ||
78b10e66
N
10455 geo->level != UnSet ||
10456 geo->layout != UnSet ||
10457 geo->chunksize != 0 ||
10458 geo->raid_disks == UnSet) {
7a862a02 10459 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
10460 return ret_val;
10461 }
10462
fbf3d202 10463 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 10464 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
10465 return ret_val;
10466 }
10467
78b10e66
N
10468 info = container_content_imsm(st, NULL);
10469 for (member = info; member; member = member->next) {
4dd2df09 10470 char *result;
78b10e66
N
10471
10472 dprintf("imsm: checking device_num: %i\n",
10473 member->container_member);
10474
d7d205bd 10475 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
10476 /* we work on container for Online Capacity Expansion
10477 * only so raid_disks has to grow
10478 */
7a862a02 10479 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
10480 break;
10481 }
10482
089f9d79 10483 if (info->array.level != 0 && info->array.level != 5) {
78b10e66
N
10484 /* we cannot use this container with other raid level
10485 */
7a862a02 10486 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
10487 info->array.level);
10488 break;
10489 } else {
10490 /* check for platform support
10491 * for this raid level configuration
10492 */
10493 struct intel_super *super = st->sb;
10494 if (!is_raid_level_supported(super->orom,
10495 member->array.level,
10496 geo->raid_disks)) {
7a862a02 10497 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
10498 info->array.level,
10499 geo->raid_disks,
10500 geo->raid_disks > 1 ? "s" : "");
10501 break;
10502 }
2a4a08e7
AK
10503 /* check if component size is aligned to chunk size
10504 */
10505 if (info->component_size %
10506 (info->array.chunk_size/512)) {
7a862a02 10507 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
10508 break;
10509 }
78b10e66
N
10510 }
10511
10512 if (*old_raid_disks &&
10513 info->array.raid_disks != *old_raid_disks)
10514 break;
10515 *old_raid_disks = info->array.raid_disks;
10516
10517 /* All raid5 and raid0 volumes in container
10518 * have to be ready for Online Capacity Expansion
10519 * so they need to be assembled. We have already
10520 * checked that no recovery etc is happening.
10521 */
4dd2df09
N
10522 result = imsm_find_array_devnm_by_subdev(member->container_member,
10523 st->container_devnm);
10524 if (result == NULL) {
78b10e66
N
10525 dprintf("imsm: cannot find array\n");
10526 break;
10527 }
10528 devices_that_can_grow++;
10529 }
10530 sysfs_free(info);
10531 if (!member && devices_that_can_grow)
10532 ret_val = 1;
10533
10534 if (ret_val)
1ade5cc1 10535 dprintf("Container operation allowed\n");
78b10e66 10536 else
1ade5cc1 10537 dprintf("Error: %i\n", ret_val);
78b10e66
N
10538
10539 return ret_val;
10540}
10541
10542/* Function: get_spares_for_grow
10543 * Description: Allocates memory and creates list of spare devices
1011e834 10544 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
10545 * Parameters: Pointer to the supertype structure
10546 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 10547 * NULL if fail
78b10e66
N
10548 */
10549static struct mdinfo *get_spares_for_grow(struct supertype *st)
10550{
78b10e66 10551 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 10552 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
10553}
10554
10555/******************************************************************************
10556 * function: imsm_create_metadata_update_for_reshape
10557 * Function creates update for whole IMSM container.
10558 *
10559 ******************************************************************************/
10560static int imsm_create_metadata_update_for_reshape(
10561 struct supertype *st,
10562 struct geo_params *geo,
10563 int old_raid_disks,
10564 struct imsm_update_reshape **updatep)
10565{
10566 struct intel_super *super = st->sb;
10567 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
10568 int update_memory_size;
10569 struct imsm_update_reshape *u;
10570 struct mdinfo *spares;
78b10e66 10571 int i;
594dc1b8 10572 int delta_disks;
bbd24d86 10573 struct mdinfo *dev;
78b10e66 10574
1ade5cc1 10575 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
10576
10577 delta_disks = geo->raid_disks - old_raid_disks;
10578
10579 /* size of all update data without anchor */
10580 update_memory_size = sizeof(struct imsm_update_reshape);
10581
10582 /* now add space for spare disks that we need to add. */
10583 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
10584
503975b9 10585 u = xcalloc(1, update_memory_size);
78b10e66
N
10586 u->type = update_reshape_container_disks;
10587 u->old_raid_disks = old_raid_disks;
10588 u->new_raid_disks = geo->raid_disks;
10589
10590 /* now get spare disks list
10591 */
10592 spares = get_spares_for_grow(st);
10593
10594 if (spares == NULL
10595 || delta_disks > spares->array.spare_disks) {
7a862a02 10596 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 10597 i = -1;
78b10e66
N
10598 goto abort;
10599 }
10600
10601 /* we have got spares
10602 * update disk list in imsm_disk list table in anchor
10603 */
10604 dprintf("imsm: %i spares are available.\n\n",
10605 spares->array.spare_disks);
10606
bbd24d86 10607 dev = spares->devs;
78b10e66 10608 for (i = 0; i < delta_disks; i++) {
78b10e66
N
10609 struct dl *dl;
10610
bbd24d86
AK
10611 if (dev == NULL)
10612 break;
78b10e66
N
10613 u->new_disks[i] = makedev(dev->disk.major,
10614 dev->disk.minor);
10615 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
10616 dl->index = mpb->num_disks;
10617 mpb->num_disks++;
bbd24d86 10618 dev = dev->next;
78b10e66 10619 }
78b10e66
N
10620
10621abort:
10622 /* free spares
10623 */
10624 sysfs_free(spares);
10625
d677e0b8 10626 dprintf("imsm: reshape update preparation :");
78b10e66 10627 if (i == delta_disks) {
1ade5cc1 10628 dprintf_cont(" OK\n");
78b10e66
N
10629 *updatep = u;
10630 return update_memory_size;
10631 }
10632 free(u);
1ade5cc1 10633 dprintf_cont(" Error\n");
78b10e66
N
10634
10635 return 0;
10636}
10637
f3871fdc
AK
10638/******************************************************************************
10639 * function: imsm_create_metadata_update_for_size_change()
10640 * Creates update for IMSM array for array size change.
10641 *
10642 ******************************************************************************/
10643static int imsm_create_metadata_update_for_size_change(
10644 struct supertype *st,
10645 struct geo_params *geo,
10646 struct imsm_update_size_change **updatep)
10647{
10648 struct intel_super *super = st->sb;
594dc1b8
JS
10649 int update_memory_size;
10650 struct imsm_update_size_change *u;
f3871fdc 10651
1ade5cc1 10652 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
10653
10654 /* size of all update data without anchor */
10655 update_memory_size = sizeof(struct imsm_update_size_change);
10656
503975b9 10657 u = xcalloc(1, update_memory_size);
f3871fdc
AK
10658 u->type = update_size_change;
10659 u->subdev = super->current_vol;
10660 u->new_size = geo->size;
10661
10662 dprintf("imsm: reshape update preparation : OK\n");
10663 *updatep = u;
10664
10665 return update_memory_size;
10666}
10667
48c5303a
PC
10668/******************************************************************************
10669 * function: imsm_create_metadata_update_for_migration()
10670 * Creates update for IMSM array.
10671 *
10672 ******************************************************************************/
10673static int imsm_create_metadata_update_for_migration(
10674 struct supertype *st,
10675 struct geo_params *geo,
10676 struct imsm_update_reshape_migration **updatep)
10677{
10678 struct intel_super *super = st->sb;
594dc1b8
JS
10679 int update_memory_size;
10680 struct imsm_update_reshape_migration *u;
48c5303a
PC
10681 struct imsm_dev *dev;
10682 int previous_level = -1;
10683
1ade5cc1 10684 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
10685
10686 /* size of all update data without anchor */
10687 update_memory_size = sizeof(struct imsm_update_reshape_migration);
10688
503975b9 10689 u = xcalloc(1, update_memory_size);
48c5303a
PC
10690 u->type = update_reshape_migration;
10691 u->subdev = super->current_vol;
10692 u->new_level = geo->level;
10693 u->new_layout = geo->layout;
10694 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10695 u->new_disks[0] = -1;
4bba0439 10696 u->new_chunksize = -1;
48c5303a
PC
10697
10698 dev = get_imsm_dev(super, u->subdev);
10699 if (dev) {
10700 struct imsm_map *map;
10701
238c0a71 10702 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
10703 if (map) {
10704 int current_chunk_size =
10705 __le16_to_cpu(map->blocks_per_strip) / 2;
10706
10707 if (geo->chunksize != current_chunk_size) {
10708 u->new_chunksize = geo->chunksize / 1024;
7a862a02 10709 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
10710 current_chunk_size, u->new_chunksize);
10711 }
48c5303a 10712 previous_level = map->raid_level;
4bba0439 10713 }
48c5303a 10714 }
089f9d79 10715 if (geo->level == 5 && previous_level == 0) {
48c5303a
PC
10716 struct mdinfo *spares = NULL;
10717
10718 u->new_raid_disks++;
10719 spares = get_spares_for_grow(st);
089f9d79 10720 if (spares == NULL || spares->array.spare_disks < 1) {
48c5303a
PC
10721 free(u);
10722 sysfs_free(spares);
10723 update_memory_size = 0;
565cc99e 10724 pr_err("cannot get spare device for requested migration\n");
48c5303a
PC
10725 return 0;
10726 }
10727 sysfs_free(spares);
10728 }
10729 dprintf("imsm: reshape update preparation : OK\n");
10730 *updatep = u;
10731
10732 return update_memory_size;
10733}
10734
8dd70bce
AK
10735static void imsm_update_metadata_locally(struct supertype *st,
10736 void *buf, int len)
10737{
10738 struct metadata_update mu;
10739
10740 mu.buf = buf;
10741 mu.len = len;
10742 mu.space = NULL;
10743 mu.space_list = NULL;
10744 mu.next = NULL;
5fe6f031
N
10745 if (imsm_prepare_update(st, &mu))
10746 imsm_process_update(st, &mu);
8dd70bce
AK
10747
10748 while (mu.space_list) {
10749 void **space = mu.space_list;
10750 mu.space_list = *space;
10751 free(space);
10752 }
10753}
78b10e66 10754
471bceb6 10755/***************************************************************************
694575e7 10756* Function: imsm_analyze_change
471bceb6 10757* Description: Function analyze change for single volume
1011e834 10758* and validate if transition is supported
fbf3d202
AK
10759* Parameters: Geometry parameters, supertype structure,
10760* metadata change direction (apply/rollback)
694575e7 10761* Returns: Operation type code on success, -1 if fail
471bceb6
KW
10762****************************************************************************/
10763enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
10764 struct geo_params *geo,
10765 int direction)
694575e7 10766{
471bceb6
KW
10767 struct mdinfo info;
10768 int change = -1;
10769 int check_devs = 0;
c21e737b 10770 int chunk;
67a2db32
AK
10771 /* number of added/removed disks in operation result */
10772 int devNumChange = 0;
10773 /* imsm compatible layout value for array geometry verification */
10774 int imsm_layout = -1;
7abc9871
AK
10775 int data_disks;
10776 struct imsm_dev *dev;
10777 struct intel_super *super;
d04f65f4 10778 unsigned long long current_size;
65d38cca 10779 unsigned long long free_size;
d04f65f4 10780 unsigned long long max_size;
65d38cca 10781 int rv;
471bceb6
KW
10782
10783 getinfo_super_imsm_volume(st, &info, NULL);
089f9d79
JS
10784 if (geo->level != info.array.level && geo->level >= 0 &&
10785 geo->level != UnSet) {
471bceb6
KW
10786 switch (info.array.level) {
10787 case 0:
10788 if (geo->level == 5) {
b5347799 10789 change = CH_MIGRATION;
e13ce846 10790 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 10791 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
10792 change = -1;
10793 goto analyse_change_exit;
10794 }
67a2db32 10795 imsm_layout = geo->layout;
471bceb6 10796 check_devs = 1;
e91a3bad
LM
10797 devNumChange = 1; /* parity disk added */
10798 } else if (geo->level == 10) {
471bceb6
KW
10799 change = CH_TAKEOVER;
10800 check_devs = 1;
e91a3bad 10801 devNumChange = 2; /* two mirrors added */
67a2db32 10802 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 10803 }
dfe77a9e
KW
10804 break;
10805 case 1:
471bceb6
KW
10806 case 10:
10807 if (geo->level == 0) {
10808 change = CH_TAKEOVER;
10809 check_devs = 1;
e91a3bad 10810 devNumChange = -(geo->raid_disks/2);
67a2db32 10811 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
10812 }
10813 break;
10814 }
10815 if (change == -1) {
7a862a02 10816 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 10817 info.array.level, geo->level);
471bceb6
KW
10818 goto analyse_change_exit;
10819 }
10820 } else
10821 geo->level = info.array.level;
10822
089f9d79
JS
10823 if (geo->layout != info.array.layout &&
10824 (geo->layout != UnSet && geo->layout != -1)) {
b5347799 10825 change = CH_MIGRATION;
089f9d79
JS
10826 if (info.array.layout == 0 && info.array.level == 5 &&
10827 geo->layout == 5) {
471bceb6 10828 /* reshape 5 -> 4 */
089f9d79
JS
10829 } else if (info.array.layout == 5 && info.array.level == 5 &&
10830 geo->layout == 0) {
471bceb6
KW
10831 /* reshape 4 -> 5 */
10832 geo->layout = 0;
10833 geo->level = 5;
10834 } else {
7a862a02 10835 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 10836 info.array.layout, geo->layout);
471bceb6
KW
10837 change = -1;
10838 goto analyse_change_exit;
10839 }
67a2db32 10840 } else {
471bceb6 10841 geo->layout = info.array.layout;
67a2db32
AK
10842 if (imsm_layout == -1)
10843 imsm_layout = info.array.layout;
10844 }
471bceb6 10845
089f9d79
JS
10846 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
10847 geo->chunksize != info.array.chunk_size) {
2d2b0eb7
MD
10848 if (info.array.level == 10) {
10849 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
10850 change = -1;
10851 goto analyse_change_exit;
1e9b2c3f
PB
10852 } else if (info.component_size % (geo->chunksize/512)) {
10853 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
10854 geo->chunksize/1024, info.component_size/2);
10855 change = -1;
10856 goto analyse_change_exit;
2d2b0eb7 10857 }
b5347799 10858 change = CH_MIGRATION;
2d2b0eb7 10859 } else {
471bceb6 10860 geo->chunksize = info.array.chunk_size;
2d2b0eb7 10861 }
471bceb6 10862
c21e737b 10863 chunk = geo->chunksize / 1024;
7abc9871
AK
10864
10865 super = st->sb;
10866 dev = get_imsm_dev(super, super->current_vol);
10867 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 10868 /* compute current size per disk member
7abc9871 10869 */
c41e00b2
AK
10870 current_size = info.custom_array_size / data_disks;
10871
089f9d79 10872 if (geo->size > 0 && geo->size != MAX_SIZE) {
c41e00b2
AK
10873 /* align component size
10874 */
10875 geo->size = imsm_component_size_aligment_check(
10876 get_imsm_raid_level(dev->vol.map),
f36a9ecd 10877 chunk * 1024, super->sector_size,
c41e00b2 10878 geo->size * 2);
65d0b4ce 10879 if (geo->size == 0) {
7a862a02 10880 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
10881 current_size);
10882 goto analyse_change_exit;
10883 }
c41e00b2 10884 }
7abc9871 10885
089f9d79 10886 if (current_size != geo->size && geo->size > 0) {
7abc9871 10887 if (change != -1) {
7a862a02 10888 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
10889 change = -1;
10890 goto analyse_change_exit;
10891 }
10892 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 10893 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 10894 super->current_vol, st->devnm);
7abc9871
AK
10895 goto analyse_change_exit;
10896 }
65d38cca
LD
10897 /* check the maximum available size
10898 */
10899 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10900 0, chunk, &free_size);
10901 if (rv == 0)
10902 /* Cannot find maximum available space
10903 */
10904 max_size = 0;
10905 else {
10906 max_size = free_size + current_size;
10907 /* align component size
10908 */
10909 max_size = imsm_component_size_aligment_check(
10910 get_imsm_raid_level(dev->vol.map),
f36a9ecd 10911 chunk * 1024, super->sector_size,
65d38cca
LD
10912 max_size);
10913 }
d04f65f4 10914 if (geo->size == MAX_SIZE) {
b130333f
AK
10915 /* requested size change to the maximum available size
10916 */
65d38cca 10917 if (max_size == 0) {
7a862a02 10918 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
10919 change = -1;
10920 goto analyse_change_exit;
65d38cca
LD
10921 } else
10922 geo->size = max_size;
c41e00b2 10923 }
b130333f 10924
681b7ae2 10925 if (direction == ROLLBACK_METADATA_CHANGES) {
fbf3d202
AK
10926 /* accept size for rollback only
10927 */
10928 } else {
10929 /* round size due to metadata compatibility
10930 */
10931 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10932 << SECT_PER_MB_SHIFT;
10933 dprintf("Prepare update for size change to %llu\n",
10934 geo->size );
10935 if (current_size >= geo->size) {
7a862a02 10936 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 10937 current_size, geo->size);
fbf3d202
AK
10938 goto analyse_change_exit;
10939 }
65d38cca 10940 if (max_size && geo->size > max_size) {
7a862a02 10941 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 10942 max_size, geo->size);
65d38cca
LD
10943 goto analyse_change_exit;
10944 }
7abc9871
AK
10945 }
10946 geo->size *= data_disks;
10947 geo->raid_disks = dev->vol.map->num_members;
10948 change = CH_ARRAY_SIZE;
10949 }
471bceb6
KW
10950 if (!validate_geometry_imsm(st,
10951 geo->level,
67a2db32 10952 imsm_layout,
e91a3bad 10953 geo->raid_disks + devNumChange,
c21e737b 10954 &chunk,
af4348dd 10955 geo->size, INVALID_SECTORS,
5308f117 10956 0, 0, info.consistency_policy, 1))
471bceb6
KW
10957 change = -1;
10958
10959 if (check_devs) {
10960 struct intel_super *super = st->sb;
10961 struct imsm_super *mpb = super->anchor;
10962
10963 if (mpb->num_raid_devs > 1) {
7a862a02 10964 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 10965 geo->dev_name);
471bceb6
KW
10966 change = -1;
10967 }
10968 }
10969
10970analyse_change_exit:
089f9d79
JS
10971 if (direction == ROLLBACK_METADATA_CHANGES &&
10972 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
7a862a02 10973 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
10974 change = -1;
10975 }
471bceb6 10976 return change;
694575e7
KW
10977}
10978
bb025c2f
KW
10979int imsm_takeover(struct supertype *st, struct geo_params *geo)
10980{
10981 struct intel_super *super = st->sb;
10982 struct imsm_update_takeover *u;
10983
503975b9 10984 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
10985
10986 u->type = update_takeover;
10987 u->subarray = super->current_vol;
10988
10989 /* 10->0 transition */
10990 if (geo->level == 0)
10991 u->direction = R10_TO_R0;
10992
0529c688
KW
10993 /* 0->10 transition */
10994 if (geo->level == 10)
10995 u->direction = R0_TO_R10;
10996
bb025c2f
KW
10997 /* update metadata locally */
10998 imsm_update_metadata_locally(st, u,
10999 sizeof(struct imsm_update_takeover));
11000 /* and possibly remotely */
11001 if (st->update_tail)
11002 append_metadata_update(st, u,
11003 sizeof(struct imsm_update_takeover));
11004 else
11005 free(u);
11006
11007 return 0;
11008}
11009
d04f65f4
N
11010static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11011 int level,
78b10e66 11012 int layout, int chunksize, int raid_disks,
41784c88 11013 int delta_disks, char *backup, char *dev,
016e00f5 11014 int direction, int verbose)
78b10e66 11015{
78b10e66
N
11016 int ret_val = 1;
11017 struct geo_params geo;
11018
1ade5cc1 11019 dprintf("(enter)\n");
78b10e66 11020
71204a50 11021 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
11022
11023 geo.dev_name = dev;
4dd2df09 11024 strcpy(geo.devnm, st->devnm);
78b10e66
N
11025 geo.size = size;
11026 geo.level = level;
11027 geo.layout = layout;
11028 geo.chunksize = chunksize;
11029 geo.raid_disks = raid_disks;
41784c88
AK
11030 if (delta_disks != UnSet)
11031 geo.raid_disks += delta_disks;
78b10e66 11032
1ade5cc1
N
11033 dprintf("for level : %i\n", geo.level);
11034 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66
N
11035
11036 if (experimental() == 0)
11037 return ret_val;
11038
4dd2df09 11039 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
11040 /* On container level we can only increase number of devices. */
11041 dprintf("imsm: info: Container operation\n");
78b10e66 11042 int old_raid_disks = 0;
6dc0be30 11043
78b10e66 11044 if (imsm_reshape_is_allowed_on_container(
fbf3d202 11045 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
11046 struct imsm_update_reshape *u = NULL;
11047 int len;
11048
11049 len = imsm_create_metadata_update_for_reshape(
11050 st, &geo, old_raid_disks, &u);
11051
ed08d51c
AK
11052 if (len <= 0) {
11053 dprintf("imsm: Cannot prepare update\n");
11054 goto exit_imsm_reshape_super;
11055 }
11056
8dd70bce
AK
11057 ret_val = 0;
11058 /* update metadata locally */
11059 imsm_update_metadata_locally(st, u, len);
11060 /* and possibly remotely */
11061 if (st->update_tail)
11062 append_metadata_update(st, u, len);
11063 else
ed08d51c 11064 free(u);
8dd70bce 11065
694575e7 11066 } else {
7a862a02 11067 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
11068 }
11069 } else {
11070 /* On volume level we support following operations
471bceb6
KW
11071 * - takeover: raid10 -> raid0; raid0 -> raid10
11072 * - chunk size migration
11073 * - migration: raid5 -> raid0; raid0 -> raid5
11074 */
11075 struct intel_super *super = st->sb;
11076 struct intel_dev *dev = super->devlist;
4dd2df09 11077 int change;
694575e7 11078 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
11079 /* find requested device */
11080 while (dev) {
1011e834 11081 char *devnm =
4dd2df09
N
11082 imsm_find_array_devnm_by_subdev(
11083 dev->index, st->container_devnm);
11084 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
11085 break;
11086 dev = dev->next;
11087 }
11088 if (dev == NULL) {
4dd2df09
N
11089 pr_err("Cannot find %s (%s) subarray\n",
11090 geo.dev_name, geo.devnm);
471bceb6
KW
11091 goto exit_imsm_reshape_super;
11092 }
11093 super->current_vol = dev->index;
fbf3d202 11094 change = imsm_analyze_change(st, &geo, direction);
694575e7 11095 switch (change) {
471bceb6 11096 case CH_TAKEOVER:
bb025c2f 11097 ret_val = imsm_takeover(st, &geo);
694575e7 11098 break;
48c5303a
PC
11099 case CH_MIGRATION: {
11100 struct imsm_update_reshape_migration *u = NULL;
11101 int len =
11102 imsm_create_metadata_update_for_migration(
11103 st, &geo, &u);
11104 if (len < 1) {
7a862a02 11105 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
11106 break;
11107 }
471bceb6 11108 ret_val = 0;
48c5303a
PC
11109 /* update metadata locally */
11110 imsm_update_metadata_locally(st, u, len);
11111 /* and possibly remotely */
11112 if (st->update_tail)
11113 append_metadata_update(st, u, len);
11114 else
11115 free(u);
11116 }
11117 break;
7abc9871 11118 case CH_ARRAY_SIZE: {
f3871fdc
AK
11119 struct imsm_update_size_change *u = NULL;
11120 int len =
11121 imsm_create_metadata_update_for_size_change(
11122 st, &geo, &u);
11123 if (len < 1) {
7a862a02 11124 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
11125 break;
11126 }
11127 ret_val = 0;
11128 /* update metadata locally */
11129 imsm_update_metadata_locally(st, u, len);
11130 /* and possibly remotely */
11131 if (st->update_tail)
11132 append_metadata_update(st, u, len);
11133 else
11134 free(u);
7abc9871
AK
11135 }
11136 break;
471bceb6
KW
11137 default:
11138 ret_val = 1;
694575e7 11139 }
694575e7 11140 }
78b10e66 11141
ed08d51c 11142exit_imsm_reshape_super:
78b10e66
N
11143 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11144 return ret_val;
11145}
2cda7640 11146
0febb20c
AO
11147#define COMPLETED_OK 0
11148#define COMPLETED_NONE 1
11149#define COMPLETED_DELAYED 2
11150
11151static int read_completed(int fd, unsigned long long *val)
11152{
11153 int ret;
11154 char buf[50];
11155
11156 ret = sysfs_fd_get_str(fd, buf, 50);
11157 if (ret < 0)
11158 return ret;
11159
11160 ret = COMPLETED_OK;
11161 if (strncmp(buf, "none", 4) == 0) {
11162 ret = COMPLETED_NONE;
11163 } else if (strncmp(buf, "delayed", 7) == 0) {
11164 ret = COMPLETED_DELAYED;
11165 } else {
11166 char *ep;
11167 *val = strtoull(buf, &ep, 0);
11168 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11169 ret = -1;
11170 }
11171 return ret;
11172}
11173
eee67a47
AK
11174/*******************************************************************************
11175 * Function: wait_for_reshape_imsm
11176 * Description: Function writes new sync_max value and waits until
11177 * reshape process reach new position
11178 * Parameters:
11179 * sra : general array info
eee67a47
AK
11180 * ndata : number of disks in new array's layout
11181 * Returns:
11182 * 0 : success,
11183 * 1 : there is no reshape in progress,
11184 * -1 : fail
11185 ******************************************************************************/
ae9f01f8 11186int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 11187{
85ca499c 11188 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 11189 int retry = 3;
eee67a47 11190 unsigned long long completed;
ae9f01f8
AK
11191 /* to_complete : new sync_max position */
11192 unsigned long long to_complete = sra->reshape_progress;
11193 unsigned long long position_to_set = to_complete / ndata;
eee67a47 11194
ae9f01f8 11195 if (fd < 0) {
1ade5cc1 11196 dprintf("cannot open reshape_position\n");
eee67a47 11197 return 1;
ae9f01f8 11198 }
eee67a47 11199
df2647fa
PB
11200 do {
11201 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11202 if (!retry) {
11203 dprintf("cannot read reshape_position (no reshape in progres)\n");
11204 close(fd);
11205 return 1;
11206 }
11207 usleep(30000);
11208 } else
11209 break;
11210 } while (retry--);
eee67a47 11211
85ca499c 11212 if (completed > position_to_set) {
1ade5cc1 11213 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 11214 to_complete, position_to_set);
ae9f01f8
AK
11215 close(fd);
11216 return -1;
11217 }
11218 dprintf("Position set: %llu\n", position_to_set);
11219 if (sysfs_set_num(sra, NULL, "sync_max",
11220 position_to_set) != 0) {
1ade5cc1 11221 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
11222 position_to_set);
11223 close(fd);
11224 return -1;
eee67a47
AK
11225 }
11226
eee67a47 11227 do {
0febb20c 11228 int rc;
eee67a47 11229 char action[20];
5ff3a780 11230 int timeout = 3000;
0febb20c 11231
5ff3a780 11232 sysfs_wait(fd, &timeout);
a47e44fb
AK
11233 if (sysfs_get_str(sra, NULL, "sync_action",
11234 action, 20) > 0 &&
d7d3809a 11235 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
11236 if (strncmp(action, "idle", 4) == 0)
11237 break;
d7d3809a
AP
11238 close(fd);
11239 return -1;
11240 }
0febb20c
AO
11241
11242 rc = read_completed(fd, &completed);
11243 if (rc < 0) {
1ade5cc1 11244 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
11245 close(fd);
11246 return 1;
0febb20c
AO
11247 } else if (rc == COMPLETED_NONE)
11248 break;
85ca499c 11249 } while (completed < position_to_set);
b2be2b62 11250
eee67a47
AK
11251 close(fd);
11252 return 0;
eee67a47
AK
11253}
11254
b915c95f
AK
11255/*******************************************************************************
11256 * Function: check_degradation_change
11257 * Description: Check that array hasn't become failed.
11258 * Parameters:
11259 * info : for sysfs access
11260 * sources : source disks descriptors
11261 * degraded: previous degradation level
11262 * Returns:
11263 * degradation level
11264 ******************************************************************************/
11265int check_degradation_change(struct mdinfo *info,
11266 int *sources,
11267 int degraded)
11268{
11269 unsigned long long new_degraded;
e1993023
LD
11270 int rv;
11271
11272 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
089f9d79 11273 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
11274 /* check each device to ensure it is still working */
11275 struct mdinfo *sd;
11276 new_degraded = 0;
11277 for (sd = info->devs ; sd ; sd = sd->next) {
11278 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11279 continue;
11280 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
cf52eff5
TM
11281 char sbuf[100];
11282
b915c95f 11283 if (sysfs_get_str(info,
cf52eff5 11284 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
b915c95f
AK
11285 strstr(sbuf, "faulty") ||
11286 strstr(sbuf, "in_sync") == NULL) {
11287 /* this device is dead */
11288 sd->disk.state = (1<<MD_DISK_FAULTY);
11289 if (sd->disk.raid_disk >= 0 &&
11290 sources[sd->disk.raid_disk] >= 0) {
11291 close(sources[
11292 sd->disk.raid_disk]);
11293 sources[sd->disk.raid_disk] =
11294 -1;
11295 }
11296 new_degraded++;
11297 }
11298 }
11299 }
11300 }
11301
11302 return new_degraded;
11303}
11304
10f22854
AK
11305/*******************************************************************************
11306 * Function: imsm_manage_reshape
11307 * Description: Function finds array under reshape and it manages reshape
11308 * process. It creates stripes backups (if required) and sets
942e1cdb 11309 * checkpoints.
10f22854
AK
11310 * Parameters:
11311 * afd : Backup handle (nattive) - not used
11312 * sra : general array info
11313 * reshape : reshape parameters - not used
11314 * st : supertype structure
11315 * blocks : size of critical section [blocks]
11316 * fds : table of source device descriptor
11317 * offsets : start of array (offest per devices)
11318 * dests : not used
11319 * destfd : table of destination device descriptor
11320 * destoffsets : table of destination offsets (per device)
11321 * Returns:
11322 * 1 : success, reshape is done
11323 * 0 : fail
11324 ******************************************************************************/
999b4972
N
11325static int imsm_manage_reshape(
11326 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 11327 struct supertype *st, unsigned long backup_blocks,
999b4972
N
11328 int *fds, unsigned long long *offsets,
11329 int dests, int *destfd, unsigned long long *destoffsets)
11330{
10f22854
AK
11331 int ret_val = 0;
11332 struct intel_super *super = st->sb;
594dc1b8 11333 struct intel_dev *dv;
de44e46f 11334 unsigned int sector_size = super->sector_size;
10f22854 11335 struct imsm_dev *dev = NULL;
a6b6d984 11336 struct imsm_map *map_src;
10f22854
AK
11337 int migr_vol_qan = 0;
11338 int ndata, odata; /* [bytes] */
11339 int chunk; /* [bytes] */
11340 struct migr_record *migr_rec;
11341 char *buf = NULL;
11342 unsigned int buf_size; /* [bytes] */
11343 unsigned long long max_position; /* array size [bytes] */
11344 unsigned long long next_step; /* [blocks]/[bytes] */
11345 unsigned long long old_data_stripe_length;
10f22854
AK
11346 unsigned long long start_src; /* [bytes] */
11347 unsigned long long start; /* [bytes] */
11348 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 11349 int degraded = 0;
ab724b98 11350 int source_layout = 0;
10f22854 11351
79a16a9b
JS
11352 if (!sra)
11353 return ret_val;
11354
11355 if (!fds || !offsets)
10f22854
AK
11356 goto abort;
11357
11358 /* Find volume during the reshape */
11359 for (dv = super->devlist; dv; dv = dv->next) {
11360 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
11361 && dv->dev->vol.migr_state == 1) {
11362 dev = dv->dev;
11363 migr_vol_qan++;
11364 }
11365 }
11366 /* Only one volume can migrate at the same time */
11367 if (migr_vol_qan != 1) {
676e87a8 11368 pr_err("%s", migr_vol_qan ?
10f22854
AK
11369 "Number of migrating volumes greater than 1\n" :
11370 "There is no volume during migrationg\n");
11371 goto abort;
11372 }
11373
238c0a71 11374 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
11375 if (map_src == NULL)
11376 goto abort;
10f22854 11377
238c0a71
AK
11378 ndata = imsm_num_data_members(dev, MAP_0);
11379 odata = imsm_num_data_members(dev, MAP_1);
10f22854 11380
7b1ab482 11381 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
11382 old_data_stripe_length = odata * chunk;
11383
11384 migr_rec = super->migr_rec;
11385
10f22854
AK
11386 /* initialize migration record for start condition */
11387 if (sra->reshape_progress == 0)
11388 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
11389 else {
11390 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 11391 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
11392 goto abort;
11393 }
6a75c8ca
AK
11394 /* Save checkpoint to update migration record for current
11395 * reshape position (in md). It can be farther than current
11396 * reshape position in metadata.
11397 */
11398 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11399 /* ignore error == 2, this can mean end of reshape here
11400 */
7a862a02 11401 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
11402 goto abort;
11403 }
b2c59438 11404 }
10f22854
AK
11405
11406 /* size for data */
11407 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11408 /* extend buffer size for parity disk */
11409 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11410 /* add space for stripe aligment */
11411 buf_size += old_data_stripe_length;
de44e46f
PB
11412 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11413 dprintf("imsm: Cannot allocate checkpoint buffer\n");
10f22854
AK
11414 goto abort;
11415 }
11416
3ef4403c 11417 max_position = sra->component_size * ndata;
68eb8bc6 11418 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
11419
11420 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11421 __le32_to_cpu(migr_rec->num_migr_units)) {
11422 /* current reshape position [blocks] */
11423 unsigned long long current_position =
11424 __le32_to_cpu(migr_rec->blocks_per_unit)
11425 * __le32_to_cpu(migr_rec->curr_migr_unit);
11426 unsigned long long border;
11427
b915c95f
AK
11428 /* Check that array hasn't become failed.
11429 */
11430 degraded = check_degradation_change(sra, fds, degraded);
11431 if (degraded > 1) {
7a862a02 11432 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
11433 goto abort;
11434 }
11435
10f22854
AK
11436 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11437
11438 if ((current_position + next_step) > max_position)
11439 next_step = max_position - current_position;
11440
92144abf 11441 start = current_position * 512;
10f22854 11442
942e1cdb 11443 /* align reading start to old geometry */
10f22854
AK
11444 start_buf_shift = start % old_data_stripe_length;
11445 start_src = start - start_buf_shift;
11446
11447 border = (start_src / odata) - (start / ndata);
11448 border /= 512;
11449 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11450 /* save critical stripes to buf
11451 * start - start address of current unit
11452 * to backup [bytes]
11453 * start_src - start address of current unit
11454 * to backup alligned to source array
11455 * [bytes]
11456 */
594dc1b8 11457 unsigned long long next_step_filler;
10f22854
AK
11458 unsigned long long copy_length = next_step * 512;
11459
11460 /* allign copy area length to stripe in old geometry */
11461 next_step_filler = ((copy_length + start_buf_shift)
11462 % old_data_stripe_length);
11463 if (next_step_filler)
11464 next_step_filler = (old_data_stripe_length
11465 - next_step_filler);
7a862a02 11466 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
11467 start, start_src, copy_length,
11468 start_buf_shift, next_step_filler);
11469
11470 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
11471 chunk, map_src->raid_level,
11472 source_layout, 0, NULL, start_src,
10f22854
AK
11473 copy_length +
11474 next_step_filler + start_buf_shift,
11475 buf)) {
7a862a02 11476 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
11477 goto abort;
11478 }
11479 /* Convert data to destination format and store it
11480 * in backup general migration area
11481 */
11482 if (save_backup_imsm(st, dev, sra,
aea93171 11483 buf + start_buf_shift, copy_length)) {
7a862a02 11484 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
11485 goto abort;
11486 }
11487 if (save_checkpoint_imsm(st, sra,
11488 UNIT_SRC_IN_CP_AREA)) {
7a862a02 11489 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
11490 goto abort;
11491 }
8016a6d4
AK
11492 } else {
11493 /* set next step to use whole border area */
11494 border /= next_step;
11495 if (border > 1)
11496 next_step *= border;
10f22854
AK
11497 }
11498 /* When data backed up, checkpoint stored,
11499 * kick the kernel to reshape unit of data
11500 */
11501 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
11502 /* limit next step to array max position */
11503 if (next_step > max_position)
11504 next_step = max_position;
10f22854
AK
11505 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11506 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 11507 sra->reshape_progress = next_step;
10f22854
AK
11508
11509 /* wait until reshape finish */
c85338c6 11510 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
11511 dprintf("wait_for_reshape_imsm returned error!\n");
11512 goto abort;
11513 }
84d11e6c
N
11514 if (sigterm)
11515 goto abort;
10f22854 11516
0228d92c
AK
11517 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11518 /* ignore error == 2, this can mean end of reshape here
11519 */
7a862a02 11520 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
11521 goto abort;
11522 }
11523
11524 }
11525
71e5411e
PB
11526 /* clear migr_rec on disks after successful migration */
11527 struct dl *d;
11528
de44e46f 11529 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*sector_size);
71e5411e
PB
11530 for (d = super->disks; d; d = d->next) {
11531 if (d->index < 0 || is_failed(&d->disk))
11532 continue;
11533 unsigned long long dsize;
11534
11535 get_dev_size(d->fd, NULL, &dsize);
de44e46f 11536 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
71e5411e 11537 SEEK_SET) >= 0) {
466070ad 11538 if ((unsigned int)write(d->fd, super->migr_rec_buf,
de44e46f
PB
11539 MIGR_REC_BUF_SECTORS*sector_size) !=
11540 MIGR_REC_BUF_SECTORS*sector_size)
71e5411e
PB
11541 perror("Write migr_rec failed");
11542 }
11543 }
11544
10f22854
AK
11545 /* return '1' if done */
11546 ret_val = 1;
11547abort:
11548 free(buf);
942e1cdb
N
11549 /* See Grow.c: abort_reshape() for further explanation */
11550 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11551 sysfs_set_num(sra, NULL, "suspend_hi", 0);
11552 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
11553
11554 return ret_val;
999b4972 11555}
0c21b485 11556
71204a50 11557#endif /* MDASSEMBLE */
999b4972 11558
cdddbdbc
DW
11559struct superswitch super_imsm = {
11560#ifndef MDASSEMBLE
11561 .examine_super = examine_super_imsm,
11562 .brief_examine_super = brief_examine_super_imsm,
4737ae25 11563 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 11564 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
11565 .detail_super = detail_super_imsm,
11566 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 11567 .write_init_super = write_init_super_imsm,
0e600426
N
11568 .validate_geometry = validate_geometry_imsm,
11569 .add_to_super = add_to_super_imsm,
1a64be56 11570 .remove_from_super = remove_from_super_imsm,
d665cc31 11571 .detail_platform = detail_platform_imsm,
e50cf220 11572 .export_detail_platform = export_detail_platform_imsm,
33414a01 11573 .kill_subarray = kill_subarray_imsm,
aa534678 11574 .update_subarray = update_subarray_imsm,
2b959fbf 11575 .load_container = load_container_imsm,
71204a50
N
11576 .default_geometry = default_geometry_imsm,
11577 .get_disk_controller_domain = imsm_get_disk_controller_domain,
11578 .reshape_super = imsm_reshape_super,
11579 .manage_reshape = imsm_manage_reshape,
9e2d750d 11580 .recover_backup = recover_backup_imsm,
74db60b0 11581 .copy_metadata = copy_metadata_imsm,
27156a57 11582 .examine_badblocks = examine_badblocks_imsm,
cdddbdbc
DW
11583#endif
11584 .match_home = match_home_imsm,
11585 .uuid_from_super= uuid_from_super_imsm,
11586 .getinfo_super = getinfo_super_imsm,
5c4cd5da 11587 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
11588 .update_super = update_super_imsm,
11589
11590 .avail_size = avail_size_imsm,
80e7f8c3 11591 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
11592
11593 .compare_super = compare_super_imsm,
11594
11595 .load_super = load_super_imsm,
bf5a934a 11596 .init_super = init_super_imsm,
e683ca88 11597 .store_super = store_super_imsm,
cdddbdbc
DW
11598 .free_super = free_super_imsm,
11599 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 11600 .container_content = container_content_imsm,
0c21b485 11601 .validate_container = validate_container_imsm,
cdddbdbc 11602
cdddbdbc 11603 .external = 1,
4cce4069 11604 .name = "imsm",
845dea95 11605
0e600426 11606#ifndef MDASSEMBLE
845dea95
NB
11607/* for mdmon */
11608 .open_new = imsm_open_new,
ed9d66aa 11609 .set_array_state= imsm_set_array_state,
845dea95
NB
11610 .set_disk = imsm_set_disk,
11611 .sync_metadata = imsm_sync_metadata,
88758e9d 11612 .activate_spare = imsm_activate_spare,
e8319a19 11613 .process_update = imsm_process_update,
8273f55e 11614 .prepare_update = imsm_prepare_update,
6f50473f 11615 .record_bad_block = imsm_record_badblock,
c07a5a4f 11616 .clear_bad_block = imsm_clear_badblock,
928f1424 11617 .get_bad_blocks = imsm_get_badblocks,
0e600426 11618#endif /* MDASSEMBLE */
cdddbdbc 11619};