]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: Disable checkpoint updating by mdmon for general migration
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
8e59f3d8 54#define MPB_SECTOR_CNT 2210
c2c087e6 55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
8e59f3d8
AK
197#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
198
199#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
200
201#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
202 * be recovered using srcMap */
203#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
204 * already been migrated and must
205 * be recovered from checkpoint area */
206struct migr_record {
207 __u32 rec_status; /* Status used to determine how to restart
208 * migration in case it aborts
209 * in some fashion */
210 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
211 __u32 family_num; /* Family number of MPB
212 * containing the RaidDev
213 * that is migrating */
214 __u32 ascending_migr; /* True if migrating in increasing
215 * order of lbas */
216 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
217 __u32 dest_depth_per_unit; /* Num member blocks each destMap
218 * member disk
219 * advances per unit-of-operation */
220 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
221 __u32 dest_1st_member_lba; /* First member lba on first
222 * stripe of destination */
223 __u32 num_migr_units; /* Total num migration units-of-op */
224 __u32 post_migr_vol_cap; /* Size of volume after
225 * migration completes */
226 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
227 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
228 * migration ckpt record was read from
229 * (for recovered migrations) */
230} __attribute__ ((__packed__));
231
1484e727
DW
232static __u8 migr_type(struct imsm_dev *dev)
233{
234 if (dev->vol.migr_type == MIGR_VERIFY &&
235 dev->status & DEV_VERIFY_AND_FIX)
236 return MIGR_REPAIR;
237 else
238 return dev->vol.migr_type;
239}
240
241static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
242{
243 /* for compatibility with older oroms convert MIGR_REPAIR, into
244 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
245 */
246 if (migr_type == MIGR_REPAIR) {
247 dev->vol.migr_type = MIGR_VERIFY;
248 dev->status |= DEV_VERIFY_AND_FIX;
249 } else {
250 dev->vol.migr_type = migr_type;
251 dev->status &= ~DEV_VERIFY_AND_FIX;
252 }
253}
254
87eb16df 255static unsigned int sector_count(__u32 bytes)
cdddbdbc 256{
87eb16df
DW
257 return ((bytes + (512-1)) & (~(512-1))) / 512;
258}
cdddbdbc 259
87eb16df
DW
260static unsigned int mpb_sectors(struct imsm_super *mpb)
261{
262 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
263}
264
ba2de7ba
DW
265struct intel_dev {
266 struct imsm_dev *dev;
267 struct intel_dev *next;
f21e18ca 268 unsigned index;
ba2de7ba
DW
269};
270
88654014
LM
271struct intel_hba {
272 enum sys_dev_type type;
273 char *path;
274 char *pci_id;
275 struct intel_hba *next;
276};
277
1a64be56
LM
278enum action {
279 DISK_REMOVE = 1,
280 DISK_ADD
281};
cdddbdbc
DW
282/* internal representation of IMSM metadata */
283struct intel_super {
284 union {
949c47a0
DW
285 void *buf; /* O_DIRECT buffer for reading/writing metadata */
286 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 287 };
8e59f3d8
AK
288 union {
289 void *migr_rec_buf; /* buffer for I/O operations */
290 struct migr_record *migr_rec; /* migration record */
291 };
949c47a0 292 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
293 void *next_buf; /* for realloc'ing buf from the manager */
294 size_t next_len;
c2c087e6 295 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 296 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 297 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 298 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 299 struct intel_dev *devlist;
cdddbdbc
DW
300 struct dl {
301 struct dl *next;
302 int index;
303 __u8 serial[MAX_RAID_SERIAL_LEN];
304 int major, minor;
305 char *devname;
b9f594fe 306 struct imsm_disk disk;
cdddbdbc 307 int fd;
0dcecb2e
DW
308 int extent_cnt;
309 struct extent *e; /* for determining freespace @ create */
efb30e7f 310 int raiddisk; /* slot to fill in autolayout */
1a64be56 311 enum action action;
cdddbdbc 312 } *disks;
1a64be56
LM
313 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
314 active */
47ee5a45 315 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 316 struct bbm_log *bbm_log;
88654014 317 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 318 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
319 struct intel_super *next; /* (temp) list for disambiguating family_num */
320};
321
322struct intel_disk {
323 struct imsm_disk disk;
324 #define IMSM_UNKNOWN_OWNER (-1)
325 int owner;
326 struct intel_disk *next;
cdddbdbc
DW
327};
328
c2c087e6
DW
329struct extent {
330 unsigned long long start, size;
331};
332
694575e7
KW
333/* definitions of reshape process types */
334enum imsm_reshape_type {
335 CH_TAKEOVER,
b5347799 336 CH_MIGRATION,
694575e7
KW
337};
338
88758e9d
DW
339/* definition of messages passed to imsm_process_update */
340enum imsm_update_type {
341 update_activate_spare,
8273f55e 342 update_create_array,
33414a01 343 update_kill_array,
aa534678 344 update_rename_array,
1a64be56 345 update_add_remove_disk,
78b10e66 346 update_reshape_container_disks,
48c5303a 347 update_reshape_migration,
bb025c2f 348 update_takeover
88758e9d
DW
349};
350
351struct imsm_update_activate_spare {
352 enum imsm_update_type type;
d23fe947 353 struct dl *dl;
88758e9d
DW
354 int slot;
355 int array;
356 struct imsm_update_activate_spare *next;
357};
358
78b10e66
N
359struct geo_params {
360 int dev_id;
361 char *dev_name;
362 long long size;
363 int level;
364 int layout;
365 int chunksize;
366 int raid_disks;
367};
368
bb025c2f
KW
369enum takeover_direction {
370 R10_TO_R0,
371 R0_TO_R10
372};
373struct imsm_update_takeover {
374 enum imsm_update_type type;
375 int subarray;
376 enum takeover_direction direction;
377};
78b10e66
N
378
379struct imsm_update_reshape {
380 enum imsm_update_type type;
381 int old_raid_disks;
382 int new_raid_disks;
48c5303a
PC
383
384 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
385};
386
387struct imsm_update_reshape_migration {
388 enum imsm_update_type type;
389 int old_raid_disks;
390 int new_raid_disks;
391 /* fields for array migration changes
392 */
393 int subdev;
394 int new_level;
395 int new_layout;
4bba0439 396 int new_chunksize;
48c5303a 397
d195167d 398 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
399};
400
54c2c1ea
DW
401struct disk_info {
402 __u8 serial[MAX_RAID_SERIAL_LEN];
403};
404
8273f55e
DW
405struct imsm_update_create_array {
406 enum imsm_update_type type;
8273f55e 407 int dev_idx;
6a3e913e 408 struct imsm_dev dev;
8273f55e
DW
409};
410
33414a01
DW
411struct imsm_update_kill_array {
412 enum imsm_update_type type;
413 int dev_idx;
414};
415
aa534678
DW
416struct imsm_update_rename_array {
417 enum imsm_update_type type;
418 __u8 name[MAX_RAID_SERIAL_LEN];
419 int dev_idx;
420};
421
1a64be56 422struct imsm_update_add_remove_disk {
43dad3d6
DW
423 enum imsm_update_type type;
424};
425
88654014
LM
426
427static const char *_sys_dev_type[] = {
428 [SYS_DEV_UNKNOWN] = "Unknown",
429 [SYS_DEV_SAS] = "SAS",
430 [SYS_DEV_SATA] = "SATA"
431};
432
433const char *get_sys_dev_type(enum sys_dev_type type)
434{
435 if (type >= SYS_DEV_MAX)
436 type = SYS_DEV_UNKNOWN;
437
438 return _sys_dev_type[type];
439}
440
441static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
442{
443 struct intel_hba *result = malloc(sizeof(*result));
444 if (result) {
445 result->type = device->type;
446 result->path = strdup(device->path);
447 result->next = NULL;
448 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
449 result->pci_id++;
450 }
451 return result;
452}
453
454static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
455{
456 struct intel_hba *result=NULL;
457 for (result = hba; result; result = result->next) {
458 if (result->type == device->type && strcmp(result->path, device->path) == 0)
459 break;
460 }
461 return result;
462}
463
b4cf4cba 464static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
465{
466 struct intel_hba *hba;
467
468 /* check if disk attached to Intel HBA */
469 hba = find_intel_hba(super->hba, device);
470 if (hba != NULL)
471 return 1;
472 /* Check if HBA is already attached to super */
473 if (super->hba == NULL) {
474 super->hba = alloc_intel_hba(device);
475 return 1;
476 }
477
478 hba = super->hba;
479 /* Intel metadata allows for all disks attached to the same type HBA.
480 * Do not sypport odf HBA types mixing
481 */
482 if (device->type != hba->type)
483 return 2;
484
485 while (hba->next)
486 hba = hba->next;
487
488 hba->next = alloc_intel_hba(device);
489 return 1;
490}
491
492static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
493{
494 struct sys_dev *list, *elem, *prev;
495 char *disk_path;
496
497 if ((list = find_intel_devices()) == NULL)
498 return 0;
499
500 if (fd < 0)
501 disk_path = (char *) devname;
502 else
503 disk_path = diskfd_to_devpath(fd);
504
505 if (!disk_path) {
506 free_sys_dev(&list);
507 return 0;
508 }
509
510 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
511 if (path_attached_to_hba(disk_path, elem->path)) {
512 if (prev == NULL)
513 list = list->next;
514 else
515 prev->next = elem->next;
516 elem->next = NULL;
517 if (disk_path != devname)
518 free(disk_path);
519 free_sys_dev(&list);
520 return elem;
521 }
522 }
523 if (disk_path != devname)
524 free(disk_path);
525 free_sys_dev(&list);
526
527 return NULL;
528}
529
530
d424212e
N
531static int find_intel_hba_capability(int fd, struct intel_super *super,
532 char *devname);
f2f5c343 533
cdddbdbc
DW
534static struct supertype *match_metadata_desc_imsm(char *arg)
535{
536 struct supertype *st;
537
538 if (strcmp(arg, "imsm") != 0 &&
539 strcmp(arg, "default") != 0
540 )
541 return NULL;
542
543 st = malloc(sizeof(*st));
4e9d2186
AW
544 if (!st)
545 return NULL;
ef609477 546 memset(st, 0, sizeof(*st));
d1d599ea 547 st->container_dev = NoMdDev;
cdddbdbc
DW
548 st->ss = &super_imsm;
549 st->max_devs = IMSM_MAX_DEVICES;
550 st->minor_version = 0;
551 st->sb = NULL;
552 return st;
553}
554
0e600426 555#ifndef MDASSEMBLE
cdddbdbc
DW
556static __u8 *get_imsm_version(struct imsm_super *mpb)
557{
558 return &mpb->sig[MPB_SIG_LEN];
559}
0e600426 560#endif
cdddbdbc 561
949c47a0
DW
562/* retrieve a disk directly from the anchor when the anchor is known to be
563 * up-to-date, currently only at load time
564 */
565static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 566{
949c47a0 567 if (index >= mpb->num_disks)
cdddbdbc
DW
568 return NULL;
569 return &mpb->disk[index];
570}
571
95d07a2c
LM
572/* retrieve the disk description based on a index of the disk
573 * in the sub-array
574 */
575static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 576{
b9f594fe
DW
577 struct dl *d;
578
579 for (d = super->disks; d; d = d->next)
580 if (d->index == index)
95d07a2c
LM
581 return d;
582
583 return NULL;
584}
585/* retrieve a disk from the parsed metadata */
586static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
587{
588 struct dl *dl;
589
590 dl = get_imsm_dl_disk(super, index);
591 if (dl)
592 return &dl->disk;
593
b9f594fe 594 return NULL;
949c47a0
DW
595}
596
597/* generate a checksum directly from the anchor when the anchor is known to be
598 * up-to-date, currently only at load or write_super after coalescing
599 */
600static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
601{
602 __u32 end = mpb->mpb_size / sizeof(end);
603 __u32 *p = (__u32 *) mpb;
604 __u32 sum = 0;
605
97f734fd
N
606 while (end--) {
607 sum += __le32_to_cpu(*p);
608 p++;
609 }
cdddbdbc
DW
610
611 return sum - __le32_to_cpu(mpb->check_sum);
612}
613
a965f303
DW
614static size_t sizeof_imsm_map(struct imsm_map *map)
615{
616 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
617}
618
619struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 620{
5e7b0330
AK
621 /* A device can have 2 maps if it is in the middle of a migration.
622 * If second_map is:
623 * 0 - we return the first map
624 * 1 - we return the second map if it exists, else NULL
625 * -1 - we return the second map if it exists, else the first
626 */
a965f303
DW
627 struct imsm_map *map = &dev->vol.map[0];
628
5e7b0330 629 if (second_map == 1 && !dev->vol.migr_state)
a965f303 630 return NULL;
5e7b0330
AK
631 else if (second_map == 1 ||
632 (second_map < 0 && dev->vol.migr_state)) {
a965f303
DW
633 void *ptr = map;
634
635 return ptr + sizeof_imsm_map(map);
636 } else
637 return map;
5e7b0330 638
a965f303 639}
cdddbdbc 640
3393c6af
DW
641/* return the size of the device.
642 * migr_state increases the returned size if map[0] were to be duplicated
643 */
644static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
645{
646 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
647 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
648
649 /* migrating means an additional map */
a965f303
DW
650 if (dev->vol.migr_state)
651 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
652 else if (migr_state)
653 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
654
655 return size;
656}
657
54c2c1ea
DW
658#ifndef MDASSEMBLE
659/* retrieve disk serial number list from a metadata update */
660static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
661{
662 void *u = update;
663 struct disk_info *inf;
664
665 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
666 sizeof_imsm_dev(&update->dev, 0);
667
668 return inf;
669}
670#endif
671
949c47a0 672static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
673{
674 int offset;
675 int i;
676 void *_mpb = mpb;
677
949c47a0 678 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
679 return NULL;
680
681 /* devices start after all disks */
682 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
683
684 for (i = 0; i <= index; i++)
685 if (i == index)
686 return _mpb + offset;
687 else
3393c6af 688 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
689
690 return NULL;
691}
692
949c47a0
DW
693static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
694{
ba2de7ba
DW
695 struct intel_dev *dv;
696
949c47a0
DW
697 if (index >= super->anchor->num_raid_devs)
698 return NULL;
ba2de7ba
DW
699 for (dv = super->devlist; dv; dv = dv->next)
700 if (dv->index == index)
701 return dv->dev;
702 return NULL;
949c47a0
DW
703}
704
98130f40
AK
705/*
706 * for second_map:
707 * == 0 get first map
708 * == 1 get second map
709 * == -1 than get map according to the current migr_state
710 */
711static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
712 int slot,
713 int second_map)
7eef0453
DW
714{
715 struct imsm_map *map;
716
5e7b0330 717 map = get_imsm_map(dev, second_map);
7eef0453 718
ff077194
DW
719 /* top byte identifies disk under rebuild */
720 return __le32_to_cpu(map->disk_ord_tbl[slot]);
721}
722
723#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 724static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 725{
98130f40 726 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
727
728 return ord_to_idx(ord);
7eef0453
DW
729}
730
be73972f
DW
731static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
732{
733 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
734}
735
f21e18ca 736static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
737{
738 int slot;
739 __u32 ord;
740
741 for (slot = 0; slot < map->num_members; slot++) {
742 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
743 if (ord_to_idx(ord) == idx)
744 return slot;
745 }
746
747 return -1;
748}
749
cdddbdbc
DW
750static int get_imsm_raid_level(struct imsm_map *map)
751{
752 if (map->raid_level == 1) {
753 if (map->num_members == 2)
754 return 1;
755 else
756 return 10;
757 }
758
759 return map->raid_level;
760}
761
c2c087e6
DW
762static int cmp_extent(const void *av, const void *bv)
763{
764 const struct extent *a = av;
765 const struct extent *b = bv;
766 if (a->start < b->start)
767 return -1;
768 if (a->start > b->start)
769 return 1;
770 return 0;
771}
772
0dcecb2e 773static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 774{
c2c087e6 775 int memberships = 0;
620b1713 776 int i;
c2c087e6 777
949c47a0
DW
778 for (i = 0; i < super->anchor->num_raid_devs; i++) {
779 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 780 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 781
620b1713
DW
782 if (get_imsm_disk_slot(map, dl->index) >= 0)
783 memberships++;
c2c087e6 784 }
0dcecb2e
DW
785
786 return memberships;
787}
788
789static struct extent *get_extents(struct intel_super *super, struct dl *dl)
790{
791 /* find a list of used extents on the given physical device */
792 struct extent *rv, *e;
620b1713 793 int i;
0dcecb2e
DW
794 int memberships = count_memberships(dl, super);
795 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
796
c2c087e6
DW
797 rv = malloc(sizeof(struct extent) * (memberships + 1));
798 if (!rv)
799 return NULL;
800 e = rv;
801
949c47a0
DW
802 for (i = 0; i < super->anchor->num_raid_devs; i++) {
803 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 804 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 805
620b1713
DW
806 if (get_imsm_disk_slot(map, dl->index) >= 0) {
807 e->start = __le32_to_cpu(map->pba_of_lba0);
808 e->size = __le32_to_cpu(map->blocks_per_member);
809 e++;
c2c087e6
DW
810 }
811 }
812 qsort(rv, memberships, sizeof(*rv), cmp_extent);
813
14e8215b
DW
814 /* determine the start of the metadata
815 * when no raid devices are defined use the default
816 * ...otherwise allow the metadata to truncate the value
817 * as is the case with older versions of imsm
818 */
819 if (memberships) {
820 struct extent *last = &rv[memberships - 1];
821 __u32 remainder;
822
823 remainder = __le32_to_cpu(dl->disk.total_blocks) -
824 (last->start + last->size);
dda5855f
DW
825 /* round down to 1k block to satisfy precision of the kernel
826 * 'size' interface
827 */
828 remainder &= ~1UL;
829 /* make sure remainder is still sane */
f21e18ca 830 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 831 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
832 if (reservation > remainder)
833 reservation = remainder;
834 }
835 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
836 e->size = 0;
837 return rv;
838}
839
14e8215b
DW
840/* try to determine how much space is reserved for metadata from
841 * the last get_extents() entry, otherwise fallback to the
842 * default
843 */
844static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
845{
846 struct extent *e;
847 int i;
848 __u32 rv;
849
850 /* for spares just return a minimal reservation which will grow
851 * once the spare is picked up by an array
852 */
853 if (dl->index == -1)
854 return MPB_SECTOR_CNT;
855
856 e = get_extents(super, dl);
857 if (!e)
858 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
859
860 /* scroll to last entry */
861 for (i = 0; e[i].size; i++)
862 continue;
863
864 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
865
866 free(e);
867
868 return rv;
869}
870
25ed7e59
DW
871static int is_spare(struct imsm_disk *disk)
872{
873 return (disk->status & SPARE_DISK) == SPARE_DISK;
874}
875
876static int is_configured(struct imsm_disk *disk)
877{
878 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
879}
880
881static int is_failed(struct imsm_disk *disk)
882{
883 return (disk->status & FAILED_DISK) == FAILED_DISK;
884}
885
80e7f8c3
AC
886/* Return minimum size of a spare that can be used in this array*/
887static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
888{
889 struct intel_super *super = st->sb;
890 struct dl *dl;
891 struct extent *e;
892 int i;
893 unsigned long long rv = 0;
894
895 if (!super)
896 return rv;
897 /* find first active disk in array */
898 dl = super->disks;
899 while (dl && (is_failed(&dl->disk) || dl->index == -1))
900 dl = dl->next;
901 if (!dl)
902 return rv;
903 /* find last lba used by subarrays */
904 e = get_extents(super, dl);
905 if (!e)
906 return rv;
907 for (i = 0; e[i].size; i++)
908 continue;
909 if (i > 0)
910 rv = e[i-1].start + e[i-1].size;
911 free(e);
912 /* add the amount of space needed for metadata */
913 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
914 return rv * 512;
915}
916
1799c9e8 917#ifndef MDASSEMBLE
c47b0ff6
AK
918static __u64 blocks_per_migr_unit(struct intel_super *super,
919 struct imsm_dev *dev);
1e5c6983 920
c47b0ff6
AK
921static void print_imsm_dev(struct intel_super *super,
922 struct imsm_dev *dev,
923 char *uuid,
924 int disk_idx)
cdddbdbc
DW
925{
926 __u64 sz;
0d80bb2f 927 int slot, i;
a965f303 928 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 929 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 930 __u32 ord;
cdddbdbc
DW
931
932 printf("\n");
1e7bc0ed 933 printf("[%.16s]:\n", dev->volume);
44470971 934 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
935 printf(" RAID Level : %d", get_imsm_raid_level(map));
936 if (map2)
937 printf(" <-- %d", get_imsm_raid_level(map2));
938 printf("\n");
939 printf(" Members : %d", map->num_members);
940 if (map2)
941 printf(" <-- %d", map2->num_members);
942 printf("\n");
0d80bb2f
DW
943 printf(" Slots : [");
944 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 945 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
946 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
947 }
dd8bcb3b
AK
948 printf("]");
949 if (map2) {
950 printf(" <-- [");
951 for (i = 0; i < map2->num_members; i++) {
952 ord = get_imsm_ord_tbl_ent(dev, i, 1);
953 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
954 }
955 printf("]");
956 }
957 printf("\n");
7095bccb
AK
958 printf(" Failed disk : ");
959 if (map->failed_disk_num == 0xff)
960 printf("none");
961 else
962 printf("%i", map->failed_disk_num);
963 printf("\n");
620b1713
DW
964 slot = get_imsm_disk_slot(map, disk_idx);
965 if (slot >= 0) {
98130f40 966 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
967 printf(" This Slot : %d%s\n", slot,
968 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
969 } else
cdddbdbc
DW
970 printf(" This Slot : ?\n");
971 sz = __le32_to_cpu(dev->size_high);
972 sz <<= 32;
973 sz += __le32_to_cpu(dev->size_low);
974 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
975 human_size(sz * 512));
976 sz = __le32_to_cpu(map->blocks_per_member);
977 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
978 human_size(sz * 512));
979 printf(" Sector Offset : %u\n",
980 __le32_to_cpu(map->pba_of_lba0));
981 printf(" Num Stripes : %u\n",
982 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 983 printf(" Chunk Size : %u KiB",
cdddbdbc 984 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
985 if (map2)
986 printf(" <-- %u KiB",
987 __le16_to_cpu(map2->blocks_per_strip) / 2);
988 printf("\n");
cdddbdbc 989 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 990 printf(" Migrate State : ");
1484e727
DW
991 if (dev->vol.migr_state) {
992 if (migr_type(dev) == MIGR_INIT)
8655a7b1 993 printf("initialize\n");
1484e727 994 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 995 printf("rebuild\n");
1484e727 996 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 997 printf("check\n");
1484e727 998 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 999 printf("general migration\n");
1484e727 1000 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1001 printf("state change\n");
1484e727 1002 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1003 printf("repair\n");
1484e727 1004 else
8655a7b1
DW
1005 printf("<unknown:%d>\n", migr_type(dev));
1006 } else
1007 printf("idle\n");
3393c6af
DW
1008 printf(" Map State : %s", map_state_str[map->map_state]);
1009 if (dev->vol.migr_state) {
1010 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1011
b10b37b8 1012 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
1013 printf("\n Checkpoint : %u (%llu)",
1014 __le32_to_cpu(dev->vol.curr_migr_unit),
c47b0ff6 1015 (unsigned long long)blocks_per_migr_unit(super, dev));
3393c6af
DW
1016 }
1017 printf("\n");
cdddbdbc 1018 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1019}
1020
14e8215b 1021static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 1022{
949c47a0 1023 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 1024 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1025 __u64 sz;
1026
d362da3d 1027 if (index < 0 || !disk)
e9d82038
DW
1028 return;
1029
cdddbdbc 1030 printf("\n");
1f24f035 1031 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 1032 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
1033 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1034 is_configured(disk) ? " active" : "",
1035 is_failed(disk) ? " failed" : "");
cdddbdbc 1036 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1037 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1038 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1039 human_size(sz * 512));
1040}
1041
520e69e2
AK
1042static int is_gen_migration(struct imsm_dev *dev);
1043
1044void examine_migr_rec_imsm(struct intel_super *super)
1045{
1046 struct migr_record *migr_rec = super->migr_rec;
1047 struct imsm_super *mpb = super->anchor;
1048 int i;
1049
1050 for (i = 0; i < mpb->num_raid_devs; i++) {
1051 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1052 if (is_gen_migration(dev) == 0)
1053 continue;
1054
1055 printf("\nMigration Record Information:");
1056 if (super->disks->index > 1) {
1057 printf(" Empty\n ");
1058 printf("Examine one of first two disks in array\n");
1059 break;
1060 }
1061 printf("\n Status : ");
1062 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1063 printf("Normal\n");
1064 else
1065 printf("Contains Data\n");
1066 printf(" Current Unit : %u\n",
1067 __le32_to_cpu(migr_rec->curr_migr_unit));
1068 printf(" Family : %u\n",
1069 __le32_to_cpu(migr_rec->family_num));
1070 printf(" Ascending : %u\n",
1071 __le32_to_cpu(migr_rec->ascending_migr));
1072 printf(" Blocks Per Unit : %u\n",
1073 __le32_to_cpu(migr_rec->blocks_per_unit));
1074 printf(" Dest. Depth Per Unit : %u\n",
1075 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1076 printf(" Checkpoint Area pba : %u\n",
1077 __le32_to_cpu(migr_rec->ckpt_area_pba));
1078 printf(" First member lba : %u\n",
1079 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1080 printf(" Total Number of Units : %u\n",
1081 __le32_to_cpu(migr_rec->num_migr_units));
1082 printf(" Size of volume : %u\n",
1083 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1084 printf(" Expansion space for LBA64 : %u\n",
1085 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1086 printf(" Record was read from : %u\n",
1087 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1088
1089 break;
1090 }
1091}
1092
a5d85af7 1093static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1094
cdddbdbc
DW
1095static void examine_super_imsm(struct supertype *st, char *homehost)
1096{
1097 struct intel_super *super = st->sb;
949c47a0 1098 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1099 char str[MAX_SIGNATURE_LENGTH];
1100 int i;
27fd6274
DW
1101 struct mdinfo info;
1102 char nbuf[64];
cdddbdbc 1103 __u32 sum;
14e8215b 1104 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1105 struct dl *dl;
27fd6274 1106
cdddbdbc
DW
1107 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1108 printf(" Magic : %s\n", str);
1109 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1110 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1111 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1112 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1113 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
a5d85af7 1114 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1115 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1116 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1117 sum = __le32_to_cpu(mpb->check_sum);
1118 printf(" Checksum : %08x %s\n", sum,
949c47a0 1119 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1120 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1121 printf(" Disks : %d\n", mpb->num_disks);
1122 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 1123 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
1124 if (super->bbm_log) {
1125 struct bbm_log *log = super->bbm_log;
1126
1127 printf("\n");
1128 printf("Bad Block Management Log:\n");
1129 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1130 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1131 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1132 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1133 printf(" First Spare : %llx\n",
1134 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1135 }
44470971
DW
1136 for (i = 0; i < mpb->num_raid_devs; i++) {
1137 struct mdinfo info;
1138 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1139
1140 super->current_vol = i;
a5d85af7 1141 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1142 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1143 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1144 }
cdddbdbc
DW
1145 for (i = 0; i < mpb->num_disks; i++) {
1146 if (i == super->disks->index)
1147 continue;
14e8215b 1148 print_imsm_disk(mpb, i, reserved);
cdddbdbc 1149 }
94827db3
N
1150 for (dl = super->disks ; dl; dl = dl->next) {
1151 struct imsm_disk *disk;
1152 char str[MAX_RAID_SERIAL_LEN + 1];
1153 __u64 sz;
1154
1155 if (dl->index >= 0)
1156 continue;
1157
1158 disk = &dl->disk;
1159 printf("\n");
1160 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1161 printf(" Disk Serial : %s\n", str);
1162 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1163 is_configured(disk) ? " active" : "",
1164 is_failed(disk) ? " failed" : "");
1165 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1166 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1167 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1168 human_size(sz * 512));
1169 }
520e69e2
AK
1170
1171 examine_migr_rec_imsm(super);
cdddbdbc
DW
1172}
1173
061f2c6a 1174static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1175{
27fd6274 1176 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1177 struct mdinfo info;
1178 char nbuf[64];
1e7bc0ed 1179 struct intel_super *super = st->sb;
1e7bc0ed 1180
0d5a423f
DW
1181 if (!super->anchor->num_raid_devs) {
1182 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1183 return;
0d5a423f 1184 }
ff54de6e 1185
a5d85af7 1186 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1187 fname_from_uuid(st, &info, nbuf, ':');
1188 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1189}
1190
1191static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1192{
1193 /* We just write a generic IMSM ARRAY entry */
1194 struct mdinfo info;
1195 char nbuf[64];
1196 char nbuf1[64];
1197 struct intel_super *super = st->sb;
1198 int i;
1199
1200 if (!super->anchor->num_raid_devs)
1201 return;
1202
a5d85af7 1203 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1204 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1205 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1206 struct imsm_dev *dev = get_imsm_dev(super, i);
1207
1208 super->current_vol = i;
a5d85af7 1209 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1210 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1211 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1212 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1213 }
cdddbdbc
DW
1214}
1215
9d84c8ea
DW
1216static void export_examine_super_imsm(struct supertype *st)
1217{
1218 struct intel_super *super = st->sb;
1219 struct imsm_super *mpb = super->anchor;
1220 struct mdinfo info;
1221 char nbuf[64];
1222
a5d85af7 1223 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1224 fname_from_uuid(st, &info, nbuf, ':');
1225 printf("MD_METADATA=imsm\n");
1226 printf("MD_LEVEL=container\n");
1227 printf("MD_UUID=%s\n", nbuf+5);
1228 printf("MD_DEVICES=%u\n", mpb->num_disks);
1229}
1230
cdddbdbc
DW
1231static void detail_super_imsm(struct supertype *st, char *homehost)
1232{
3ebe00a1
DW
1233 struct mdinfo info;
1234 char nbuf[64];
1235
a5d85af7 1236 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1237 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1238 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1239}
1240
1241static void brief_detail_super_imsm(struct supertype *st)
1242{
ff54de6e
N
1243 struct mdinfo info;
1244 char nbuf[64];
a5d85af7 1245 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1246 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1247 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1248}
d665cc31
DW
1249
1250static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1251static void fd2devname(int fd, char *name);
1252
120dc887 1253static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1254{
120dc887
LM
1255 /* dump an unsorted list of devices attached to AHCI Intel storage
1256 * controller, as well as non-connected ports
d665cc31
DW
1257 */
1258 int hba_len = strlen(hba_path) + 1;
1259 struct dirent *ent;
1260 DIR *dir;
1261 char *path = NULL;
1262 int err = 0;
1263 unsigned long port_mask = (1 << port_count) - 1;
1264
f21e18ca 1265 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1266 if (verbose)
1267 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1268 return 2;
1269 }
1270
1271 /* scroll through /sys/dev/block looking for devices attached to
1272 * this hba
1273 */
1274 dir = opendir("/sys/dev/block");
1275 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1276 int fd;
1277 char model[64];
1278 char vendor[64];
1279 char buf[1024];
1280 int major, minor;
1281 char *device;
1282 char *c;
1283 int port;
1284 int type;
1285
1286 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1287 continue;
1288 path = devt_to_devpath(makedev(major, minor));
1289 if (!path)
1290 continue;
1291 if (!path_attached_to_hba(path, hba_path)) {
1292 free(path);
1293 path = NULL;
1294 continue;
1295 }
1296
1297 /* retrieve the scsi device type */
1298 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1299 if (verbose)
1300 fprintf(stderr, Name ": failed to allocate 'device'\n");
1301 err = 2;
1302 break;
1303 }
1304 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1305 if (load_sys(device, buf) != 0) {
1306 if (verbose)
1307 fprintf(stderr, Name ": failed to read device type for %s\n",
1308 path);
1309 err = 2;
1310 free(device);
1311 break;
1312 }
1313 type = strtoul(buf, NULL, 10);
1314
1315 /* if it's not a disk print the vendor and model */
1316 if (!(type == 0 || type == 7 || type == 14)) {
1317 vendor[0] = '\0';
1318 model[0] = '\0';
1319 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1320 if (load_sys(device, buf) == 0) {
1321 strncpy(vendor, buf, sizeof(vendor));
1322 vendor[sizeof(vendor) - 1] = '\0';
1323 c = (char *) &vendor[sizeof(vendor) - 1];
1324 while (isspace(*c) || *c == '\0')
1325 *c-- = '\0';
1326
1327 }
1328 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1329 if (load_sys(device, buf) == 0) {
1330 strncpy(model, buf, sizeof(model));
1331 model[sizeof(model) - 1] = '\0';
1332 c = (char *) &model[sizeof(model) - 1];
1333 while (isspace(*c) || *c == '\0')
1334 *c-- = '\0';
1335 }
1336
1337 if (vendor[0] && model[0])
1338 sprintf(buf, "%.64s %.64s", vendor, model);
1339 else
1340 switch (type) { /* numbers from hald/linux/device.c */
1341 case 1: sprintf(buf, "tape"); break;
1342 case 2: sprintf(buf, "printer"); break;
1343 case 3: sprintf(buf, "processor"); break;
1344 case 4:
1345 case 5: sprintf(buf, "cdrom"); break;
1346 case 6: sprintf(buf, "scanner"); break;
1347 case 8: sprintf(buf, "media_changer"); break;
1348 case 9: sprintf(buf, "comm"); break;
1349 case 12: sprintf(buf, "raid"); break;
1350 default: sprintf(buf, "unknown");
1351 }
1352 } else
1353 buf[0] = '\0';
1354 free(device);
1355
1356 /* chop device path to 'host%d' and calculate the port number */
1357 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1358 if (!c) {
1359 if (verbose)
1360 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1361 err = 2;
1362 break;
1363 }
d665cc31
DW
1364 *c = '\0';
1365 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1366 port -= host_base;
1367 else {
1368 if (verbose) {
1369 *c = '/'; /* repair the full string */
1370 fprintf(stderr, Name ": failed to determine port number for %s\n",
1371 path);
1372 }
1373 err = 2;
1374 break;
1375 }
1376
1377 /* mark this port as used */
1378 port_mask &= ~(1 << port);
1379
1380 /* print out the device information */
1381 if (buf[0]) {
1382 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1383 continue;
1384 }
1385
1386 fd = dev_open(ent->d_name, O_RDONLY);
1387 if (fd < 0)
1388 printf(" Port%d : - disk info unavailable -\n", port);
1389 else {
1390 fd2devname(fd, buf);
1391 printf(" Port%d : %s", port, buf);
1392 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1393 printf(" (%s)\n", buf);
1394 else
1395 printf("()\n");
1396 }
1397 close(fd);
1398 free(path);
1399 path = NULL;
1400 }
1401 if (path)
1402 free(path);
1403 if (dir)
1404 closedir(dir);
1405 if (err == 0) {
1406 int i;
1407
1408 for (i = 0; i < port_count; i++)
1409 if (port_mask & (1 << i))
1410 printf(" Port%d : - no device attached -\n", i);
1411 }
1412
1413 return err;
1414}
1415
120dc887 1416
155cbb4c 1417
120dc887
LM
1418static void print_found_intel_controllers(struct sys_dev *elem)
1419{
1420 for (; elem; elem = elem->next) {
1421 fprintf(stderr, Name ": found Intel(R) ");
1422 if (elem->type == SYS_DEV_SATA)
1423 fprintf(stderr, "SATA ");
155cbb4c
LM
1424 else if (elem->type == SYS_DEV_SAS)
1425 fprintf(stderr, "SAS ");
120dc887
LM
1426 fprintf(stderr, "RAID controller");
1427 if (elem->pci_id)
1428 fprintf(stderr, " at %s", elem->pci_id);
1429 fprintf(stderr, ".\n");
1430 }
1431 fflush(stderr);
1432}
1433
120dc887
LM
1434static int ahci_get_port_count(const char *hba_path, int *port_count)
1435{
1436 struct dirent *ent;
1437 DIR *dir;
1438 int host_base = -1;
1439
1440 *port_count = 0;
1441 if ((dir = opendir(hba_path)) == NULL)
1442 return -1;
1443
1444 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1445 int host;
1446
1447 if (sscanf(ent->d_name, "host%d", &host) != 1)
1448 continue;
1449 if (*port_count == 0)
1450 host_base = host;
1451 else if (host < host_base)
1452 host_base = host;
1453
1454 if (host + 1 > *port_count + host_base)
1455 *port_count = host + 1 - host_base;
1456 }
1457 closedir(dir);
1458 return host_base;
1459}
1460
a891a3c2
LM
1461static void print_imsm_capability(const struct imsm_orom *orom)
1462{
1463 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1464 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1465 orom->hotfix_ver, orom->build);
1466 printf(" RAID Levels :%s%s%s%s%s\n",
1467 imsm_orom_has_raid0(orom) ? " raid0" : "",
1468 imsm_orom_has_raid1(orom) ? " raid1" : "",
1469 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1470 imsm_orom_has_raid10(orom) ? " raid10" : "",
1471 imsm_orom_has_raid5(orom) ? " raid5" : "");
1472 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1473 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1474 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1475 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1476 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1477 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1478 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1479 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1480 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1481 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1482 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1483 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1484 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1485 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1486 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1487 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1488 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1489 printf(" Max Disks : %d\n", orom->tds);
1490 printf(" Max Volumes : %d\n", orom->vpa);
1491 return;
1492}
1493
5615172f 1494static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1495{
1496 /* There are two components to imsm platform support, the ahci SATA
1497 * controller and the option-rom. To find the SATA controller we
1498 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1499 * controller with the Intel vendor id is present. This approach
1500 * allows mdadm to leverage the kernel's ahci detection logic, with the
1501 * caveat that if ahci.ko is not loaded mdadm will not be able to
1502 * detect platform raid capabilities. The option-rom resides in a
1503 * platform "Adapter ROM". We scan for its signature to retrieve the
1504 * platform capabilities. If raid support is disabled in the BIOS the
1505 * option-rom capability structure will not be available.
1506 */
1507 const struct imsm_orom *orom;
1508 struct sys_dev *list, *hba;
d665cc31
DW
1509 int host_base = 0;
1510 int port_count = 0;
120dc887 1511 int result=0;
d665cc31 1512
5615172f 1513 if (enumerate_only) {
a891a3c2 1514 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1515 return 0;
a891a3c2
LM
1516 list = find_intel_devices();
1517 if (!list)
1518 return 2;
1519 for (hba = list; hba; hba = hba->next) {
1520 orom = find_imsm_capability(hba->type);
1521 if (!orom) {
1522 result = 2;
1523 break;
1524 }
1525 }
1526 free_sys_dev(&list);
1527 return result;
5615172f
DW
1528 }
1529
155cbb4c
LM
1530 list = find_intel_devices();
1531 if (!list) {
d665cc31 1532 if (verbose)
155cbb4c
LM
1533 fprintf(stderr, Name ": no active Intel(R) RAID "
1534 "controller found.\n");
d665cc31
DW
1535 free_sys_dev(&list);
1536 return 2;
1537 } else if (verbose)
155cbb4c 1538 print_found_intel_controllers(list);
d665cc31 1539
a891a3c2
LM
1540 for (hba = list; hba; hba = hba->next) {
1541 orom = find_imsm_capability(hba->type);
1542 if (!orom)
1543 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1544 hba->path, get_sys_dev_type(hba->type));
1545 else
1546 print_imsm_capability(orom);
d665cc31
DW
1547 }
1548
120dc887
LM
1549 for (hba = list; hba; hba = hba->next) {
1550 printf(" I/O Controller : %s (%s)\n",
1551 hba->path, get_sys_dev_type(hba->type));
d665cc31 1552
120dc887
LM
1553 if (hba->type == SYS_DEV_SATA) {
1554 host_base = ahci_get_port_count(hba->path, &port_count);
1555 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1556 if (verbose)
1557 fprintf(stderr, Name ": failed to enumerate "
1558 "ports on SATA controller at %s.", hba->pci_id);
1559 result |= 2;
1560 }
1561 }
d665cc31 1562 }
155cbb4c 1563
120dc887
LM
1564 free_sys_dev(&list);
1565 return result;
d665cc31 1566}
cdddbdbc
DW
1567#endif
1568
1569static int match_home_imsm(struct supertype *st, char *homehost)
1570{
5115ca67
DW
1571 /* the imsm metadata format does not specify any host
1572 * identification information. We return -1 since we can never
1573 * confirm nor deny whether a given array is "meant" for this
148acb7b 1574 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1575 * exclude member disks that do not belong, and we rely on
1576 * mdadm.conf to specify the arrays that should be assembled.
1577 * Auto-assembly may still pick up "foreign" arrays.
1578 */
cdddbdbc 1579
9362c1c8 1580 return -1;
cdddbdbc
DW
1581}
1582
1583static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1584{
51006d85
N
1585 /* The uuid returned here is used for:
1586 * uuid to put into bitmap file (Create, Grow)
1587 * uuid for backup header when saving critical section (Grow)
1588 * comparing uuids when re-adding a device into an array
1589 * In these cases the uuid required is that of the data-array,
1590 * not the device-set.
1591 * uuid to recognise same set when adding a missing device back
1592 * to an array. This is a uuid for the device-set.
1593 *
1594 * For each of these we can make do with a truncated
1595 * or hashed uuid rather than the original, as long as
1596 * everyone agrees.
1597 * In each case the uuid required is that of the data-array,
1598 * not the device-set.
43dad3d6 1599 */
51006d85
N
1600 /* imsm does not track uuid's so we synthesis one using sha1 on
1601 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1602 * - the orig_family_num of the container
51006d85
N
1603 * - the index number of the volume
1604 * - the 'serial' number of the volume.
1605 * Hopefully these are all constant.
1606 */
1607 struct intel_super *super = st->sb;
43dad3d6 1608
51006d85
N
1609 char buf[20];
1610 struct sha1_ctx ctx;
1611 struct imsm_dev *dev = NULL;
148acb7b 1612 __u32 family_num;
51006d85 1613
148acb7b
DW
1614 /* some mdadm versions failed to set ->orig_family_num, in which
1615 * case fall back to ->family_num. orig_family_num will be
1616 * fixed up with the first metadata update.
1617 */
1618 family_num = super->anchor->orig_family_num;
1619 if (family_num == 0)
1620 family_num = super->anchor->family_num;
51006d85 1621 sha1_init_ctx(&ctx);
92bd8f8d 1622 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1623 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1624 if (super->current_vol >= 0)
1625 dev = get_imsm_dev(super, super->current_vol);
1626 if (dev) {
1627 __u32 vol = super->current_vol;
1628 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1629 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1630 }
1631 sha1_finish_ctx(&ctx, buf);
1632 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1633}
1634
0d481d37 1635#if 0
4f5bc454
DW
1636static void
1637get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1638{
cdddbdbc
DW
1639 __u8 *v = get_imsm_version(mpb);
1640 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1641 char major[] = { 0, 0, 0 };
1642 char minor[] = { 0 ,0, 0 };
1643 char patch[] = { 0, 0, 0 };
1644 char *ver_parse[] = { major, minor, patch };
1645 int i, j;
1646
1647 i = j = 0;
1648 while (*v != '\0' && v < end) {
1649 if (*v != '.' && j < 2)
1650 ver_parse[i][j++] = *v;
1651 else {
1652 i++;
1653 j = 0;
1654 }
1655 v++;
1656 }
1657
4f5bc454
DW
1658 *m = strtol(minor, NULL, 0);
1659 *p = strtol(patch, NULL, 0);
1660}
0d481d37 1661#endif
4f5bc454 1662
1e5c6983
DW
1663static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1664{
1665 /* migr_strip_size when repairing or initializing parity */
1666 struct imsm_map *map = get_imsm_map(dev, 0);
1667 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1668
1669 switch (get_imsm_raid_level(map)) {
1670 case 5:
1671 case 10:
1672 return chunk;
1673 default:
1674 return 128*1024 >> 9;
1675 }
1676}
1677
1678static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1679{
1680 /* migr_strip_size when rebuilding a degraded disk, no idea why
1681 * this is different than migr_strip_size_resync(), but it's good
1682 * to be compatible
1683 */
1684 struct imsm_map *map = get_imsm_map(dev, 1);
1685 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1686
1687 switch (get_imsm_raid_level(map)) {
1688 case 1:
1689 case 10:
1690 if (map->num_members % map->num_domains == 0)
1691 return 128*1024 >> 9;
1692 else
1693 return chunk;
1694 case 5:
1695 return max((__u32) 64*1024 >> 9, chunk);
1696 default:
1697 return 128*1024 >> 9;
1698 }
1699}
1700
1701static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1702{
1703 struct imsm_map *lo = get_imsm_map(dev, 0);
1704 struct imsm_map *hi = get_imsm_map(dev, 1);
1705 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1706 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1707
1708 return max((__u32) 1, hi_chunk / lo_chunk);
1709}
1710
1711static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1712{
1713 struct imsm_map *lo = get_imsm_map(dev, 0);
1714 int level = get_imsm_raid_level(lo);
1715
1716 if (level == 1 || level == 10) {
1717 struct imsm_map *hi = get_imsm_map(dev, 1);
1718
1719 return hi->num_domains;
1720 } else
1721 return num_stripes_per_unit_resync(dev);
1722}
1723
98130f40 1724static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1725{
1726 /* named 'imsm_' because raid0, raid1 and raid10
1727 * counter-intuitively have the same number of data disks
1728 */
98130f40 1729 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1730
1731 switch (get_imsm_raid_level(map)) {
1732 case 0:
1733 case 1:
1734 case 10:
1735 return map->num_members;
1736 case 5:
1737 return map->num_members - 1;
1738 default:
1739 dprintf("%s: unsupported raid level\n", __func__);
1740 return 0;
1741 }
1742}
1743
1744static __u32 parity_segment_depth(struct imsm_dev *dev)
1745{
1746 struct imsm_map *map = get_imsm_map(dev, 0);
1747 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1748
1749 switch(get_imsm_raid_level(map)) {
1750 case 1:
1751 case 10:
1752 return chunk * map->num_domains;
1753 case 5:
1754 return chunk * map->num_members;
1755 default:
1756 return chunk;
1757 }
1758}
1759
1760static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1761{
1762 struct imsm_map *map = get_imsm_map(dev, 1);
1763 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1764 __u32 strip = block / chunk;
1765
1766 switch (get_imsm_raid_level(map)) {
1767 case 1:
1768 case 10: {
1769 __u32 vol_strip = (strip * map->num_domains) + 1;
1770 __u32 vol_stripe = vol_strip / map->num_members;
1771
1772 return vol_stripe * chunk + block % chunk;
1773 } case 5: {
1774 __u32 stripe = strip / (map->num_members - 1);
1775
1776 return stripe * chunk + block % chunk;
1777 }
1778 default:
1779 return 0;
1780 }
1781}
1782
c47b0ff6
AK
1783static __u64 blocks_per_migr_unit(struct intel_super *super,
1784 struct imsm_dev *dev)
1e5c6983
DW
1785{
1786 /* calculate the conversion factor between per member 'blocks'
1787 * (md/{resync,rebuild}_start) and imsm migration units, return
1788 * 0 for the 'not migrating' and 'unsupported migration' cases
1789 */
1790 if (!dev->vol.migr_state)
1791 return 0;
1792
1793 switch (migr_type(dev)) {
c47b0ff6
AK
1794 case MIGR_GEN_MIGR: {
1795 struct migr_record *migr_rec = super->migr_rec;
1796 return __le32_to_cpu(migr_rec->blocks_per_unit);
1797 }
1e5c6983
DW
1798 case MIGR_VERIFY:
1799 case MIGR_REPAIR:
1800 case MIGR_INIT: {
1801 struct imsm_map *map = get_imsm_map(dev, 0);
1802 __u32 stripes_per_unit;
1803 __u32 blocks_per_unit;
1804 __u32 parity_depth;
1805 __u32 migr_chunk;
1806 __u32 block_map;
1807 __u32 block_rel;
1808 __u32 segment;
1809 __u32 stripe;
1810 __u8 disks;
1811
1812 /* yes, this is really the translation of migr_units to
1813 * per-member blocks in the 'resync' case
1814 */
1815 stripes_per_unit = num_stripes_per_unit_resync(dev);
1816 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 1817 disks = imsm_num_data_members(dev, 0);
1e5c6983
DW
1818 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1819 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1820 segment = blocks_per_unit / stripe;
1821 block_rel = blocks_per_unit - segment * stripe;
1822 parity_depth = parity_segment_depth(dev);
1823 block_map = map_migr_block(dev, block_rel);
1824 return block_map + parity_depth * segment;
1825 }
1826 case MIGR_REBUILD: {
1827 __u32 stripes_per_unit;
1828 __u32 migr_chunk;
1829
1830 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1831 migr_chunk = migr_strip_blocks_rebuild(dev);
1832 return migr_chunk * stripes_per_unit;
1833 }
1e5c6983
DW
1834 case MIGR_STATE_CHANGE:
1835 default:
1836 return 0;
1837 }
1838}
1839
c2c087e6
DW
1840static int imsm_level_to_layout(int level)
1841{
1842 switch (level) {
1843 case 0:
1844 case 1:
1845 return 0;
1846 case 5:
1847 case 6:
a380c027 1848 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1849 case 10:
c92a2527 1850 return 0x102;
c2c087e6 1851 }
a18a888e 1852 return UnSet;
c2c087e6
DW
1853}
1854
8e59f3d8
AK
1855/*******************************************************************************
1856 * Function: read_imsm_migr_rec
1857 * Description: Function reads imsm migration record from last sector of disk
1858 * Parameters:
1859 * fd : disk descriptor
1860 * super : metadata info
1861 * Returns:
1862 * 0 : success,
1863 * -1 : fail
1864 ******************************************************************************/
1865static int read_imsm_migr_rec(int fd, struct intel_super *super)
1866{
1867 int ret_val = -1;
1868 unsigned long long dsize;
1869
1870 get_dev_size(fd, NULL, &dsize);
1871 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1872 fprintf(stderr,
1873 Name ": Cannot seek to anchor block: %s\n",
1874 strerror(errno));
1875 goto out;
1876 }
1877 if (read(fd, super->migr_rec_buf, 512) != 512) {
1878 fprintf(stderr,
1879 Name ": Cannot read migr record block: %s\n",
1880 strerror(errno));
1881 goto out;
1882 }
1883 ret_val = 0;
1884
1885out:
1886 return ret_val;
1887}
1888
1889/*******************************************************************************
1890 * Function: load_imsm_migr_rec
1891 * Description: Function reads imsm migration record (it is stored at the last
1892 * sector of disk)
1893 * Parameters:
1894 * super : imsm internal array info
1895 * info : general array info
1896 * Returns:
1897 * 0 : success
1898 * -1 : fail
1899 ******************************************************************************/
1900static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
1901{
1902 struct mdinfo *sd;
1903 struct dl *dl = NULL;
1904 char nm[30];
1905 int retval = -1;
1906 int fd = -1;
1907
1908 if (info) {
1909 for (sd = info->devs ; sd ; sd = sd->next) {
1910 /* read only from one of the first two slots */
1911 if ((sd->disk.raid_disk > 1) ||
1912 (sd->disk.raid_disk < 0))
1913 continue;
1914 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1915 fd = dev_open(nm, O_RDONLY);
1916 if (fd >= 0)
1917 break;
1918 }
1919 }
1920 if (fd < 0) {
1921 for (dl = super->disks; dl; dl = dl->next) {
1922 /* read only from one of the first two slots */
1923 if (dl->index > 1)
1924 continue;
1925 sprintf(nm, "%d:%d", dl->major, dl->minor);
1926 fd = dev_open(nm, O_RDONLY);
1927 if (fd >= 0)
1928 break;
1929 }
1930 }
1931 if (fd < 0)
1932 goto out;
1933 retval = read_imsm_migr_rec(fd, super);
1934
1935out:
1936 if (fd >= 0)
1937 close(fd);
1938 return retval;
1939}
1940
687629c2
AK
1941/*******************************************************************************
1942 * Function: write_imsm_migr_rec
1943 * Description: Function writes imsm migration record
1944 * (at the last sector of disk)
1945 * Parameters:
1946 * super : imsm internal array info
1947 * Returns:
1948 * 0 : success
1949 * -1 : if fail
1950 ******************************************************************************/
1951static int write_imsm_migr_rec(struct supertype *st)
1952{
1953 struct intel_super *super = st->sb;
1954 unsigned long long dsize;
1955 char nm[30];
1956 int fd = -1;
1957 int retval = -1;
1958 struct dl *sd;
1959
1960 for (sd = super->disks ; sd ; sd = sd->next) {
1961 /* write to 2 first slots only */
1962 if ((sd->index < 0) || (sd->index > 1))
1963 continue;
1964 sprintf(nm, "%d:%d", sd->major, sd->minor);
1965 fd = dev_open(nm, O_RDWR);
1966 if (fd < 0)
1967 continue;
1968 get_dev_size(fd, NULL, &dsize);
1969 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1970 fprintf(stderr,
1971 Name ": Cannot seek to anchor block: %s\n",
1972 strerror(errno));
1973 goto out;
1974 }
1975 if (write(fd, super->migr_rec_buf, 512) != 512) {
1976 fprintf(stderr,
1977 Name ": Cannot write migr record block: %s\n",
1978 strerror(errno));
1979 goto out;
1980 }
1981 close(fd);
1982 fd = -1;
1983 }
1984
1985 retval = 0;
1986 out:
1987 if (fd >= 0)
1988 close(fd);
1989 return retval;
1990}
1991
a5d85af7 1992static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
1993{
1994 struct intel_super *super = st->sb;
c47b0ff6 1995 struct migr_record *migr_rec = super->migr_rec;
949c47a0 1996 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 1997 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 1998 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 1999 struct imsm_map *map_to_analyse = map;
efb30e7f 2000 struct dl *dl;
e207da2f 2001 char *devname;
139dae11 2002 unsigned int component_size_alligment;
a5d85af7 2003 int map_disks = info->array.raid_disks;
bf5a934a 2004
95eeceeb 2005 memset(info, 0, sizeof(*info));
b335e593
AK
2006 if (prev_map)
2007 map_to_analyse = prev_map;
2008
efb30e7f
DW
2009 for (dl = super->disks; dl; dl = dl->next)
2010 if (dl->raiddisk == info->disk.raid_disk)
2011 break;
bf5a934a 2012 info->container_member = super->current_vol;
cd0430a1 2013 info->array.raid_disks = map->num_members;
b335e593 2014 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2015 info->array.layout = imsm_level_to_layout(info->array.level);
2016 info->array.md_minor = -1;
2017 info->array.ctime = 0;
2018 info->array.utime = 0;
b335e593
AK
2019 info->array.chunk_size =
2020 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2021 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2022 info->custom_array_size = __le32_to_cpu(dev->size_high);
2023 info->custom_array_size <<= 32;
2024 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3f83228a
N
2025 if (prev_map && map->map_state == prev_map->map_state) {
2026 info->reshape_active = 1;
b335e593
AK
2027 info->new_level = get_imsm_raid_level(map);
2028 info->new_layout = imsm_level_to_layout(info->new_level);
2029 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2030 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2031 if (info->delta_disks) {
2032 /* this needs to be applied to every array
2033 * in the container.
2034 */
2035 info->reshape_active = 2;
2036 }
3f83228a
N
2037 /* We shape information that we give to md might have to be
2038 * modify to cope with md's requirement for reshaping arrays.
2039 * For example, when reshaping a RAID0, md requires it to be
2040 * presented as a degraded RAID4.
2041 * Also if a RAID0 is migrating to a RAID5 we need to specify
2042 * the array as already being RAID5, but the 'before' layout
2043 * is a RAID4-like layout.
2044 */
2045 switch (info->array.level) {
2046 case 0:
2047 switch(info->new_level) {
2048 case 0:
2049 /* conversion is happening as RAID4 */
2050 info->array.level = 4;
2051 info->array.raid_disks += 1;
2052 break;
2053 case 5:
2054 /* conversion is happening as RAID5 */
2055 info->array.level = 5;
2056 info->array.layout = ALGORITHM_PARITY_N;
2057 info->array.raid_disks += 1;
2058 info->delta_disks -= 1;
2059 break;
2060 default:
2061 /* FIXME error message */
2062 info->array.level = UnSet;
2063 break;
2064 }
2065 break;
2066 }
b335e593
AK
2067 } else {
2068 info->new_level = UnSet;
2069 info->new_layout = UnSet;
2070 info->new_chunk = info->array.chunk_size;
3f83228a 2071 info->delta_disks = 0;
b335e593 2072 }
301406c9
DW
2073 info->disk.major = 0;
2074 info->disk.minor = 0;
efb30e7f
DW
2075 if (dl) {
2076 info->disk.major = dl->major;
2077 info->disk.minor = dl->minor;
2078 }
bf5a934a 2079
b335e593
AK
2080 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2081 info->component_size =
2082 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2083
2084 /* check component size aligment
2085 */
2086 component_size_alligment =
2087 info->component_size % (info->array.chunk_size/512);
2088
2089 if (component_size_alligment &&
2090 (info->array.level != 1) && (info->array.level != UnSet)) {
2091 dprintf("imsm: reported component size alligned from %llu ",
2092 info->component_size);
2093 info->component_size -= component_size_alligment;
2094 dprintf("to %llu (%i).\n",
2095 info->component_size, component_size_alligment);
2096 }
2097
301406c9 2098 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2099 info->recovery_start = MaxSector;
bf5a934a 2100
d2e6d5d6 2101 info->reshape_progress = 0;
b6796ce1 2102 info->resync_start = MaxSector;
b335e593
AK
2103 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2104 dev->vol.dirty) {
301406c9 2105 info->resync_start = 0;
b6796ce1
AK
2106 }
2107 if (dev->vol.migr_state) {
1e5c6983
DW
2108 switch (migr_type(dev)) {
2109 case MIGR_REPAIR:
2110 case MIGR_INIT: {
c47b0ff6
AK
2111 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2112 dev);
1e5c6983
DW
2113 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2114
2115 info->resync_start = blocks_per_unit * units;
2116 break;
2117 }
d2e6d5d6 2118 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2119 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2120 dev);
2121 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2122 unsigned long long array_blocks;
2123 int used_disks;
d2e6d5d6
AK
2124
2125 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2126
d2e6d5d6
AK
2127 dprintf("IMSM: General Migration checkpoint : %llu "
2128 "(%llu) -> read reshape progress : %llu\n",
2129 units, blocks_per_unit, info->reshape_progress);
75156c46
AK
2130
2131 used_disks = imsm_num_data_members(dev, 1);
2132 if (used_disks > 0) {
2133 array_blocks = map->blocks_per_member *
2134 used_disks;
2135 /* round array size down to closest MB
2136 */
2137 info->custom_array_size = (array_blocks
2138 >> SECT_PER_MB_SHIFT)
2139 << SECT_PER_MB_SHIFT;
2140 }
d2e6d5d6 2141 }
1e5c6983
DW
2142 case MIGR_VERIFY:
2143 /* we could emulate the checkpointing of
2144 * 'sync_action=check' migrations, but for now
2145 * we just immediately complete them
2146 */
2147 case MIGR_REBUILD:
2148 /* this is handled by container_content_imsm() */
1e5c6983
DW
2149 case MIGR_STATE_CHANGE:
2150 /* FIXME handle other migrations */
2151 default:
2152 /* we are not dirty, so... */
2153 info->resync_start = MaxSector;
2154 }
b6796ce1 2155 }
301406c9
DW
2156
2157 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2158 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2159
f35f2525
N
2160 info->array.major_version = -1;
2161 info->array.minor_version = -2;
e207da2f
AW
2162 devname = devnum2devname(st->container_dev);
2163 *info->text_version = '\0';
2164 if (devname)
2165 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2166 free(devname);
a67dd8cc 2167 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2168 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2169
2170 if (dmap) {
2171 int i, j;
2172 for (i=0; i<map_disks; i++) {
2173 dmap[i] = 0;
2174 if (i < info->array.raid_disks) {
2175 struct imsm_disk *dsk;
98130f40 2176 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2177 dsk = get_imsm_disk(super, j);
2178 if (dsk && (dsk->status & CONFIGURED_DISK))
2179 dmap[i] = 1;
2180 }
2181 }
2182 }
81ac8b4d 2183}
bf5a934a 2184
97b4d0e9
DW
2185static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2186static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2187
2188static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2189{
2190 struct dl *d;
2191
2192 for (d = super->missing; d; d = d->next)
2193 if (d->index == index)
2194 return &d->disk;
2195 return NULL;
2196}
2197
a5d85af7 2198static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2199{
2200 struct intel_super *super = st->sb;
4f5bc454 2201 struct imsm_disk *disk;
a5d85af7 2202 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2203 int max_enough = -1;
2204 int i;
2205 struct imsm_super *mpb;
4f5bc454 2206
bf5a934a 2207 if (super->current_vol >= 0) {
a5d85af7 2208 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2209 return;
2210 }
95eeceeb 2211 memset(info, 0, sizeof(*info));
d23fe947
DW
2212
2213 /* Set raid_disks to zero so that Assemble will always pull in valid
2214 * spares
2215 */
2216 info->array.raid_disks = 0;
cdddbdbc
DW
2217 info->array.level = LEVEL_CONTAINER;
2218 info->array.layout = 0;
2219 info->array.md_minor = -1;
c2c087e6 2220 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2221 info->array.utime = 0;
2222 info->array.chunk_size = 0;
2223
2224 info->disk.major = 0;
2225 info->disk.minor = 0;
cdddbdbc 2226 info->disk.raid_disk = -1;
c2c087e6 2227 info->reshape_active = 0;
f35f2525
N
2228 info->array.major_version = -1;
2229 info->array.minor_version = -2;
c2c087e6 2230 strcpy(info->text_version, "imsm");
a67dd8cc 2231 info->safe_mode_delay = 0;
c2c087e6
DW
2232 info->disk.number = -1;
2233 info->disk.state = 0;
c5afc314 2234 info->name[0] = 0;
921d9e16 2235 info->recovery_start = MaxSector;
c2c087e6 2236
97b4d0e9 2237 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2238 mpb = super->anchor;
97b4d0e9 2239
ab3cb6b3
N
2240 for (i = 0; i < mpb->num_raid_devs; i++) {
2241 struct imsm_dev *dev = get_imsm_dev(super, i);
2242 int failed, enough, j, missing = 0;
2243 struct imsm_map *map;
2244 __u8 state;
97b4d0e9 2245
ab3cb6b3
N
2246 failed = imsm_count_failed(super, dev);
2247 state = imsm_check_degraded(super, dev, failed);
2248 map = get_imsm_map(dev, dev->vol.migr_state);
2249
2250 /* any newly missing disks?
2251 * (catches single-degraded vs double-degraded)
2252 */
2253 for (j = 0; j < map->num_members; j++) {
98130f40 2254 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
ab3cb6b3
N
2255 __u32 idx = ord_to_idx(ord);
2256
2257 if (!(ord & IMSM_ORD_REBUILD) &&
2258 get_imsm_missing(super, idx)) {
2259 missing = 1;
2260 break;
2261 }
97b4d0e9 2262 }
ab3cb6b3
N
2263
2264 if (state == IMSM_T_STATE_FAILED)
2265 enough = -1;
2266 else if (state == IMSM_T_STATE_DEGRADED &&
2267 (state != map->map_state || missing))
2268 enough = 0;
2269 else /* we're normal, or already degraded */
2270 enough = 1;
2271
2272 /* in the missing/failed disk case check to see
2273 * if at least one array is runnable
2274 */
2275 max_enough = max(max_enough, enough);
2276 }
2277 dprintf("%s: enough: %d\n", __func__, max_enough);
2278 info->container_enough = max_enough;
97b4d0e9 2279
4a04ec6c 2280 if (super->disks) {
14e8215b
DW
2281 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2282
b9f594fe 2283 disk = &super->disks->disk;
14e8215b
DW
2284 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2285 info->component_size = reserved;
25ed7e59 2286 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2287 /* we don't change info->disk.raid_disk here because
2288 * this state will be finalized in mdmon after we have
2289 * found the 'most fresh' version of the metadata
2290 */
25ed7e59
DW
2291 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2292 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2293 }
a575e2a7
DW
2294
2295 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2296 * ->compare_super may have updated the 'num_raid_devs' field for spares
2297 */
2298 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2299 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2300 else
2301 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2302
2303 /* I don't know how to compute 'map' on imsm, so use safe default */
2304 if (map) {
2305 int i;
2306 for (i = 0; i < map_disks; i++)
2307 map[i] = 1;
2308 }
2309
cdddbdbc
DW
2310}
2311
5c4cd5da
AC
2312/* allocates memory and fills disk in mdinfo structure
2313 * for each disk in array */
2314struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2315{
2316 struct mdinfo *mddev = NULL;
2317 struct intel_super *super = st->sb;
2318 struct imsm_disk *disk;
2319 int count = 0;
2320 struct dl *dl;
2321 if (!super || !super->disks)
2322 return NULL;
2323 dl = super->disks;
2324 mddev = malloc(sizeof(*mddev));
2325 if (!mddev) {
2326 fprintf(stderr, Name ": Failed to allocate memory.\n");
2327 return NULL;
2328 }
2329 memset(mddev, 0, sizeof(*mddev));
2330 while (dl) {
2331 struct mdinfo *tmp;
2332 disk = &dl->disk;
2333 tmp = malloc(sizeof(*tmp));
2334 if (!tmp) {
2335 fprintf(stderr, Name ": Failed to allocate memory.\n");
2336 if (mddev)
2337 sysfs_free(mddev);
2338 return NULL;
2339 }
2340 memset(tmp, 0, sizeof(*tmp));
2341 if (mddev->devs)
2342 tmp->next = mddev->devs;
2343 mddev->devs = tmp;
2344 tmp->disk.number = count++;
2345 tmp->disk.major = dl->major;
2346 tmp->disk.minor = dl->minor;
2347 tmp->disk.state = is_configured(disk) ?
2348 (1 << MD_DISK_ACTIVE) : 0;
2349 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2350 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2351 tmp->disk.raid_disk = -1;
2352 dl = dl->next;
2353 }
2354 return mddev;
2355}
2356
cdddbdbc
DW
2357static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2358 char *update, char *devname, int verbose,
2359 int uuid_set, char *homehost)
2360{
f352c545
DW
2361 /* For 'assemble' and 'force' we need to return non-zero if any
2362 * change was made. For others, the return value is ignored.
2363 * Update options are:
2364 * force-one : This device looks a bit old but needs to be included,
2365 * update age info appropriately.
2366 * assemble: clear any 'faulty' flag to allow this device to
2367 * be assembled.
2368 * force-array: Array is degraded but being forced, mark it clean
2369 * if that will be needed to assemble it.
2370 *
2371 * newdev: not used ????
2372 * grow: Array has gained a new device - this is currently for
2373 * linear only
2374 * resync: mark as dirty so a resync will happen.
2375 * name: update the name - preserving the homehost
6e46bf34 2376 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2377 *
2378 * Following are not relevant for this imsm:
2379 * sparc2.2 : update from old dodgey metadata
2380 * super-minor: change the preferred_minor number
2381 * summaries: update redundant counters.
f352c545
DW
2382 * homehost: update the recorded homehost
2383 * _reshape_progress: record new reshape_progress position.
2384 */
6e46bf34
DW
2385 int rv = 1;
2386 struct intel_super *super = st->sb;
2387 struct imsm_super *mpb;
f352c545 2388
6e46bf34
DW
2389 /* we can only update container info */
2390 if (!super || super->current_vol >= 0 || !super->anchor)
2391 return 1;
2392
2393 mpb = super->anchor;
2394
2395 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2396 rv = -1;
6e46bf34
DW
2397 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2398 mpb->orig_family_num = *((__u32 *) info->update_private);
2399 rv = 0;
2400 } else if (strcmp(update, "uuid") == 0) {
2401 __u32 *new_family = malloc(sizeof(*new_family));
2402
2403 /* update orig_family_number with the incoming random
2404 * data, report the new effective uuid, and store the
2405 * new orig_family_num for future updates.
2406 */
2407 if (new_family) {
2408 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2409 uuid_from_super_imsm(st, info->uuid);
2410 *new_family = mpb->orig_family_num;
2411 info->update_private = new_family;
2412 rv = 0;
2413 }
2414 } else if (strcmp(update, "assemble") == 0)
2415 rv = 0;
2416 else
1e2b2765 2417 rv = -1;
f352c545 2418
6e46bf34
DW
2419 /* successful update? recompute checksum */
2420 if (rv == 0)
2421 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2422
2423 return rv;
cdddbdbc
DW
2424}
2425
c2c087e6 2426static size_t disks_to_mpb_size(int disks)
cdddbdbc 2427{
c2c087e6 2428 size_t size;
cdddbdbc 2429
c2c087e6
DW
2430 size = sizeof(struct imsm_super);
2431 size += (disks - 1) * sizeof(struct imsm_disk);
2432 size += 2 * sizeof(struct imsm_dev);
2433 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2434 size += (4 - 2) * sizeof(struct imsm_map);
2435 /* 4 possible disk_ord_tbl's */
2436 size += 4 * (disks - 1) * sizeof(__u32);
2437
2438 return size;
2439}
2440
2441static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2442{
2443 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2444 return 0;
2445
2446 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2447}
2448
ba2de7ba
DW
2449static void free_devlist(struct intel_super *super)
2450{
2451 struct intel_dev *dv;
2452
2453 while (super->devlist) {
2454 dv = super->devlist->next;
2455 free(super->devlist->dev);
2456 free(super->devlist);
2457 super->devlist = dv;
2458 }
2459}
2460
2461static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2462{
2463 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2464}
2465
cdddbdbc
DW
2466static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2467{
2468 /*
2469 * return:
2470 * 0 same, or first was empty, and second was copied
2471 * 1 second had wrong number
2472 * 2 wrong uuid
2473 * 3 wrong other info
2474 */
2475 struct intel_super *first = st->sb;
2476 struct intel_super *sec = tst->sb;
2477
2478 if (!first) {
2479 st->sb = tst->sb;
2480 tst->sb = NULL;
2481 return 0;
2482 }
8603ea6f
LM
2483 /* in platform dependent environment test if the disks
2484 * use the same Intel hba
2485 */
2486 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2487 if (!first->hba || !sec->hba ||
2488 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2489 fprintf(stderr,
2490 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2491 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2492 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2493 return 3;
2494 }
2495 }
cdddbdbc 2496
d23fe947
DW
2497 /* if an anchor does not have num_raid_devs set then it is a free
2498 * floating spare
2499 */
2500 if (first->anchor->num_raid_devs > 0 &&
2501 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2502 /* Determine if these disks might ever have been
2503 * related. Further disambiguation can only take place
2504 * in load_super_imsm_all
2505 */
2506 __u32 first_family = first->anchor->orig_family_num;
2507 __u32 sec_family = sec->anchor->orig_family_num;
2508
f796af5d
DW
2509 if (memcmp(first->anchor->sig, sec->anchor->sig,
2510 MAX_SIGNATURE_LENGTH) != 0)
2511 return 3;
2512
a2b97981
DW
2513 if (first_family == 0)
2514 first_family = first->anchor->family_num;
2515 if (sec_family == 0)
2516 sec_family = sec->anchor->family_num;
2517
2518 if (first_family != sec_family)
d23fe947 2519 return 3;
f796af5d 2520
d23fe947 2521 }
cdddbdbc 2522
f796af5d 2523
3e372e5a
DW
2524 /* if 'first' is a spare promote it to a populated mpb with sec's
2525 * family number
2526 */
2527 if (first->anchor->num_raid_devs == 0 &&
2528 sec->anchor->num_raid_devs > 0) {
78d30f94 2529 int i;
ba2de7ba
DW
2530 struct intel_dev *dv;
2531 struct imsm_dev *dev;
78d30f94
DW
2532
2533 /* we need to copy raid device info from sec if an allocation
2534 * fails here we don't associate the spare
2535 */
2536 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2537 dv = malloc(sizeof(*dv));
2538 if (!dv)
2539 break;
2540 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2541 if (!dev) {
2542 free(dv);
2543 break;
78d30f94 2544 }
ba2de7ba
DW
2545 dv->dev = dev;
2546 dv->index = i;
2547 dv->next = first->devlist;
2548 first->devlist = dv;
78d30f94 2549 }
709743c5 2550 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2551 /* allocation failure */
2552 free_devlist(first);
2553 fprintf(stderr, "imsm: failed to associate spare\n");
2554 return 3;
78d30f94 2555 }
3e372e5a 2556 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2557 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2558 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2559 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2560 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2561 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2562 }
2563
cdddbdbc
DW
2564 return 0;
2565}
2566
0030e8d6
DW
2567static void fd2devname(int fd, char *name)
2568{
2569 struct stat st;
2570 char path[256];
33a6535d 2571 char dname[PATH_MAX];
0030e8d6
DW
2572 char *nm;
2573 int rv;
2574
2575 name[0] = '\0';
2576 if (fstat(fd, &st) != 0)
2577 return;
2578 sprintf(path, "/sys/dev/block/%d:%d",
2579 major(st.st_rdev), minor(st.st_rdev));
2580
2581 rv = readlink(path, dname, sizeof(dname));
2582 if (rv <= 0)
2583 return;
2584
2585 dname[rv] = '\0';
2586 nm = strrchr(dname, '/');
2587 nm++;
2588 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2589}
2590
cdddbdbc
DW
2591extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2592
2593static int imsm_read_serial(int fd, char *devname,
2594 __u8 serial[MAX_RAID_SERIAL_LEN])
2595{
2596 unsigned char scsi_serial[255];
cdddbdbc
DW
2597 int rv;
2598 int rsp_len;
1f24f035 2599 int len;
316e2bf4
DW
2600 char *dest;
2601 char *src;
2602 char *rsp_buf;
2603 int i;
cdddbdbc
DW
2604
2605 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2606
f9ba0ff1
DW
2607 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2608
40ebbb9c 2609 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2610 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2611 fd2devname(fd, (char *) serial);
0030e8d6
DW
2612 return 0;
2613 }
2614
cdddbdbc
DW
2615 if (rv != 0) {
2616 if (devname)
2617 fprintf(stderr,
2618 Name ": Failed to retrieve serial for %s\n",
2619 devname);
2620 return rv;
2621 }
2622
2623 rsp_len = scsi_serial[3];
03cd4cc8
DW
2624 if (!rsp_len) {
2625 if (devname)
2626 fprintf(stderr,
2627 Name ": Failed to retrieve serial for %s\n",
2628 devname);
2629 return 2;
2630 }
1f24f035 2631 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2632
316e2bf4
DW
2633 /* trim all whitespace and non-printable characters and convert
2634 * ':' to ';'
2635 */
2636 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2637 src = &rsp_buf[i];
2638 if (*src > 0x20) {
2639 /* ':' is reserved for use in placeholder serial
2640 * numbers for missing disks
2641 */
2642 if (*src == ':')
2643 *dest++ = ';';
2644 else
2645 *dest++ = *src;
2646 }
2647 }
2648 len = dest - rsp_buf;
2649 dest = rsp_buf;
2650
2651 /* truncate leading characters */
2652 if (len > MAX_RAID_SERIAL_LEN) {
2653 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2654 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2655 }
5c3db629 2656
5c3db629 2657 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2658 memcpy(serial, dest, len);
cdddbdbc
DW
2659
2660 return 0;
2661}
2662
1f24f035
DW
2663static int serialcmp(__u8 *s1, __u8 *s2)
2664{
2665 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2666}
2667
2668static void serialcpy(__u8 *dest, __u8 *src)
2669{
2670 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2671}
2672
1799c9e8 2673#ifndef MDASSEMBLE
54c2c1ea
DW
2674static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2675{
2676 struct dl *dl;
2677
2678 for (dl = super->disks; dl; dl = dl->next)
2679 if (serialcmp(dl->serial, serial) == 0)
2680 break;
2681
2682 return dl;
2683}
1799c9e8 2684#endif
54c2c1ea 2685
a2b97981
DW
2686static struct imsm_disk *
2687__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2688{
2689 int i;
2690
2691 for (i = 0; i < mpb->num_disks; i++) {
2692 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2693
2694 if (serialcmp(disk->serial, serial) == 0) {
2695 if (idx)
2696 *idx = i;
2697 return disk;
2698 }
2699 }
2700
2701 return NULL;
2702}
2703
cdddbdbc
DW
2704static int
2705load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2706{
a2b97981 2707 struct imsm_disk *disk;
cdddbdbc
DW
2708 struct dl *dl;
2709 struct stat stb;
cdddbdbc 2710 int rv;
a2b97981 2711 char name[40];
d23fe947
DW
2712 __u8 serial[MAX_RAID_SERIAL_LEN];
2713
2714 rv = imsm_read_serial(fd, devname, serial);
2715
2716 if (rv != 0)
2717 return 2;
2718
a2b97981 2719 dl = calloc(1, sizeof(*dl));
b9f594fe 2720 if (!dl) {
cdddbdbc
DW
2721 if (devname)
2722 fprintf(stderr,
2723 Name ": failed to allocate disk buffer for %s\n",
2724 devname);
2725 return 2;
2726 }
cdddbdbc 2727
a2b97981
DW
2728 fstat(fd, &stb);
2729 dl->major = major(stb.st_rdev);
2730 dl->minor = minor(stb.st_rdev);
2731 dl->next = super->disks;
2732 dl->fd = keep_fd ? fd : -1;
2733 assert(super->disks == NULL);
2734 super->disks = dl;
2735 serialcpy(dl->serial, serial);
2736 dl->index = -2;
2737 dl->e = NULL;
2738 fd2devname(fd, name);
2739 if (devname)
2740 dl->devname = strdup(devname);
2741 else
2742 dl->devname = strdup(name);
cdddbdbc 2743
d23fe947 2744 /* look up this disk's index in the current anchor */
a2b97981
DW
2745 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2746 if (disk) {
2747 dl->disk = *disk;
2748 /* only set index on disks that are a member of a
2749 * populated contianer, i.e. one with raid_devs
2750 */
2751 if (is_failed(&dl->disk))
3f6efecc 2752 dl->index = -2;
a2b97981
DW
2753 else if (is_spare(&dl->disk))
2754 dl->index = -1;
3f6efecc
DW
2755 }
2756
949c47a0
DW
2757 return 0;
2758}
2759
0e600426 2760#ifndef MDASSEMBLE
0c046afd
DW
2761/* When migrating map0 contains the 'destination' state while map1
2762 * contains the current state. When not migrating map0 contains the
2763 * current state. This routine assumes that map[0].map_state is set to
2764 * the current array state before being called.
2765 *
2766 * Migration is indicated by one of the following states
2767 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 2768 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 2769 * map1state=unitialized)
1484e727 2770 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 2771 * map1state=normal)
e3bba0e0 2772 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 2773 * map1state=degraded)
8e59f3d8
AK
2774 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2775 * map1state=normal)
0c046afd 2776 */
8e59f3d8
AK
2777static void migrate(struct imsm_dev *dev, struct intel_super *super,
2778 __u8 to_state, int migr_type)
3393c6af 2779{
0c046afd 2780 struct imsm_map *dest;
3393c6af
DW
2781 struct imsm_map *src = get_imsm_map(dev, 0);
2782
0c046afd 2783 dev->vol.migr_state = 1;
1484e727 2784 set_migr_type(dev, migr_type);
f8f603f1 2785 dev->vol.curr_migr_unit = 0;
0c046afd
DW
2786 dest = get_imsm_map(dev, 1);
2787
0556e1a2 2788 /* duplicate and then set the target end state in map[0] */
3393c6af 2789 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
2790 if ((migr_type == MIGR_REBUILD) ||
2791 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
2792 __u32 ord;
2793 int i;
2794
2795 for (i = 0; i < src->num_members; i++) {
2796 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2797 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2798 }
2799 }
2800
8e59f3d8
AK
2801 if (migr_type == MIGR_GEN_MIGR)
2802 /* Clear migration record */
2803 memset(super->migr_rec, 0, sizeof(struct migr_record));
2804
0c046afd 2805 src->map_state = to_state;
949c47a0 2806}
f8f603f1
DW
2807
2808static void end_migration(struct imsm_dev *dev, __u8 map_state)
2809{
2810 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 2811 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 2812 int i, j;
0556e1a2
DW
2813
2814 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2815 * completed in the last migration.
2816 *
28bce06f 2817 * FIXME add support for raid-level-migration
0556e1a2
DW
2818 */
2819 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
2820 for (j = 0; j < map->num_members; j++)
2821 /* during online capacity expansion
2822 * disks position can be changed if takeover is used
2823 */
2824 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2825 ord_to_idx(prev->disk_ord_tbl[i])) {
2826 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2827 break;
2828 }
f8f603f1
DW
2829
2830 dev->vol.migr_state = 0;
28bce06f 2831 dev->vol.migr_type = 0;
f8f603f1
DW
2832 dev->vol.curr_migr_unit = 0;
2833 map->map_state = map_state;
2834}
0e600426 2835#endif
949c47a0
DW
2836
2837static int parse_raid_devices(struct intel_super *super)
2838{
2839 int i;
2840 struct imsm_dev *dev_new;
4d7b1503 2841 size_t len, len_migr;
401d313b 2842 size_t max_len = 0;
4d7b1503
DW
2843 size_t space_needed = 0;
2844 struct imsm_super *mpb = super->anchor;
949c47a0
DW
2845
2846 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2847 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 2848 struct intel_dev *dv;
949c47a0 2849
4d7b1503
DW
2850 len = sizeof_imsm_dev(dev_iter, 0);
2851 len_migr = sizeof_imsm_dev(dev_iter, 1);
2852 if (len_migr > len)
2853 space_needed += len_migr - len;
2854
ba2de7ba
DW
2855 dv = malloc(sizeof(*dv));
2856 if (!dv)
2857 return 1;
401d313b
AK
2858 if (max_len < len_migr)
2859 max_len = len_migr;
2860 if (max_len > len_migr)
2861 space_needed += max_len - len_migr;
2862 dev_new = malloc(max_len);
ba2de7ba
DW
2863 if (!dev_new) {
2864 free(dv);
949c47a0 2865 return 1;
ba2de7ba 2866 }
949c47a0 2867 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
2868 dv->dev = dev_new;
2869 dv->index = i;
2870 dv->next = super->devlist;
2871 super->devlist = dv;
949c47a0 2872 }
cdddbdbc 2873
4d7b1503
DW
2874 /* ensure that super->buf is large enough when all raid devices
2875 * are migrating
2876 */
2877 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2878 void *buf;
2879
2880 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2881 if (posix_memalign(&buf, 512, len) != 0)
2882 return 1;
2883
1f45a8ad
DW
2884 memcpy(buf, super->buf, super->len);
2885 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
2886 free(super->buf);
2887 super->buf = buf;
2888 super->len = len;
2889 }
2890
cdddbdbc
DW
2891 return 0;
2892}
2893
604b746f
JD
2894/* retrieve a pointer to the bbm log which starts after all raid devices */
2895struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2896{
2897 void *ptr = NULL;
2898
2899 if (__le32_to_cpu(mpb->bbm_log_size)) {
2900 ptr = mpb;
2901 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2902 }
2903
2904 return ptr;
2905}
2906
e2f41b2c
AK
2907/*******************************************************************************
2908 * Function: check_mpb_migr_compatibility
2909 * Description: Function checks for unsupported migration features:
2910 * - migration optimization area (pba_of_lba0)
2911 * - descending reshape (ascending_migr)
2912 * Parameters:
2913 * super : imsm metadata information
2914 * Returns:
2915 * 0 : migration is compatible
2916 * -1 : migration is not compatible
2917 ******************************************************************************/
2918int check_mpb_migr_compatibility(struct intel_super *super)
2919{
2920 struct imsm_map *map0, *map1;
2921 struct migr_record *migr_rec = super->migr_rec;
2922 int i;
2923
2924 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2925 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2926
2927 if (dev_iter &&
2928 dev_iter->vol.migr_state == 1 &&
2929 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
2930 /* This device is migrating */
2931 map0 = get_imsm_map(dev_iter, 0);
2932 map1 = get_imsm_map(dev_iter, 1);
2933 if (map0->pba_of_lba0 != map1->pba_of_lba0)
2934 /* migration optimization area was used */
2935 return -1;
2936 if (migr_rec->ascending_migr == 0
2937 && migr_rec->dest_depth_per_unit > 0)
2938 /* descending reshape not supported yet */
2939 return -1;
2940 }
2941 }
2942 return 0;
2943}
2944
d23fe947 2945static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 2946
cdddbdbc 2947/* load_imsm_mpb - read matrix metadata
f2f5c343 2948 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
2949 */
2950static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2951{
2952 unsigned long long dsize;
cdddbdbc
DW
2953 unsigned long long sectors;
2954 struct stat;
6416d527 2955 struct imsm_super *anchor;
cdddbdbc
DW
2956 __u32 check_sum;
2957
cdddbdbc 2958 get_dev_size(fd, NULL, &dsize);
64436f06
N
2959 if (dsize < 1024) {
2960 if (devname)
2961 fprintf(stderr,
2962 Name ": %s: device to small for imsm\n",
2963 devname);
2964 return 1;
2965 }
cdddbdbc
DW
2966
2967 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2968 if (devname)
2969 fprintf(stderr,
2970 Name ": Cannot seek to anchor block on %s: %s\n",
2971 devname, strerror(errno));
2972 return 1;
2973 }
2974
949c47a0 2975 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
2976 if (devname)
2977 fprintf(stderr,
2978 Name ": Failed to allocate imsm anchor buffer"
2979 " on %s\n", devname);
2980 return 1;
2981 }
949c47a0 2982 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
2983 if (devname)
2984 fprintf(stderr,
2985 Name ": Cannot read anchor block on %s: %s\n",
2986 devname, strerror(errno));
6416d527 2987 free(anchor);
cdddbdbc
DW
2988 return 1;
2989 }
2990
6416d527 2991 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
2992 if (devname)
2993 fprintf(stderr,
2994 Name ": no IMSM anchor on %s\n", devname);
6416d527 2995 free(anchor);
cdddbdbc
DW
2996 return 2;
2997 }
2998
d23fe947 2999 __free_imsm(super, 0);
f2f5c343
LM
3000 /* reload capability and hba */
3001
3002 /* capability and hba must be updated with new super allocation */
d424212e 3003 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3004 super->len = ROUND_UP(anchor->mpb_size, 512);
3005 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3006 if (devname)
3007 fprintf(stderr,
3008 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3009 super->len);
6416d527 3010 free(anchor);
cdddbdbc
DW
3011 return 2;
3012 }
949c47a0 3013 memcpy(super->buf, anchor, 512);
cdddbdbc 3014
6416d527
NB
3015 sectors = mpb_sectors(anchor) - 1;
3016 free(anchor);
8e59f3d8
AK
3017
3018 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3019 fprintf(stderr, Name
3020 ": %s could not allocate migr_rec buffer\n", __func__);
3021 free(super->buf);
3022 return 2;
3023 }
3024
949c47a0 3025 if (!sectors) {
ecf45690
DW
3026 check_sum = __gen_imsm_checksum(super->anchor);
3027 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3028 if (devname)
3029 fprintf(stderr,
3030 Name ": IMSM checksum %x != %x on %s\n",
3031 check_sum,
3032 __le32_to_cpu(super->anchor->check_sum),
3033 devname);
3034 return 2;
3035 }
3036
a2b97981 3037 return 0;
949c47a0 3038 }
cdddbdbc
DW
3039
3040 /* read the extended mpb */
3041 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3042 if (devname)
3043 fprintf(stderr,
3044 Name ": Cannot seek to extended mpb on %s: %s\n",
3045 devname, strerror(errno));
3046 return 1;
3047 }
3048
f21e18ca 3049 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3050 if (devname)
3051 fprintf(stderr,
3052 Name ": Cannot read extended mpb on %s: %s\n",
3053 devname, strerror(errno));
3054 return 2;
3055 }
3056
949c47a0
DW
3057 check_sum = __gen_imsm_checksum(super->anchor);
3058 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3059 if (devname)
3060 fprintf(stderr,
3061 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3062 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3063 devname);
db575f3b 3064 return 3;
cdddbdbc
DW
3065 }
3066
604b746f
JD
3067 /* FIXME the BBM log is disk specific so we cannot use this global
3068 * buffer for all disks. Ok for now since we only look at the global
3069 * bbm_log_size parameter to gate assembly
3070 */
3071 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3072
a2b97981
DW
3073 return 0;
3074}
3075
8e59f3d8
AK
3076static int read_imsm_migr_rec(int fd, struct intel_super *super);
3077
a2b97981
DW
3078static int
3079load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3080{
3081 int err;
3082
3083 err = load_imsm_mpb(fd, super, devname);
3084 if (err)
3085 return err;
3086 err = load_imsm_disk(fd, super, devname, keep_fd);
3087 if (err)
3088 return err;
3089 err = parse_raid_devices(super);
4d7b1503 3090
a2b97981 3091 return err;
cdddbdbc
DW
3092}
3093
ae6aad82
DW
3094static void __free_imsm_disk(struct dl *d)
3095{
3096 if (d->fd >= 0)
3097 close(d->fd);
3098 if (d->devname)
3099 free(d->devname);
0dcecb2e
DW
3100 if (d->e)
3101 free(d->e);
ae6aad82
DW
3102 free(d);
3103
3104}
1a64be56 3105
cdddbdbc
DW
3106static void free_imsm_disks(struct intel_super *super)
3107{
47ee5a45 3108 struct dl *d;
cdddbdbc 3109
47ee5a45
DW
3110 while (super->disks) {
3111 d = super->disks;
cdddbdbc 3112 super->disks = d->next;
ae6aad82 3113 __free_imsm_disk(d);
cdddbdbc 3114 }
cb82edca
AK
3115 while (super->disk_mgmt_list) {
3116 d = super->disk_mgmt_list;
3117 super->disk_mgmt_list = d->next;
3118 __free_imsm_disk(d);
3119 }
47ee5a45
DW
3120 while (super->missing) {
3121 d = super->missing;
3122 super->missing = d->next;
3123 __free_imsm_disk(d);
3124 }
3125
cdddbdbc
DW
3126}
3127
9ca2c81c 3128/* free all the pieces hanging off of a super pointer */
d23fe947 3129static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3130{
88654014
LM
3131 struct intel_hba *elem, *next;
3132
9ca2c81c 3133 if (super->buf) {
949c47a0 3134 free(super->buf);
9ca2c81c
DW
3135 super->buf = NULL;
3136 }
f2f5c343
LM
3137 /* unlink capability description */
3138 super->orom = NULL;
8e59f3d8
AK
3139 if (super->migr_rec_buf) {
3140 free(super->migr_rec_buf);
3141 super->migr_rec_buf = NULL;
3142 }
d23fe947
DW
3143 if (free_disks)
3144 free_imsm_disks(super);
ba2de7ba 3145 free_devlist(super);
88654014
LM
3146 elem = super->hba;
3147 while (elem) {
3148 if (elem->path)
3149 free((void *)elem->path);
3150 next = elem->next;
3151 free(elem);
3152 elem = next;
88c32bb1 3153 }
88654014 3154 super->hba = NULL;
cdddbdbc
DW
3155}
3156
9ca2c81c
DW
3157static void free_imsm(struct intel_super *super)
3158{
d23fe947 3159 __free_imsm(super, 1);
9ca2c81c
DW
3160 free(super);
3161}
cdddbdbc
DW
3162
3163static void free_super_imsm(struct supertype *st)
3164{
3165 struct intel_super *super = st->sb;
3166
3167 if (!super)
3168 return;
3169
3170 free_imsm(super);
3171 st->sb = NULL;
3172}
3173
49133e57 3174static struct intel_super *alloc_super(void)
c2c087e6
DW
3175{
3176 struct intel_super *super = malloc(sizeof(*super));
3177
3178 if (super) {
3179 memset(super, 0, sizeof(*super));
bf5a934a 3180 super->current_vol = -1;
0dcecb2e 3181 super->create_offset = ~((__u32 ) 0);
c2c087e6 3182 }
c2c087e6
DW
3183 return super;
3184}
3185
f0f5a016
LM
3186/*
3187 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3188 */
d424212e 3189static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3190{
3191 struct sys_dev *hba_name;
3192 int rv = 0;
3193
3194 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3195 super->orom = NULL;
f0f5a016
LM
3196 super->hba = NULL;
3197 return 0;
3198 }
3199 hba_name = find_disk_attached_hba(fd, NULL);
3200 if (!hba_name) {
d424212e 3201 if (devname)
f0f5a016
LM
3202 fprintf(stderr,
3203 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3204 devname);
f0f5a016
LM
3205 return 1;
3206 }
3207 rv = attach_hba_to_super(super, hba_name);
3208 if (rv == 2) {
d424212e
N
3209 if (devname) {
3210 struct intel_hba *hba = super->hba;
f0f5a016 3211
f0f5a016
LM
3212 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3213 "controller (%s),\n"
3214 " but the container is assigned to Intel(R) "
3215 "%s RAID controller (",
d424212e 3216 devname,
f0f5a016
LM
3217 hba_name->path,
3218 hba_name->pci_id ? : "Err!",
3219 get_sys_dev_type(hba_name->type));
3220
f0f5a016
LM
3221 while (hba) {
3222 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3223 if (hba->next)
3224 fprintf(stderr, ", ");
3225 hba = hba->next;
3226 }
3227
3228 fprintf(stderr, ").\n"
3229 " Mixing devices attached to different controllers "
3230 "is not allowed.\n");
3231 }
3232 free_sys_dev(&hba_name);
3233 return 2;
3234 }
f2f5c343 3235 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3236 free_sys_dev(&hba_name);
f2f5c343
LM
3237 if (!super->orom)
3238 return 3;
f0f5a016
LM
3239 return 0;
3240}
3241
cdddbdbc 3242#ifndef MDASSEMBLE
47ee5a45
DW
3243/* find_missing - helper routine for load_super_imsm_all that identifies
3244 * disks that have disappeared from the system. This routine relies on
3245 * the mpb being uptodate, which it is at load time.
3246 */
3247static int find_missing(struct intel_super *super)
3248{
3249 int i;
3250 struct imsm_super *mpb = super->anchor;
3251 struct dl *dl;
3252 struct imsm_disk *disk;
47ee5a45
DW
3253
3254 for (i = 0; i < mpb->num_disks; i++) {
3255 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3256 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3257 if (dl)
3258 continue;
47ee5a45
DW
3259
3260 dl = malloc(sizeof(*dl));
3261 if (!dl)
3262 return 1;
3263 dl->major = 0;
3264 dl->minor = 0;
3265 dl->fd = -1;
3266 dl->devname = strdup("missing");
3267 dl->index = i;
3268 serialcpy(dl->serial, disk->serial);
3269 dl->disk = *disk;
689c9bf3 3270 dl->e = NULL;
47ee5a45
DW
3271 dl->next = super->missing;
3272 super->missing = dl;
3273 }
3274
3275 return 0;
3276}
3277
a2b97981
DW
3278static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3279{
3280 struct intel_disk *idisk = disk_list;
3281
3282 while (idisk) {
3283 if (serialcmp(idisk->disk.serial, serial) == 0)
3284 break;
3285 idisk = idisk->next;
3286 }
3287
3288 return idisk;
3289}
3290
3291static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3292 struct intel_super *super,
3293 struct intel_disk **disk_list)
3294{
3295 struct imsm_disk *d = &super->disks->disk;
3296 struct imsm_super *mpb = super->anchor;
3297 int i, j;
3298
3299 for (i = 0; i < tbl_size; i++) {
3300 struct imsm_super *tbl_mpb = table[i]->anchor;
3301 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3302
3303 if (tbl_mpb->family_num == mpb->family_num) {
3304 if (tbl_mpb->check_sum == mpb->check_sum) {
3305 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3306 __func__, super->disks->major,
3307 super->disks->minor,
3308 table[i]->disks->major,
3309 table[i]->disks->minor);
3310 break;
3311 }
3312
3313 if (((is_configured(d) && !is_configured(tbl_d)) ||
3314 is_configured(d) == is_configured(tbl_d)) &&
3315 tbl_mpb->generation_num < mpb->generation_num) {
3316 /* current version of the mpb is a
3317 * better candidate than the one in
3318 * super_table, but copy over "cross
3319 * generational" status
3320 */
3321 struct intel_disk *idisk;
3322
3323 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3324 __func__, super->disks->major,
3325 super->disks->minor,
3326 table[i]->disks->major,
3327 table[i]->disks->minor);
3328
3329 idisk = disk_list_get(tbl_d->serial, *disk_list);
3330 if (idisk && is_failed(&idisk->disk))
3331 tbl_d->status |= FAILED_DISK;
3332 break;
3333 } else {
3334 struct intel_disk *idisk;
3335 struct imsm_disk *disk;
3336
3337 /* tbl_mpb is more up to date, but copy
3338 * over cross generational status before
3339 * returning
3340 */
3341 disk = __serial_to_disk(d->serial, mpb, NULL);
3342 if (disk && is_failed(disk))
3343 d->status |= FAILED_DISK;
3344
3345 idisk = disk_list_get(d->serial, *disk_list);
3346 if (idisk) {
3347 idisk->owner = i;
3348 if (disk && is_configured(disk))
3349 idisk->disk.status |= CONFIGURED_DISK;
3350 }
3351
3352 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3353 __func__, super->disks->major,
3354 super->disks->minor,
3355 table[i]->disks->major,
3356 table[i]->disks->minor);
3357
3358 return tbl_size;
3359 }
3360 }
3361 }
3362
3363 if (i >= tbl_size)
3364 table[tbl_size++] = super;
3365 else
3366 table[i] = super;
3367
3368 /* update/extend the merged list of imsm_disk records */
3369 for (j = 0; j < mpb->num_disks; j++) {
3370 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3371 struct intel_disk *idisk;
3372
3373 idisk = disk_list_get(disk->serial, *disk_list);
3374 if (idisk) {
3375 idisk->disk.status |= disk->status;
3376 if (is_configured(&idisk->disk) ||
3377 is_failed(&idisk->disk))
3378 idisk->disk.status &= ~(SPARE_DISK);
3379 } else {
3380 idisk = calloc(1, sizeof(*idisk));
3381 if (!idisk)
3382 return -1;
3383 idisk->owner = IMSM_UNKNOWN_OWNER;
3384 idisk->disk = *disk;
3385 idisk->next = *disk_list;
3386 *disk_list = idisk;
3387 }
3388
3389 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3390 idisk->owner = i;
3391 }
3392
3393 return tbl_size;
3394}
3395
3396static struct intel_super *
3397validate_members(struct intel_super *super, struct intel_disk *disk_list,
3398 const int owner)
3399{
3400 struct imsm_super *mpb = super->anchor;
3401 int ok_count = 0;
3402 int i;
3403
3404 for (i = 0; i < mpb->num_disks; i++) {
3405 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3406 struct intel_disk *idisk;
3407
3408 idisk = disk_list_get(disk->serial, disk_list);
3409 if (idisk) {
3410 if (idisk->owner == owner ||
3411 idisk->owner == IMSM_UNKNOWN_OWNER)
3412 ok_count++;
3413 else
3414 dprintf("%s: '%.16s' owner %d != %d\n",
3415 __func__, disk->serial, idisk->owner,
3416 owner);
3417 } else {
3418 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3419 __func__, __le32_to_cpu(mpb->family_num), i,
3420 disk->serial);
3421 break;
3422 }
3423 }
3424
3425 if (ok_count == mpb->num_disks)
3426 return super;
3427 return NULL;
3428}
3429
3430static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3431{
3432 struct intel_super *s;
3433
3434 for (s = super_list; s; s = s->next) {
3435 if (family_num != s->anchor->family_num)
3436 continue;
3437 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3438 __le32_to_cpu(family_num), s->disks->devname);
3439 }
3440}
3441
3442static struct intel_super *
3443imsm_thunderdome(struct intel_super **super_list, int len)
3444{
3445 struct intel_super *super_table[len];
3446 struct intel_disk *disk_list = NULL;
3447 struct intel_super *champion, *spare;
3448 struct intel_super *s, **del;
3449 int tbl_size = 0;
3450 int conflict;
3451 int i;
3452
3453 memset(super_table, 0, sizeof(super_table));
3454 for (s = *super_list; s; s = s->next)
3455 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3456
3457 for (i = 0; i < tbl_size; i++) {
3458 struct imsm_disk *d;
3459 struct intel_disk *idisk;
3460 struct imsm_super *mpb = super_table[i]->anchor;
3461
3462 s = super_table[i];
3463 d = &s->disks->disk;
3464
3465 /* 'd' must appear in merged disk list for its
3466 * configuration to be valid
3467 */
3468 idisk = disk_list_get(d->serial, disk_list);
3469 if (idisk && idisk->owner == i)
3470 s = validate_members(s, disk_list, i);
3471 else
3472 s = NULL;
3473
3474 if (!s)
3475 dprintf("%s: marking family: %#x from %d:%d offline\n",
3476 __func__, mpb->family_num,
3477 super_table[i]->disks->major,
3478 super_table[i]->disks->minor);
3479 super_table[i] = s;
3480 }
3481
3482 /* This is where the mdadm implementation differs from the Windows
3483 * driver which has no strict concept of a container. We can only
3484 * assemble one family from a container, so when returning a prodigal
3485 * array member to this system the code will not be able to disambiguate
3486 * the container contents that should be assembled ("foreign" versus
3487 * "local"). It requires user intervention to set the orig_family_num
3488 * to a new value to establish a new container. The Windows driver in
3489 * this situation fixes up the volume name in place and manages the
3490 * foreign array as an independent entity.
3491 */
3492 s = NULL;
3493 spare = NULL;
3494 conflict = 0;
3495 for (i = 0; i < tbl_size; i++) {
3496 struct intel_super *tbl_ent = super_table[i];
3497 int is_spare = 0;
3498
3499 if (!tbl_ent)
3500 continue;
3501
3502 if (tbl_ent->anchor->num_raid_devs == 0) {
3503 spare = tbl_ent;
3504 is_spare = 1;
3505 }
3506
3507 if (s && !is_spare) {
3508 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3509 conflict++;
3510 } else if (!s && !is_spare)
3511 s = tbl_ent;
3512 }
3513
3514 if (!s)
3515 s = spare;
3516 if (!s) {
3517 champion = NULL;
3518 goto out;
3519 }
3520 champion = s;
3521
3522 if (conflict)
3523 fprintf(stderr, "Chose family %#x on '%s', "
3524 "assemble conflicts to new container with '--update=uuid'\n",
3525 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3526
3527 /* collect all dl's onto 'champion', and update them to
3528 * champion's version of the status
3529 */
3530 for (s = *super_list; s; s = s->next) {
3531 struct imsm_super *mpb = champion->anchor;
3532 struct dl *dl = s->disks;
3533
3534 if (s == champion)
3535 continue;
3536
3537 for (i = 0; i < mpb->num_disks; i++) {
3538 struct imsm_disk *disk;
3539
3540 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3541 if (disk) {
3542 dl->disk = *disk;
3543 /* only set index on disks that are a member of
3544 * a populated contianer, i.e. one with
3545 * raid_devs
3546 */
3547 if (is_failed(&dl->disk))
3548 dl->index = -2;
3549 else if (is_spare(&dl->disk))
3550 dl->index = -1;
3551 break;
3552 }
3553 }
3554
3555 if (i >= mpb->num_disks) {
3556 struct intel_disk *idisk;
3557
3558 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3559 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3560 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3561 dl->index = -1;
3562 else {
3563 dl->index = -2;
3564 continue;
3565 }
3566 }
3567
3568 dl->next = champion->disks;
3569 champion->disks = dl;
3570 s->disks = NULL;
3571 }
3572
3573 /* delete 'champion' from super_list */
3574 for (del = super_list; *del; ) {
3575 if (*del == champion) {
3576 *del = (*del)->next;
3577 break;
3578 } else
3579 del = &(*del)->next;
3580 }
3581 champion->next = NULL;
3582
3583 out:
3584 while (disk_list) {
3585 struct intel_disk *idisk = disk_list;
3586
3587 disk_list = disk_list->next;
3588 free(idisk);
3589 }
3590
3591 return champion;
3592}
3593
cdddbdbc 3594static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3595 char *devname)
cdddbdbc
DW
3596{
3597 struct mdinfo *sra;
a2b97981
DW
3598 struct intel_super *super_list = NULL;
3599 struct intel_super *super = NULL;
db575f3b 3600 int devnum = fd2devnum(fd);
a2b97981 3601 struct mdinfo *sd;
db575f3b 3602 int retry;
a2b97981
DW
3603 int err = 0;
3604 int i;
dab4a513
DW
3605
3606 /* check if 'fd' an opened container */
b526e52d 3607 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3608 if (!sra)
3609 return 1;
3610
3611 if (sra->array.major_version != -1 ||
3612 sra->array.minor_version != -2 ||
1602d52c
AW
3613 strcmp(sra->text_version, "imsm") != 0) {
3614 err = 1;
3615 goto error;
3616 }
a2b97981
DW
3617 /* load all mpbs */
3618 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3619 struct intel_super *s = alloc_super();
7a6ecd55 3620 char nm[32];
a2b97981 3621 int dfd;
f2f5c343 3622 int rv;
a2b97981
DW
3623
3624 err = 1;
3625 if (!s)
3626 goto error;
3627 s->next = super_list;
3628 super_list = s;
cdddbdbc 3629
a2b97981 3630 err = 2;
cdddbdbc 3631 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3632 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3633 if (dfd < 0)
3634 goto error;
3635
d424212e 3636 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3637 /* no orom/efi or non-intel hba of the disk */
3638 if (rv != 0)
3639 goto error;
3640
e1902a7b 3641 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3642
3643 /* retry the load if we might have raced against mdmon */
a2b97981 3644 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3645 for (retry = 0; retry < 3; retry++) {
3646 usleep(3000);
e1902a7b 3647 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3648 if (err != 3)
db575f3b
DW
3649 break;
3650 }
a2b97981
DW
3651 if (err)
3652 goto error;
cdddbdbc
DW
3653 }
3654
a2b97981
DW
3655 /* all mpbs enter, maybe one leaves */
3656 super = imsm_thunderdome(&super_list, i);
3657 if (!super) {
3658 err = 1;
3659 goto error;
cdddbdbc
DW
3660 }
3661
47ee5a45
DW
3662 if (find_missing(super) != 0) {
3663 free_imsm(super);
a2b97981
DW
3664 err = 2;
3665 goto error;
47ee5a45 3666 }
8e59f3d8
AK
3667
3668 /* load migration record */
3669 err = load_imsm_migr_rec(super, NULL);
3670 if (err) {
3671 err = 4;
3672 goto error;
3673 }
e2f41b2c
AK
3674
3675 /* Check migration compatibility */
3676 if (check_mpb_migr_compatibility(super) != 0) {
3677 fprintf(stderr, Name ": Unsupported migration detected");
3678 if (devname)
3679 fprintf(stderr, " on %s\n", devname);
3680 else
3681 fprintf(stderr, " (IMSM).\n");
3682
3683 err = 5;
3684 goto error;
3685 }
3686
a2b97981
DW
3687 err = 0;
3688
3689 error:
3690 while (super_list) {
3691 struct intel_super *s = super_list;
3692
3693 super_list = super_list->next;
3694 free_imsm(s);
3695 }
1602d52c 3696 sysfs_free(sra);
a2b97981
DW
3697
3698 if (err)
3699 return err;
f7e7067b 3700
cdddbdbc 3701 *sbp = super;
db575f3b 3702 st->container_dev = devnum;
a2b97981 3703 if (err == 0 && st->ss == NULL) {
bf5a934a 3704 st->ss = &super_imsm;
cdddbdbc
DW
3705 st->minor_version = 0;
3706 st->max_devs = IMSM_MAX_DEVICES;
3707 }
cdddbdbc
DW
3708 return 0;
3709}
2b959fbf
N
3710
3711static int load_container_imsm(struct supertype *st, int fd, char *devname)
3712{
3713 return load_super_imsm_all(st, fd, &st->sb, devname);
3714}
cdddbdbc
DW
3715#endif
3716
3717static int load_super_imsm(struct supertype *st, int fd, char *devname)
3718{
3719 struct intel_super *super;
3720 int rv;
3721
691c6ee1
N
3722 if (test_partition(fd))
3723 /* IMSM not allowed on partitions */
3724 return 1;
3725
37424f13
DW
3726 free_super_imsm(st);
3727
49133e57 3728 super = alloc_super();
cdddbdbc
DW
3729 if (!super) {
3730 fprintf(stderr,
3731 Name ": malloc of %zu failed.\n",
3732 sizeof(*super));
3733 return 1;
3734 }
ea2bc72b
LM
3735 /* Load hba and capabilities if they exist.
3736 * But do not preclude loading metadata in case capabilities or hba are
3737 * non-compliant and ignore_hw_compat is set.
3738 */
d424212e 3739 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 3740 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 3741 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
3742 if (devname)
3743 fprintf(stderr,
3744 Name ": No OROM/EFI properties for %s\n", devname);
3745 free_imsm(super);
3746 return 2;
3747 }
a2b97981 3748 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
3749
3750 if (rv) {
3751 if (devname)
3752 fprintf(stderr,
3753 Name ": Failed to load all information "
3754 "sections on %s\n", devname);
3755 free_imsm(super);
3756 return rv;
3757 }
3758
3759 st->sb = super;
3760 if (st->ss == NULL) {
3761 st->ss = &super_imsm;
3762 st->minor_version = 0;
3763 st->max_devs = IMSM_MAX_DEVICES;
3764 }
8e59f3d8
AK
3765
3766 /* load migration record */
3767 load_imsm_migr_rec(super, NULL);
3768
e2f41b2c
AK
3769 /* Check for unsupported migration features */
3770 if (check_mpb_migr_compatibility(super) != 0) {
3771 fprintf(stderr, Name ": Unsupported migration detected");
3772 if (devname)
3773 fprintf(stderr, " on %s\n", devname);
3774 else
3775 fprintf(stderr, " (IMSM).\n");
3776 return 3;
3777 }
3778
cdddbdbc
DW
3779 return 0;
3780}
3781
ef6ffade
DW
3782static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3783{
3784 if (info->level == 1)
3785 return 128;
3786 return info->chunk_size >> 9;
3787}
3788
ff596308 3789static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
3790{
3791 __u32 num_stripes;
3792
3793 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 3794 num_stripes /= num_domains;
ef6ffade
DW
3795
3796 return num_stripes;
3797}
3798
fcfd9599
DW
3799static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3800{
4025c288
DW
3801 if (info->level == 1)
3802 return info->size * 2;
3803 else
3804 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
3805}
3806
4d1313e9
DW
3807static void imsm_update_version_info(struct intel_super *super)
3808{
3809 /* update the version and attributes */
3810 struct imsm_super *mpb = super->anchor;
3811 char *version;
3812 struct imsm_dev *dev;
3813 struct imsm_map *map;
3814 int i;
3815
3816 for (i = 0; i < mpb->num_raid_devs; i++) {
3817 dev = get_imsm_dev(super, i);
3818 map = get_imsm_map(dev, 0);
3819 if (__le32_to_cpu(dev->size_high) > 0)
3820 mpb->attributes |= MPB_ATTRIB_2TB;
3821
3822 /* FIXME detect when an array spans a port multiplier */
3823 #if 0
3824 mpb->attributes |= MPB_ATTRIB_PM;
3825 #endif
3826
3827 if (mpb->num_raid_devs > 1 ||
3828 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3829 version = MPB_VERSION_ATTRIBS;
3830 switch (get_imsm_raid_level(map)) {
3831 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3832 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3833 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3834 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3835 }
3836 } else {
3837 if (map->num_members >= 5)
3838 version = MPB_VERSION_5OR6_DISK_ARRAY;
3839 else if (dev->status == DEV_CLONE_N_GO)
3840 version = MPB_VERSION_CNG;
3841 else if (get_imsm_raid_level(map) == 5)
3842 version = MPB_VERSION_RAID5;
3843 else if (map->num_members >= 3)
3844 version = MPB_VERSION_3OR4_DISK_ARRAY;
3845 else if (get_imsm_raid_level(map) == 1)
3846 version = MPB_VERSION_RAID1;
3847 else
3848 version = MPB_VERSION_RAID0;
3849 }
3850 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3851 }
3852}
3853
aa534678
DW
3854static int check_name(struct intel_super *super, char *name, int quiet)
3855{
3856 struct imsm_super *mpb = super->anchor;
3857 char *reason = NULL;
3858 int i;
3859
3860 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3861 reason = "must be 16 characters or less";
3862
3863 for (i = 0; i < mpb->num_raid_devs; i++) {
3864 struct imsm_dev *dev = get_imsm_dev(super, i);
3865
3866 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3867 reason = "already exists";
3868 break;
3869 }
3870 }
3871
3872 if (reason && !quiet)
3873 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3874
3875 return !reason;
3876}
3877
8b353278
DW
3878static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3879 unsigned long long size, char *name,
3880 char *homehost, int *uuid)
cdddbdbc 3881{
c2c087e6
DW
3882 /* We are creating a volume inside a pre-existing container.
3883 * so st->sb is already set.
3884 */
3885 struct intel_super *super = st->sb;
949c47a0 3886 struct imsm_super *mpb = super->anchor;
ba2de7ba 3887 struct intel_dev *dv;
c2c087e6
DW
3888 struct imsm_dev *dev;
3889 struct imsm_vol *vol;
3890 struct imsm_map *map;
3891 int idx = mpb->num_raid_devs;
3892 int i;
3893 unsigned long long array_blocks;
2c092cad 3894 size_t size_old, size_new;
ff596308 3895 __u32 num_data_stripes;
cdddbdbc 3896
88c32bb1 3897 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 3898 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 3899 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
3900 return 0;
3901 }
3902
2c092cad
DW
3903 /* ensure the mpb is large enough for the new data */
3904 size_old = __le32_to_cpu(mpb->mpb_size);
3905 size_new = disks_to_mpb_size(info->nr_disks);
3906 if (size_new > size_old) {
3907 void *mpb_new;
3908 size_t size_round = ROUND_UP(size_new, 512);
3909
3910 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3911 fprintf(stderr, Name": could not allocate new mpb\n");
3912 return 0;
3913 }
8e59f3d8
AK
3914 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3915 fprintf(stderr, Name
3916 ": %s could not allocate migr_rec buffer\n",
3917 __func__);
3918 free(super->buf);
3919 free(super);
3920 return 0;
3921 }
2c092cad
DW
3922 memcpy(mpb_new, mpb, size_old);
3923 free(mpb);
3924 mpb = mpb_new;
949c47a0 3925 super->anchor = mpb_new;
2c092cad
DW
3926 mpb->mpb_size = __cpu_to_le32(size_new);
3927 memset(mpb_new + size_old, 0, size_round - size_old);
3928 }
bf5a934a 3929 super->current_vol = idx;
d23fe947
DW
3930 /* when creating the first raid device in this container set num_disks
3931 * to zero, i.e. delete this spare and add raid member devices in
3932 * add_to_super_imsm_volume()
3933 */
3934 if (super->current_vol == 0)
3935 mpb->num_disks = 0;
5a038140 3936
aa534678
DW
3937 if (!check_name(super, name, 0))
3938 return 0;
ba2de7ba
DW
3939 dv = malloc(sizeof(*dv));
3940 if (!dv) {
3941 fprintf(stderr, Name ": failed to allocate device list entry\n");
3942 return 0;
3943 }
1a2487c2 3944 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 3945 if (!dev) {
ba2de7ba 3946 free(dv);
949c47a0
DW
3947 fprintf(stderr, Name": could not allocate raid device\n");
3948 return 0;
3949 }
1a2487c2 3950
c2c087e6 3951 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
3952 if (info->level == 1)
3953 array_blocks = info_to_blocks_per_member(info);
3954 else
3955 array_blocks = calc_array_size(info->level, info->raid_disks,
3956 info->layout, info->chunk_size,
3957 info->size*2);
979d38be
DW
3958 /* round array size down to closest MB */
3959 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3960
c2c087e6
DW
3961 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3962 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 3963 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
3964 vol = &dev->vol;
3965 vol->migr_state = 0;
1484e727 3966 set_migr_type(dev, MIGR_INIT);
c2c087e6 3967 vol->dirty = 0;
f8f603f1 3968 vol->curr_migr_unit = 0;
a965f303 3969 map = get_imsm_map(dev, 0);
0dcecb2e 3970 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 3971 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 3972 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 3973 map->failed_disk_num = ~0;
c2c087e6
DW
3974 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3975 IMSM_T_STATE_NORMAL;
252d23c0 3976 map->ddf = 1;
ef6ffade
DW
3977
3978 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
3979 free(dev);
3980 free(dv);
ef6ffade
DW
3981 fprintf(stderr, Name": imsm does not support more than 2 disks"
3982 "in a raid1 volume\n");
3983 return 0;
3984 }
81062a36
DW
3985
3986 map->raid_level = info->level;
4d1313e9 3987 if (info->level == 10) {
c2c087e6 3988 map->raid_level = 1;
4d1313e9 3989 map->num_domains = info->raid_disks / 2;
81062a36
DW
3990 } else if (info->level == 1)
3991 map->num_domains = info->raid_disks;
3992 else
ff596308 3993 map->num_domains = 1;
81062a36 3994
ff596308
DW
3995 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3996 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 3997
c2c087e6
DW
3998 map->num_members = info->raid_disks;
3999 for (i = 0; i < map->num_members; i++) {
4000 /* initialized in add_to_super */
4eb26970 4001 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4002 }
949c47a0 4003 mpb->num_raid_devs++;
ba2de7ba
DW
4004
4005 dv->dev = dev;
4006 dv->index = super->current_vol;
4007 dv->next = super->devlist;
4008 super->devlist = dv;
c2c087e6 4009
4d1313e9
DW
4010 imsm_update_version_info(super);
4011
c2c087e6 4012 return 1;
cdddbdbc
DW
4013}
4014
bf5a934a
DW
4015static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4016 unsigned long long size, char *name,
4017 char *homehost, int *uuid)
4018{
4019 /* This is primarily called by Create when creating a new array.
4020 * We will then get add_to_super called for each component, and then
4021 * write_init_super called to write it out to each device.
4022 * For IMSM, Create can create on fresh devices or on a pre-existing
4023 * array.
4024 * To create on a pre-existing array a different method will be called.
4025 * This one is just for fresh drives.
4026 */
4027 struct intel_super *super;
4028 struct imsm_super *mpb;
4029 size_t mpb_size;
4d1313e9 4030 char *version;
bf5a934a 4031
bf5a934a 4032 if (st->sb)
e683ca88
DW
4033 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4034
4035 if (info)
4036 mpb_size = disks_to_mpb_size(info->nr_disks);
4037 else
4038 mpb_size = 512;
bf5a934a 4039
49133e57 4040 super = alloc_super();
e683ca88 4041 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4042 free(super);
e683ca88
DW
4043 super = NULL;
4044 }
4045 if (!super) {
4046 fprintf(stderr, Name
4047 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4048 return 0;
4049 }
8e59f3d8
AK
4050 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4051 fprintf(stderr, Name
4052 ": %s could not allocate migr_rec buffer\n", __func__);
4053 free(super->buf);
4054 free(super);
4055 return 0;
4056 }
e683ca88 4057 memset(super->buf, 0, mpb_size);
ef649044 4058 mpb = super->buf;
e683ca88
DW
4059 mpb->mpb_size = __cpu_to_le32(mpb_size);
4060 st->sb = super;
4061
4062 if (info == NULL) {
4063 /* zeroing superblock */
4064 return 0;
4065 }
bf5a934a 4066
4d1313e9
DW
4067 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4068
4069 version = (char *) mpb->sig;
4070 strcpy(version, MPB_SIGNATURE);
4071 version += strlen(MPB_SIGNATURE);
4072 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4073
bf5a934a
DW
4074 return 1;
4075}
4076
0e600426 4077#ifndef MDASSEMBLE
f20c3968 4078static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4079 int fd, char *devname)
4080{
4081 struct intel_super *super = st->sb;
d23fe947 4082 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
4083 struct dl *dl;
4084 struct imsm_dev *dev;
4085 struct imsm_map *map;
4eb26970 4086 int slot;
bf5a934a 4087
949c47a0 4088 dev = get_imsm_dev(super, super->current_vol);
a965f303 4089 map = get_imsm_map(dev, 0);
bf5a934a 4090
208933a7
N
4091 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4092 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4093 devname);
4094 return 1;
4095 }
4096
efb30e7f
DW
4097 if (fd == -1) {
4098 /* we're doing autolayout so grab the pre-marked (in
4099 * validate_geometry) raid_disk
4100 */
4101 for (dl = super->disks; dl; dl = dl->next)
4102 if (dl->raiddisk == dk->raid_disk)
4103 break;
4104 } else {
4105 for (dl = super->disks; dl ; dl = dl->next)
4106 if (dl->major == dk->major &&
4107 dl->minor == dk->minor)
4108 break;
4109 }
d23fe947 4110
208933a7
N
4111 if (!dl) {
4112 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4113 return 1;
208933a7 4114 }
bf5a934a 4115
d23fe947
DW
4116 /* add a pristine spare to the metadata */
4117 if (dl->index < 0) {
4118 dl->index = super->anchor->num_disks;
4119 super->anchor->num_disks++;
4120 }
4eb26970
DW
4121 /* Check the device has not already been added */
4122 slot = get_imsm_disk_slot(map, dl->index);
4123 if (slot >= 0 &&
98130f40 4124 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4125 fprintf(stderr, Name ": %s has been included in this array twice\n",
4126 devname);
4127 return 1;
4128 }
be73972f 4129 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 4130 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
4131
4132 /* if we are creating the first raid device update the family number */
4133 if (super->current_vol == 0) {
4134 __u32 sum;
4135 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4136 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4137
791b666a
AW
4138 if (!_dev || !_disk) {
4139 fprintf(stderr, Name ": BUG mpb setup error\n");
4140 return 1;
4141 }
d23fe947
DW
4142 *_dev = *dev;
4143 *_disk = dl->disk;
148acb7b
DW
4144 sum = random32();
4145 sum += __gen_imsm_checksum(mpb);
d23fe947 4146 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4147 mpb->orig_family_num = mpb->family_num;
d23fe947 4148 }
f20c3968
DW
4149
4150 return 0;
bf5a934a
DW
4151}
4152
88654014 4153
f20c3968 4154static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4155 int fd, char *devname)
cdddbdbc 4156{
c2c087e6 4157 struct intel_super *super = st->sb;
c2c087e6
DW
4158 struct dl *dd;
4159 unsigned long long size;
f2f27e63 4160 __u32 id;
c2c087e6
DW
4161 int rv;
4162 struct stat stb;
4163
88654014
LM
4164 /* If we are on an RAID enabled platform check that the disk is
4165 * attached to the raid controller.
4166 * We do not need to test disks attachment for container based additions,
4167 * they shall be already tested when container was created/assembled.
88c32bb1 4168 */
d424212e 4169 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4170 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4171 if (rv != 0) {
4172 dprintf("capability: %p fd: %d ret: %d\n",
4173 super->orom, fd, rv);
4174 return 1;
88c32bb1
DW
4175 }
4176
f20c3968
DW
4177 if (super->current_vol >= 0)
4178 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4179
c2c087e6
DW
4180 fstat(fd, &stb);
4181 dd = malloc(sizeof(*dd));
b9f594fe 4182 if (!dd) {
c2c087e6
DW
4183 fprintf(stderr,
4184 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4185 return 1;
c2c087e6
DW
4186 }
4187 memset(dd, 0, sizeof(*dd));
4188 dd->major = major(stb.st_rdev);
4189 dd->minor = minor(stb.st_rdev);
b9f594fe 4190 dd->index = -1;
c2c087e6 4191 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4192 dd->fd = fd;
689c9bf3 4193 dd->e = NULL;
1a64be56 4194 dd->action = DISK_ADD;
c2c087e6 4195 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4196 if (rv) {
c2c087e6 4197 fprintf(stderr,
0030e8d6 4198 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4199 free(dd);
0030e8d6 4200 abort();
c2c087e6
DW
4201 }
4202
c2c087e6
DW
4203 get_dev_size(fd, NULL, &size);
4204 size /= 512;
1f24f035 4205 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4206 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 4207 dd->disk.status = SPARE_DISK;
c2c087e6 4208 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4209 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4210 else
b9f594fe 4211 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4212
4213 if (st->update_tail) {
1a64be56
LM
4214 dd->next = super->disk_mgmt_list;
4215 super->disk_mgmt_list = dd;
43dad3d6
DW
4216 } else {
4217 dd->next = super->disks;
4218 super->disks = dd;
ceaf0ee1 4219 super->updates_pending++;
43dad3d6 4220 }
f20c3968
DW
4221
4222 return 0;
cdddbdbc
DW
4223}
4224
1a64be56
LM
4225
4226static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4227{
4228 struct intel_super *super = st->sb;
4229 struct dl *dd;
4230
4231 /* remove from super works only in mdmon - for communication
4232 * manager - monitor. Check if communication memory buffer
4233 * is prepared.
4234 */
4235 if (!st->update_tail) {
4236 fprintf(stderr,
4237 Name ": %s shall be used in mdmon context only"
4238 "(line %d).\n", __func__, __LINE__);
4239 return 1;
4240 }
4241 dd = malloc(sizeof(*dd));
4242 if (!dd) {
4243 fprintf(stderr,
4244 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4245 return 1;
4246 }
4247 memset(dd, 0, sizeof(*dd));
4248 dd->major = dk->major;
4249 dd->minor = dk->minor;
4250 dd->index = -1;
4251 dd->fd = -1;
4252 dd->disk.status = SPARE_DISK;
4253 dd->action = DISK_REMOVE;
4254
4255 dd->next = super->disk_mgmt_list;
4256 super->disk_mgmt_list = dd;
4257
4258
4259 return 0;
4260}
4261
f796af5d
DW
4262static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4263
4264static union {
4265 char buf[512];
4266 struct imsm_super anchor;
4267} spare_record __attribute__ ((aligned(512)));
c2c087e6 4268
d23fe947
DW
4269/* spare records have their own family number and do not have any defined raid
4270 * devices
4271 */
4272static int write_super_imsm_spares(struct intel_super *super, int doclose)
4273{
d23fe947 4274 struct imsm_super *mpb = super->anchor;
f796af5d 4275 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4276 __u32 sum;
4277 struct dl *d;
4278
f796af5d
DW
4279 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4280 spare->generation_num = __cpu_to_le32(1UL),
4281 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4282 spare->num_disks = 1,
4283 spare->num_raid_devs = 0,
4284 spare->cache_size = mpb->cache_size,
4285 spare->pwr_cycle_count = __cpu_to_le32(1),
4286
4287 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4288 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4289
4290 for (d = super->disks; d; d = d->next) {
8796fdc4 4291 if (d->index != -1)
d23fe947
DW
4292 continue;
4293
f796af5d
DW
4294 spare->disk[0] = d->disk;
4295 sum = __gen_imsm_checksum(spare);
4296 spare->family_num = __cpu_to_le32(sum);
4297 spare->orig_family_num = 0;
4298 sum = __gen_imsm_checksum(spare);
4299 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4300
f796af5d 4301 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4302 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4303 __func__, d->major, d->minor, strerror(errno));
e74255d9 4304 return 1;
d23fe947
DW
4305 }
4306 if (doclose) {
4307 close(d->fd);
4308 d->fd = -1;
4309 }
4310 }
4311
e74255d9 4312 return 0;
d23fe947
DW
4313}
4314
146c6260
AK
4315static int is_gen_migration(struct imsm_dev *dev);
4316
36988a3d 4317static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4318{
36988a3d 4319 struct intel_super *super = st->sb;
949c47a0 4320 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4321 struct dl *d;
4322 __u32 generation;
4323 __u32 sum;
d23fe947 4324 int spares = 0;
949c47a0 4325 int i;
a48ac0a8 4326 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4327 int num_disks = 0;
146c6260 4328 int clear_migration_record = 1;
cdddbdbc 4329
c2c087e6
DW
4330 /* 'generation' is incremented everytime the metadata is written */
4331 generation = __le32_to_cpu(mpb->generation_num);
4332 generation++;
4333 mpb->generation_num = __cpu_to_le32(generation);
4334
148acb7b
DW
4335 /* fix up cases where previous mdadm releases failed to set
4336 * orig_family_num
4337 */
4338 if (mpb->orig_family_num == 0)
4339 mpb->orig_family_num = mpb->family_num;
4340
d23fe947 4341 for (d = super->disks; d; d = d->next) {
8796fdc4 4342 if (d->index == -1)
d23fe947 4343 spares++;
36988a3d 4344 else {
d23fe947 4345 mpb->disk[d->index] = d->disk;
36988a3d
AK
4346 num_disks++;
4347 }
d23fe947 4348 }
36988a3d 4349 for (d = super->missing; d; d = d->next) {
47ee5a45 4350 mpb->disk[d->index] = d->disk;
36988a3d
AK
4351 num_disks++;
4352 }
4353 mpb->num_disks = num_disks;
4354 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4355
949c47a0
DW
4356 for (i = 0; i < mpb->num_raid_devs; i++) {
4357 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4358 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4359 if (dev && dev2) {
4360 imsm_copy_dev(dev, dev2);
4361 mpb_size += sizeof_imsm_dev(dev, 0);
4362 }
146c6260
AK
4363 if (is_gen_migration(dev2))
4364 clear_migration_record = 0;
949c47a0 4365 }
a48ac0a8
DW
4366 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4367 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4368
c2c087e6 4369 /* recalculate checksum */
949c47a0 4370 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4371 mpb->check_sum = __cpu_to_le32(sum);
4372
146c6260
AK
4373 if (clear_migration_record)
4374 memset(super->migr_rec_buf, 0, 512);
4375
d23fe947 4376 /* write the mpb for disks that compose raid devices */
c2c087e6 4377 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
4378 if (d->index < 0)
4379 continue;
f796af5d 4380 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4381 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4382 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4383 if (clear_migration_record) {
4384 unsigned long long dsize;
4385
4386 get_dev_size(d->fd, NULL, &dsize);
4387 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4388 write(d->fd, super->migr_rec_buf, 512);
4389 }
4390 }
c2c087e6
DW
4391 if (doclose) {
4392 close(d->fd);
4393 d->fd = -1;
4394 }
4395 }
4396
d23fe947
DW
4397 if (spares)
4398 return write_super_imsm_spares(super, doclose);
4399
e74255d9 4400 return 0;
c2c087e6
DW
4401}
4402
0e600426 4403
9b1fb677 4404static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4405{
4406 size_t len;
4407 struct imsm_update_create_array *u;
4408 struct intel_super *super = st->sb;
9b1fb677 4409 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4410 struct imsm_map *map = get_imsm_map(dev, 0);
4411 struct disk_info *inf;
4412 struct imsm_disk *disk;
4413 int i;
43dad3d6 4414
54c2c1ea
DW
4415 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4416 sizeof(*inf) * map->num_members;
43dad3d6
DW
4417 u = malloc(len);
4418 if (!u) {
4419 fprintf(stderr, "%s: failed to allocate update buffer\n",
4420 __func__);
4421 return 1;
4422 }
4423
4424 u->type = update_create_array;
9b1fb677 4425 u->dev_idx = dev_idx;
43dad3d6 4426 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4427 inf = get_disk_info(u);
4428 for (i = 0; i < map->num_members; i++) {
98130f40 4429 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4430
54c2c1ea
DW
4431 disk = get_imsm_disk(super, idx);
4432 serialcpy(inf[i].serial, disk->serial);
4433 }
43dad3d6
DW
4434 append_metadata_update(st, u, len);
4435
4436 return 0;
4437}
4438
1a64be56 4439static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4440{
4441 struct intel_super *super = st->sb;
4442 size_t len;
1a64be56 4443 struct imsm_update_add_remove_disk *u;
43dad3d6 4444
1a64be56 4445 if (!super->disk_mgmt_list)
43dad3d6
DW
4446 return 0;
4447
4448 len = sizeof(*u);
4449 u = malloc(len);
4450 if (!u) {
4451 fprintf(stderr, "%s: failed to allocate update buffer\n",
4452 __func__);
4453 return 1;
4454 }
4455
1a64be56 4456 u->type = update_add_remove_disk;
43dad3d6
DW
4457 append_metadata_update(st, u, len);
4458
4459 return 0;
4460}
4461
c2c087e6
DW
4462static int write_init_super_imsm(struct supertype *st)
4463{
9b1fb677
DW
4464 struct intel_super *super = st->sb;
4465 int current_vol = super->current_vol;
4466
4467 /* we are done with current_vol reset it to point st at the container */
4468 super->current_vol = -1;
4469
8273f55e 4470 if (st->update_tail) {
43dad3d6
DW
4471 /* queue the recently created array / added disk
4472 * as a metadata update */
43dad3d6 4473 int rv;
8273f55e 4474
43dad3d6 4475 /* determine if we are creating a volume or adding a disk */
9b1fb677 4476 if (current_vol < 0) {
1a64be56
LM
4477 /* in the mgmt (add/remove) disk case we are running
4478 * in mdmon context, so don't close fd's
43dad3d6 4479 */
1a64be56 4480 return mgmt_disk(st);
43dad3d6 4481 } else
9b1fb677 4482 rv = create_array(st, current_vol);
8273f55e 4483
43dad3d6 4484 return rv;
d682f344
N
4485 } else {
4486 struct dl *d;
4487 for (d = super->disks; d; d = d->next)
4488 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4489 return write_super_imsm(st, 1);
d682f344 4490 }
cdddbdbc 4491}
0e600426 4492#endif
cdddbdbc 4493
e683ca88 4494static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4495{
e683ca88
DW
4496 struct intel_super *super = st->sb;
4497 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4498
e683ca88 4499 if (!mpb)
ad97895e
DW
4500 return 1;
4501
1799c9e8 4502#ifndef MDASSEMBLE
e683ca88 4503 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4504#else
4505 return 1;
4506#endif
cdddbdbc
DW
4507}
4508
0e600426
N
4509static int imsm_bbm_log_size(struct imsm_super *mpb)
4510{
4511 return __le32_to_cpu(mpb->bbm_log_size);
4512}
4513
4514#ifndef MDASSEMBLE
cdddbdbc
DW
4515static int validate_geometry_imsm_container(struct supertype *st, int level,
4516 int layout, int raiddisks, int chunk,
c2c087e6 4517 unsigned long long size, char *dev,
2c514b71
NB
4518 unsigned long long *freesize,
4519 int verbose)
cdddbdbc 4520{
c2c087e6
DW
4521 int fd;
4522 unsigned long long ldsize;
f2f5c343
LM
4523 struct intel_super *super=NULL;
4524 int rv = 0;
cdddbdbc 4525
c2c087e6
DW
4526 if (level != LEVEL_CONTAINER)
4527 return 0;
4528 if (!dev)
4529 return 1;
4530
4531 fd = open(dev, O_RDONLY|O_EXCL, 0);
4532 if (fd < 0) {
2c514b71
NB
4533 if (verbose)
4534 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4535 dev, strerror(errno));
c2c087e6
DW
4536 return 0;
4537 }
4538 if (!get_dev_size(fd, dev, &ldsize)) {
4539 close(fd);
4540 return 0;
4541 }
f2f5c343
LM
4542
4543 /* capabilities retrieve could be possible
4544 * note that there is no fd for the disks in array.
4545 */
4546 super = alloc_super();
4547 if (!super) {
4548 fprintf(stderr,
4549 Name ": malloc of %zu failed.\n",
4550 sizeof(*super));
4551 close(fd);
4552 return 0;
4553 }
4554
d424212e 4555 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4556 if (rv != 0) {
4557#if DEBUG
4558 char str[256];
4559 fd2devname(fd, str);
4560 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4561 fd, str, super->orom, rv, raiddisks);
4562#endif
4563 /* no orom/efi or non-intel hba of the disk */
4564 close(fd);
4565 free_imsm(super);
4566 return 0;
4567 }
c2c087e6 4568 close(fd);
f2f5c343
LM
4569 if (super->orom && raiddisks > super->orom->tds) {
4570 if (verbose)
4571 fprintf(stderr, Name ": %d exceeds maximum number of"
4572 " platform supported disks: %d\n",
4573 raiddisks, super->orom->tds);
4574
4575 free_imsm(super);
4576 return 0;
4577 }
c2c087e6
DW
4578
4579 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4580 free_imsm(super);
c2c087e6
DW
4581
4582 return 1;
cdddbdbc
DW
4583}
4584
0dcecb2e
DW
4585static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4586{
4587 const unsigned long long base_start = e[*idx].start;
4588 unsigned long long end = base_start + e[*idx].size;
4589 int i;
4590
4591 if (base_start == end)
4592 return 0;
4593
4594 *idx = *idx + 1;
4595 for (i = *idx; i < num_extents; i++) {
4596 /* extend overlapping extents */
4597 if (e[i].start >= base_start &&
4598 e[i].start <= end) {
4599 if (e[i].size == 0)
4600 return 0;
4601 if (e[i].start + e[i].size > end)
4602 end = e[i].start + e[i].size;
4603 } else if (e[i].start > end) {
4604 *idx = i;
4605 break;
4606 }
4607 }
4608
4609 return end - base_start;
4610}
4611
4612static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4613{
4614 /* build a composite disk with all known extents and generate a new
4615 * 'maxsize' given the "all disks in an array must share a common start
4616 * offset" constraint
4617 */
4618 struct extent *e = calloc(sum_extents, sizeof(*e));
4619 struct dl *dl;
4620 int i, j;
4621 int start_extent;
4622 unsigned long long pos;
b9d77223 4623 unsigned long long start = 0;
0dcecb2e
DW
4624 unsigned long long maxsize;
4625 unsigned long reserve;
4626
4627 if (!e)
a7dd165b 4628 return 0;
0dcecb2e
DW
4629
4630 /* coalesce and sort all extents. also, check to see if we need to
4631 * reserve space between member arrays
4632 */
4633 j = 0;
4634 for (dl = super->disks; dl; dl = dl->next) {
4635 if (!dl->e)
4636 continue;
4637 for (i = 0; i < dl->extent_cnt; i++)
4638 e[j++] = dl->e[i];
4639 }
4640 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4641
4642 /* merge extents */
4643 i = 0;
4644 j = 0;
4645 while (i < sum_extents) {
4646 e[j].start = e[i].start;
4647 e[j].size = find_size(e, &i, sum_extents);
4648 j++;
4649 if (e[j-1].size == 0)
4650 break;
4651 }
4652
4653 pos = 0;
4654 maxsize = 0;
4655 start_extent = 0;
4656 i = 0;
4657 do {
4658 unsigned long long esize;
4659
4660 esize = e[i].start - pos;
4661 if (esize >= maxsize) {
4662 maxsize = esize;
4663 start = pos;
4664 start_extent = i;
4665 }
4666 pos = e[i].start + e[i].size;
4667 i++;
4668 } while (e[i-1].size);
4669 free(e);
4670
a7dd165b
DW
4671 if (maxsize == 0)
4672 return 0;
4673
4674 /* FIXME assumes volume at offset 0 is the first volume in a
4675 * container
4676 */
0dcecb2e
DW
4677 if (start_extent > 0)
4678 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4679 else
4680 reserve = 0;
4681
4682 if (maxsize < reserve)
a7dd165b 4683 return 0;
0dcecb2e
DW
4684
4685 super->create_offset = ~((__u32) 0);
4686 if (start + reserve > super->create_offset)
a7dd165b 4687 return 0; /* start overflows create_offset */
0dcecb2e
DW
4688 super->create_offset = start + reserve;
4689
4690 return maxsize - reserve;
4691}
4692
88c32bb1
DW
4693static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4694{
4695 if (level < 0 || level == 6 || level == 4)
4696 return 0;
4697
4698 /* if we have an orom prevent invalid raid levels */
4699 if (orom)
4700 switch (level) {
4701 case 0: return imsm_orom_has_raid0(orom);
4702 case 1:
4703 if (raiddisks > 2)
4704 return imsm_orom_has_raid1e(orom);
1c556e92
DW
4705 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4706 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4707 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
4708 }
4709 else
4710 return 1; /* not on an Intel RAID platform so anything goes */
4711
4712 return 0;
4713}
4714
73408129 4715
35f81cbb 4716#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
73408129
LM
4717/*
4718 * validate volume parameters with OROM/EFI capabilities
4719 */
6592ce37
DW
4720static int
4721validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 4722 int raiddisks, int *chunk, int verbose)
6592ce37 4723{
73408129
LM
4724#if DEBUG
4725 verbose = 1;
4726#endif
4727 /* validate container capabilities */
4728 if (super->orom && raiddisks > super->orom->tds) {
4729 if (verbose)
4730 fprintf(stderr, Name ": %d exceeds maximum number of"
4731 " platform supported disks: %d\n",
4732 raiddisks, super->orom->tds);
4733 return 0;
4734 }
4735
4736 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4737 if (super->orom && (!is_raid_level_supported(super->orom, level,
4738 raiddisks))) {
6592ce37
DW
4739 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4740 level, raiddisks, raiddisks > 1 ? "s" : "");
4741 return 0;
4742 }
c21e737b
CA
4743 if (super->orom && level != 1) {
4744 if (chunk && (*chunk == 0 || *chunk == UnSet))
4745 *chunk = imsm_orom_default_chunk(super->orom);
4746 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4747 pr_vrb(": platform does not support a chunk size of: "
4748 "%d\n", *chunk);
4749 return 0;
4750 }
6592ce37
DW
4751 }
4752 if (layout != imsm_level_to_layout(level)) {
4753 if (level == 5)
4754 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4755 else if (level == 10)
4756 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4757 else
4758 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4759 layout, level);
4760 return 0;
4761 }
6592ce37
DW
4762 return 1;
4763}
4764
c2c087e6
DW
4765/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4766 * FIX ME add ahci details
4767 */
8b353278 4768static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 4769 int layout, int raiddisks, int *chunk,
c2c087e6 4770 unsigned long long size, char *dev,
2c514b71
NB
4771 unsigned long long *freesize,
4772 int verbose)
cdddbdbc 4773{
c2c087e6
DW
4774 struct stat stb;
4775 struct intel_super *super = st->sb;
a20d2ba5 4776 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4777 struct dl *dl;
4778 unsigned long long pos = 0;
4779 unsigned long long maxsize;
4780 struct extent *e;
4781 int i;
cdddbdbc 4782
88c32bb1
DW
4783 /* We must have the container info already read in. */
4784 if (!super)
c2c087e6
DW
4785 return 0;
4786
d54559f0
LM
4787 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4788 fprintf(stderr, Name ": RAID gemetry validation failed. "
4789 "Cannot proceed with the action(s).\n");
c2c087e6 4790 return 0;
d54559f0 4791 }
c2c087e6
DW
4792 if (!dev) {
4793 /* General test: make sure there is space for
2da8544a
DW
4794 * 'raiddisks' device extents of size 'size' at a given
4795 * offset
c2c087e6 4796 */
e46273eb 4797 unsigned long long minsize = size;
b7528a20 4798 unsigned long long start_offset = MaxSector;
c2c087e6
DW
4799 int dcnt = 0;
4800 if (minsize == 0)
4801 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4802 for (dl = super->disks; dl ; dl = dl->next) {
4803 int found = 0;
4804
bf5a934a 4805 pos = 0;
c2c087e6
DW
4806 i = 0;
4807 e = get_extents(super, dl);
4808 if (!e) continue;
4809 do {
4810 unsigned long long esize;
4811 esize = e[i].start - pos;
4812 if (esize >= minsize)
4813 found = 1;
b7528a20 4814 if (found && start_offset == MaxSector) {
2da8544a
DW
4815 start_offset = pos;
4816 break;
4817 } else if (found && pos != start_offset) {
4818 found = 0;
4819 break;
4820 }
c2c087e6
DW
4821 pos = e[i].start + e[i].size;
4822 i++;
4823 } while (e[i-1].size);
4824 if (found)
4825 dcnt++;
4826 free(e);
4827 }
4828 if (dcnt < raiddisks) {
2c514b71
NB
4829 if (verbose)
4830 fprintf(stderr, Name ": imsm: Not enough "
4831 "devices with space for this array "
4832 "(%d < %d)\n",
4833 dcnt, raiddisks);
c2c087e6
DW
4834 return 0;
4835 }
4836 return 1;
4837 }
0dcecb2e 4838
c2c087e6
DW
4839 /* This device must be a member of the set */
4840 if (stat(dev, &stb) < 0)
4841 return 0;
4842 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4843 return 0;
4844 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
4845 if (dl->major == (int)major(stb.st_rdev) &&
4846 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
4847 break;
4848 }
4849 if (!dl) {
2c514b71
NB
4850 if (verbose)
4851 fprintf(stderr, Name ": %s is not in the "
4852 "same imsm set\n", dev);
c2c087e6 4853 return 0;
a20d2ba5
DW
4854 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4855 /* If a volume is present then the current creation attempt
4856 * cannot incorporate new spares because the orom may not
4857 * understand this configuration (all member disks must be
4858 * members of each array in the container).
4859 */
4860 fprintf(stderr, Name ": %s is a spare and a volume"
4861 " is already defined for this container\n", dev);
4862 fprintf(stderr, Name ": The option-rom requires all member"
4863 " disks to be a member of all volumes\n");
4864 return 0;
c2c087e6 4865 }
0dcecb2e
DW
4866
4867 /* retrieve the largest free space block */
c2c087e6
DW
4868 e = get_extents(super, dl);
4869 maxsize = 0;
4870 i = 0;
0dcecb2e
DW
4871 if (e) {
4872 do {
4873 unsigned long long esize;
4874
4875 esize = e[i].start - pos;
4876 if (esize >= maxsize)
4877 maxsize = esize;
4878 pos = e[i].start + e[i].size;
4879 i++;
4880 } while (e[i-1].size);
4881 dl->e = e;
4882 dl->extent_cnt = i;
4883 } else {
4884 if (verbose)
4885 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4886 dev);
4887 return 0;
4888 }
4889 if (maxsize < size) {
4890 if (verbose)
4891 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4892 dev, maxsize, size);
4893 return 0;
4894 }
4895
4896 /* count total number of extents for merge */
4897 i = 0;
4898 for (dl = super->disks; dl; dl = dl->next)
4899 if (dl->e)
4900 i += dl->extent_cnt;
4901
4902 maxsize = merge_extents(super, i);
a7dd165b 4903 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
4904 if (verbose)
4905 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4906 maxsize, size);
4907 return 0;
0dcecb2e
DW
4908 }
4909
c2c087e6
DW
4910 *freesize = maxsize;
4911
4912 return 1;
cdddbdbc
DW
4913}
4914
efb30e7f
DW
4915static int reserve_space(struct supertype *st, int raiddisks,
4916 unsigned long long size, int chunk,
4917 unsigned long long *freesize)
4918{
4919 struct intel_super *super = st->sb;
4920 struct imsm_super *mpb = super->anchor;
4921 struct dl *dl;
4922 int i;
4923 int extent_cnt;
4924 struct extent *e;
4925 unsigned long long maxsize;
4926 unsigned long long minsize;
4927 int cnt;
4928 int used;
4929
4930 /* find the largest common start free region of the possible disks */
4931 used = 0;
4932 extent_cnt = 0;
4933 cnt = 0;
4934 for (dl = super->disks; dl; dl = dl->next) {
4935 dl->raiddisk = -1;
4936
4937 if (dl->index >= 0)
4938 used++;
4939
4940 /* don't activate new spares if we are orom constrained
4941 * and there is already a volume active in the container
4942 */
4943 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4944 continue;
4945
4946 e = get_extents(super, dl);
4947 if (!e)
4948 continue;
4949 for (i = 1; e[i-1].size; i++)
4950 ;
4951 dl->e = e;
4952 dl->extent_cnt = i;
4953 extent_cnt += i;
4954 cnt++;
4955 }
4956
4957 maxsize = merge_extents(super, extent_cnt);
4958 minsize = size;
4959 if (size == 0)
612e59d8
CA
4960 /* chunk is in K */
4961 minsize = chunk * 2;
efb30e7f
DW
4962
4963 if (cnt < raiddisks ||
4964 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
4965 maxsize < minsize ||
4966 maxsize == 0) {
efb30e7f
DW
4967 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4968 return 0; /* No enough free spaces large enough */
4969 }
4970
4971 if (size == 0) {
4972 size = maxsize;
4973 if (chunk) {
612e59d8
CA
4974 size /= 2 * chunk;
4975 size *= 2 * chunk;
efb30e7f
DW
4976 }
4977 }
4978
4979 cnt = 0;
4980 for (dl = super->disks; dl; dl = dl->next)
4981 if (dl->e)
4982 dl->raiddisk = cnt++;
4983
4984 *freesize = size;
4985
4986 return 1;
4987}
4988
bf5a934a 4989static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 4990 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
4991 char *dev, unsigned long long *freesize,
4992 int verbose)
4993{
4994 int fd, cfd;
4995 struct mdinfo *sra;
20cbe8d2 4996 int is_member = 0;
bf5a934a 4997
d54559f0
LM
4998 /* load capability
4999 * if given unused devices create a container
bf5a934a
DW
5000 * if given given devices in a container create a member volume
5001 */
5002 if (level == LEVEL_CONTAINER) {
5003 /* Must be a fresh device to add to a container */
5004 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5005 raiddisks,
5006 chunk?*chunk:0, size,
bf5a934a
DW
5007 dev, freesize,
5008 verbose);
5009 }
5010
8592f29d
N
5011 if (!dev) {
5012 if (st->sb && freesize) {
efb30e7f
DW
5013 /* we are being asked to automatically layout a
5014 * new volume based on the current contents of
5015 * the container. If the the parameters can be
5016 * satisfied reserve_space will record the disks,
5017 * start offset, and size of the volume to be
5018 * created. add_to_super and getinfo_super
5019 * detect when autolayout is in progress.
5020 */
6592ce37
DW
5021 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5022 raiddisks, chunk,
5023 verbose))
5024 return 0;
c21e737b
CA
5025 return reserve_space(st, raiddisks, size,
5026 chunk?*chunk:0, freesize);
8592f29d
N
5027 }
5028 return 1;
5029 }
bf5a934a
DW
5030 if (st->sb) {
5031 /* creating in a given container */
5032 return validate_geometry_imsm_volume(st, level, layout,
5033 raiddisks, chunk, size,
5034 dev, freesize, verbose);
5035 }
5036
bf5a934a
DW
5037 /* This device needs to be a device in an 'imsm' container */
5038 fd = open(dev, O_RDONLY|O_EXCL, 0);
5039 if (fd >= 0) {
5040 if (verbose)
5041 fprintf(stderr,
5042 Name ": Cannot create this array on device %s\n",
5043 dev);
5044 close(fd);
5045 return 0;
5046 }
5047 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5048 if (verbose)
5049 fprintf(stderr, Name ": Cannot open %s: %s\n",
5050 dev, strerror(errno));
5051 return 0;
5052 }
5053 /* Well, it is in use by someone, maybe an 'imsm' container. */
5054 cfd = open_container(fd);
20cbe8d2 5055 close(fd);
bf5a934a 5056 if (cfd < 0) {
bf5a934a
DW
5057 if (verbose)
5058 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5059 dev);
5060 return 0;
5061 }
5062 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5063 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5064 strcmp(sra->text_version, "imsm") == 0)
5065 is_member = 1;
5066 sysfs_free(sra);
5067 if (is_member) {
bf5a934a
DW
5068 /* This is a member of a imsm container. Load the container
5069 * and try to create a volume
5070 */
5071 struct intel_super *super;
5072
e1902a7b 5073 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5074 st->sb = super;
5075 st->container_dev = fd2devnum(cfd);
5076 close(cfd);
5077 return validate_geometry_imsm_volume(st, level, layout,
5078 raiddisks, chunk,
5079 size, dev,
5080 freesize, verbose);
5081 }
20cbe8d2 5082 }
bf5a934a 5083
20cbe8d2
AW
5084 if (verbose)
5085 fprintf(stderr, Name ": failed container membership check\n");
5086
5087 close(cfd);
5088 return 0;
bf5a934a 5089}
0bd16cf2 5090
30f58b22 5091static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5092{
5093 struct intel_super *super = st->sb;
5094
30f58b22
DW
5095 if (level && *level == UnSet)
5096 *level = LEVEL_CONTAINER;
5097
5098 if (level && layout && *layout == UnSet)
5099 *layout = imsm_level_to_layout(*level);
0bd16cf2 5100
1d54f286
N
5101 if (chunk && (*chunk == UnSet || *chunk == 0) &&
5102 super && super->orom)
30f58b22 5103 *chunk = imsm_orom_default_chunk(super->orom);
0bd16cf2
DJ
5104}
5105
33414a01
DW
5106static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5107
5108static int kill_subarray_imsm(struct supertype *st)
5109{
5110 /* remove the subarray currently referenced by ->current_vol */
5111 __u8 i;
5112 struct intel_dev **dp;
5113 struct intel_super *super = st->sb;
5114 __u8 current_vol = super->current_vol;
5115 struct imsm_super *mpb = super->anchor;
5116
5117 if (super->current_vol < 0)
5118 return 2;
5119 super->current_vol = -1; /* invalidate subarray cursor */
5120
5121 /* block deletions that would change the uuid of active subarrays
5122 *
5123 * FIXME when immutable ids are available, but note that we'll
5124 * also need to fixup the invalidated/active subarray indexes in
5125 * mdstat
5126 */
5127 for (i = 0; i < mpb->num_raid_devs; i++) {
5128 char subarray[4];
5129
5130 if (i < current_vol)
5131 continue;
5132 sprintf(subarray, "%u", i);
5133 if (is_subarray_active(subarray, st->devname)) {
5134 fprintf(stderr,
5135 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5136 current_vol, i);
5137
5138 return 2;
5139 }
5140 }
5141
5142 if (st->update_tail) {
5143 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5144
5145 if (!u)
5146 return 2;
5147 u->type = update_kill_array;
5148 u->dev_idx = current_vol;
5149 append_metadata_update(st, u, sizeof(*u));
5150
5151 return 0;
5152 }
5153
5154 for (dp = &super->devlist; *dp;)
5155 if ((*dp)->index == current_vol) {
5156 *dp = (*dp)->next;
5157 } else {
5158 handle_missing(super, (*dp)->dev);
5159 if ((*dp)->index > current_vol)
5160 (*dp)->index--;
5161 dp = &(*dp)->next;
5162 }
5163
5164 /* no more raid devices, all active components are now spares,
5165 * but of course failed are still failed
5166 */
5167 if (--mpb->num_raid_devs == 0) {
5168 struct dl *d;
5169
5170 for (d = super->disks; d; d = d->next)
5171 if (d->index > -2) {
5172 d->index = -1;
5173 d->disk.status = SPARE_DISK;
5174 }
5175 }
5176
5177 super->updates_pending++;
5178
5179 return 0;
5180}
aa534678 5181
a951a4f7 5182static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5183 char *update, struct mddev_ident *ident)
aa534678
DW
5184{
5185 /* update the subarray currently referenced by ->current_vol */
5186 struct intel_super *super = st->sb;
5187 struct imsm_super *mpb = super->anchor;
5188
aa534678
DW
5189 if (strcmp(update, "name") == 0) {
5190 char *name = ident->name;
a951a4f7
N
5191 char *ep;
5192 int vol;
aa534678 5193
a951a4f7 5194 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5195 fprintf(stderr,
5196 Name ": Unable to update name of active subarray\n");
5197 return 2;
5198 }
5199
5200 if (!check_name(super, name, 0))
5201 return 2;
5202
a951a4f7
N
5203 vol = strtoul(subarray, &ep, 10);
5204 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5205 return 2;
5206
aa534678
DW
5207 if (st->update_tail) {
5208 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5209
5210 if (!u)
5211 return 2;
5212 u->type = update_rename_array;
a951a4f7 5213 u->dev_idx = vol;
aa534678
DW
5214 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5215 append_metadata_update(st, u, sizeof(*u));
5216 } else {
5217 struct imsm_dev *dev;
5218 int i;
5219
a951a4f7 5220 dev = get_imsm_dev(super, vol);
aa534678
DW
5221 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5222 for (i = 0; i < mpb->num_raid_devs; i++) {
5223 dev = get_imsm_dev(super, i);
5224 handle_missing(super, dev);
5225 }
5226 super->updates_pending++;
5227 }
5228 } else
5229 return 2;
5230
5231 return 0;
5232}
bf5a934a 5233
28bce06f
AK
5234static int is_gen_migration(struct imsm_dev *dev)
5235{
5236 if (!dev->vol.migr_state)
5237 return 0;
5238
5239 if (migr_type(dev) == MIGR_GEN_MIGR)
5240 return 1;
5241
5242 return 0;
5243}
71204a50 5244#endif /* MDASSEMBLE */
28bce06f 5245
1e5c6983
DW
5246static int is_rebuilding(struct imsm_dev *dev)
5247{
5248 struct imsm_map *migr_map;
5249
5250 if (!dev->vol.migr_state)
5251 return 0;
5252
5253 if (migr_type(dev) != MIGR_REBUILD)
5254 return 0;
5255
5256 migr_map = get_imsm_map(dev, 1);
5257
5258 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5259 return 1;
5260 else
5261 return 0;
5262}
5263
c47b0ff6
AK
5264static void update_recovery_start(struct intel_super *super,
5265 struct imsm_dev *dev,
5266 struct mdinfo *array)
1e5c6983
DW
5267{
5268 struct mdinfo *rebuild = NULL;
5269 struct mdinfo *d;
5270 __u32 units;
5271
5272 if (!is_rebuilding(dev))
5273 return;
5274
5275 /* Find the rebuild target, but punt on the dual rebuild case */
5276 for (d = array->devs; d; d = d->next)
5277 if (d->recovery_start == 0) {
5278 if (rebuild)
5279 return;
5280 rebuild = d;
5281 }
5282
4363fd80
DW
5283 if (!rebuild) {
5284 /* (?) none of the disks are marked with
5285 * IMSM_ORD_REBUILD, so assume they are missing and the
5286 * disk_ord_tbl was not correctly updated
5287 */
5288 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5289 return;
5290 }
5291
1e5c6983 5292 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5293 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5294}
5295
276d77db 5296static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
1e5c6983 5297
00bbdbda 5298static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5299{
4f5bc454
DW
5300 /* Given a container loaded by load_super_imsm_all,
5301 * extract information about all the arrays into
5302 * an mdinfo tree.
00bbdbda 5303 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5304 *
5305 * For each imsm_dev create an mdinfo, fill it in,
5306 * then look for matching devices in super->disks
5307 * and create appropriate device mdinfo.
5308 */
5309 struct intel_super *super = st->sb;
949c47a0 5310 struct imsm_super *mpb = super->anchor;
4f5bc454 5311 struct mdinfo *rest = NULL;
00bbdbda 5312 unsigned int i;
a06d022d 5313 int bbm_errors = 0;
abef11a3
AK
5314 struct dl *d;
5315 int spare_disks = 0;
cdddbdbc 5316
a06d022d
KW
5317 /* check for bad blocks */
5318 if (imsm_bbm_log_size(super->anchor))
5319 bbm_errors = 1;
604b746f 5320
abef11a3
AK
5321 /* count spare devices, not used in maps
5322 */
5323 for (d = super->disks; d; d = d->next)
5324 if (d->index == -1)
5325 spare_disks++;
5326
4f5bc454 5327 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5328 struct imsm_dev *dev;
5329 struct imsm_map *map;
86e3692b 5330 struct imsm_map *map2;
4f5bc454 5331 struct mdinfo *this;
2db86302 5332 int slot, chunk;
00bbdbda
N
5333 char *ep;
5334
5335 if (subarray &&
5336 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5337 continue;
5338
5339 dev = get_imsm_dev(super, i);
5340 map = get_imsm_map(dev, 0);
86e3692b 5341 map2 = get_imsm_map(dev, 1);
4f5bc454 5342
1ce0101c
DW
5343 /* do not publish arrays that are in the middle of an
5344 * unsupported migration
5345 */
5346 if (dev->vol.migr_state &&
28bce06f 5347 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5348 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5349 " unsupported migration in progress\n",
5350 dev->volume);
5351 continue;
5352 }
2db86302
LM
5353 /* do not publish arrays that are not support by controller's
5354 * OROM/EFI
5355 */
1ce0101c 5356
2db86302 5357 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7b0bbd0f 5358#ifndef MDASSEMBLE
2db86302
LM
5359 if (!validate_geometry_imsm_orom(super,
5360 get_imsm_raid_level(map), /* RAID level */
5361 imsm_level_to_layout(get_imsm_raid_level(map)),
5362 map->num_members, /* raid disks */
5363 &chunk,
5364 1 /* verbose */)) {
5365 fprintf(stderr, Name ": RAID gemetry validation failed. "
5366 "Cannot proceed with the action(s).\n");
5367 continue;
5368 }
7b0bbd0f 5369#endif /* MDASSEMBLE */
4f5bc454 5370 this = malloc(sizeof(*this));
0fbd635c 5371 if (!this) {
cf1be220 5372 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5373 sizeof(*this));
5374 break;
5375 }
4f5bc454
DW
5376 memset(this, 0, sizeof(*this));
5377 this->next = rest;
4f5bc454 5378
301406c9 5379 super->current_vol = i;
a5d85af7 5380 getinfo_super_imsm_volume(st, this, NULL);
4f5bc454 5381 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5382 unsigned long long recovery_start;
4f5bc454
DW
5383 struct mdinfo *info_d;
5384 struct dl *d;
5385 int idx;
9a1608e5 5386 int skip;
7eef0453 5387 __u32 ord;
4f5bc454 5388
9a1608e5 5389 skip = 0;
98130f40 5390 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5391 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5392 for (d = super->disks; d ; d = d->next)
5393 if (d->index == idx)
0fbd635c 5394 break;
4f5bc454 5395
1e5c6983 5396 recovery_start = MaxSector;
4f5bc454 5397 if (d == NULL)
9a1608e5 5398 skip = 1;
25ed7e59 5399 if (d && is_failed(&d->disk))
9a1608e5 5400 skip = 1;
7eef0453 5401 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5402 recovery_start = 0;
9a1608e5
DW
5403
5404 /*
5405 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5406 * reset resync start to avoid a dirty-degraded
5407 * situation when performing the intial sync
9a1608e5
DW
5408 *
5409 * FIXME handle dirty degraded
5410 */
1e5c6983 5411 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5412 this->resync_start = MaxSector;
9a1608e5
DW
5413 if (skip)
5414 continue;
4f5bc454 5415
1e5c6983 5416 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5417 if (!info_d) {
5418 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5419 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5420 info_d = this->devs;
5421 while (info_d) {
5422 struct mdinfo *d = info_d->next;
5423
5424 free(info_d);
5425 info_d = d;
5426 }
9a1608e5
DW
5427 free(this);
5428 this = rest;
5429 break;
5430 }
4f5bc454
DW
5431 info_d->next = this->devs;
5432 this->devs = info_d;
5433
4f5bc454
DW
5434 info_d->disk.number = d->index;
5435 info_d->disk.major = d->major;
5436 info_d->disk.minor = d->minor;
5437 info_d->disk.raid_disk = slot;
1e5c6983 5438 info_d->recovery_start = recovery_start;
86e3692b
AK
5439 if (map2) {
5440 if (slot < map2->num_members)
5441 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5442 else
5443 this->array.spare_disks++;
86e3692b
AK
5444 } else {
5445 if (slot < map->num_members)
5446 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5447 else
5448 this->array.spare_disks++;
86e3692b 5449 }
1e5c6983
DW
5450 if (info_d->recovery_start == MaxSector)
5451 this->array.working_disks++;
4f5bc454
DW
5452
5453 info_d->events = __le32_to_cpu(mpb->generation_num);
5454 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5455 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5456 }
1e5c6983 5457 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5458 update_recovery_start(super, dev, this);
abef11a3 5459 this->array.spare_disks += spare_disks;
276d77db
AK
5460
5461 /* check for reshape */
5462 if (this->reshape_active == 1)
5463 recover_backup_imsm(st, this);
5464
9a1608e5 5465 rest = this;
4f5bc454
DW
5466 }
5467
a06d022d
KW
5468 /* if array has bad blocks, set suitable bit in array status */
5469 if (bbm_errors)
5470 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5471
4f5bc454 5472 return rest;
cdddbdbc
DW
5473}
5474
845dea95 5475
fb49eef2 5476static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5477{
a965f303 5478 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5479
5480 if (!failed)
3393c6af
DW
5481 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5482 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5483
5484 switch (get_imsm_raid_level(map)) {
5485 case 0:
5486 return IMSM_T_STATE_FAILED;
5487 break;
5488 case 1:
5489 if (failed < map->num_members)
5490 return IMSM_T_STATE_DEGRADED;
5491 else
5492 return IMSM_T_STATE_FAILED;
5493 break;
5494 case 10:
5495 {
5496 /**
c92a2527
DW
5497 * check to see if any mirrors have failed, otherwise we
5498 * are degraded. Even numbered slots are mirrored on
5499 * slot+1
c2a1e7da 5500 */
c2a1e7da 5501 int i;
d9b420a5
N
5502 /* gcc -Os complains that this is unused */
5503 int insync = insync;
c2a1e7da
DW
5504
5505 for (i = 0; i < map->num_members; i++) {
98130f40 5506 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5507 int idx = ord_to_idx(ord);
5508 struct imsm_disk *disk;
c2a1e7da 5509
c92a2527
DW
5510 /* reset the potential in-sync count on even-numbered
5511 * slots. num_copies is always 2 for imsm raid10
5512 */
5513 if ((i & 1) == 0)
5514 insync = 2;
c2a1e7da 5515
c92a2527 5516 disk = get_imsm_disk(super, idx);
25ed7e59 5517 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5518 insync--;
c2a1e7da 5519
c92a2527
DW
5520 /* no in-sync disks left in this mirror the
5521 * array has failed
5522 */
5523 if (insync == 0)
5524 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5525 }
5526
5527 return IMSM_T_STATE_DEGRADED;
5528 }
5529 case 5:
5530 if (failed < 2)
5531 return IMSM_T_STATE_DEGRADED;
5532 else
5533 return IMSM_T_STATE_FAILED;
5534 break;
5535 default:
5536 break;
5537 }
5538
5539 return map->map_state;
5540}
5541
ff077194 5542static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5543{
5544 int i;
5545 int failed = 0;
5546 struct imsm_disk *disk;
ff077194 5547 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
5548 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5549 __u32 ord;
5550 int idx;
c2a1e7da 5551
0556e1a2
DW
5552 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5553 * disks that are being rebuilt. New failures are recorded to
5554 * map[0]. So we look through all the disks we started with and
5555 * see if any failures are still present, or if any new ones
5556 * have arrived
5557 *
5558 * FIXME add support for online capacity expansion and
5559 * raid-level-migration
5560 */
5561 for (i = 0; i < prev->num_members; i++) {
5562 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5563 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5564 idx = ord_to_idx(ord);
c2a1e7da 5565
949c47a0 5566 disk = get_imsm_disk(super, idx);
25ed7e59 5567 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 5568 failed++;
c2a1e7da
DW
5569 }
5570
5571 return failed;
845dea95
NB
5572}
5573
97b4d0e9
DW
5574#ifndef MDASSEMBLE
5575static int imsm_open_new(struct supertype *c, struct active_array *a,
5576 char *inst)
5577{
5578 struct intel_super *super = c->sb;
5579 struct imsm_super *mpb = super->anchor;
5580
5581 if (atoi(inst) >= mpb->num_raid_devs) {
5582 fprintf(stderr, "%s: subarry index %d, out of range\n",
5583 __func__, atoi(inst));
5584 return -ENODEV;
5585 }
5586
5587 dprintf("imsm: open_new %s\n", inst);
5588 a->info.container_member = atoi(inst);
5589 return 0;
5590}
5591
0c046afd
DW
5592static int is_resyncing(struct imsm_dev *dev)
5593{
5594 struct imsm_map *migr_map;
5595
5596 if (!dev->vol.migr_state)
5597 return 0;
5598
1484e727
DW
5599 if (migr_type(dev) == MIGR_INIT ||
5600 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
5601 return 1;
5602
4c9bc37b
AK
5603 if (migr_type(dev) == MIGR_GEN_MIGR)
5604 return 0;
5605
0c046afd
DW
5606 migr_map = get_imsm_map(dev, 1);
5607
4c9bc37b
AK
5608 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5609 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
5610 return 1;
5611 else
5612 return 0;
5613}
5614
0556e1a2
DW
5615/* return true if we recorded new information */
5616static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 5617{
0556e1a2
DW
5618 __u32 ord;
5619 int slot;
5620 struct imsm_map *map;
5621
5622 /* new failures are always set in map[0] */
5623 map = get_imsm_map(dev, 0);
5624
5625 slot = get_imsm_disk_slot(map, idx);
5626 if (slot < 0)
5627 return 0;
5628
5629 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 5630 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
5631 return 0;
5632
f2f27e63 5633 disk->status |= FAILED_DISK;
0556e1a2 5634 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
f21e18ca 5635 if (map->failed_disk_num == 0xff)
0556e1a2
DW
5636 map->failed_disk_num = slot;
5637 return 1;
5638}
5639
5640static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5641{
5642 mark_failure(dev, disk, idx);
5643
5644 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5645 return;
5646
47ee5a45
DW
5647 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5648 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5649}
5650
33414a01
DW
5651static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5652{
5653 __u8 map_state;
5654 struct dl *dl;
5655 int failed;
5656
5657 if (!super->missing)
5658 return;
5659 failed = imsm_count_failed(super, dev);
5660 map_state = imsm_check_degraded(super, dev, failed);
5661
5662 dprintf("imsm: mark missing\n");
5663 end_migration(dev, map_state);
5664 for (dl = super->missing; dl; dl = dl->next)
5665 mark_missing(dev, &dl->disk, dl->index);
5666 super->updates_pending++;
5667}
5668
70bdf0dc
AK
5669static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5670{
5671 int used_disks = imsm_num_data_members(dev, 0);
5672 unsigned long long array_blocks;
5673 struct imsm_map *map;
5674
5675 if (used_disks == 0) {
5676 /* when problems occures
5677 * return current array_blocks value
5678 */
5679 array_blocks = __le32_to_cpu(dev->size_high);
5680 array_blocks = array_blocks << 32;
5681 array_blocks += __le32_to_cpu(dev->size_low);
5682
5683 return array_blocks;
5684 }
5685
5686 /* set array size in metadata
5687 */
5688 map = get_imsm_map(dev, 0);
5689 array_blocks = map->blocks_per_member * used_disks;
5690
5691 /* round array size down to closest MB
5692 */
5693 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5694 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5695 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5696
5697 return array_blocks;
5698}
5699
28bce06f
AK
5700static void imsm_set_disk(struct active_array *a, int n, int state);
5701
0e2d1a4e
AK
5702static void imsm_progress_container_reshape(struct intel_super *super)
5703{
5704 /* if no device has a migr_state, but some device has a
5705 * different number of members than the previous device, start
5706 * changing the number of devices in this device to match
5707 * previous.
5708 */
5709 struct imsm_super *mpb = super->anchor;
5710 int prev_disks = -1;
5711 int i;
1dfaa380 5712 int copy_map_size;
0e2d1a4e
AK
5713
5714 for (i = 0; i < mpb->num_raid_devs; i++) {
5715 struct imsm_dev *dev = get_imsm_dev(super, i);
5716 struct imsm_map *map = get_imsm_map(dev, 0);
5717 struct imsm_map *map2;
5718 int prev_num_members;
0e2d1a4e
AK
5719
5720 if (dev->vol.migr_state)
5721 return;
5722
5723 if (prev_disks == -1)
5724 prev_disks = map->num_members;
5725 if (prev_disks == map->num_members)
5726 continue;
5727
5728 /* OK, this array needs to enter reshape mode.
5729 * i.e it needs a migr_state
5730 */
5731
1dfaa380 5732 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
5733 prev_num_members = map->num_members;
5734 map->num_members = prev_disks;
5735 dev->vol.migr_state = 1;
5736 dev->vol.curr_migr_unit = 0;
5737 dev->vol.migr_type = MIGR_GEN_MIGR;
5738 for (i = prev_num_members;
5739 i < map->num_members; i++)
5740 set_imsm_ord_tbl_ent(map, i, i);
5741 map2 = get_imsm_map(dev, 1);
5742 /* Copy the current map */
1dfaa380 5743 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
5744 map2->num_members = prev_num_members;
5745
70bdf0dc 5746 imsm_set_array_size(dev);
0e2d1a4e
AK
5747 super->updates_pending++;
5748 }
5749}
5750
aad6f216 5751/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
5752 * states are handled in imsm_set_disk() with one exception, when a
5753 * resync is stopped due to a new failure this routine will set the
5754 * 'degraded' state for the array.
5755 */
01f157d7 5756static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
5757{
5758 int inst = a->info.container_member;
5759 struct intel_super *super = a->container->sb;
949c47a0 5760 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5761 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
5762 int failed = imsm_count_failed(super, dev);
5763 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 5764 __u32 blocks_per_unit;
a862209d 5765
1af97990
AK
5766 if (dev->vol.migr_state &&
5767 dev->vol.migr_type == MIGR_GEN_MIGR) {
5768 /* array state change is blocked due to reshape action
aad6f216
N
5769 * We might need to
5770 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5771 * - finish the reshape (if last_checkpoint is big and action != reshape)
5772 * - update curr_migr_unit
1af97990 5773 */
aad6f216
N
5774 if (a->curr_action == reshape) {
5775 /* still reshaping, maybe update curr_migr_unit */
633b5610 5776 goto mark_checkpoint;
aad6f216
N
5777 } else {
5778 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5779 /* for some reason we aborted the reshape.
5780 * Better clean up
5781 */
5782 struct imsm_map *map2 = get_imsm_map(dev, 1);
5783 dev->vol.migr_state = 0;
5784 dev->vol.migr_type = 0;
5785 dev->vol.curr_migr_unit = 0;
5786 memcpy(map, map2, sizeof_imsm_map(map2));
5787 super->updates_pending++;
5788 }
5789 if (a->last_checkpoint >= a->info.component_size) {
5790 unsigned long long array_blocks;
5791 int used_disks;
e154ced3 5792 struct mdinfo *mdi;
aad6f216 5793
9653001d 5794 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
5795 if (used_disks > 0) {
5796 array_blocks =
5797 map->blocks_per_member *
5798 used_disks;
5799 /* round array size down to closest MB
5800 */
5801 array_blocks = (array_blocks
5802 >> SECT_PER_MB_SHIFT)
5803 << SECT_PER_MB_SHIFT;
d55adef9
AK
5804 a->info.custom_array_size = array_blocks;
5805 /* encourage manager to update array
5806 * size
5807 */
e154ced3 5808
d55adef9 5809 a->check_reshape = 1;
633b5610 5810 }
e154ced3
AK
5811 /* finalize online capacity expansion/reshape */
5812 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5813 imsm_set_disk(a,
5814 mdi->disk.raid_disk,
5815 mdi->curr_state);
5816
0e2d1a4e 5817 imsm_progress_container_reshape(super);
e154ced3 5818 }
aad6f216 5819 }
1af97990
AK
5820 }
5821
47ee5a45 5822 /* before we activate this array handle any missing disks */
33414a01
DW
5823 if (consistent == 2)
5824 handle_missing(super, dev);
1e5c6983 5825
0c046afd 5826 if (consistent == 2 &&
b7941fd6 5827 (!is_resync_complete(&a->info) ||
0c046afd
DW
5828 map_state != IMSM_T_STATE_NORMAL ||
5829 dev->vol.migr_state))
01f157d7 5830 consistent = 0;
272906ef 5831
b7941fd6 5832 if (is_resync_complete(&a->info)) {
0c046afd 5833 /* complete intialization / resync,
0556e1a2
DW
5834 * recovery and interrupted recovery is completed in
5835 * ->set_disk
0c046afd
DW
5836 */
5837 if (is_resyncing(dev)) {
5838 dprintf("imsm: mark resync done\n");
f8f603f1 5839 end_migration(dev, map_state);
115c3803 5840 super->updates_pending++;
484240d8 5841 a->last_checkpoint = 0;
115c3803 5842 }
0c046afd
DW
5843 } else if (!is_resyncing(dev) && !failed) {
5844 /* mark the start of the init process if nothing is failed */
b7941fd6 5845 dprintf("imsm: mark resync start\n");
1484e727 5846 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 5847 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 5848 else
8e59f3d8 5849 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 5850 super->updates_pending++;
115c3803 5851 }
a862209d 5852
633b5610 5853mark_checkpoint:
5b83bacf
AK
5854 /* skip checkpointing for general migration,
5855 * it is controlled in mdadm
5856 */
5857 if (is_gen_migration(dev))
5858 goto skip_mark_checkpoint;
5859
1e5c6983 5860 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 5861 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 5862 if (blocks_per_unit) {
1e5c6983
DW
5863 __u32 units32;
5864 __u64 units;
5865
4f0a7acc 5866 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
5867 units32 = units;
5868
5869 /* check that we did not overflow 32-bits, and that
5870 * curr_migr_unit needs updating
5871 */
5872 if (units32 == units &&
bfd80a56 5873 units32 != 0 &&
1e5c6983
DW
5874 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5875 dprintf("imsm: mark checkpoint (%u)\n", units32);
5876 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5877 super->updates_pending++;
5878 }
5879 }
f8f603f1 5880
5b83bacf 5881skip_mark_checkpoint:
3393c6af 5882 /* mark dirty / clean */
0c046afd 5883 if (dev->vol.dirty != !consistent) {
b7941fd6 5884 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
5885 if (consistent)
5886 dev->vol.dirty = 0;
5887 else
5888 dev->vol.dirty = 1;
a862209d
DW
5889 super->updates_pending++;
5890 }
28bce06f 5891
01f157d7 5892 return consistent;
a862209d
DW
5893}
5894
8d45d196 5895static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 5896{
8d45d196
DW
5897 int inst = a->info.container_member;
5898 struct intel_super *super = a->container->sb;
949c47a0 5899 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 5900 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 5901 struct imsm_disk *disk;
0c046afd 5902 int failed;
b10b37b8 5903 __u32 ord;
0c046afd 5904 __u8 map_state;
8d45d196
DW
5905
5906 if (n > map->num_members)
5907 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5908 n, map->num_members - 1);
5909
5910 if (n < 0)
5911 return;
5912
4e6e574a 5913 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 5914
98130f40 5915 ord = get_imsm_ord_tbl_ent(dev, n, -1);
b10b37b8 5916 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 5917
5802a811 5918 /* check for new failures */
0556e1a2
DW
5919 if (state & DS_FAULTY) {
5920 if (mark_failure(dev, disk, ord_to_idx(ord)))
5921 super->updates_pending++;
8d45d196 5922 }
47ee5a45 5923
19859edc 5924 /* check if in_sync */
0556e1a2 5925 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
5926 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5927
5928 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
5929 super->updates_pending++;
5930 }
8d45d196 5931
0c046afd
DW
5932 failed = imsm_count_failed(super, dev);
5933 map_state = imsm_check_degraded(super, dev, failed);
5802a811 5934
0c046afd
DW
5935 /* check if recovery complete, newly degraded, or failed */
5936 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 5937 end_migration(dev, map_state);
0556e1a2
DW
5938 map = get_imsm_map(dev, 0);
5939 map->failed_disk_num = ~0;
0c046afd 5940 super->updates_pending++;
484240d8 5941 a->last_checkpoint = 0;
0c046afd
DW
5942 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5943 map->map_state != map_state &&
5944 !dev->vol.migr_state) {
5945 dprintf("imsm: mark degraded\n");
5946 map->map_state = map_state;
5947 super->updates_pending++;
484240d8 5948 a->last_checkpoint = 0;
0c046afd
DW
5949 } else if (map_state == IMSM_T_STATE_FAILED &&
5950 map->map_state != map_state) {
5951 dprintf("imsm: mark failed\n");
f8f603f1 5952 end_migration(dev, map_state);
0c046afd 5953 super->updates_pending++;
484240d8 5954 a->last_checkpoint = 0;
28bce06f
AK
5955 } else if (is_gen_migration(dev)) {
5956 dprintf("imsm: Detected General Migration in state: ");
5957 if (map_state == IMSM_T_STATE_NORMAL) {
5958 end_migration(dev, map_state);
5959 map = get_imsm_map(dev, 0);
5960 map->failed_disk_num = ~0;
5961 dprintf("normal\n");
5962 } else {
5963 if (map_state == IMSM_T_STATE_DEGRADED) {
5964 printf("degraded\n");
5965 end_migration(dev, map_state);
5966 } else {
5967 dprintf("failed\n");
5968 }
5969 map->map_state = map_state;
5970 }
5971 super->updates_pending++;
5802a811 5972 }
845dea95
NB
5973}
5974
f796af5d 5975static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 5976{
f796af5d 5977 void *buf = mpb;
c2a1e7da
DW
5978 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5979 unsigned long long dsize;
5980 unsigned long long sectors;
5981
5982 get_dev_size(fd, NULL, &dsize);
5983
272f648f
DW
5984 if (mpb_size > 512) {
5985 /* -1 to account for anchor */
5986 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 5987
272f648f
DW
5988 /* write the extended mpb to the sectors preceeding the anchor */
5989 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5990 return 1;
c2a1e7da 5991
f21e18ca
N
5992 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5993 != 512 * sectors)
272f648f
DW
5994 return 1;
5995 }
c2a1e7da 5996
272f648f
DW
5997 /* first block is stored on second to last sector of the disk */
5998 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
5999 return 1;
6000
f796af5d 6001 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6002 return 1;
6003
c2a1e7da
DW
6004 return 0;
6005}
6006
2e735d19 6007static void imsm_sync_metadata(struct supertype *container)
845dea95 6008{
2e735d19 6009 struct intel_super *super = container->sb;
c2a1e7da 6010
1a64be56 6011 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6012 if (!super->updates_pending)
6013 return;
6014
36988a3d 6015 write_super_imsm(container, 0);
c2a1e7da
DW
6016
6017 super->updates_pending = 0;
845dea95
NB
6018}
6019
272906ef
DW
6020static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6021{
6022 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6023 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6024 struct dl *dl;
6025
6026 for (dl = super->disks; dl; dl = dl->next)
6027 if (dl->index == i)
6028 break;
6029
25ed7e59 6030 if (dl && is_failed(&dl->disk))
272906ef
DW
6031 dl = NULL;
6032
6033 if (dl)
6034 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6035
6036 return dl;
6037}
6038
a20d2ba5 6039static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6040 struct active_array *a, int activate_new,
6041 struct mdinfo *additional_test_list)
272906ef
DW
6042{
6043 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6044 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6045 struct imsm_super *mpb = super->anchor;
6046 struct imsm_map *map;
272906ef
DW
6047 unsigned long long pos;
6048 struct mdinfo *d;
6049 struct extent *ex;
a20d2ba5 6050 int i, j;
272906ef 6051 int found;
569cc43f
DW
6052 __u32 array_start = 0;
6053 __u32 array_end = 0;
272906ef 6054 struct dl *dl;
6c932028 6055 struct mdinfo *test_list;
272906ef
DW
6056
6057 for (dl = super->disks; dl; dl = dl->next) {
6058 /* If in this array, skip */
6059 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6060 if (d->state_fd >= 0 &&
6061 d->disk.major == dl->major &&
272906ef 6062 d->disk.minor == dl->minor) {
8ba77d32
AK
6063 dprintf("%x:%x already in array\n",
6064 dl->major, dl->minor);
272906ef
DW
6065 break;
6066 }
6067 if (d)
6068 continue;
6c932028
AK
6069 test_list = additional_test_list;
6070 while (test_list) {
6071 if (test_list->disk.major == dl->major &&
6072 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6073 dprintf("%x:%x already in additional test list\n",
6074 dl->major, dl->minor);
6075 break;
6076 }
6c932028 6077 test_list = test_list->next;
8ba77d32 6078 }
6c932028 6079 if (test_list)
8ba77d32 6080 continue;
272906ef 6081
e553d2a4 6082 /* skip in use or failed drives */
25ed7e59 6083 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6084 dl->index == -2) {
6085 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6086 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6087 continue;
6088 }
6089
a20d2ba5
DW
6090 /* skip pure spares when we are looking for partially
6091 * assimilated drives
6092 */
6093 if (dl->index == -1 && !activate_new)
6094 continue;
6095
272906ef 6096 /* Does this unused device have the requisite free space?
a20d2ba5 6097 * It needs to be able to cover all member volumes
272906ef
DW
6098 */
6099 ex = get_extents(super, dl);
6100 if (!ex) {
6101 dprintf("cannot get extents\n");
6102 continue;
6103 }
a20d2ba5
DW
6104 for (i = 0; i < mpb->num_raid_devs; i++) {
6105 dev = get_imsm_dev(super, i);
6106 map = get_imsm_map(dev, 0);
272906ef 6107
a20d2ba5
DW
6108 /* check if this disk is already a member of
6109 * this array
272906ef 6110 */
620b1713 6111 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6112 continue;
6113
6114 found = 0;
6115 j = 0;
6116 pos = 0;
6117 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6118 array_end = array_start +
6119 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6120
6121 do {
6122 /* check that we can start at pba_of_lba0 with
6123 * blocks_per_member of space
6124 */
329c8278 6125 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6126 found = 1;
6127 break;
6128 }
6129 pos = ex[j].start + ex[j].size;
6130 j++;
6131 } while (ex[j-1].size);
6132
6133 if (!found)
272906ef 6134 break;
a20d2ba5 6135 }
272906ef
DW
6136
6137 free(ex);
a20d2ba5 6138 if (i < mpb->num_raid_devs) {
329c8278
DW
6139 dprintf("%x:%x does not have %u to %u available\n",
6140 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6141 /* No room */
6142 continue;
a20d2ba5
DW
6143 }
6144 return dl;
272906ef
DW
6145 }
6146
6147 return dl;
6148}
6149
95d07a2c
LM
6150
6151static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6152{
6153 struct imsm_dev *dev2;
6154 struct imsm_map *map;
6155 struct dl *idisk;
6156 int slot;
6157 int idx;
6158 __u8 state;
6159
6160 dev2 = get_imsm_dev(cont->sb, dev_idx);
6161 if (dev2) {
6162 state = imsm_check_degraded(cont->sb, dev2, failed);
6163 if (state == IMSM_T_STATE_FAILED) {
6164 map = get_imsm_map(dev2, 0);
6165 if (!map)
6166 return 1;
6167 for (slot = 0; slot < map->num_members; slot++) {
6168 /*
6169 * Check if failed disks are deleted from intel
6170 * disk list or are marked to be deleted
6171 */
98130f40 6172 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6173 idisk = get_imsm_dl_disk(cont->sb, idx);
6174 /*
6175 * Do not rebuild the array if failed disks
6176 * from failed sub-array are not removed from
6177 * container.
6178 */
6179 if (idisk &&
6180 is_failed(&idisk->disk) &&
6181 (idisk->action != DISK_REMOVE))
6182 return 0;
6183 }
6184 }
6185 }
6186 return 1;
6187}
6188
88758e9d
DW
6189static struct mdinfo *imsm_activate_spare(struct active_array *a,
6190 struct metadata_update **updates)
6191{
6192 /**
d23fe947
DW
6193 * Find a device with unused free space and use it to replace a
6194 * failed/vacant region in an array. We replace failed regions one a
6195 * array at a time. The result is that a new spare disk will be added
6196 * to the first failed array and after the monitor has finished
6197 * propagating failures the remainder will be consumed.
88758e9d 6198 *
d23fe947
DW
6199 * FIXME add a capability for mdmon to request spares from another
6200 * container.
88758e9d
DW
6201 */
6202
6203 struct intel_super *super = a->container->sb;
88758e9d 6204 int inst = a->info.container_member;
949c47a0 6205 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6206 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6207 int failed = a->info.array.raid_disks;
6208 struct mdinfo *rv = NULL;
6209 struct mdinfo *d;
6210 struct mdinfo *di;
6211 struct metadata_update *mu;
6212 struct dl *dl;
6213 struct imsm_update_activate_spare *u;
6214 int num_spares = 0;
6215 int i;
95d07a2c 6216 int allowed;
88758e9d
DW
6217
6218 for (d = a->info.devs ; d ; d = d->next) {
6219 if ((d->curr_state & DS_FAULTY) &&
6220 d->state_fd >= 0)
6221 /* wait for Removal to happen */
6222 return NULL;
6223 if (d->state_fd >= 0)
6224 failed--;
6225 }
6226
6227 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6228 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990
AK
6229
6230 if (dev->vol.migr_state &&
6231 dev->vol.migr_type == MIGR_GEN_MIGR)
6232 /* No repair during migration */
6233 return NULL;
6234
89c67882
AK
6235 if (a->info.array.level == 4)
6236 /* No repair for takeovered array
6237 * imsm doesn't support raid4
6238 */
6239 return NULL;
6240
fb49eef2 6241 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6242 return NULL;
6243
95d07a2c
LM
6244 /*
6245 * If there are any failed disks check state of the other volume.
6246 * Block rebuild if the another one is failed until failed disks
6247 * are removed from container.
6248 */
6249 if (failed) {
6250 dprintf("found failed disks in %s, check if there another"
6251 "failed sub-array.\n",
6252 dev->volume);
6253 /* check if states of the other volumes allow for rebuild */
6254 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6255 if (i != inst) {
6256 allowed = imsm_rebuild_allowed(a->container,
6257 i, failed);
6258 if (!allowed)
6259 return NULL;
6260 }
6261 }
6262 }
6263
88758e9d 6264 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6265 for (i = 0; i < a->info.array.raid_disks; i++) {
6266 for (d = a->info.devs ; d ; d = d->next)
6267 if (d->disk.raid_disk == i)
6268 break;
6269 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6270 if (d && (d->state_fd >= 0))
6271 continue;
6272
272906ef 6273 /*
a20d2ba5
DW
6274 * OK, this device needs recovery. Try to re-add the
6275 * previous occupant of this slot, if this fails see if
6276 * we can continue the assimilation of a spare that was
6277 * partially assimilated, finally try to activate a new
6278 * spare.
272906ef
DW
6279 */
6280 dl = imsm_readd(super, i, a);
6281 if (!dl)
8ba77d32 6282 dl = imsm_add_spare(super, i, a, 0, NULL);
a20d2ba5 6283 if (!dl)
8ba77d32 6284 dl = imsm_add_spare(super, i, a, 1, NULL);
272906ef
DW
6285 if (!dl)
6286 continue;
6287
6288 /* found a usable disk with enough space */
6289 di = malloc(sizeof(*di));
79244939
DW
6290 if (!di)
6291 continue;
272906ef
DW
6292 memset(di, 0, sizeof(*di));
6293
6294 /* dl->index will be -1 in the case we are activating a
6295 * pristine spare. imsm_process_update() will create a
6296 * new index in this case. Once a disk is found to be
6297 * failed in all member arrays it is kicked from the
6298 * metadata
6299 */
6300 di->disk.number = dl->index;
d23fe947 6301
272906ef
DW
6302 /* (ab)use di->devs to store a pointer to the device
6303 * we chose
6304 */
6305 di->devs = (struct mdinfo *) dl;
6306
6307 di->disk.raid_disk = i;
6308 di->disk.major = dl->major;
6309 di->disk.minor = dl->minor;
6310 di->disk.state = 0;
d23534e4 6311 di->recovery_start = 0;
272906ef
DW
6312 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6313 di->component_size = a->info.component_size;
6314 di->container_member = inst;
148acb7b 6315 super->random = random32();
272906ef
DW
6316 di->next = rv;
6317 rv = di;
6318 num_spares++;
6319 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6320 i, di->data_offset);
88758e9d 6321
272906ef 6322 break;
88758e9d
DW
6323 }
6324
6325 if (!rv)
6326 /* No spares found */
6327 return rv;
6328 /* Now 'rv' has a list of devices to return.
6329 * Create a metadata_update record to update the
6330 * disk_ord_tbl for the array
6331 */
6332 mu = malloc(sizeof(*mu));
79244939
DW
6333 if (mu) {
6334 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6335 if (mu->buf == NULL) {
6336 free(mu);
6337 mu = NULL;
6338 }
6339 }
6340 if (!mu) {
6341 while (rv) {
6342 struct mdinfo *n = rv->next;
6343
6344 free(rv);
6345 rv = n;
6346 }
6347 return NULL;
6348 }
6349
88758e9d 6350 mu->space = NULL;
cb23f1f4 6351 mu->space_list = NULL;
88758e9d
DW
6352 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6353 mu->next = *updates;
6354 u = (struct imsm_update_activate_spare *) mu->buf;
6355
6356 for (di = rv ; di ; di = di->next) {
6357 u->type = update_activate_spare;
d23fe947
DW
6358 u->dl = (struct dl *) di->devs;
6359 di->devs = NULL;
88758e9d
DW
6360 u->slot = di->disk.raid_disk;
6361 u->array = inst;
6362 u->next = u + 1;
6363 u++;
6364 }
6365 (u-1)->next = NULL;
6366 *updates = mu;
6367
6368 return rv;
6369}
6370
54c2c1ea 6371static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6372{
54c2c1ea
DW
6373 struct imsm_dev *dev = get_imsm_dev(super, idx);
6374 struct imsm_map *map = get_imsm_map(dev, 0);
6375 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6376 struct disk_info *inf = get_disk_info(u);
6377 struct imsm_disk *disk;
8273f55e
DW
6378 int i;
6379 int j;
8273f55e 6380
54c2c1ea 6381 for (i = 0; i < map->num_members; i++) {
98130f40 6382 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6383 for (j = 0; j < new_map->num_members; j++)
6384 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6385 return 1;
6386 }
6387
6388 return 0;
6389}
6390
1a64be56
LM
6391
6392static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6393{
6394 struct dl *dl = NULL;
6395 for (dl = super->disks; dl; dl = dl->next)
6396 if ((dl->major == major) && (dl->minor == minor))
6397 return dl;
6398 return NULL;
6399}
6400
6401static int remove_disk_super(struct intel_super *super, int major, int minor)
6402{
6403 struct dl *prev = NULL;
6404 struct dl *dl;
6405
6406 prev = NULL;
6407 for (dl = super->disks; dl; dl = dl->next) {
6408 if ((dl->major == major) && (dl->minor == minor)) {
6409 /* remove */
6410 if (prev)
6411 prev->next = dl->next;
6412 else
6413 super->disks = dl->next;
6414 dl->next = NULL;
6415 __free_imsm_disk(dl);
6416 dprintf("%s: removed %x:%x\n",
6417 __func__, major, minor);
6418 break;
6419 }
6420 prev = dl;
6421 }
6422 return 0;
6423}
6424
f21e18ca 6425static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6426
1a64be56
LM
6427static int add_remove_disk_update(struct intel_super *super)
6428{
6429 int check_degraded = 0;
6430 struct dl *disk = NULL;
6431 /* add/remove some spares to/from the metadata/contrainer */
6432 while (super->disk_mgmt_list) {
6433 struct dl *disk_cfg;
6434
6435 disk_cfg = super->disk_mgmt_list;
6436 super->disk_mgmt_list = disk_cfg->next;
6437 disk_cfg->next = NULL;
6438
6439 if (disk_cfg->action == DISK_ADD) {
6440 disk_cfg->next = super->disks;
6441 super->disks = disk_cfg;
6442 check_degraded = 1;
6443 dprintf("%s: added %x:%x\n",
6444 __func__, disk_cfg->major,
6445 disk_cfg->minor);
6446 } else if (disk_cfg->action == DISK_REMOVE) {
6447 dprintf("Disk remove action processed: %x.%x\n",
6448 disk_cfg->major, disk_cfg->minor);
6449 disk = get_disk_super(super,
6450 disk_cfg->major,
6451 disk_cfg->minor);
6452 if (disk) {
6453 /* store action status */
6454 disk->action = DISK_REMOVE;
6455 /* remove spare disks only */
6456 if (disk->index == -1) {
6457 remove_disk_super(super,
6458 disk_cfg->major,
6459 disk_cfg->minor);
6460 }
6461 }
6462 /* release allocate disk structure */
6463 __free_imsm_disk(disk_cfg);
6464 }
6465 }
6466 return check_degraded;
6467}
6468
a29911da
PC
6469
6470static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6471 struct intel_super *super,
6472 void ***space_list)
6473{
6474 struct intel_dev *id;
6475 void **tofree = NULL;
6476 int ret_val = 0;
6477
6478 dprintf("apply_reshape_migration_update()\n");
6479 if ((u->subdev < 0) ||
6480 (u->subdev > 1)) {
6481 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6482 return ret_val;
6483 }
6484 if ((space_list == NULL) || (*space_list == NULL)) {
6485 dprintf("imsm: Error: Memory is not allocated\n");
6486 return ret_val;
6487 }
6488
6489 for (id = super->devlist ; id; id = id->next) {
6490 if (id->index == (unsigned)u->subdev) {
6491 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6492 struct imsm_map *map;
6493 struct imsm_dev *new_dev =
6494 (struct imsm_dev *)*space_list;
6495 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6496 int to_state;
6497 struct dl *new_disk;
6498
6499 if (new_dev == NULL)
6500 return ret_val;
6501 *space_list = **space_list;
6502 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6503 map = get_imsm_map(new_dev, 0);
6504 if (migr_map) {
6505 dprintf("imsm: Error: migration in progress");
6506 return ret_val;
6507 }
6508
6509 to_state = map->map_state;
6510 if ((u->new_level == 5) && (map->raid_level == 0)) {
6511 map->num_members++;
6512 /* this should not happen */
6513 if (u->new_disks[0] < 0) {
6514 map->failed_disk_num =
6515 map->num_members - 1;
6516 to_state = IMSM_T_STATE_DEGRADED;
6517 } else
6518 to_state = IMSM_T_STATE_NORMAL;
6519 }
8e59f3d8 6520 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6521 if (u->new_level > -1)
6522 map->raid_level = u->new_level;
6523 migr_map = get_imsm_map(new_dev, 1);
6524 if ((u->new_level == 5) &&
6525 (migr_map->raid_level == 0)) {
6526 int ord = map->num_members - 1;
6527 migr_map->num_members--;
6528 if (u->new_disks[0] < 0)
6529 ord |= IMSM_ORD_REBUILD;
6530 set_imsm_ord_tbl_ent(map,
6531 map->num_members - 1,
6532 ord);
6533 }
6534 id->dev = new_dev;
6535 tofree = (void **)dev;
6536
4bba0439
PC
6537 /* update chunk size
6538 */
6539 if (u->new_chunksize > 0)
6540 map->blocks_per_strip =
6541 __cpu_to_le16(u->new_chunksize * 2);
6542
a29911da
PC
6543 /* add disk
6544 */
6545 if ((u->new_level != 5) ||
6546 (migr_map->raid_level != 0) ||
6547 (migr_map->raid_level == map->raid_level))
6548 goto skip_disk_add;
6549
6550 if (u->new_disks[0] >= 0) {
6551 /* use passes spare
6552 */
6553 new_disk = get_disk_super(super,
6554 major(u->new_disks[0]),
6555 minor(u->new_disks[0]));
6556 dprintf("imsm: new disk for reshape is: %i:%i "
6557 "(%p, index = %i)\n",
6558 major(u->new_disks[0]),
6559 minor(u->new_disks[0]),
6560 new_disk, new_disk->index);
6561 if (new_disk == NULL)
6562 goto error_disk_add;
6563
6564 new_disk->index = map->num_members - 1;
6565 /* slot to fill in autolayout
6566 */
6567 new_disk->raiddisk = new_disk->index;
6568 new_disk->disk.status |= CONFIGURED_DISK;
6569 new_disk->disk.status &= ~SPARE_DISK;
6570 } else
6571 goto error_disk_add;
6572
6573skip_disk_add:
6574 *tofree = *space_list;
6575 /* calculate new size
6576 */
6577 imsm_set_array_size(new_dev);
6578
6579 ret_val = 1;
6580 }
6581 }
6582
6583 if (tofree)
6584 *space_list = tofree;
6585 return ret_val;
6586
6587error_disk_add:
6588 dprintf("Error: imsm: Cannot find disk.\n");
6589 return ret_val;
6590}
6591
6592
2e5dc010
N
6593static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6594 struct intel_super *super,
6595 void ***space_list)
6596{
6597 struct dl *new_disk;
6598 struct intel_dev *id;
6599 int i;
6600 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 6601 int disk_count = u->old_raid_disks;
2e5dc010
N
6602 void **tofree = NULL;
6603 int devices_to_reshape = 1;
6604 struct imsm_super *mpb = super->anchor;
6605 int ret_val = 0;
d098291a 6606 unsigned int dev_id;
2e5dc010 6607
ed7333bd 6608 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
6609
6610 /* enable spares to use in array */
6611 for (i = 0; i < delta_disks; i++) {
6612 new_disk = get_disk_super(super,
6613 major(u->new_disks[i]),
6614 minor(u->new_disks[i]));
ed7333bd
AK
6615 dprintf("imsm: new disk for reshape is: %i:%i "
6616 "(%p, index = %i)\n",
2e5dc010
N
6617 major(u->new_disks[i]), minor(u->new_disks[i]),
6618 new_disk, new_disk->index);
6619 if ((new_disk == NULL) ||
6620 ((new_disk->index >= 0) &&
6621 (new_disk->index < u->old_raid_disks)))
6622 goto update_reshape_exit;
ee4beede 6623 new_disk->index = disk_count++;
2e5dc010
N
6624 /* slot to fill in autolayout
6625 */
6626 new_disk->raiddisk = new_disk->index;
6627 new_disk->disk.status |=
6628 CONFIGURED_DISK;
6629 new_disk->disk.status &= ~SPARE_DISK;
6630 }
6631
ed7333bd
AK
6632 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6633 mpb->num_raid_devs);
2e5dc010
N
6634 /* manage changes in volume
6635 */
d098291a 6636 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
6637 void **sp = *space_list;
6638 struct imsm_dev *newdev;
6639 struct imsm_map *newmap, *oldmap;
6640
d098291a
AK
6641 for (id = super->devlist ; id; id = id->next) {
6642 if (id->index == dev_id)
6643 break;
6644 }
6645 if (id == NULL)
6646 break;
2e5dc010
N
6647 if (!sp)
6648 continue;
6649 *space_list = *sp;
6650 newdev = (void*)sp;
6651 /* Copy the dev, but not (all of) the map */
6652 memcpy(newdev, id->dev, sizeof(*newdev));
6653 oldmap = get_imsm_map(id->dev, 0);
6654 newmap = get_imsm_map(newdev, 0);
6655 /* Copy the current map */
6656 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6657 /* update one device only
6658 */
6659 if (devices_to_reshape) {
ed7333bd
AK
6660 dprintf("imsm: modifying subdev: %i\n",
6661 id->index);
2e5dc010
N
6662 devices_to_reshape--;
6663 newdev->vol.migr_state = 1;
6664 newdev->vol.curr_migr_unit = 0;
6665 newdev->vol.migr_type = MIGR_GEN_MIGR;
6666 newmap->num_members = u->new_raid_disks;
6667 for (i = 0; i < delta_disks; i++) {
6668 set_imsm_ord_tbl_ent(newmap,
6669 u->old_raid_disks + i,
6670 u->old_raid_disks + i);
6671 }
6672 /* New map is correct, now need to save old map
6673 */
6674 newmap = get_imsm_map(newdev, 1);
6675 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6676
70bdf0dc 6677 imsm_set_array_size(newdev);
2e5dc010
N
6678 }
6679
6680 sp = (void **)id->dev;
6681 id->dev = newdev;
6682 *sp = tofree;
6683 tofree = sp;
8e59f3d8
AK
6684
6685 /* Clear migration record */
6686 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 6687 }
819bc634
AK
6688 if (tofree)
6689 *space_list = tofree;
2e5dc010
N
6690 ret_val = 1;
6691
6692update_reshape_exit:
6693
6694 return ret_val;
6695}
6696
bb025c2f 6697static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
6698 struct intel_super *super,
6699 void ***space_list)
bb025c2f
KW
6700{
6701 struct imsm_dev *dev = NULL;
8ca6df95
KW
6702 struct intel_dev *dv;
6703 struct imsm_dev *dev_new;
bb025c2f
KW
6704 struct imsm_map *map;
6705 struct dl *dm, *du;
8ca6df95 6706 int i;
bb025c2f
KW
6707
6708 for (dv = super->devlist; dv; dv = dv->next)
6709 if (dv->index == (unsigned int)u->subarray) {
6710 dev = dv->dev;
6711 break;
6712 }
6713
6714 if (dev == NULL)
6715 return 0;
6716
6717 map = get_imsm_map(dev, 0);
6718
6719 if (u->direction == R10_TO_R0) {
43d5ec18
KW
6720 /* Number of failed disks must be half of initial disk number */
6721 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6722 return 0;
6723
bb025c2f
KW
6724 /* iterate through devices to mark removed disks as spare */
6725 for (dm = super->disks; dm; dm = dm->next) {
6726 if (dm->disk.status & FAILED_DISK) {
6727 int idx = dm->index;
6728 /* update indexes on the disk list */
6729/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6730 the index values will end up being correct.... NB */
6731 for (du = super->disks; du; du = du->next)
6732 if (du->index > idx)
6733 du->index--;
6734 /* mark as spare disk */
6735 dm->disk.status = SPARE_DISK;
6736 dm->index = -1;
6737 }
6738 }
bb025c2f
KW
6739 /* update map */
6740 map->num_members = map->num_members / 2;
6741 map->map_state = IMSM_T_STATE_NORMAL;
6742 map->num_domains = 1;
6743 map->raid_level = 0;
6744 map->failed_disk_num = -1;
6745 }
6746
8ca6df95
KW
6747 if (u->direction == R0_TO_R10) {
6748 void **space;
6749 /* update slots in current disk list */
6750 for (dm = super->disks; dm; dm = dm->next) {
6751 if (dm->index >= 0)
6752 dm->index *= 2;
6753 }
6754 /* create new *missing* disks */
6755 for (i = 0; i < map->num_members; i++) {
6756 space = *space_list;
6757 if (!space)
6758 continue;
6759 *space_list = *space;
6760 du = (void *)space;
6761 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
6762 du->fd = -1;
6763 du->minor = 0;
6764 du->major = 0;
6765 du->index = (i * 2) + 1;
6766 sprintf((char *)du->disk.serial,
6767 " MISSING_%d", du->index);
6768 sprintf((char *)du->serial,
6769 "MISSING_%d", du->index);
6770 du->next = super->missing;
6771 super->missing = du;
6772 }
6773 /* create new dev and map */
6774 space = *space_list;
6775 if (!space)
6776 return 0;
6777 *space_list = *space;
6778 dev_new = (void *)space;
6779 memcpy(dev_new, dev, sizeof(*dev));
6780 /* update new map */
6781 map = get_imsm_map(dev_new, 0);
8ca6df95 6782 map->num_members = map->num_members * 2;
1a2487c2 6783 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
6784 map->num_domains = 2;
6785 map->raid_level = 1;
6786 /* replace dev<->dev_new */
6787 dv->dev = dev_new;
6788 }
bb025c2f
KW
6789 /* update disk order table */
6790 for (du = super->disks; du; du = du->next)
6791 if (du->index >= 0)
6792 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 6793 for (du = super->missing; du; du = du->next)
1a2487c2
KW
6794 if (du->index >= 0) {
6795 set_imsm_ord_tbl_ent(map, du->index, du->index);
6796 mark_missing(dev_new, &du->disk, du->index);
6797 }
bb025c2f
KW
6798
6799 return 1;
6800}
6801
e8319a19
DW
6802static void imsm_process_update(struct supertype *st,
6803 struct metadata_update *update)
6804{
6805 /**
6806 * crack open the metadata_update envelope to find the update record
6807 * update can be one of:
d195167d
AK
6808 * update_reshape_container_disks - all the arrays in the container
6809 * are being reshaped to have more devices. We need to mark
6810 * the arrays for general migration and convert selected spares
6811 * into active devices.
6812 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
6813 * device in an array, update the disk_ord_tbl. If this disk is
6814 * present in all member arrays then also clear the SPARE_DISK
6815 * flag
d195167d
AK
6816 * update_create_array
6817 * update_kill_array
6818 * update_rename_array
6819 * update_add_remove_disk
e8319a19
DW
6820 */
6821 struct intel_super *super = st->sb;
4d7b1503 6822 struct imsm_super *mpb;
e8319a19
DW
6823 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6824
4d7b1503
DW
6825 /* update requires a larger buf but the allocation failed */
6826 if (super->next_len && !super->next_buf) {
6827 super->next_len = 0;
6828 return;
6829 }
6830
6831 if (super->next_buf) {
6832 memcpy(super->next_buf, super->buf, super->len);
6833 free(super->buf);
6834 super->len = super->next_len;
6835 super->buf = super->next_buf;
6836
6837 super->next_len = 0;
6838 super->next_buf = NULL;
6839 }
6840
6841 mpb = super->anchor;
6842
e8319a19 6843 switch (type) {
bb025c2f
KW
6844 case update_takeover: {
6845 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
6846 if (apply_takeover_update(u, super, &update->space_list)) {
6847 imsm_update_version_info(super);
bb025c2f 6848 super->updates_pending++;
1a2487c2 6849 }
bb025c2f
KW
6850 break;
6851 }
6852
78b10e66 6853 case update_reshape_container_disks: {
d195167d 6854 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
6855 if (apply_reshape_container_disks_update(
6856 u, super, &update->space_list))
6857 super->updates_pending++;
78b10e66
N
6858 break;
6859 }
48c5303a 6860 case update_reshape_migration: {
a29911da
PC
6861 struct imsm_update_reshape_migration *u = (void *)update->buf;
6862 if (apply_reshape_migration_update(
6863 u, super, &update->space_list))
6864 super->updates_pending++;
48c5303a
PC
6865 break;
6866 }
e8319a19
DW
6867 case update_activate_spare: {
6868 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 6869 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 6870 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 6871 struct imsm_map *migr_map;
e8319a19
DW
6872 struct active_array *a;
6873 struct imsm_disk *disk;
0c046afd 6874 __u8 to_state;
e8319a19 6875 struct dl *dl;
e8319a19 6876 unsigned int found;
0c046afd 6877 int failed;
98130f40 6878 int victim = get_imsm_disk_idx(dev, u->slot, -1);
e8319a19
DW
6879 int i;
6880
6881 for (dl = super->disks; dl; dl = dl->next)
d23fe947 6882 if (dl == u->dl)
e8319a19
DW
6883 break;
6884
6885 if (!dl) {
6886 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
6887 "an unknown disk (index: %d)\n",
6888 u->dl->index);
e8319a19
DW
6889 return;
6890 }
6891
6892 super->updates_pending++;
0c046afd
DW
6893 /* count failures (excluding rebuilds and the victim)
6894 * to determine map[0] state
6895 */
6896 failed = 0;
6897 for (i = 0; i < map->num_members; i++) {
6898 if (i == u->slot)
6899 continue;
98130f40
AK
6900 disk = get_imsm_disk(super,
6901 get_imsm_disk_idx(dev, i, -1));
25ed7e59 6902 if (!disk || is_failed(disk))
0c046afd
DW
6903 failed++;
6904 }
6905
d23fe947
DW
6906 /* adding a pristine spare, assign a new index */
6907 if (dl->index < 0) {
6908 dl->index = super->anchor->num_disks;
6909 super->anchor->num_disks++;
6910 }
d23fe947 6911 disk = &dl->disk;
f2f27e63
DW
6912 disk->status |= CONFIGURED_DISK;
6913 disk->status &= ~SPARE_DISK;
e8319a19 6914
0c046afd
DW
6915 /* mark rebuild */
6916 to_state = imsm_check_degraded(super, dev, failed);
6917 map->map_state = IMSM_T_STATE_DEGRADED;
8e59f3d8 6918 migrate(dev, super, to_state, MIGR_REBUILD);
0c046afd
DW
6919 migr_map = get_imsm_map(dev, 1);
6920 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6921 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6922
148acb7b
DW
6923 /* update the family_num to mark a new container
6924 * generation, being careful to record the existing
6925 * family_num in orig_family_num to clean up after
6926 * earlier mdadm versions that neglected to set it.
6927 */
6928 if (mpb->orig_family_num == 0)
6929 mpb->orig_family_num = mpb->family_num;
6930 mpb->family_num += super->random;
6931
e8319a19
DW
6932 /* count arrays using the victim in the metadata */
6933 found = 0;
6934 for (a = st->arrays; a ; a = a->next) {
949c47a0 6935 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
6936 map = get_imsm_map(dev, 0);
6937
6938 if (get_imsm_disk_slot(map, victim) >= 0)
6939 found++;
e8319a19
DW
6940 }
6941
24565c9a 6942 /* delete the victim if it is no longer being
e8319a19
DW
6943 * utilized anywhere
6944 */
e8319a19 6945 if (!found) {
ae6aad82 6946 struct dl **dlp;
24565c9a 6947
47ee5a45
DW
6948 /* We know that 'manager' isn't touching anything,
6949 * so it is safe to delete
6950 */
24565c9a 6951 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
6952 if ((*dlp)->index == victim)
6953 break;
47ee5a45
DW
6954
6955 /* victim may be on the missing list */
6956 if (!*dlp)
6957 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6958 if ((*dlp)->index == victim)
6959 break;
24565c9a 6960 imsm_delete(super, dlp, victim);
e8319a19 6961 }
8273f55e
DW
6962 break;
6963 }
6964 case update_create_array: {
6965 /* someone wants to create a new array, we need to be aware of
6966 * a few races/collisions:
6967 * 1/ 'Create' called by two separate instances of mdadm
6968 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6969 * devices that have since been assimilated via
6970 * activate_spare.
6971 * In the event this update can not be carried out mdadm will
6972 * (FIX ME) notice that its update did not take hold.
6973 */
6974 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 6975 struct intel_dev *dv;
8273f55e
DW
6976 struct imsm_dev *dev;
6977 struct imsm_map *map, *new_map;
6978 unsigned long long start, end;
6979 unsigned long long new_start, new_end;
6980 int i;
54c2c1ea
DW
6981 struct disk_info *inf;
6982 struct dl *dl;
8273f55e
DW
6983
6984 /* handle racing creates: first come first serve */
6985 if (u->dev_idx < mpb->num_raid_devs) {
6986 dprintf("%s: subarray %d already defined\n",
6987 __func__, u->dev_idx);
ba2de7ba 6988 goto create_error;
8273f55e
DW
6989 }
6990
6991 /* check update is next in sequence */
6992 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
6993 dprintf("%s: can not create array %d expected index %d\n",
6994 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 6995 goto create_error;
8273f55e
DW
6996 }
6997
a965f303 6998 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
6999 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7000 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7001 inf = get_disk_info(u);
8273f55e
DW
7002
7003 /* handle activate_spare versus create race:
7004 * check to make sure that overlapping arrays do not include
7005 * overalpping disks
7006 */
7007 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7008 dev = get_imsm_dev(super, i);
a965f303 7009 map = get_imsm_map(dev, 0);
8273f55e
DW
7010 start = __le32_to_cpu(map->pba_of_lba0);
7011 end = start + __le32_to_cpu(map->blocks_per_member);
7012 if ((new_start >= start && new_start <= end) ||
7013 (start >= new_start && start <= new_end))
54c2c1ea
DW
7014 /* overlap */;
7015 else
7016 continue;
7017
7018 if (disks_overlap(super, i, u)) {
8273f55e 7019 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7020 goto create_error;
8273f55e
DW
7021 }
7022 }
8273f55e 7023
949c47a0
DW
7024 /* check that prepare update was successful */
7025 if (!update->space) {
7026 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7027 goto create_error;
949c47a0
DW
7028 }
7029
54c2c1ea
DW
7030 /* check that all disks are still active before committing
7031 * changes. FIXME: could we instead handle this by creating a
7032 * degraded array? That's probably not what the user expects,
7033 * so better to drop this update on the floor.
7034 */
7035 for (i = 0; i < new_map->num_members; i++) {
7036 dl = serial_to_dl(inf[i].serial, super);
7037 if (!dl) {
7038 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7039 goto create_error;
54c2c1ea 7040 }
949c47a0
DW
7041 }
7042
8273f55e 7043 super->updates_pending++;
54c2c1ea
DW
7044
7045 /* convert spares to members and fixup ord_tbl */
7046 for (i = 0; i < new_map->num_members; i++) {
7047 dl = serial_to_dl(inf[i].serial, super);
7048 if (dl->index == -1) {
7049 dl->index = mpb->num_disks;
7050 mpb->num_disks++;
7051 dl->disk.status |= CONFIGURED_DISK;
7052 dl->disk.status &= ~SPARE_DISK;
7053 }
7054 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7055 }
7056
ba2de7ba
DW
7057 dv = update->space;
7058 dev = dv->dev;
949c47a0
DW
7059 update->space = NULL;
7060 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7061 dv->index = u->dev_idx;
7062 dv->next = super->devlist;
7063 super->devlist = dv;
8273f55e 7064 mpb->num_raid_devs++;
8273f55e 7065
4d1313e9 7066 imsm_update_version_info(super);
8273f55e 7067 break;
ba2de7ba
DW
7068 create_error:
7069 /* mdmon knows how to release update->space, but not
7070 * ((struct intel_dev *) update->space)->dev
7071 */
7072 if (update->space) {
7073 dv = update->space;
7074 free(dv->dev);
7075 }
8273f55e 7076 break;
e8319a19 7077 }
33414a01
DW
7078 case update_kill_array: {
7079 struct imsm_update_kill_array *u = (void *) update->buf;
7080 int victim = u->dev_idx;
7081 struct active_array *a;
7082 struct intel_dev **dp;
7083 struct imsm_dev *dev;
7084
7085 /* sanity check that we are not affecting the uuid of
7086 * active arrays, or deleting an active array
7087 *
7088 * FIXME when immutable ids are available, but note that
7089 * we'll also need to fixup the invalidated/active
7090 * subarray indexes in mdstat
7091 */
7092 for (a = st->arrays; a; a = a->next)
7093 if (a->info.container_member >= victim)
7094 break;
7095 /* by definition if mdmon is running at least one array
7096 * is active in the container, so checking
7097 * mpb->num_raid_devs is just extra paranoia
7098 */
7099 dev = get_imsm_dev(super, victim);
7100 if (a || !dev || mpb->num_raid_devs == 1) {
7101 dprintf("failed to delete subarray-%d\n", victim);
7102 break;
7103 }
7104
7105 for (dp = &super->devlist; *dp;)
f21e18ca 7106 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7107 *dp = (*dp)->next;
7108 } else {
f21e18ca 7109 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7110 (*dp)->index--;
7111 dp = &(*dp)->next;
7112 }
7113 mpb->num_raid_devs--;
7114 super->updates_pending++;
7115 break;
7116 }
aa534678
DW
7117 case update_rename_array: {
7118 struct imsm_update_rename_array *u = (void *) update->buf;
7119 char name[MAX_RAID_SERIAL_LEN+1];
7120 int target = u->dev_idx;
7121 struct active_array *a;
7122 struct imsm_dev *dev;
7123
7124 /* sanity check that we are not affecting the uuid of
7125 * an active array
7126 */
7127 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7128 name[MAX_RAID_SERIAL_LEN] = '\0';
7129 for (a = st->arrays; a; a = a->next)
7130 if (a->info.container_member == target)
7131 break;
7132 dev = get_imsm_dev(super, u->dev_idx);
7133 if (a || !dev || !check_name(super, name, 1)) {
7134 dprintf("failed to rename subarray-%d\n", target);
7135 break;
7136 }
7137
cdbe98cd 7138 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7139 super->updates_pending++;
7140 break;
7141 }
1a64be56 7142 case update_add_remove_disk: {
43dad3d6 7143 /* we may be able to repair some arrays if disks are
1a64be56
LM
7144 * being added, check teh status of add_remove_disk
7145 * if discs has been added.
7146 */
7147 if (add_remove_disk_update(super)) {
43dad3d6 7148 struct active_array *a;
072b727f
DW
7149
7150 super->updates_pending++;
1a64be56 7151 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7152 a->check_degraded = 1;
7153 }
43dad3d6 7154 break;
e8319a19 7155 }
1a64be56
LM
7156 default:
7157 fprintf(stderr, "error: unsuported process update type:"
7158 "(type: %d)\n", type);
7159 }
e8319a19 7160}
88758e9d 7161
bc0b9d34
PC
7162static struct mdinfo *get_spares_for_grow(struct supertype *st);
7163
8273f55e
DW
7164static void imsm_prepare_update(struct supertype *st,
7165 struct metadata_update *update)
7166{
949c47a0 7167 /**
4d7b1503
DW
7168 * Allocate space to hold new disk entries, raid-device entries or a new
7169 * mpb if necessary. The manager synchronously waits for updates to
7170 * complete in the monitor, so new mpb buffers allocated here can be
7171 * integrated by the monitor thread without worrying about live pointers
7172 * in the manager thread.
8273f55e 7173 */
949c47a0 7174 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7175 struct intel_super *super = st->sb;
7176 struct imsm_super *mpb = super->anchor;
7177 size_t buf_len;
7178 size_t len = 0;
949c47a0
DW
7179
7180 switch (type) {
abedf5fc
KW
7181 case update_takeover: {
7182 struct imsm_update_takeover *u = (void *)update->buf;
7183 if (u->direction == R0_TO_R10) {
7184 void **tail = (void **)&update->space_list;
7185 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7186 struct imsm_map *map = get_imsm_map(dev, 0);
7187 int num_members = map->num_members;
7188 void *space;
7189 int size, i;
7190 int err = 0;
7191 /* allocate memory for added disks */
7192 for (i = 0; i < num_members; i++) {
7193 size = sizeof(struct dl);
7194 space = malloc(size);
7195 if (!space) {
7196 err++;
7197 break;
7198 }
7199 *tail = space;
7200 tail = space;
7201 *tail = NULL;
7202 }
7203 /* allocate memory for new device */
7204 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7205 (num_members * sizeof(__u32));
7206 space = malloc(size);
7207 if (!space)
7208 err++;
7209 else {
7210 *tail = space;
7211 tail = space;
7212 *tail = NULL;
7213 }
7214 if (!err) {
7215 len = disks_to_mpb_size(num_members * 2);
7216 } else {
7217 /* if allocation didn't success, free buffer */
7218 while (update->space_list) {
7219 void **sp = update->space_list;
7220 update->space_list = *sp;
7221 free(sp);
7222 }
7223 }
7224 }
7225
7226 break;
7227 }
78b10e66 7228 case update_reshape_container_disks: {
d195167d
AK
7229 /* Every raid device in the container is about to
7230 * gain some more devices, and we will enter a
7231 * reconfiguration.
7232 * So each 'imsm_map' will be bigger, and the imsm_vol
7233 * will now hold 2 of them.
7234 * Thus we need new 'struct imsm_dev' allocations sized
7235 * as sizeof_imsm_dev but with more devices in both maps.
7236 */
7237 struct imsm_update_reshape *u = (void *)update->buf;
7238 struct intel_dev *dl;
7239 void **space_tail = (void**)&update->space_list;
7240
7241 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7242
7243 for (dl = super->devlist; dl; dl = dl->next) {
7244 int size = sizeof_imsm_dev(dl->dev, 1);
7245 void *s;
d677e0b8
AK
7246 if (u->new_raid_disks > u->old_raid_disks)
7247 size += sizeof(__u32)*2*
7248 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7249 s = malloc(size);
7250 if (!s)
7251 break;
7252 *space_tail = s;
7253 space_tail = s;
7254 *space_tail = NULL;
7255 }
7256
7257 len = disks_to_mpb_size(u->new_raid_disks);
7258 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7259 break;
7260 }
48c5303a 7261 case update_reshape_migration: {
bc0b9d34
PC
7262 /* for migration level 0->5 we need to add disks
7263 * so the same as for container operation we will copy
7264 * device to the bigger location.
7265 * in memory prepared device and new disk area are prepared
7266 * for usage in process update
7267 */
7268 struct imsm_update_reshape_migration *u = (void *)update->buf;
7269 struct intel_dev *id;
7270 void **space_tail = (void **)&update->space_list;
7271 int size;
7272 void *s;
7273 int current_level = -1;
7274
7275 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7276
7277 /* add space for bigger array in update
7278 */
7279 for (id = super->devlist; id; id = id->next) {
7280 if (id->index == (unsigned)u->subdev) {
7281 size = sizeof_imsm_dev(id->dev, 1);
7282 if (u->new_raid_disks > u->old_raid_disks)
7283 size += sizeof(__u32)*2*
7284 (u->new_raid_disks - u->old_raid_disks);
7285 s = malloc(size);
7286 if (!s)
7287 break;
7288 *space_tail = s;
7289 space_tail = s;
7290 *space_tail = NULL;
7291 break;
7292 }
7293 }
7294 if (update->space_list == NULL)
7295 break;
7296
7297 /* add space for disk in update
7298 */
7299 size = sizeof(struct dl);
7300 s = malloc(size);
7301 if (!s) {
7302 free(update->space_list);
7303 update->space_list = NULL;
7304 break;
7305 }
7306 *space_tail = s;
7307 space_tail = s;
7308 *space_tail = NULL;
7309
7310 /* add spare device to update
7311 */
7312 for (id = super->devlist ; id; id = id->next)
7313 if (id->index == (unsigned)u->subdev) {
7314 struct imsm_dev *dev;
7315 struct imsm_map *map;
7316
7317 dev = get_imsm_dev(super, u->subdev);
7318 map = get_imsm_map(dev, 0);
7319 current_level = map->raid_level;
7320 break;
7321 }
7322 if ((u->new_level == 5) && (u->new_level != current_level)) {
7323 struct mdinfo *spares;
7324
7325 spares = get_spares_for_grow(st);
7326 if (spares) {
7327 struct dl *dl;
7328 struct mdinfo *dev;
7329
7330 dev = spares->devs;
7331 if (dev) {
7332 u->new_disks[0] =
7333 makedev(dev->disk.major,
7334 dev->disk.minor);
7335 dl = get_disk_super(super,
7336 dev->disk.major,
7337 dev->disk.minor);
7338 dl->index = u->old_raid_disks;
7339 dev = dev->next;
7340 }
7341 sysfs_free(spares);
7342 }
7343 }
7344 len = disks_to_mpb_size(u->new_raid_disks);
7345 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7346 break;
7347 }
949c47a0
DW
7348 case update_create_array: {
7349 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7350 struct intel_dev *dv;
54c2c1ea
DW
7351 struct imsm_dev *dev = &u->dev;
7352 struct imsm_map *map = get_imsm_map(dev, 0);
7353 struct dl *dl;
7354 struct disk_info *inf;
7355 int i;
7356 int activate = 0;
949c47a0 7357
54c2c1ea
DW
7358 inf = get_disk_info(u);
7359 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7360 /* allocate a new super->devlist entry */
7361 dv = malloc(sizeof(*dv));
7362 if (dv) {
7363 dv->dev = malloc(len);
7364 if (dv->dev)
7365 update->space = dv;
7366 else {
7367 free(dv);
7368 update->space = NULL;
7369 }
7370 }
949c47a0 7371
54c2c1ea
DW
7372 /* count how many spares will be converted to members */
7373 for (i = 0; i < map->num_members; i++) {
7374 dl = serial_to_dl(inf[i].serial, super);
7375 if (!dl) {
7376 /* hmm maybe it failed?, nothing we can do about
7377 * it here
7378 */
7379 continue;
7380 }
7381 if (count_memberships(dl, super) == 0)
7382 activate++;
7383 }
7384 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7385 break;
7386 default:
7387 break;
7388 }
7389 }
8273f55e 7390
4d7b1503
DW
7391 /* check if we need a larger metadata buffer */
7392 if (super->next_buf)
7393 buf_len = super->next_len;
7394 else
7395 buf_len = super->len;
7396
7397 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7398 /* ok we need a larger buf than what is currently allocated
7399 * if this allocation fails process_update will notice that
7400 * ->next_len is set and ->next_buf is NULL
7401 */
7402 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7403 if (super->next_buf)
7404 free(super->next_buf);
7405
7406 super->next_len = buf_len;
1f45a8ad
DW
7407 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7408 memset(super->next_buf, 0, buf_len);
7409 else
4d7b1503
DW
7410 super->next_buf = NULL;
7411 }
8273f55e
DW
7412}
7413
ae6aad82 7414/* must be called while manager is quiesced */
f21e18ca 7415static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7416{
7417 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7418 struct dl *iter;
7419 struct imsm_dev *dev;
7420 struct imsm_map *map;
24565c9a
DW
7421 int i, j, num_members;
7422 __u32 ord;
ae6aad82 7423
24565c9a
DW
7424 dprintf("%s: deleting device[%d] from imsm_super\n",
7425 __func__, index);
ae6aad82
DW
7426
7427 /* shift all indexes down one */
7428 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7429 if (iter->index > (int)index)
ae6aad82 7430 iter->index--;
47ee5a45 7431 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7432 if (iter->index > (int)index)
47ee5a45 7433 iter->index--;
ae6aad82
DW
7434
7435 for (i = 0; i < mpb->num_raid_devs; i++) {
7436 dev = get_imsm_dev(super, i);
7437 map = get_imsm_map(dev, 0);
24565c9a
DW
7438 num_members = map->num_members;
7439 for (j = 0; j < num_members; j++) {
7440 /* update ord entries being careful not to propagate
7441 * ord-flags to the first map
7442 */
98130f40 7443 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7444
24565c9a
DW
7445 if (ord_to_idx(ord) <= index)
7446 continue;
ae6aad82 7447
24565c9a
DW
7448 map = get_imsm_map(dev, 0);
7449 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7450 map = get_imsm_map(dev, 1);
7451 if (map)
7452 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7453 }
7454 }
7455
7456 mpb->num_disks--;
7457 super->updates_pending++;
24565c9a
DW
7458 if (*dlp) {
7459 struct dl *dl = *dlp;
7460
7461 *dlp = (*dlp)->next;
7462 __free_imsm_disk(dl);
7463 }
ae6aad82
DW
7464}
7465
687629c2
AK
7466/*******************************************************************************
7467 * Function: open_backup_targets
7468 * Description: Function opens file descriptors for all devices given in
7469 * info->devs
7470 * Parameters:
7471 * info : general array info
7472 * raid_disks : number of disks
7473 * raid_fds : table of device's file descriptors
7474 * Returns:
7475 * 0 : success
7476 * -1 : fail
7477 ******************************************************************************/
7478int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7479{
7480 struct mdinfo *sd;
7481
7482 for (sd = info->devs ; sd ; sd = sd->next) {
7483 char *dn;
7484
7485 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7486 dprintf("disk is faulty!!\n");
7487 continue;
7488 }
7489
7490 if ((sd->disk.raid_disk >= raid_disks) ||
7491 (sd->disk.raid_disk < 0))
7492 continue;
7493
7494 dn = map_dev(sd->disk.major,
7495 sd->disk.minor, 1);
7496 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7497 if (raid_fds[sd->disk.raid_disk] < 0) {
7498 fprintf(stderr, "cannot open component\n");
7499 return -1;
7500 }
7501 }
7502 return 0;
7503}
7504
7505/*******************************************************************************
7506 * Function: init_migr_record_imsm
7507 * Description: Function inits imsm migration record
7508 * Parameters:
7509 * super : imsm internal array info
7510 * dev : device under migration
7511 * info : general array info to find the smallest device
7512 * Returns:
7513 * none
7514 ******************************************************************************/
7515void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7516 struct mdinfo *info)
7517{
7518 struct intel_super *super = st->sb;
7519 struct migr_record *migr_rec = super->migr_rec;
7520 int new_data_disks;
7521 unsigned long long dsize, dev_sectors;
7522 long long unsigned min_dev_sectors = -1LLU;
7523 struct mdinfo *sd;
7524 char nm[30];
7525 int fd;
7526 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7527 struct imsm_map *map_src = get_imsm_map(dev, 1);
7528 unsigned long long num_migr_units;
7529
7530 unsigned long long array_blocks =
7531 (((unsigned long long)__le32_to_cpu(dev->size_high)) << 32) +
7532 __le32_to_cpu(dev->size_low);
7533
7534 memset(migr_rec, 0, sizeof(struct migr_record));
7535 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7536
7537 /* only ascending reshape supported now */
7538 migr_rec->ascending_migr = __cpu_to_le32(1);
7539
7540 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7541 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7542 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7543 new_data_disks = imsm_num_data_members(dev, 0);
7544 migr_rec->blocks_per_unit =
7545 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7546 migr_rec->dest_depth_per_unit =
7547 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7548
7549 num_migr_units =
7550 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7551
7552 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7553 num_migr_units++;
7554 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7555
7556 migr_rec->post_migr_vol_cap = dev->size_low;
7557 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7558
7559
7560 /* Find the smallest dev */
7561 for (sd = info->devs ; sd ; sd = sd->next) {
7562 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7563 fd = dev_open(nm, O_RDONLY);
7564 if (fd < 0)
7565 continue;
7566 get_dev_size(fd, NULL, &dsize);
7567 dev_sectors = dsize / 512;
7568 if (dev_sectors < min_dev_sectors)
7569 min_dev_sectors = dev_sectors;
7570 close(fd);
7571 }
7572 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7573 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7574
7575 write_imsm_migr_rec(st);
7576
7577 return;
7578}
7579
7580/*******************************************************************************
7581 * Function: save_backup_imsm
7582 * Description: Function saves critical data stripes to Migration Copy Area
7583 * and updates the current migration unit status.
7584 * Use restore_stripes() to form a destination stripe,
7585 * and to write it to the Copy Area.
7586 * Parameters:
7587 * st : supertype information
7588 * info : general array info
7589 * buf : input buffer
7590 * write_offset : address of data to backup
7591 * length : length of data to backup (blocks_per_unit)
7592 * Returns:
7593 * 0 : success
7594 *, -1 : fail
7595 ******************************************************************************/
7596int save_backup_imsm(struct supertype *st,
7597 struct imsm_dev *dev,
7598 struct mdinfo *info,
7599 void *buf,
7600 int new_data,
7601 int length)
7602{
7603 int rv = -1;
7604 struct intel_super *super = st->sb;
7605 unsigned long long *target_offsets = NULL;
7606 int *targets = NULL;
7607 int i;
7608 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7609 int new_disks = map_dest->num_members;
7610
7611 targets = malloc(new_disks * sizeof(int));
7612 if (!targets)
7613 goto abort;
7614
7615 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7616 if (!target_offsets)
7617 goto abort;
7618
7619 for (i = 0; i < new_disks; i++) {
7620 targets[i] = -1;
7621 target_offsets[i] = (unsigned long long)
7622 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
7623 }
7624
7625 if (open_backup_targets(info, new_disks, targets))
7626 goto abort;
7627
7628 if (restore_stripes(targets, /* list of dest devices */
7629 target_offsets, /* migration record offsets */
7630 new_disks,
7631 info->new_chunk,
7632 info->new_level,
7633 info->new_layout,
7634 -1, /* source backup file descriptor */
7635 0, /* input buf offset
7636 * always 0 buf is already offset */
7637 0,
7638 length,
7639 buf) != 0) {
7640 fprintf(stderr, Name ": Error restoring stripes\n");
7641 goto abort;
7642 }
7643
7644 rv = 0;
7645
7646abort:
7647 if (targets) {
7648 for (i = 0; i < new_disks; i++)
7649 if (targets[i] >= 0)
7650 close(targets[i]);
7651 free(targets);
7652 }
7653 free(target_offsets);
7654
7655 return rv;
7656}
7657
7658/*******************************************************************************
7659 * Function: save_checkpoint_imsm
7660 * Description: Function called for current unit status update
7661 * in the migration record. It writes it to disk.
7662 * Parameters:
7663 * super : imsm internal array info
7664 * info : general array info
7665 * Returns:
7666 * 0: success
7667 * 1: failure
7668 ******************************************************************************/
7669int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7670{
7671 struct intel_super *super = st->sb;
7672 load_imsm_migr_rec(super, info);
7673 if (__le32_to_cpu(super->migr_rec->blocks_per_unit) == 0) {
7674 dprintf("ERROR: blocks_per_unit = 0!!!\n");
7675 return 1;
7676 }
7677
7678 super->migr_rec->curr_migr_unit =
7679 __cpu_to_le32(info->reshape_progress /
7680 __le32_to_cpu(super->migr_rec->blocks_per_unit));
7681 super->migr_rec->rec_status = __cpu_to_le32(state);
7682 super->migr_rec->dest_1st_member_lba =
7683 __cpu_to_le32((__le32_to_cpu(super->migr_rec->curr_migr_unit))
7684 * __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
7685 if (write_imsm_migr_rec(st) < 0) {
7686 dprintf("imsm: Cannot write migration record "
7687 "outside backup area\n");
7688 return 1;
7689 }
7690
7691 return 0;
7692}
7693
276d77db
AK
7694static __u64 blocks_per_migr_unit(struct intel_super *super,
7695 struct imsm_dev *dev);
7696
7697/*******************************************************************************
7698 * Function: recover_backup_imsm
7699 * Description: Function recovers critical data from the Migration Copy Area
7700 * while assembling an array.
7701 * Parameters:
7702 * super : imsm internal array info
7703 * info : general array info
7704 * Returns:
7705 * 0 : success (or there is no data to recover)
7706 * 1 : fail
7707 ******************************************************************************/
7708int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7709{
7710 struct intel_super *super = st->sb;
7711 struct migr_record *migr_rec = super->migr_rec;
7712 struct imsm_map *map_dest = NULL;
7713 struct intel_dev *id = NULL;
7714 unsigned long long read_offset;
7715 unsigned long long write_offset;
7716 unsigned unit_len;
7717 int *targets = NULL;
7718 int new_disks, i, err;
7719 char *buf = NULL;
7720 int retval = 1;
7721 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7722 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
7723 int ascending = __le32_to_cpu(migr_rec->ascending_migr);
7724 char buffer[20];
7725
7726 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
7727 if (err < 1)
7728 return 1;
7729
7730 /* recover data only during assemblation */
7731 if (strncmp(buffer, "inactive", 8) != 0)
7732 return 0;
7733 /* no data to recover */
7734 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
7735 return 0;
7736 if (curr_migr_unit >= num_migr_units)
7737 return 1;
7738
7739 /* find device during reshape */
7740 for (id = super->devlist; id; id = id->next)
7741 if (is_gen_migration(id->dev))
7742 break;
7743 if (id == NULL)
7744 return 1;
7745
7746 map_dest = get_imsm_map(id->dev, 0);
7747 new_disks = map_dest->num_members;
7748
7749 read_offset = (unsigned long long)
7750 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
7751
7752 write_offset = ((unsigned long long)
7753 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
7754 info->data_offset) * 512;
7755
7756 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
7757 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
7758 goto abort;
7759 targets = malloc(new_disks * sizeof(int));
7760 if (!targets)
7761 goto abort;
7762
7763 open_backup_targets(info, new_disks, targets);
7764
7765 for (i = 0; i < new_disks; i++) {
7766 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
7767 fprintf(stderr,
7768 Name ": Cannot seek to block: %s\n",
7769 strerror(errno));
7770 goto abort;
7771 }
7772 if (read(targets[i], buf, unit_len) != unit_len) {
7773 fprintf(stderr,
7774 Name ": Cannot read copy area block: %s\n",
7775 strerror(errno));
7776 goto abort;
7777 }
7778 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
7779 fprintf(stderr,
7780 Name ": Cannot seek to block: %s\n",
7781 strerror(errno));
7782 goto abort;
7783 }
7784 if (write(targets[i], buf, unit_len) != unit_len) {
7785 fprintf(stderr,
7786 Name ": Cannot restore block: %s\n",
7787 strerror(errno));
7788 goto abort;
7789 }
7790 }
7791
7792 if (ascending && curr_migr_unit < (num_migr_units-1))
7793 curr_migr_unit++;
7794
7795 migr_rec->curr_migr_unit = __le32_to_cpu(curr_migr_unit);
7796 super->migr_rec->rec_status = __cpu_to_le32(UNIT_SRC_NORMAL);
7797 if (write_imsm_migr_rec(st) == 0) {
7798 __u64 blocks_per_unit = blocks_per_migr_unit(super, id->dev);
7799 info->reshape_progress = curr_migr_unit * blocks_per_unit;
7800 retval = 0;
7801 }
7802
7803abort:
7804 if (targets) {
7805 for (i = 0; i < new_disks; i++)
7806 if (targets[i])
7807 close(targets[i]);
7808 free(targets);
7809 }
7810 free(buf);
7811 return retval;
7812}
7813
2cda7640
ML
7814static char disk_by_path[] = "/dev/disk/by-path/";
7815
7816static const char *imsm_get_disk_controller_domain(const char *path)
7817{
2cda7640 7818 char disk_path[PATH_MAX];
96234762
LM
7819 char *drv=NULL;
7820 struct stat st;
2cda7640 7821
96234762
LM
7822 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
7823 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
7824 if (stat(disk_path, &st) == 0) {
7825 struct sys_dev* hba;
7826 char *path=NULL;
7827
7828 path = devt_to_devpath(st.st_rdev);
7829 if (path == NULL)
7830 return "unknown";
7831 hba = find_disk_attached_hba(-1, path);
7832 if (hba && hba->type == SYS_DEV_SAS)
7833 drv = "isci";
7834 else if (hba && hba->type == SYS_DEV_SATA)
7835 drv = "ahci";
7836 else
7837 drv = "unknown";
7838 dprintf("path: %s hba: %s attached: %s\n",
7839 path, (hba) ? hba->path : "NULL", drv);
7840 free(path);
7841 if (hba)
7842 free_sys_dev(&hba);
2cda7640 7843 }
96234762 7844 return drv;
2cda7640
ML
7845}
7846
78b10e66
N
7847static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
7848{
7849 char subdev_name[20];
7850 struct mdstat_ent *mdstat;
7851
7852 sprintf(subdev_name, "%d", subdev);
7853 mdstat = mdstat_by_subdev(subdev_name, container);
7854 if (!mdstat)
7855 return -1;
7856
7857 *minor = mdstat->devnum;
7858 free_mdstat(mdstat);
7859 return 0;
7860}
7861
7862static int imsm_reshape_is_allowed_on_container(struct supertype *st,
7863 struct geo_params *geo,
7864 int *old_raid_disks)
7865{
694575e7
KW
7866 /* currently we only support increasing the number of devices
7867 * for a container. This increases the number of device for each
7868 * member array. They must all be RAID0 or RAID5.
7869 */
78b10e66
N
7870 int ret_val = 0;
7871 struct mdinfo *info, *member;
7872 int devices_that_can_grow = 0;
7873
7874 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
7875 "st->devnum = (%i)\n",
7876 st->devnum);
7877
7878 if (geo->size != -1 ||
7879 geo->level != UnSet ||
7880 geo->layout != UnSet ||
7881 geo->chunksize != 0 ||
7882 geo->raid_disks == UnSet) {
7883 dprintf("imsm: Container operation is allowed for "
7884 "raid disks number change only.\n");
7885 return ret_val;
7886 }
7887
7888 info = container_content_imsm(st, NULL);
7889 for (member = info; member; member = member->next) {
7890 int result;
7891 int minor;
7892
7893 dprintf("imsm: checking device_num: %i\n",
7894 member->container_member);
7895
d7d205bd 7896 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
7897 /* we work on container for Online Capacity Expansion
7898 * only so raid_disks has to grow
7899 */
7900 dprintf("imsm: for container operation raid disks "
7901 "increase is required\n");
7902 break;
7903 }
7904
7905 if ((info->array.level != 0) &&
7906 (info->array.level != 5)) {
7907 /* we cannot use this container with other raid level
7908 */
690aae1a 7909 dprintf("imsm: for container operation wrong"
78b10e66
N
7910 " raid level (%i) detected\n",
7911 info->array.level);
7912 break;
7913 } else {
7914 /* check for platform support
7915 * for this raid level configuration
7916 */
7917 struct intel_super *super = st->sb;
7918 if (!is_raid_level_supported(super->orom,
7919 member->array.level,
7920 geo->raid_disks)) {
690aae1a 7921 dprintf("platform does not support raid%d with"
78b10e66
N
7922 " %d disk%s\n",
7923 info->array.level,
7924 geo->raid_disks,
7925 geo->raid_disks > 1 ? "s" : "");
7926 break;
7927 }
2a4a08e7
AK
7928 /* check if component size is aligned to chunk size
7929 */
7930 if (info->component_size %
7931 (info->array.chunk_size/512)) {
7932 dprintf("Component size is not aligned to "
7933 "chunk size\n");
7934 break;
7935 }
78b10e66
N
7936 }
7937
7938 if (*old_raid_disks &&
7939 info->array.raid_disks != *old_raid_disks)
7940 break;
7941 *old_raid_disks = info->array.raid_disks;
7942
7943 /* All raid5 and raid0 volumes in container
7944 * have to be ready for Online Capacity Expansion
7945 * so they need to be assembled. We have already
7946 * checked that no recovery etc is happening.
7947 */
7948 result = imsm_find_array_minor_by_subdev(member->container_member,
7949 st->container_dev,
7950 &minor);
7951 if (result < 0) {
7952 dprintf("imsm: cannot find array\n");
7953 break;
7954 }
7955 devices_that_can_grow++;
7956 }
7957 sysfs_free(info);
7958 if (!member && devices_that_can_grow)
7959 ret_val = 1;
7960
7961 if (ret_val)
7962 dprintf("\tContainer operation allowed\n");
7963 else
7964 dprintf("\tError: %i\n", ret_val);
7965
7966 return ret_val;
7967}
7968
7969/* Function: get_spares_for_grow
7970 * Description: Allocates memory and creates list of spare devices
7971 * avaliable in container. Checks if spare drive size is acceptable.
7972 * Parameters: Pointer to the supertype structure
7973 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
7974 * NULL if fail
7975 */
7976static struct mdinfo *get_spares_for_grow(struct supertype *st)
7977{
78b10e66 7978 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 7979 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
7980}
7981
7982/******************************************************************************
7983 * function: imsm_create_metadata_update_for_reshape
7984 * Function creates update for whole IMSM container.
7985 *
7986 ******************************************************************************/
7987static int imsm_create_metadata_update_for_reshape(
7988 struct supertype *st,
7989 struct geo_params *geo,
7990 int old_raid_disks,
7991 struct imsm_update_reshape **updatep)
7992{
7993 struct intel_super *super = st->sb;
7994 struct imsm_super *mpb = super->anchor;
7995 int update_memory_size = 0;
7996 struct imsm_update_reshape *u = NULL;
7997 struct mdinfo *spares = NULL;
7998 int i;
7999 int delta_disks = 0;
bbd24d86 8000 struct mdinfo *dev;
78b10e66
N
8001
8002 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8003 geo->raid_disks);
8004
8005 delta_disks = geo->raid_disks - old_raid_disks;
8006
8007 /* size of all update data without anchor */
8008 update_memory_size = sizeof(struct imsm_update_reshape);
8009
8010 /* now add space for spare disks that we need to add. */
8011 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8012
8013 u = calloc(1, update_memory_size);
8014 if (u == NULL) {
8015 dprintf("error: "
8016 "cannot get memory for imsm_update_reshape update\n");
8017 return 0;
8018 }
8019 u->type = update_reshape_container_disks;
8020 u->old_raid_disks = old_raid_disks;
8021 u->new_raid_disks = geo->raid_disks;
8022
8023 /* now get spare disks list
8024 */
8025 spares = get_spares_for_grow(st);
8026
8027 if (spares == NULL
8028 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8029 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8030 "for %s.\n", geo->dev_name);
78b10e66
N
8031 goto abort;
8032 }
8033
8034 /* we have got spares
8035 * update disk list in imsm_disk list table in anchor
8036 */
8037 dprintf("imsm: %i spares are available.\n\n",
8038 spares->array.spare_disks);
8039
bbd24d86 8040 dev = spares->devs;
78b10e66 8041 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8042 struct dl *dl;
8043
bbd24d86
AK
8044 if (dev == NULL)
8045 break;
78b10e66
N
8046 u->new_disks[i] = makedev(dev->disk.major,
8047 dev->disk.minor);
8048 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8049 dl->index = mpb->num_disks;
8050 mpb->num_disks++;
bbd24d86 8051 dev = dev->next;
78b10e66 8052 }
78b10e66
N
8053
8054abort:
8055 /* free spares
8056 */
8057 sysfs_free(spares);
8058
d677e0b8 8059 dprintf("imsm: reshape update preparation :");
78b10e66 8060 if (i == delta_disks) {
d677e0b8 8061 dprintf(" OK\n");
78b10e66
N
8062 *updatep = u;
8063 return update_memory_size;
8064 }
8065 free(u);
d677e0b8 8066 dprintf(" Error\n");
78b10e66
N
8067
8068 return 0;
8069}
8070
48c5303a
PC
8071/******************************************************************************
8072 * function: imsm_create_metadata_update_for_migration()
8073 * Creates update for IMSM array.
8074 *
8075 ******************************************************************************/
8076static int imsm_create_metadata_update_for_migration(
8077 struct supertype *st,
8078 struct geo_params *geo,
8079 struct imsm_update_reshape_migration **updatep)
8080{
8081 struct intel_super *super = st->sb;
8082 int update_memory_size = 0;
8083 struct imsm_update_reshape_migration *u = NULL;
8084 struct imsm_dev *dev;
8085 int previous_level = -1;
8086
8087 dprintf("imsm_create_metadata_update_for_migration(enter)"
8088 " New Level = %i\n", geo->level);
8089
8090 /* size of all update data without anchor */
8091 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8092
8093 u = calloc(1, update_memory_size);
8094 if (u == NULL) {
8095 dprintf("error: cannot get memory for "
8096 "imsm_create_metadata_update_for_migration\n");
8097 return 0;
8098 }
8099 u->type = update_reshape_migration;
8100 u->subdev = super->current_vol;
8101 u->new_level = geo->level;
8102 u->new_layout = geo->layout;
8103 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8104 u->new_disks[0] = -1;
4bba0439 8105 u->new_chunksize = -1;
48c5303a
PC
8106
8107 dev = get_imsm_dev(super, u->subdev);
8108 if (dev) {
8109 struct imsm_map *map;
8110
8111 map = get_imsm_map(dev, 0);
4bba0439
PC
8112 if (map) {
8113 int current_chunk_size =
8114 __le16_to_cpu(map->blocks_per_strip) / 2;
8115
8116 if (geo->chunksize != current_chunk_size) {
8117 u->new_chunksize = geo->chunksize / 1024;
8118 dprintf("imsm: "
8119 "chunk size change from %i to %i\n",
8120 current_chunk_size, u->new_chunksize);
8121 }
48c5303a 8122 previous_level = map->raid_level;
4bba0439 8123 }
48c5303a
PC
8124 }
8125 if ((geo->level == 5) && (previous_level == 0)) {
8126 struct mdinfo *spares = NULL;
8127
8128 u->new_raid_disks++;
8129 spares = get_spares_for_grow(st);
8130 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8131 free(u);
8132 sysfs_free(spares);
8133 update_memory_size = 0;
8134 dprintf("error: cannot get spare device "
8135 "for requested migration");
8136 return 0;
8137 }
8138 sysfs_free(spares);
8139 }
8140 dprintf("imsm: reshape update preparation : OK\n");
8141 *updatep = u;
8142
8143 return update_memory_size;
8144}
8145
8dd70bce
AK
8146static void imsm_update_metadata_locally(struct supertype *st,
8147 void *buf, int len)
8148{
8149 struct metadata_update mu;
8150
8151 mu.buf = buf;
8152 mu.len = len;
8153 mu.space = NULL;
8154 mu.space_list = NULL;
8155 mu.next = NULL;
8156 imsm_prepare_update(st, &mu);
8157 imsm_process_update(st, &mu);
8158
8159 while (mu.space_list) {
8160 void **space = mu.space_list;
8161 mu.space_list = *space;
8162 free(space);
8163 }
8164}
78b10e66 8165
471bceb6 8166/***************************************************************************
694575e7 8167* Function: imsm_analyze_change
471bceb6
KW
8168* Description: Function analyze change for single volume
8169* and validate if transition is supported
694575e7
KW
8170* Parameters: Geometry parameters, supertype structure
8171* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8172****************************************************************************/
8173enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8174 struct geo_params *geo)
694575e7 8175{
471bceb6
KW
8176 struct mdinfo info;
8177 int change = -1;
8178 int check_devs = 0;
c21e737b 8179 int chunk;
471bceb6
KW
8180
8181 getinfo_super_imsm_volume(st, &info, NULL);
8182
8183 if ((geo->level != info.array.level) &&
8184 (geo->level >= 0) &&
8185 (geo->level != UnSet)) {
8186 switch (info.array.level) {
8187 case 0:
8188 if (geo->level == 5) {
b5347799 8189 change = CH_MIGRATION;
471bceb6
KW
8190 check_devs = 1;
8191 }
8192 if (geo->level == 10) {
8193 change = CH_TAKEOVER;
8194 check_devs = 1;
8195 }
dfe77a9e
KW
8196 break;
8197 case 1:
8198 if (geo->level == 0) {
8199 change = CH_TAKEOVER;
8200 check_devs = 1;
8201 }
471bceb6 8202 break;
471bceb6
KW
8203 case 10:
8204 if (geo->level == 0) {
8205 change = CH_TAKEOVER;
8206 check_devs = 1;
8207 }
8208 break;
8209 }
8210 if (change == -1) {
8211 fprintf(stderr,
8212 Name " Error. Level Migration from %d to %d "
8213 "not supported!\n",
8214 info.array.level, geo->level);
8215 goto analyse_change_exit;
8216 }
8217 } else
8218 geo->level = info.array.level;
8219
8220 if ((geo->layout != info.array.layout)
8221 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8222 change = CH_MIGRATION;
471bceb6
KW
8223 if ((info.array.layout == 0)
8224 && (info.array.level == 5)
8225 && (geo->layout == 5)) {
8226 /* reshape 5 -> 4 */
8227 } else if ((info.array.layout == 5)
8228 && (info.array.level == 5)
8229 && (geo->layout == 0)) {
8230 /* reshape 4 -> 5 */
8231 geo->layout = 0;
8232 geo->level = 5;
8233 } else {
8234 fprintf(stderr,
8235 Name " Error. Layout Migration from %d to %d "
8236 "not supported!\n",
8237 info.array.layout, geo->layout);
8238 change = -1;
8239 goto analyse_change_exit;
8240 }
8241 } else
8242 geo->layout = info.array.layout;
8243
8244 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8245 && (geo->chunksize != info.array.chunk_size))
b5347799 8246 change = CH_MIGRATION;
471bceb6
KW
8247 else
8248 geo->chunksize = info.array.chunk_size;
8249
c21e737b 8250 chunk = geo->chunksize / 1024;
471bceb6
KW
8251 if (!validate_geometry_imsm(st,
8252 geo->level,
8253 geo->layout,
8254 geo->raid_disks,
c21e737b 8255 &chunk,
471bceb6
KW
8256 geo->size,
8257 0, 0, 1))
8258 change = -1;
8259
8260 if (check_devs) {
8261 struct intel_super *super = st->sb;
8262 struct imsm_super *mpb = super->anchor;
8263
8264 if (mpb->num_raid_devs > 1) {
8265 fprintf(stderr,
8266 Name " Error. Cannot perform operation on %s"
8267 "- for this operation it MUST be single "
8268 "array in container\n",
8269 geo->dev_name);
8270 change = -1;
8271 }
8272 }
8273
8274analyse_change_exit:
8275
8276 return change;
694575e7
KW
8277}
8278
bb025c2f
KW
8279int imsm_takeover(struct supertype *st, struct geo_params *geo)
8280{
8281 struct intel_super *super = st->sb;
8282 struct imsm_update_takeover *u;
8283
8284 u = malloc(sizeof(struct imsm_update_takeover));
8285 if (u == NULL)
8286 return 1;
8287
8288 u->type = update_takeover;
8289 u->subarray = super->current_vol;
8290
8291 /* 10->0 transition */
8292 if (geo->level == 0)
8293 u->direction = R10_TO_R0;
8294
0529c688
KW
8295 /* 0->10 transition */
8296 if (geo->level == 10)
8297 u->direction = R0_TO_R10;
8298
bb025c2f
KW
8299 /* update metadata locally */
8300 imsm_update_metadata_locally(st, u,
8301 sizeof(struct imsm_update_takeover));
8302 /* and possibly remotely */
8303 if (st->update_tail)
8304 append_metadata_update(st, u,
8305 sizeof(struct imsm_update_takeover));
8306 else
8307 free(u);
8308
8309 return 0;
8310}
8311
6dc0be30
AK
8312static int warn_user_about_risk(void)
8313{
8314 int rv = 0;
8315
8316 fprintf(stderr,
8317 "\nThis is an experimental feature. Data on the RAID volume(s) "
8318 "can be lost!!!\n\n"
8319 "To continue command execution please make sure that\n"
8320 "the grow process will not be interrupted. Use safe power\n"
8321 "supply to avoid unexpected system reboot. Make sure that\n"
8322 "reshaped container is not assembled automatically during\n"
8323 "system boot.\n"
8324 "If reshape is interrupted, assemble array manually\n"
8325 "using e.g. '-Ac' option and up to date mdadm.conf file.\n"
8326 "Assembly in scan mode is not possible in such case.\n"
8327 "Growing container with boot array is not possible.\n"
8328 "If boot array reshape is interrupted, whole file system\n"
8329 "can be lost.\n\n");
8330 rv = ask("Do you want to continue? ");
8331 fprintf(stderr, "\n");
8332
8333 return rv;
8334}
8335
78b10e66
N
8336static int imsm_reshape_super(struct supertype *st, long long size, int level,
8337 int layout, int chunksize, int raid_disks,
41784c88
AK
8338 int delta_disks, char *backup, char *dev,
8339 int verbose)
78b10e66 8340{
78b10e66
N
8341 int ret_val = 1;
8342 struct geo_params geo;
8343
8344 dprintf("imsm: reshape_super called.\n");
8345
71204a50 8346 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8347
8348 geo.dev_name = dev;
694575e7 8349 geo.dev_id = st->devnum;
78b10e66
N
8350 geo.size = size;
8351 geo.level = level;
8352 geo.layout = layout;
8353 geo.chunksize = chunksize;
8354 geo.raid_disks = raid_disks;
41784c88
AK
8355 if (delta_disks != UnSet)
8356 geo.raid_disks += delta_disks;
78b10e66
N
8357
8358 dprintf("\tfor level : %i\n", geo.level);
8359 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8360
8361 if (experimental() == 0)
8362 return ret_val;
8363
78b10e66 8364 if (st->container_dev == st->devnum) {
694575e7
KW
8365 /* On container level we can only increase number of devices. */
8366 dprintf("imsm: info: Container operation\n");
78b10e66 8367 int old_raid_disks = 0;
6dc0be30
AK
8368
8369 /* this warning will be removed when imsm checkpointing
8370 * will be implemented, and restoring from check-point
8371 * operation will be transparent for reboot process
8372 */
8373 if (warn_user_about_risk() == 0)
8374 return ret_val;
8375
78b10e66
N
8376 if (imsm_reshape_is_allowed_on_container(
8377 st, &geo, &old_raid_disks)) {
8378 struct imsm_update_reshape *u = NULL;
8379 int len;
8380
8381 len = imsm_create_metadata_update_for_reshape(
8382 st, &geo, old_raid_disks, &u);
8383
ed08d51c
AK
8384 if (len <= 0) {
8385 dprintf("imsm: Cannot prepare update\n");
8386 goto exit_imsm_reshape_super;
8387 }
8388
8dd70bce
AK
8389 ret_val = 0;
8390 /* update metadata locally */
8391 imsm_update_metadata_locally(st, u, len);
8392 /* and possibly remotely */
8393 if (st->update_tail)
8394 append_metadata_update(st, u, len);
8395 else
ed08d51c 8396 free(u);
8dd70bce 8397
694575e7 8398 } else {
e7ff7e40
AK
8399 fprintf(stderr, Name ": (imsm) Operation "
8400 "is not allowed on this container\n");
694575e7
KW
8401 }
8402 } else {
8403 /* On volume level we support following operations
471bceb6
KW
8404 * - takeover: raid10 -> raid0; raid0 -> raid10
8405 * - chunk size migration
8406 * - migration: raid5 -> raid0; raid0 -> raid5
8407 */
8408 struct intel_super *super = st->sb;
8409 struct intel_dev *dev = super->devlist;
8410 int change, devnum;
694575e7 8411 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8412 /* find requested device */
8413 while (dev) {
8414 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
8415 if (devnum == geo.dev_id)
8416 break;
8417 dev = dev->next;
8418 }
8419 if (dev == NULL) {
8420 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8421 geo.dev_name, geo.dev_id);
8422 goto exit_imsm_reshape_super;
8423 }
8424 super->current_vol = dev->index;
694575e7
KW
8425 change = imsm_analyze_change(st, &geo);
8426 switch (change) {
471bceb6 8427 case CH_TAKEOVER:
bb025c2f 8428 ret_val = imsm_takeover(st, &geo);
694575e7 8429 break;
48c5303a
PC
8430 case CH_MIGRATION: {
8431 struct imsm_update_reshape_migration *u = NULL;
8432 int len =
8433 imsm_create_metadata_update_for_migration(
8434 st, &geo, &u);
8435 if (len < 1) {
8436 dprintf("imsm: "
8437 "Cannot prepare update\n");
8438 break;
8439 }
471bceb6 8440 ret_val = 0;
48c5303a
PC
8441 /* update metadata locally */
8442 imsm_update_metadata_locally(st, u, len);
8443 /* and possibly remotely */
8444 if (st->update_tail)
8445 append_metadata_update(st, u, len);
8446 else
8447 free(u);
8448 }
8449 break;
471bceb6
KW
8450 default:
8451 ret_val = 1;
694575e7 8452 }
694575e7 8453 }
78b10e66 8454
ed08d51c 8455exit_imsm_reshape_super:
78b10e66
N
8456 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8457 return ret_val;
8458}
2cda7640 8459
eee67a47
AK
8460/*******************************************************************************
8461 * Function: wait_for_reshape_imsm
8462 * Description: Function writes new sync_max value and waits until
8463 * reshape process reach new position
8464 * Parameters:
8465 * sra : general array info
8466 * to_complete : new sync_max position
8467 * ndata : number of disks in new array's layout
8468 * Returns:
8469 * 0 : success,
8470 * 1 : there is no reshape in progress,
8471 * -1 : fail
8472 ******************************************************************************/
8473int wait_for_reshape_imsm(struct mdinfo *sra, unsigned long long to_complete,
8474 int ndata)
8475{
8476 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8477 unsigned long long completed;
8478
8479 struct timeval timeout;
8480
8481 if (fd < 0)
8482 return 1;
8483
8484 sysfs_fd_get_ll(fd, &completed);
8485
8486 if (to_complete == 0) {/* reshape till the end of array */
8487 sysfs_set_str(sra, NULL, "sync_max", "max");
8488 to_complete = MaxSector;
8489 } else {
8490 if (completed > to_complete)
8491 return -1;
8492 if (sysfs_set_num(sra, NULL, "sync_max",
8493 to_complete / ndata) != 0) {
8494 close(fd);
8495 return -1;
8496 }
8497 }
8498
8499 /* FIXME should not need a timeout at all */
8500 timeout.tv_sec = 30;
8501 timeout.tv_usec = 0;
8502 do {
8503 char action[20];
8504 fd_set rfds;
8505 FD_ZERO(&rfds);
8506 FD_SET(fd, &rfds);
8507 select(fd+1, NULL, NULL, &rfds, &timeout);
8508 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8509 close(fd);
8510 return 1;
8511 }
8512 if (sysfs_get_str(sra, NULL, "sync_action",
8513 action, 20) > 0 &&
8514 strncmp(action, "reshape", 7) != 0)
8515 break;
8516 } while (completed < to_complete);
8517 close(fd);
8518 return 0;
8519
8520}
8521
b915c95f
AK
8522/*******************************************************************************
8523 * Function: check_degradation_change
8524 * Description: Check that array hasn't become failed.
8525 * Parameters:
8526 * info : for sysfs access
8527 * sources : source disks descriptors
8528 * degraded: previous degradation level
8529 * Returns:
8530 * degradation level
8531 ******************************************************************************/
8532int check_degradation_change(struct mdinfo *info,
8533 int *sources,
8534 int degraded)
8535{
8536 unsigned long long new_degraded;
8537 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8538 if (new_degraded != (unsigned long long)degraded) {
8539 /* check each device to ensure it is still working */
8540 struct mdinfo *sd;
8541 new_degraded = 0;
8542 for (sd = info->devs ; sd ; sd = sd->next) {
8543 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8544 continue;
8545 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8546 char sbuf[20];
8547 if (sysfs_get_str(info,
8548 sd, "state", sbuf, 20) < 0 ||
8549 strstr(sbuf, "faulty") ||
8550 strstr(sbuf, "in_sync") == NULL) {
8551 /* this device is dead */
8552 sd->disk.state = (1<<MD_DISK_FAULTY);
8553 if (sd->disk.raid_disk >= 0 &&
8554 sources[sd->disk.raid_disk] >= 0) {
8555 close(sources[
8556 sd->disk.raid_disk]);
8557 sources[sd->disk.raid_disk] =
8558 -1;
8559 }
8560 new_degraded++;
8561 }
8562 }
8563 }
8564 }
8565
8566 return new_degraded;
8567}
8568
10f22854
AK
8569/*******************************************************************************
8570 * Function: imsm_manage_reshape
8571 * Description: Function finds array under reshape and it manages reshape
8572 * process. It creates stripes backups (if required) and sets
8573 * checheckpoits.
8574 * Parameters:
8575 * afd : Backup handle (nattive) - not used
8576 * sra : general array info
8577 * reshape : reshape parameters - not used
8578 * st : supertype structure
8579 * blocks : size of critical section [blocks]
8580 * fds : table of source device descriptor
8581 * offsets : start of array (offest per devices)
8582 * dests : not used
8583 * destfd : table of destination device descriptor
8584 * destoffsets : table of destination offsets (per device)
8585 * Returns:
8586 * 1 : success, reshape is done
8587 * 0 : fail
8588 ******************************************************************************/
999b4972
N
8589static int imsm_manage_reshape(
8590 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 8591 struct supertype *st, unsigned long backup_blocks,
999b4972
N
8592 int *fds, unsigned long long *offsets,
8593 int dests, int *destfd, unsigned long long *destoffsets)
8594{
10f22854
AK
8595 int ret_val = 0;
8596 struct intel_super *super = st->sb;
8597 struct intel_dev *dv = NULL;
8598 struct imsm_dev *dev = NULL;
8599 struct imsm_map *map_src, *map_dest;
8600 int migr_vol_qan = 0;
8601 int ndata, odata; /* [bytes] */
8602 int chunk; /* [bytes] */
8603 struct migr_record *migr_rec;
8604 char *buf = NULL;
8605 unsigned int buf_size; /* [bytes] */
8606 unsigned long long max_position; /* array size [bytes] */
8607 unsigned long long next_step; /* [blocks]/[bytes] */
8608 unsigned long long old_data_stripe_length;
8609 unsigned long long new_data_stripe_length;
8610 unsigned long long start_src; /* [bytes] */
8611 unsigned long long start; /* [bytes] */
8612 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 8613 int degraded = 0;
10f22854
AK
8614
8615 if (!fds || !offsets || !destfd || !destoffsets || !sra)
8616 goto abort;
8617
8618 /* Find volume during the reshape */
8619 for (dv = super->devlist; dv; dv = dv->next) {
8620 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8621 && dv->dev->vol.migr_state == 1) {
8622 dev = dv->dev;
8623 migr_vol_qan++;
8624 }
8625 }
8626 /* Only one volume can migrate at the same time */
8627 if (migr_vol_qan != 1) {
8628 fprintf(stderr, Name " : %s", migr_vol_qan ?
8629 "Number of migrating volumes greater than 1\n" :
8630 "There is no volume during migrationg\n");
8631 goto abort;
8632 }
8633
8634 map_src = get_imsm_map(dev, 1);
8635 if (map_src == NULL)
8636 goto abort;
8637 map_dest = get_imsm_map(dev, 0);
8638
8639 ndata = imsm_num_data_members(dev, 0);
8640 odata = imsm_num_data_members(dev, 1);
8641
8642 chunk = map_src->blocks_per_strip * 512;
8643 old_data_stripe_length = odata * chunk;
8644
8645 migr_rec = super->migr_rec;
8646
8647 /* [bytes] */
8648 sra->new_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8649 sra->new_level = map_dest->raid_level;
8650 new_data_stripe_length = sra->new_chunk * ndata;
8651
8652 /* initialize migration record for start condition */
8653 if (sra->reshape_progress == 0)
8654 init_migr_record_imsm(st, dev, sra);
8655
8656 /* size for data */
8657 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8658 /* extend buffer size for parity disk */
8659 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8660 /* add space for stripe aligment */
8661 buf_size += old_data_stripe_length;
8662 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8663 dprintf("imsm: Cannot allocate checpoint buffer\n");
8664 goto abort;
8665 }
8666
8667 max_position =
8668 __le32_to_cpu(migr_rec->post_migr_vol_cap) +
8669 ((unsigned long long)__le32_to_cpu(
8670 migr_rec->post_migr_vol_cap_hi) << 32);
8671
8672 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8673 __le32_to_cpu(migr_rec->num_migr_units)) {
8674 /* current reshape position [blocks] */
8675 unsigned long long current_position =
8676 __le32_to_cpu(migr_rec->blocks_per_unit)
8677 * __le32_to_cpu(migr_rec->curr_migr_unit);
8678 unsigned long long border;
8679
b915c95f
AK
8680 /* Check that array hasn't become failed.
8681 */
8682 degraded = check_degradation_change(sra, fds, degraded);
8683 if (degraded > 1) {
8684 dprintf("imsm: Abort reshape due to degradation"
8685 " level (%i)\n", degraded);
8686 goto abort;
8687 }
8688
10f22854
AK
8689 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8690
8691 if ((current_position + next_step) > max_position)
8692 next_step = max_position - current_position;
8693
8694 start = (map_src->pba_of_lba0 + dev->reserved_blocks +
8695 current_position) * 512;
8696
8697 /* allign reading start to old geometry */
8698 start_buf_shift = start % old_data_stripe_length;
8699 start_src = start - start_buf_shift;
8700
8701 border = (start_src / odata) - (start / ndata);
8702 border /= 512;
8703 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8704 /* save critical stripes to buf
8705 * start - start address of current unit
8706 * to backup [bytes]
8707 * start_src - start address of current unit
8708 * to backup alligned to source array
8709 * [bytes]
8710 */
8711 unsigned long long next_step_filler = 0;
8712 unsigned long long copy_length = next_step * 512;
8713
8714 /* allign copy area length to stripe in old geometry */
8715 next_step_filler = ((copy_length + start_buf_shift)
8716 % old_data_stripe_length);
8717 if (next_step_filler)
8718 next_step_filler = (old_data_stripe_length
8719 - next_step_filler);
8720 dprintf("save_stripes() parameters: start = %llu,"
8721 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8722 "\tstart_in_buf_shift = %llu,"
8723 "\tnext_step_filler = %llu\n",
8724 start, start_src, copy_length,
8725 start_buf_shift, next_step_filler);
8726
8727 if (save_stripes(fds, offsets, map_src->num_members,
8728 chunk, sra->array.level,
8729 sra->array.layout, 0, NULL, start_src,
8730 copy_length +
8731 next_step_filler + start_buf_shift,
8732 buf)) {
8733 dprintf("imsm: Cannot save stripes"
8734 " to buffer\n");
8735 goto abort;
8736 }
8737 /* Convert data to destination format and store it
8738 * in backup general migration area
8739 */
8740 if (save_backup_imsm(st, dev, sra,
8741 buf + start_buf_shift,
8742 ndata, copy_length)) {
8743 dprintf("imsm: Cannot save stripes to "
8744 "target devices\n");
8745 goto abort;
8746 }
8747 if (save_checkpoint_imsm(st, sra,
8748 UNIT_SRC_IN_CP_AREA)) {
8749 dprintf("imsm: Cannot write checkpoint to "
8750 "migration record (UNIT_SRC_IN_CP_AREA)\n");
8751 goto abort;
8752 }
8753 /* decrease backup_blocks */
8754 if (backup_blocks > (unsigned long)next_step)
8755 backup_blocks -= next_step;
8756 else
8757 backup_blocks = 0;
8758 }
8759 /* When data backed up, checkpoint stored,
8760 * kick the kernel to reshape unit of data
8761 */
8762 next_step = next_step + sra->reshape_progress;
8763 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
8764 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
8765
8766 /* wait until reshape finish */
c47b0ff6
AK
8767 if (wait_for_reshape_imsm(sra, next_step, ndata) < 0) {
8768 dprintf("wait_for_reshape_imsm returned error!\n");
8769 goto abort;
8770 }
10f22854
AK
8771
8772 sra->reshape_progress = next_step;
8773
8774 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL)) {
8775 dprintf("imsm: Cannot write checkpoint to "
8776 "migration record (UNIT_SRC_NORMAL)\n");
8777 goto abort;
8778 }
8779
8780 }
8781
8782 /* return '1' if done */
8783 ret_val = 1;
8784abort:
8785 free(buf);
8786 abort_reshape(sra);
8787
8788 return ret_val;
999b4972 8789}
71204a50 8790#endif /* MDASSEMBLE */
999b4972 8791
cdddbdbc
DW
8792struct superswitch super_imsm = {
8793#ifndef MDASSEMBLE
8794 .examine_super = examine_super_imsm,
8795 .brief_examine_super = brief_examine_super_imsm,
4737ae25 8796 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 8797 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
8798 .detail_super = detail_super_imsm,
8799 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 8800 .write_init_super = write_init_super_imsm,
0e600426
N
8801 .validate_geometry = validate_geometry_imsm,
8802 .add_to_super = add_to_super_imsm,
1a64be56 8803 .remove_from_super = remove_from_super_imsm,
d665cc31 8804 .detail_platform = detail_platform_imsm,
33414a01 8805 .kill_subarray = kill_subarray_imsm,
aa534678 8806 .update_subarray = update_subarray_imsm,
2b959fbf 8807 .load_container = load_container_imsm,
71204a50
N
8808 .default_geometry = default_geometry_imsm,
8809 .get_disk_controller_domain = imsm_get_disk_controller_domain,
8810 .reshape_super = imsm_reshape_super,
8811 .manage_reshape = imsm_manage_reshape,
cdddbdbc
DW
8812#endif
8813 .match_home = match_home_imsm,
8814 .uuid_from_super= uuid_from_super_imsm,
8815 .getinfo_super = getinfo_super_imsm,
5c4cd5da 8816 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
8817 .update_super = update_super_imsm,
8818
8819 .avail_size = avail_size_imsm,
80e7f8c3 8820 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
8821
8822 .compare_super = compare_super_imsm,
8823
8824 .load_super = load_super_imsm,
bf5a934a 8825 .init_super = init_super_imsm,
e683ca88 8826 .store_super = store_super_imsm,
cdddbdbc
DW
8827 .free_super = free_super_imsm,
8828 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 8829 .container_content = container_content_imsm,
cdddbdbc 8830
276d77db
AK
8831 .recover_backup = recover_backup_imsm,
8832
cdddbdbc 8833 .external = 1,
4cce4069 8834 .name = "imsm",
845dea95 8835
0e600426 8836#ifndef MDASSEMBLE
845dea95
NB
8837/* for mdmon */
8838 .open_new = imsm_open_new,
ed9d66aa 8839 .set_array_state= imsm_set_array_state,
845dea95
NB
8840 .set_disk = imsm_set_disk,
8841 .sync_metadata = imsm_sync_metadata,
88758e9d 8842 .activate_spare = imsm_activate_spare,
e8319a19 8843 .process_update = imsm_process_update,
8273f55e 8844 .prepare_update = imsm_prepare_update,
0e600426 8845#endif /* MDASSEMBLE */
cdddbdbc 8846};