]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: do not activate spares for uninitialized member arrays
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
5551b113 98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
cdddbdbc 99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
1011e834 104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
5551b113
CA
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106#define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
cdddbdbc
DW
108};
109
3b451610
AK
110/* map selector for map managment
111 */
238c0a71
AK
112#define MAP_0 0
113#define MAP_1 1
114#define MAP_X -1
3b451610 115
cdddbdbc
DW
116/* RAID map configuration infos. */
117struct imsm_map {
5551b113
CA
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
cdddbdbc
DW
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123#define IMSM_T_STATE_NORMAL 0
124#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
125#define IMSM_T_STATE_DEGRADED 2
126#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
127 __u8 raid_level;
128#define IMSM_T_RAID0 0
129#define IMSM_T_RAID1 1
130#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 134 __u8 ddf;
5551b113
CA
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
7eef0453 139#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
141 * top byte contains some flags
142 */
cdddbdbc
DW
143} __attribute__ ((packed));
144
145struct imsm_vol {
f8f603f1 146 __u32 curr_migr_unit;
fe7ed8cb 147 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 148 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
149#define MIGR_INIT 0
150#define MIGR_REBUILD 1
151#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152#define MIGR_GEN_MIGR 3
153#define MIGR_STATE_CHANGE 4
1484e727 154#define MIGR_REPAIR 5
cdddbdbc
DW
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
fe7ed8cb
DW
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
cdddbdbc
DW
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163} __attribute__ ((packed));
164
165struct imsm_dev {
fe7ed8cb 166 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
167 __u32 size_low;
168 __u32 size_high;
fe7ed8cb
DW
169#define DEV_BOOTABLE __cpu_to_le32(0x01)
170#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171#define DEV_READ_COALESCING __cpu_to_le32(0x04)
172#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194} __attribute__ ((packed));
195
196struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212#define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
604b746f 216 /* here comes BBM logs */
cdddbdbc
DW
217} __attribute__ ((packed));
218
604b746f
JD
219#define BBM_LOG_MAX_ENTRIES 254
220
221struct bbm_log_entry {
222 __u64 defective_block_start;
223#define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227} __attribute__ ((__packed__));
228
229struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236} __attribute__ ((__packed__));
237
cdddbdbc
DW
238#ifndef MDASSEMBLE
239static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
240#endif
241
8e59f3d8
AK
242#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
243
244#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
245
17a4eaf9
AK
246#define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
247#define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
248 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
249 */
250
8e59f3d8
AK
251#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
252 * be recovered using srcMap */
253#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
254 * already been migrated and must
255 * be recovered from checkpoint area */
256struct migr_record {
257 __u32 rec_status; /* Status used to determine how to restart
258 * migration in case it aborts
259 * in some fashion */
260 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
261 __u32 family_num; /* Family number of MPB
262 * containing the RaidDev
263 * that is migrating */
264 __u32 ascending_migr; /* True if migrating in increasing
265 * order of lbas */
266 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
267 __u32 dest_depth_per_unit; /* Num member blocks each destMap
268 * member disk
269 * advances per unit-of-operation */
270 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
271 __u32 dest_1st_member_lba; /* First member lba on first
272 * stripe of destination */
273 __u32 num_migr_units; /* Total num migration units-of-op */
274 __u32 post_migr_vol_cap; /* Size of volume after
275 * migration completes */
276 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
277 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
278 * migration ckpt record was read from
279 * (for recovered migrations) */
280} __attribute__ ((__packed__));
281
ec50f7b6
LM
282struct md_list {
283 /* usage marker:
284 * 1: load metadata
285 * 2: metadata does not match
286 * 4: already checked
287 */
288 int used;
289 char *devname;
290 int found;
291 int container;
292 dev_t st_rdev;
293 struct md_list *next;
294};
295
e7b84f9d 296#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
ec50f7b6 297
1484e727
DW
298static __u8 migr_type(struct imsm_dev *dev)
299{
300 if (dev->vol.migr_type == MIGR_VERIFY &&
301 dev->status & DEV_VERIFY_AND_FIX)
302 return MIGR_REPAIR;
303 else
304 return dev->vol.migr_type;
305}
306
307static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
308{
309 /* for compatibility with older oroms convert MIGR_REPAIR, into
310 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
311 */
312 if (migr_type == MIGR_REPAIR) {
313 dev->vol.migr_type = MIGR_VERIFY;
314 dev->status |= DEV_VERIFY_AND_FIX;
315 } else {
316 dev->vol.migr_type = migr_type;
317 dev->status &= ~DEV_VERIFY_AND_FIX;
318 }
319}
320
87eb16df 321static unsigned int sector_count(__u32 bytes)
cdddbdbc 322{
654a3817 323 return ROUND_UP(bytes, 512) / 512;
87eb16df 324}
cdddbdbc 325
87eb16df
DW
326static unsigned int mpb_sectors(struct imsm_super *mpb)
327{
328 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
329}
330
ba2de7ba
DW
331struct intel_dev {
332 struct imsm_dev *dev;
333 struct intel_dev *next;
f21e18ca 334 unsigned index;
ba2de7ba
DW
335};
336
88654014
LM
337struct intel_hba {
338 enum sys_dev_type type;
339 char *path;
340 char *pci_id;
341 struct intel_hba *next;
342};
343
1a64be56
LM
344enum action {
345 DISK_REMOVE = 1,
346 DISK_ADD
347};
cdddbdbc
DW
348/* internal representation of IMSM metadata */
349struct intel_super {
350 union {
949c47a0
DW
351 void *buf; /* O_DIRECT buffer for reading/writing metadata */
352 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 353 };
8e59f3d8
AK
354 union {
355 void *migr_rec_buf; /* buffer for I/O operations */
356 struct migr_record *migr_rec; /* migration record */
357 };
51d83f5d
AK
358 int clean_migration_record_by_mdmon; /* when reshape is switched to next
359 array, it indicates that mdmon is allowed to clean migration
360 record */
949c47a0 361 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
362 void *next_buf; /* for realloc'ing buf from the manager */
363 size_t next_len;
c2c087e6 364 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 365 int current_vol; /* index of raid device undergoing creation */
5551b113 366 unsigned long long create_offset; /* common start for 'current_vol' */
148acb7b 367 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 368 struct intel_dev *devlist;
cdddbdbc
DW
369 struct dl {
370 struct dl *next;
371 int index;
372 __u8 serial[MAX_RAID_SERIAL_LEN];
373 int major, minor;
374 char *devname;
b9f594fe 375 struct imsm_disk disk;
cdddbdbc 376 int fd;
0dcecb2e
DW
377 int extent_cnt;
378 struct extent *e; /* for determining freespace @ create */
efb30e7f 379 int raiddisk; /* slot to fill in autolayout */
1a64be56 380 enum action action;
ca0748fa 381 } *disks, *current_disk;
1a64be56
LM
382 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
383 active */
47ee5a45 384 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 385 struct bbm_log *bbm_log;
88654014 386 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 387 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
388 struct intel_super *next; /* (temp) list for disambiguating family_num */
389};
390
391struct intel_disk {
392 struct imsm_disk disk;
393 #define IMSM_UNKNOWN_OWNER (-1)
394 int owner;
395 struct intel_disk *next;
cdddbdbc
DW
396};
397
c2c087e6
DW
398struct extent {
399 unsigned long long start, size;
400};
401
694575e7
KW
402/* definitions of reshape process types */
403enum imsm_reshape_type {
404 CH_TAKEOVER,
b5347799 405 CH_MIGRATION,
7abc9871 406 CH_ARRAY_SIZE,
694575e7
KW
407};
408
88758e9d
DW
409/* definition of messages passed to imsm_process_update */
410enum imsm_update_type {
411 update_activate_spare,
8273f55e 412 update_create_array,
33414a01 413 update_kill_array,
aa534678 414 update_rename_array,
1a64be56 415 update_add_remove_disk,
78b10e66 416 update_reshape_container_disks,
48c5303a 417 update_reshape_migration,
2d40f3a1
AK
418 update_takeover,
419 update_general_migration_checkpoint,
f3871fdc 420 update_size_change,
88758e9d
DW
421};
422
423struct imsm_update_activate_spare {
424 enum imsm_update_type type;
d23fe947 425 struct dl *dl;
88758e9d
DW
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429};
430
78b10e66 431struct geo_params {
4dd2df09 432 char devnm[32];
78b10e66 433 char *dev_name;
d04f65f4 434 unsigned long long size;
78b10e66
N
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439};
440
bb025c2f
KW
441enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444};
445struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449};
78b10e66
N
450
451struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
48c5303a
PC
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457};
458
459struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
4bba0439 468 int new_chunksize;
48c5303a 469
d195167d 470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
471};
472
f3871fdc
AK
473struct imsm_update_size_change {
474 enum imsm_update_type type;
475 int subdev;
476 long long new_size;
477};
478
2d40f3a1
AK
479struct imsm_update_general_migration_checkpoint {
480 enum imsm_update_type type;
481 __u32 curr_migr_unit;
482};
483
54c2c1ea
DW
484struct disk_info {
485 __u8 serial[MAX_RAID_SERIAL_LEN];
486};
487
8273f55e
DW
488struct imsm_update_create_array {
489 enum imsm_update_type type;
8273f55e 490 int dev_idx;
6a3e913e 491 struct imsm_dev dev;
8273f55e
DW
492};
493
33414a01
DW
494struct imsm_update_kill_array {
495 enum imsm_update_type type;
496 int dev_idx;
497};
498
aa534678
DW
499struct imsm_update_rename_array {
500 enum imsm_update_type type;
501 __u8 name[MAX_RAID_SERIAL_LEN];
502 int dev_idx;
503};
504
1a64be56 505struct imsm_update_add_remove_disk {
43dad3d6
DW
506 enum imsm_update_type type;
507};
508
88654014
LM
509static const char *_sys_dev_type[] = {
510 [SYS_DEV_UNKNOWN] = "Unknown",
511 [SYS_DEV_SAS] = "SAS",
614902f6 512 [SYS_DEV_SATA] = "SATA",
60f0f54d
PB
513 [SYS_DEV_NVME] = "NVMe",
514 [SYS_DEV_VMD] = "VMD"
88654014
LM
515};
516
517const char *get_sys_dev_type(enum sys_dev_type type)
518{
519 if (type >= SYS_DEV_MAX)
520 type = SYS_DEV_UNKNOWN;
521
522 return _sys_dev_type[type];
523}
524
525static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
526{
503975b9
N
527 struct intel_hba *result = xmalloc(sizeof(*result));
528
529 result->type = device->type;
530 result->path = xstrdup(device->path);
531 result->next = NULL;
532 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
533 result->pci_id++;
534
88654014
LM
535 return result;
536}
537
538static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
539{
594dc1b8
JS
540 struct intel_hba *result;
541
88654014
LM
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547}
548
b4cf4cba 549static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
550{
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
6b781d33
AP
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
614902f6 565 * Do not support HBA types mixing
6b781d33
AP
566 */
567 if (device->type != hba->type)
88654014 568 return 2;
6b781d33 569
60f0f54d
PB
570 /* Always forbid spanning between VMD domains (seen as different controllers by mdadm) */
571 if (device->type == SYS_DEV_VMD && !path_attached_to_hba(device->path, hba->path))
572 return 2;
573
6b781d33
AP
574 /* Multiple same type HBAs can be used if they share the same OROM */
575 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
576
577 if (device_orom != super->orom)
578 return 2;
579
580 while (hba->next)
581 hba = hba->next;
582
583 hba->next = alloc_intel_hba(device);
584 return 1;
88654014
LM
585}
586
587static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
588{
9bc4ae77 589 struct sys_dev *list, *elem;
88654014
LM
590 char *disk_path;
591
592 if ((list = find_intel_devices()) == NULL)
593 return 0;
594
595 if (fd < 0)
596 disk_path = (char *) devname;
597 else
598 disk_path = diskfd_to_devpath(fd);
599
9bc4ae77 600 if (!disk_path)
88654014 601 return 0;
88654014 602
9bc4ae77
N
603 for (elem = list; elem; elem = elem->next)
604 if (path_attached_to_hba(disk_path, elem->path))
88654014 605 return elem;
9bc4ae77 606
88654014
LM
607 if (disk_path != devname)
608 free(disk_path);
88654014
LM
609
610 return NULL;
611}
612
d424212e
N
613static int find_intel_hba_capability(int fd, struct intel_super *super,
614 char *devname);
f2f5c343 615
cdddbdbc
DW
616static struct supertype *match_metadata_desc_imsm(char *arg)
617{
618 struct supertype *st;
619
620 if (strcmp(arg, "imsm") != 0 &&
621 strcmp(arg, "default") != 0
622 )
623 return NULL;
624
503975b9 625 st = xcalloc(1, sizeof(*st));
cdddbdbc
DW
626 st->ss = &super_imsm;
627 st->max_devs = IMSM_MAX_DEVICES;
628 st->minor_version = 0;
629 st->sb = NULL;
630 return st;
631}
632
0e600426 633#ifndef MDASSEMBLE
cdddbdbc
DW
634static __u8 *get_imsm_version(struct imsm_super *mpb)
635{
636 return &mpb->sig[MPB_SIG_LEN];
637}
9e2d750d 638#endif
cdddbdbc 639
949c47a0
DW
640/* retrieve a disk directly from the anchor when the anchor is known to be
641 * up-to-date, currently only at load time
642 */
643static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 644{
949c47a0 645 if (index >= mpb->num_disks)
cdddbdbc
DW
646 return NULL;
647 return &mpb->disk[index];
648}
649
95d07a2c
LM
650/* retrieve the disk description based on a index of the disk
651 * in the sub-array
652 */
653static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 654{
b9f594fe
DW
655 struct dl *d;
656
657 for (d = super->disks; d; d = d->next)
658 if (d->index == index)
95d07a2c
LM
659 return d;
660
661 return NULL;
662}
663/* retrieve a disk from the parsed metadata */
664static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
665{
666 struct dl *dl;
667
668 dl = get_imsm_dl_disk(super, index);
669 if (dl)
670 return &dl->disk;
671
b9f594fe 672 return NULL;
949c47a0
DW
673}
674
675/* generate a checksum directly from the anchor when the anchor is known to be
676 * up-to-date, currently only at load or write_super after coalescing
677 */
678static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
679{
680 __u32 end = mpb->mpb_size / sizeof(end);
681 __u32 *p = (__u32 *) mpb;
682 __u32 sum = 0;
683
5d500228
N
684 while (end--) {
685 sum += __le32_to_cpu(*p);
97f734fd
N
686 p++;
687 }
cdddbdbc 688
5d500228 689 return sum - __le32_to_cpu(mpb->check_sum);
cdddbdbc
DW
690}
691
a965f303
DW
692static size_t sizeof_imsm_map(struct imsm_map *map)
693{
694 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
695}
696
697struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 698{
5e7b0330
AK
699 /* A device can have 2 maps if it is in the middle of a migration.
700 * If second_map is:
238c0a71
AK
701 * MAP_0 - we return the first map
702 * MAP_1 - we return the second map if it exists, else NULL
703 * MAP_X - we return the second map if it exists, else the first
5e7b0330 704 */
a965f303 705 struct imsm_map *map = &dev->vol.map[0];
9535fc47 706 struct imsm_map *map2 = NULL;
a965f303 707
9535fc47
AK
708 if (dev->vol.migr_state)
709 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 710
9535fc47 711 switch (second_map) {
3b451610 712 case MAP_0:
9535fc47 713 break;
3b451610 714 case MAP_1:
9535fc47
AK
715 map = map2;
716 break;
238c0a71 717 case MAP_X:
9535fc47
AK
718 if (map2)
719 map = map2;
720 break;
9535fc47
AK
721 default:
722 map = NULL;
723 }
724 return map;
5e7b0330 725
a965f303 726}
cdddbdbc 727
3393c6af
DW
728/* return the size of the device.
729 * migr_state increases the returned size if map[0] were to be duplicated
730 */
731static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
732{
733 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
238c0a71 734 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
735
736 /* migrating means an additional map */
a965f303 737 if (dev->vol.migr_state)
238c0a71 738 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
3393c6af 739 else if (migr_state)
238c0a71 740 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
cdddbdbc
DW
741
742 return size;
743}
744
54c2c1ea
DW
745#ifndef MDASSEMBLE
746/* retrieve disk serial number list from a metadata update */
747static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
748{
749 void *u = update;
750 struct disk_info *inf;
751
752 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
753 sizeof_imsm_dev(&update->dev, 0);
754
755 return inf;
756}
757#endif
758
949c47a0 759static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
760{
761 int offset;
762 int i;
763 void *_mpb = mpb;
764
949c47a0 765 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
766 return NULL;
767
768 /* devices start after all disks */
769 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
770
771 for (i = 0; i <= index; i++)
772 if (i == index)
773 return _mpb + offset;
774 else
3393c6af 775 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
776
777 return NULL;
778}
779
949c47a0
DW
780static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
781{
ba2de7ba
DW
782 struct intel_dev *dv;
783
949c47a0
DW
784 if (index >= super->anchor->num_raid_devs)
785 return NULL;
ba2de7ba
DW
786 for (dv = super->devlist; dv; dv = dv->next)
787 if (dv->index == index)
788 return dv->dev;
789 return NULL;
949c47a0
DW
790}
791
98130f40
AK
792/*
793 * for second_map:
238c0a71
AK
794 * == MAP_0 get first map
795 * == MAP_1 get second map
796 * == MAP_X than get map according to the current migr_state
98130f40
AK
797 */
798static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
799 int slot,
800 int second_map)
7eef0453
DW
801{
802 struct imsm_map *map;
803
5e7b0330 804 map = get_imsm_map(dev, second_map);
7eef0453 805
ff077194
DW
806 /* top byte identifies disk under rebuild */
807 return __le32_to_cpu(map->disk_ord_tbl[slot]);
808}
809
810#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 811static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 812{
98130f40 813 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
814
815 return ord_to_idx(ord);
7eef0453
DW
816}
817
be73972f
DW
818static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
819{
820 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
821}
822
f21e18ca 823static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
824{
825 int slot;
826 __u32 ord;
827
828 for (slot = 0; slot < map->num_members; slot++) {
829 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
830 if (ord_to_idx(ord) == idx)
831 return slot;
832 }
833
834 return -1;
835}
836
cdddbdbc
DW
837static int get_imsm_raid_level(struct imsm_map *map)
838{
839 if (map->raid_level == 1) {
840 if (map->num_members == 2)
841 return 1;
842 else
843 return 10;
844 }
845
846 return map->raid_level;
847}
848
c2c087e6
DW
849static int cmp_extent(const void *av, const void *bv)
850{
851 const struct extent *a = av;
852 const struct extent *b = bv;
853 if (a->start < b->start)
854 return -1;
855 if (a->start > b->start)
856 return 1;
857 return 0;
858}
859
0dcecb2e 860static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 861{
c2c087e6 862 int memberships = 0;
620b1713 863 int i;
c2c087e6 864
949c47a0
DW
865 for (i = 0; i < super->anchor->num_raid_devs; i++) {
866 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 867 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 868
620b1713
DW
869 if (get_imsm_disk_slot(map, dl->index) >= 0)
870 memberships++;
c2c087e6 871 }
0dcecb2e
DW
872
873 return memberships;
874}
875
b81221b7
CA
876static __u32 imsm_min_reserved_sectors(struct intel_super *super);
877
5551b113
CA
878static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
879{
880 if (lo == 0 || hi == 0)
881 return 1;
882 *lo = __le32_to_cpu((unsigned)n);
883 *hi = __le32_to_cpu((unsigned)(n >> 32));
884 return 0;
885}
886
887static unsigned long long join_u32(__u32 lo, __u32 hi)
888{
889 return (unsigned long long)__le32_to_cpu(lo) |
890 (((unsigned long long)__le32_to_cpu(hi)) << 32);
891}
892
893static unsigned long long total_blocks(struct imsm_disk *disk)
894{
895 if (disk == NULL)
896 return 0;
897 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
898}
899
900static unsigned long long pba_of_lba0(struct imsm_map *map)
901{
902 if (map == NULL)
903 return 0;
904 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
905}
906
907static unsigned long long blocks_per_member(struct imsm_map *map)
908{
909 if (map == NULL)
910 return 0;
911 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
912}
913
ae2416e7 914#ifndef MDASSEMBLE
5551b113
CA
915static unsigned long long num_data_stripes(struct imsm_map *map)
916{
917 if (map == NULL)
918 return 0;
919 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
920}
921
922static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
923{
924 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
925}
ae2416e7 926#endif
5551b113
CA
927
928static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
929{
930 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
931}
932
933static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
934{
935 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
936}
937
938static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
939{
940 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
941}
942
0dcecb2e
DW
943static struct extent *get_extents(struct intel_super *super, struct dl *dl)
944{
945 /* find a list of used extents on the given physical device */
946 struct extent *rv, *e;
620b1713 947 int i;
0dcecb2e 948 int memberships = count_memberships(dl, super);
b276dd33
DW
949 __u32 reservation;
950
951 /* trim the reserved area for spares, so they can join any array
952 * regardless of whether the OROM has assigned sectors from the
953 * IMSM_RESERVED_SECTORS region
954 */
955 if (dl->index == -1)
b81221b7 956 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
957 else
958 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 959
503975b9 960 rv = xcalloc(sizeof(struct extent), (memberships + 1));
c2c087e6
DW
961 e = rv;
962
949c47a0
DW
963 for (i = 0; i < super->anchor->num_raid_devs; i++) {
964 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 965 struct imsm_map *map = get_imsm_map(dev, MAP_0);
c2c087e6 966
620b1713 967 if (get_imsm_disk_slot(map, dl->index) >= 0) {
5551b113
CA
968 e->start = pba_of_lba0(map);
969 e->size = blocks_per_member(map);
620b1713 970 e++;
c2c087e6
DW
971 }
972 }
973 qsort(rv, memberships, sizeof(*rv), cmp_extent);
974
1011e834 975 /* determine the start of the metadata
14e8215b
DW
976 * when no raid devices are defined use the default
977 * ...otherwise allow the metadata to truncate the value
978 * as is the case with older versions of imsm
979 */
980 if (memberships) {
981 struct extent *last = &rv[memberships - 1];
5551b113 982 unsigned long long remainder;
14e8215b 983
5551b113 984 remainder = total_blocks(&dl->disk) - (last->start + last->size);
dda5855f
DW
985 /* round down to 1k block to satisfy precision of the kernel
986 * 'size' interface
987 */
988 remainder &= ~1UL;
989 /* make sure remainder is still sane */
f21e18ca 990 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 991 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
992 if (reservation > remainder)
993 reservation = remainder;
994 }
5551b113 995 e->start = total_blocks(&dl->disk) - reservation;
c2c087e6
DW
996 e->size = 0;
997 return rv;
998}
999
14e8215b
DW
1000/* try to determine how much space is reserved for metadata from
1001 * the last get_extents() entry, otherwise fallback to the
1002 * default
1003 */
1004static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1005{
1006 struct extent *e;
1007 int i;
1008 __u32 rv;
1009
1010 /* for spares just return a minimal reservation which will grow
1011 * once the spare is picked up by an array
1012 */
1013 if (dl->index == -1)
1014 return MPB_SECTOR_CNT;
1015
1016 e = get_extents(super, dl);
1017 if (!e)
1018 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1019
1020 /* scroll to last entry */
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023
5551b113 1024 rv = total_blocks(&dl->disk) - e[i].start;
14e8215b
DW
1025
1026 free(e);
1027
1028 return rv;
1029}
1030
25ed7e59
DW
1031static int is_spare(struct imsm_disk *disk)
1032{
1033 return (disk->status & SPARE_DISK) == SPARE_DISK;
1034}
1035
1036static int is_configured(struct imsm_disk *disk)
1037{
1038 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1039}
1040
1041static int is_failed(struct imsm_disk *disk)
1042{
1043 return (disk->status & FAILED_DISK) == FAILED_DISK;
1044}
1045
b81221b7
CA
1046/* try to determine how much space is reserved for metadata from
1047 * the last get_extents() entry on the smallest active disk,
1048 * otherwise fallback to the default
1049 */
1050static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1051{
1052 struct extent *e;
1053 int i;
5551b113
CA
1054 unsigned long long min_active;
1055 __u32 remainder;
b81221b7
CA
1056 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1057 struct dl *dl, *dl_min = NULL;
1058
1059 if (!super)
1060 return rv;
1061
1062 min_active = 0;
1063 for (dl = super->disks; dl; dl = dl->next) {
1064 if (dl->index < 0)
1065 continue;
5551b113
CA
1066 unsigned long long blocks = total_blocks(&dl->disk);
1067 if (blocks < min_active || min_active == 0) {
b81221b7 1068 dl_min = dl;
5551b113 1069 min_active = blocks;
b81221b7
CA
1070 }
1071 }
1072 if (!dl_min)
1073 return rv;
1074
1075 /* find last lba used by subarrays on the smallest active disk */
1076 e = get_extents(super, dl_min);
1077 if (!e)
1078 return rv;
1079 for (i = 0; e[i].size; i++)
1080 continue;
1081
1082 remainder = min_active - e[i].start;
1083 free(e);
1084
1085 /* to give priority to recovery we should not require full
1086 IMSM_RESERVED_SECTORS from the spare */
1087 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1088
1089 /* if real reservation is smaller use that value */
1090 return (remainder < rv) ? remainder : rv;
1091}
1092
80e7f8c3
AC
1093/* Return minimum size of a spare that can be used in this array*/
1094static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1095{
1096 struct intel_super *super = st->sb;
1097 struct dl *dl;
1098 struct extent *e;
1099 int i;
1100 unsigned long long rv = 0;
1101
1102 if (!super)
1103 return rv;
1104 /* find first active disk in array */
1105 dl = super->disks;
1106 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1107 dl = dl->next;
1108 if (!dl)
1109 return rv;
1110 /* find last lba used by subarrays */
1111 e = get_extents(super, dl);
1112 if (!e)
1113 return rv;
1114 for (i = 0; e[i].size; i++)
1115 continue;
1116 if (i > 0)
1117 rv = e[i-1].start + e[i-1].size;
1118 free(e);
b81221b7 1119
80e7f8c3 1120 /* add the amount of space needed for metadata */
b81221b7
CA
1121 rv = rv + imsm_min_reserved_sectors(super);
1122
80e7f8c3
AC
1123 return rv * 512;
1124}
1125
d1e02575
AK
1126static int is_gen_migration(struct imsm_dev *dev);
1127
1799c9e8 1128#ifndef MDASSEMBLE
c47b0ff6
AK
1129static __u64 blocks_per_migr_unit(struct intel_super *super,
1130 struct imsm_dev *dev);
1e5c6983 1131
c47b0ff6
AK
1132static void print_imsm_dev(struct intel_super *super,
1133 struct imsm_dev *dev,
1134 char *uuid,
1135 int disk_idx)
cdddbdbc
DW
1136{
1137 __u64 sz;
0d80bb2f 1138 int slot, i;
238c0a71
AK
1139 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1140 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
b10b37b8 1141 __u32 ord;
cdddbdbc
DW
1142
1143 printf("\n");
1e7bc0ed 1144 printf("[%.16s]:\n", dev->volume);
44470971 1145 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1146 printf(" RAID Level : %d", get_imsm_raid_level(map));
1147 if (map2)
1148 printf(" <-- %d", get_imsm_raid_level(map2));
1149 printf("\n");
1150 printf(" Members : %d", map->num_members);
1151 if (map2)
1152 printf(" <-- %d", map2->num_members);
1153 printf("\n");
0d80bb2f
DW
1154 printf(" Slots : [");
1155 for (i = 0; i < map->num_members; i++) {
238c0a71 1156 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
0d80bb2f
DW
1157 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1158 }
dd8bcb3b
AK
1159 printf("]");
1160 if (map2) {
1161 printf(" <-- [");
1162 for (i = 0; i < map2->num_members; i++) {
238c0a71 1163 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
dd8bcb3b
AK
1164 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1165 }
1166 printf("]");
1167 }
1168 printf("\n");
7095bccb
AK
1169 printf(" Failed disk : ");
1170 if (map->failed_disk_num == 0xff)
1171 printf("none");
1172 else
1173 printf("%i", map->failed_disk_num);
1174 printf("\n");
620b1713
DW
1175 slot = get_imsm_disk_slot(map, disk_idx);
1176 if (slot >= 0) {
238c0a71 1177 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
b10b37b8
DW
1178 printf(" This Slot : %d%s\n", slot,
1179 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1180 } else
cdddbdbc
DW
1181 printf(" This Slot : ?\n");
1182 sz = __le32_to_cpu(dev->size_high);
1183 sz <<= 32;
1184 sz += __le32_to_cpu(dev->size_low);
1185 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1186 human_size(sz * 512));
5551b113 1187 sz = blocks_per_member(map);
cdddbdbc
DW
1188 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1189 human_size(sz * 512));
5551b113
CA
1190 printf(" Sector Offset : %llu\n",
1191 pba_of_lba0(map));
1192 printf(" Num Stripes : %llu\n",
1193 num_data_stripes(map));
dd8bcb3b 1194 printf(" Chunk Size : %u KiB",
cdddbdbc 1195 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1196 if (map2)
1197 printf(" <-- %u KiB",
1198 __le16_to_cpu(map2->blocks_per_strip) / 2);
1199 printf("\n");
cdddbdbc 1200 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1201 printf(" Migrate State : ");
1484e727
DW
1202 if (dev->vol.migr_state) {
1203 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1204 printf("initialize\n");
1484e727 1205 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1206 printf("rebuild\n");
1484e727 1207 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1208 printf("check\n");
1484e727 1209 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1210 printf("general migration\n");
1484e727 1211 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1212 printf("state change\n");
1484e727 1213 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1214 printf("repair\n");
1484e727 1215 else
8655a7b1
DW
1216 printf("<unknown:%d>\n", migr_type(dev));
1217 } else
1218 printf("idle\n");
3393c6af
DW
1219 printf(" Map State : %s", map_state_str[map->map_state]);
1220 if (dev->vol.migr_state) {
238c0a71 1221 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983 1222
b10b37b8 1223 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1224 printf("\n Checkpoint : %u ",
1225 __le32_to_cpu(dev->vol.curr_migr_unit));
3136abe5 1226 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
464d40e8
LD
1227 printf("(N/A)");
1228 else
1229 printf("(%llu)", (unsigned long long)
1230 blocks_per_migr_unit(super, dev));
3393c6af
DW
1231 }
1232 printf("\n");
cdddbdbc 1233 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1234}
1235
0ec1f4e8 1236static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1237{
1f24f035 1238 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1239 __u64 sz;
1240
0ec1f4e8 1241 if (index < -1 || !disk)
e9d82038
DW
1242 return;
1243
cdddbdbc 1244 printf("\n");
1f24f035 1245 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1246 if (index >= 0)
1247 printf(" Disk%02d Serial : %s\n", index, str);
1248 else
1249 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1250 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1251 is_configured(disk) ? " active" : "",
1252 is_failed(disk) ? " failed" : "");
cdddbdbc 1253 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
5551b113 1254 sz = total_blocks(disk) - reserved;
cdddbdbc
DW
1255 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1256 human_size(sz * 512));
1257}
1258
520e69e2
AK
1259void examine_migr_rec_imsm(struct intel_super *super)
1260{
1261 struct migr_record *migr_rec = super->migr_rec;
1262 struct imsm_super *mpb = super->anchor;
1263 int i;
1264
1265 for (i = 0; i < mpb->num_raid_devs; i++) {
1266 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3136abe5 1267 struct imsm_map *map;
b4ab44d8 1268 int slot = -1;
3136abe5 1269
520e69e2
AK
1270 if (is_gen_migration(dev) == 0)
1271 continue;
1272
1273 printf("\nMigration Record Information:");
3136abe5 1274
44bfe6df
AK
1275 /* first map under migration */
1276 map = get_imsm_map(dev, MAP_0);
3136abe5
AK
1277 if (map)
1278 slot = get_imsm_disk_slot(map, super->disks->index);
1279 if ((map == NULL) || (slot > 1) || (slot < 0)) {
520e69e2
AK
1280 printf(" Empty\n ");
1281 printf("Examine one of first two disks in array\n");
1282 break;
1283 }
1284 printf("\n Status : ");
1285 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1286 printf("Normal\n");
1287 else
1288 printf("Contains Data\n");
1289 printf(" Current Unit : %u\n",
1290 __le32_to_cpu(migr_rec->curr_migr_unit));
1291 printf(" Family : %u\n",
1292 __le32_to_cpu(migr_rec->family_num));
1293 printf(" Ascending : %u\n",
1294 __le32_to_cpu(migr_rec->ascending_migr));
1295 printf(" Blocks Per Unit : %u\n",
1296 __le32_to_cpu(migr_rec->blocks_per_unit));
1297 printf(" Dest. Depth Per Unit : %u\n",
1298 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1299 printf(" Checkpoint Area pba : %u\n",
1300 __le32_to_cpu(migr_rec->ckpt_area_pba));
1301 printf(" First member lba : %u\n",
1302 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1303 printf(" Total Number of Units : %u\n",
1304 __le32_to_cpu(migr_rec->num_migr_units));
1305 printf(" Size of volume : %u\n",
1306 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1307 printf(" Expansion space for LBA64 : %u\n",
1308 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1309 printf(" Record was read from : %u\n",
1310 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1311
1312 break;
1313 }
1314}
9e2d750d 1315#endif /* MDASSEMBLE */
19482bcc
AK
1316/*******************************************************************************
1317 * function: imsm_check_attributes
1318 * Description: Function checks if features represented by attributes flags
1011e834 1319 * are supported by mdadm.
19482bcc
AK
1320 * Parameters:
1321 * attributes - Attributes read from metadata
1322 * Returns:
1011e834
N
1323 * 0 - passed attributes contains unsupported features flags
1324 * 1 - all features are supported
19482bcc
AK
1325 ******************************************************************************/
1326static int imsm_check_attributes(__u32 attributes)
1327{
1328 int ret_val = 1;
418f9b36
N
1329 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1330
1331 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1332
1333 not_supported &= attributes;
1334 if (not_supported) {
e7b84f9d 1335 pr_err("(IMSM): Unsupported attributes : %x\n",
418f9b36 1336 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1337 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1338 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1339 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1340 }
1341 if (not_supported & MPB_ATTRIB_2TB) {
1342 dprintf("\t\tMPB_ATTRIB_2TB\n");
1343 not_supported ^= MPB_ATTRIB_2TB;
1344 }
1345 if (not_supported & MPB_ATTRIB_RAID0) {
1346 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1347 not_supported ^= MPB_ATTRIB_RAID0;
1348 }
1349 if (not_supported & MPB_ATTRIB_RAID1) {
1350 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1351 not_supported ^= MPB_ATTRIB_RAID1;
1352 }
1353 if (not_supported & MPB_ATTRIB_RAID10) {
1354 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1355 not_supported ^= MPB_ATTRIB_RAID10;
1356 }
1357 if (not_supported & MPB_ATTRIB_RAID1E) {
1358 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1359 not_supported ^= MPB_ATTRIB_RAID1E;
1360 }
1361 if (not_supported & MPB_ATTRIB_RAID5) {
1362 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1363 not_supported ^= MPB_ATTRIB_RAID5;
1364 }
1365 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1366 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1367 not_supported ^= MPB_ATTRIB_RAIDCNG;
1368 }
1369 if (not_supported & MPB_ATTRIB_BBM) {
1370 dprintf("\t\tMPB_ATTRIB_BBM\n");
1371 not_supported ^= MPB_ATTRIB_BBM;
1372 }
1373 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1374 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1375 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1376 }
1377 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1378 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1379 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1380 }
1381 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1382 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1383 not_supported ^= MPB_ATTRIB_2TB_DISK;
1384 }
1385 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1386 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1387 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1388 }
1389 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1390 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1391 not_supported ^= MPB_ATTRIB_NEVER_USE;
1392 }
1393
1394 if (not_supported)
1ade5cc1 1395 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
19482bcc
AK
1396
1397 ret_val = 0;
1398 }
1399
1400 return ret_val;
1401}
1402
9e2d750d 1403#ifndef MDASSEMBLE
a5d85af7 1404static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1405
cdddbdbc
DW
1406static void examine_super_imsm(struct supertype *st, char *homehost)
1407{
1408 struct intel_super *super = st->sb;
949c47a0 1409 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1410 char str[MAX_SIGNATURE_LENGTH];
1411 int i;
27fd6274
DW
1412 struct mdinfo info;
1413 char nbuf[64];
cdddbdbc 1414 __u32 sum;
14e8215b 1415 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1416 struct dl *dl;
27fd6274 1417
cdddbdbc
DW
1418 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1419 printf(" Magic : %s\n", str);
1420 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1421 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1422 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1423 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1424 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1425 printf(" Attributes : ");
1426 if (imsm_check_attributes(mpb->attributes))
1427 printf("All supported\n");
1428 else
1429 printf("not supported\n");
a5d85af7 1430 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1431 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1432 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1433 sum = __le32_to_cpu(mpb->check_sum);
1434 printf(" Checksum : %08x %s\n", sum,
949c47a0 1435 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1436 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1437 printf(" Disks : %d\n", mpb->num_disks);
1438 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1439 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1440 if (super->bbm_log) {
1441 struct bbm_log *log = super->bbm_log;
1442
1443 printf("\n");
1444 printf("Bad Block Management Log:\n");
1445 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1446 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1447 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1448 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1449 printf(" First Spare : %llx\n",
1450 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1451 }
44470971
DW
1452 for (i = 0; i < mpb->num_raid_devs; i++) {
1453 struct mdinfo info;
1454 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1455
1456 super->current_vol = i;
a5d85af7 1457 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1458 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1459 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1460 }
cdddbdbc
DW
1461 for (i = 0; i < mpb->num_disks; i++) {
1462 if (i == super->disks->index)
1463 continue;
0ec1f4e8 1464 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1465 }
94827db3 1466
0ec1f4e8
DW
1467 for (dl = super->disks; dl; dl = dl->next)
1468 if (dl->index == -1)
1469 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1470
1471 examine_migr_rec_imsm(super);
cdddbdbc
DW
1472}
1473
061f2c6a 1474static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1475{
27fd6274 1476 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1477 struct mdinfo info;
1478 char nbuf[64];
1e7bc0ed 1479 struct intel_super *super = st->sb;
1e7bc0ed 1480
0d5a423f
DW
1481 if (!super->anchor->num_raid_devs) {
1482 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1483 return;
0d5a423f 1484 }
ff54de6e 1485
a5d85af7 1486 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1487 fname_from_uuid(st, &info, nbuf, ':');
1488 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1489}
1490
1491static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1492{
1493 /* We just write a generic IMSM ARRAY entry */
1494 struct mdinfo info;
1495 char nbuf[64];
1496 char nbuf1[64];
1497 struct intel_super *super = st->sb;
1498 int i;
1499
1500 if (!super->anchor->num_raid_devs)
1501 return;
1502
a5d85af7 1503 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1504 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1505 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1506 struct imsm_dev *dev = get_imsm_dev(super, i);
1507
1508 super->current_vol = i;
a5d85af7 1509 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1510 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1511 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1512 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1513 }
cdddbdbc
DW
1514}
1515
9d84c8ea
DW
1516static void export_examine_super_imsm(struct supertype *st)
1517{
1518 struct intel_super *super = st->sb;
1519 struct imsm_super *mpb = super->anchor;
1520 struct mdinfo info;
1521 char nbuf[64];
1522
a5d85af7 1523 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1524 fname_from_uuid(st, &info, nbuf, ':');
1525 printf("MD_METADATA=imsm\n");
1526 printf("MD_LEVEL=container\n");
1527 printf("MD_UUID=%s\n", nbuf+5);
1528 printf("MD_DEVICES=%u\n", mpb->num_disks);
1529}
1530
74db60b0
N
1531static int copy_metadata_imsm(struct supertype *st, int from, int to)
1532{
1533 /* The second last 512byte sector of the device contains
1534 * the "struct imsm_super" metadata.
1535 * This contains mpb_size which is the size in bytes of the
1536 * extended metadata. This is located immediately before
1537 * the imsm_super.
1538 * We want to read all that, plus the last sector which
1539 * may contain a migration record, and write it all
1540 * to the target.
1541 */
1542 void *buf;
1543 unsigned long long dsize, offset;
1544 int sectors;
1545 struct imsm_super *sb;
1546 int written = 0;
1547
1548 if (posix_memalign(&buf, 4096, 4096) != 0)
1549 return 1;
1550
1551 if (!get_dev_size(from, NULL, &dsize))
1552 goto err;
1553
1554 if (lseek64(from, dsize-1024, 0) < 0)
1555 goto err;
1556 if (read(from, buf, 512) != 512)
1557 goto err;
1558 sb = buf;
1559 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1560 goto err;
1561
1562 sectors = mpb_sectors(sb) + 2;
1563 offset = dsize - sectors * 512;
1564 if (lseek64(from, offset, 0) < 0 ||
1565 lseek64(to, offset, 0) < 0)
1566 goto err;
1567 while (written < sectors * 512) {
1568 int n = sectors*512 - written;
1569 if (n > 4096)
1570 n = 4096;
1571 if (read(from, buf, n) != n)
1572 goto err;
1573 if (write(to, buf, n) != n)
1574 goto err;
1575 written += n;
1576 }
1577 free(buf);
1578 return 0;
1579err:
1580 free(buf);
1581 return 1;
1582}
1583
cdddbdbc
DW
1584static void detail_super_imsm(struct supertype *st, char *homehost)
1585{
3ebe00a1
DW
1586 struct mdinfo info;
1587 char nbuf[64];
1588
a5d85af7 1589 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1590 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1591 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1592}
1593
1594static void brief_detail_super_imsm(struct supertype *st)
1595{
ff54de6e
N
1596 struct mdinfo info;
1597 char nbuf[64];
a5d85af7 1598 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1599 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1600 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1601}
d665cc31
DW
1602
1603static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1604static void fd2devname(int fd, char *name);
1605
120dc887 1606static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1607{
120dc887
LM
1608 /* dump an unsorted list of devices attached to AHCI Intel storage
1609 * controller, as well as non-connected ports
d665cc31
DW
1610 */
1611 int hba_len = strlen(hba_path) + 1;
1612 struct dirent *ent;
1613 DIR *dir;
1614 char *path = NULL;
1615 int err = 0;
1616 unsigned long port_mask = (1 << port_count) - 1;
1617
f21e18ca 1618 if (port_count > (int)sizeof(port_mask) * 8) {
ba728be7 1619 if (verbose > 0)
e7b84f9d 1620 pr_err("port_count %d out of range\n", port_count);
d665cc31
DW
1621 return 2;
1622 }
1623
1624 /* scroll through /sys/dev/block looking for devices attached to
1625 * this hba
1626 */
1627 dir = opendir("/sys/dev/block");
1a6dd6b9
PB
1628 if (!dir)
1629 return 1;
1630
1631 for (ent = readdir(dir); ent; ent = readdir(dir)) {
d665cc31
DW
1632 int fd;
1633 char model[64];
1634 char vendor[64];
1635 char buf[1024];
1636 int major, minor;
1637 char *device;
1638 char *c;
1639 int port;
1640 int type;
1641
1642 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1643 continue;
1644 path = devt_to_devpath(makedev(major, minor));
1645 if (!path)
1646 continue;
1647 if (!path_attached_to_hba(path, hba_path)) {
1648 free(path);
1649 path = NULL;
1650 continue;
1651 }
1652
1653 /* retrieve the scsi device type */
1654 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
ba728be7 1655 if (verbose > 0)
e7b84f9d 1656 pr_err("failed to allocate 'device'\n");
d665cc31
DW
1657 err = 2;
1658 break;
1659 }
1660 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
193b6c0b 1661 if (load_sys(device, buf, sizeof(buf)) != 0) {
ba728be7 1662 if (verbose > 0)
e7b84f9d 1663 pr_err("failed to read device type for %s\n",
d665cc31
DW
1664 path);
1665 err = 2;
1666 free(device);
1667 break;
1668 }
1669 type = strtoul(buf, NULL, 10);
1670
1671 /* if it's not a disk print the vendor and model */
1672 if (!(type == 0 || type == 7 || type == 14)) {
1673 vendor[0] = '\0';
1674 model[0] = '\0';
1675 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
193b6c0b 1676 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
1677 strncpy(vendor, buf, sizeof(vendor));
1678 vendor[sizeof(vendor) - 1] = '\0';
1679 c = (char *) &vendor[sizeof(vendor) - 1];
1680 while (isspace(*c) || *c == '\0')
1681 *c-- = '\0';
1682
1683 }
1684 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
193b6c0b 1685 if (load_sys(device, buf, sizeof(buf)) == 0) {
d665cc31
DW
1686 strncpy(model, buf, sizeof(model));
1687 model[sizeof(model) - 1] = '\0';
1688 c = (char *) &model[sizeof(model) - 1];
1689 while (isspace(*c) || *c == '\0')
1690 *c-- = '\0';
1691 }
1692
1693 if (vendor[0] && model[0])
1694 sprintf(buf, "%.64s %.64s", vendor, model);
1695 else
1696 switch (type) { /* numbers from hald/linux/device.c */
1697 case 1: sprintf(buf, "tape"); break;
1698 case 2: sprintf(buf, "printer"); break;
1699 case 3: sprintf(buf, "processor"); break;
1700 case 4:
1701 case 5: sprintf(buf, "cdrom"); break;
1702 case 6: sprintf(buf, "scanner"); break;
1703 case 8: sprintf(buf, "media_changer"); break;
1704 case 9: sprintf(buf, "comm"); break;
1705 case 12: sprintf(buf, "raid"); break;
1706 default: sprintf(buf, "unknown");
1707 }
1708 } else
1709 buf[0] = '\0';
1710 free(device);
1711
1712 /* chop device path to 'host%d' and calculate the port number */
1713 c = strchr(&path[hba_len], '/');
4e5e717d 1714 if (!c) {
ba728be7 1715 if (verbose > 0)
e7b84f9d 1716 pr_err("%s - invalid path name\n", path + hba_len);
4e5e717d
AW
1717 err = 2;
1718 break;
1719 }
d665cc31 1720 *c = '\0';
0858eccf
AP
1721 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1722 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
d665cc31
DW
1723 port -= host_base;
1724 else {
ba728be7 1725 if (verbose > 0) {
d665cc31 1726 *c = '/'; /* repair the full string */
e7b84f9d 1727 pr_err("failed to determine port number for %s\n",
d665cc31
DW
1728 path);
1729 }
1730 err = 2;
1731 break;
1732 }
1733
1734 /* mark this port as used */
1735 port_mask &= ~(1 << port);
1736
1737 /* print out the device information */
1738 if (buf[0]) {
1739 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1740 continue;
1741 }
1742
1743 fd = dev_open(ent->d_name, O_RDONLY);
1744 if (fd < 0)
1745 printf(" Port%d : - disk info unavailable -\n", port);
1746 else {
1747 fd2devname(fd, buf);
1748 printf(" Port%d : %s", port, buf);
1749 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1750 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1751 else
664d5325 1752 printf(" ()\n");
4dab422a 1753 close(fd);
d665cc31 1754 }
d665cc31
DW
1755 free(path);
1756 path = NULL;
1757 }
1758 if (path)
1759 free(path);
1760 if (dir)
1761 closedir(dir);
1762 if (err == 0) {
1763 int i;
1764
1765 for (i = 0; i < port_count; i++)
1766 if (port_mask & (1 << i))
1767 printf(" Port%d : - no device attached -\n", i);
1768 }
1769
1770 return err;
1771}
1772
b5eece69 1773static int print_vmd_attached_devs(struct sys_dev *hba)
60f0f54d
PB
1774{
1775 struct dirent *ent;
1776 DIR *dir;
1777 char path[292];
1778 char link[256];
1779 char *c, *rp;
1780
1781 if (hba->type != SYS_DEV_VMD)
b5eece69 1782 return 1;
60f0f54d
PB
1783
1784 /* scroll through /sys/dev/block looking for devices attached to
1785 * this hba
1786 */
1787 dir = opendir("/sys/bus/pci/drivers/nvme");
b9135011 1788 if (!dir)
b5eece69 1789 return 1;
b9135011
JS
1790
1791 for (ent = readdir(dir); ent; ent = readdir(dir)) {
60f0f54d
PB
1792 int n;
1793
1794 /* is 'ent' a device? check that the 'subsystem' link exists and
1795 * that its target matches 'bus'
1796 */
1797 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
1798 ent->d_name);
1799 n = readlink(path, link, sizeof(link));
1800 if (n < 0 || n >= (int)sizeof(link))
1801 continue;
1802 link[n] = '\0';
1803 c = strrchr(link, '/');
1804 if (!c)
1805 continue;
1806 if (strncmp("pci", c+1, strlen("pci")) != 0)
1807 continue;
1808
1809 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
1810 /* if not a intel NVMe - skip it*/
1811 if (devpath_to_vendor(path) != 0x8086)
1812 continue;
1813
1814 rp = realpath(path, NULL);
1815 if (!rp)
1816 continue;
1817
1818 if (path_attached_to_hba(rp, hba->path)) {
1819 printf(" NVMe under VMD : %s\n", rp);
1820 }
1821 free(rp);
1822 }
1823
b9135011 1824 closedir(dir);
b5eece69 1825 return 0;
60f0f54d
PB
1826}
1827
120dc887
LM
1828static void print_found_intel_controllers(struct sys_dev *elem)
1829{
1830 for (; elem; elem = elem->next) {
e7b84f9d 1831 pr_err("found Intel(R) ");
120dc887
LM
1832 if (elem->type == SYS_DEV_SATA)
1833 fprintf(stderr, "SATA ");
155cbb4c
LM
1834 else if (elem->type == SYS_DEV_SAS)
1835 fprintf(stderr, "SAS ");
0858eccf
AP
1836 else if (elem->type == SYS_DEV_NVME)
1837 fprintf(stderr, "NVMe ");
60f0f54d
PB
1838
1839 if (elem->type == SYS_DEV_VMD)
1840 fprintf(stderr, "VMD domain");
1841 else
1842 fprintf(stderr, "RAID controller");
1843
120dc887
LM
1844 if (elem->pci_id)
1845 fprintf(stderr, " at %s", elem->pci_id);
1846 fprintf(stderr, ".\n");
1847 }
1848 fflush(stderr);
1849}
1850
120dc887
LM
1851static int ahci_get_port_count(const char *hba_path, int *port_count)
1852{
1853 struct dirent *ent;
1854 DIR *dir;
1855 int host_base = -1;
1856
1857 *port_count = 0;
1858 if ((dir = opendir(hba_path)) == NULL)
1859 return -1;
1860
1861 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1862 int host;
1863
0858eccf
AP
1864 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1865 ((sscanf(ent->d_name, "host%d", &host) != 1)))
120dc887
LM
1866 continue;
1867 if (*port_count == 0)
1868 host_base = host;
1869 else if (host < host_base)
1870 host_base = host;
1871
1872 if (host + 1 > *port_count + host_base)
1873 *port_count = host + 1 - host_base;
1874 }
1875 closedir(dir);
1876 return host_base;
1877}
1878
a891a3c2
LM
1879static void print_imsm_capability(const struct imsm_orom *orom)
1880{
0858eccf
AP
1881 printf(" Platform : Intel(R) ");
1882 if (orom->capabilities == 0 && orom->driver_features == 0)
1883 printf("Matrix Storage Manager\n");
1884 else
1885 printf("Rapid Storage Technology%s\n",
1886 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1887 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1888 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
1889 orom->minor_ver, orom->hotfix_ver, orom->build);
a891a3c2
LM
1890 printf(" RAID Levels :%s%s%s%s%s\n",
1891 imsm_orom_has_raid0(orom) ? " raid0" : "",
1892 imsm_orom_has_raid1(orom) ? " raid1" : "",
1893 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1894 imsm_orom_has_raid10(orom) ? " raid10" : "",
1895 imsm_orom_has_raid5(orom) ? " raid5" : "");
1896 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1897 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1898 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1899 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1900 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1901 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1902 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1903 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1904 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1905 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1906 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1907 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1908 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1909 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1910 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1911 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1912 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
29cd0821
CA
1913 printf(" 2TB volumes :%s supported\n",
1914 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1915 printf(" 2TB disks :%s supported\n",
1916 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
0e7f69a8 1917 printf(" Max Disks : %d\n", orom->tds);
0858eccf
AP
1918 printf(" Max Volumes : %d per array, %d per %s\n",
1919 orom->vpa, orom->vphba,
1920 imsm_orom_is_nvme(orom) ? "platform" : "controller");
a891a3c2
LM
1921 return;
1922}
1923
e50cf220
MN
1924static void print_imsm_capability_export(const struct imsm_orom *orom)
1925{
1926 printf("MD_FIRMWARE_TYPE=imsm\n");
0858eccf
AP
1927 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1928 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1929 orom->hotfix_ver, orom->build);
e50cf220
MN
1930 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1931 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1932 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1933 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1934 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1935 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1936 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1937 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1938 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1939 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1940 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1941 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1942 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1943 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1944 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1945 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1946 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1947 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1948 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1949 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1950 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1951 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1952 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1953 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1954 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1955 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1956 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1957 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1958}
1959
9eafa1de 1960static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
d665cc31
DW
1961{
1962 /* There are two components to imsm platform support, the ahci SATA
1963 * controller and the option-rom. To find the SATA controller we
1964 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1965 * controller with the Intel vendor id is present. This approach
1966 * allows mdadm to leverage the kernel's ahci detection logic, with the
1967 * caveat that if ahci.ko is not loaded mdadm will not be able to
1968 * detect platform raid capabilities. The option-rom resides in a
1969 * platform "Adapter ROM". We scan for its signature to retrieve the
1970 * platform capabilities. If raid support is disabled in the BIOS the
1971 * option-rom capability structure will not be available.
1972 */
d665cc31 1973 struct sys_dev *list, *hba;
d665cc31
DW
1974 int host_base = 0;
1975 int port_count = 0;
9eafa1de 1976 int result=1;
d665cc31 1977
5615172f 1978 if (enumerate_only) {
a891a3c2 1979 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1980 return 0;
a891a3c2
LM
1981 list = find_intel_devices();
1982 if (!list)
1983 return 2;
1984 for (hba = list; hba; hba = hba->next) {
6b781d33
AP
1985 if (find_imsm_capability(hba)) {
1986 result = 0;
a891a3c2
LM
1987 break;
1988 }
9eafa1de 1989 else
6b781d33 1990 result = 2;
a891a3c2 1991 }
a891a3c2 1992 return result;
5615172f
DW
1993 }
1994
155cbb4c
LM
1995 list = find_intel_devices();
1996 if (!list) {
ba728be7 1997 if (verbose > 0)
7a862a02 1998 pr_err("no active Intel(R) RAID controller found.\n");
d665cc31 1999 return 2;
ba728be7 2000 } else if (verbose > 0)
155cbb4c 2001 print_found_intel_controllers(list);
d665cc31 2002
a891a3c2 2003 for (hba = list; hba; hba = hba->next) {
0858eccf 2004 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
9eafa1de 2005 continue;
0858eccf 2006 if (!find_imsm_capability(hba)) {
60f0f54d 2007 char buf[PATH_MAX];
e7b84f9d 2008 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
60f0f54d
PB
2009 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2010 get_sys_dev_type(hba->type));
0858eccf
AP
2011 continue;
2012 }
2013 result = 0;
2014 }
2015
2016 if (controller_path && result == 1) {
2017 pr_err("no active Intel(R) RAID controller found under %s\n",
2018 controller_path);
2019 return result;
2020 }
2021
5e1d6128 2022 const struct orom_entry *entry;
0858eccf 2023
5e1d6128 2024 for (entry = orom_entries; entry; entry = entry->next) {
60f0f54d
PB
2025 if (entry->type == SYS_DEV_VMD) {
2026 for (hba = list; hba; hba = hba->next) {
2027 if (hba->type == SYS_DEV_VMD) {
2028 char buf[PATH_MAX];
2029 print_imsm_capability(&entry->orom);
2030 printf(" I/O Controller : %s (%s)\n",
2031 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
b5eece69
PB
2032 if (print_vmd_attached_devs(hba)) {
2033 if (verbose > 0)
2034 pr_err("failed to get devices attached to VMD domain.\n");
2035 result |= 2;
2036 }
60f0f54d
PB
2037 printf("\n");
2038 }
2039 }
2040 continue;
2041 }
0858eccf 2042
60f0f54d
PB
2043 print_imsm_capability(&entry->orom);
2044 if (entry->type == SYS_DEV_NVME) {
0858eccf
AP
2045 for (hba = list; hba; hba = hba->next) {
2046 if (hba->type == SYS_DEV_NVME)
2047 printf(" NVMe Device : %s\n", hba->path);
2048 }
60f0f54d 2049 printf("\n");
0858eccf
AP
2050 continue;
2051 }
2052
2053 struct devid_list *devid;
5e1d6128 2054 for (devid = entry->devid_list; devid; devid = devid->next) {
0858eccf
AP
2055 hba = device_by_id(devid->devid);
2056 if (!hba)
2057 continue;
2058
9eafa1de
MN
2059 printf(" I/O Controller : %s (%s)\n",
2060 hba->path, get_sys_dev_type(hba->type));
2061 if (hba->type == SYS_DEV_SATA) {
2062 host_base = ahci_get_port_count(hba->path, &port_count);
2063 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2064 if (verbose > 0)
7a862a02 2065 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
9eafa1de
MN
2066 result |= 2;
2067 }
120dc887
LM
2068 }
2069 }
0858eccf 2070 printf("\n");
d665cc31 2071 }
155cbb4c 2072
120dc887 2073 return result;
d665cc31 2074}
e50cf220 2075
9eafa1de 2076static int export_detail_platform_imsm(int verbose, char *controller_path)
e50cf220 2077{
e50cf220
MN
2078 struct sys_dev *list, *hba;
2079 int result=1;
2080
2081 list = find_intel_devices();
2082 if (!list) {
2083 if (verbose > 0)
2084 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2085 result = 2;
e50cf220
MN
2086 return result;
2087 }
2088
2089 for (hba = list; hba; hba = hba->next) {
9eafa1de
MN
2090 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2091 continue;
60f0f54d
PB
2092 if (!find_imsm_capability(hba) && verbose > 0) {
2093 char buf[PATH_MAX];
2094 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2095 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2096 }
0858eccf 2097 else
e50cf220 2098 result = 0;
e50cf220
MN
2099 }
2100
5e1d6128 2101 const struct orom_entry *entry;
0858eccf 2102
60f0f54d
PB
2103 for (entry = orom_entries; entry; entry = entry->next) {
2104 if (entry->type == SYS_DEV_VMD) {
2105 for (hba = list; hba; hba = hba->next)
2106 print_imsm_capability_export(&entry->orom);
2107 continue;
2108 }
5e1d6128 2109 print_imsm_capability_export(&entry->orom);
60f0f54d 2110 }
0858eccf 2111
e50cf220
MN
2112 return result;
2113}
2114
cdddbdbc
DW
2115#endif
2116
2117static int match_home_imsm(struct supertype *st, char *homehost)
2118{
5115ca67
DW
2119 /* the imsm metadata format does not specify any host
2120 * identification information. We return -1 since we can never
2121 * confirm nor deny whether a given array is "meant" for this
148acb7b 2122 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
2123 * exclude member disks that do not belong, and we rely on
2124 * mdadm.conf to specify the arrays that should be assembled.
2125 * Auto-assembly may still pick up "foreign" arrays.
2126 */
cdddbdbc 2127
9362c1c8 2128 return -1;
cdddbdbc
DW
2129}
2130
2131static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2132{
51006d85
N
2133 /* The uuid returned here is used for:
2134 * uuid to put into bitmap file (Create, Grow)
2135 * uuid for backup header when saving critical section (Grow)
2136 * comparing uuids when re-adding a device into an array
2137 * In these cases the uuid required is that of the data-array,
2138 * not the device-set.
2139 * uuid to recognise same set when adding a missing device back
2140 * to an array. This is a uuid for the device-set.
1011e834 2141 *
51006d85
N
2142 * For each of these we can make do with a truncated
2143 * or hashed uuid rather than the original, as long as
2144 * everyone agrees.
2145 * In each case the uuid required is that of the data-array,
2146 * not the device-set.
43dad3d6 2147 */
51006d85
N
2148 /* imsm does not track uuid's so we synthesis one using sha1 on
2149 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 2150 * - the orig_family_num of the container
51006d85
N
2151 * - the index number of the volume
2152 * - the 'serial' number of the volume.
2153 * Hopefully these are all constant.
2154 */
2155 struct intel_super *super = st->sb;
43dad3d6 2156
51006d85
N
2157 char buf[20];
2158 struct sha1_ctx ctx;
2159 struct imsm_dev *dev = NULL;
148acb7b 2160 __u32 family_num;
51006d85 2161
148acb7b
DW
2162 /* some mdadm versions failed to set ->orig_family_num, in which
2163 * case fall back to ->family_num. orig_family_num will be
2164 * fixed up with the first metadata update.
2165 */
2166 family_num = super->anchor->orig_family_num;
2167 if (family_num == 0)
2168 family_num = super->anchor->family_num;
51006d85 2169 sha1_init_ctx(&ctx);
92bd8f8d 2170 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 2171 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
2172 if (super->current_vol >= 0)
2173 dev = get_imsm_dev(super, super->current_vol);
2174 if (dev) {
2175 __u32 vol = super->current_vol;
2176 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2177 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2178 }
2179 sha1_finish_ctx(&ctx, buf);
2180 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
2181}
2182
0d481d37 2183#if 0
4f5bc454
DW
2184static void
2185get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 2186{
cdddbdbc
DW
2187 __u8 *v = get_imsm_version(mpb);
2188 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2189 char major[] = { 0, 0, 0 };
2190 char minor[] = { 0 ,0, 0 };
2191 char patch[] = { 0, 0, 0 };
2192 char *ver_parse[] = { major, minor, patch };
2193 int i, j;
2194
2195 i = j = 0;
2196 while (*v != '\0' && v < end) {
2197 if (*v != '.' && j < 2)
2198 ver_parse[i][j++] = *v;
2199 else {
2200 i++;
2201 j = 0;
2202 }
2203 v++;
2204 }
2205
4f5bc454
DW
2206 *m = strtol(minor, NULL, 0);
2207 *p = strtol(patch, NULL, 0);
2208}
0d481d37 2209#endif
4f5bc454 2210
1e5c6983
DW
2211static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2212{
2213 /* migr_strip_size when repairing or initializing parity */
238c0a71 2214 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2215 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2216
2217 switch (get_imsm_raid_level(map)) {
2218 case 5:
2219 case 10:
2220 return chunk;
2221 default:
2222 return 128*1024 >> 9;
2223 }
2224}
2225
2226static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2227{
2228 /* migr_strip_size when rebuilding a degraded disk, no idea why
2229 * this is different than migr_strip_size_resync(), but it's good
2230 * to be compatible
2231 */
238c0a71 2232 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2233 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2234
2235 switch (get_imsm_raid_level(map)) {
2236 case 1:
2237 case 10:
2238 if (map->num_members % map->num_domains == 0)
2239 return 128*1024 >> 9;
2240 else
2241 return chunk;
2242 case 5:
2243 return max((__u32) 64*1024 >> 9, chunk);
2244 default:
2245 return 128*1024 >> 9;
2246 }
2247}
2248
2249static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2250{
238c0a71
AK
2251 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2252 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2253 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2254 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2255
2256 return max((__u32) 1, hi_chunk / lo_chunk);
2257}
2258
2259static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2260{
238c0a71 2261 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2262 int level = get_imsm_raid_level(lo);
2263
2264 if (level == 1 || level == 10) {
238c0a71 2265 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2266
2267 return hi->num_domains;
2268 } else
2269 return num_stripes_per_unit_resync(dev);
2270}
2271
98130f40 2272static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
2273{
2274 /* named 'imsm_' because raid0, raid1 and raid10
2275 * counter-intuitively have the same number of data disks
2276 */
98130f40 2277 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
2278
2279 switch (get_imsm_raid_level(map)) {
2280 case 0:
36fd8ccc
AK
2281 return map->num_members;
2282 break;
1e5c6983
DW
2283 case 1:
2284 case 10:
36fd8ccc 2285 return map->num_members/2;
1e5c6983
DW
2286 case 5:
2287 return map->num_members - 1;
2288 default:
1ade5cc1 2289 dprintf("unsupported raid level\n");
1e5c6983
DW
2290 return 0;
2291 }
2292}
2293
2294static __u32 parity_segment_depth(struct imsm_dev *dev)
2295{
238c0a71 2296 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2297 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2298
2299 switch(get_imsm_raid_level(map)) {
2300 case 1:
2301 case 10:
2302 return chunk * map->num_domains;
2303 case 5:
2304 return chunk * map->num_members;
2305 default:
2306 return chunk;
2307 }
2308}
2309
2310static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2311{
238c0a71 2312 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
2313 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2314 __u32 strip = block / chunk;
2315
2316 switch (get_imsm_raid_level(map)) {
2317 case 1:
2318 case 10: {
2319 __u32 vol_strip = (strip * map->num_domains) + 1;
2320 __u32 vol_stripe = vol_strip / map->num_members;
2321
2322 return vol_stripe * chunk + block % chunk;
2323 } case 5: {
2324 __u32 stripe = strip / (map->num_members - 1);
2325
2326 return stripe * chunk + block % chunk;
2327 }
2328 default:
2329 return 0;
2330 }
2331}
2332
c47b0ff6
AK
2333static __u64 blocks_per_migr_unit(struct intel_super *super,
2334 struct imsm_dev *dev)
1e5c6983
DW
2335{
2336 /* calculate the conversion factor between per member 'blocks'
2337 * (md/{resync,rebuild}_start) and imsm migration units, return
2338 * 0 for the 'not migrating' and 'unsupported migration' cases
2339 */
2340 if (!dev->vol.migr_state)
2341 return 0;
2342
2343 switch (migr_type(dev)) {
c47b0ff6
AK
2344 case MIGR_GEN_MIGR: {
2345 struct migr_record *migr_rec = super->migr_rec;
2346 return __le32_to_cpu(migr_rec->blocks_per_unit);
2347 }
1e5c6983
DW
2348 case MIGR_VERIFY:
2349 case MIGR_REPAIR:
2350 case MIGR_INIT: {
238c0a71 2351 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1e5c6983
DW
2352 __u32 stripes_per_unit;
2353 __u32 blocks_per_unit;
2354 __u32 parity_depth;
2355 __u32 migr_chunk;
2356 __u32 block_map;
2357 __u32 block_rel;
2358 __u32 segment;
2359 __u32 stripe;
2360 __u8 disks;
2361
2362 /* yes, this is really the translation of migr_units to
2363 * per-member blocks in the 'resync' case
2364 */
2365 stripes_per_unit = num_stripes_per_unit_resync(dev);
2366 migr_chunk = migr_strip_blocks_resync(dev);
238c0a71 2367 disks = imsm_num_data_members(dev, MAP_0);
1e5c6983 2368 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2369 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2370 segment = blocks_per_unit / stripe;
2371 block_rel = blocks_per_unit - segment * stripe;
2372 parity_depth = parity_segment_depth(dev);
2373 block_map = map_migr_block(dev, block_rel);
2374 return block_map + parity_depth * segment;
2375 }
2376 case MIGR_REBUILD: {
2377 __u32 stripes_per_unit;
2378 __u32 migr_chunk;
2379
2380 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2381 migr_chunk = migr_strip_blocks_rebuild(dev);
2382 return migr_chunk * stripes_per_unit;
2383 }
1e5c6983
DW
2384 case MIGR_STATE_CHANGE:
2385 default:
2386 return 0;
2387 }
2388}
2389
c2c087e6
DW
2390static int imsm_level_to_layout(int level)
2391{
2392 switch (level) {
2393 case 0:
2394 case 1:
2395 return 0;
2396 case 5:
2397 case 6:
a380c027 2398 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2399 case 10:
c92a2527 2400 return 0x102;
c2c087e6 2401 }
a18a888e 2402 return UnSet;
c2c087e6
DW
2403}
2404
8e59f3d8
AK
2405/*******************************************************************************
2406 * Function: read_imsm_migr_rec
2407 * Description: Function reads imsm migration record from last sector of disk
2408 * Parameters:
2409 * fd : disk descriptor
2410 * super : metadata info
2411 * Returns:
2412 * 0 : success,
2413 * -1 : fail
2414 ******************************************************************************/
2415static int read_imsm_migr_rec(int fd, struct intel_super *super)
2416{
2417 int ret_val = -1;
2418 unsigned long long dsize;
2419
2420 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2421 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
e7b84f9d
N
2422 pr_err("Cannot seek to anchor block: %s\n",
2423 strerror(errno));
8e59f3d8
AK
2424 goto out;
2425 }
17a4eaf9
AK
2426 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2427 MIGR_REC_BUF_SIZE) {
e7b84f9d
N
2428 pr_err("Cannot read migr record block: %s\n",
2429 strerror(errno));
8e59f3d8
AK
2430 goto out;
2431 }
2432 ret_val = 0;
2433
2434out:
2435 return ret_val;
2436}
2437
3136abe5
AK
2438static struct imsm_dev *imsm_get_device_during_migration(
2439 struct intel_super *super)
2440{
2441
2442 struct intel_dev *dv;
2443
2444 for (dv = super->devlist; dv; dv = dv->next) {
2445 if (is_gen_migration(dv->dev))
2446 return dv->dev;
2447 }
2448 return NULL;
2449}
2450
8e59f3d8
AK
2451/*******************************************************************************
2452 * Function: load_imsm_migr_rec
2453 * Description: Function reads imsm migration record (it is stored at the last
2454 * sector of disk)
2455 * Parameters:
2456 * super : imsm internal array info
2457 * info : general array info
2458 * Returns:
2459 * 0 : success
2460 * -1 : fail
4c965cc9 2461 * -2 : no migration in progress
8e59f3d8
AK
2462 ******************************************************************************/
2463static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2464{
2465 struct mdinfo *sd;
594dc1b8 2466 struct dl *dl;
8e59f3d8
AK
2467 char nm[30];
2468 int retval = -1;
2469 int fd = -1;
3136abe5 2470 struct imsm_dev *dev;
594dc1b8 2471 struct imsm_map *map;
b4ab44d8 2472 int slot = -1;
3136abe5
AK
2473
2474 /* find map under migration */
2475 dev = imsm_get_device_during_migration(super);
2476 /* nothing to load,no migration in progress?
2477 */
2478 if (dev == NULL)
4c965cc9 2479 return -2;
44bfe6df 2480 map = get_imsm_map(dev, MAP_0);
8e59f3d8
AK
2481
2482 if (info) {
2483 for (sd = info->devs ; sd ; sd = sd->next) {
3136abe5
AK
2484 /* skip spare and failed disks
2485 */
2486 if (sd->disk.raid_disk < 0)
2487 continue;
8e59f3d8 2488 /* read only from one of the first two slots */
3136abe5
AK
2489 if (map)
2490 slot = get_imsm_disk_slot(map,
2491 sd->disk.raid_disk);
2492 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8 2493 continue;
3136abe5 2494
8e59f3d8
AK
2495 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2496 fd = dev_open(nm, O_RDONLY);
2497 if (fd >= 0)
2498 break;
2499 }
2500 }
2501 if (fd < 0) {
2502 for (dl = super->disks; dl; dl = dl->next) {
3136abe5
AK
2503 /* skip spare and failed disks
2504 */
2505 if (dl->index < 0)
2506 continue;
8e59f3d8 2507 /* read only from one of the first two slots */
3136abe5
AK
2508 if (map)
2509 slot = get_imsm_disk_slot(map, dl->index);
2510 if ((map == NULL) || (slot > 1) || (slot < 0))
8e59f3d8
AK
2511 continue;
2512 sprintf(nm, "%d:%d", dl->major, dl->minor);
2513 fd = dev_open(nm, O_RDONLY);
2514 if (fd >= 0)
2515 break;
2516 }
2517 }
2518 if (fd < 0)
2519 goto out;
2520 retval = read_imsm_migr_rec(fd, super);
2521
2522out:
2523 if (fd >= 0)
2524 close(fd);
2525 return retval;
2526}
2527
9e2d750d 2528#ifndef MDASSEMBLE
c17608ea
AK
2529/*******************************************************************************
2530 * function: imsm_create_metadata_checkpoint_update
2531 * Description: It creates update for checkpoint change.
2532 * Parameters:
2533 * super : imsm internal array info
2534 * u : pointer to prepared update
2535 * Returns:
2536 * Uptate length.
2537 * If length is equal to 0, input pointer u contains no update
2538 ******************************************************************************/
2539static int imsm_create_metadata_checkpoint_update(
2540 struct intel_super *super,
2541 struct imsm_update_general_migration_checkpoint **u)
2542{
2543
2544 int update_memory_size = 0;
2545
1ade5cc1 2546 dprintf("(enter)\n");
c17608ea
AK
2547
2548 if (u == NULL)
2549 return 0;
2550 *u = NULL;
2551
2552 /* size of all update data without anchor */
2553 update_memory_size =
2554 sizeof(struct imsm_update_general_migration_checkpoint);
2555
503975b9 2556 *u = xcalloc(1, update_memory_size);
c17608ea 2557 if (*u == NULL) {
1ade5cc1 2558 dprintf("error: cannot get memory\n");
c17608ea
AK
2559 return 0;
2560 }
2561 (*u)->type = update_general_migration_checkpoint;
2562 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
1ade5cc1 2563 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
c17608ea
AK
2564
2565 return update_memory_size;
2566}
2567
c17608ea
AK
2568static void imsm_update_metadata_locally(struct supertype *st,
2569 void *buf, int len);
2570
687629c2
AK
2571/*******************************************************************************
2572 * Function: write_imsm_migr_rec
2573 * Description: Function writes imsm migration record
2574 * (at the last sector of disk)
2575 * Parameters:
2576 * super : imsm internal array info
2577 * Returns:
2578 * 0 : success
2579 * -1 : if fail
2580 ******************************************************************************/
2581static int write_imsm_migr_rec(struct supertype *st)
2582{
2583 struct intel_super *super = st->sb;
2584 unsigned long long dsize;
2585 char nm[30];
2586 int fd = -1;
2587 int retval = -1;
2588 struct dl *sd;
c17608ea
AK
2589 int len;
2590 struct imsm_update_general_migration_checkpoint *u;
3136abe5 2591 struct imsm_dev *dev;
594dc1b8 2592 struct imsm_map *map;
3136abe5
AK
2593
2594 /* find map under migration */
2595 dev = imsm_get_device_during_migration(super);
2596 /* if no migration, write buffer anyway to clear migr_record
2597 * on disk based on first available device
2598 */
2599 if (dev == NULL)
2600 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2601 super->current_vol);
2602
44bfe6df 2603 map = get_imsm_map(dev, MAP_0);
687629c2
AK
2604
2605 for (sd = super->disks ; sd ; sd = sd->next) {
b4ab44d8 2606 int slot = -1;
3136abe5
AK
2607
2608 /* skip failed and spare devices */
2609 if (sd->index < 0)
2610 continue;
687629c2 2611 /* write to 2 first slots only */
3136abe5
AK
2612 if (map)
2613 slot = get_imsm_disk_slot(map, sd->index);
2614 if ((map == NULL) || (slot > 1) || (slot < 0))
687629c2 2615 continue;
3136abe5 2616
687629c2
AK
2617 sprintf(nm, "%d:%d", sd->major, sd->minor);
2618 fd = dev_open(nm, O_RDWR);
2619 if (fd < 0)
2620 continue;
2621 get_dev_size(fd, NULL, &dsize);
17a4eaf9 2622 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
e7b84f9d
N
2623 pr_err("Cannot seek to anchor block: %s\n",
2624 strerror(errno));
687629c2
AK
2625 goto out;
2626 }
17a4eaf9
AK
2627 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2628 MIGR_REC_BUF_SIZE) {
e7b84f9d
N
2629 pr_err("Cannot write migr record block: %s\n",
2630 strerror(errno));
687629c2
AK
2631 goto out;
2632 }
2633 close(fd);
2634 fd = -1;
2635 }
c17608ea
AK
2636 /* update checkpoint information in metadata */
2637 len = imsm_create_metadata_checkpoint_update(super, &u);
2638
2639 if (len <= 0) {
2640 dprintf("imsm: Cannot prepare update\n");
2641 goto out;
2642 }
2643 /* update metadata locally */
2644 imsm_update_metadata_locally(st, u, len);
2645 /* and possibly remotely */
2646 if (st->update_tail) {
2647 append_metadata_update(st, u, len);
2648 /* during reshape we do all work inside metadata handler
2649 * manage_reshape(), so metadata update has to be triggered
2650 * insida it
2651 */
2652 flush_metadata_updates(st);
2653 st->update_tail = &st->updates;
2654 } else
2655 free(u);
687629c2
AK
2656
2657 retval = 0;
2658 out:
2659 if (fd >= 0)
2660 close(fd);
2661 return retval;
2662}
9e2d750d 2663#endif /* MDASSEMBLE */
687629c2 2664
e2962bfc
AK
2665/* spare/missing disks activations are not allowe when
2666 * array/container performs reshape operation, because
2667 * all arrays in container works on the same disks set
2668 */
2669int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2670{
2671 int rv = 0;
2672 struct intel_dev *i_dev;
2673 struct imsm_dev *dev;
2674
2675 /* check whole container
2676 */
2677 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2678 dev = i_dev->dev;
3ad25638 2679 if (is_gen_migration(dev)) {
e2962bfc
AK
2680 /* No repair during any migration in container
2681 */
2682 rv = 1;
2683 break;
2684 }
2685 }
2686 return rv;
2687}
c41e00b2
AK
2688static unsigned long long imsm_component_size_aligment_check(int level,
2689 int chunk_size,
2690 unsigned long long component_size)
2691{
2692 unsigned int component_size_alligment;
2693
2694 /* check component size aligment
2695 */
2696 component_size_alligment = component_size % (chunk_size/512);
2697
1ade5cc1 2698 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
c41e00b2
AK
2699 level, chunk_size, component_size,
2700 component_size_alligment);
2701
2702 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2703 dprintf("imsm: reported component size alligned from %llu ",
2704 component_size);
2705 component_size -= component_size_alligment;
1ade5cc1 2706 dprintf_cont("to %llu (%i).\n",
c41e00b2
AK
2707 component_size, component_size_alligment);
2708 }
2709
2710 return component_size;
2711}
e2962bfc 2712
a5d85af7 2713static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2714{
2715 struct intel_super *super = st->sb;
c47b0ff6 2716 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2717 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
238c0a71
AK
2718 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2719 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
b335e593 2720 struct imsm_map *map_to_analyse = map;
efb30e7f 2721 struct dl *dl;
a5d85af7 2722 int map_disks = info->array.raid_disks;
bf5a934a 2723
95eeceeb 2724 memset(info, 0, sizeof(*info));
b335e593
AK
2725 if (prev_map)
2726 map_to_analyse = prev_map;
2727
ca0748fa 2728 dl = super->current_disk;
9894ec0d 2729
bf5a934a 2730 info->container_member = super->current_vol;
cd0430a1 2731 info->array.raid_disks = map->num_members;
b335e593 2732 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2733 info->array.layout = imsm_level_to_layout(info->array.level);
2734 info->array.md_minor = -1;
2735 info->array.ctime = 0;
2736 info->array.utime = 0;
b335e593
AK
2737 info->array.chunk_size =
2738 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2739 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2740 info->custom_array_size = __le32_to_cpu(dev->size_high);
2741 info->custom_array_size <<= 32;
2742 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2743 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2744
3f510843 2745 if (is_gen_migration(dev)) {
3f83228a 2746 info->reshape_active = 1;
b335e593
AK
2747 info->new_level = get_imsm_raid_level(map);
2748 info->new_layout = imsm_level_to_layout(info->new_level);
2749 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2750 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2751 if (info->delta_disks) {
2752 /* this needs to be applied to every array
2753 * in the container.
2754 */
81219e70 2755 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2756 }
3f83228a
N
2757 /* We shape information that we give to md might have to be
2758 * modify to cope with md's requirement for reshaping arrays.
2759 * For example, when reshaping a RAID0, md requires it to be
2760 * presented as a degraded RAID4.
2761 * Also if a RAID0 is migrating to a RAID5 we need to specify
2762 * the array as already being RAID5, but the 'before' layout
2763 * is a RAID4-like layout.
2764 */
2765 switch (info->array.level) {
2766 case 0:
2767 switch(info->new_level) {
2768 case 0:
2769 /* conversion is happening as RAID4 */
2770 info->array.level = 4;
2771 info->array.raid_disks += 1;
2772 break;
2773 case 5:
2774 /* conversion is happening as RAID5 */
2775 info->array.level = 5;
2776 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2777 info->delta_disks -= 1;
2778 break;
2779 default:
2780 /* FIXME error message */
2781 info->array.level = UnSet;
2782 break;
2783 }
2784 break;
2785 }
b335e593
AK
2786 } else {
2787 info->new_level = UnSet;
2788 info->new_layout = UnSet;
2789 info->new_chunk = info->array.chunk_size;
3f83228a 2790 info->delta_disks = 0;
b335e593 2791 }
ca0748fa 2792
efb30e7f
DW
2793 if (dl) {
2794 info->disk.major = dl->major;
2795 info->disk.minor = dl->minor;
ca0748fa 2796 info->disk.number = dl->index;
656b6b5a
N
2797 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2798 dl->index);
efb30e7f 2799 }
bf5a934a 2800
5551b113
CA
2801 info->data_offset = pba_of_lba0(map_to_analyse);
2802 info->component_size = blocks_per_member(map_to_analyse);
139dae11 2803
c41e00b2
AK
2804 info->component_size = imsm_component_size_aligment_check(
2805 info->array.level,
2806 info->array.chunk_size,
2807 info->component_size);
139dae11 2808
301406c9 2809 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2810 info->recovery_start = MaxSector;
bf5a934a 2811
d2e6d5d6 2812 info->reshape_progress = 0;
b6796ce1 2813 info->resync_start = MaxSector;
b9172665
AK
2814 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2815 dev->vol.dirty) &&
2816 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2817 info->resync_start = 0;
b6796ce1
AK
2818 }
2819 if (dev->vol.migr_state) {
1e5c6983
DW
2820 switch (migr_type(dev)) {
2821 case MIGR_REPAIR:
2822 case MIGR_INIT: {
c47b0ff6
AK
2823 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2824 dev);
1e5c6983
DW
2825 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2826
2827 info->resync_start = blocks_per_unit * units;
2828 break;
2829 }
d2e6d5d6 2830 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2831 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2832 dev);
2833 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2834 unsigned long long array_blocks;
2835 int used_disks;
d2e6d5d6 2836
befb629b
AK
2837 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2838 (units <
2839 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2840 (super->migr_rec->rec_status ==
2841 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2842 units++;
2843
d2e6d5d6 2844 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2845
7a862a02 2846 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
19986c72
MB
2847 (unsigned long long)units,
2848 (unsigned long long)blocks_per_unit,
2849 info->reshape_progress);
75156c46 2850
238c0a71 2851 used_disks = imsm_num_data_members(dev, MAP_1);
75156c46 2852 if (used_disks > 0) {
5551b113 2853 array_blocks = blocks_per_member(map) *
75156c46
AK
2854 used_disks;
2855 /* round array size down to closest MB
2856 */
2857 info->custom_array_size = (array_blocks
2858 >> SECT_PER_MB_SHIFT)
2859 << SECT_PER_MB_SHIFT;
2860 }
d2e6d5d6 2861 }
1e5c6983
DW
2862 case MIGR_VERIFY:
2863 /* we could emulate the checkpointing of
2864 * 'sync_action=check' migrations, but for now
2865 * we just immediately complete them
2866 */
2867 case MIGR_REBUILD:
2868 /* this is handled by container_content_imsm() */
1e5c6983
DW
2869 case MIGR_STATE_CHANGE:
2870 /* FIXME handle other migrations */
2871 default:
2872 /* we are not dirty, so... */
2873 info->resync_start = MaxSector;
2874 }
b6796ce1 2875 }
301406c9
DW
2876
2877 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2878 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2879
f35f2525
N
2880 info->array.major_version = -1;
2881 info->array.minor_version = -2;
4dd2df09 2882 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
a67dd8cc 2883 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2884 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2885
2886 if (dmap) {
2887 int i, j;
2888 for (i=0; i<map_disks; i++) {
2889 dmap[i] = 0;
2890 if (i < info->array.raid_disks) {
2891 struct imsm_disk *dsk;
238c0a71 2892 j = get_imsm_disk_idx(dev, i, MAP_X);
a5d85af7
N
2893 dsk = get_imsm_disk(super, j);
2894 if (dsk && (dsk->status & CONFIGURED_DISK))
2895 dmap[i] = 1;
2896 }
2897 }
2898 }
81ac8b4d 2899}
bf5a934a 2900
3b451610
AK
2901static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2902 int failed, int look_in_map);
2903
2904static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2905 int look_in_map);
2906
b4ab44d8 2907#ifndef MDASSEMBLE
3b451610
AK
2908static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2909{
2910 if (is_gen_migration(dev)) {
2911 int failed;
2912 __u8 map_state;
2913 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2914
2915 failed = imsm_count_failed(super, dev, MAP_1);
238c0a71 2916 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3b451610
AK
2917 if (map2->map_state != map_state) {
2918 map2->map_state = map_state;
2919 super->updates_pending++;
2920 }
2921 }
2922}
b4ab44d8 2923#endif
97b4d0e9
DW
2924
2925static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2926{
2927 struct dl *d;
2928
2929 for (d = super->missing; d; d = d->next)
2930 if (d->index == index)
2931 return &d->disk;
2932 return NULL;
2933}
2934
a5d85af7 2935static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2936{
2937 struct intel_super *super = st->sb;
4f5bc454 2938 struct imsm_disk *disk;
a5d85af7 2939 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2940 int max_enough = -1;
2941 int i;
2942 struct imsm_super *mpb;
4f5bc454 2943
bf5a934a 2944 if (super->current_vol >= 0) {
a5d85af7 2945 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2946 return;
2947 }
95eeceeb 2948 memset(info, 0, sizeof(*info));
d23fe947
DW
2949
2950 /* Set raid_disks to zero so that Assemble will always pull in valid
2951 * spares
2952 */
2953 info->array.raid_disks = 0;
cdddbdbc
DW
2954 info->array.level = LEVEL_CONTAINER;
2955 info->array.layout = 0;
2956 info->array.md_minor = -1;
1011e834 2957 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2958 info->array.utime = 0;
2959 info->array.chunk_size = 0;
2960
2961 info->disk.major = 0;
2962 info->disk.minor = 0;
cdddbdbc 2963 info->disk.raid_disk = -1;
c2c087e6 2964 info->reshape_active = 0;
f35f2525
N
2965 info->array.major_version = -1;
2966 info->array.minor_version = -2;
c2c087e6 2967 strcpy(info->text_version, "imsm");
a67dd8cc 2968 info->safe_mode_delay = 0;
c2c087e6
DW
2969 info->disk.number = -1;
2970 info->disk.state = 0;
c5afc314 2971 info->name[0] = 0;
921d9e16 2972 info->recovery_start = MaxSector;
3ad25638 2973 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2974
97b4d0e9 2975 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2976 mpb = super->anchor;
97b4d0e9 2977
ab3cb6b3
N
2978 for (i = 0; i < mpb->num_raid_devs; i++) {
2979 struct imsm_dev *dev = get_imsm_dev(super, i);
2980 int failed, enough, j, missing = 0;
2981 struct imsm_map *map;
2982 __u8 state;
97b4d0e9 2983
3b451610
AK
2984 failed = imsm_count_failed(super, dev, MAP_0);
2985 state = imsm_check_degraded(super, dev, failed, MAP_0);
238c0a71 2986 map = get_imsm_map(dev, MAP_0);
ab3cb6b3
N
2987
2988 /* any newly missing disks?
2989 * (catches single-degraded vs double-degraded)
2990 */
2991 for (j = 0; j < map->num_members; j++) {
238c0a71 2992 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
ab3cb6b3
N
2993 __u32 idx = ord_to_idx(ord);
2994
2995 if (!(ord & IMSM_ORD_REBUILD) &&
2996 get_imsm_missing(super, idx)) {
2997 missing = 1;
2998 break;
2999 }
97b4d0e9 3000 }
ab3cb6b3
N
3001
3002 if (state == IMSM_T_STATE_FAILED)
3003 enough = -1;
3004 else if (state == IMSM_T_STATE_DEGRADED &&
3005 (state != map->map_state || missing))
3006 enough = 0;
3007 else /* we're normal, or already degraded */
3008 enough = 1;
d2bde6d3
AK
3009 if (is_gen_migration(dev) && missing) {
3010 /* during general migration we need all disks
3011 * that process is running on.
3012 * No new missing disk is allowed.
3013 */
3014 max_enough = -1;
3015 enough = -1;
3016 /* no more checks necessary
3017 */
3018 break;
3019 }
ab3cb6b3
N
3020 /* in the missing/failed disk case check to see
3021 * if at least one array is runnable
3022 */
3023 max_enough = max(max_enough, enough);
3024 }
1ade5cc1 3025 dprintf("enough: %d\n", max_enough);
ab3cb6b3 3026 info->container_enough = max_enough;
97b4d0e9 3027
4a04ec6c 3028 if (super->disks) {
14e8215b
DW
3029 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3030
b9f594fe 3031 disk = &super->disks->disk;
5551b113 3032 info->data_offset = total_blocks(&super->disks->disk) - reserved;
14e8215b 3033 info->component_size = reserved;
25ed7e59 3034 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
3035 /* we don't change info->disk.raid_disk here because
3036 * this state will be finalized in mdmon after we have
3037 * found the 'most fresh' version of the metadata
3038 */
25ed7e59
DW
3039 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3040 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 3041 }
a575e2a7
DW
3042
3043 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3044 * ->compare_super may have updated the 'num_raid_devs' field for spares
3045 */
3046 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 3047 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
3048 else
3049 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
3050
3051 /* I don't know how to compute 'map' on imsm, so use safe default */
3052 if (map) {
3053 int i;
3054 for (i = 0; i < map_disks; i++)
3055 map[i] = 1;
3056 }
3057
cdddbdbc
DW
3058}
3059
5c4cd5da
AC
3060/* allocates memory and fills disk in mdinfo structure
3061 * for each disk in array */
3062struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3063{
594dc1b8 3064 struct mdinfo *mddev;
5c4cd5da
AC
3065 struct intel_super *super = st->sb;
3066 struct imsm_disk *disk;
3067 int count = 0;
3068 struct dl *dl;
3069 if (!super || !super->disks)
3070 return NULL;
3071 dl = super->disks;
503975b9 3072 mddev = xcalloc(1, sizeof(*mddev));
5c4cd5da
AC
3073 while (dl) {
3074 struct mdinfo *tmp;
3075 disk = &dl->disk;
503975b9 3076 tmp = xcalloc(1, sizeof(*tmp));
5c4cd5da
AC
3077 if (mddev->devs)
3078 tmp->next = mddev->devs;
3079 mddev->devs = tmp;
3080 tmp->disk.number = count++;
3081 tmp->disk.major = dl->major;
3082 tmp->disk.minor = dl->minor;
3083 tmp->disk.state = is_configured(disk) ?
3084 (1 << MD_DISK_ACTIVE) : 0;
3085 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3086 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3087 tmp->disk.raid_disk = -1;
3088 dl = dl->next;
3089 }
3090 return mddev;
3091}
3092
cdddbdbc
DW
3093static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3094 char *update, char *devname, int verbose,
3095 int uuid_set, char *homehost)
3096{
f352c545
DW
3097 /* For 'assemble' and 'force' we need to return non-zero if any
3098 * change was made. For others, the return value is ignored.
3099 * Update options are:
3100 * force-one : This device looks a bit old but needs to be included,
3101 * update age info appropriately.
3102 * assemble: clear any 'faulty' flag to allow this device to
3103 * be assembled.
3104 * force-array: Array is degraded but being forced, mark it clean
3105 * if that will be needed to assemble it.
3106 *
3107 * newdev: not used ????
3108 * grow: Array has gained a new device - this is currently for
3109 * linear only
3110 * resync: mark as dirty so a resync will happen.
3111 * name: update the name - preserving the homehost
6e46bf34 3112 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
3113 *
3114 * Following are not relevant for this imsm:
3115 * sparc2.2 : update from old dodgey metadata
3116 * super-minor: change the preferred_minor number
3117 * summaries: update redundant counters.
f352c545
DW
3118 * homehost: update the recorded homehost
3119 * _reshape_progress: record new reshape_progress position.
3120 */
6e46bf34
DW
3121 int rv = 1;
3122 struct intel_super *super = st->sb;
3123 struct imsm_super *mpb;
f352c545 3124
6e46bf34
DW
3125 /* we can only update container info */
3126 if (!super || super->current_vol >= 0 || !super->anchor)
3127 return 1;
3128
3129 mpb = super->anchor;
3130
81a5b4f5
N
3131 if (strcmp(update, "uuid") == 0) {
3132 /* We take this to mean that the family_num should be updated.
3133 * However that is much smaller than the uuid so we cannot really
3134 * allow an explicit uuid to be given. And it is hard to reliably
3135 * know if one was.
3136 * So if !uuid_set we know the current uuid is random and just used
3137 * the first 'int' and copy it to the other 3 positions.
3138 * Otherwise we require the 4 'int's to be the same as would be the
3139 * case if we are using a random uuid. So an explicit uuid will be
3140 * accepted as long as all for ints are the same... which shouldn't hurt
6e46bf34 3141 */
81a5b4f5
N
3142 if (!uuid_set) {
3143 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
6e46bf34 3144 rv = 0;
81a5b4f5
N
3145 } else {
3146 if (info->uuid[0] != info->uuid[1] ||
3147 info->uuid[1] != info->uuid[2] ||
3148 info->uuid[2] != info->uuid[3])
3149 rv = -1;
3150 else
3151 rv = 0;
6e46bf34 3152 }
81a5b4f5
N
3153 if (rv == 0)
3154 mpb->orig_family_num = info->uuid[0];
6e46bf34
DW
3155 } else if (strcmp(update, "assemble") == 0)
3156 rv = 0;
3157 else
1e2b2765 3158 rv = -1;
f352c545 3159
6e46bf34
DW
3160 /* successful update? recompute checksum */
3161 if (rv == 0)
3162 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
3163
3164 return rv;
cdddbdbc
DW
3165}
3166
c2c087e6 3167static size_t disks_to_mpb_size(int disks)
cdddbdbc 3168{
c2c087e6 3169 size_t size;
cdddbdbc 3170
c2c087e6
DW
3171 size = sizeof(struct imsm_super);
3172 size += (disks - 1) * sizeof(struct imsm_disk);
3173 size += 2 * sizeof(struct imsm_dev);
3174 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3175 size += (4 - 2) * sizeof(struct imsm_map);
3176 /* 4 possible disk_ord_tbl's */
3177 size += 4 * (disks - 1) * sizeof(__u32);
3178
3179 return size;
3180}
3181
387fcd59
N
3182static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3183 unsigned long long data_offset)
c2c087e6
DW
3184{
3185 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3186 return 0;
3187
3188 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
3189}
3190
ba2de7ba
DW
3191static void free_devlist(struct intel_super *super)
3192{
3193 struct intel_dev *dv;
3194
3195 while (super->devlist) {
3196 dv = super->devlist->next;
3197 free(super->devlist->dev);
3198 free(super->devlist);
3199 super->devlist = dv;
3200 }
3201}
3202
3203static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3204{
3205 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3206}
3207
cdddbdbc
DW
3208static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3209{
3210 /*
3211 * return:
3212 * 0 same, or first was empty, and second was copied
3213 * 1 second had wrong number
3214 * 2 wrong uuid
3215 * 3 wrong other info
3216 */
3217 struct intel_super *first = st->sb;
3218 struct intel_super *sec = tst->sb;
3219
5d500228
N
3220 if (!first) {
3221 st->sb = tst->sb;
3222 tst->sb = NULL;
3223 return 0;
3224 }
8603ea6f
LM
3225 /* in platform dependent environment test if the disks
3226 * use the same Intel hba
cb8f6859 3227 * If not on Intel hba at all, allow anything.
8603ea6f 3228 */
6b781d33
AP
3229 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3230 if (first->hba->type != sec->hba->type) {
8603ea6f 3231 fprintf(stderr,
6b781d33
AP
3232 "HBAs of devices do not match %s != %s\n",
3233 get_sys_dev_type(first->hba->type),
3234 get_sys_dev_type(sec->hba->type));
3235 return 3;
3236 }
3237 if (first->orom != sec->orom) {
3238 fprintf(stderr,
3239 "HBAs of devices do not match %s != %s\n",
3240 first->hba->pci_id, sec->hba->pci_id);
8603ea6f
LM
3241 return 3;
3242 }
3243 }
cdddbdbc 3244
d23fe947
DW
3245 /* if an anchor does not have num_raid_devs set then it is a free
3246 * floating spare
3247 */
3248 if (first->anchor->num_raid_devs > 0 &&
3249 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
3250 /* Determine if these disks might ever have been
3251 * related. Further disambiguation can only take place
3252 * in load_super_imsm_all
3253 */
3254 __u32 first_family = first->anchor->orig_family_num;
3255 __u32 sec_family = sec->anchor->orig_family_num;
3256
f796af5d
DW
3257 if (memcmp(first->anchor->sig, sec->anchor->sig,
3258 MAX_SIGNATURE_LENGTH) != 0)
3259 return 3;
3260
a2b97981
DW
3261 if (first_family == 0)
3262 first_family = first->anchor->family_num;
3263 if (sec_family == 0)
3264 sec_family = sec->anchor->family_num;
3265
3266 if (first_family != sec_family)
d23fe947 3267 return 3;
f796af5d 3268
d23fe947 3269 }
cdddbdbc 3270
3e372e5a
DW
3271 /* if 'first' is a spare promote it to a populated mpb with sec's
3272 * family number
3273 */
3274 if (first->anchor->num_raid_devs == 0 &&
3275 sec->anchor->num_raid_devs > 0) {
78d30f94 3276 int i;
ba2de7ba
DW
3277 struct intel_dev *dv;
3278 struct imsm_dev *dev;
78d30f94
DW
3279
3280 /* we need to copy raid device info from sec if an allocation
3281 * fails here we don't associate the spare
3282 */
3283 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
503975b9
N
3284 dv = xmalloc(sizeof(*dv));
3285 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
ba2de7ba
DW
3286 dv->dev = dev;
3287 dv->index = i;
3288 dv->next = first->devlist;
3289 first->devlist = dv;
78d30f94 3290 }
709743c5 3291 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
3292 /* allocation failure */
3293 free_devlist(first);
e12b3daa 3294 pr_err("imsm: failed to associate spare\n");
ba2de7ba 3295 return 3;
78d30f94 3296 }
3e372e5a 3297 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 3298 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 3299 first->anchor->family_num = sec->anchor->family_num;
ac6449be 3300 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
3301 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3302 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
3303 }
3304
cdddbdbc
DW
3305 return 0;
3306}
3307
0030e8d6
DW
3308static void fd2devname(int fd, char *name)
3309{
3310 struct stat st;
3311 char path[256];
33a6535d 3312 char dname[PATH_MAX];
0030e8d6
DW
3313 char *nm;
3314 int rv;
3315
3316 name[0] = '\0';
3317 if (fstat(fd, &st) != 0)
3318 return;
3319 sprintf(path, "/sys/dev/block/%d:%d",
3320 major(st.st_rdev), minor(st.st_rdev));
3321
9cf014ec 3322 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
3323 if (rv <= 0)
3324 return;
9587c373 3325
0030e8d6
DW
3326 dname[rv] = '\0';
3327 nm = strrchr(dname, '/');
7897de29
JS
3328 if (nm) {
3329 nm++;
3330 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3331 }
0030e8d6
DW
3332}
3333
cdddbdbc
DW
3334extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3335
3336static int imsm_read_serial(int fd, char *devname,
3337 __u8 serial[MAX_RAID_SERIAL_LEN])
3338{
3339 unsigned char scsi_serial[255];
cdddbdbc
DW
3340 int rv;
3341 int rsp_len;
1f24f035 3342 int len;
316e2bf4
DW
3343 char *dest;
3344 char *src;
3345 char *rsp_buf;
3346 int i;
cdddbdbc
DW
3347
3348 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 3349
f9ba0ff1
DW
3350 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3351
40ebbb9c 3352 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
3353 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3354 fd2devname(fd, (char *) serial);
0030e8d6
DW
3355 return 0;
3356 }
3357
cdddbdbc
DW
3358 if (rv != 0) {
3359 if (devname)
e7b84f9d
N
3360 pr_err("Failed to retrieve serial for %s\n",
3361 devname);
cdddbdbc
DW
3362 return rv;
3363 }
3364
3365 rsp_len = scsi_serial[3];
03cd4cc8
DW
3366 if (!rsp_len) {
3367 if (devname)
e7b84f9d
N
3368 pr_err("Failed to retrieve serial for %s\n",
3369 devname);
03cd4cc8
DW
3370 return 2;
3371 }
1f24f035 3372 rsp_buf = (char *) &scsi_serial[4];
5c3db629 3373
316e2bf4
DW
3374 /* trim all whitespace and non-printable characters and convert
3375 * ':' to ';'
3376 */
3377 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3378 src = &rsp_buf[i];
3379 if (*src > 0x20) {
3380 /* ':' is reserved for use in placeholder serial
3381 * numbers for missing disks
3382 */
3383 if (*src == ':')
3384 *dest++ = ';';
3385 else
3386 *dest++ = *src;
3387 }
3388 }
3389 len = dest - rsp_buf;
3390 dest = rsp_buf;
3391
3392 /* truncate leading characters */
3393 if (len > MAX_RAID_SERIAL_LEN) {
3394 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 3395 len = MAX_RAID_SERIAL_LEN;
316e2bf4 3396 }
5c3db629 3397
5c3db629 3398 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 3399 memcpy(serial, dest, len);
cdddbdbc
DW
3400
3401 return 0;
3402}
3403
1f24f035
DW
3404static int serialcmp(__u8 *s1, __u8 *s2)
3405{
3406 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3407}
3408
3409static void serialcpy(__u8 *dest, __u8 *src)
3410{
3411 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3412}
3413
54c2c1ea
DW
3414static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3415{
3416 struct dl *dl;
3417
3418 for (dl = super->disks; dl; dl = dl->next)
3419 if (serialcmp(dl->serial, serial) == 0)
3420 break;
3421
3422 return dl;
3423}
3424
a2b97981
DW
3425static struct imsm_disk *
3426__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3427{
3428 int i;
3429
3430 for (i = 0; i < mpb->num_disks; i++) {
3431 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3432
3433 if (serialcmp(disk->serial, serial) == 0) {
3434 if (idx)
3435 *idx = i;
3436 return disk;
3437 }
3438 }
3439
3440 return NULL;
3441}
3442
cdddbdbc
DW
3443static int
3444load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3445{
a2b97981 3446 struct imsm_disk *disk;
cdddbdbc
DW
3447 struct dl *dl;
3448 struct stat stb;
cdddbdbc 3449 int rv;
a2b97981 3450 char name[40];
d23fe947
DW
3451 __u8 serial[MAX_RAID_SERIAL_LEN];
3452
3453 rv = imsm_read_serial(fd, devname, serial);
3454
3455 if (rv != 0)
3456 return 2;
3457
503975b9 3458 dl = xcalloc(1, sizeof(*dl));
cdddbdbc 3459
a2b97981
DW
3460 fstat(fd, &stb);
3461 dl->major = major(stb.st_rdev);
3462 dl->minor = minor(stb.st_rdev);
3463 dl->next = super->disks;
3464 dl->fd = keep_fd ? fd : -1;
3465 assert(super->disks == NULL);
3466 super->disks = dl;
3467 serialcpy(dl->serial, serial);
3468 dl->index = -2;
3469 dl->e = NULL;
3470 fd2devname(fd, name);
3471 if (devname)
503975b9 3472 dl->devname = xstrdup(devname);
a2b97981 3473 else
503975b9 3474 dl->devname = xstrdup(name);
cdddbdbc 3475
d23fe947 3476 /* look up this disk's index in the current anchor */
a2b97981
DW
3477 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3478 if (disk) {
3479 dl->disk = *disk;
3480 /* only set index on disks that are a member of a
3481 * populated contianer, i.e. one with raid_devs
3482 */
3483 if (is_failed(&dl->disk))
3f6efecc 3484 dl->index = -2;
a2b97981
DW
3485 else if (is_spare(&dl->disk))
3486 dl->index = -1;
3f6efecc
DW
3487 }
3488
949c47a0
DW
3489 return 0;
3490}
3491
0e600426 3492#ifndef MDASSEMBLE
0c046afd
DW
3493/* When migrating map0 contains the 'destination' state while map1
3494 * contains the current state. When not migrating map0 contains the
3495 * current state. This routine assumes that map[0].map_state is set to
3496 * the current array state before being called.
3497 *
3498 * Migration is indicated by one of the following states
3499 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3500 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3501 * map1state=unitialized)
1484e727 3502 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3503 * map1state=normal)
e3bba0e0 3504 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3505 * map1state=degraded)
8e59f3d8
AK
3506 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3507 * map1state=normal)
0c046afd 3508 */
8e59f3d8
AK
3509static void migrate(struct imsm_dev *dev, struct intel_super *super,
3510 __u8 to_state, int migr_type)
3393c6af 3511{
0c046afd 3512 struct imsm_map *dest;
238c0a71 3513 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3393c6af 3514
0c046afd 3515 dev->vol.migr_state = 1;
1484e727 3516 set_migr_type(dev, migr_type);
f8f603f1 3517 dev->vol.curr_migr_unit = 0;
238c0a71 3518 dest = get_imsm_map(dev, MAP_1);
0c046afd 3519
0556e1a2 3520 /* duplicate and then set the target end state in map[0] */
3393c6af 3521 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3522 if ((migr_type == MIGR_REBUILD) ||
3523 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3524 __u32 ord;
3525 int i;
3526
3527 for (i = 0; i < src->num_members; i++) {
3528 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3529 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3530 }
3531 }
3532
8e59f3d8
AK
3533 if (migr_type == MIGR_GEN_MIGR)
3534 /* Clear migration record */
3535 memset(super->migr_rec, 0, sizeof(struct migr_record));
3536
0c046afd 3537 src->map_state = to_state;
949c47a0 3538}
f8f603f1 3539
809da78e
AK
3540static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3541 __u8 map_state)
f8f603f1 3542{
238c0a71
AK
3543 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3544 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3545 MAP_0 : MAP_1);
28bce06f 3546 int i, j;
0556e1a2
DW
3547
3548 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3549 * completed in the last migration.
3550 *
28bce06f 3551 * FIXME add support for raid-level-migration
0556e1a2 3552 */
809da78e
AK
3553 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3554 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3555 /* when final map state is other than expected
3556 * merge maps (not for migration)
3557 */
3558 int failed;
3559
3560 for (i = 0; i < prev->num_members; i++)
3561 for (j = 0; j < map->num_members; j++)
3562 /* during online capacity expansion
3563 * disks position can be changed
3564 * if takeover is used
3565 */
3566 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3567 ord_to_idx(prev->disk_ord_tbl[i])) {
3568 map->disk_ord_tbl[j] |=
3569 prev->disk_ord_tbl[i];
3570 break;
3571 }
3572 failed = imsm_count_failed(super, dev, MAP_0);
3573 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3574 }
f8f603f1
DW
3575
3576 dev->vol.migr_state = 0;
ea672ee1 3577 set_migr_type(dev, 0);
f8f603f1
DW
3578 dev->vol.curr_migr_unit = 0;
3579 map->map_state = map_state;
3580}
0e600426 3581#endif
949c47a0
DW
3582
3583static int parse_raid_devices(struct intel_super *super)
3584{
3585 int i;
3586 struct imsm_dev *dev_new;
4d7b1503 3587 size_t len, len_migr;
401d313b 3588 size_t max_len = 0;
4d7b1503
DW
3589 size_t space_needed = 0;
3590 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3591
3592 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3593 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3594 struct intel_dev *dv;
949c47a0 3595
4d7b1503
DW
3596 len = sizeof_imsm_dev(dev_iter, 0);
3597 len_migr = sizeof_imsm_dev(dev_iter, 1);
3598 if (len_migr > len)
3599 space_needed += len_migr - len;
ca9de185 3600
503975b9 3601 dv = xmalloc(sizeof(*dv));
401d313b
AK
3602 if (max_len < len_migr)
3603 max_len = len_migr;
3604 if (max_len > len_migr)
3605 space_needed += max_len - len_migr;
503975b9 3606 dev_new = xmalloc(max_len);
949c47a0 3607 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3608 dv->dev = dev_new;
3609 dv->index = i;
3610 dv->next = super->devlist;
3611 super->devlist = dv;
949c47a0 3612 }
cdddbdbc 3613
4d7b1503
DW
3614 /* ensure that super->buf is large enough when all raid devices
3615 * are migrating
3616 */
3617 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3618 void *buf;
3619
3620 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3621 if (posix_memalign(&buf, 512, len) != 0)
3622 return 1;
3623
1f45a8ad
DW
3624 memcpy(buf, super->buf, super->len);
3625 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3626 free(super->buf);
3627 super->buf = buf;
3628 super->len = len;
3629 }
ca9de185 3630
cdddbdbc
DW
3631 return 0;
3632}
3633
604b746f
JD
3634/* retrieve a pointer to the bbm log which starts after all raid devices */
3635struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3636{
3637 void *ptr = NULL;
3638
3639 if (__le32_to_cpu(mpb->bbm_log_size)) {
3640 ptr = mpb;
3641 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1011e834 3642 }
604b746f
JD
3643
3644 return ptr;
3645}
3646
e2f41b2c
AK
3647/*******************************************************************************
3648 * Function: check_mpb_migr_compatibility
3649 * Description: Function checks for unsupported migration features:
3650 * - migration optimization area (pba_of_lba0)
3651 * - descending reshape (ascending_migr)
3652 * Parameters:
3653 * super : imsm metadata information
3654 * Returns:
3655 * 0 : migration is compatible
3656 * -1 : migration is not compatible
3657 ******************************************************************************/
3658int check_mpb_migr_compatibility(struct intel_super *super)
3659{
3660 struct imsm_map *map0, *map1;
3661 struct migr_record *migr_rec = super->migr_rec;
3662 int i;
3663
3664 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3665 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3666
3667 if (dev_iter &&
3668 dev_iter->vol.migr_state == 1 &&
3669 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3670 /* This device is migrating */
238c0a71
AK
3671 map0 = get_imsm_map(dev_iter, MAP_0);
3672 map1 = get_imsm_map(dev_iter, MAP_1);
5551b113 3673 if (pba_of_lba0(map0) != pba_of_lba0(map1))
e2f41b2c
AK
3674 /* migration optimization area was used */
3675 return -1;
3676 if (migr_rec->ascending_migr == 0
3677 && migr_rec->dest_depth_per_unit > 0)
3678 /* descending reshape not supported yet */
3679 return -1;
3680 }
3681 }
3682 return 0;
3683}
3684
d23fe947 3685static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3686
cdddbdbc 3687/* load_imsm_mpb - read matrix metadata
f2f5c343 3688 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3689 */
3690static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3691{
3692 unsigned long long dsize;
cdddbdbc
DW
3693 unsigned long long sectors;
3694 struct stat;
6416d527 3695 struct imsm_super *anchor;
cdddbdbc
DW
3696 __u32 check_sum;
3697
cdddbdbc 3698 get_dev_size(fd, NULL, &dsize);
64436f06
N
3699 if (dsize < 1024) {
3700 if (devname)
e7b84f9d
N
3701 pr_err("%s: device to small for imsm\n",
3702 devname);
64436f06
N
3703 return 1;
3704 }
cdddbdbc
DW
3705
3706 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3707 if (devname)
e7b84f9d
N
3708 pr_err("Cannot seek to anchor block on %s: %s\n",
3709 devname, strerror(errno));
cdddbdbc
DW
3710 return 1;
3711 }
3712
949c47a0 3713 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e 3714 if (devname)
7a862a02 3715 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
ad97895e
DW
3716 return 1;
3717 }
949c47a0 3718 if (read(fd, anchor, 512) != 512) {
cdddbdbc 3719 if (devname)
e7b84f9d
N
3720 pr_err("Cannot read anchor block on %s: %s\n",
3721 devname, strerror(errno));
6416d527 3722 free(anchor);
cdddbdbc
DW
3723 return 1;
3724 }
3725
6416d527 3726 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc 3727 if (devname)
e7b84f9d 3728 pr_err("no IMSM anchor on %s\n", devname);
6416d527 3729 free(anchor);
cdddbdbc
DW
3730 return 2;
3731 }
3732
d23fe947 3733 __free_imsm(super, 0);
f2f5c343
LM
3734 /* reload capability and hba */
3735
3736 /* capability and hba must be updated with new super allocation */
d424212e 3737 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3738 super->len = ROUND_UP(anchor->mpb_size, 512);
3739 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc 3740 if (devname)
e7b84f9d
N
3741 pr_err("unable to allocate %zu byte mpb buffer\n",
3742 super->len);
6416d527 3743 free(anchor);
cdddbdbc
DW
3744 return 2;
3745 }
949c47a0 3746 memcpy(super->buf, anchor, 512);
cdddbdbc 3747
6416d527
NB
3748 sectors = mpb_sectors(anchor) - 1;
3749 free(anchor);
8e59f3d8 3750
17a4eaf9 3751 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
1ade5cc1 3752 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
3753 free(super->buf);
3754 return 2;
3755 }
51d83f5d 3756 super->clean_migration_record_by_mdmon = 0;
8e59f3d8 3757
949c47a0 3758 if (!sectors) {
ecf45690
DW
3759 check_sum = __gen_imsm_checksum(super->anchor);
3760 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3761 if (devname)
e7b84f9d
N
3762 pr_err("IMSM checksum %x != %x on %s\n",
3763 check_sum,
3764 __le32_to_cpu(super->anchor->check_sum),
3765 devname);
ecf45690
DW
3766 return 2;
3767 }
3768
a2b97981 3769 return 0;
949c47a0 3770 }
cdddbdbc
DW
3771
3772 /* read the extended mpb */
3773 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3774 if (devname)
e7b84f9d
N
3775 pr_err("Cannot seek to extended mpb on %s: %s\n",
3776 devname, strerror(errno));
cdddbdbc
DW
3777 return 1;
3778 }
3779
f21e18ca 3780 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc 3781 if (devname)
e7b84f9d
N
3782 pr_err("Cannot read extended mpb on %s: %s\n",
3783 devname, strerror(errno));
cdddbdbc
DW
3784 return 2;
3785 }
3786
949c47a0
DW
3787 check_sum = __gen_imsm_checksum(super->anchor);
3788 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc 3789 if (devname)
e7b84f9d
N
3790 pr_err("IMSM checksum %x != %x on %s\n",
3791 check_sum, __le32_to_cpu(super->anchor->check_sum),
3792 devname);
db575f3b 3793 return 3;
cdddbdbc
DW
3794 }
3795
604b746f
JD
3796 /* FIXME the BBM log is disk specific so we cannot use this global
3797 * buffer for all disks. Ok for now since we only look at the global
3798 * bbm_log_size parameter to gate assembly
3799 */
3800 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3801
a2b97981
DW
3802 return 0;
3803}
3804
8e59f3d8
AK
3805static int read_imsm_migr_rec(int fd, struct intel_super *super);
3806
97f81ee2
CA
3807/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3808static void clear_hi(struct intel_super *super)
3809{
3810 struct imsm_super *mpb = super->anchor;
3811 int i, n;
3812 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3813 return;
3814 for (i = 0; i < mpb->num_disks; ++i) {
3815 struct imsm_disk *disk = &mpb->disk[i];
3816 disk->total_blocks_hi = 0;
3817 }
3818 for (i = 0; i < mpb->num_raid_devs; ++i) {
3819 struct imsm_dev *dev = get_imsm_dev(super, i);
3820 if (!dev)
3821 return;
3822 for (n = 0; n < 2; ++n) {
3823 struct imsm_map *map = get_imsm_map(dev, n);
3824 if (!map)
3825 continue;
3826 map->pba_of_lba0_hi = 0;
3827 map->blocks_per_member_hi = 0;
3828 map->num_data_stripes_hi = 0;
3829 }
3830 }
3831}
3832
a2b97981
DW
3833static int
3834load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3835{
3836 int err;
3837
3838 err = load_imsm_mpb(fd, super, devname);
3839 if (err)
3840 return err;
3841 err = load_imsm_disk(fd, super, devname, keep_fd);
3842 if (err)
3843 return err;
3844 err = parse_raid_devices(super);
97f81ee2 3845 clear_hi(super);
a2b97981 3846 return err;
cdddbdbc
DW
3847}
3848
ae6aad82
DW
3849static void __free_imsm_disk(struct dl *d)
3850{
3851 if (d->fd >= 0)
3852 close(d->fd);
3853 if (d->devname)
3854 free(d->devname);
0dcecb2e
DW
3855 if (d->e)
3856 free(d->e);
ae6aad82
DW
3857 free(d);
3858
3859}
1a64be56 3860
cdddbdbc
DW
3861static void free_imsm_disks(struct intel_super *super)
3862{
47ee5a45 3863 struct dl *d;
cdddbdbc 3864
47ee5a45
DW
3865 while (super->disks) {
3866 d = super->disks;
cdddbdbc 3867 super->disks = d->next;
ae6aad82 3868 __free_imsm_disk(d);
cdddbdbc 3869 }
cb82edca
AK
3870 while (super->disk_mgmt_list) {
3871 d = super->disk_mgmt_list;
3872 super->disk_mgmt_list = d->next;
3873 __free_imsm_disk(d);
3874 }
47ee5a45
DW
3875 while (super->missing) {
3876 d = super->missing;
3877 super->missing = d->next;
3878 __free_imsm_disk(d);
3879 }
3880
cdddbdbc
DW
3881}
3882
9ca2c81c 3883/* free all the pieces hanging off of a super pointer */
d23fe947 3884static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3885{
88654014
LM
3886 struct intel_hba *elem, *next;
3887
9ca2c81c 3888 if (super->buf) {
949c47a0 3889 free(super->buf);
9ca2c81c
DW
3890 super->buf = NULL;
3891 }
f2f5c343
LM
3892 /* unlink capability description */
3893 super->orom = NULL;
8e59f3d8
AK
3894 if (super->migr_rec_buf) {
3895 free(super->migr_rec_buf);
3896 super->migr_rec_buf = NULL;
3897 }
d23fe947
DW
3898 if (free_disks)
3899 free_imsm_disks(super);
ba2de7ba 3900 free_devlist(super);
88654014
LM
3901 elem = super->hba;
3902 while (elem) {
3903 if (elem->path)
3904 free((void *)elem->path);
3905 next = elem->next;
3906 free(elem);
3907 elem = next;
88c32bb1 3908 }
88654014 3909 super->hba = NULL;
cdddbdbc
DW
3910}
3911
9ca2c81c
DW
3912static void free_imsm(struct intel_super *super)
3913{
d23fe947 3914 __free_imsm(super, 1);
9ca2c81c
DW
3915 free(super);
3916}
cdddbdbc
DW
3917
3918static void free_super_imsm(struct supertype *st)
3919{
3920 struct intel_super *super = st->sb;
3921
3922 if (!super)
3923 return;
3924
3925 free_imsm(super);
3926 st->sb = NULL;
3927}
3928
49133e57 3929static struct intel_super *alloc_super(void)
c2c087e6 3930{
503975b9 3931 struct intel_super *super = xcalloc(1, sizeof(*super));
c2c087e6 3932
503975b9
N
3933 super->current_vol = -1;
3934 super->create_offset = ~((unsigned long long) 0);
c2c087e6
DW
3935 return super;
3936}
3937
f0f5a016
LM
3938/*
3939 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3940 */
d424212e 3941static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3942{
3943 struct sys_dev *hba_name;
3944 int rv = 0;
3945
3946 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3947 super->orom = NULL;
f0f5a016
LM
3948 super->hba = NULL;
3949 return 0;
3950 }
3951 hba_name = find_disk_attached_hba(fd, NULL);
3952 if (!hba_name) {
d424212e 3953 if (devname)
e7b84f9d
N
3954 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3955 devname);
f0f5a016
LM
3956 return 1;
3957 }
3958 rv = attach_hba_to_super(super, hba_name);
3959 if (rv == 2) {
d424212e
N
3960 if (devname) {
3961 struct intel_hba *hba = super->hba;
f0f5a016 3962
60f0f54d
PB
3963 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
3964 " but the container is assigned to Intel(R) %s %s (",
d424212e 3965 devname,
614902f6 3966 get_sys_dev_type(hba_name->type),
60f0f54d 3967 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
f0f5a016 3968 hba_name->pci_id ? : "Err!",
60f0f54d
PB
3969 get_sys_dev_type(super->hba->type),
3970 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
f0f5a016 3971
f0f5a016
LM
3972 while (hba) {
3973 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3974 if (hba->next)
3975 fprintf(stderr, ", ");
3976 hba = hba->next;
3977 }
6b781d33 3978 fprintf(stderr, ").\n"
60f0f54d
PB
3979 " Mixing devices attached to different %s is not allowed.\n",
3980 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
f0f5a016 3981 }
f0f5a016
LM
3982 return 2;
3983 }
6b781d33 3984 super->orom = find_imsm_capability(hba_name);
f2f5c343
LM
3985 if (!super->orom)
3986 return 3;
614902f6 3987
f0f5a016
LM
3988 return 0;
3989}
3990
47ee5a45
DW
3991/* find_missing - helper routine for load_super_imsm_all that identifies
3992 * disks that have disappeared from the system. This routine relies on
3993 * the mpb being uptodate, which it is at load time.
3994 */
3995static int find_missing(struct intel_super *super)
3996{
3997 int i;
3998 struct imsm_super *mpb = super->anchor;
3999 struct dl *dl;
4000 struct imsm_disk *disk;
47ee5a45
DW
4001
4002 for (i = 0; i < mpb->num_disks; i++) {
4003 disk = __get_imsm_disk(mpb, i);
54c2c1ea 4004 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
4005 if (dl)
4006 continue;
47ee5a45 4007
503975b9 4008 dl = xmalloc(sizeof(*dl));
47ee5a45
DW
4009 dl->major = 0;
4010 dl->minor = 0;
4011 dl->fd = -1;
503975b9 4012 dl->devname = xstrdup("missing");
47ee5a45
DW
4013 dl->index = i;
4014 serialcpy(dl->serial, disk->serial);
4015 dl->disk = *disk;
689c9bf3 4016 dl->e = NULL;
47ee5a45
DW
4017 dl->next = super->missing;
4018 super->missing = dl;
4019 }
4020
4021 return 0;
4022}
4023
3960e579 4024#ifndef MDASSEMBLE
a2b97981
DW
4025static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4026{
4027 struct intel_disk *idisk = disk_list;
4028
4029 while (idisk) {
4030 if (serialcmp(idisk->disk.serial, serial) == 0)
4031 break;
4032 idisk = idisk->next;
4033 }
4034
4035 return idisk;
4036}
4037
4038static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4039 struct intel_super *super,
4040 struct intel_disk **disk_list)
4041{
4042 struct imsm_disk *d = &super->disks->disk;
4043 struct imsm_super *mpb = super->anchor;
4044 int i, j;
4045
4046 for (i = 0; i < tbl_size; i++) {
4047 struct imsm_super *tbl_mpb = table[i]->anchor;
4048 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4049
4050 if (tbl_mpb->family_num == mpb->family_num) {
4051 if (tbl_mpb->check_sum == mpb->check_sum) {
1ade5cc1
N
4052 dprintf("mpb from %d:%d matches %d:%d\n",
4053 super->disks->major,
a2b97981
DW
4054 super->disks->minor,
4055 table[i]->disks->major,
4056 table[i]->disks->minor);
4057 break;
4058 }
4059
4060 if (((is_configured(d) && !is_configured(tbl_d)) ||
4061 is_configured(d) == is_configured(tbl_d)) &&
4062 tbl_mpb->generation_num < mpb->generation_num) {
4063 /* current version of the mpb is a
4064 * better candidate than the one in
4065 * super_table, but copy over "cross
4066 * generational" status
4067 */
4068 struct intel_disk *idisk;
4069
1ade5cc1
N
4070 dprintf("mpb from %d:%d replaces %d:%d\n",
4071 super->disks->major,
a2b97981
DW
4072 super->disks->minor,
4073 table[i]->disks->major,
4074 table[i]->disks->minor);
4075
4076 idisk = disk_list_get(tbl_d->serial, *disk_list);
4077 if (idisk && is_failed(&idisk->disk))
4078 tbl_d->status |= FAILED_DISK;
4079 break;
4080 } else {
4081 struct intel_disk *idisk;
4082 struct imsm_disk *disk;
4083
4084 /* tbl_mpb is more up to date, but copy
4085 * over cross generational status before
4086 * returning
4087 */
4088 disk = __serial_to_disk(d->serial, mpb, NULL);
4089 if (disk && is_failed(disk))
4090 d->status |= FAILED_DISK;
4091
4092 idisk = disk_list_get(d->serial, *disk_list);
4093 if (idisk) {
4094 idisk->owner = i;
4095 if (disk && is_configured(disk))
4096 idisk->disk.status |= CONFIGURED_DISK;
4097 }
4098
1ade5cc1
N
4099 dprintf("mpb from %d:%d prefer %d:%d\n",
4100 super->disks->major,
a2b97981
DW
4101 super->disks->minor,
4102 table[i]->disks->major,
4103 table[i]->disks->minor);
4104
4105 return tbl_size;
4106 }
4107 }
4108 }
4109
4110 if (i >= tbl_size)
4111 table[tbl_size++] = super;
4112 else
4113 table[i] = super;
4114
4115 /* update/extend the merged list of imsm_disk records */
4116 for (j = 0; j < mpb->num_disks; j++) {
4117 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4118 struct intel_disk *idisk;
4119
4120 idisk = disk_list_get(disk->serial, *disk_list);
4121 if (idisk) {
4122 idisk->disk.status |= disk->status;
4123 if (is_configured(&idisk->disk) ||
4124 is_failed(&idisk->disk))
4125 idisk->disk.status &= ~(SPARE_DISK);
4126 } else {
503975b9 4127 idisk = xcalloc(1, sizeof(*idisk));
a2b97981
DW
4128 idisk->owner = IMSM_UNKNOWN_OWNER;
4129 idisk->disk = *disk;
4130 idisk->next = *disk_list;
4131 *disk_list = idisk;
4132 }
4133
4134 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4135 idisk->owner = i;
4136 }
4137
4138 return tbl_size;
4139}
4140
4141static struct intel_super *
4142validate_members(struct intel_super *super, struct intel_disk *disk_list,
4143 const int owner)
4144{
4145 struct imsm_super *mpb = super->anchor;
4146 int ok_count = 0;
4147 int i;
4148
4149 for (i = 0; i < mpb->num_disks; i++) {
4150 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4151 struct intel_disk *idisk;
4152
4153 idisk = disk_list_get(disk->serial, disk_list);
4154 if (idisk) {
4155 if (idisk->owner == owner ||
4156 idisk->owner == IMSM_UNKNOWN_OWNER)
4157 ok_count++;
4158 else
1ade5cc1
N
4159 dprintf("'%.16s' owner %d != %d\n",
4160 disk->serial, idisk->owner,
a2b97981
DW
4161 owner);
4162 } else {
1ade5cc1
N
4163 dprintf("unknown disk %x [%d]: %.16s\n",
4164 __le32_to_cpu(mpb->family_num), i,
a2b97981
DW
4165 disk->serial);
4166 break;
4167 }
4168 }
4169
4170 if (ok_count == mpb->num_disks)
4171 return super;
4172 return NULL;
4173}
4174
4175static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4176{
4177 struct intel_super *s;
4178
4179 for (s = super_list; s; s = s->next) {
4180 if (family_num != s->anchor->family_num)
4181 continue;
e12b3daa 4182 pr_err("Conflict, offlining family %#x on '%s'\n",
a2b97981
DW
4183 __le32_to_cpu(family_num), s->disks->devname);
4184 }
4185}
4186
4187static struct intel_super *
4188imsm_thunderdome(struct intel_super **super_list, int len)
4189{
4190 struct intel_super *super_table[len];
4191 struct intel_disk *disk_list = NULL;
4192 struct intel_super *champion, *spare;
4193 struct intel_super *s, **del;
4194 int tbl_size = 0;
4195 int conflict;
4196 int i;
4197
4198 memset(super_table, 0, sizeof(super_table));
4199 for (s = *super_list; s; s = s->next)
4200 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4201
4202 for (i = 0; i < tbl_size; i++) {
4203 struct imsm_disk *d;
4204 struct intel_disk *idisk;
4205 struct imsm_super *mpb = super_table[i]->anchor;
4206
4207 s = super_table[i];
4208 d = &s->disks->disk;
4209
4210 /* 'd' must appear in merged disk list for its
4211 * configuration to be valid
4212 */
4213 idisk = disk_list_get(d->serial, disk_list);
4214 if (idisk && idisk->owner == i)
4215 s = validate_members(s, disk_list, i);
4216 else
4217 s = NULL;
4218
4219 if (!s)
1ade5cc1
N
4220 dprintf("marking family: %#x from %d:%d offline\n",
4221 mpb->family_num,
a2b97981
DW
4222 super_table[i]->disks->major,
4223 super_table[i]->disks->minor);
4224 super_table[i] = s;
4225 }
4226
4227 /* This is where the mdadm implementation differs from the Windows
4228 * driver which has no strict concept of a container. We can only
4229 * assemble one family from a container, so when returning a prodigal
4230 * array member to this system the code will not be able to disambiguate
4231 * the container contents that should be assembled ("foreign" versus
4232 * "local"). It requires user intervention to set the orig_family_num
4233 * to a new value to establish a new container. The Windows driver in
4234 * this situation fixes up the volume name in place and manages the
4235 * foreign array as an independent entity.
4236 */
4237 s = NULL;
4238 spare = NULL;
4239 conflict = 0;
4240 for (i = 0; i < tbl_size; i++) {
4241 struct intel_super *tbl_ent = super_table[i];
4242 int is_spare = 0;
4243
4244 if (!tbl_ent)
4245 continue;
4246
4247 if (tbl_ent->anchor->num_raid_devs == 0) {
4248 spare = tbl_ent;
4249 is_spare = 1;
4250 }
4251
4252 if (s && !is_spare) {
4253 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4254 conflict++;
4255 } else if (!s && !is_spare)
4256 s = tbl_ent;
4257 }
4258
4259 if (!s)
4260 s = spare;
4261 if (!s) {
4262 champion = NULL;
4263 goto out;
4264 }
4265 champion = s;
4266
4267 if (conflict)
7a862a02 4268 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
a2b97981
DW
4269 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4270
4271 /* collect all dl's onto 'champion', and update them to
4272 * champion's version of the status
4273 */
4274 for (s = *super_list; s; s = s->next) {
4275 struct imsm_super *mpb = champion->anchor;
4276 struct dl *dl = s->disks;
4277
4278 if (s == champion)
4279 continue;
4280
5d7b407a
CA
4281 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4282
a2b97981
DW
4283 for (i = 0; i < mpb->num_disks; i++) {
4284 struct imsm_disk *disk;
4285
4286 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4287 if (disk) {
4288 dl->disk = *disk;
4289 /* only set index on disks that are a member of
4290 * a populated contianer, i.e. one with
4291 * raid_devs
4292 */
4293 if (is_failed(&dl->disk))
4294 dl->index = -2;
4295 else if (is_spare(&dl->disk))
4296 dl->index = -1;
4297 break;
4298 }
4299 }
4300
4301 if (i >= mpb->num_disks) {
4302 struct intel_disk *idisk;
4303
4304 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 4305 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
4306 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4307 dl->index = -1;
4308 else {
4309 dl->index = -2;
4310 continue;
4311 }
4312 }
4313
4314 dl->next = champion->disks;
4315 champion->disks = dl;
4316 s->disks = NULL;
4317 }
4318
4319 /* delete 'champion' from super_list */
4320 for (del = super_list; *del; ) {
4321 if (*del == champion) {
4322 *del = (*del)->next;
4323 break;
4324 } else
4325 del = &(*del)->next;
4326 }
4327 champion->next = NULL;
4328
4329 out:
4330 while (disk_list) {
4331 struct intel_disk *idisk = disk_list;
4332
4333 disk_list = disk_list->next;
4334 free(idisk);
4335 }
4336
4337 return champion;
4338}
4339
9587c373
LM
4340static int
4341get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4dd2df09 4342static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373 4343 int major, int minor, int keep_fd);
ec50f7b6
LM
4344static int
4345get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4346 int *max, int keep_fd);
4347
cdddbdbc 4348static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
ec50f7b6
LM
4349 char *devname, struct md_list *devlist,
4350 int keep_fd)
cdddbdbc 4351{
a2b97981
DW
4352 struct intel_super *super_list = NULL;
4353 struct intel_super *super = NULL;
a2b97981 4354 int err = 0;
9587c373 4355 int i = 0;
dab4a513 4356
9587c373
LM
4357 if (fd >= 0)
4358 /* 'fd' is an opened container */
4359 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4360 else
ec50f7b6
LM
4361 /* get super block from devlist devices */
4362 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
9587c373 4363 if (err)
1602d52c 4364 goto error;
a2b97981
DW
4365 /* all mpbs enter, maybe one leaves */
4366 super = imsm_thunderdome(&super_list, i);
4367 if (!super) {
4368 err = 1;
4369 goto error;
cdddbdbc
DW
4370 }
4371
47ee5a45
DW
4372 if (find_missing(super) != 0) {
4373 free_imsm(super);
a2b97981
DW
4374 err = 2;
4375 goto error;
47ee5a45 4376 }
8e59f3d8
AK
4377
4378 /* load migration record */
4379 err = load_imsm_migr_rec(super, NULL);
4c965cc9
AK
4380 if (err == -1) {
4381 /* migration is in progress,
4382 * but migr_rec cannot be loaded,
4383 */
8e59f3d8
AK
4384 err = 4;
4385 goto error;
4386 }
e2f41b2c
AK
4387
4388 /* Check migration compatibility */
4c965cc9 4389 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
e7b84f9d 4390 pr_err("Unsupported migration detected");
e2f41b2c
AK
4391 if (devname)
4392 fprintf(stderr, " on %s\n", devname);
4393 else
4394 fprintf(stderr, " (IMSM).\n");
4395
4396 err = 5;
4397 goto error;
4398 }
4399
a2b97981
DW
4400 err = 0;
4401
4402 error:
4403 while (super_list) {
4404 struct intel_super *s = super_list;
4405
4406 super_list = super_list->next;
4407 free_imsm(s);
4408 }
9587c373 4409
a2b97981
DW
4410 if (err)
4411 return err;
f7e7067b 4412
cdddbdbc 4413 *sbp = super;
9587c373 4414 if (fd >= 0)
4dd2df09 4415 strcpy(st->container_devnm, fd2devnm(fd));
9587c373 4416 else
4dd2df09 4417 st->container_devnm[0] = 0;
a2b97981 4418 if (err == 0 && st->ss == NULL) {
bf5a934a 4419 st->ss = &super_imsm;
cdddbdbc
DW
4420 st->minor_version = 0;
4421 st->max_devs = IMSM_MAX_DEVICES;
4422 }
cdddbdbc
DW
4423 return 0;
4424}
2b959fbf 4425
ec50f7b6
LM
4426static int
4427get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4428 int *max, int keep_fd)
4429{
4430 struct md_list *tmpdev;
4431 int err = 0;
4432 int i = 0;
9587c373 4433
ec50f7b6
LM
4434 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4435 if (tmpdev->used != 1)
4436 continue;
4437 if (tmpdev->container == 1) {
ca9de185 4438 int lmax = 0;
ec50f7b6
LM
4439 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4440 if (fd < 0) {
e7b84f9d 4441 pr_err("cannot open device %s: %s\n",
ec50f7b6
LM
4442 tmpdev->devname, strerror(errno));
4443 err = 8;
4444 goto error;
4445 }
4446 err = get_sra_super_block(fd, super_list,
4447 tmpdev->devname, &lmax,
4448 keep_fd);
4449 i += lmax;
4450 close(fd);
4451 if (err) {
4452 err = 7;
4453 goto error;
4454 }
4455 } else {
4456 int major = major(tmpdev->st_rdev);
4457 int minor = minor(tmpdev->st_rdev);
4458 err = get_super_block(super_list,
4dd2df09 4459 NULL,
ec50f7b6
LM
4460 tmpdev->devname,
4461 major, minor,
4462 keep_fd);
4463 i++;
4464 if (err) {
4465 err = 6;
4466 goto error;
4467 }
4468 }
4469 }
4470 error:
4471 *max = i;
4472 return err;
4473}
9587c373 4474
4dd2df09 4475static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
9587c373
LM
4476 int major, int minor, int keep_fd)
4477{
594dc1b8 4478 struct intel_super *s;
9587c373
LM
4479 char nm[32];
4480 int dfd = -1;
9587c373
LM
4481 int err = 0;
4482 int retry;
4483
4484 s = alloc_super();
4485 if (!s) {
4486 err = 1;
4487 goto error;
4488 }
4489
4490 sprintf(nm, "%d:%d", major, minor);
4491 dfd = dev_open(nm, O_RDWR);
4492 if (dfd < 0) {
4493 err = 2;
4494 goto error;
4495 }
4496
cb8f6859 4497 find_intel_hba_capability(dfd, s, devname);
9587c373
LM
4498 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4499
4500 /* retry the load if we might have raced against mdmon */
4dd2df09 4501 if (err == 3 && devnm && mdmon_running(devnm))
9587c373
LM
4502 for (retry = 0; retry < 3; retry++) {
4503 usleep(3000);
4504 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4505 if (err != 3)
4506 break;
4507 }
4508 error:
4509 if (!err) {
4510 s->next = *super_list;
4511 *super_list = s;
4512 } else {
4513 if (s)
4514 free(s);
36614e95 4515 if (dfd >= 0)
9587c373
LM
4516 close(dfd);
4517 }
4518 if ((dfd >= 0) && (!keep_fd))
4519 close(dfd);
4520 return err;
4521
4522}
4523
4524static int
4525get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4526{
4527 struct mdinfo *sra;
4dd2df09 4528 char *devnm;
9587c373
LM
4529 struct mdinfo *sd;
4530 int err = 0;
4531 int i = 0;
4dd2df09 4532 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
9587c373
LM
4533 if (!sra)
4534 return 1;
4535
4536 if (sra->array.major_version != -1 ||
4537 sra->array.minor_version != -2 ||
4538 strcmp(sra->text_version, "imsm") != 0) {
4539 err = 1;
4540 goto error;
4541 }
4542 /* load all mpbs */
4dd2df09 4543 devnm = fd2devnm(fd);
9587c373 4544 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4dd2df09 4545 if (get_super_block(super_list, devnm, devname,
9587c373
LM
4546 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4547 err = 7;
4548 goto error;
4549 }
4550 }
4551 error:
4552 sysfs_free(sra);
4553 *max = i;
4554 return err;
4555}
4556
2b959fbf
N
4557static int load_container_imsm(struct supertype *st, int fd, char *devname)
4558{
ec50f7b6 4559 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
2b959fbf 4560}
cdddbdbc
DW
4561#endif
4562
4563static int load_super_imsm(struct supertype *st, int fd, char *devname)
4564{
4565 struct intel_super *super;
4566 int rv;
8a3544f8 4567 int retry;
cdddbdbc 4568
357ac106 4569 if (test_partition(fd))
691c6ee1
N
4570 /* IMSM not allowed on partitions */
4571 return 1;
4572
37424f13
DW
4573 free_super_imsm(st);
4574
49133e57 4575 super = alloc_super();
ea2bc72b
LM
4576 /* Load hba and capabilities if they exist.
4577 * But do not preclude loading metadata in case capabilities or hba are
4578 * non-compliant and ignore_hw_compat is set.
4579 */
d424212e 4580 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4581 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4582 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343 4583 if (devname)
e7b84f9d 4584 pr_err("No OROM/EFI properties for %s\n", devname);
f2f5c343
LM
4585 free_imsm(super);
4586 return 2;
4587 }
a2b97981 4588 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc 4589
8a3544f8
AP
4590 /* retry the load if we might have raced against mdmon */
4591 if (rv == 3) {
f96b1302
AP
4592 struct mdstat_ent *mdstat = NULL;
4593 char *name = fd2kname(fd);
4594
4595 if (name)
4596 mdstat = mdstat_by_component(name);
8a3544f8
AP
4597
4598 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4599 for (retry = 0; retry < 3; retry++) {
4600 usleep(3000);
4601 rv = load_and_parse_mpb(fd, super, devname, 0);
4602 if (rv != 3)
4603 break;
4604 }
4605 }
4606
4607 free_mdstat(mdstat);
4608 }
4609
cdddbdbc
DW
4610 if (rv) {
4611 if (devname)
7a862a02 4612 pr_err("Failed to load all information sections on %s\n", devname);
cdddbdbc
DW
4613 free_imsm(super);
4614 return rv;
4615 }
4616
4617 st->sb = super;
4618 if (st->ss == NULL) {
4619 st->ss = &super_imsm;
4620 st->minor_version = 0;
4621 st->max_devs = IMSM_MAX_DEVICES;
4622 }
8e59f3d8
AK
4623
4624 /* load migration record */
2e062e82
AK
4625 if (load_imsm_migr_rec(super, NULL) == 0) {
4626 /* Check for unsupported migration features */
4627 if (check_mpb_migr_compatibility(super) != 0) {
e7b84f9d 4628 pr_err("Unsupported migration detected");
2e062e82
AK
4629 if (devname)
4630 fprintf(stderr, " on %s\n", devname);
4631 else
4632 fprintf(stderr, " (IMSM).\n");
4633 return 3;
4634 }
e2f41b2c
AK
4635 }
4636
cdddbdbc
DW
4637 return 0;
4638}
4639
ef6ffade
DW
4640static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4641{
4642 if (info->level == 1)
4643 return 128;
4644 return info->chunk_size >> 9;
4645}
4646
5551b113
CA
4647static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4648 unsigned long long size)
fcfd9599 4649{
4025c288 4650 if (info->level == 1)
5551b113 4651 return size * 2;
4025c288 4652 else
5551b113 4653 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4654}
4655
4d1313e9
DW
4656static void imsm_update_version_info(struct intel_super *super)
4657{
4658 /* update the version and attributes */
4659 struct imsm_super *mpb = super->anchor;
4660 char *version;
4661 struct imsm_dev *dev;
4662 struct imsm_map *map;
4663 int i;
4664
4665 for (i = 0; i < mpb->num_raid_devs; i++) {
4666 dev = get_imsm_dev(super, i);
238c0a71 4667 map = get_imsm_map(dev, MAP_0);
4d1313e9
DW
4668 if (__le32_to_cpu(dev->size_high) > 0)
4669 mpb->attributes |= MPB_ATTRIB_2TB;
4670
4671 /* FIXME detect when an array spans a port multiplier */
4672 #if 0
4673 mpb->attributes |= MPB_ATTRIB_PM;
4674 #endif
4675
4676 if (mpb->num_raid_devs > 1 ||
4677 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4678 version = MPB_VERSION_ATTRIBS;
4679 switch (get_imsm_raid_level(map)) {
4680 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4681 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4682 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4683 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4684 }
4685 } else {
4686 if (map->num_members >= 5)
4687 version = MPB_VERSION_5OR6_DISK_ARRAY;
4688 else if (dev->status == DEV_CLONE_N_GO)
4689 version = MPB_VERSION_CNG;
4690 else if (get_imsm_raid_level(map) == 5)
4691 version = MPB_VERSION_RAID5;
4692 else if (map->num_members >= 3)
4693 version = MPB_VERSION_3OR4_DISK_ARRAY;
4694 else if (get_imsm_raid_level(map) == 1)
4695 version = MPB_VERSION_RAID1;
4696 else
4697 version = MPB_VERSION_RAID0;
4698 }
4699 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4700 }
4701}
4702
aa534678
DW
4703static int check_name(struct intel_super *super, char *name, int quiet)
4704{
4705 struct imsm_super *mpb = super->anchor;
4706 char *reason = NULL;
4707 int i;
4708
4709 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4710 reason = "must be 16 characters or less";
4711
4712 for (i = 0; i < mpb->num_raid_devs; i++) {
4713 struct imsm_dev *dev = get_imsm_dev(super, i);
4714
4715 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4716 reason = "already exists";
4717 break;
4718 }
4719 }
4720
4721 if (reason && !quiet)
e7b84f9d 4722 pr_err("imsm volume name %s\n", reason);
aa534678
DW
4723
4724 return !reason;
4725}
4726
8b353278
DW
4727static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4728 unsigned long long size, char *name,
83cd1e97
N
4729 char *homehost, int *uuid,
4730 long long data_offset)
cdddbdbc 4731{
c2c087e6
DW
4732 /* We are creating a volume inside a pre-existing container.
4733 * so st->sb is already set.
4734 */
4735 struct intel_super *super = st->sb;
949c47a0 4736 struct imsm_super *mpb = super->anchor;
ba2de7ba 4737 struct intel_dev *dv;
c2c087e6
DW
4738 struct imsm_dev *dev;
4739 struct imsm_vol *vol;
4740 struct imsm_map *map;
4741 int idx = mpb->num_raid_devs;
4742 int i;
4743 unsigned long long array_blocks;
2c092cad 4744 size_t size_old, size_new;
5551b113 4745 unsigned long long num_data_stripes;
cdddbdbc 4746
88c32bb1 4747 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
7a862a02 4748 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4749 return 0;
4750 }
4751
2c092cad
DW
4752 /* ensure the mpb is large enough for the new data */
4753 size_old = __le32_to_cpu(mpb->mpb_size);
4754 size_new = disks_to_mpb_size(info->nr_disks);
4755 if (size_new > size_old) {
4756 void *mpb_new;
4757 size_t size_round = ROUND_UP(size_new, 512);
4758
4759 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
e7b84f9d 4760 pr_err("could not allocate new mpb\n");
2c092cad
DW
4761 return 0;
4762 }
17a4eaf9
AK
4763 if (posix_memalign(&super->migr_rec_buf, 512,
4764 MIGR_REC_BUF_SIZE) != 0) {
1ade5cc1 4765 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4766 free(super->buf);
4767 free(super);
ea944c8f 4768 free(mpb_new);
8e59f3d8
AK
4769 return 0;
4770 }
2c092cad
DW
4771 memcpy(mpb_new, mpb, size_old);
4772 free(mpb);
4773 mpb = mpb_new;
949c47a0 4774 super->anchor = mpb_new;
2c092cad
DW
4775 mpb->mpb_size = __cpu_to_le32(size_new);
4776 memset(mpb_new + size_old, 0, size_round - size_old);
4777 }
bf5a934a 4778 super->current_vol = idx;
3960e579
DW
4779
4780 /* handle 'failed_disks' by either:
4781 * a) create dummy disk entries in the table if this the first
4782 * volume in the array. We add them here as this is the only
4783 * opportunity to add them. add_to_super_imsm_volume()
4784 * handles the non-failed disks and continues incrementing
4785 * mpb->num_disks.
4786 * b) validate that 'failed_disks' matches the current number
4787 * of missing disks if the container is populated
d23fe947 4788 */
3960e579 4789 if (super->current_vol == 0) {
d23fe947 4790 mpb->num_disks = 0;
3960e579
DW
4791 for (i = 0; i < info->failed_disks; i++) {
4792 struct imsm_disk *disk;
4793
4794 mpb->num_disks++;
4795 disk = __get_imsm_disk(mpb, i);
4796 disk->status = CONFIGURED_DISK | FAILED_DISK;
4797 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4798 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4799 "missing:%d", i);
4800 }
4801 find_missing(super);
4802 } else {
4803 int missing = 0;
4804 struct dl *d;
4805
4806 for (d = super->missing; d; d = d->next)
4807 missing++;
4808 if (info->failed_disks > missing) {
e7b84f9d 4809 pr_err("unable to add 'missing' disk to container\n");
3960e579
DW
4810 return 0;
4811 }
4812 }
5a038140 4813
aa534678
DW
4814 if (!check_name(super, name, 0))
4815 return 0;
503975b9
N
4816 dv = xmalloc(sizeof(*dv));
4817 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
c2c087e6 4818 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
e03640bd 4819 array_blocks = calc_array_size(info->level, info->raid_disks,
03bcbc65 4820 info->layout, info->chunk_size,
5551b113 4821 size * 2);
979d38be
DW
4822 /* round array size down to closest MB */
4823 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4824
c2c087e6
DW
4825 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4826 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4827 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4828 vol = &dev->vol;
4829 vol->migr_state = 0;
1484e727 4830 set_migr_type(dev, MIGR_INIT);
3960e579 4831 vol->dirty = !info->state;
f8f603f1 4832 vol->curr_migr_unit = 0;
238c0a71 4833 map = get_imsm_map(dev, MAP_0);
5551b113
CA
4834 set_pba_of_lba0(map, super->create_offset);
4835 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
ef6ffade 4836 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4837 map->failed_disk_num = ~0;
bf4442ab 4838 if (info->level > 0)
fffaf1ff
N
4839 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4840 : IMSM_T_STATE_UNINITIALIZED);
bf4442ab
AK
4841 else
4842 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4843 IMSM_T_STATE_NORMAL;
252d23c0 4844 map->ddf = 1;
ef6ffade
DW
4845
4846 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4847 free(dev);
4848 free(dv);
7a862a02 4849 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
ef6ffade
DW
4850 return 0;
4851 }
81062a36
DW
4852
4853 map->raid_level = info->level;
4d1313e9 4854 if (info->level == 10) {
c2c087e6 4855 map->raid_level = 1;
4d1313e9 4856 map->num_domains = info->raid_disks / 2;
81062a36
DW
4857 } else if (info->level == 1)
4858 map->num_domains = info->raid_disks;
4859 else
ff596308 4860 map->num_domains = 1;
81062a36 4861
5551b113
CA
4862 /* info->size is only int so use the 'size' parameter instead */
4863 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4864 num_data_stripes /= map->num_domains;
4865 set_num_data_stripes(map, num_data_stripes);
ef6ffade 4866
c2c087e6
DW
4867 map->num_members = info->raid_disks;
4868 for (i = 0; i < map->num_members; i++) {
4869 /* initialized in add_to_super */
4eb26970 4870 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4871 }
949c47a0 4872 mpb->num_raid_devs++;
ba2de7ba
DW
4873
4874 dv->dev = dev;
4875 dv->index = super->current_vol;
4876 dv->next = super->devlist;
4877 super->devlist = dv;
c2c087e6 4878
4d1313e9
DW
4879 imsm_update_version_info(super);
4880
c2c087e6 4881 return 1;
cdddbdbc
DW
4882}
4883
bf5a934a
DW
4884static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4885 unsigned long long size, char *name,
83cd1e97
N
4886 char *homehost, int *uuid,
4887 unsigned long long data_offset)
bf5a934a
DW
4888{
4889 /* This is primarily called by Create when creating a new array.
4890 * We will then get add_to_super called for each component, and then
4891 * write_init_super called to write it out to each device.
4892 * For IMSM, Create can create on fresh devices or on a pre-existing
4893 * array.
4894 * To create on a pre-existing array a different method will be called.
4895 * This one is just for fresh drives.
4896 */
4897 struct intel_super *super;
4898 struct imsm_super *mpb;
4899 size_t mpb_size;
4d1313e9 4900 char *version;
bf5a934a 4901
83cd1e97 4902 if (data_offset != INVALID_SECTORS) {
ed503f89 4903 pr_err("data-offset not supported by imsm\n");
83cd1e97
N
4904 return 0;
4905 }
4906
bf5a934a 4907 if (st->sb)
83cd1e97
N
4908 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4909 data_offset);
e683ca88
DW
4910
4911 if (info)
4912 mpb_size = disks_to_mpb_size(info->nr_disks);
4913 else
4914 mpb_size = 512;
bf5a934a 4915
49133e57 4916 super = alloc_super();
e683ca88 4917 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4918 free(super);
e683ca88
DW
4919 super = NULL;
4920 }
4921 if (!super) {
1ade5cc1 4922 pr_err("could not allocate superblock\n");
bf5a934a
DW
4923 return 0;
4924 }
17a4eaf9 4925 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
1ade5cc1 4926 pr_err("could not allocate migr_rec buffer\n");
8e59f3d8
AK
4927 free(super->buf);
4928 free(super);
4929 return 0;
4930 }
e683ca88 4931 memset(super->buf, 0, mpb_size);
ef649044 4932 mpb = super->buf;
e683ca88
DW
4933 mpb->mpb_size = __cpu_to_le32(mpb_size);
4934 st->sb = super;
4935
4936 if (info == NULL) {
4937 /* zeroing superblock */
4938 return 0;
4939 }
bf5a934a 4940
4d1313e9
DW
4941 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4942
4943 version = (char *) mpb->sig;
4944 strcpy(version, MPB_SIGNATURE);
4945 version += strlen(MPB_SIGNATURE);
4946 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4947
bf5a934a
DW
4948 return 1;
4949}
4950
0e600426 4951#ifndef MDASSEMBLE
f20c3968 4952static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4953 int fd, char *devname)
4954{
4955 struct intel_super *super = st->sb;
d23fe947 4956 struct imsm_super *mpb = super->anchor;
3960e579 4957 struct imsm_disk *_disk;
bf5a934a
DW
4958 struct imsm_dev *dev;
4959 struct imsm_map *map;
3960e579 4960 struct dl *dl, *df;
4eb26970 4961 int slot;
bf5a934a 4962
949c47a0 4963 dev = get_imsm_dev(super, super->current_vol);
238c0a71 4964 map = get_imsm_map(dev, MAP_0);
bf5a934a 4965
208933a7 4966 if (! (dk->state & (1<<MD_DISK_SYNC))) {
e7b84f9d 4967 pr_err("%s: Cannot add spare devices to IMSM volume\n",
208933a7
N
4968 devname);
4969 return 1;
4970 }
4971
efb30e7f
DW
4972 if (fd == -1) {
4973 /* we're doing autolayout so grab the pre-marked (in
4974 * validate_geometry) raid_disk
4975 */
4976 for (dl = super->disks; dl; dl = dl->next)
4977 if (dl->raiddisk == dk->raid_disk)
4978 break;
4979 } else {
4980 for (dl = super->disks; dl ; dl = dl->next)
4981 if (dl->major == dk->major &&
4982 dl->minor == dk->minor)
4983 break;
4984 }
d23fe947 4985
208933a7 4986 if (!dl) {
e7b84f9d 4987 pr_err("%s is not a member of the same container\n", devname);
f20c3968 4988 return 1;
208933a7 4989 }
bf5a934a 4990
d23fe947
DW
4991 /* add a pristine spare to the metadata */
4992 if (dl->index < 0) {
4993 dl->index = super->anchor->num_disks;
4994 super->anchor->num_disks++;
4995 }
4eb26970
DW
4996 /* Check the device has not already been added */
4997 slot = get_imsm_disk_slot(map, dl->index);
4998 if (slot >= 0 &&
238c0a71 4999 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
e7b84f9d 5000 pr_err("%s has been included in this array twice\n",
4eb26970
DW
5001 devname);
5002 return 1;
5003 }
656b6b5a 5004 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 5005 dl->disk.status = CONFIGURED_DISK;
d23fe947 5006
3960e579
DW
5007 /* update size of 'missing' disks to be at least as large as the
5008 * largest acitve member (we only have dummy missing disks when
5009 * creating the first volume)
5010 */
5011 if (super->current_vol == 0) {
5012 for (df = super->missing; df; df = df->next) {
5551b113
CA
5013 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5014 set_total_blocks(&df->disk, total_blocks(&dl->disk));
3960e579
DW
5015 _disk = __get_imsm_disk(mpb, df->index);
5016 *_disk = df->disk;
5017 }
5018 }
5019
5020 /* refresh unset/failed slots to point to valid 'missing' entries */
5021 for (df = super->missing; df; df = df->next)
5022 for (slot = 0; slot < mpb->num_disks; slot++) {
238c0a71 5023 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
3960e579
DW
5024
5025 if ((ord & IMSM_ORD_REBUILD) == 0)
5026 continue;
5027 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403 5028 if (is_gen_migration(dev)) {
238c0a71
AK
5029 struct imsm_map *map2 = get_imsm_map(dev,
5030 MAP_1);
0a108d63
AK
5031 int slot2 = get_imsm_disk_slot(map2, df->index);
5032 if ((slot2 < map2->num_members) &&
5033 (slot2 >= 0)) {
1ace8403 5034 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
238c0a71
AK
5035 slot2,
5036 MAP_1);
1ace8403
AK
5037 if ((unsigned)df->index ==
5038 ord_to_idx(ord2))
5039 set_imsm_ord_tbl_ent(map2,
0a108d63 5040 slot2,
1ace8403
AK
5041 df->index |
5042 IMSM_ORD_REBUILD);
5043 }
5044 }
3960e579
DW
5045 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5046 break;
5047 }
5048
d23fe947
DW
5049 /* if we are creating the first raid device update the family number */
5050 if (super->current_vol == 0) {
5051 __u32 sum;
5052 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 5053
3960e579 5054 _disk = __get_imsm_disk(mpb, dl->index);
791b666a 5055 if (!_dev || !_disk) {
e7b84f9d 5056 pr_err("BUG mpb setup error\n");
791b666a
AW
5057 return 1;
5058 }
d23fe947
DW
5059 *_dev = *dev;
5060 *_disk = dl->disk;
148acb7b
DW
5061 sum = random32();
5062 sum += __gen_imsm_checksum(mpb);
d23fe947 5063 mpb->family_num = __cpu_to_le32(sum);
148acb7b 5064 mpb->orig_family_num = mpb->family_num;
d23fe947 5065 }
ca0748fa 5066 super->current_disk = dl;
f20c3968 5067 return 0;
bf5a934a
DW
5068}
5069
a8619d23
AK
5070/* mark_spare()
5071 * Function marks disk as spare and restores disk serial
5072 * in case it was previously marked as failed by takeover operation
5073 * reruns:
5074 * -1 : critical error
5075 * 0 : disk is marked as spare but serial is not set
5076 * 1 : success
5077 */
5078int mark_spare(struct dl *disk)
5079{
5080 __u8 serial[MAX_RAID_SERIAL_LEN];
5081 int ret_val = -1;
5082
5083 if (!disk)
5084 return ret_val;
5085
5086 ret_val = 0;
5087 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5088 /* Restore disk serial number, because takeover marks disk
5089 * as failed and adds to serial ':0' before it becomes
5090 * a spare disk.
5091 */
5092 serialcpy(disk->serial, serial);
5093 serialcpy(disk->disk.serial, serial);
5094 ret_val = 1;
5095 }
5096 disk->disk.status = SPARE_DISK;
5097 disk->index = -1;
5098
5099 return ret_val;
5100}
88654014 5101
f20c3968 5102static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
72ca9bcf
N
5103 int fd, char *devname,
5104 unsigned long long data_offset)
cdddbdbc 5105{
c2c087e6 5106 struct intel_super *super = st->sb;
c2c087e6
DW
5107 struct dl *dd;
5108 unsigned long long size;
f2f27e63 5109 __u32 id;
c2c087e6
DW
5110 int rv;
5111 struct stat stb;
5112
88654014
LM
5113 /* If we are on an RAID enabled platform check that the disk is
5114 * attached to the raid controller.
5115 * We do not need to test disks attachment for container based additions,
5116 * they shall be already tested when container was created/assembled.
88c32bb1 5117 */
d424212e 5118 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 5119 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
5120 if (rv != 0) {
5121 dprintf("capability: %p fd: %d ret: %d\n",
5122 super->orom, fd, rv);
5123 return 1;
88c32bb1
DW
5124 }
5125
f20c3968
DW
5126 if (super->current_vol >= 0)
5127 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 5128
c2c087e6 5129 fstat(fd, &stb);
503975b9 5130 dd = xcalloc(sizeof(*dd), 1);
c2c087e6
DW
5131 dd->major = major(stb.st_rdev);
5132 dd->minor = minor(stb.st_rdev);
503975b9 5133 dd->devname = devname ? xstrdup(devname) : NULL;
c2c087e6 5134 dd->fd = fd;
689c9bf3 5135 dd->e = NULL;
1a64be56 5136 dd->action = DISK_ADD;
c2c087e6 5137 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 5138 if (rv) {
e7b84f9d 5139 pr_err("failed to retrieve scsi serial, aborting\n");
949c47a0 5140 free(dd);
0030e8d6 5141 abort();
c2c087e6
DW
5142 }
5143
c2c087e6 5144 get_dev_size(fd, NULL, &size);
71e5411e
PB
5145 /* clear migr_rec when adding disk to container */
5146 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5147 if (lseek64(fd, size - MIGR_REC_POSITION, SEEK_SET) >= 0) {
5148 if (write(fd, super->migr_rec_buf,
5149 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5150 perror("Write migr_rec failed");
5151 }
5152
c2c087e6 5153 size /= 512;
1f24f035 5154 serialcpy(dd->disk.serial, dd->serial);
5551b113
CA
5155 set_total_blocks(&dd->disk, size);
5156 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5157 struct imsm_super *mpb = super->anchor;
5158 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5159 }
a8619d23 5160 mark_spare(dd);
c2c087e6 5161 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 5162 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 5163 else
b9f594fe 5164 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
5165
5166 if (st->update_tail) {
1a64be56
LM
5167 dd->next = super->disk_mgmt_list;
5168 super->disk_mgmt_list = dd;
43dad3d6
DW
5169 } else {
5170 dd->next = super->disks;
5171 super->disks = dd;
ceaf0ee1 5172 super->updates_pending++;
43dad3d6 5173 }
f20c3968
DW
5174
5175 return 0;
cdddbdbc
DW
5176}
5177
1a64be56
LM
5178static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5179{
5180 struct intel_super *super = st->sb;
5181 struct dl *dd;
5182
5183 /* remove from super works only in mdmon - for communication
5184 * manager - monitor. Check if communication memory buffer
5185 * is prepared.
5186 */
5187 if (!st->update_tail) {
1ade5cc1 5188 pr_err("shall be used in mdmon context only\n");
1a64be56
LM
5189 return 1;
5190 }
503975b9 5191 dd = xcalloc(1, sizeof(*dd));
1a64be56
LM
5192 dd->major = dk->major;
5193 dd->minor = dk->minor;
1a64be56 5194 dd->fd = -1;
a8619d23 5195 mark_spare(dd);
1a64be56
LM
5196 dd->action = DISK_REMOVE;
5197
5198 dd->next = super->disk_mgmt_list;
5199 super->disk_mgmt_list = dd;
5200
1a64be56
LM
5201 return 0;
5202}
5203
f796af5d
DW
5204static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5205
5206static union {
5207 char buf[512];
5208 struct imsm_super anchor;
5209} spare_record __attribute__ ((aligned(512)));
c2c087e6 5210
d23fe947
DW
5211/* spare records have their own family number and do not have any defined raid
5212 * devices
5213 */
5214static int write_super_imsm_spares(struct intel_super *super, int doclose)
5215{
d23fe947 5216 struct imsm_super *mpb = super->anchor;
f796af5d 5217 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
5218 __u32 sum;
5219 struct dl *d;
5220
68641cdb
JS
5221 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5222 spare->generation_num = __cpu_to_le32(1UL);
f796af5d 5223 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
68641cdb
JS
5224 spare->num_disks = 1;
5225 spare->num_raid_devs = 0;
5226 spare->cache_size = mpb->cache_size;
5227 spare->pwr_cycle_count = __cpu_to_le32(1);
f796af5d
DW
5228
5229 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5230 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
5231
5232 for (d = super->disks; d; d = d->next) {
8796fdc4 5233 if (d->index != -1)
d23fe947
DW
5234 continue;
5235
f796af5d 5236 spare->disk[0] = d->disk;
027c374f
CA
5237 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5238 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5239
f796af5d
DW
5240 sum = __gen_imsm_checksum(spare);
5241 spare->family_num = __cpu_to_le32(sum);
5242 spare->orig_family_num = 0;
5243 sum = __gen_imsm_checksum(spare);
5244 spare->check_sum = __cpu_to_le32(sum);
d23fe947 5245
f796af5d 5246 if (store_imsm_mpb(d->fd, spare)) {
1ade5cc1
N
5247 pr_err("failed for device %d:%d %s\n",
5248 d->major, d->minor, strerror(errno));
e74255d9 5249 return 1;
d23fe947
DW
5250 }
5251 if (doclose) {
5252 close(d->fd);
5253 d->fd = -1;
5254 }
5255 }
5256
e74255d9 5257 return 0;
d23fe947
DW
5258}
5259
36988a3d 5260static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 5261{
36988a3d 5262 struct intel_super *super = st->sb;
949c47a0 5263 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
5264 struct dl *d;
5265 __u32 generation;
5266 __u32 sum;
d23fe947 5267 int spares = 0;
949c47a0 5268 int i;
a48ac0a8 5269 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 5270 int num_disks = 0;
146c6260 5271 int clear_migration_record = 1;
cdddbdbc 5272
c2c087e6
DW
5273 /* 'generation' is incremented everytime the metadata is written */
5274 generation = __le32_to_cpu(mpb->generation_num);
5275 generation++;
5276 mpb->generation_num = __cpu_to_le32(generation);
5277
148acb7b
DW
5278 /* fix up cases where previous mdadm releases failed to set
5279 * orig_family_num
5280 */
5281 if (mpb->orig_family_num == 0)
5282 mpb->orig_family_num = mpb->family_num;
5283
d23fe947 5284 for (d = super->disks; d; d = d->next) {
8796fdc4 5285 if (d->index == -1)
d23fe947 5286 spares++;
36988a3d 5287 else {
d23fe947 5288 mpb->disk[d->index] = d->disk;
36988a3d
AK
5289 num_disks++;
5290 }
d23fe947 5291 }
36988a3d 5292 for (d = super->missing; d; d = d->next) {
47ee5a45 5293 mpb->disk[d->index] = d->disk;
36988a3d
AK
5294 num_disks++;
5295 }
5296 mpb->num_disks = num_disks;
5297 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 5298
949c47a0
DW
5299 for (i = 0; i < mpb->num_raid_devs; i++) {
5300 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
5301 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5302 if (dev && dev2) {
5303 imsm_copy_dev(dev, dev2);
5304 mpb_size += sizeof_imsm_dev(dev, 0);
5305 }
146c6260
AK
5306 if (is_gen_migration(dev2))
5307 clear_migration_record = 0;
949c47a0 5308 }
a48ac0a8
DW
5309 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5310 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 5311
c2c087e6 5312 /* recalculate checksum */
949c47a0 5313 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
5314 mpb->check_sum = __cpu_to_le32(sum);
5315
51d83f5d
AK
5316 if (super->clean_migration_record_by_mdmon) {
5317 clear_migration_record = 1;
5318 super->clean_migration_record_by_mdmon = 0;
5319 }
146c6260 5320 if (clear_migration_record)
17a4eaf9 5321 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
146c6260 5322
d23fe947 5323 /* write the mpb for disks that compose raid devices */
c2c087e6 5324 for (d = super->disks; d ; d = d->next) {
86c54047 5325 if (d->index < 0 || is_failed(&d->disk))
d23fe947 5326 continue;
30602f53 5327
146c6260
AK
5328 if (clear_migration_record) {
5329 unsigned long long dsize;
5330
5331 get_dev_size(d->fd, NULL, &dsize);
5332 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
17a4eaf9
AK
5333 if (write(d->fd, super->migr_rec_buf,
5334 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
9e2d750d 5335 perror("Write migr_rec failed");
146c6260
AK
5336 }
5337 }
51d83f5d
AK
5338
5339 if (store_imsm_mpb(d->fd, mpb))
5340 fprintf(stderr,
1ade5cc1
N
5341 "failed for device %d:%d (fd: %d)%s\n",
5342 d->major, d->minor,
51d83f5d
AK
5343 d->fd, strerror(errno));
5344
c2c087e6
DW
5345 if (doclose) {
5346 close(d->fd);
5347 d->fd = -1;
5348 }
5349 }
5350
d23fe947
DW
5351 if (spares)
5352 return write_super_imsm_spares(super, doclose);
5353
e74255d9 5354 return 0;
c2c087e6
DW
5355}
5356
9b1fb677 5357static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
5358{
5359 size_t len;
5360 struct imsm_update_create_array *u;
5361 struct intel_super *super = st->sb;
9b1fb677 5362 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
238c0a71 5363 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
5364 struct disk_info *inf;
5365 struct imsm_disk *disk;
5366 int i;
43dad3d6 5367
54c2c1ea
DW
5368 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5369 sizeof(*inf) * map->num_members;
503975b9 5370 u = xmalloc(len);
43dad3d6 5371 u->type = update_create_array;
9b1fb677 5372 u->dev_idx = dev_idx;
43dad3d6 5373 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
5374 inf = get_disk_info(u);
5375 for (i = 0; i < map->num_members; i++) {
238c0a71 5376 int idx = get_imsm_disk_idx(dev, i, MAP_X);
9b1fb677 5377
54c2c1ea 5378 disk = get_imsm_disk(super, idx);
1ca5c8e0
N
5379 if (!disk)
5380 disk = get_imsm_missing(super, idx);
54c2c1ea
DW
5381 serialcpy(inf[i].serial, disk->serial);
5382 }
43dad3d6
DW
5383 append_metadata_update(st, u, len);
5384
5385 return 0;
5386}
5387
1a64be56 5388static int mgmt_disk(struct supertype *st)
43dad3d6
DW
5389{
5390 struct intel_super *super = st->sb;
5391 size_t len;
1a64be56 5392 struct imsm_update_add_remove_disk *u;
43dad3d6 5393
1a64be56 5394 if (!super->disk_mgmt_list)
43dad3d6
DW
5395 return 0;
5396
5397 len = sizeof(*u);
503975b9 5398 u = xmalloc(len);
1a64be56 5399 u->type = update_add_remove_disk;
43dad3d6
DW
5400 append_metadata_update(st, u, len);
5401
5402 return 0;
5403}
5404
c2c087e6
DW
5405static int write_init_super_imsm(struct supertype *st)
5406{
9b1fb677
DW
5407 struct intel_super *super = st->sb;
5408 int current_vol = super->current_vol;
5409
5410 /* we are done with current_vol reset it to point st at the container */
5411 super->current_vol = -1;
5412
8273f55e 5413 if (st->update_tail) {
43dad3d6
DW
5414 /* queue the recently created array / added disk
5415 * as a metadata update */
43dad3d6 5416 int rv;
8273f55e 5417
43dad3d6 5418 /* determine if we are creating a volume or adding a disk */
9b1fb677 5419 if (current_vol < 0) {
1a64be56
LM
5420 /* in the mgmt (add/remove) disk case we are running
5421 * in mdmon context, so don't close fd's
43dad3d6 5422 */
1a64be56 5423 return mgmt_disk(st);
43dad3d6 5424 } else
9b1fb677 5425 rv = create_array(st, current_vol);
8273f55e 5426
43dad3d6 5427 return rv;
d682f344
N
5428 } else {
5429 struct dl *d;
5430 for (d = super->disks; d; d = d->next)
ba728be7 5431 Kill(d->devname, NULL, 0, -1, 1);
36988a3d 5432 return write_super_imsm(st, 1);
d682f344 5433 }
cdddbdbc 5434}
0e600426 5435#endif
cdddbdbc 5436
e683ca88 5437static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 5438{
e683ca88
DW
5439 struct intel_super *super = st->sb;
5440 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 5441
e683ca88 5442 if (!mpb)
ad97895e
DW
5443 return 1;
5444
1799c9e8 5445#ifndef MDASSEMBLE
e683ca88 5446 return store_imsm_mpb(fd, mpb);
1799c9e8
N
5447#else
5448 return 1;
5449#endif
cdddbdbc
DW
5450}
5451
0e600426
N
5452static int imsm_bbm_log_size(struct imsm_super *mpb)
5453{
5454 return __le32_to_cpu(mpb->bbm_log_size);
5455}
5456
5457#ifndef MDASSEMBLE
cdddbdbc
DW
5458static int validate_geometry_imsm_container(struct supertype *st, int level,
5459 int layout, int raiddisks, int chunk,
af4348dd
N
5460 unsigned long long size,
5461 unsigned long long data_offset,
5462 char *dev,
2c514b71
NB
5463 unsigned long long *freesize,
5464 int verbose)
cdddbdbc 5465{
c2c087e6
DW
5466 int fd;
5467 unsigned long long ldsize;
594dc1b8 5468 struct intel_super *super;
f2f5c343 5469 int rv = 0;
cdddbdbc 5470
c2c087e6
DW
5471 if (level != LEVEL_CONTAINER)
5472 return 0;
5473 if (!dev)
5474 return 1;
5475
5476 fd = open(dev, O_RDONLY|O_EXCL, 0);
5477 if (fd < 0) {
ba728be7 5478 if (verbose > 0)
e7b84f9d 5479 pr_err("imsm: Cannot open %s: %s\n",
2c514b71 5480 dev, strerror(errno));
c2c087e6
DW
5481 return 0;
5482 }
5483 if (!get_dev_size(fd, dev, &ldsize)) {
5484 close(fd);
5485 return 0;
5486 }
f2f5c343
LM
5487
5488 /* capabilities retrieve could be possible
5489 * note that there is no fd for the disks in array.
5490 */
5491 super = alloc_super();
ba728be7 5492 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
f2f5c343
LM
5493 if (rv != 0) {
5494#if DEBUG
5495 char str[256];
5496 fd2devname(fd, str);
1ade5cc1 5497 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
f2f5c343
LM
5498 fd, str, super->orom, rv, raiddisks);
5499#endif
5500 /* no orom/efi or non-intel hba of the disk */
5501 close(fd);
5502 free_imsm(super);
5503 return 0;
5504 }
c2c087e6 5505 close(fd);
9126b9a8
CA
5506 if (super->orom) {
5507 if (raiddisks > super->orom->tds) {
5508 if (verbose)
7a862a02 5509 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
9126b9a8
CA
5510 raiddisks, super->orom->tds);
5511 free_imsm(super);
5512 return 0;
5513 }
5514 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5515 (ldsize >> 9) >> 32 > 0) {
5516 if (verbose)
e7b84f9d 5517 pr_err("%s exceeds maximum platform supported size\n", dev);
9126b9a8
CA
5518 free_imsm(super);
5519 return 0;
5520 }
f2f5c343 5521 }
c2c087e6 5522
af4348dd 5523 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
f2f5c343 5524 free_imsm(super);
c2c087e6
DW
5525
5526 return 1;
cdddbdbc
DW
5527}
5528
0dcecb2e
DW
5529static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5530{
5531 const unsigned long long base_start = e[*idx].start;
5532 unsigned long long end = base_start + e[*idx].size;
5533 int i;
5534
5535 if (base_start == end)
5536 return 0;
5537
5538 *idx = *idx + 1;
5539 for (i = *idx; i < num_extents; i++) {
5540 /* extend overlapping extents */
5541 if (e[i].start >= base_start &&
5542 e[i].start <= end) {
5543 if (e[i].size == 0)
5544 return 0;
5545 if (e[i].start + e[i].size > end)
5546 end = e[i].start + e[i].size;
5547 } else if (e[i].start > end) {
5548 *idx = i;
5549 break;
5550 }
5551 }
5552
5553 return end - base_start;
5554}
5555
5556static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5557{
5558 /* build a composite disk with all known extents and generate a new
5559 * 'maxsize' given the "all disks in an array must share a common start
5560 * offset" constraint
5561 */
503975b9 5562 struct extent *e = xcalloc(sum_extents, sizeof(*e));
0dcecb2e
DW
5563 struct dl *dl;
5564 int i, j;
5565 int start_extent;
5566 unsigned long long pos;
b9d77223 5567 unsigned long long start = 0;
0dcecb2e
DW
5568 unsigned long long maxsize;
5569 unsigned long reserve;
5570
0dcecb2e
DW
5571 /* coalesce and sort all extents. also, check to see if we need to
5572 * reserve space between member arrays
5573 */
5574 j = 0;
5575 for (dl = super->disks; dl; dl = dl->next) {
5576 if (!dl->e)
5577 continue;
5578 for (i = 0; i < dl->extent_cnt; i++)
5579 e[j++] = dl->e[i];
5580 }
5581 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5582
5583 /* merge extents */
5584 i = 0;
5585 j = 0;
5586 while (i < sum_extents) {
5587 e[j].start = e[i].start;
5588 e[j].size = find_size(e, &i, sum_extents);
5589 j++;
5590 if (e[j-1].size == 0)
5591 break;
5592 }
5593
5594 pos = 0;
5595 maxsize = 0;
5596 start_extent = 0;
5597 i = 0;
5598 do {
5599 unsigned long long esize;
5600
5601 esize = e[i].start - pos;
5602 if (esize >= maxsize) {
5603 maxsize = esize;
5604 start = pos;
5605 start_extent = i;
5606 }
5607 pos = e[i].start + e[i].size;
5608 i++;
5609 } while (e[i-1].size);
5610 free(e);
5611
a7dd165b
DW
5612 if (maxsize == 0)
5613 return 0;
5614
5615 /* FIXME assumes volume at offset 0 is the first volume in a
5616 * container
5617 */
0dcecb2e
DW
5618 if (start_extent > 0)
5619 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5620 else
5621 reserve = 0;
5622
5623 if (maxsize < reserve)
a7dd165b 5624 return 0;
0dcecb2e 5625
5551b113 5626 super->create_offset = ~((unsigned long long) 0);
0dcecb2e 5627 if (start + reserve > super->create_offset)
a7dd165b 5628 return 0; /* start overflows create_offset */
0dcecb2e
DW
5629 super->create_offset = start + reserve;
5630
5631 return maxsize - reserve;
5632}
5633
88c32bb1
DW
5634static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5635{
5636 if (level < 0 || level == 6 || level == 4)
5637 return 0;
5638
5639 /* if we have an orom prevent invalid raid levels */
5640 if (orom)
5641 switch (level) {
5642 case 0: return imsm_orom_has_raid0(orom);
5643 case 1:
5644 if (raiddisks > 2)
5645 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5646 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5647 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5648 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5649 }
5650 else
5651 return 1; /* not on an Intel RAID platform so anything goes */
5652
5653 return 0;
5654}
5655
ca9de185
LM
5656static int
5657active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5658 int dpa, int verbose)
5659{
5660 struct mdstat_ent *mdstat = mdstat_read(0, 0);
594dc1b8 5661 struct mdstat_ent *memb;
ca9de185
LM
5662 int count = 0;
5663 int num = 0;
594dc1b8 5664 struct md_list *dv;
ca9de185
LM
5665 int found;
5666
5667 for (memb = mdstat ; memb ; memb = memb->next) {
5668 if (memb->metadata_version &&
5669 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5670 (strcmp(&memb->metadata_version[9], name) == 0) &&
5671 !is_subarray(memb->metadata_version+9) &&
5672 memb->members) {
5673 struct dev_member *dev = memb->members;
5674 int fd = -1;
5675 while(dev && (fd < 0)) {
503975b9
N
5676 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5677 num = sprintf(path, "%s%s", "/dev/", dev->name);
5678 if (num > 0)
5679 fd = open(path, O_RDONLY, 0);
5680 if ((num <= 0) || (fd < 0)) {
5681 pr_vrb(": Cannot open %s: %s\n",
5682 dev->name, strerror(errno));
ca9de185 5683 }
503975b9 5684 free(path);
ca9de185
LM
5685 dev = dev->next;
5686 }
5687 found = 0;
5688 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5689 struct mdstat_ent *vol;
5690 for (vol = mdstat ; vol ; vol = vol->next) {
5691 if ((vol->active > 0) &&
5692 vol->metadata_version &&
9581efb1 5693 is_container_member(vol, memb->devnm)) {
ca9de185
LM
5694 found++;
5695 count++;
5696 }
5697 }
5698 if (*devlist && (found < dpa)) {
503975b9 5699 dv = xcalloc(1, sizeof(*dv));
9581efb1
N
5700 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
5701 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
503975b9
N
5702 dv->found = found;
5703 dv->used = 0;
5704 dv->next = *devlist;
5705 *devlist = dv;
ca9de185
LM
5706 }
5707 }
5708 if (fd >= 0)
5709 close(fd);
5710 }
5711 }
5712 free_mdstat(mdstat);
5713 return count;
5714}
5715
5716#ifdef DEBUG_LOOP
5717static struct md_list*
5718get_loop_devices(void)
5719{
5720 int i;
5721 struct md_list *devlist = NULL;
594dc1b8 5722 struct md_list *dv;
ca9de185
LM
5723
5724 for(i = 0; i < 12; i++) {
503975b9
N
5725 dv = xcalloc(1, sizeof(*dv));
5726 dv->devname = xmalloc(40);
ca9de185
LM
5727 sprintf(dv->devname, "/dev/loop%d", i);
5728 dv->next = devlist;
5729 devlist = dv;
5730 }
5731 return devlist;
5732}
5733#endif
5734
5735static struct md_list*
5736get_devices(const char *hba_path)
5737{
5738 struct md_list *devlist = NULL;
594dc1b8 5739 struct md_list *dv;
ca9de185
LM
5740 struct dirent *ent;
5741 DIR *dir;
5742 int err = 0;
5743
5744#if DEBUG_LOOP
5745 devlist = get_loop_devices();
5746 return devlist;
5747#endif
5748 /* scroll through /sys/dev/block looking for devices attached to
5749 * this hba
5750 */
5751 dir = opendir("/sys/dev/block");
5752 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5753 int fd;
5754 char buf[1024];
5755 int major, minor;
5756 char *path = NULL;
5757 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5758 continue;
5759 path = devt_to_devpath(makedev(major, minor));
5760 if (!path)
5761 continue;
5762 if (!path_attached_to_hba(path, hba_path)) {
5763 free(path);
5764 path = NULL;
5765 continue;
5766 }
5767 free(path);
5768 path = NULL;
5769 fd = dev_open(ent->d_name, O_RDONLY);
5770 if (fd >= 0) {
5771 fd2devname(fd, buf);
5772 close(fd);
5773 } else {
e7b84f9d 5774 pr_err("cannot open device: %s\n",
ca9de185
LM
5775 ent->d_name);
5776 continue;
5777 }
5778
503975b9
N
5779 dv = xcalloc(1, sizeof(*dv));
5780 dv->devname = xstrdup(buf);
ca9de185
LM
5781 dv->next = devlist;
5782 devlist = dv;
5783 }
5784 if (err) {
5785 while(devlist) {
5786 dv = devlist;
5787 devlist = devlist->next;
5788 free(dv->devname);
5789 free(dv);
5790 }
5791 }
562aa102 5792 closedir(dir);
ca9de185
LM
5793 return devlist;
5794}
5795
5796static int
5797count_volumes_list(struct md_list *devlist, char *homehost,
5798 int verbose, int *found)
5799{
5800 struct md_list *tmpdev;
5801 int count = 0;
594dc1b8 5802 struct supertype *st;
ca9de185
LM
5803
5804 /* first walk the list of devices to find a consistent set
5805 * that match the criterea, if that is possible.
5806 * We flag the ones we like with 'used'.
5807 */
5808 *found = 0;
5809 st = match_metadata_desc_imsm("imsm");
5810 if (st == NULL) {
5811 pr_vrb(": cannot allocate memory for imsm supertype\n");
5812 return 0;
5813 }
5814
5815 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5816 char *devname = tmpdev->devname;
5817 struct stat stb;
5818 struct supertype *tst;
5819 int dfd;
5820 if (tmpdev->used > 1)
5821 continue;
5822 tst = dup_super(st);
5823 if (tst == NULL) {
5824 pr_vrb(": cannot allocate memory for imsm supertype\n");
5825 goto err_1;
5826 }
5827 tmpdev->container = 0;
5828 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5829 if (dfd < 0) {
1ade5cc1 5830 dprintf("cannot open device %s: %s\n",
ca9de185
LM
5831 devname, strerror(errno));
5832 tmpdev->used = 2;
5833 } else if (fstat(dfd, &stb)< 0) {
5834 /* Impossible! */
1ade5cc1 5835 dprintf("fstat failed for %s: %s\n",
ca9de185
LM
5836 devname, strerror(errno));
5837 tmpdev->used = 2;
5838 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
1ade5cc1 5839 dprintf("%s is not a block device.\n",
ca9de185
LM
5840 devname);
5841 tmpdev->used = 2;
5842 } else if (must_be_container(dfd)) {
5843 struct supertype *cst;
5844 cst = super_by_fd(dfd, NULL);
5845 if (cst == NULL) {
1ade5cc1 5846 dprintf("cannot recognize container type %s\n",
ca9de185
LM
5847 devname);
5848 tmpdev->used = 2;
5849 } else if (tst->ss != st->ss) {
1ade5cc1 5850 dprintf("non-imsm container - ignore it: %s\n",
ca9de185
LM
5851 devname);
5852 tmpdev->used = 2;
5853 } else if (!tst->ss->load_container ||
5854 tst->ss->load_container(tst, dfd, NULL))
5855 tmpdev->used = 2;
5856 else {
5857 tmpdev->container = 1;
5858 }
5859 if (cst)
5860 cst->ss->free_super(cst);
5861 } else {
5862 tmpdev->st_rdev = stb.st_rdev;
5863 if (tst->ss->load_super(tst,dfd, NULL)) {
1ade5cc1 5864 dprintf("no RAID superblock on %s\n",
ca9de185
LM
5865 devname);
5866 tmpdev->used = 2;
5867 } else if (tst->ss->compare_super == NULL) {
1ade5cc1 5868 dprintf("Cannot assemble %s metadata on %s\n",
ca9de185
LM
5869 tst->ss->name, devname);
5870 tmpdev->used = 2;
5871 }
5872 }
5873 if (dfd >= 0)
5874 close(dfd);
5875 if (tmpdev->used == 2 || tmpdev->used == 4) {
5876 /* Ignore unrecognised devices during auto-assembly */
5877 goto loop;
5878 }
5879 else {
5880 struct mdinfo info;
5881 tst->ss->getinfo_super(tst, &info, NULL);
5882
5883 if (st->minor_version == -1)
5884 st->minor_version = tst->minor_version;
5885
5886 if (memcmp(info.uuid, uuid_zero,
5887 sizeof(int[4])) == 0) {
5888 /* this is a floating spare. It cannot define
5889 * an array unless there are no more arrays of
5890 * this type to be found. It can be included
5891 * in an array of this type though.
5892 */
5893 tmpdev->used = 3;
5894 goto loop;
5895 }
5896
5897 if (st->ss != tst->ss ||
5898 st->minor_version != tst->minor_version ||
5899 st->ss->compare_super(st, tst) != 0) {
5900 /* Some mismatch. If exactly one array matches this host,
5901 * we can resolve on that one.
5902 * Or, if we are auto assembling, we just ignore the second
5903 * for now.
5904 */
1ade5cc1 5905 dprintf("superblock on %s doesn't match others - assembly aborted\n",
ca9de185
LM
5906 devname);
5907 goto loop;
5908 }
5909 tmpdev->used = 1;
5910 *found = 1;
5911 dprintf("found: devname: %s\n", devname);
5912 }
5913 loop:
5914 if (tst)
5915 tst->ss->free_super(tst);
5916 }
5917 if (*found != 0) {
5918 int err;
5919 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5920 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5921 for (iter = head; iter; iter = iter->next) {
5922 dprintf("content->text_version: %s vol\n",
5923 iter->text_version);
5924 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5925 /* do not assemble arrays with unsupported
5926 configurations */
1ade5cc1 5927 dprintf("Cannot activate member %s.\n",
ca9de185
LM
5928 iter->text_version);
5929 } else
5930 count++;
5931 }
5932 sysfs_free(head);
5933
5934 } else {
1ade5cc1 5935 dprintf("No valid super block on device list: err: %d %p\n",
ca9de185
LM
5936 err, st->sb);
5937 }
5938 } else {
1ade5cc1 5939 dprintf("no more devices to examine\n");
ca9de185
LM
5940 }
5941
5942 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5943 if ((tmpdev->used == 1) && (tmpdev->found)) {
5944 if (count) {
5945 if (count < tmpdev->found)
5946 count = 0;
5947 else
5948 count -= tmpdev->found;
5949 }
5950 }
5951 if (tmpdev->used == 1)
5952 tmpdev->used = 4;
5953 }
5954 err_1:
5955 if (st)
5956 st->ss->free_super(st);
5957 return count;
5958}
5959
ca9de185 5960static int
72a45777 5961count_volumes(struct intel_hba *hba, int dpa, int verbose)
ca9de185 5962{
72a45777 5963 struct sys_dev *idev, *intel_devices = find_intel_devices();
ca9de185 5964 int count = 0;
72a45777
PB
5965 const struct orom_entry *entry;
5966 struct devid_list *dv, *devid_list;
ca9de185 5967
72a45777 5968 if (!hba || !hba->path)
ca9de185
LM
5969 return 0;
5970
72a45777
PB
5971 for (idev = intel_devices; idev; idev = idev->next) {
5972 if (strstr(idev->path, hba->path))
5973 break;
5974 }
5975
5976 if (!idev || !idev->dev_id)
ca9de185 5977 return 0;
72a45777
PB
5978
5979 entry = get_orom_entry_by_device_id(idev->dev_id);
5980
5981 if (!entry || !entry->devid_list)
5982 return 0;
5983
5984 devid_list = entry->devid_list;
5985 for (dv = devid_list; dv; dv = dv->next) {
594dc1b8 5986 struct md_list *devlist;
72a45777
PB
5987 struct sys_dev *device = device_by_id(dv->devid);
5988 char *hba_path;
5989 int found = 0;
5990
5991 if (device)
5992 hba_path = device->path;
5993 else
5994 return 0;
5995
60f0f54d
PB
5996 /* VMD has one orom entry for all domain, but spanning is not allowed.
5997 * VMD arrays should be counted per domain (controller), so skip
5998 * domains that are not the given one.
5999 */
6000 if ((hba->type == SYS_DEV_VMD) &&
6001 (strncmp(device->path, hba->path, strlen(device->path)) != 0))
6002 continue;
6003
72a45777
PB
6004 devlist = get_devices(hba_path);
6005 /* if no intel devices return zero volumes */
6006 if (devlist == NULL)
6007 return 0;
6008
6009 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6010 dprintf("path: %s active arrays: %d\n", hba_path, count);
6011 if (devlist == NULL)
6012 return 0;
6013 do {
6014 found = 0;
6015 count += count_volumes_list(devlist,
6016 NULL,
6017 verbose,
6018 &found);
6019 dprintf("found %d count: %d\n", found, count);
6020 } while (found);
6021
6022 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6023
6024 while (devlist) {
6025 struct md_list *dv = devlist;
6026 devlist = devlist->next;
6027 free(dv->devname);
6028 free(dv);
6029 }
ca9de185
LM
6030 }
6031 return count;
6032}
6033
cd9d1ac7
DW
6034static int imsm_default_chunk(const struct imsm_orom *orom)
6035{
6036 /* up to 512 if the plaform supports it, otherwise the platform max.
6037 * 128 if no platform detected
6038 */
6039 int fs = max(7, orom ? fls(orom->sss) : 0);
6040
6041 return min(512, (1 << fs));
6042}
73408129 6043
6592ce37
DW
6044static int
6045validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
2cc699af 6046 int raiddisks, int *chunk, unsigned long long size, int verbose)
6592ce37 6047{
660260d0
DW
6048 /* check/set platform and metadata limits/defaults */
6049 if (super->orom && raiddisks > super->orom->dpa) {
6050 pr_vrb(": platform supports a maximum of %d disks per array\n",
6051 super->orom->dpa);
73408129
LM
6052 return 0;
6053 }
6054
5d500228 6055 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 6056 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
6057 pr_vrb(": platform does not support raid%d with %d disk%s\n",
6058 level, raiddisks, raiddisks > 1 ? "s" : "");
6059 return 0;
6060 }
cd9d1ac7 6061
7ccc4cc4 6062 if (*chunk == 0 || *chunk == UnSet)
cd9d1ac7
DW
6063 *chunk = imsm_default_chunk(super->orom);
6064
7ccc4cc4 6065 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
7a862a02 6066 pr_vrb(": platform does not support a chunk size of: %d\n", *chunk);
cd9d1ac7 6067 return 0;
6592ce37 6068 }
cd9d1ac7 6069
6592ce37
DW
6070 if (layout != imsm_level_to_layout(level)) {
6071 if (level == 5)
6072 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
6073 else if (level == 10)
6074 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
6075 else
6076 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
6077 layout, level);
6078 return 0;
6079 }
2cc699af 6080
7ccc4cc4 6081 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
2cc699af
CA
6082 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6083 pr_vrb(": platform does not support a volume size over 2TB\n");
6084 return 0;
6085 }
614902f6 6086
6592ce37
DW
6087 return 1;
6088}
6089
1011e834 6090/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
c2c087e6
DW
6091 * FIX ME add ahci details
6092 */
8b353278 6093static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 6094 int layout, int raiddisks, int *chunk,
af4348dd
N
6095 unsigned long long size,
6096 unsigned long long data_offset,
6097 char *dev,
2c514b71
NB
6098 unsigned long long *freesize,
6099 int verbose)
cdddbdbc 6100{
c2c087e6
DW
6101 struct stat stb;
6102 struct intel_super *super = st->sb;
b2916f25 6103 struct imsm_super *mpb;
c2c087e6
DW
6104 struct dl *dl;
6105 unsigned long long pos = 0;
6106 unsigned long long maxsize;
6107 struct extent *e;
6108 int i;
cdddbdbc 6109
88c32bb1
DW
6110 /* We must have the container info already read in. */
6111 if (!super)
c2c087e6
DW
6112 return 0;
6113
b2916f25
JS
6114 mpb = super->anchor;
6115
2cc699af 6116 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7a862a02 6117 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
c2c087e6 6118 return 0;
d54559f0 6119 }
c2c087e6
DW
6120 if (!dev) {
6121 /* General test: make sure there is space for
2da8544a
DW
6122 * 'raiddisks' device extents of size 'size' at a given
6123 * offset
c2c087e6 6124 */
e46273eb 6125 unsigned long long minsize = size;
b7528a20 6126 unsigned long long start_offset = MaxSector;
c2c087e6
DW
6127 int dcnt = 0;
6128 if (minsize == 0)
6129 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6130 for (dl = super->disks; dl ; dl = dl->next) {
6131 int found = 0;
6132
bf5a934a 6133 pos = 0;
c2c087e6
DW
6134 i = 0;
6135 e = get_extents(super, dl);
6136 if (!e) continue;
6137 do {
6138 unsigned long long esize;
6139 esize = e[i].start - pos;
6140 if (esize >= minsize)
6141 found = 1;
b7528a20 6142 if (found && start_offset == MaxSector) {
2da8544a
DW
6143 start_offset = pos;
6144 break;
6145 } else if (found && pos != start_offset) {
6146 found = 0;
6147 break;
6148 }
c2c087e6
DW
6149 pos = e[i].start + e[i].size;
6150 i++;
6151 } while (e[i-1].size);
6152 if (found)
6153 dcnt++;
6154 free(e);
6155 }
6156 if (dcnt < raiddisks) {
2c514b71 6157 if (verbose)
7a862a02 6158 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
2c514b71 6159 dcnt, raiddisks);
c2c087e6
DW
6160 return 0;
6161 }
6162 return 1;
6163 }
0dcecb2e 6164
c2c087e6
DW
6165 /* This device must be a member of the set */
6166 if (stat(dev, &stb) < 0)
6167 return 0;
6168 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6169 return 0;
6170 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
6171 if (dl->major == (int)major(stb.st_rdev) &&
6172 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
6173 break;
6174 }
6175 if (!dl) {
2c514b71 6176 if (verbose)
7a862a02 6177 pr_err("%s is not in the same imsm set\n", dev);
c2c087e6 6178 return 0;
a20d2ba5
DW
6179 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6180 /* If a volume is present then the current creation attempt
6181 * cannot incorporate new spares because the orom may not
6182 * understand this configuration (all member disks must be
6183 * members of each array in the container).
6184 */
7a862a02
N
6185 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6186 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
a20d2ba5 6187 return 0;
5fe62b94
WD
6188 } else if (super->orom && mpb->num_raid_devs > 0 &&
6189 mpb->num_disks != raiddisks) {
7a862a02 6190 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
5fe62b94 6191 return 0;
c2c087e6 6192 }
0dcecb2e
DW
6193
6194 /* retrieve the largest free space block */
c2c087e6
DW
6195 e = get_extents(super, dl);
6196 maxsize = 0;
6197 i = 0;
0dcecb2e
DW
6198 if (e) {
6199 do {
6200 unsigned long long esize;
6201
6202 esize = e[i].start - pos;
6203 if (esize >= maxsize)
6204 maxsize = esize;
6205 pos = e[i].start + e[i].size;
6206 i++;
6207 } while (e[i-1].size);
6208 dl->e = e;
6209 dl->extent_cnt = i;
6210 } else {
6211 if (verbose)
e7b84f9d 6212 pr_err("unable to determine free space for: %s\n",
0dcecb2e
DW
6213 dev);
6214 return 0;
6215 }
6216 if (maxsize < size) {
6217 if (verbose)
e7b84f9d 6218 pr_err("%s not enough space (%llu < %llu)\n",
0dcecb2e
DW
6219 dev, maxsize, size);
6220 return 0;
6221 }
6222
6223 /* count total number of extents for merge */
6224 i = 0;
6225 for (dl = super->disks; dl; dl = dl->next)
6226 if (dl->e)
6227 i += dl->extent_cnt;
6228
6229 maxsize = merge_extents(super, i);
3baa56ab
LO
6230
6231 if (!check_env("IMSM_NO_PLATFORM") &&
6232 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 6233 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
3baa56ab
LO
6234 return 0;
6235 }
6236
a7dd165b 6237 if (maxsize < size || maxsize == 0) {
b3071342
LD
6238 if (verbose) {
6239 if (maxsize == 0)
7a862a02 6240 pr_err("no free space left on device. Aborting...\n");
b3071342 6241 else
7a862a02 6242 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
b3071342
LD
6243 maxsize, size);
6244 }
0dcecb2e 6245 return 0;
0dcecb2e
DW
6246 }
6247
c2c087e6
DW
6248 *freesize = maxsize;
6249
ca9de185 6250 if (super->orom) {
72a45777 6251 int count = count_volumes(super->hba,
ca9de185
LM
6252 super->orom->dpa, verbose);
6253 if (super->orom->vphba <= count) {
40110b90 6254 pr_vrb(": platform does not support more than %d raid volumes.\n",
ca9de185
LM
6255 super->orom->vphba);
6256 return 0;
6257 }
6258 }
c2c087e6 6259 return 1;
cdddbdbc
DW
6260}
6261
13bcac90 6262static int imsm_get_free_size(struct supertype *st, int raiddisks,
efb30e7f
DW
6263 unsigned long long size, int chunk,
6264 unsigned long long *freesize)
6265{
6266 struct intel_super *super = st->sb;
6267 struct imsm_super *mpb = super->anchor;
6268 struct dl *dl;
6269 int i;
6270 int extent_cnt;
6271 struct extent *e;
6272 unsigned long long maxsize;
6273 unsigned long long minsize;
6274 int cnt;
6275 int used;
6276
6277 /* find the largest common start free region of the possible disks */
6278 used = 0;
6279 extent_cnt = 0;
6280 cnt = 0;
6281 for (dl = super->disks; dl; dl = dl->next) {
6282 dl->raiddisk = -1;
6283
6284 if (dl->index >= 0)
6285 used++;
6286
6287 /* don't activate new spares if we are orom constrained
6288 * and there is already a volume active in the container
6289 */
6290 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6291 continue;
6292
6293 e = get_extents(super, dl);
6294 if (!e)
6295 continue;
6296 for (i = 1; e[i-1].size; i++)
6297 ;
6298 dl->e = e;
6299 dl->extent_cnt = i;
6300 extent_cnt += i;
6301 cnt++;
6302 }
6303
6304 maxsize = merge_extents(super, extent_cnt);
6305 minsize = size;
6306 if (size == 0)
612e59d8
CA
6307 /* chunk is in K */
6308 minsize = chunk * 2;
efb30e7f
DW
6309
6310 if (cnt < raiddisks ||
6311 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
6312 maxsize < minsize ||
6313 maxsize == 0) {
e7b84f9d 6314 pr_err("not enough devices with space to create array.\n");
efb30e7f
DW
6315 return 0; /* No enough free spaces large enough */
6316 }
6317
6318 if (size == 0) {
6319 size = maxsize;
6320 if (chunk) {
612e59d8
CA
6321 size /= 2 * chunk;
6322 size *= 2 * chunk;
efb30e7f 6323 }
f878b242
LM
6324 maxsize = size;
6325 }
6326 if (!check_env("IMSM_NO_PLATFORM") &&
6327 mpb->num_raid_devs > 0 && size && size != maxsize) {
7a862a02 6328 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
f878b242 6329 return 0;
efb30e7f 6330 }
efb30e7f
DW
6331 cnt = 0;
6332 for (dl = super->disks; dl; dl = dl->next)
6333 if (dl->e)
6334 dl->raiddisk = cnt++;
6335
6336 *freesize = size;
6337
13bcac90
AK
6338 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6339
efb30e7f
DW
6340 return 1;
6341}
6342
13bcac90
AK
6343static int reserve_space(struct supertype *st, int raiddisks,
6344 unsigned long long size, int chunk,
6345 unsigned long long *freesize)
6346{
6347 struct intel_super *super = st->sb;
6348 struct dl *dl;
6349 int cnt;
6350 int rv = 0;
6351
6352 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6353 if (rv) {
6354 cnt = 0;
6355 for (dl = super->disks; dl; dl = dl->next)
6356 if (dl->e)
6357 dl->raiddisk = cnt++;
6358 rv = 1;
6359 }
6360
6361 return rv;
6362}
6363
bf5a934a 6364static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 6365 int raiddisks, int *chunk, unsigned long long size,
af4348dd 6366 unsigned long long data_offset,
bf5a934a
DW
6367 char *dev, unsigned long long *freesize,
6368 int verbose)
6369{
6370 int fd, cfd;
6371 struct mdinfo *sra;
20cbe8d2 6372 int is_member = 0;
bf5a934a 6373
d54559f0
LM
6374 /* load capability
6375 * if given unused devices create a container
bf5a934a
DW
6376 * if given given devices in a container create a member volume
6377 */
6378 if (level == LEVEL_CONTAINER) {
6379 /* Must be a fresh device to add to a container */
6380 return validate_geometry_imsm_container(st, level, layout,
c21e737b 6381 raiddisks,
7ccc4cc4 6382 *chunk,
af4348dd 6383 size, data_offset,
bf5a934a
DW
6384 dev, freesize,
6385 verbose);
6386 }
9587c373 6387
8592f29d 6388 if (!dev) {
e91a3bad 6389 if (st->sb) {
ca9de185 6390 struct intel_super *super = st->sb;
e91a3bad 6391 if (!validate_geometry_imsm_orom(st->sb, level, layout,
2cc699af 6392 raiddisks, chunk, size,
e91a3bad
LM
6393 verbose))
6394 return 0;
efb30e7f
DW
6395 /* we are being asked to automatically layout a
6396 * new volume based on the current contents of
6397 * the container. If the the parameters can be
6398 * satisfied reserve_space will record the disks,
6399 * start offset, and size of the volume to be
6400 * created. add_to_super and getinfo_super
6401 * detect when autolayout is in progress.
6402 */
ca9de185
LM
6403 /* assuming that freesize is always given when array is
6404 created */
6405 if (super->orom && freesize) {
6406 int count;
72a45777 6407 count = count_volumes(super->hba,
ca9de185
LM
6408 super->orom->dpa, verbose);
6409 if (super->orom->vphba <= count) {
7a862a02 6410 pr_vrb(": platform does not support more than %d raid volumes.\n",
ca9de185
LM
6411 super->orom->vphba);
6412 return 0;
6413 }
6414 }
e91a3bad
LM
6415 if (freesize)
6416 return reserve_space(st, raiddisks, size,
7ccc4cc4 6417 *chunk, freesize);
8592f29d
N
6418 }
6419 return 1;
6420 }
bf5a934a
DW
6421 if (st->sb) {
6422 /* creating in a given container */
6423 return validate_geometry_imsm_volume(st, level, layout,
6424 raiddisks, chunk, size,
af4348dd 6425 data_offset,
bf5a934a
DW
6426 dev, freesize, verbose);
6427 }
6428
bf5a934a
DW
6429 /* This device needs to be a device in an 'imsm' container */
6430 fd = open(dev, O_RDONLY|O_EXCL, 0);
6431 if (fd >= 0) {
6432 if (verbose)
e7b84f9d
N
6433 pr_err("Cannot create this array on device %s\n",
6434 dev);
bf5a934a
DW
6435 close(fd);
6436 return 0;
6437 }
6438 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6439 if (verbose)
e7b84f9d 6440 pr_err("Cannot open %s: %s\n",
bf5a934a
DW
6441 dev, strerror(errno));
6442 return 0;
6443 }
6444 /* Well, it is in use by someone, maybe an 'imsm' container. */
6445 cfd = open_container(fd);
20cbe8d2 6446 close(fd);
bf5a934a 6447 if (cfd < 0) {
bf5a934a 6448 if (verbose)
e7b84f9d 6449 pr_err("Cannot use %s: It is busy\n",
bf5a934a
DW
6450 dev);
6451 return 0;
6452 }
4dd2df09 6453 sra = sysfs_read(cfd, NULL, GET_VERSION);
bf5a934a 6454 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
6455 strcmp(sra->text_version, "imsm") == 0)
6456 is_member = 1;
6457 sysfs_free(sra);
6458 if (is_member) {
bf5a934a
DW
6459 /* This is a member of a imsm container. Load the container
6460 * and try to create a volume
6461 */
6462 struct intel_super *super;
6463
ec50f7b6 6464 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
bf5a934a 6465 st->sb = super;
4dd2df09 6466 strcpy(st->container_devnm, fd2devnm(cfd));
bf5a934a
DW
6467 close(cfd);
6468 return validate_geometry_imsm_volume(st, level, layout,
6469 raiddisks, chunk,
af4348dd 6470 size, data_offset, dev,
ecbd9e81
N
6471 freesize, 1)
6472 ? 1 : -1;
bf5a934a 6473 }
20cbe8d2 6474 }
bf5a934a 6475
20cbe8d2 6476 if (verbose)
e7b84f9d 6477 pr_err("failed container membership check\n");
20cbe8d2
AW
6478
6479 close(cfd);
6480 return 0;
bf5a934a 6481}
0bd16cf2 6482
30f58b22 6483static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
6484{
6485 struct intel_super *super = st->sb;
6486
30f58b22
DW
6487 if (level && *level == UnSet)
6488 *level = LEVEL_CONTAINER;
6489
6490 if (level && layout && *layout == UnSet)
6491 *layout = imsm_level_to_layout(*level);
0bd16cf2 6492
cd9d1ac7
DW
6493 if (chunk && (*chunk == UnSet || *chunk == 0))
6494 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
6495}
6496
33414a01
DW
6497static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6498
6499static int kill_subarray_imsm(struct supertype *st)
6500{
6501 /* remove the subarray currently referenced by ->current_vol */
6502 __u8 i;
6503 struct intel_dev **dp;
6504 struct intel_super *super = st->sb;
6505 __u8 current_vol = super->current_vol;
6506 struct imsm_super *mpb = super->anchor;
6507
6508 if (super->current_vol < 0)
6509 return 2;
6510 super->current_vol = -1; /* invalidate subarray cursor */
6511
6512 /* block deletions that would change the uuid of active subarrays
6513 *
6514 * FIXME when immutable ids are available, but note that we'll
6515 * also need to fixup the invalidated/active subarray indexes in
6516 * mdstat
6517 */
6518 for (i = 0; i < mpb->num_raid_devs; i++) {
6519 char subarray[4];
6520
6521 if (i < current_vol)
6522 continue;
6523 sprintf(subarray, "%u", i);
4dd2df09 6524 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d
N
6525 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6526 current_vol, i);
33414a01
DW
6527
6528 return 2;
6529 }
6530 }
6531
6532 if (st->update_tail) {
503975b9 6533 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
33414a01 6534
33414a01
DW
6535 u->type = update_kill_array;
6536 u->dev_idx = current_vol;
6537 append_metadata_update(st, u, sizeof(*u));
6538
6539 return 0;
6540 }
6541
6542 for (dp = &super->devlist; *dp;)
6543 if ((*dp)->index == current_vol) {
6544 *dp = (*dp)->next;
6545 } else {
6546 handle_missing(super, (*dp)->dev);
6547 if ((*dp)->index > current_vol)
6548 (*dp)->index--;
6549 dp = &(*dp)->next;
6550 }
6551
6552 /* no more raid devices, all active components are now spares,
6553 * but of course failed are still failed
6554 */
6555 if (--mpb->num_raid_devs == 0) {
6556 struct dl *d;
6557
6558 for (d = super->disks; d; d = d->next)
a8619d23
AK
6559 if (d->index > -2)
6560 mark_spare(d);
33414a01
DW
6561 }
6562
6563 super->updates_pending++;
6564
6565 return 0;
6566}
aa534678 6567
a951a4f7 6568static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 6569 char *update, struct mddev_ident *ident)
aa534678
DW
6570{
6571 /* update the subarray currently referenced by ->current_vol */
6572 struct intel_super *super = st->sb;
6573 struct imsm_super *mpb = super->anchor;
6574
aa534678
DW
6575 if (strcmp(update, "name") == 0) {
6576 char *name = ident->name;
a951a4f7
N
6577 char *ep;
6578 int vol;
aa534678 6579
4dd2df09 6580 if (is_subarray_active(subarray, st->devnm)) {
e7b84f9d 6581 pr_err("Unable to update name of active subarray\n");
aa534678
DW
6582 return 2;
6583 }
6584
6585 if (!check_name(super, name, 0))
6586 return 2;
6587
a951a4f7
N
6588 vol = strtoul(subarray, &ep, 10);
6589 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6590 return 2;
6591
aa534678 6592 if (st->update_tail) {
503975b9 6593 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
aa534678 6594
aa534678 6595 u->type = update_rename_array;
a951a4f7 6596 u->dev_idx = vol;
aa534678
DW
6597 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6598 append_metadata_update(st, u, sizeof(*u));
6599 } else {
6600 struct imsm_dev *dev;
6601 int i;
6602
a951a4f7 6603 dev = get_imsm_dev(super, vol);
aa534678
DW
6604 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6605 for (i = 0; i < mpb->num_raid_devs; i++) {
6606 dev = get_imsm_dev(super, i);
6607 handle_missing(super, dev);
6608 }
6609 super->updates_pending++;
6610 }
6611 } else
6612 return 2;
6613
6614 return 0;
6615}
d1e02575 6616#endif /* MDASSEMBLE */
bf5a934a 6617
28bce06f
AK
6618static int is_gen_migration(struct imsm_dev *dev)
6619{
7534230b
AK
6620 if (dev == NULL)
6621 return 0;
6622
28bce06f
AK
6623 if (!dev->vol.migr_state)
6624 return 0;
6625
6626 if (migr_type(dev) == MIGR_GEN_MIGR)
6627 return 1;
6628
6629 return 0;
6630}
6631
1e5c6983
DW
6632static int is_rebuilding(struct imsm_dev *dev)
6633{
6634 struct imsm_map *migr_map;
6635
6636 if (!dev->vol.migr_state)
6637 return 0;
6638
6639 if (migr_type(dev) != MIGR_REBUILD)
6640 return 0;
6641
238c0a71 6642 migr_map = get_imsm_map(dev, MAP_1);
1e5c6983
DW
6643
6644 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6645 return 1;
6646 else
6647 return 0;
6648}
6649
b4ab44d8 6650#ifndef MDASSEMBLE
6ce1fbf1
AK
6651static int is_initializing(struct imsm_dev *dev)
6652{
6653 struct imsm_map *migr_map;
6654
6655 if (!dev->vol.migr_state)
6656 return 0;
6657
6658 if (migr_type(dev) != MIGR_INIT)
6659 return 0;
6660
238c0a71 6661 migr_map = get_imsm_map(dev, MAP_1);
6ce1fbf1
AK
6662
6663 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6664 return 1;
6665
6666 return 0;
6ce1fbf1 6667}
b4ab44d8 6668#endif
6ce1fbf1 6669
c47b0ff6
AK
6670static void update_recovery_start(struct intel_super *super,
6671 struct imsm_dev *dev,
6672 struct mdinfo *array)
1e5c6983
DW
6673{
6674 struct mdinfo *rebuild = NULL;
6675 struct mdinfo *d;
6676 __u32 units;
6677
6678 if (!is_rebuilding(dev))
6679 return;
6680
6681 /* Find the rebuild target, but punt on the dual rebuild case */
6682 for (d = array->devs; d; d = d->next)
6683 if (d->recovery_start == 0) {
6684 if (rebuild)
6685 return;
6686 rebuild = d;
6687 }
6688
4363fd80
DW
6689 if (!rebuild) {
6690 /* (?) none of the disks are marked with
6691 * IMSM_ORD_REBUILD, so assume they are missing and the
6692 * disk_ord_tbl was not correctly updated
6693 */
1ade5cc1 6694 dprintf("failed to locate out-of-sync disk\n");
4363fd80
DW
6695 return;
6696 }
6697
1e5c6983 6698 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 6699 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
6700}
6701
9e2d750d 6702#ifndef MDASSEMBLE
276d77db 6703static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 6704#endif
1e5c6983 6705
00bbdbda 6706static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 6707{
4f5bc454
DW
6708 /* Given a container loaded by load_super_imsm_all,
6709 * extract information about all the arrays into
6710 * an mdinfo tree.
00bbdbda 6711 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
6712 *
6713 * For each imsm_dev create an mdinfo, fill it in,
6714 * then look for matching devices in super->disks
6715 * and create appropriate device mdinfo.
6716 */
6717 struct intel_super *super = st->sb;
949c47a0 6718 struct imsm_super *mpb = super->anchor;
4f5bc454 6719 struct mdinfo *rest = NULL;
00bbdbda 6720 unsigned int i;
81219e70 6721 int sb_errors = 0;
abef11a3
AK
6722 struct dl *d;
6723 int spare_disks = 0;
cdddbdbc 6724
19482bcc
AK
6725 /* do not assemble arrays when not all attributes are supported */
6726 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70 6727 sb_errors = 1;
7a862a02 6728 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
19482bcc
AK
6729 }
6730
a06d022d 6731 /* check for bad blocks */
81219e70 6732 if (imsm_bbm_log_size(super->anchor)) {
7a862a02 6733 pr_err("BBM log found in IMSM metadata.Arrays activation is blocked.\n");
81219e70
LM
6734 sb_errors = 1;
6735 }
6736
abef11a3
AK
6737 /* count spare devices, not used in maps
6738 */
6739 for (d = super->disks; d; d = d->next)
6740 if (d->index == -1)
6741 spare_disks++;
6742
4f5bc454 6743 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
6744 struct imsm_dev *dev;
6745 struct imsm_map *map;
86e3692b 6746 struct imsm_map *map2;
4f5bc454 6747 struct mdinfo *this;
a6482415
N
6748 int slot;
6749#ifndef MDASSEMBLE
6750 int chunk;
6751#endif
00bbdbda
N
6752 char *ep;
6753
6754 if (subarray &&
6755 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6756 continue;
6757
6758 dev = get_imsm_dev(super, i);
238c0a71
AK
6759 map = get_imsm_map(dev, MAP_0);
6760 map2 = get_imsm_map(dev, MAP_1);
4f5bc454 6761
1ce0101c
DW
6762 /* do not publish arrays that are in the middle of an
6763 * unsupported migration
6764 */
6765 if (dev->vol.migr_state &&
28bce06f 6766 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7a862a02 6767 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
1ce0101c
DW
6768 dev->volume);
6769 continue;
6770 }
2db86302
LM
6771 /* do not publish arrays that are not support by controller's
6772 * OROM/EFI
6773 */
1ce0101c 6774
503975b9 6775 this = xmalloc(sizeof(*this));
4f5bc454 6776
301406c9 6777 super->current_vol = i;
a5d85af7 6778 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 6779 this->next = rest;
81219e70 6780#ifndef MDASSEMBLE
a6482415 6781 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
81219e70
LM
6782 /* mdadm does not support all metadata features- set the bit in all arrays state */
6783 if (!validate_geometry_imsm_orom(super,
6784 get_imsm_raid_level(map), /* RAID level */
6785 imsm_level_to_layout(get_imsm_raid_level(map)),
6786 map->num_members, /* raid disks */
2cc699af 6787 &chunk, join_u32(dev->size_low, dev->size_high),
81219e70 6788 1 /* verbose */)) {
7a862a02 6789 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
81219e70
LM
6790 dev->volume);
6791 this->array.state |=
6792 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6793 (1<<MD_SB_BLOCK_VOLUME);
6794 }
6795#endif
6796
6797 /* if array has bad blocks, set suitable bit in all arrays state */
6798 if (sb_errors)
6799 this->array.state |=
6800 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6801 (1<<MD_SB_BLOCK_VOLUME);
6802
4f5bc454 6803 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 6804 unsigned long long recovery_start;
4f5bc454
DW
6805 struct mdinfo *info_d;
6806 struct dl *d;
6807 int idx;
9a1608e5 6808 int skip;
7eef0453 6809 __u32 ord;
4f5bc454 6810
9a1608e5 6811 skip = 0;
238c0a71
AK
6812 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6813 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4f5bc454
DW
6814 for (d = super->disks; d ; d = d->next)
6815 if (d->index == idx)
0fbd635c 6816 break;
4f5bc454 6817
1e5c6983 6818 recovery_start = MaxSector;
4f5bc454 6819 if (d == NULL)
9a1608e5 6820 skip = 1;
25ed7e59 6821 if (d && is_failed(&d->disk))
9a1608e5 6822 skip = 1;
7eef0453 6823 if (ord & IMSM_ORD_REBUILD)
1e5c6983 6824 recovery_start = 0;
9a1608e5 6825
1011e834 6826 /*
9a1608e5 6827 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
6828 * reset resync start to avoid a dirty-degraded
6829 * situation when performing the intial sync
9a1608e5
DW
6830 *
6831 * FIXME handle dirty degraded
6832 */
1e5c6983 6833 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 6834 this->resync_start = MaxSector;
9a1608e5
DW
6835 if (skip)
6836 continue;
4f5bc454 6837
503975b9 6838 info_d = xcalloc(1, sizeof(*info_d));
4f5bc454
DW
6839 info_d->next = this->devs;
6840 this->devs = info_d;
6841
4f5bc454
DW
6842 info_d->disk.number = d->index;
6843 info_d->disk.major = d->major;
6844 info_d->disk.minor = d->minor;
6845 info_d->disk.raid_disk = slot;
1e5c6983 6846 info_d->recovery_start = recovery_start;
86e3692b
AK
6847 if (map2) {
6848 if (slot < map2->num_members)
6849 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6850 else
6851 this->array.spare_disks++;
86e3692b
AK
6852 } else {
6853 if (slot < map->num_members)
6854 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
6855 else
6856 this->array.spare_disks++;
86e3692b 6857 }
1e5c6983
DW
6858 if (info_d->recovery_start == MaxSector)
6859 this->array.working_disks++;
4f5bc454
DW
6860
6861 info_d->events = __le32_to_cpu(mpb->generation_num);
5551b113
CA
6862 info_d->data_offset = pba_of_lba0(map);
6863 info_d->component_size = blocks_per_member(map);
4f5bc454 6864 }
1e5c6983 6865 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 6866 update_recovery_start(super, dev, this);
abef11a3 6867 this->array.spare_disks += spare_disks;
276d77db 6868
9e2d750d 6869#ifndef MDASSEMBLE
276d77db
AK
6870 /* check for reshape */
6871 if (this->reshape_active == 1)
6872 recover_backup_imsm(st, this);
9e2d750d 6873#endif
9a1608e5 6874 rest = this;
4f5bc454
DW
6875 }
6876
6877 return rest;
cdddbdbc
DW
6878}
6879
3b451610
AK
6880static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6881 int failed, int look_in_map)
c2a1e7da 6882{
3b451610
AK
6883 struct imsm_map *map;
6884
6885 map = get_imsm_map(dev, look_in_map);
c2a1e7da
DW
6886
6887 if (!failed)
1011e834 6888 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3393c6af 6889 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
6890
6891 switch (get_imsm_raid_level(map)) {
6892 case 0:
6893 return IMSM_T_STATE_FAILED;
6894 break;
6895 case 1:
6896 if (failed < map->num_members)
6897 return IMSM_T_STATE_DEGRADED;
6898 else
6899 return IMSM_T_STATE_FAILED;
6900 break;
6901 case 10:
6902 {
6903 /**
c92a2527
DW
6904 * check to see if any mirrors have failed, otherwise we
6905 * are degraded. Even numbered slots are mirrored on
6906 * slot+1
c2a1e7da 6907 */
c2a1e7da 6908 int i;
d9b420a5
N
6909 /* gcc -Os complains that this is unused */
6910 int insync = insync;
c2a1e7da
DW
6911
6912 for (i = 0; i < map->num_members; i++) {
238c0a71 6913 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
c92a2527
DW
6914 int idx = ord_to_idx(ord);
6915 struct imsm_disk *disk;
c2a1e7da 6916
c92a2527 6917 /* reset the potential in-sync count on even-numbered
1011e834 6918 * slots. num_copies is always 2 for imsm raid10
c92a2527
DW
6919 */
6920 if ((i & 1) == 0)
6921 insync = 2;
c2a1e7da 6922
c92a2527 6923 disk = get_imsm_disk(super, idx);
25ed7e59 6924 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 6925 insync--;
c2a1e7da 6926
c92a2527
DW
6927 /* no in-sync disks left in this mirror the
6928 * array has failed
6929 */
6930 if (insync == 0)
6931 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
6932 }
6933
6934 return IMSM_T_STATE_DEGRADED;
6935 }
6936 case 5:
6937 if (failed < 2)
6938 return IMSM_T_STATE_DEGRADED;
6939 else
6940 return IMSM_T_STATE_FAILED;
6941 break;
6942 default:
6943 break;
6944 }
6945
6946 return map->map_state;
6947}
6948
3b451610
AK
6949static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6950 int look_in_map)
c2a1e7da
DW
6951{
6952 int i;
6953 int failed = 0;
6954 struct imsm_disk *disk;
d5985138
AK
6955 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6956 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
68fe4598 6957 struct imsm_map *map_for_loop;
0556e1a2
DW
6958 __u32 ord;
6959 int idx;
d5985138 6960 int idx_1;
c2a1e7da 6961
0556e1a2
DW
6962 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6963 * disks that are being rebuilt. New failures are recorded to
6964 * map[0]. So we look through all the disks we started with and
6965 * see if any failures are still present, or if any new ones
6966 * have arrived
0556e1a2 6967 */
d5985138
AK
6968 map_for_loop = map;
6969 if (prev && (map->num_members < prev->num_members))
6970 map_for_loop = prev;
68fe4598
LD
6971
6972 for (i = 0; i < map_for_loop->num_members; i++) {
d5985138 6973 idx_1 = -255;
238c0a71
AK
6974 /* when MAP_X is passed both maps failures are counted
6975 */
d5985138 6976 if (prev &&
238c0a71
AK
6977 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6978 (i < prev->num_members)) {
d5985138
AK
6979 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6980 idx_1 = ord_to_idx(ord);
c2a1e7da 6981
d5985138
AK
6982 disk = get_imsm_disk(super, idx_1);
6983 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6984 failed++;
6985 }
238c0a71
AK
6986 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6987 (i < map->num_members)) {
d5985138
AK
6988 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6989 idx = ord_to_idx(ord);
6990
6991 if (idx != idx_1) {
6992 disk = get_imsm_disk(super, idx);
6993 if (!disk || is_failed(disk) ||
6994 ord & IMSM_ORD_REBUILD)
6995 failed++;
6996 }
6997 }
c2a1e7da
DW
6998 }
6999
7000 return failed;
845dea95
NB
7001}
7002
97b4d0e9
DW
7003#ifndef MDASSEMBLE
7004static int imsm_open_new(struct supertype *c, struct active_array *a,
7005 char *inst)
7006{
7007 struct intel_super *super = c->sb;
7008 struct imsm_super *mpb = super->anchor;
9587c373 7009
97b4d0e9 7010 if (atoi(inst) >= mpb->num_raid_devs) {
1ade5cc1 7011 pr_err("subarry index %d, out of range\n", atoi(inst));
97b4d0e9
DW
7012 return -ENODEV;
7013 }
7014
7015 dprintf("imsm: open_new %s\n", inst);
7016 a->info.container_member = atoi(inst);
7017 return 0;
7018}
7019
0c046afd
DW
7020static int is_resyncing(struct imsm_dev *dev)
7021{
7022 struct imsm_map *migr_map;
7023
7024 if (!dev->vol.migr_state)
7025 return 0;
7026
1484e727
DW
7027 if (migr_type(dev) == MIGR_INIT ||
7028 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
7029 return 1;
7030
4c9bc37b
AK
7031 if (migr_type(dev) == MIGR_GEN_MIGR)
7032 return 0;
7033
238c0a71 7034 migr_map = get_imsm_map(dev, MAP_1);
0c046afd 7035
4c9bc37b
AK
7036 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
7037 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
7038 return 1;
7039 else
7040 return 0;
7041}
7042
0556e1a2
DW
7043/* return true if we recorded new information */
7044static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 7045{
0556e1a2
DW
7046 __u32 ord;
7047 int slot;
7048 struct imsm_map *map;
86c54047
DW
7049 char buf[MAX_RAID_SERIAL_LEN+3];
7050 unsigned int len, shift = 0;
0556e1a2
DW
7051
7052 /* new failures are always set in map[0] */
238c0a71 7053 map = get_imsm_map(dev, MAP_0);
0556e1a2
DW
7054
7055 slot = get_imsm_disk_slot(map, idx);
7056 if (slot < 0)
7057 return 0;
7058
7059 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 7060 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
7061 return 0;
7062
7d0c5e24
LD
7063 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7064 buf[MAX_RAID_SERIAL_LEN] = '\000';
7065 strcat(buf, ":0");
86c54047
DW
7066 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7067 shift = len - MAX_RAID_SERIAL_LEN + 1;
7068 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7069
f2f27e63 7070 disk->status |= FAILED_DISK;
0556e1a2 7071 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
17788994
AK
7072 /* mark failures in second map if second map exists and this disk
7073 * in this slot.
7074 * This is valid for migration, initialization and rebuild
7075 */
7076 if (dev->vol.migr_state) {
238c0a71 7077 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
0a108d63
AK
7078 int slot2 = get_imsm_disk_slot(map2, idx);
7079
7080 if ((slot2 < map2->num_members) &&
7081 (slot2 >= 0))
7082 set_imsm_ord_tbl_ent(map2, slot2,
1ace8403
AK
7083 idx | IMSM_ORD_REBUILD);
7084 }
f21e18ca 7085 if (map->failed_disk_num == 0xff)
0556e1a2
DW
7086 map->failed_disk_num = slot;
7087 return 1;
7088}
7089
7090static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7091{
7092 mark_failure(dev, disk, idx);
7093
7094 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7095 return;
7096
47ee5a45
DW
7097 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7098 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7099}
7100
33414a01
DW
7101static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7102{
33414a01 7103 struct dl *dl;
33414a01
DW
7104
7105 if (!super->missing)
7106 return;
33414a01 7107
79b68f1b
PC
7108 /* When orom adds replacement for missing disk it does
7109 * not remove entry of missing disk, but just updates map with
7110 * new added disk. So it is not enough just to test if there is
7111 * any missing disk, we have to look if there are any failed disks
7112 * in map to stop migration */
7113
33414a01 7114 dprintf("imsm: mark missing\n");
3d59f0c0
AK
7115 /* end process for initialization and rebuild only
7116 */
7117 if (is_gen_migration(dev) == 0) {
7118 __u8 map_state;
7119 int failed;
7120
7121 failed = imsm_count_failed(super, dev, MAP_0);
7122 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7123
79b68f1b
PC
7124 if (failed)
7125 end_migration(dev, super, map_state);
3d59f0c0 7126 }
33414a01
DW
7127 for (dl = super->missing; dl; dl = dl->next)
7128 mark_missing(dev, &dl->disk, dl->index);
7129 super->updates_pending++;
7130}
7131
f3871fdc
AK
7132static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7133 long long new_size)
70bdf0dc 7134{
238c0a71 7135 int used_disks = imsm_num_data_members(dev, MAP_0);
70bdf0dc
AK
7136 unsigned long long array_blocks;
7137 struct imsm_map *map;
7138
7139 if (used_disks == 0) {
7140 /* when problems occures
7141 * return current array_blocks value
7142 */
7143 array_blocks = __le32_to_cpu(dev->size_high);
7144 array_blocks = array_blocks << 32;
7145 array_blocks += __le32_to_cpu(dev->size_low);
7146
7147 return array_blocks;
7148 }
7149
7150 /* set array size in metadata
7151 */
f3871fdc
AK
7152 if (new_size <= 0) {
7153 /* OLCE size change is caused by added disks
7154 */
7155 map = get_imsm_map(dev, MAP_0);
7156 array_blocks = blocks_per_member(map) * used_disks;
7157 } else {
7158 /* Online Volume Size Change
7159 * Using available free space
7160 */
7161 array_blocks = new_size;
7162 }
70bdf0dc
AK
7163
7164 /* round array size down to closest MB
7165 */
7166 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7167 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7168 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7169
7170 return array_blocks;
7171}
7172
28bce06f
AK
7173static void imsm_set_disk(struct active_array *a, int n, int state);
7174
0e2d1a4e
AK
7175static void imsm_progress_container_reshape(struct intel_super *super)
7176{
7177 /* if no device has a migr_state, but some device has a
7178 * different number of members than the previous device, start
7179 * changing the number of devices in this device to match
7180 * previous.
7181 */
7182 struct imsm_super *mpb = super->anchor;
7183 int prev_disks = -1;
7184 int i;
1dfaa380 7185 int copy_map_size;
0e2d1a4e
AK
7186
7187 for (i = 0; i < mpb->num_raid_devs; i++) {
7188 struct imsm_dev *dev = get_imsm_dev(super, i);
238c0a71 7189 struct imsm_map *map = get_imsm_map(dev, MAP_0);
0e2d1a4e
AK
7190 struct imsm_map *map2;
7191 int prev_num_members;
0e2d1a4e
AK
7192
7193 if (dev->vol.migr_state)
7194 return;
7195
7196 if (prev_disks == -1)
7197 prev_disks = map->num_members;
7198 if (prev_disks == map->num_members)
7199 continue;
7200
7201 /* OK, this array needs to enter reshape mode.
7202 * i.e it needs a migr_state
7203 */
7204
1dfaa380 7205 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
7206 prev_num_members = map->num_members;
7207 map->num_members = prev_disks;
7208 dev->vol.migr_state = 1;
7209 dev->vol.curr_migr_unit = 0;
ea672ee1 7210 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
7211 for (i = prev_num_members;
7212 i < map->num_members; i++)
7213 set_imsm_ord_tbl_ent(map, i, i);
238c0a71 7214 map2 = get_imsm_map(dev, MAP_1);
0e2d1a4e 7215 /* Copy the current map */
1dfaa380 7216 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
7217 map2->num_members = prev_num_members;
7218
f3871fdc 7219 imsm_set_array_size(dev, -1);
51d83f5d 7220 super->clean_migration_record_by_mdmon = 1;
0e2d1a4e
AK
7221 super->updates_pending++;
7222 }
7223}
7224
aad6f216 7225/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
7226 * states are handled in imsm_set_disk() with one exception, when a
7227 * resync is stopped due to a new failure this routine will set the
7228 * 'degraded' state for the array.
7229 */
01f157d7 7230static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
7231{
7232 int inst = a->info.container_member;
7233 struct intel_super *super = a->container->sb;
949c47a0 7234 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7235 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3b451610
AK
7236 int failed = imsm_count_failed(super, dev, MAP_0);
7237 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
1e5c6983 7238 __u32 blocks_per_unit;
a862209d 7239
1af97990
AK
7240 if (dev->vol.migr_state &&
7241 dev->vol.migr_type == MIGR_GEN_MIGR) {
7242 /* array state change is blocked due to reshape action
aad6f216
N
7243 * We might need to
7244 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7245 * - finish the reshape (if last_checkpoint is big and action != reshape)
7246 * - update curr_migr_unit
1af97990 7247 */
aad6f216
N
7248 if (a->curr_action == reshape) {
7249 /* still reshaping, maybe update curr_migr_unit */
633b5610 7250 goto mark_checkpoint;
aad6f216
N
7251 } else {
7252 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7253 /* for some reason we aborted the reshape.
b66e591b
AK
7254 *
7255 * disable automatic metadata rollback
7256 * user action is required to recover process
aad6f216 7257 */
b66e591b 7258 if (0) {
238c0a71
AK
7259 struct imsm_map *map2 =
7260 get_imsm_map(dev, MAP_1);
7261 dev->vol.migr_state = 0;
7262 set_migr_type(dev, 0);
7263 dev->vol.curr_migr_unit = 0;
7264 memcpy(map, map2,
7265 sizeof_imsm_map(map2));
7266 super->updates_pending++;
b66e591b 7267 }
aad6f216
N
7268 }
7269 if (a->last_checkpoint >= a->info.component_size) {
7270 unsigned long long array_blocks;
7271 int used_disks;
e154ced3 7272 struct mdinfo *mdi;
aad6f216 7273
238c0a71 7274 used_disks = imsm_num_data_members(dev, MAP_0);
d55adef9
AK
7275 if (used_disks > 0) {
7276 array_blocks =
5551b113 7277 blocks_per_member(map) *
d55adef9
AK
7278 used_disks;
7279 /* round array size down to closest MB
7280 */
7281 array_blocks = (array_blocks
7282 >> SECT_PER_MB_SHIFT)
7283 << SECT_PER_MB_SHIFT;
d55adef9
AK
7284 a->info.custom_array_size = array_blocks;
7285 /* encourage manager to update array
7286 * size
7287 */
e154ced3 7288
d55adef9 7289 a->check_reshape = 1;
633b5610 7290 }
e154ced3
AK
7291 /* finalize online capacity expansion/reshape */
7292 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7293 imsm_set_disk(a,
7294 mdi->disk.raid_disk,
7295 mdi->curr_state);
7296
0e2d1a4e 7297 imsm_progress_container_reshape(super);
e154ced3 7298 }
aad6f216 7299 }
1af97990
AK
7300 }
7301
47ee5a45 7302 /* before we activate this array handle any missing disks */
33414a01
DW
7303 if (consistent == 2)
7304 handle_missing(super, dev);
1e5c6983 7305
0c046afd 7306 if (consistent == 2 &&
b7941fd6 7307 (!is_resync_complete(&a->info) ||
0c046afd
DW
7308 map_state != IMSM_T_STATE_NORMAL ||
7309 dev->vol.migr_state))
01f157d7 7310 consistent = 0;
272906ef 7311
b7941fd6 7312 if (is_resync_complete(&a->info)) {
0c046afd 7313 /* complete intialization / resync,
0556e1a2
DW
7314 * recovery and interrupted recovery is completed in
7315 * ->set_disk
0c046afd
DW
7316 */
7317 if (is_resyncing(dev)) {
7318 dprintf("imsm: mark resync done\n");
809da78e 7319 end_migration(dev, super, map_state);
115c3803 7320 super->updates_pending++;
484240d8 7321 a->last_checkpoint = 0;
115c3803 7322 }
b9172665
AK
7323 } else if ((!is_resyncing(dev) && !failed) &&
7324 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 7325 /* mark the start of the init process if nothing is failed */
b7941fd6 7326 dprintf("imsm: mark resync start\n");
1484e727 7327 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 7328 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 7329 else
8e59f3d8 7330 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 7331 super->updates_pending++;
115c3803 7332 }
a862209d 7333
633b5610 7334mark_checkpoint:
5b83bacf
AK
7335 /* skip checkpointing for general migration,
7336 * it is controlled in mdadm
7337 */
7338 if (is_gen_migration(dev))
7339 goto skip_mark_checkpoint;
7340
1e5c6983 7341 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 7342 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 7343 if (blocks_per_unit) {
1e5c6983
DW
7344 __u32 units32;
7345 __u64 units;
7346
4f0a7acc 7347 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
7348 units32 = units;
7349
7350 /* check that we did not overflow 32-bits, and that
7351 * curr_migr_unit needs updating
7352 */
7353 if (units32 == units &&
bfd80a56 7354 units32 != 0 &&
1e5c6983
DW
7355 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7356 dprintf("imsm: mark checkpoint (%u)\n", units32);
7357 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7358 super->updates_pending++;
7359 }
7360 }
f8f603f1 7361
5b83bacf 7362skip_mark_checkpoint:
3393c6af 7363 /* mark dirty / clean */
0c046afd 7364 if (dev->vol.dirty != !consistent) {
b7941fd6 7365 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
7366 if (consistent)
7367 dev->vol.dirty = 0;
7368 else
7369 dev->vol.dirty = 1;
a862209d
DW
7370 super->updates_pending++;
7371 }
28bce06f 7372
01f157d7 7373 return consistent;
a862209d
DW
7374}
7375
8d45d196 7376static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 7377{
8d45d196
DW
7378 int inst = a->info.container_member;
7379 struct intel_super *super = a->container->sb;
949c47a0 7380 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7381 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8d45d196 7382 struct imsm_disk *disk;
7ce05701
LD
7383 struct mdinfo *mdi;
7384 int recovery_not_finished = 0;
0c046afd 7385 int failed;
b10b37b8 7386 __u32 ord;
0c046afd 7387 __u8 map_state;
8d45d196
DW
7388
7389 if (n > map->num_members)
e12b3daa 7390 pr_err("imsm: set_disk %d out of range 0..%d\n",
8d45d196
DW
7391 n, map->num_members - 1);
7392
7393 if (n < 0)
7394 return;
7395
4e6e574a 7396 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 7397
238c0a71 7398 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
b10b37b8 7399 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 7400
5802a811 7401 /* check for new failures */
0556e1a2
DW
7402 if (state & DS_FAULTY) {
7403 if (mark_failure(dev, disk, ord_to_idx(ord)))
7404 super->updates_pending++;
8d45d196 7405 }
47ee5a45 7406
19859edc 7407 /* check if in_sync */
0556e1a2 7408 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
238c0a71 7409 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
b10b37b8
DW
7410
7411 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
7412 super->updates_pending++;
7413 }
8d45d196 7414
3b451610
AK
7415 failed = imsm_count_failed(super, dev, MAP_0);
7416 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
5802a811 7417
0c046afd 7418 /* check if recovery complete, newly degraded, or failed */
94002678
AK
7419 dprintf("imsm: Detected transition to state ");
7420 switch (map_state) {
7421 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7422 dprintf("normal: ");
7423 if (is_rebuilding(dev)) {
1ade5cc1 7424 dprintf_cont("while rebuilding");
7ce05701
LD
7425 /* check if recovery is really finished */
7426 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7427 if (mdi->recovery_start != MaxSector) {
7428 recovery_not_finished = 1;
7429 break;
7430 }
7431 if (recovery_not_finished) {
1ade5cc1
N
7432 dprintf_cont("\n");
7433 dprintf("Rebuild has not finished yet, state not changed");
7ce05701
LD
7434 if (a->last_checkpoint < mdi->recovery_start) {
7435 a->last_checkpoint = mdi->recovery_start;
7436 super->updates_pending++;
7437 }
7438 break;
7439 }
94002678 7440 end_migration(dev, super, map_state);
238c0a71 7441 map = get_imsm_map(dev, MAP_0);
94002678
AK
7442 map->failed_disk_num = ~0;
7443 super->updates_pending++;
7444 a->last_checkpoint = 0;
7445 break;
7446 }
7447 if (is_gen_migration(dev)) {
1ade5cc1 7448 dprintf_cont("while general migration");
bf2f0071 7449 if (a->last_checkpoint >= a->info.component_size)
809da78e 7450 end_migration(dev, super, map_state);
94002678
AK
7451 else
7452 map->map_state = map_state;
238c0a71 7453 map = get_imsm_map(dev, MAP_0);
28bce06f 7454 map->failed_disk_num = ~0;
94002678 7455 super->updates_pending++;
bf2f0071 7456 break;
94002678
AK
7457 }
7458 break;
7459 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
1ade5cc1 7460 dprintf_cont("degraded: ");
94002678
AK
7461 if ((map->map_state != map_state) &&
7462 !dev->vol.migr_state) {
1ade5cc1 7463 dprintf_cont("mark degraded");
94002678
AK
7464 map->map_state = map_state;
7465 super->updates_pending++;
7466 a->last_checkpoint = 0;
7467 break;
7468 }
7469 if (is_rebuilding(dev)) {
1ade5cc1 7470 dprintf_cont("while rebuilding.");
94002678 7471 if (map->map_state != map_state) {
1ade5cc1 7472 dprintf_cont(" Map state change");
94002678
AK
7473 end_migration(dev, super, map_state);
7474 super->updates_pending++;
7475 }
7476 break;
7477 }
7478 if (is_gen_migration(dev)) {
1ade5cc1 7479 dprintf_cont("while general migration");
bf2f0071 7480 if (a->last_checkpoint >= a->info.component_size)
809da78e 7481 end_migration(dev, super, map_state);
94002678
AK
7482 else {
7483 map->map_state = map_state;
3b451610 7484 manage_second_map(super, dev);
94002678
AK
7485 }
7486 super->updates_pending++;
bf2f0071 7487 break;
28bce06f 7488 }
6ce1fbf1 7489 if (is_initializing(dev)) {
1ade5cc1 7490 dprintf_cont("while initialization.");
6ce1fbf1
AK
7491 map->map_state = map_state;
7492 super->updates_pending++;
7493 break;
7494 }
94002678
AK
7495 break;
7496 case IMSM_T_STATE_FAILED: /* transition to failed state */
1ade5cc1 7497 dprintf_cont("failed: ");
94002678 7498 if (is_gen_migration(dev)) {
1ade5cc1 7499 dprintf_cont("while general migration");
94002678
AK
7500 map->map_state = map_state;
7501 super->updates_pending++;
7502 break;
7503 }
7504 if (map->map_state != map_state) {
1ade5cc1 7505 dprintf_cont("mark failed");
94002678
AK
7506 end_migration(dev, super, map_state);
7507 super->updates_pending++;
7508 a->last_checkpoint = 0;
7509 break;
7510 }
7511 break;
7512 default:
1ade5cc1 7513 dprintf_cont("state %i\n", map_state);
5802a811 7514 }
1ade5cc1 7515 dprintf_cont("\n");
845dea95
NB
7516}
7517
f796af5d 7518static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 7519{
f796af5d 7520 void *buf = mpb;
c2a1e7da
DW
7521 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7522 unsigned long long dsize;
7523 unsigned long long sectors;
7524
7525 get_dev_size(fd, NULL, &dsize);
7526
272f648f
DW
7527 if (mpb_size > 512) {
7528 /* -1 to account for anchor */
7529 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 7530
272f648f
DW
7531 /* write the extended mpb to the sectors preceeding the anchor */
7532 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7533 return 1;
c2a1e7da 7534
f21e18ca
N
7535 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7536 != 512 * sectors)
272f648f
DW
7537 return 1;
7538 }
c2a1e7da 7539
272f648f
DW
7540 /* first block is stored on second to last sector of the disk */
7541 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
7542 return 1;
7543
f796af5d 7544 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
7545 return 1;
7546
c2a1e7da
DW
7547 return 0;
7548}
7549
2e735d19 7550static void imsm_sync_metadata(struct supertype *container)
845dea95 7551{
2e735d19 7552 struct intel_super *super = container->sb;
c2a1e7da 7553
1a64be56 7554 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
7555 if (!super->updates_pending)
7556 return;
7557
36988a3d 7558 write_super_imsm(container, 0);
c2a1e7da
DW
7559
7560 super->updates_pending = 0;
845dea95
NB
7561}
7562
272906ef
DW
7563static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7564{
7565 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7566 int i = get_imsm_disk_idx(dev, idx, MAP_X);
272906ef
DW
7567 struct dl *dl;
7568
7569 for (dl = super->disks; dl; dl = dl->next)
7570 if (dl->index == i)
7571 break;
7572
25ed7e59 7573 if (dl && is_failed(&dl->disk))
272906ef
DW
7574 dl = NULL;
7575
7576 if (dl)
1ade5cc1 7577 dprintf("found %x:%x\n", dl->major, dl->minor);
272906ef
DW
7578
7579 return dl;
7580}
7581
a20d2ba5 7582static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
7583 struct active_array *a, int activate_new,
7584 struct mdinfo *additional_test_list)
272906ef
DW
7585{
7586 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
238c0a71 7587 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
a20d2ba5
DW
7588 struct imsm_super *mpb = super->anchor;
7589 struct imsm_map *map;
272906ef
DW
7590 unsigned long long pos;
7591 struct mdinfo *d;
7592 struct extent *ex;
a20d2ba5 7593 int i, j;
272906ef 7594 int found;
569cc43f
DW
7595 __u32 array_start = 0;
7596 __u32 array_end = 0;
272906ef 7597 struct dl *dl;
6c932028 7598 struct mdinfo *test_list;
272906ef
DW
7599
7600 for (dl = super->disks; dl; dl = dl->next) {
7601 /* If in this array, skip */
7602 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
7603 if (d->state_fd >= 0 &&
7604 d->disk.major == dl->major &&
272906ef 7605 d->disk.minor == dl->minor) {
8ba77d32
AK
7606 dprintf("%x:%x already in array\n",
7607 dl->major, dl->minor);
272906ef
DW
7608 break;
7609 }
7610 if (d)
7611 continue;
6c932028
AK
7612 test_list = additional_test_list;
7613 while (test_list) {
7614 if (test_list->disk.major == dl->major &&
7615 test_list->disk.minor == dl->minor) {
8ba77d32
AK
7616 dprintf("%x:%x already in additional test list\n",
7617 dl->major, dl->minor);
7618 break;
7619 }
6c932028 7620 test_list = test_list->next;
8ba77d32 7621 }
6c932028 7622 if (test_list)
8ba77d32 7623 continue;
272906ef 7624
e553d2a4 7625 /* skip in use or failed drives */
25ed7e59 7626 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
7627 dl->index == -2) {
7628 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 7629 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
7630 continue;
7631 }
7632
a20d2ba5
DW
7633 /* skip pure spares when we are looking for partially
7634 * assimilated drives
7635 */
7636 if (dl->index == -1 && !activate_new)
7637 continue;
7638
272906ef 7639 /* Does this unused device have the requisite free space?
a20d2ba5 7640 * It needs to be able to cover all member volumes
272906ef
DW
7641 */
7642 ex = get_extents(super, dl);
7643 if (!ex) {
7644 dprintf("cannot get extents\n");
7645 continue;
7646 }
a20d2ba5
DW
7647 for (i = 0; i < mpb->num_raid_devs; i++) {
7648 dev = get_imsm_dev(super, i);
238c0a71 7649 map = get_imsm_map(dev, MAP_0);
272906ef 7650
a20d2ba5
DW
7651 /* check if this disk is already a member of
7652 * this array
272906ef 7653 */
620b1713 7654 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
7655 continue;
7656
7657 found = 0;
7658 j = 0;
7659 pos = 0;
5551b113 7660 array_start = pba_of_lba0(map);
329c8278 7661 array_end = array_start +
5551b113 7662 blocks_per_member(map) - 1;
a20d2ba5
DW
7663
7664 do {
7665 /* check that we can start at pba_of_lba0 with
7666 * blocks_per_member of space
7667 */
329c8278 7668 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
7669 found = 1;
7670 break;
7671 }
7672 pos = ex[j].start + ex[j].size;
7673 j++;
7674 } while (ex[j-1].size);
7675
7676 if (!found)
272906ef 7677 break;
a20d2ba5 7678 }
272906ef
DW
7679
7680 free(ex);
a20d2ba5 7681 if (i < mpb->num_raid_devs) {
329c8278
DW
7682 dprintf("%x:%x does not have %u to %u available\n",
7683 dl->major, dl->minor, array_start, array_end);
272906ef
DW
7684 /* No room */
7685 continue;
a20d2ba5
DW
7686 }
7687 return dl;
272906ef
DW
7688 }
7689
7690 return dl;
7691}
7692
95d07a2c
LM
7693static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7694{
7695 struct imsm_dev *dev2;
7696 struct imsm_map *map;
7697 struct dl *idisk;
7698 int slot;
7699 int idx;
7700 __u8 state;
7701
7702 dev2 = get_imsm_dev(cont->sb, dev_idx);
7703 if (dev2) {
238c0a71 7704 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
95d07a2c 7705 if (state == IMSM_T_STATE_FAILED) {
238c0a71 7706 map = get_imsm_map(dev2, MAP_0);
95d07a2c
LM
7707 if (!map)
7708 return 1;
7709 for (slot = 0; slot < map->num_members; slot++) {
7710 /*
7711 * Check if failed disks are deleted from intel
7712 * disk list or are marked to be deleted
7713 */
238c0a71 7714 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
95d07a2c
LM
7715 idisk = get_imsm_dl_disk(cont->sb, idx);
7716 /*
7717 * Do not rebuild the array if failed disks
7718 * from failed sub-array are not removed from
7719 * container.
7720 */
7721 if (idisk &&
7722 is_failed(&idisk->disk) &&
7723 (idisk->action != DISK_REMOVE))
7724 return 0;
7725 }
7726 }
7727 }
7728 return 1;
7729}
7730
88758e9d
DW
7731static struct mdinfo *imsm_activate_spare(struct active_array *a,
7732 struct metadata_update **updates)
7733{
7734 /**
d23fe947
DW
7735 * Find a device with unused free space and use it to replace a
7736 * failed/vacant region in an array. We replace failed regions one a
7737 * array at a time. The result is that a new spare disk will be added
7738 * to the first failed array and after the monitor has finished
7739 * propagating failures the remainder will be consumed.
88758e9d 7740 *
d23fe947
DW
7741 * FIXME add a capability for mdmon to request spares from another
7742 * container.
88758e9d
DW
7743 */
7744
7745 struct intel_super *super = a->container->sb;
88758e9d 7746 int inst = a->info.container_member;
949c47a0 7747 struct imsm_dev *dev = get_imsm_dev(super, inst);
238c0a71 7748 struct imsm_map *map = get_imsm_map(dev, MAP_0);
88758e9d
DW
7749 int failed = a->info.array.raid_disks;
7750 struct mdinfo *rv = NULL;
7751 struct mdinfo *d;
7752 struct mdinfo *di;
7753 struct metadata_update *mu;
7754 struct dl *dl;
7755 struct imsm_update_activate_spare *u;
7756 int num_spares = 0;
7757 int i;
95d07a2c 7758 int allowed;
88758e9d
DW
7759
7760 for (d = a->info.devs ; d ; d = d->next) {
7761 if ((d->curr_state & DS_FAULTY) &&
7762 d->state_fd >= 0)
7763 /* wait for Removal to happen */
7764 return NULL;
7765 if (d->state_fd >= 0)
7766 failed--;
7767 }
7768
7769 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7770 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 7771
e2962bfc
AK
7772 if (imsm_reshape_blocks_arrays_changes(super))
7773 return NULL;
1af97990 7774
fc8ca064
AK
7775 /* Cannot activate another spare if rebuild is in progress already
7776 */
7777 if (is_rebuilding(dev)) {
7a862a02 7778 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
fc8ca064
AK
7779 return NULL;
7780 }
7781
89c67882
AK
7782 if (a->info.array.level == 4)
7783 /* No repair for takeovered array
7784 * imsm doesn't support raid4
7785 */
7786 return NULL;
7787
3b451610
AK
7788 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7789 IMSM_T_STATE_DEGRADED)
88758e9d
DW
7790 return NULL;
7791
83ca7d45
AP
7792 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
7793 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
7794 return NULL;
7795 }
7796
95d07a2c
LM
7797 /*
7798 * If there are any failed disks check state of the other volume.
7799 * Block rebuild if the another one is failed until failed disks
7800 * are removed from container.
7801 */
7802 if (failed) {
7a862a02 7803 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
c4acd1e5 7804 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
7805 /* check if states of the other volumes allow for rebuild */
7806 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7807 if (i != inst) {
7808 allowed = imsm_rebuild_allowed(a->container,
7809 i, failed);
7810 if (!allowed)
7811 return NULL;
7812 }
7813 }
7814 }
7815
88758e9d 7816 /* For each slot, if it is not working, find a spare */
88758e9d
DW
7817 for (i = 0; i < a->info.array.raid_disks; i++) {
7818 for (d = a->info.devs ; d ; d = d->next)
7819 if (d->disk.raid_disk == i)
7820 break;
7821 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7822 if (d && (d->state_fd >= 0))
7823 continue;
7824
272906ef 7825 /*
a20d2ba5
DW
7826 * OK, this device needs recovery. Try to re-add the
7827 * previous occupant of this slot, if this fails see if
7828 * we can continue the assimilation of a spare that was
7829 * partially assimilated, finally try to activate a new
7830 * spare.
272906ef
DW
7831 */
7832 dl = imsm_readd(super, i, a);
7833 if (!dl)
b303fe21 7834 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 7835 if (!dl)
b303fe21 7836 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
7837 if (!dl)
7838 continue;
1011e834 7839
272906ef 7840 /* found a usable disk with enough space */
503975b9 7841 di = xcalloc(1, sizeof(*di));
272906ef
DW
7842
7843 /* dl->index will be -1 in the case we are activating a
7844 * pristine spare. imsm_process_update() will create a
7845 * new index in this case. Once a disk is found to be
7846 * failed in all member arrays it is kicked from the
7847 * metadata
7848 */
7849 di->disk.number = dl->index;
d23fe947 7850
272906ef
DW
7851 /* (ab)use di->devs to store a pointer to the device
7852 * we chose
7853 */
7854 di->devs = (struct mdinfo *) dl;
7855
7856 di->disk.raid_disk = i;
7857 di->disk.major = dl->major;
7858 di->disk.minor = dl->minor;
7859 di->disk.state = 0;
d23534e4 7860 di->recovery_start = 0;
5551b113 7861 di->data_offset = pba_of_lba0(map);
272906ef
DW
7862 di->component_size = a->info.component_size;
7863 di->container_member = inst;
148acb7b 7864 super->random = random32();
272906ef
DW
7865 di->next = rv;
7866 rv = di;
7867 num_spares++;
7868 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7869 i, di->data_offset);
88758e9d
DW
7870 }
7871
7872 if (!rv)
7873 /* No spares found */
7874 return rv;
7875 /* Now 'rv' has a list of devices to return.
7876 * Create a metadata_update record to update the
7877 * disk_ord_tbl for the array
7878 */
503975b9 7879 mu = xmalloc(sizeof(*mu));
1011e834 7880 mu->buf = xcalloc(num_spares,
503975b9 7881 sizeof(struct imsm_update_activate_spare));
88758e9d 7882 mu->space = NULL;
cb23f1f4 7883 mu->space_list = NULL;
88758e9d
DW
7884 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7885 mu->next = *updates;
7886 u = (struct imsm_update_activate_spare *) mu->buf;
7887
7888 for (di = rv ; di ; di = di->next) {
7889 u->type = update_activate_spare;
d23fe947
DW
7890 u->dl = (struct dl *) di->devs;
7891 di->devs = NULL;
88758e9d
DW
7892 u->slot = di->disk.raid_disk;
7893 u->array = inst;
7894 u->next = u + 1;
7895 u++;
7896 }
7897 (u-1)->next = NULL;
7898 *updates = mu;
7899
7900 return rv;
7901}
7902
54c2c1ea 7903static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 7904{
54c2c1ea 7905 struct imsm_dev *dev = get_imsm_dev(super, idx);
238c0a71
AK
7906 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7907 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
54c2c1ea
DW
7908 struct disk_info *inf = get_disk_info(u);
7909 struct imsm_disk *disk;
8273f55e
DW
7910 int i;
7911 int j;
8273f55e 7912
54c2c1ea 7913 for (i = 0; i < map->num_members; i++) {
238c0a71 7914 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
54c2c1ea
DW
7915 for (j = 0; j < new_map->num_members; j++)
7916 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
7917 return 1;
7918 }
7919
7920 return 0;
7921}
7922
1a64be56
LM
7923static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7924{
594dc1b8
JS
7925 struct dl *dl;
7926
1a64be56
LM
7927 for (dl = super->disks; dl; dl = dl->next)
7928 if ((dl->major == major) && (dl->minor == minor))
7929 return dl;
7930 return NULL;
7931}
7932
7933static int remove_disk_super(struct intel_super *super, int major, int minor)
7934{
594dc1b8 7935 struct dl *prev;
1a64be56
LM
7936 struct dl *dl;
7937
7938 prev = NULL;
7939 for (dl = super->disks; dl; dl = dl->next) {
7940 if ((dl->major == major) && (dl->minor == minor)) {
7941 /* remove */
7942 if (prev)
7943 prev->next = dl->next;
7944 else
7945 super->disks = dl->next;
7946 dl->next = NULL;
7947 __free_imsm_disk(dl);
1ade5cc1 7948 dprintf("removed %x:%x\n", major, minor);
1a64be56
LM
7949 break;
7950 }
7951 prev = dl;
7952 }
7953 return 0;
7954}
7955
f21e18ca 7956static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 7957
1a64be56
LM
7958static int add_remove_disk_update(struct intel_super *super)
7959{
7960 int check_degraded = 0;
594dc1b8
JS
7961 struct dl *disk;
7962
1a64be56
LM
7963 /* add/remove some spares to/from the metadata/contrainer */
7964 while (super->disk_mgmt_list) {
7965 struct dl *disk_cfg;
7966
7967 disk_cfg = super->disk_mgmt_list;
7968 super->disk_mgmt_list = disk_cfg->next;
7969 disk_cfg->next = NULL;
7970
7971 if (disk_cfg->action == DISK_ADD) {
7972 disk_cfg->next = super->disks;
7973 super->disks = disk_cfg;
7974 check_degraded = 1;
1ade5cc1
N
7975 dprintf("added %x:%x\n",
7976 disk_cfg->major, disk_cfg->minor);
1a64be56
LM
7977 } else if (disk_cfg->action == DISK_REMOVE) {
7978 dprintf("Disk remove action processed: %x.%x\n",
7979 disk_cfg->major, disk_cfg->minor);
7980 disk = get_disk_super(super,
7981 disk_cfg->major,
7982 disk_cfg->minor);
7983 if (disk) {
7984 /* store action status */
7985 disk->action = DISK_REMOVE;
7986 /* remove spare disks only */
7987 if (disk->index == -1) {
7988 remove_disk_super(super,
7989 disk_cfg->major,
7990 disk_cfg->minor);
7991 }
7992 }
7993 /* release allocate disk structure */
7994 __free_imsm_disk(disk_cfg);
7995 }
7996 }
7997 return check_degraded;
7998}
7999
a29911da
PC
8000static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8001 struct intel_super *super,
8002 void ***space_list)
8003{
8004 struct intel_dev *id;
8005 void **tofree = NULL;
8006 int ret_val = 0;
8007
1ade5cc1 8008 dprintf("(enter)\n");
a29911da
PC
8009 if ((u->subdev < 0) ||
8010 (u->subdev > 1)) {
8011 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8012 return ret_val;
8013 }
8014 if ((space_list == NULL) || (*space_list == NULL)) {
8015 dprintf("imsm: Error: Memory is not allocated\n");
8016 return ret_val;
8017 }
8018
8019 for (id = super->devlist ; id; id = id->next) {
8020 if (id->index == (unsigned)u->subdev) {
8021 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8022 struct imsm_map *map;
8023 struct imsm_dev *new_dev =
8024 (struct imsm_dev *)*space_list;
238c0a71 8025 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
a29911da
PC
8026 int to_state;
8027 struct dl *new_disk;
8028
8029 if (new_dev == NULL)
8030 return ret_val;
8031 *space_list = **space_list;
8032 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
238c0a71 8033 map = get_imsm_map(new_dev, MAP_0);
a29911da
PC
8034 if (migr_map) {
8035 dprintf("imsm: Error: migration in progress");
8036 return ret_val;
8037 }
8038
8039 to_state = map->map_state;
8040 if ((u->new_level == 5) && (map->raid_level == 0)) {
8041 map->num_members++;
8042 /* this should not happen */
8043 if (u->new_disks[0] < 0) {
8044 map->failed_disk_num =
8045 map->num_members - 1;
8046 to_state = IMSM_T_STATE_DEGRADED;
8047 } else
8048 to_state = IMSM_T_STATE_NORMAL;
8049 }
8e59f3d8 8050 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
8051 if (u->new_level > -1)
8052 map->raid_level = u->new_level;
238c0a71 8053 migr_map = get_imsm_map(new_dev, MAP_1);
a29911da
PC
8054 if ((u->new_level == 5) &&
8055 (migr_map->raid_level == 0)) {
8056 int ord = map->num_members - 1;
8057 migr_map->num_members--;
8058 if (u->new_disks[0] < 0)
8059 ord |= IMSM_ORD_REBUILD;
8060 set_imsm_ord_tbl_ent(map,
8061 map->num_members - 1,
8062 ord);
8063 }
8064 id->dev = new_dev;
8065 tofree = (void **)dev;
8066
4bba0439
PC
8067 /* update chunk size
8068 */
8069 if (u->new_chunksize > 0)
8070 map->blocks_per_strip =
8071 __cpu_to_le16(u->new_chunksize * 2);
8072
a29911da
PC
8073 /* add disk
8074 */
8075 if ((u->new_level != 5) ||
8076 (migr_map->raid_level != 0) ||
8077 (migr_map->raid_level == map->raid_level))
8078 goto skip_disk_add;
8079
8080 if (u->new_disks[0] >= 0) {
8081 /* use passes spare
8082 */
8083 new_disk = get_disk_super(super,
8084 major(u->new_disks[0]),
8085 minor(u->new_disks[0]));
7a862a02 8086 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
a29911da
PC
8087 major(u->new_disks[0]),
8088 minor(u->new_disks[0]),
8089 new_disk, new_disk->index);
8090 if (new_disk == NULL)
8091 goto error_disk_add;
8092
8093 new_disk->index = map->num_members - 1;
8094 /* slot to fill in autolayout
8095 */
8096 new_disk->raiddisk = new_disk->index;
8097 new_disk->disk.status |= CONFIGURED_DISK;
8098 new_disk->disk.status &= ~SPARE_DISK;
8099 } else
8100 goto error_disk_add;
8101
8102skip_disk_add:
8103 *tofree = *space_list;
8104 /* calculate new size
8105 */
f3871fdc 8106 imsm_set_array_size(new_dev, -1);
a29911da
PC
8107
8108 ret_val = 1;
8109 }
8110 }
8111
8112 if (tofree)
8113 *space_list = tofree;
8114 return ret_val;
8115
8116error_disk_add:
8117 dprintf("Error: imsm: Cannot find disk.\n");
8118 return ret_val;
8119}
8120
f3871fdc
AK
8121static int apply_size_change_update(struct imsm_update_size_change *u,
8122 struct intel_super *super)
8123{
8124 struct intel_dev *id;
8125 int ret_val = 0;
8126
1ade5cc1 8127 dprintf("(enter)\n");
f3871fdc
AK
8128 if ((u->subdev < 0) ||
8129 (u->subdev > 1)) {
8130 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8131 return ret_val;
8132 }
8133
8134 for (id = super->devlist ; id; id = id->next) {
8135 if (id->index == (unsigned)u->subdev) {
8136 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8137 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8138 int used_disks = imsm_num_data_members(dev, MAP_0);
8139 unsigned long long blocks_per_member;
8140
8141 /* calculate new size
8142 */
8143 blocks_per_member = u->new_size / used_disks;
1ade5cc1 8144 dprintf("(size: %llu, blocks per member: %llu)\n",
f3871fdc
AK
8145 u->new_size, blocks_per_member);
8146 set_blocks_per_member(map, blocks_per_member);
8147 imsm_set_array_size(dev, u->new_size);
8148
8149 ret_val = 1;
8150 break;
8151 }
8152 }
8153
8154 return ret_val;
8155}
8156
061d7da3 8157static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
ca9de185 8158 struct intel_super *super,
061d7da3
LO
8159 struct active_array *active_array)
8160{
8161 struct imsm_super *mpb = super->anchor;
8162 struct imsm_dev *dev = get_imsm_dev(super, u->array);
238c0a71 8163 struct imsm_map *map = get_imsm_map(dev, MAP_0);
061d7da3
LO
8164 struct imsm_map *migr_map;
8165 struct active_array *a;
8166 struct imsm_disk *disk;
8167 __u8 to_state;
8168 struct dl *dl;
8169 unsigned int found;
8170 int failed;
5961eeec 8171 int victim;
061d7da3 8172 int i;
5961eeec 8173 int second_map_created = 0;
061d7da3 8174
5961eeec 8175 for (; u; u = u->next) {
238c0a71 8176 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
061d7da3 8177
5961eeec 8178 if (victim < 0)
8179 return 0;
061d7da3 8180
5961eeec 8181 for (dl = super->disks; dl; dl = dl->next)
8182 if (dl == u->dl)
8183 break;
061d7da3 8184
5961eeec 8185 if (!dl) {
7a862a02 8186 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
5961eeec 8187 u->dl->index);
8188 return 0;
8189 }
061d7da3 8190
5961eeec 8191 /* count failures (excluding rebuilds and the victim)
8192 * to determine map[0] state
8193 */
8194 failed = 0;
8195 for (i = 0; i < map->num_members; i++) {
8196 if (i == u->slot)
8197 continue;
8198 disk = get_imsm_disk(super,
238c0a71 8199 get_imsm_disk_idx(dev, i, MAP_X));
5961eeec 8200 if (!disk || is_failed(disk))
8201 failed++;
8202 }
061d7da3 8203
5961eeec 8204 /* adding a pristine spare, assign a new index */
8205 if (dl->index < 0) {
8206 dl->index = super->anchor->num_disks;
8207 super->anchor->num_disks++;
8208 }
8209 disk = &dl->disk;
8210 disk->status |= CONFIGURED_DISK;
8211 disk->status &= ~SPARE_DISK;
8212
8213 /* mark rebuild */
238c0a71 8214 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
5961eeec 8215 if (!second_map_created) {
8216 second_map_created = 1;
8217 map->map_state = IMSM_T_STATE_DEGRADED;
8218 migrate(dev, super, to_state, MIGR_REBUILD);
8219 } else
8220 map->map_state = to_state;
238c0a71 8221 migr_map = get_imsm_map(dev, MAP_1);
5961eeec 8222 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8223 set_imsm_ord_tbl_ent(migr_map, u->slot,
8224 dl->index | IMSM_ORD_REBUILD);
8225
8226 /* update the family_num to mark a new container
8227 * generation, being careful to record the existing
8228 * family_num in orig_family_num to clean up after
8229 * earlier mdadm versions that neglected to set it.
8230 */
8231 if (mpb->orig_family_num == 0)
8232 mpb->orig_family_num = mpb->family_num;
8233 mpb->family_num += super->random;
8234
8235 /* count arrays using the victim in the metadata */
8236 found = 0;
8237 for (a = active_array; a ; a = a->next) {
8238 dev = get_imsm_dev(super, a->info.container_member);
238c0a71 8239 map = get_imsm_map(dev, MAP_0);
061d7da3 8240
5961eeec 8241 if (get_imsm_disk_slot(map, victim) >= 0)
8242 found++;
8243 }
061d7da3 8244
5961eeec 8245 /* delete the victim if it is no longer being
8246 * utilized anywhere
061d7da3 8247 */
5961eeec 8248 if (!found) {
8249 struct dl **dlp;
061d7da3 8250
5961eeec 8251 /* We know that 'manager' isn't touching anything,
8252 * so it is safe to delete
8253 */
8254 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
8255 if ((*dlp)->index == victim)
8256 break;
5961eeec 8257
8258 /* victim may be on the missing list */
8259 if (!*dlp)
8260 for (dlp = &super->missing; *dlp;
8261 dlp = &(*dlp)->next)
8262 if ((*dlp)->index == victim)
8263 break;
8264 imsm_delete(super, dlp, victim);
8265 }
061d7da3
LO
8266 }
8267
8268 return 1;
8269}
a29911da 8270
2e5dc010
N
8271static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8272 struct intel_super *super,
8273 void ***space_list)
8274{
8275 struct dl *new_disk;
8276 struct intel_dev *id;
8277 int i;
8278 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 8279 int disk_count = u->old_raid_disks;
2e5dc010
N
8280 void **tofree = NULL;
8281 int devices_to_reshape = 1;
8282 struct imsm_super *mpb = super->anchor;
8283 int ret_val = 0;
d098291a 8284 unsigned int dev_id;
2e5dc010 8285
1ade5cc1 8286 dprintf("(enter)\n");
2e5dc010
N
8287
8288 /* enable spares to use in array */
8289 for (i = 0; i < delta_disks; i++) {
8290 new_disk = get_disk_super(super,
8291 major(u->new_disks[i]),
8292 minor(u->new_disks[i]));
7a862a02 8293 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
2e5dc010
N
8294 major(u->new_disks[i]), minor(u->new_disks[i]),
8295 new_disk, new_disk->index);
8296 if ((new_disk == NULL) ||
8297 ((new_disk->index >= 0) &&
8298 (new_disk->index < u->old_raid_disks)))
8299 goto update_reshape_exit;
ee4beede 8300 new_disk->index = disk_count++;
2e5dc010
N
8301 /* slot to fill in autolayout
8302 */
8303 new_disk->raiddisk = new_disk->index;
8304 new_disk->disk.status |=
8305 CONFIGURED_DISK;
8306 new_disk->disk.status &= ~SPARE_DISK;
8307 }
8308
ed7333bd
AK
8309 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8310 mpb->num_raid_devs);
2e5dc010
N
8311 /* manage changes in volume
8312 */
d098291a 8313 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
8314 void **sp = *space_list;
8315 struct imsm_dev *newdev;
8316 struct imsm_map *newmap, *oldmap;
8317
d098291a
AK
8318 for (id = super->devlist ; id; id = id->next) {
8319 if (id->index == dev_id)
8320 break;
8321 }
8322 if (id == NULL)
8323 break;
2e5dc010
N
8324 if (!sp)
8325 continue;
8326 *space_list = *sp;
8327 newdev = (void*)sp;
8328 /* Copy the dev, but not (all of) the map */
8329 memcpy(newdev, id->dev, sizeof(*newdev));
238c0a71
AK
8330 oldmap = get_imsm_map(id->dev, MAP_0);
8331 newmap = get_imsm_map(newdev, MAP_0);
2e5dc010
N
8332 /* Copy the current map */
8333 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8334 /* update one device only
8335 */
8336 if (devices_to_reshape) {
ed7333bd
AK
8337 dprintf("imsm: modifying subdev: %i\n",
8338 id->index);
2e5dc010
N
8339 devices_to_reshape--;
8340 newdev->vol.migr_state = 1;
8341 newdev->vol.curr_migr_unit = 0;
ea672ee1 8342 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
8343 newmap->num_members = u->new_raid_disks;
8344 for (i = 0; i < delta_disks; i++) {
8345 set_imsm_ord_tbl_ent(newmap,
8346 u->old_raid_disks + i,
8347 u->old_raid_disks + i);
8348 }
8349 /* New map is correct, now need to save old map
8350 */
238c0a71 8351 newmap = get_imsm_map(newdev, MAP_1);
2e5dc010
N
8352 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8353
f3871fdc 8354 imsm_set_array_size(newdev, -1);
2e5dc010
N
8355 }
8356
8357 sp = (void **)id->dev;
8358 id->dev = newdev;
8359 *sp = tofree;
8360 tofree = sp;
8e59f3d8
AK
8361
8362 /* Clear migration record */
8363 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 8364 }
819bc634
AK
8365 if (tofree)
8366 *space_list = tofree;
2e5dc010
N
8367 ret_val = 1;
8368
8369update_reshape_exit:
8370
8371 return ret_val;
8372}
8373
bb025c2f 8374static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
8375 struct intel_super *super,
8376 void ***space_list)
bb025c2f
KW
8377{
8378 struct imsm_dev *dev = NULL;
8ca6df95
KW
8379 struct intel_dev *dv;
8380 struct imsm_dev *dev_new;
bb025c2f
KW
8381 struct imsm_map *map;
8382 struct dl *dm, *du;
8ca6df95 8383 int i;
bb025c2f
KW
8384
8385 for (dv = super->devlist; dv; dv = dv->next)
8386 if (dv->index == (unsigned int)u->subarray) {
8387 dev = dv->dev;
8388 break;
8389 }
8390
8391 if (dev == NULL)
8392 return 0;
8393
238c0a71 8394 map = get_imsm_map(dev, MAP_0);
bb025c2f
KW
8395
8396 if (u->direction == R10_TO_R0) {
43d5ec18 8397 /* Number of failed disks must be half of initial disk number */
3b451610
AK
8398 if (imsm_count_failed(super, dev, MAP_0) !=
8399 (map->num_members / 2))
43d5ec18
KW
8400 return 0;
8401
bb025c2f
KW
8402 /* iterate through devices to mark removed disks as spare */
8403 for (dm = super->disks; dm; dm = dm->next) {
8404 if (dm->disk.status & FAILED_DISK) {
8405 int idx = dm->index;
8406 /* update indexes on the disk list */
8407/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8408 the index values will end up being correct.... NB */
8409 for (du = super->disks; du; du = du->next)
8410 if (du->index > idx)
8411 du->index--;
8412 /* mark as spare disk */
a8619d23 8413 mark_spare(dm);
bb025c2f
KW
8414 }
8415 }
bb025c2f
KW
8416 /* update map */
8417 map->num_members = map->num_members / 2;
8418 map->map_state = IMSM_T_STATE_NORMAL;
8419 map->num_domains = 1;
8420 map->raid_level = 0;
8421 map->failed_disk_num = -1;
8422 }
8423
8ca6df95
KW
8424 if (u->direction == R0_TO_R10) {
8425 void **space;
8426 /* update slots in current disk list */
8427 for (dm = super->disks; dm; dm = dm->next) {
8428 if (dm->index >= 0)
8429 dm->index *= 2;
8430 }
8431 /* create new *missing* disks */
8432 for (i = 0; i < map->num_members; i++) {
8433 space = *space_list;
8434 if (!space)
8435 continue;
8436 *space_list = *space;
8437 du = (void *)space;
8438 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
8439 du->fd = -1;
8440 du->minor = 0;
8441 du->major = 0;
8442 du->index = (i * 2) + 1;
8443 sprintf((char *)du->disk.serial,
8444 " MISSING_%d", du->index);
8445 sprintf((char *)du->serial,
8446 "MISSING_%d", du->index);
8447 du->next = super->missing;
8448 super->missing = du;
8449 }
8450 /* create new dev and map */
8451 space = *space_list;
8452 if (!space)
8453 return 0;
8454 *space_list = *space;
8455 dev_new = (void *)space;
8456 memcpy(dev_new, dev, sizeof(*dev));
8457 /* update new map */
238c0a71 8458 map = get_imsm_map(dev_new, MAP_0);
8ca6df95 8459 map->num_members = map->num_members * 2;
1a2487c2 8460 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
8461 map->num_domains = 2;
8462 map->raid_level = 1;
8463 /* replace dev<->dev_new */
8464 dv->dev = dev_new;
8465 }
bb025c2f
KW
8466 /* update disk order table */
8467 for (du = super->disks; du; du = du->next)
8468 if (du->index >= 0)
8469 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 8470 for (du = super->missing; du; du = du->next)
1a2487c2
KW
8471 if (du->index >= 0) {
8472 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 8473 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 8474 }
bb025c2f
KW
8475
8476 return 1;
8477}
8478
e8319a19
DW
8479static void imsm_process_update(struct supertype *st,
8480 struct metadata_update *update)
8481{
8482 /**
8483 * crack open the metadata_update envelope to find the update record
8484 * update can be one of:
d195167d
AK
8485 * update_reshape_container_disks - all the arrays in the container
8486 * are being reshaped to have more devices. We need to mark
8487 * the arrays for general migration and convert selected spares
8488 * into active devices.
8489 * update_activate_spare - a spare device has replaced a failed
1011e834
N
8490 * device in an array, update the disk_ord_tbl. If this disk is
8491 * present in all member arrays then also clear the SPARE_DISK
8492 * flag
d195167d
AK
8493 * update_create_array
8494 * update_kill_array
8495 * update_rename_array
8496 * update_add_remove_disk
e8319a19
DW
8497 */
8498 struct intel_super *super = st->sb;
4d7b1503 8499 struct imsm_super *mpb;
e8319a19
DW
8500 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8501
4d7b1503
DW
8502 /* update requires a larger buf but the allocation failed */
8503 if (super->next_len && !super->next_buf) {
8504 super->next_len = 0;
8505 return;
8506 }
8507
8508 if (super->next_buf) {
8509 memcpy(super->next_buf, super->buf, super->len);
8510 free(super->buf);
8511 super->len = super->next_len;
8512 super->buf = super->next_buf;
8513
8514 super->next_len = 0;
8515 super->next_buf = NULL;
8516 }
8517
8518 mpb = super->anchor;
8519
e8319a19 8520 switch (type) {
0ec5d470
AK
8521 case update_general_migration_checkpoint: {
8522 struct intel_dev *id;
8523 struct imsm_update_general_migration_checkpoint *u =
8524 (void *)update->buf;
8525
1ade5cc1 8526 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470
AK
8527
8528 /* find device under general migration */
8529 for (id = super->devlist ; id; id = id->next) {
8530 if (is_gen_migration(id->dev)) {
8531 id->dev->vol.curr_migr_unit =
8532 __cpu_to_le32(u->curr_migr_unit);
8533 super->updates_pending++;
8534 }
8535 }
8536 break;
8537 }
bb025c2f
KW
8538 case update_takeover: {
8539 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
8540 if (apply_takeover_update(u, super, &update->space_list)) {
8541 imsm_update_version_info(super);
bb025c2f 8542 super->updates_pending++;
1a2487c2 8543 }
bb025c2f
KW
8544 break;
8545 }
8546
78b10e66 8547 case update_reshape_container_disks: {
d195167d 8548 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
8549 if (apply_reshape_container_disks_update(
8550 u, super, &update->space_list))
8551 super->updates_pending++;
78b10e66
N
8552 break;
8553 }
48c5303a 8554 case update_reshape_migration: {
a29911da
PC
8555 struct imsm_update_reshape_migration *u = (void *)update->buf;
8556 if (apply_reshape_migration_update(
8557 u, super, &update->space_list))
8558 super->updates_pending++;
48c5303a
PC
8559 break;
8560 }
f3871fdc
AK
8561 case update_size_change: {
8562 struct imsm_update_size_change *u = (void *)update->buf;
8563 if (apply_size_change_update(u, super))
8564 super->updates_pending++;
8565 break;
8566 }
e8319a19 8567 case update_activate_spare: {
1011e834 8568 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
8569 if (apply_update_activate_spare(u, super, st->arrays))
8570 super->updates_pending++;
8273f55e
DW
8571 break;
8572 }
8573 case update_create_array: {
8574 /* someone wants to create a new array, we need to be aware of
8575 * a few races/collisions:
8576 * 1/ 'Create' called by two separate instances of mdadm
8577 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8578 * devices that have since been assimilated via
8579 * activate_spare.
8580 * In the event this update can not be carried out mdadm will
8581 * (FIX ME) notice that its update did not take hold.
8582 */
8583 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8584 struct intel_dev *dv;
8273f55e
DW
8585 struct imsm_dev *dev;
8586 struct imsm_map *map, *new_map;
8587 unsigned long long start, end;
8588 unsigned long long new_start, new_end;
8589 int i;
54c2c1ea
DW
8590 struct disk_info *inf;
8591 struct dl *dl;
8273f55e
DW
8592
8593 /* handle racing creates: first come first serve */
8594 if (u->dev_idx < mpb->num_raid_devs) {
1ade5cc1 8595 dprintf("subarray %d already defined\n", u->dev_idx);
ba2de7ba 8596 goto create_error;
8273f55e
DW
8597 }
8598
8599 /* check update is next in sequence */
8600 if (u->dev_idx != mpb->num_raid_devs) {
1ade5cc1
N
8601 dprintf("can not create array %d expected index %d\n",
8602 u->dev_idx, mpb->num_raid_devs);
ba2de7ba 8603 goto create_error;
8273f55e
DW
8604 }
8605
238c0a71 8606 new_map = get_imsm_map(&u->dev, MAP_0);
5551b113
CA
8607 new_start = pba_of_lba0(new_map);
8608 new_end = new_start + blocks_per_member(new_map);
54c2c1ea 8609 inf = get_disk_info(u);
8273f55e
DW
8610
8611 /* handle activate_spare versus create race:
8612 * check to make sure that overlapping arrays do not include
8613 * overalpping disks
8614 */
8615 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 8616 dev = get_imsm_dev(super, i);
238c0a71 8617 map = get_imsm_map(dev, MAP_0);
5551b113
CA
8618 start = pba_of_lba0(map);
8619 end = start + blocks_per_member(map);
8273f55e
DW
8620 if ((new_start >= start && new_start <= end) ||
8621 (start >= new_start && start <= new_end))
54c2c1ea
DW
8622 /* overlap */;
8623 else
8624 continue;
8625
8626 if (disks_overlap(super, i, u)) {
1ade5cc1 8627 dprintf("arrays overlap\n");
ba2de7ba 8628 goto create_error;
8273f55e
DW
8629 }
8630 }
8273f55e 8631
949c47a0
DW
8632 /* check that prepare update was successful */
8633 if (!update->space) {
1ade5cc1 8634 dprintf("prepare update failed\n");
ba2de7ba 8635 goto create_error;
949c47a0
DW
8636 }
8637
54c2c1ea
DW
8638 /* check that all disks are still active before committing
8639 * changes. FIXME: could we instead handle this by creating a
8640 * degraded array? That's probably not what the user expects,
8641 * so better to drop this update on the floor.
8642 */
8643 for (i = 0; i < new_map->num_members; i++) {
8644 dl = serial_to_dl(inf[i].serial, super);
8645 if (!dl) {
1ade5cc1 8646 dprintf("disk disappeared\n");
ba2de7ba 8647 goto create_error;
54c2c1ea 8648 }
949c47a0
DW
8649 }
8650
8273f55e 8651 super->updates_pending++;
54c2c1ea
DW
8652
8653 /* convert spares to members and fixup ord_tbl */
8654 for (i = 0; i < new_map->num_members; i++) {
8655 dl = serial_to_dl(inf[i].serial, super);
8656 if (dl->index == -1) {
8657 dl->index = mpb->num_disks;
8658 mpb->num_disks++;
8659 dl->disk.status |= CONFIGURED_DISK;
8660 dl->disk.status &= ~SPARE_DISK;
8661 }
8662 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8663 }
8664
ba2de7ba
DW
8665 dv = update->space;
8666 dev = dv->dev;
949c47a0
DW
8667 update->space = NULL;
8668 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
8669 dv->index = u->dev_idx;
8670 dv->next = super->devlist;
8671 super->devlist = dv;
8273f55e 8672 mpb->num_raid_devs++;
8273f55e 8673
4d1313e9 8674 imsm_update_version_info(super);
8273f55e 8675 break;
ba2de7ba
DW
8676 create_error:
8677 /* mdmon knows how to release update->space, but not
8678 * ((struct intel_dev *) update->space)->dev
8679 */
8680 if (update->space) {
8681 dv = update->space;
8682 free(dv->dev);
8683 }
8273f55e 8684 break;
e8319a19 8685 }
33414a01
DW
8686 case update_kill_array: {
8687 struct imsm_update_kill_array *u = (void *) update->buf;
8688 int victim = u->dev_idx;
8689 struct active_array *a;
8690 struct intel_dev **dp;
8691 struct imsm_dev *dev;
8692
8693 /* sanity check that we are not affecting the uuid of
8694 * active arrays, or deleting an active array
8695 *
8696 * FIXME when immutable ids are available, but note that
8697 * we'll also need to fixup the invalidated/active
8698 * subarray indexes in mdstat
8699 */
8700 for (a = st->arrays; a; a = a->next)
8701 if (a->info.container_member >= victim)
8702 break;
8703 /* by definition if mdmon is running at least one array
8704 * is active in the container, so checking
8705 * mpb->num_raid_devs is just extra paranoia
8706 */
8707 dev = get_imsm_dev(super, victim);
8708 if (a || !dev || mpb->num_raid_devs == 1) {
8709 dprintf("failed to delete subarray-%d\n", victim);
8710 break;
8711 }
8712
8713 for (dp = &super->devlist; *dp;)
f21e18ca 8714 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
8715 *dp = (*dp)->next;
8716 } else {
f21e18ca 8717 if ((*dp)->index > (unsigned)victim)
33414a01
DW
8718 (*dp)->index--;
8719 dp = &(*dp)->next;
8720 }
8721 mpb->num_raid_devs--;
8722 super->updates_pending++;
8723 break;
8724 }
aa534678
DW
8725 case update_rename_array: {
8726 struct imsm_update_rename_array *u = (void *) update->buf;
8727 char name[MAX_RAID_SERIAL_LEN+1];
8728 int target = u->dev_idx;
8729 struct active_array *a;
8730 struct imsm_dev *dev;
8731
8732 /* sanity check that we are not affecting the uuid of
8733 * an active array
8734 */
8735 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8736 name[MAX_RAID_SERIAL_LEN] = '\0';
8737 for (a = st->arrays; a; a = a->next)
8738 if (a->info.container_member == target)
8739 break;
8740 dev = get_imsm_dev(super, u->dev_idx);
8741 if (a || !dev || !check_name(super, name, 1)) {
8742 dprintf("failed to rename subarray-%d\n", target);
8743 break;
8744 }
8745
cdbe98cd 8746 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
8747 super->updates_pending++;
8748 break;
8749 }
1a64be56 8750 case update_add_remove_disk: {
43dad3d6 8751 /* we may be able to repair some arrays if disks are
095b8088 8752 * being added, check the status of add_remove_disk
1a64be56
LM
8753 * if discs has been added.
8754 */
8755 if (add_remove_disk_update(super)) {
43dad3d6 8756 struct active_array *a;
072b727f
DW
8757
8758 super->updates_pending++;
1a64be56 8759 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
8760 a->check_degraded = 1;
8761 }
43dad3d6 8762 break;
e8319a19 8763 }
1a64be56 8764 default:
7a862a02 8765 pr_err("error: unsuported process update type:(type: %d)\n", type);
1a64be56 8766 }
e8319a19 8767}
88758e9d 8768
bc0b9d34
PC
8769static struct mdinfo *get_spares_for_grow(struct supertype *st);
8770
5fe6f031
N
8771static int imsm_prepare_update(struct supertype *st,
8772 struct metadata_update *update)
8273f55e 8773{
949c47a0 8774 /**
4d7b1503
DW
8775 * Allocate space to hold new disk entries, raid-device entries or a new
8776 * mpb if necessary. The manager synchronously waits for updates to
8777 * complete in the monitor, so new mpb buffers allocated here can be
8778 * integrated by the monitor thread without worrying about live pointers
8779 * in the manager thread.
8273f55e 8780 */
095b8088 8781 enum imsm_update_type type;
4d7b1503
DW
8782 struct intel_super *super = st->sb;
8783 struct imsm_super *mpb = super->anchor;
8784 size_t buf_len;
8785 size_t len = 0;
949c47a0 8786
095b8088
N
8787 if (update->len < (int)sizeof(type))
8788 return 0;
8789
8790 type = *(enum imsm_update_type *) update->buf;
8791
949c47a0 8792 switch (type) {
0ec5d470 8793 case update_general_migration_checkpoint:
095b8088
N
8794 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8795 return 0;
1ade5cc1 8796 dprintf("called for update_general_migration_checkpoint\n");
0ec5d470 8797 break;
abedf5fc
KW
8798 case update_takeover: {
8799 struct imsm_update_takeover *u = (void *)update->buf;
095b8088
N
8800 if (update->len < (int)sizeof(*u))
8801 return 0;
abedf5fc
KW
8802 if (u->direction == R0_TO_R10) {
8803 void **tail = (void **)&update->space_list;
8804 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
238c0a71 8805 struct imsm_map *map = get_imsm_map(dev, MAP_0);
abedf5fc
KW
8806 int num_members = map->num_members;
8807 void *space;
8808 int size, i;
abedf5fc
KW
8809 /* allocate memory for added disks */
8810 for (i = 0; i < num_members; i++) {
8811 size = sizeof(struct dl);
503975b9 8812 space = xmalloc(size);
abedf5fc
KW
8813 *tail = space;
8814 tail = space;
8815 *tail = NULL;
8816 }
8817 /* allocate memory for new device */
8818 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8819 (num_members * sizeof(__u32));
503975b9
N
8820 space = xmalloc(size);
8821 *tail = space;
8822 tail = space;
8823 *tail = NULL;
8824 len = disks_to_mpb_size(num_members * 2);
abedf5fc
KW
8825 }
8826
8827 break;
8828 }
78b10e66 8829 case update_reshape_container_disks: {
d195167d
AK
8830 /* Every raid device in the container is about to
8831 * gain some more devices, and we will enter a
8832 * reconfiguration.
8833 * So each 'imsm_map' will be bigger, and the imsm_vol
8834 * will now hold 2 of them.
8835 * Thus we need new 'struct imsm_dev' allocations sized
8836 * as sizeof_imsm_dev but with more devices in both maps.
8837 */
8838 struct imsm_update_reshape *u = (void *)update->buf;
8839 struct intel_dev *dl;
8840 void **space_tail = (void**)&update->space_list;
8841
095b8088
N
8842 if (update->len < (int)sizeof(*u))
8843 return 0;
8844
1ade5cc1 8845 dprintf("for update_reshape\n");
d195167d
AK
8846
8847 for (dl = super->devlist; dl; dl = dl->next) {
8848 int size = sizeof_imsm_dev(dl->dev, 1);
8849 void *s;
d677e0b8
AK
8850 if (u->new_raid_disks > u->old_raid_disks)
8851 size += sizeof(__u32)*2*
8852 (u->new_raid_disks - u->old_raid_disks);
503975b9 8853 s = xmalloc(size);
d195167d
AK
8854 *space_tail = s;
8855 space_tail = s;
8856 *space_tail = NULL;
8857 }
8858
8859 len = disks_to_mpb_size(u->new_raid_disks);
8860 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
8861 break;
8862 }
48c5303a 8863 case update_reshape_migration: {
bc0b9d34
PC
8864 /* for migration level 0->5 we need to add disks
8865 * so the same as for container operation we will copy
8866 * device to the bigger location.
8867 * in memory prepared device and new disk area are prepared
8868 * for usage in process update
8869 */
8870 struct imsm_update_reshape_migration *u = (void *)update->buf;
8871 struct intel_dev *id;
8872 void **space_tail = (void **)&update->space_list;
8873 int size;
8874 void *s;
8875 int current_level = -1;
8876
095b8088
N
8877 if (update->len < (int)sizeof(*u))
8878 return 0;
8879
1ade5cc1 8880 dprintf("for update_reshape\n");
bc0b9d34
PC
8881
8882 /* add space for bigger array in update
8883 */
8884 for (id = super->devlist; id; id = id->next) {
8885 if (id->index == (unsigned)u->subdev) {
8886 size = sizeof_imsm_dev(id->dev, 1);
8887 if (u->new_raid_disks > u->old_raid_disks)
8888 size += sizeof(__u32)*2*
8889 (u->new_raid_disks - u->old_raid_disks);
503975b9 8890 s = xmalloc(size);
bc0b9d34
PC
8891 *space_tail = s;
8892 space_tail = s;
8893 *space_tail = NULL;
8894 break;
8895 }
8896 }
8897 if (update->space_list == NULL)
8898 break;
8899
8900 /* add space for disk in update
8901 */
8902 size = sizeof(struct dl);
503975b9 8903 s = xmalloc(size);
bc0b9d34
PC
8904 *space_tail = s;
8905 space_tail = s;
8906 *space_tail = NULL;
8907
8908 /* add spare device to update
8909 */
8910 for (id = super->devlist ; id; id = id->next)
8911 if (id->index == (unsigned)u->subdev) {
8912 struct imsm_dev *dev;
8913 struct imsm_map *map;
8914
8915 dev = get_imsm_dev(super, u->subdev);
238c0a71 8916 map = get_imsm_map(dev, MAP_0);
bc0b9d34
PC
8917 current_level = map->raid_level;
8918 break;
8919 }
8920 if ((u->new_level == 5) && (u->new_level != current_level)) {
8921 struct mdinfo *spares;
8922
8923 spares = get_spares_for_grow(st);
8924 if (spares) {
8925 struct dl *dl;
8926 struct mdinfo *dev;
8927
8928 dev = spares->devs;
8929 if (dev) {
8930 u->new_disks[0] =
8931 makedev(dev->disk.major,
8932 dev->disk.minor);
8933 dl = get_disk_super(super,
8934 dev->disk.major,
8935 dev->disk.minor);
8936 dl->index = u->old_raid_disks;
8937 dev = dev->next;
8938 }
8939 sysfs_free(spares);
8940 }
8941 }
8942 len = disks_to_mpb_size(u->new_raid_disks);
8943 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
8944 break;
8945 }
f3871fdc 8946 case update_size_change: {
095b8088
N
8947 if (update->len < (int)sizeof(struct imsm_update_size_change))
8948 return 0;
8949 break;
8950 }
8951 case update_activate_spare: {
8952 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
8953 return 0;
f3871fdc
AK
8954 break;
8955 }
949c47a0
DW
8956 case update_create_array: {
8957 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 8958 struct intel_dev *dv;
54c2c1ea 8959 struct imsm_dev *dev = &u->dev;
238c0a71 8960 struct imsm_map *map = get_imsm_map(dev, MAP_0);
54c2c1ea
DW
8961 struct dl *dl;
8962 struct disk_info *inf;
8963 int i;
8964 int activate = 0;
949c47a0 8965
095b8088
N
8966 if (update->len < (int)sizeof(*u))
8967 return 0;
8968
54c2c1ea
DW
8969 inf = get_disk_info(u);
8970 len = sizeof_imsm_dev(dev, 1);
ba2de7ba 8971 /* allocate a new super->devlist entry */
503975b9
N
8972 dv = xmalloc(sizeof(*dv));
8973 dv->dev = xmalloc(len);
8974 update->space = dv;
949c47a0 8975
54c2c1ea
DW
8976 /* count how many spares will be converted to members */
8977 for (i = 0; i < map->num_members; i++) {
8978 dl = serial_to_dl(inf[i].serial, super);
8979 if (!dl) {
8980 /* hmm maybe it failed?, nothing we can do about
8981 * it here
8982 */
8983 continue;
8984 }
8985 if (count_memberships(dl, super) == 0)
8986 activate++;
8987 }
8988 len += activate * sizeof(struct imsm_disk);
949c47a0 8989 break;
095b8088
N
8990 }
8991 case update_kill_array: {
8992 if (update->len < (int)sizeof(struct imsm_update_kill_array))
8993 return 0;
949c47a0
DW
8994 break;
8995 }
095b8088
N
8996 case update_rename_array: {
8997 if (update->len < (int)sizeof(struct imsm_update_rename_array))
8998 return 0;
8999 break;
9000 }
9001 case update_add_remove_disk:
9002 /* no update->len needed */
9003 break;
9004 default:
9005 return 0;
949c47a0 9006 }
8273f55e 9007
4d7b1503
DW
9008 /* check if we need a larger metadata buffer */
9009 if (super->next_buf)
9010 buf_len = super->next_len;
9011 else
9012 buf_len = super->len;
9013
9014 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
9015 /* ok we need a larger buf than what is currently allocated
9016 * if this allocation fails process_update will notice that
9017 * ->next_len is set and ->next_buf is NULL
9018 */
9019 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
9020 if (super->next_buf)
9021 free(super->next_buf);
9022
9023 super->next_len = buf_len;
1f45a8ad
DW
9024 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
9025 memset(super->next_buf, 0, buf_len);
9026 else
4d7b1503
DW
9027 super->next_buf = NULL;
9028 }
5fe6f031 9029 return 1;
8273f55e
DW
9030}
9031
ae6aad82 9032/* must be called while manager is quiesced */
f21e18ca 9033static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
9034{
9035 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
9036 struct dl *iter;
9037 struct imsm_dev *dev;
9038 struct imsm_map *map;
24565c9a
DW
9039 int i, j, num_members;
9040 __u32 ord;
ae6aad82 9041
1ade5cc1 9042 dprintf("deleting device[%d] from imsm_super\n", index);
ae6aad82
DW
9043
9044 /* shift all indexes down one */
9045 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 9046 if (iter->index > (int)index)
ae6aad82 9047 iter->index--;
47ee5a45 9048 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 9049 if (iter->index > (int)index)
47ee5a45 9050 iter->index--;
ae6aad82
DW
9051
9052 for (i = 0; i < mpb->num_raid_devs; i++) {
9053 dev = get_imsm_dev(super, i);
238c0a71 9054 map = get_imsm_map(dev, MAP_0);
24565c9a
DW
9055 num_members = map->num_members;
9056 for (j = 0; j < num_members; j++) {
9057 /* update ord entries being careful not to propagate
9058 * ord-flags to the first map
9059 */
238c0a71 9060 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ae6aad82 9061
24565c9a
DW
9062 if (ord_to_idx(ord) <= index)
9063 continue;
ae6aad82 9064
238c0a71 9065 map = get_imsm_map(dev, MAP_0);
24565c9a 9066 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
238c0a71 9067 map = get_imsm_map(dev, MAP_1);
24565c9a
DW
9068 if (map)
9069 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
9070 }
9071 }
9072
9073 mpb->num_disks--;
9074 super->updates_pending++;
24565c9a
DW
9075 if (*dlp) {
9076 struct dl *dl = *dlp;
9077
9078 *dlp = (*dlp)->next;
9079 __free_imsm_disk(dl);
9080 }
ae6aad82 9081}
9e2d750d 9082#endif /* MDASSEMBLE */
9a717282
AK
9083
9084static void close_targets(int *targets, int new_disks)
9085{
9086 int i;
9087
9088 if (!targets)
9089 return;
9090
9091 for (i = 0; i < new_disks; i++) {
9092 if (targets[i] >= 0) {
9093 close(targets[i]);
9094 targets[i] = -1;
9095 }
9096 }
9097}
9098
9099static int imsm_get_allowed_degradation(int level, int raid_disks,
9100 struct intel_super *super,
9101 struct imsm_dev *dev)
9102{
9103 switch (level) {
bf5cf7c7 9104 case 1:
9a717282
AK
9105 case 10:{
9106 int ret_val = 0;
9107 struct imsm_map *map;
9108 int i;
9109
9110 ret_val = raid_disks/2;
9111 /* check map if all disks pairs not failed
9112 * in both maps
9113 */
238c0a71 9114 map = get_imsm_map(dev, MAP_0);
9a717282
AK
9115 for (i = 0; i < ret_val; i++) {
9116 int degradation = 0;
9117 if (get_imsm_disk(super, i) == NULL)
9118 degradation++;
9119 if (get_imsm_disk(super, i + 1) == NULL)
9120 degradation++;
9121 if (degradation == 2)
9122 return 0;
9123 }
238c0a71 9124 map = get_imsm_map(dev, MAP_1);
9a717282
AK
9125 /* if there is no second map
9126 * result can be returned
9127 */
9128 if (map == NULL)
9129 return ret_val;
9130 /* check degradation in second map
9131 */
9132 for (i = 0; i < ret_val; i++) {
9133 int degradation = 0;
9134 if (get_imsm_disk(super, i) == NULL)
9135 degradation++;
9136 if (get_imsm_disk(super, i + 1) == NULL)
9137 degradation++;
9138 if (degradation == 2)
9139 return 0;
9140 }
9141 return ret_val;
9142 }
9143 case 5:
9144 return 1;
9145 case 6:
9146 return 2;
9147 default:
9148 return 0;
9149 }
9150}
9151
687629c2
AK
9152/*******************************************************************************
9153 * Function: open_backup_targets
9154 * Description: Function opens file descriptors for all devices given in
9155 * info->devs
9156 * Parameters:
9157 * info : general array info
9158 * raid_disks : number of disks
9159 * raid_fds : table of device's file descriptors
9a717282
AK
9160 * super : intel super for raid10 degradation check
9161 * dev : intel device for raid10 degradation check
687629c2
AK
9162 * Returns:
9163 * 0 : success
9164 * -1 : fail
9165 ******************************************************************************/
9a717282
AK
9166int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9167 struct intel_super *super, struct imsm_dev *dev)
687629c2
AK
9168{
9169 struct mdinfo *sd;
f627f5ad 9170 int i;
9a717282 9171 int opened = 0;
f627f5ad
AK
9172
9173 for (i = 0; i < raid_disks; i++)
9174 raid_fds[i] = -1;
687629c2
AK
9175
9176 for (sd = info->devs ; sd ; sd = sd->next) {
9177 char *dn;
9178
9179 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9180 dprintf("disk is faulty!!\n");
9181 continue;
9182 }
9183
9184 if ((sd->disk.raid_disk >= raid_disks) ||
9185 (sd->disk.raid_disk < 0))
9186 continue;
9187
9188 dn = map_dev(sd->disk.major,
9189 sd->disk.minor, 1);
9190 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9191 if (raid_fds[sd->disk.raid_disk] < 0) {
e12b3daa 9192 pr_err("cannot open component\n");
9a717282 9193 continue;
687629c2 9194 }
9a717282
AK
9195 opened++;
9196 }
9197 /* check if maximum array degradation level is not exceeded
9198 */
9199 if ((raid_disks - opened) >
9200 imsm_get_allowed_degradation(info->new_level,
9201 raid_disks,
9202 super, dev)) {
e12b3daa 9203 pr_err("Not enough disks can be opened.\n");
9a717282
AK
9204 close_targets(raid_fds, raid_disks);
9205 return -2;
687629c2
AK
9206 }
9207 return 0;
9208}
9209
d31ad643
PB
9210/*******************************************************************************
9211 * Function: validate_container_imsm
9212 * Description: This routine validates container after assemble,
9213 * eg. if devices in container are under the same controller.
9214 *
9215 * Parameters:
9216 * info : linked list with info about devices used in array
9217 * Returns:
9218 * 1 : HBA mismatch
9219 * 0 : Success
9220 ******************************************************************************/
9221int validate_container_imsm(struct mdinfo *info)
9222{
6b781d33
AP
9223 if (check_env("IMSM_NO_PLATFORM"))
9224 return 0;
d31ad643 9225
6b781d33
AP
9226 struct sys_dev *idev;
9227 struct sys_dev *hba = NULL;
9228 struct sys_dev *intel_devices = find_intel_devices();
9229 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9230 info->disk.minor));
9231
9232 for (idev = intel_devices; idev; idev = idev->next) {
9233 if (dev_path && strstr(dev_path, idev->path)) {
9234 hba = idev;
9235 break;
d31ad643 9236 }
6b781d33
AP
9237 }
9238 if (dev_path)
d31ad643
PB
9239 free(dev_path);
9240
6b781d33
AP
9241 if (!hba) {
9242 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9243 devid2kname(makedev(info->disk.major, info->disk.minor)));
9244 return 1;
9245 }
9246
9247 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9248 struct mdinfo *dev;
9249
9250 for (dev = info->next; dev; dev = dev->next) {
9251 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9252
9253 struct sys_dev *hba2 = NULL;
9254 for (idev = intel_devices; idev; idev = idev->next) {
9255 if (dev_path && strstr(dev_path, idev->path)) {
9256 hba2 = idev;
9257 break;
d31ad643
PB
9258 }
9259 }
6b781d33
AP
9260 if (dev_path)
9261 free(dev_path);
9262
9263 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9264 get_orom_by_device_id(hba2->dev_id);
9265
9266 if (hba2 && hba->type != hba2->type) {
9267 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9268 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9269 return 1;
9270 }
9271
60f0f54d 9272 if ((orom != orom2) || ((hba->type == SYS_DEV_VMD) && (hba != hba2))) {
6b781d33
AP
9273 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9274 " This operation is not supported and can lead to data loss.\n");
9275 return 1;
9276 }
9277
9278 if (!orom) {
9279 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9280 " This operation is not supported and can lead to data loss.\n");
9281 return 1;
9282 }
d31ad643 9283 }
6b781d33 9284
d31ad643
PB
9285 return 0;
9286}
9e2d750d 9287#ifndef MDASSEMBLE
687629c2
AK
9288/*******************************************************************************
9289 * Function: init_migr_record_imsm
9290 * Description: Function inits imsm migration record
9291 * Parameters:
9292 * super : imsm internal array info
9293 * dev : device under migration
9294 * info : general array info to find the smallest device
9295 * Returns:
9296 * none
9297 ******************************************************************************/
9298void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9299 struct mdinfo *info)
9300{
9301 struct intel_super *super = st->sb;
9302 struct migr_record *migr_rec = super->migr_rec;
9303 int new_data_disks;
9304 unsigned long long dsize, dev_sectors;
9305 long long unsigned min_dev_sectors = -1LLU;
9306 struct mdinfo *sd;
9307 char nm[30];
9308 int fd;
238c0a71
AK
9309 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9310 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
687629c2 9311 unsigned long long num_migr_units;
3ef4403c 9312 unsigned long long array_blocks;
687629c2
AK
9313
9314 memset(migr_rec, 0, sizeof(struct migr_record));
9315 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9316
9317 /* only ascending reshape supported now */
9318 migr_rec->ascending_migr = __cpu_to_le32(1);
9319
9320 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9321 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
e1742195
AK
9322 migr_rec->dest_depth_per_unit *=
9323 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
238c0a71 9324 new_data_disks = imsm_num_data_members(dev, MAP_0);
687629c2
AK
9325 migr_rec->blocks_per_unit =
9326 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9327 migr_rec->dest_depth_per_unit =
9328 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 9329 array_blocks = info->component_size * new_data_disks;
687629c2
AK
9330 num_migr_units =
9331 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9332
9333 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9334 num_migr_units++;
9335 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9336
9337 migr_rec->post_migr_vol_cap = dev->size_low;
9338 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9339
687629c2
AK
9340 /* Find the smallest dev */
9341 for (sd = info->devs ; sd ; sd = sd->next) {
9342 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9343 fd = dev_open(nm, O_RDONLY);
9344 if (fd < 0)
9345 continue;
9346 get_dev_size(fd, NULL, &dsize);
9347 dev_sectors = dsize / 512;
9348 if (dev_sectors < min_dev_sectors)
9349 min_dev_sectors = dev_sectors;
9350 close(fd);
9351 }
9352 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9353 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9354
9355 write_imsm_migr_rec(st);
9356
9357 return;
9358}
9359
9360/*******************************************************************************
9361 * Function: save_backup_imsm
9362 * Description: Function saves critical data stripes to Migration Copy Area
9363 * and updates the current migration unit status.
9364 * Use restore_stripes() to form a destination stripe,
9365 * and to write it to the Copy Area.
9366 * Parameters:
9367 * st : supertype information
aea93171 9368 * dev : imsm device that backup is saved for
687629c2
AK
9369 * info : general array info
9370 * buf : input buffer
687629c2
AK
9371 * length : length of data to backup (blocks_per_unit)
9372 * Returns:
9373 * 0 : success
9374 *, -1 : fail
9375 ******************************************************************************/
9376int save_backup_imsm(struct supertype *st,
9377 struct imsm_dev *dev,
9378 struct mdinfo *info,
9379 void *buf,
687629c2
AK
9380 int length)
9381{
9382 int rv = -1;
9383 struct intel_super *super = st->sb;
594dc1b8
JS
9384 unsigned long long *target_offsets;
9385 int *targets;
687629c2 9386 int i;
238c0a71 9387 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
687629c2 9388 int new_disks = map_dest->num_members;
ab724b98
AK
9389 int dest_layout = 0;
9390 int dest_chunk;
d1877f69 9391 unsigned long long start;
238c0a71 9392 int data_disks = imsm_num_data_members(dev, MAP_0);
687629c2 9393
503975b9 9394 targets = xmalloc(new_disks * sizeof(int));
687629c2 9395
7e45b550
AK
9396 for (i = 0; i < new_disks; i++)
9397 targets[i] = -1;
9398
503975b9 9399 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
687629c2 9400
d1877f69 9401 start = info->reshape_progress * 512;
687629c2 9402 for (i = 0; i < new_disks; i++) {
687629c2
AK
9403 target_offsets[i] = (unsigned long long)
9404 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
9405 /* move back copy area adderss, it will be moved forward
9406 * in restore_stripes() using start input variable
9407 */
9408 target_offsets[i] -= start/data_disks;
687629c2
AK
9409 }
9410
9a717282
AK
9411 if (open_backup_targets(info, new_disks, targets,
9412 super, dev))
687629c2
AK
9413 goto abort;
9414
68eb8bc6 9415 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
9416 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9417
687629c2
AK
9418 if (restore_stripes(targets, /* list of dest devices */
9419 target_offsets, /* migration record offsets */
9420 new_disks,
ab724b98
AK
9421 dest_chunk,
9422 map_dest->raid_level,
9423 dest_layout,
9424 -1, /* source backup file descriptor */
9425 0, /* input buf offset
9426 * always 0 buf is already offseted */
d1877f69 9427 start,
687629c2
AK
9428 length,
9429 buf) != 0) {
e7b84f9d 9430 pr_err("Error restoring stripes\n");
687629c2
AK
9431 goto abort;
9432 }
9433
9434 rv = 0;
9435
9436abort:
9437 if (targets) {
9a717282 9438 close_targets(targets, new_disks);
687629c2
AK
9439 free(targets);
9440 }
9441 free(target_offsets);
9442
9443 return rv;
9444}
9445
9446/*******************************************************************************
9447 * Function: save_checkpoint_imsm
9448 * Description: Function called for current unit status update
9449 * in the migration record. It writes it to disk.
9450 * Parameters:
9451 * super : imsm internal array info
9452 * info : general array info
9453 * Returns:
9454 * 0: success
9455 * 1: failure
0228d92c
AK
9456 * 2: failure, means no valid migration record
9457 * / no general migration in progress /
687629c2
AK
9458 ******************************************************************************/
9459int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9460{
9461 struct intel_super *super = st->sb;
f8b72ef5
AK
9462 unsigned long long blocks_per_unit;
9463 unsigned long long curr_migr_unit;
9464
2e062e82 9465 if (load_imsm_migr_rec(super, info) != 0) {
7a862a02 9466 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
2e062e82
AK
9467 return 1;
9468 }
9469
f8b72ef5
AK
9470 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9471 if (blocks_per_unit == 0) {
0228d92c
AK
9472 dprintf("imsm: no migration in progress.\n");
9473 return 2;
687629c2 9474 }
f8b72ef5
AK
9475 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9476 /* check if array is alligned to copy area
9477 * if it is not alligned, add one to current migration unit value
9478 * this can happend on array reshape finish only
9479 */
9480 if (info->reshape_progress % blocks_per_unit)
9481 curr_migr_unit++;
687629c2
AK
9482
9483 super->migr_rec->curr_migr_unit =
f8b72ef5 9484 __cpu_to_le32(curr_migr_unit);
687629c2
AK
9485 super->migr_rec->rec_status = __cpu_to_le32(state);
9486 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
9487 __cpu_to_le32(curr_migr_unit *
9488 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2 9489 if (write_imsm_migr_rec(st) < 0) {
7a862a02 9490 dprintf("imsm: Cannot write migration record outside backup area\n");
687629c2
AK
9491 return 1;
9492 }
9493
9494 return 0;
9495}
9496
276d77db
AK
9497/*******************************************************************************
9498 * Function: recover_backup_imsm
9499 * Description: Function recovers critical data from the Migration Copy Area
9500 * while assembling an array.
9501 * Parameters:
9502 * super : imsm internal array info
9503 * info : general array info
9504 * Returns:
9505 * 0 : success (or there is no data to recover)
9506 * 1 : fail
9507 ******************************************************************************/
9508int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9509{
9510 struct intel_super *super = st->sb;
9511 struct migr_record *migr_rec = super->migr_rec;
594dc1b8 9512 struct imsm_map *map_dest;
276d77db
AK
9513 struct intel_dev *id = NULL;
9514 unsigned long long read_offset;
9515 unsigned long long write_offset;
9516 unsigned unit_len;
9517 int *targets = NULL;
9518 int new_disks, i, err;
9519 char *buf = NULL;
9520 int retval = 1;
9521 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9522 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 9523 char buffer[20];
6c3560c0 9524 int skipped_disks = 0;
276d77db
AK
9525
9526 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9527 if (err < 1)
9528 return 1;
9529
9530 /* recover data only during assemblation */
9531 if (strncmp(buffer, "inactive", 8) != 0)
9532 return 0;
9533 /* no data to recover */
9534 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9535 return 0;
9536 if (curr_migr_unit >= num_migr_units)
9537 return 1;
9538
9539 /* find device during reshape */
9540 for (id = super->devlist; id; id = id->next)
9541 if (is_gen_migration(id->dev))
9542 break;
9543 if (id == NULL)
9544 return 1;
9545
238c0a71 9546 map_dest = get_imsm_map(id->dev, MAP_0);
276d77db
AK
9547 new_disks = map_dest->num_members;
9548
9549 read_offset = (unsigned long long)
9550 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9551
9552 write_offset = ((unsigned long long)
9553 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
5551b113 9554 pba_of_lba0(map_dest)) * 512;
276d77db
AK
9555
9556 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9557 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9558 goto abort;
503975b9 9559 targets = xcalloc(new_disks, sizeof(int));
276d77db 9560
9a717282 9561 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
e7b84f9d 9562 pr_err("Cannot open some devices belonging to array.\n");
f627f5ad
AK
9563 goto abort;
9564 }
276d77db
AK
9565
9566 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
9567 if (targets[i] < 0) {
9568 skipped_disks++;
9569 continue;
9570 }
276d77db 9571 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
e7b84f9d
N
9572 pr_err("Cannot seek to block: %s\n",
9573 strerror(errno));
137debce
AK
9574 skipped_disks++;
9575 continue;
276d77db 9576 }
9ec11d1a 9577 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
9578 pr_err("Cannot read copy area block: %s\n",
9579 strerror(errno));
137debce
AK
9580 skipped_disks++;
9581 continue;
276d77db
AK
9582 }
9583 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
e7b84f9d
N
9584 pr_err("Cannot seek to block: %s\n",
9585 strerror(errno));
137debce
AK
9586 skipped_disks++;
9587 continue;
276d77db 9588 }
9ec11d1a 9589 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
e7b84f9d
N
9590 pr_err("Cannot restore block: %s\n",
9591 strerror(errno));
137debce
AK
9592 skipped_disks++;
9593 continue;
276d77db
AK
9594 }
9595 }
9596
137debce
AK
9597 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9598 new_disks,
9599 super,
9600 id->dev)) {
7a862a02 9601 pr_err("Cannot restore data from backup. Too many failed disks\n");
6c3560c0
AK
9602 goto abort;
9603 }
9604
befb629b
AK
9605 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9606 /* ignore error == 2, this can mean end of reshape here
9607 */
7a862a02 9608 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
befb629b 9609 } else
276d77db 9610 retval = 0;
276d77db
AK
9611
9612abort:
9613 if (targets) {
9614 for (i = 0; i < new_disks; i++)
9615 if (targets[i])
9616 close(targets[i]);
9617 free(targets);
9618 }
9619 free(buf);
9620 return retval;
9621}
9622
2cda7640
ML
9623static char disk_by_path[] = "/dev/disk/by-path/";
9624
9625static const char *imsm_get_disk_controller_domain(const char *path)
9626{
2cda7640 9627 char disk_path[PATH_MAX];
96234762
LM
9628 char *drv=NULL;
9629 struct stat st;
2cda7640 9630
6d8d290a 9631 strcpy(disk_path, disk_by_path);
96234762
LM
9632 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9633 if (stat(disk_path, &st) == 0) {
9634 struct sys_dev* hba;
594dc1b8 9635 char *path;
96234762
LM
9636
9637 path = devt_to_devpath(st.st_rdev);
9638 if (path == NULL)
9639 return "unknown";
9640 hba = find_disk_attached_hba(-1, path);
9641 if (hba && hba->type == SYS_DEV_SAS)
9642 drv = "isci";
9643 else if (hba && hba->type == SYS_DEV_SATA)
9644 drv = "ahci";
1011e834 9645 else
96234762
LM
9646 drv = "unknown";
9647 dprintf("path: %s hba: %s attached: %s\n",
9648 path, (hba) ? hba->path : "NULL", drv);
9649 free(path);
2cda7640 9650 }
96234762 9651 return drv;
2cda7640
ML
9652}
9653
4dd2df09 9654static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
78b10e66 9655{
4dd2df09 9656 static char devnm[32];
78b10e66
N
9657 char subdev_name[20];
9658 struct mdstat_ent *mdstat;
9659
9660 sprintf(subdev_name, "%d", subdev);
9661 mdstat = mdstat_by_subdev(subdev_name, container);
9662 if (!mdstat)
4dd2df09 9663 return NULL;
78b10e66 9664
4dd2df09 9665 strcpy(devnm, mdstat->devnm);
78b10e66 9666 free_mdstat(mdstat);
4dd2df09 9667 return devnm;
78b10e66
N
9668}
9669
9670static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9671 struct geo_params *geo,
fbf3d202
AK
9672 int *old_raid_disks,
9673 int direction)
78b10e66 9674{
694575e7
KW
9675 /* currently we only support increasing the number of devices
9676 * for a container. This increases the number of device for each
9677 * member array. They must all be RAID0 or RAID5.
9678 */
78b10e66
N
9679 int ret_val = 0;
9680 struct mdinfo *info, *member;
9681 int devices_that_can_grow = 0;
9682
7a862a02 9683 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
78b10e66 9684
d04f65f4 9685 if (geo->size > 0 ||
78b10e66
N
9686 geo->level != UnSet ||
9687 geo->layout != UnSet ||
9688 geo->chunksize != 0 ||
9689 geo->raid_disks == UnSet) {
7a862a02 9690 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
78b10e66
N
9691 return ret_val;
9692 }
9693
fbf3d202 9694 if (direction == ROLLBACK_METADATA_CHANGES) {
7a862a02 9695 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
fbf3d202
AK
9696 return ret_val;
9697 }
9698
78b10e66
N
9699 info = container_content_imsm(st, NULL);
9700 for (member = info; member; member = member->next) {
4dd2df09 9701 char *result;
78b10e66
N
9702
9703 dprintf("imsm: checking device_num: %i\n",
9704 member->container_member);
9705
d7d205bd 9706 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
9707 /* we work on container for Online Capacity Expansion
9708 * only so raid_disks has to grow
9709 */
7a862a02 9710 dprintf("imsm: for container operation raid disks increase is required\n");
78b10e66
N
9711 break;
9712 }
9713
9714 if ((info->array.level != 0) &&
9715 (info->array.level != 5)) {
9716 /* we cannot use this container with other raid level
9717 */
7a862a02 9718 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
78b10e66
N
9719 info->array.level);
9720 break;
9721 } else {
9722 /* check for platform support
9723 * for this raid level configuration
9724 */
9725 struct intel_super *super = st->sb;
9726 if (!is_raid_level_supported(super->orom,
9727 member->array.level,
9728 geo->raid_disks)) {
7a862a02 9729 dprintf("platform does not support raid%d with %d disk%s\n",
78b10e66
N
9730 info->array.level,
9731 geo->raid_disks,
9732 geo->raid_disks > 1 ? "s" : "");
9733 break;
9734 }
2a4a08e7
AK
9735 /* check if component size is aligned to chunk size
9736 */
9737 if (info->component_size %
9738 (info->array.chunk_size/512)) {
7a862a02 9739 dprintf("Component size is not aligned to chunk size\n");
2a4a08e7
AK
9740 break;
9741 }
78b10e66
N
9742 }
9743
9744 if (*old_raid_disks &&
9745 info->array.raid_disks != *old_raid_disks)
9746 break;
9747 *old_raid_disks = info->array.raid_disks;
9748
9749 /* All raid5 and raid0 volumes in container
9750 * have to be ready for Online Capacity Expansion
9751 * so they need to be assembled. We have already
9752 * checked that no recovery etc is happening.
9753 */
4dd2df09
N
9754 result = imsm_find_array_devnm_by_subdev(member->container_member,
9755 st->container_devnm);
9756 if (result == NULL) {
78b10e66
N
9757 dprintf("imsm: cannot find array\n");
9758 break;
9759 }
9760 devices_that_can_grow++;
9761 }
9762 sysfs_free(info);
9763 if (!member && devices_that_can_grow)
9764 ret_val = 1;
9765
9766 if (ret_val)
1ade5cc1 9767 dprintf("Container operation allowed\n");
78b10e66 9768 else
1ade5cc1 9769 dprintf("Error: %i\n", ret_val);
78b10e66
N
9770
9771 return ret_val;
9772}
9773
9774/* Function: get_spares_for_grow
9775 * Description: Allocates memory and creates list of spare devices
1011e834 9776 * avaliable in container. Checks if spare drive size is acceptable.
78b10e66
N
9777 * Parameters: Pointer to the supertype structure
9778 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
1011e834 9779 * NULL if fail
78b10e66
N
9780 */
9781static struct mdinfo *get_spares_for_grow(struct supertype *st)
9782{
78b10e66 9783 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 9784 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
9785}
9786
9787/******************************************************************************
9788 * function: imsm_create_metadata_update_for_reshape
9789 * Function creates update for whole IMSM container.
9790 *
9791 ******************************************************************************/
9792static int imsm_create_metadata_update_for_reshape(
9793 struct supertype *st,
9794 struct geo_params *geo,
9795 int old_raid_disks,
9796 struct imsm_update_reshape **updatep)
9797{
9798 struct intel_super *super = st->sb;
9799 struct imsm_super *mpb = super->anchor;
594dc1b8
JS
9800 int update_memory_size;
9801 struct imsm_update_reshape *u;
9802 struct mdinfo *spares;
78b10e66 9803 int i;
594dc1b8 9804 int delta_disks;
bbd24d86 9805 struct mdinfo *dev;
78b10e66 9806
1ade5cc1 9807 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
78b10e66
N
9808
9809 delta_disks = geo->raid_disks - old_raid_disks;
9810
9811 /* size of all update data without anchor */
9812 update_memory_size = sizeof(struct imsm_update_reshape);
9813
9814 /* now add space for spare disks that we need to add. */
9815 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9816
503975b9 9817 u = xcalloc(1, update_memory_size);
78b10e66
N
9818 u->type = update_reshape_container_disks;
9819 u->old_raid_disks = old_raid_disks;
9820 u->new_raid_disks = geo->raid_disks;
9821
9822 /* now get spare disks list
9823 */
9824 spares = get_spares_for_grow(st);
9825
9826 if (spares == NULL
9827 || delta_disks > spares->array.spare_disks) {
7a862a02 9828 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
e4c72d1d 9829 i = -1;
78b10e66
N
9830 goto abort;
9831 }
9832
9833 /* we have got spares
9834 * update disk list in imsm_disk list table in anchor
9835 */
9836 dprintf("imsm: %i spares are available.\n\n",
9837 spares->array.spare_disks);
9838
bbd24d86 9839 dev = spares->devs;
78b10e66 9840 for (i = 0; i < delta_disks; i++) {
78b10e66
N
9841 struct dl *dl;
9842
bbd24d86
AK
9843 if (dev == NULL)
9844 break;
78b10e66
N
9845 u->new_disks[i] = makedev(dev->disk.major,
9846 dev->disk.minor);
9847 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
9848 dl->index = mpb->num_disks;
9849 mpb->num_disks++;
bbd24d86 9850 dev = dev->next;
78b10e66 9851 }
78b10e66
N
9852
9853abort:
9854 /* free spares
9855 */
9856 sysfs_free(spares);
9857
d677e0b8 9858 dprintf("imsm: reshape update preparation :");
78b10e66 9859 if (i == delta_disks) {
1ade5cc1 9860 dprintf_cont(" OK\n");
78b10e66
N
9861 *updatep = u;
9862 return update_memory_size;
9863 }
9864 free(u);
1ade5cc1 9865 dprintf_cont(" Error\n");
78b10e66
N
9866
9867 return 0;
9868}
9869
f3871fdc
AK
9870/******************************************************************************
9871 * function: imsm_create_metadata_update_for_size_change()
9872 * Creates update for IMSM array for array size change.
9873 *
9874 ******************************************************************************/
9875static int imsm_create_metadata_update_for_size_change(
9876 struct supertype *st,
9877 struct geo_params *geo,
9878 struct imsm_update_size_change **updatep)
9879{
9880 struct intel_super *super = st->sb;
594dc1b8
JS
9881 int update_memory_size;
9882 struct imsm_update_size_change *u;
f3871fdc 9883
1ade5cc1 9884 dprintf("(enter) New size = %llu\n", geo->size);
f3871fdc
AK
9885
9886 /* size of all update data without anchor */
9887 update_memory_size = sizeof(struct imsm_update_size_change);
9888
503975b9 9889 u = xcalloc(1, update_memory_size);
f3871fdc
AK
9890 u->type = update_size_change;
9891 u->subdev = super->current_vol;
9892 u->new_size = geo->size;
9893
9894 dprintf("imsm: reshape update preparation : OK\n");
9895 *updatep = u;
9896
9897 return update_memory_size;
9898}
9899
48c5303a
PC
9900/******************************************************************************
9901 * function: imsm_create_metadata_update_for_migration()
9902 * Creates update for IMSM array.
9903 *
9904 ******************************************************************************/
9905static int imsm_create_metadata_update_for_migration(
9906 struct supertype *st,
9907 struct geo_params *geo,
9908 struct imsm_update_reshape_migration **updatep)
9909{
9910 struct intel_super *super = st->sb;
594dc1b8
JS
9911 int update_memory_size;
9912 struct imsm_update_reshape_migration *u;
48c5303a
PC
9913 struct imsm_dev *dev;
9914 int previous_level = -1;
9915
1ade5cc1 9916 dprintf("(enter) New Level = %i\n", geo->level);
48c5303a
PC
9917
9918 /* size of all update data without anchor */
9919 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9920
503975b9 9921 u = xcalloc(1, update_memory_size);
48c5303a
PC
9922 u->type = update_reshape_migration;
9923 u->subdev = super->current_vol;
9924 u->new_level = geo->level;
9925 u->new_layout = geo->layout;
9926 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9927 u->new_disks[0] = -1;
4bba0439 9928 u->new_chunksize = -1;
48c5303a
PC
9929
9930 dev = get_imsm_dev(super, u->subdev);
9931 if (dev) {
9932 struct imsm_map *map;
9933
238c0a71 9934 map = get_imsm_map(dev, MAP_0);
4bba0439
PC
9935 if (map) {
9936 int current_chunk_size =
9937 __le16_to_cpu(map->blocks_per_strip) / 2;
9938
9939 if (geo->chunksize != current_chunk_size) {
9940 u->new_chunksize = geo->chunksize / 1024;
7a862a02 9941 dprintf("imsm: chunk size change from %i to %i\n",
4bba0439
PC
9942 current_chunk_size, u->new_chunksize);
9943 }
48c5303a 9944 previous_level = map->raid_level;
4bba0439 9945 }
48c5303a
PC
9946 }
9947 if ((geo->level == 5) && (previous_level == 0)) {
9948 struct mdinfo *spares = NULL;
9949
9950 u->new_raid_disks++;
9951 spares = get_spares_for_grow(st);
9952 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9953 free(u);
9954 sysfs_free(spares);
9955 update_memory_size = 0;
7a862a02 9956 dprintf("error: cannot get spare device for requested migration");
48c5303a
PC
9957 return 0;
9958 }
9959 sysfs_free(spares);
9960 }
9961 dprintf("imsm: reshape update preparation : OK\n");
9962 *updatep = u;
9963
9964 return update_memory_size;
9965}
9966
8dd70bce
AK
9967static void imsm_update_metadata_locally(struct supertype *st,
9968 void *buf, int len)
9969{
9970 struct metadata_update mu;
9971
9972 mu.buf = buf;
9973 mu.len = len;
9974 mu.space = NULL;
9975 mu.space_list = NULL;
9976 mu.next = NULL;
5fe6f031
N
9977 if (imsm_prepare_update(st, &mu))
9978 imsm_process_update(st, &mu);
8dd70bce
AK
9979
9980 while (mu.space_list) {
9981 void **space = mu.space_list;
9982 mu.space_list = *space;
9983 free(space);
9984 }
9985}
78b10e66 9986
471bceb6 9987/***************************************************************************
694575e7 9988* Function: imsm_analyze_change
471bceb6 9989* Description: Function analyze change for single volume
1011e834 9990* and validate if transition is supported
fbf3d202
AK
9991* Parameters: Geometry parameters, supertype structure,
9992* metadata change direction (apply/rollback)
694575e7 9993* Returns: Operation type code on success, -1 if fail
471bceb6
KW
9994****************************************************************************/
9995enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
fbf3d202
AK
9996 struct geo_params *geo,
9997 int direction)
694575e7 9998{
471bceb6
KW
9999 struct mdinfo info;
10000 int change = -1;
10001 int check_devs = 0;
c21e737b 10002 int chunk;
67a2db32
AK
10003 /* number of added/removed disks in operation result */
10004 int devNumChange = 0;
10005 /* imsm compatible layout value for array geometry verification */
10006 int imsm_layout = -1;
7abc9871
AK
10007 int data_disks;
10008 struct imsm_dev *dev;
10009 struct intel_super *super;
d04f65f4 10010 unsigned long long current_size;
65d38cca 10011 unsigned long long free_size;
d04f65f4 10012 unsigned long long max_size;
65d38cca 10013 int rv;
471bceb6
KW
10014
10015 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
10016 if ((geo->level != info.array.level) &&
10017 (geo->level >= 0) &&
10018 (geo->level != UnSet)) {
10019 switch (info.array.level) {
10020 case 0:
10021 if (geo->level == 5) {
b5347799 10022 change = CH_MIGRATION;
e13ce846 10023 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
7a862a02 10024 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
e13ce846
AK
10025 change = -1;
10026 goto analyse_change_exit;
10027 }
67a2db32 10028 imsm_layout = geo->layout;
471bceb6 10029 check_devs = 1;
e91a3bad
LM
10030 devNumChange = 1; /* parity disk added */
10031 } else if (geo->level == 10) {
471bceb6
KW
10032 change = CH_TAKEOVER;
10033 check_devs = 1;
e91a3bad 10034 devNumChange = 2; /* two mirrors added */
67a2db32 10035 imsm_layout = 0x102; /* imsm supported layout */
471bceb6 10036 }
dfe77a9e
KW
10037 break;
10038 case 1:
471bceb6
KW
10039 case 10:
10040 if (geo->level == 0) {
10041 change = CH_TAKEOVER;
10042 check_devs = 1;
e91a3bad 10043 devNumChange = -(geo->raid_disks/2);
67a2db32 10044 imsm_layout = 0; /* imsm raid0 layout */
471bceb6
KW
10045 }
10046 break;
10047 }
10048 if (change == -1) {
7a862a02 10049 pr_err("Error. Level Migration from %d to %d not supported!\n",
e7b84f9d 10050 info.array.level, geo->level);
471bceb6
KW
10051 goto analyse_change_exit;
10052 }
10053 } else
10054 geo->level = info.array.level;
10055
10056 if ((geo->layout != info.array.layout)
10057 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 10058 change = CH_MIGRATION;
471bceb6
KW
10059 if ((info.array.layout == 0)
10060 && (info.array.level == 5)
10061 && (geo->layout == 5)) {
10062 /* reshape 5 -> 4 */
10063 } else if ((info.array.layout == 5)
10064 && (info.array.level == 5)
10065 && (geo->layout == 0)) {
10066 /* reshape 4 -> 5 */
10067 geo->layout = 0;
10068 geo->level = 5;
10069 } else {
7a862a02 10070 pr_err("Error. Layout Migration from %d to %d not supported!\n",
e7b84f9d 10071 info.array.layout, geo->layout);
471bceb6
KW
10072 change = -1;
10073 goto analyse_change_exit;
10074 }
67a2db32 10075 } else {
471bceb6 10076 geo->layout = info.array.layout;
67a2db32
AK
10077 if (imsm_layout == -1)
10078 imsm_layout = info.array.layout;
10079 }
471bceb6
KW
10080
10081 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
10082 && (geo->chunksize != info.array.chunk_size))
b5347799 10083 change = CH_MIGRATION;
471bceb6
KW
10084 else
10085 geo->chunksize = info.array.chunk_size;
10086
c21e737b 10087 chunk = geo->chunksize / 1024;
7abc9871
AK
10088
10089 super = st->sb;
10090 dev = get_imsm_dev(super, super->current_vol);
10091 data_disks = imsm_num_data_members(dev , MAP_0);
c41e00b2 10092 /* compute current size per disk member
7abc9871 10093 */
c41e00b2
AK
10094 current_size = info.custom_array_size / data_disks;
10095
d5d2c614 10096 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
c41e00b2
AK
10097 /* align component size
10098 */
10099 geo->size = imsm_component_size_aligment_check(
10100 get_imsm_raid_level(dev->vol.map),
10101 chunk * 1024,
10102 geo->size * 2);
65d0b4ce 10103 if (geo->size == 0) {
7a862a02 10104 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
65d0b4ce
LD
10105 current_size);
10106 goto analyse_change_exit;
10107 }
c41e00b2 10108 }
7abc9871 10109
d04f65f4 10110 if ((current_size != geo->size) && (geo->size > 0)) {
7abc9871 10111 if (change != -1) {
7a862a02 10112 pr_err("Error. Size change should be the only one at a time.\n");
7abc9871
AK
10113 change = -1;
10114 goto analyse_change_exit;
10115 }
10116 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
7a862a02 10117 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
4dd2df09 10118 super->current_vol, st->devnm);
7abc9871
AK
10119 goto analyse_change_exit;
10120 }
65d38cca
LD
10121 /* check the maximum available size
10122 */
10123 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10124 0, chunk, &free_size);
10125 if (rv == 0)
10126 /* Cannot find maximum available space
10127 */
10128 max_size = 0;
10129 else {
10130 max_size = free_size + current_size;
10131 /* align component size
10132 */
10133 max_size = imsm_component_size_aligment_check(
10134 get_imsm_raid_level(dev->vol.map),
10135 chunk * 1024,
10136 max_size);
10137 }
d04f65f4 10138 if (geo->size == MAX_SIZE) {
b130333f
AK
10139 /* requested size change to the maximum available size
10140 */
65d38cca 10141 if (max_size == 0) {
7a862a02 10142 pr_err("Error. Cannot find maximum available space.\n");
b130333f
AK
10143 change = -1;
10144 goto analyse_change_exit;
65d38cca
LD
10145 } else
10146 geo->size = max_size;
c41e00b2 10147 }
b130333f 10148
fbf3d202
AK
10149 if ((direction == ROLLBACK_METADATA_CHANGES)) {
10150 /* accept size for rollback only
10151 */
10152 } else {
10153 /* round size due to metadata compatibility
10154 */
10155 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10156 << SECT_PER_MB_SHIFT;
10157 dprintf("Prepare update for size change to %llu\n",
10158 geo->size );
10159 if (current_size >= geo->size) {
7a862a02 10160 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 10161 current_size, geo->size);
fbf3d202
AK
10162 goto analyse_change_exit;
10163 }
65d38cca 10164 if (max_size && geo->size > max_size) {
7a862a02 10165 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
e7b84f9d 10166 max_size, geo->size);
65d38cca
LD
10167 goto analyse_change_exit;
10168 }
7abc9871
AK
10169 }
10170 geo->size *= data_disks;
10171 geo->raid_disks = dev->vol.map->num_members;
10172 change = CH_ARRAY_SIZE;
10173 }
471bceb6
KW
10174 if (!validate_geometry_imsm(st,
10175 geo->level,
67a2db32 10176 imsm_layout,
e91a3bad 10177 geo->raid_disks + devNumChange,
c21e737b 10178 &chunk,
af4348dd 10179 geo->size, INVALID_SECTORS,
471bceb6
KW
10180 0, 0, 1))
10181 change = -1;
10182
10183 if (check_devs) {
10184 struct intel_super *super = st->sb;
10185 struct imsm_super *mpb = super->anchor;
10186
10187 if (mpb->num_raid_devs > 1) {
7a862a02 10188 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
e7b84f9d 10189 geo->dev_name);
471bceb6
KW
10190 change = -1;
10191 }
10192 }
10193
10194analyse_change_exit:
fbf3d202
AK
10195 if ((direction == ROLLBACK_METADATA_CHANGES) &&
10196 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
7a862a02 10197 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
fbf3d202
AK
10198 change = -1;
10199 }
471bceb6 10200 return change;
694575e7
KW
10201}
10202
bb025c2f
KW
10203int imsm_takeover(struct supertype *st, struct geo_params *geo)
10204{
10205 struct intel_super *super = st->sb;
10206 struct imsm_update_takeover *u;
10207
503975b9 10208 u = xmalloc(sizeof(struct imsm_update_takeover));
bb025c2f
KW
10209
10210 u->type = update_takeover;
10211 u->subarray = super->current_vol;
10212
10213 /* 10->0 transition */
10214 if (geo->level == 0)
10215 u->direction = R10_TO_R0;
10216
0529c688
KW
10217 /* 0->10 transition */
10218 if (geo->level == 10)
10219 u->direction = R0_TO_R10;
10220
bb025c2f
KW
10221 /* update metadata locally */
10222 imsm_update_metadata_locally(st, u,
10223 sizeof(struct imsm_update_takeover));
10224 /* and possibly remotely */
10225 if (st->update_tail)
10226 append_metadata_update(st, u,
10227 sizeof(struct imsm_update_takeover));
10228 else
10229 free(u);
10230
10231 return 0;
10232}
10233
d04f65f4
N
10234static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10235 int level,
78b10e66 10236 int layout, int chunksize, int raid_disks,
41784c88 10237 int delta_disks, char *backup, char *dev,
016e00f5 10238 int direction, int verbose)
78b10e66 10239{
78b10e66
N
10240 int ret_val = 1;
10241 struct geo_params geo;
10242
1ade5cc1 10243 dprintf("(enter)\n");
78b10e66 10244
71204a50 10245 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
10246
10247 geo.dev_name = dev;
4dd2df09 10248 strcpy(geo.devnm, st->devnm);
78b10e66
N
10249 geo.size = size;
10250 geo.level = level;
10251 geo.layout = layout;
10252 geo.chunksize = chunksize;
10253 geo.raid_disks = raid_disks;
41784c88
AK
10254 if (delta_disks != UnSet)
10255 geo.raid_disks += delta_disks;
78b10e66 10256
1ade5cc1
N
10257 dprintf("for level : %i\n", geo.level);
10258 dprintf("for raid_disks : %i\n", geo.raid_disks);
78b10e66
N
10259
10260 if (experimental() == 0)
10261 return ret_val;
10262
4dd2df09 10263 if (strcmp(st->container_devnm, st->devnm) == 0) {
694575e7
KW
10264 /* On container level we can only increase number of devices. */
10265 dprintf("imsm: info: Container operation\n");
78b10e66 10266 int old_raid_disks = 0;
6dc0be30 10267
78b10e66 10268 if (imsm_reshape_is_allowed_on_container(
fbf3d202 10269 st, &geo, &old_raid_disks, direction)) {
78b10e66
N
10270 struct imsm_update_reshape *u = NULL;
10271 int len;
10272
10273 len = imsm_create_metadata_update_for_reshape(
10274 st, &geo, old_raid_disks, &u);
10275
ed08d51c
AK
10276 if (len <= 0) {
10277 dprintf("imsm: Cannot prepare update\n");
10278 goto exit_imsm_reshape_super;
10279 }
10280
8dd70bce
AK
10281 ret_val = 0;
10282 /* update metadata locally */
10283 imsm_update_metadata_locally(st, u, len);
10284 /* and possibly remotely */
10285 if (st->update_tail)
10286 append_metadata_update(st, u, len);
10287 else
ed08d51c 10288 free(u);
8dd70bce 10289
694575e7 10290 } else {
7a862a02 10291 pr_err("(imsm) Operation is not allowed on this container\n");
694575e7
KW
10292 }
10293 } else {
10294 /* On volume level we support following operations
471bceb6
KW
10295 * - takeover: raid10 -> raid0; raid0 -> raid10
10296 * - chunk size migration
10297 * - migration: raid5 -> raid0; raid0 -> raid5
10298 */
10299 struct intel_super *super = st->sb;
10300 struct intel_dev *dev = super->devlist;
4dd2df09 10301 int change;
694575e7 10302 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
10303 /* find requested device */
10304 while (dev) {
1011e834 10305 char *devnm =
4dd2df09
N
10306 imsm_find_array_devnm_by_subdev(
10307 dev->index, st->container_devnm);
10308 if (devnm && strcmp(devnm, geo.devnm) == 0)
471bceb6
KW
10309 break;
10310 dev = dev->next;
10311 }
10312 if (dev == NULL) {
4dd2df09
N
10313 pr_err("Cannot find %s (%s) subarray\n",
10314 geo.dev_name, geo.devnm);
471bceb6
KW
10315 goto exit_imsm_reshape_super;
10316 }
10317 super->current_vol = dev->index;
fbf3d202 10318 change = imsm_analyze_change(st, &geo, direction);
694575e7 10319 switch (change) {
471bceb6 10320 case CH_TAKEOVER:
bb025c2f 10321 ret_val = imsm_takeover(st, &geo);
694575e7 10322 break;
48c5303a
PC
10323 case CH_MIGRATION: {
10324 struct imsm_update_reshape_migration *u = NULL;
10325 int len =
10326 imsm_create_metadata_update_for_migration(
10327 st, &geo, &u);
10328 if (len < 1) {
7a862a02 10329 dprintf("imsm: Cannot prepare update\n");
48c5303a
PC
10330 break;
10331 }
471bceb6 10332 ret_val = 0;
48c5303a
PC
10333 /* update metadata locally */
10334 imsm_update_metadata_locally(st, u, len);
10335 /* and possibly remotely */
10336 if (st->update_tail)
10337 append_metadata_update(st, u, len);
10338 else
10339 free(u);
10340 }
10341 break;
7abc9871 10342 case CH_ARRAY_SIZE: {
f3871fdc
AK
10343 struct imsm_update_size_change *u = NULL;
10344 int len =
10345 imsm_create_metadata_update_for_size_change(
10346 st, &geo, &u);
10347 if (len < 1) {
7a862a02 10348 dprintf("imsm: Cannot prepare update\n");
f3871fdc
AK
10349 break;
10350 }
10351 ret_val = 0;
10352 /* update metadata locally */
10353 imsm_update_metadata_locally(st, u, len);
10354 /* and possibly remotely */
10355 if (st->update_tail)
10356 append_metadata_update(st, u, len);
10357 else
10358 free(u);
7abc9871
AK
10359 }
10360 break;
471bceb6
KW
10361 default:
10362 ret_val = 1;
694575e7 10363 }
694575e7 10364 }
78b10e66 10365
ed08d51c 10366exit_imsm_reshape_super:
78b10e66
N
10367 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10368 return ret_val;
10369}
2cda7640 10370
0febb20c
AO
10371#define COMPLETED_OK 0
10372#define COMPLETED_NONE 1
10373#define COMPLETED_DELAYED 2
10374
10375static int read_completed(int fd, unsigned long long *val)
10376{
10377 int ret;
10378 char buf[50];
10379
10380 ret = sysfs_fd_get_str(fd, buf, 50);
10381 if (ret < 0)
10382 return ret;
10383
10384 ret = COMPLETED_OK;
10385 if (strncmp(buf, "none", 4) == 0) {
10386 ret = COMPLETED_NONE;
10387 } else if (strncmp(buf, "delayed", 7) == 0) {
10388 ret = COMPLETED_DELAYED;
10389 } else {
10390 char *ep;
10391 *val = strtoull(buf, &ep, 0);
10392 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
10393 ret = -1;
10394 }
10395 return ret;
10396}
10397
eee67a47
AK
10398/*******************************************************************************
10399 * Function: wait_for_reshape_imsm
10400 * Description: Function writes new sync_max value and waits until
10401 * reshape process reach new position
10402 * Parameters:
10403 * sra : general array info
eee67a47
AK
10404 * ndata : number of disks in new array's layout
10405 * Returns:
10406 * 0 : success,
10407 * 1 : there is no reshape in progress,
10408 * -1 : fail
10409 ******************************************************************************/
ae9f01f8 10410int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47 10411{
85ca499c 10412 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
df2647fa 10413 int retry = 3;
eee67a47 10414 unsigned long long completed;
ae9f01f8
AK
10415 /* to_complete : new sync_max position */
10416 unsigned long long to_complete = sra->reshape_progress;
10417 unsigned long long position_to_set = to_complete / ndata;
eee67a47 10418
ae9f01f8 10419 if (fd < 0) {
1ade5cc1 10420 dprintf("cannot open reshape_position\n");
eee67a47 10421 return 1;
ae9f01f8 10422 }
eee67a47 10423
df2647fa
PB
10424 do {
10425 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10426 if (!retry) {
10427 dprintf("cannot read reshape_position (no reshape in progres)\n");
10428 close(fd);
10429 return 1;
10430 }
10431 usleep(30000);
10432 } else
10433 break;
10434 } while (retry--);
eee67a47 10435
85ca499c 10436 if (completed > position_to_set) {
1ade5cc1 10437 dprintf("wrong next position to set %llu (%llu)\n",
85ca499c 10438 to_complete, position_to_set);
ae9f01f8
AK
10439 close(fd);
10440 return -1;
10441 }
10442 dprintf("Position set: %llu\n", position_to_set);
10443 if (sysfs_set_num(sra, NULL, "sync_max",
10444 position_to_set) != 0) {
1ade5cc1 10445 dprintf("cannot set reshape position to %llu\n",
ae9f01f8
AK
10446 position_to_set);
10447 close(fd);
10448 return -1;
eee67a47
AK
10449 }
10450
eee67a47 10451 do {
0febb20c 10452 int rc;
eee67a47 10453 char action[20];
5ff3a780 10454 int timeout = 3000;
0febb20c 10455
5ff3a780 10456 sysfs_wait(fd, &timeout);
a47e44fb
AK
10457 if (sysfs_get_str(sra, NULL, "sync_action",
10458 action, 20) > 0 &&
d7d3809a 10459 strncmp(action, "reshape", 7) != 0) {
b2be2b62
AO
10460 if (strncmp(action, "idle", 4) == 0)
10461 break;
d7d3809a
AP
10462 close(fd);
10463 return -1;
10464 }
0febb20c
AO
10465
10466 rc = read_completed(fd, &completed);
10467 if (rc < 0) {
1ade5cc1 10468 dprintf("cannot read reshape_position (in loop)\n");
eee67a47
AK
10469 close(fd);
10470 return 1;
0febb20c
AO
10471 } else if (rc == COMPLETED_NONE)
10472 break;
85ca499c 10473 } while (completed < position_to_set);
b2be2b62 10474
eee67a47
AK
10475 close(fd);
10476 return 0;
eee67a47
AK
10477}
10478
b915c95f
AK
10479/*******************************************************************************
10480 * Function: check_degradation_change
10481 * Description: Check that array hasn't become failed.
10482 * Parameters:
10483 * info : for sysfs access
10484 * sources : source disks descriptors
10485 * degraded: previous degradation level
10486 * Returns:
10487 * degradation level
10488 ******************************************************************************/
10489int check_degradation_change(struct mdinfo *info,
10490 int *sources,
10491 int degraded)
10492{
10493 unsigned long long new_degraded;
e1993023
LD
10494 int rv;
10495
10496 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10497 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
b915c95f
AK
10498 /* check each device to ensure it is still working */
10499 struct mdinfo *sd;
10500 new_degraded = 0;
10501 for (sd = info->devs ; sd ; sd = sd->next) {
10502 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10503 continue;
10504 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10505 char sbuf[20];
10506 if (sysfs_get_str(info,
10507 sd, "state", sbuf, 20) < 0 ||
10508 strstr(sbuf, "faulty") ||
10509 strstr(sbuf, "in_sync") == NULL) {
10510 /* this device is dead */
10511 sd->disk.state = (1<<MD_DISK_FAULTY);
10512 if (sd->disk.raid_disk >= 0 &&
10513 sources[sd->disk.raid_disk] >= 0) {
10514 close(sources[
10515 sd->disk.raid_disk]);
10516 sources[sd->disk.raid_disk] =
10517 -1;
10518 }
10519 new_degraded++;
10520 }
10521 }
10522 }
10523 }
10524
10525 return new_degraded;
10526}
10527
10f22854
AK
10528/*******************************************************************************
10529 * Function: imsm_manage_reshape
10530 * Description: Function finds array under reshape and it manages reshape
10531 * process. It creates stripes backups (if required) and sets
942e1cdb 10532 * checkpoints.
10f22854
AK
10533 * Parameters:
10534 * afd : Backup handle (nattive) - not used
10535 * sra : general array info
10536 * reshape : reshape parameters - not used
10537 * st : supertype structure
10538 * blocks : size of critical section [blocks]
10539 * fds : table of source device descriptor
10540 * offsets : start of array (offest per devices)
10541 * dests : not used
10542 * destfd : table of destination device descriptor
10543 * destoffsets : table of destination offsets (per device)
10544 * Returns:
10545 * 1 : success, reshape is done
10546 * 0 : fail
10547 ******************************************************************************/
999b4972
N
10548static int imsm_manage_reshape(
10549 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 10550 struct supertype *st, unsigned long backup_blocks,
999b4972
N
10551 int *fds, unsigned long long *offsets,
10552 int dests, int *destfd, unsigned long long *destoffsets)
10553{
10f22854
AK
10554 int ret_val = 0;
10555 struct intel_super *super = st->sb;
594dc1b8 10556 struct intel_dev *dv;
10f22854 10557 struct imsm_dev *dev = NULL;
a6b6d984 10558 struct imsm_map *map_src;
10f22854
AK
10559 int migr_vol_qan = 0;
10560 int ndata, odata; /* [bytes] */
10561 int chunk; /* [bytes] */
10562 struct migr_record *migr_rec;
10563 char *buf = NULL;
10564 unsigned int buf_size; /* [bytes] */
10565 unsigned long long max_position; /* array size [bytes] */
10566 unsigned long long next_step; /* [blocks]/[bytes] */
10567 unsigned long long old_data_stripe_length;
10f22854
AK
10568 unsigned long long start_src; /* [bytes] */
10569 unsigned long long start; /* [bytes] */
10570 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 10571 int degraded = 0;
ab724b98 10572 int source_layout = 0;
10f22854 10573
79a16a9b
JS
10574 if (!sra)
10575 return ret_val;
10576
10577 if (!fds || !offsets)
10f22854
AK
10578 goto abort;
10579
10580 /* Find volume during the reshape */
10581 for (dv = super->devlist; dv; dv = dv->next) {
10582 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10583 && dv->dev->vol.migr_state == 1) {
10584 dev = dv->dev;
10585 migr_vol_qan++;
10586 }
10587 }
10588 /* Only one volume can migrate at the same time */
10589 if (migr_vol_qan != 1) {
e7b84f9d 10590 pr_err(": %s", migr_vol_qan ?
10f22854
AK
10591 "Number of migrating volumes greater than 1\n" :
10592 "There is no volume during migrationg\n");
10593 goto abort;
10594 }
10595
238c0a71 10596 map_src = get_imsm_map(dev, MAP_1);
10f22854
AK
10597 if (map_src == NULL)
10598 goto abort;
10f22854 10599
238c0a71
AK
10600 ndata = imsm_num_data_members(dev, MAP_0);
10601 odata = imsm_num_data_members(dev, MAP_1);
10f22854 10602
7b1ab482 10603 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
10604 old_data_stripe_length = odata * chunk;
10605
10606 migr_rec = super->migr_rec;
10607
10f22854
AK
10608 /* initialize migration record for start condition */
10609 if (sra->reshape_progress == 0)
10610 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
10611 else {
10612 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
7a862a02 10613 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
b2c59438
AK
10614 goto abort;
10615 }
6a75c8ca
AK
10616 /* Save checkpoint to update migration record for current
10617 * reshape position (in md). It can be farther than current
10618 * reshape position in metadata.
10619 */
10620 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10621 /* ignore error == 2, this can mean end of reshape here
10622 */
7a862a02 10623 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
6a75c8ca
AK
10624 goto abort;
10625 }
b2c59438 10626 }
10f22854
AK
10627
10628 /* size for data */
10629 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10630 /* extend buffer size for parity disk */
10631 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10632 /* add space for stripe aligment */
10633 buf_size += old_data_stripe_length;
10634 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10635 dprintf("imsm: Cannot allocate checpoint buffer\n");
10636 goto abort;
10637 }
10638
3ef4403c 10639 max_position = sra->component_size * ndata;
68eb8bc6 10640 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
10641
10642 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10643 __le32_to_cpu(migr_rec->num_migr_units)) {
10644 /* current reshape position [blocks] */
10645 unsigned long long current_position =
10646 __le32_to_cpu(migr_rec->blocks_per_unit)
10647 * __le32_to_cpu(migr_rec->curr_migr_unit);
10648 unsigned long long border;
10649
b915c95f
AK
10650 /* Check that array hasn't become failed.
10651 */
10652 degraded = check_degradation_change(sra, fds, degraded);
10653 if (degraded > 1) {
7a862a02 10654 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
b915c95f
AK
10655 goto abort;
10656 }
10657
10f22854
AK
10658 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10659
10660 if ((current_position + next_step) > max_position)
10661 next_step = max_position - current_position;
10662
92144abf 10663 start = current_position * 512;
10f22854 10664
942e1cdb 10665 /* align reading start to old geometry */
10f22854
AK
10666 start_buf_shift = start % old_data_stripe_length;
10667 start_src = start - start_buf_shift;
10668
10669 border = (start_src / odata) - (start / ndata);
10670 border /= 512;
10671 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10672 /* save critical stripes to buf
10673 * start - start address of current unit
10674 * to backup [bytes]
10675 * start_src - start address of current unit
10676 * to backup alligned to source array
10677 * [bytes]
10678 */
594dc1b8 10679 unsigned long long next_step_filler;
10f22854
AK
10680 unsigned long long copy_length = next_step * 512;
10681
10682 /* allign copy area length to stripe in old geometry */
10683 next_step_filler = ((copy_length + start_buf_shift)
10684 % old_data_stripe_length);
10685 if (next_step_filler)
10686 next_step_filler = (old_data_stripe_length
10687 - next_step_filler);
7a862a02 10688 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10f22854
AK
10689 start, start_src, copy_length,
10690 start_buf_shift, next_step_filler);
10691
10692 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
10693 chunk, map_src->raid_level,
10694 source_layout, 0, NULL, start_src,
10f22854
AK
10695 copy_length +
10696 next_step_filler + start_buf_shift,
10697 buf)) {
7a862a02 10698 dprintf("imsm: Cannot save stripes to buffer\n");
10f22854
AK
10699 goto abort;
10700 }
10701 /* Convert data to destination format and store it
10702 * in backup general migration area
10703 */
10704 if (save_backup_imsm(st, dev, sra,
aea93171 10705 buf + start_buf_shift, copy_length)) {
7a862a02 10706 dprintf("imsm: Cannot save stripes to target devices\n");
10f22854
AK
10707 goto abort;
10708 }
10709 if (save_checkpoint_imsm(st, sra,
10710 UNIT_SRC_IN_CP_AREA)) {
7a862a02 10711 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10f22854
AK
10712 goto abort;
10713 }
8016a6d4
AK
10714 } else {
10715 /* set next step to use whole border area */
10716 border /= next_step;
10717 if (border > 1)
10718 next_step *= border;
10f22854
AK
10719 }
10720 /* When data backed up, checkpoint stored,
10721 * kick the kernel to reshape unit of data
10722 */
10723 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
10724 /* limit next step to array max position */
10725 if (next_step > max_position)
10726 next_step = max_position;
10f22854
AK
10727 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10728 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 10729 sra->reshape_progress = next_step;
10f22854
AK
10730
10731 /* wait until reshape finish */
c85338c6 10732 if (wait_for_reshape_imsm(sra, ndata)) {
c47b0ff6
AK
10733 dprintf("wait_for_reshape_imsm returned error!\n");
10734 goto abort;
10735 }
84d11e6c
N
10736 if (sigterm)
10737 goto abort;
10f22854 10738
0228d92c
AK
10739 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10740 /* ignore error == 2, this can mean end of reshape here
10741 */
7a862a02 10742 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10f22854
AK
10743 goto abort;
10744 }
10745
10746 }
10747
71e5411e
PB
10748 /* clear migr_rec on disks after successful migration */
10749 struct dl *d;
10750
10751 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
10752 for (d = super->disks; d; d = d->next) {
10753 if (d->index < 0 || is_failed(&d->disk))
10754 continue;
10755 unsigned long long dsize;
10756
10757 get_dev_size(d->fd, NULL, &dsize);
10758 if (lseek64(d->fd, dsize - MIGR_REC_POSITION,
10759 SEEK_SET) >= 0) {
10760 if (write(d->fd, super->migr_rec_buf,
10761 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
10762 perror("Write migr_rec failed");
10763 }
10764 }
10765
10f22854
AK
10766 /* return '1' if done */
10767 ret_val = 1;
10768abort:
10769 free(buf);
942e1cdb
N
10770 /* See Grow.c: abort_reshape() for further explanation */
10771 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
10772 sysfs_set_num(sra, NULL, "suspend_hi", 0);
10773 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10f22854
AK
10774
10775 return ret_val;
999b4972 10776}
0c21b485 10777
71204a50 10778#endif /* MDASSEMBLE */
999b4972 10779
cdddbdbc
DW
10780struct superswitch super_imsm = {
10781#ifndef MDASSEMBLE
10782 .examine_super = examine_super_imsm,
10783 .brief_examine_super = brief_examine_super_imsm,
4737ae25 10784 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 10785 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
10786 .detail_super = detail_super_imsm,
10787 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 10788 .write_init_super = write_init_super_imsm,
0e600426
N
10789 .validate_geometry = validate_geometry_imsm,
10790 .add_to_super = add_to_super_imsm,
1a64be56 10791 .remove_from_super = remove_from_super_imsm,
d665cc31 10792 .detail_platform = detail_platform_imsm,
e50cf220 10793 .export_detail_platform = export_detail_platform_imsm,
33414a01 10794 .kill_subarray = kill_subarray_imsm,
aa534678 10795 .update_subarray = update_subarray_imsm,
2b959fbf 10796 .load_container = load_container_imsm,
71204a50
N
10797 .default_geometry = default_geometry_imsm,
10798 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10799 .reshape_super = imsm_reshape_super,
10800 .manage_reshape = imsm_manage_reshape,
9e2d750d 10801 .recover_backup = recover_backup_imsm,
74db60b0 10802 .copy_metadata = copy_metadata_imsm,
cdddbdbc
DW
10803#endif
10804 .match_home = match_home_imsm,
10805 .uuid_from_super= uuid_from_super_imsm,
10806 .getinfo_super = getinfo_super_imsm,
5c4cd5da 10807 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
10808 .update_super = update_super_imsm,
10809
10810 .avail_size = avail_size_imsm,
80e7f8c3 10811 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
10812
10813 .compare_super = compare_super_imsm,
10814
10815 .load_super = load_super_imsm,
bf5a934a 10816 .init_super = init_super_imsm,
e683ca88 10817 .store_super = store_super_imsm,
cdddbdbc
DW
10818 .free_super = free_super_imsm,
10819 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 10820 .container_content = container_content_imsm,
0c21b485 10821 .validate_container = validate_container_imsm,
cdddbdbc 10822
cdddbdbc 10823 .external = 1,
4cce4069 10824 .name = "imsm",
845dea95 10825
0e600426 10826#ifndef MDASSEMBLE
845dea95
NB
10827/* for mdmon */
10828 .open_new = imsm_open_new,
ed9d66aa 10829 .set_array_state= imsm_set_array_state,
845dea95
NB
10830 .set_disk = imsm_set_disk,
10831 .sync_metadata = imsm_sync_metadata,
88758e9d 10832 .activate_spare = imsm_activate_spare,
e8319a19 10833 .process_update = imsm_process_update,
8273f55e 10834 .prepare_update = imsm_prepare_update,
0e600426 10835#endif /* MDASSEMBLE */
cdddbdbc 10836};