]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: FIX: Finalize degraded migration
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb 43
19482bcc
AK
44/* supports RAID0 */
45#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46/* supports RAID1 */
47#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48/* supports RAID10 */
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50/* supports RAID1E */
51#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52/* supports RAID5 */
53#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54/* supports RAID CNG */
55#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56/* supports expanded stripe sizes of 256K, 512K and 1MB */
57#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59/* The OROM Support RST Caching of Volumes */
60#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61/* The OROM supports creating disks greater than 2TB */
62#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63/* The OROM supports Bad Block Management */
64#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66/* THe OROM Supports NVM Caching of Volumes */
67#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68/* The OROM supports creating volumes greater than 2TB */
69#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70/* originally for PMP, now it's wasted b/c. Never use this bit! */
71#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72/* Verify MPB contents against checksum after reading MPB */
73#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75/* Define all supported attributes that have to be accepted by mdadm
76 */
418f9b36 77#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
19482bcc
AK
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
418f9b36
N
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86/* Define attributes that are unused but not harmful */
87#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
fe7ed8cb 88
8e59f3d8 89#define MPB_SECTOR_CNT 2210
c2c087e6 90#define IMSM_RESERVED_SECTORS 4096
b81221b7 91#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
979d38be 92#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
93
94/* Disk configuration info. */
95#define IMSM_MAX_DEVICES 255
96struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
100#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 103 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107};
108
109/* RAID map configuration infos. */
110struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116#define IMSM_T_STATE_NORMAL 0
117#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
118#define IMSM_T_STATE_DEGRADED 2
119#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
120 __u8 raid_level;
121#define IMSM_T_RAID0 0
122#define IMSM_T_RAID1 1
123#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 127 __u8 ddf;
cdddbdbc 128 __u32 filler[7]; /* expansion area */
7eef0453 129#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
131 * top byte contains some flags
132 */
cdddbdbc
DW
133} __attribute__ ((packed));
134
135struct imsm_vol {
f8f603f1 136 __u32 curr_migr_unit;
fe7ed8cb 137 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 138 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
139#define MIGR_INIT 0
140#define MIGR_REBUILD 1
141#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142#define MIGR_GEN_MIGR 3
143#define MIGR_STATE_CHANGE 4
1484e727 144#define MIGR_REPAIR 5
cdddbdbc
DW
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
fe7ed8cb
DW
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
cdddbdbc
DW
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153} __attribute__ ((packed));
154
155struct imsm_dev {
fe7ed8cb 156 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
157 __u32 size_low;
158 __u32 size_high;
fe7ed8cb
DW
159#define DEV_BOOTABLE __cpu_to_le32(0x01)
160#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161#define DEV_READ_COALESCING __cpu_to_le32(0x04)
162#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184} __attribute__ ((packed));
185
186struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202#define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
604b746f 206 /* here comes BBM logs */
cdddbdbc
DW
207} __attribute__ ((packed));
208
604b746f
JD
209#define BBM_LOG_MAX_ENTRIES 254
210
211struct bbm_log_entry {
212 __u64 defective_block_start;
213#define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217} __attribute__ ((__packed__));
218
219struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226} __attribute__ ((__packed__));
227
228
cdddbdbc
DW
229#ifndef MDASSEMBLE
230static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231#endif
232
8e59f3d8
AK
233#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266} __attribute__ ((__packed__));
267
1484e727
DW
268static __u8 migr_type(struct imsm_dev *dev)
269{
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275}
276
277static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278{
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289}
290
87eb16df 291static unsigned int sector_count(__u32 bytes)
cdddbdbc 292{
87eb16df
DW
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294}
cdddbdbc 295
87eb16df
DW
296static unsigned int mpb_sectors(struct imsm_super *mpb)
297{
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
299}
300
ba2de7ba
DW
301struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
f21e18ca 304 unsigned index;
ba2de7ba
DW
305};
306
88654014
LM
307struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312};
313
1a64be56
LM
314enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317};
cdddbdbc
DW
318/* internal representation of IMSM metadata */
319struct intel_super {
320 union {
949c47a0
DW
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 323 };
8e59f3d8
AK
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
949c47a0 328 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
c2c087e6 331 int updates_pending; /* count of pending updates for mdmon */
bf5a934a 332 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 333 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 334 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 335 struct intel_dev *devlist;
cdddbdbc
DW
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
b9f594fe 342 struct imsm_disk disk;
cdddbdbc 343 int fd;
0dcecb2e
DW
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
efb30e7f 346 int raiddisk; /* slot to fill in autolayout */
1a64be56 347 enum action action;
ca0748fa 348 } *disks, *current_disk;
1a64be56
LM
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
47ee5a45 351 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 352 struct bbm_log *bbm_log;
88654014 353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
88c32bb1 354 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356};
357
358struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
cdddbdbc
DW
363};
364
c2c087e6
DW
365struct extent {
366 unsigned long long start, size;
367};
368
694575e7
KW
369/* definitions of reshape process types */
370enum imsm_reshape_type {
371 CH_TAKEOVER,
b5347799 372 CH_MIGRATION,
694575e7
KW
373};
374
88758e9d
DW
375/* definition of messages passed to imsm_process_update */
376enum imsm_update_type {
377 update_activate_spare,
8273f55e 378 update_create_array,
33414a01 379 update_kill_array,
aa534678 380 update_rename_array,
1a64be56 381 update_add_remove_disk,
78b10e66 382 update_reshape_container_disks,
48c5303a 383 update_reshape_migration,
2d40f3a1
AK
384 update_takeover,
385 update_general_migration_checkpoint,
88758e9d
DW
386};
387
388struct imsm_update_activate_spare {
389 enum imsm_update_type type;
d23fe947 390 struct dl *dl;
88758e9d
DW
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394};
395
78b10e66
N
396struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404};
405
bb025c2f
KW
406enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409};
410struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414};
78b10e66
N
415
416struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
48c5303a
PC
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422};
423
424struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
4bba0439 433 int new_chunksize;
48c5303a 434
d195167d 435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
78b10e66
N
436};
437
2d40f3a1
AK
438struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441};
442
54c2c1ea
DW
443struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445};
446
8273f55e
DW
447struct imsm_update_create_array {
448 enum imsm_update_type type;
8273f55e 449 int dev_idx;
6a3e913e 450 struct imsm_dev dev;
8273f55e
DW
451};
452
33414a01
DW
453struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456};
457
aa534678
DW
458struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462};
463
1a64be56 464struct imsm_update_add_remove_disk {
43dad3d6
DW
465 enum imsm_update_type type;
466};
467
88654014
LM
468
469static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473};
474
475const char *get_sys_dev_type(enum sys_dev_type type)
476{
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481}
482
483static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484{
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494}
495
496static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497{
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504}
505
b4cf4cba 506static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
88654014
LM
507{
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532}
533
534static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535{
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570}
571
572
d424212e
N
573static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
f2f5c343 575
cdddbdbc
DW
576static struct supertype *match_metadata_desc_imsm(char *arg)
577{
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
4e9d2186
AW
586 if (!st)
587 return NULL;
ef609477 588 memset(st, 0, sizeof(*st));
d1d599ea 589 st->container_dev = NoMdDev;
cdddbdbc
DW
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595}
596
0e600426 597#ifndef MDASSEMBLE
cdddbdbc
DW
598static __u8 *get_imsm_version(struct imsm_super *mpb)
599{
600 return &mpb->sig[MPB_SIG_LEN];
601}
9e2d750d 602#endif
cdddbdbc 603
949c47a0
DW
604/* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 608{
949c47a0 609 if (index >= mpb->num_disks)
cdddbdbc
DW
610 return NULL;
611 return &mpb->disk[index];
612}
613
95d07a2c
LM
614/* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
949c47a0 618{
b9f594fe
DW
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
95d07a2c
LM
623 return d;
624
625 return NULL;
626}
627/* retrieve a disk from the parsed metadata */
628static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629{
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
b9f594fe 636 return NULL;
949c47a0
DW
637}
638
639/* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
643{
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
97f734fd
N
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
cdddbdbc
DW
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654}
655
a965f303
DW
656static size_t sizeof_imsm_map(struct imsm_map *map)
657{
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659}
660
661struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 662{
5e7b0330
AK
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
9535fc47 668 * -2 - we return longer map /excluding uninitialized state/
5e7b0330 669 */
a965f303 670 struct imsm_map *map = &dev->vol.map[0];
9535fc47 671 struct imsm_map *map2 = NULL;
a965f303 672
9535fc47
AK
673 if (dev->vol.migr_state)
674 map2 = (void *)map + sizeof_imsm_map(map);
a965f303 675
9535fc47
AK
676 switch (second_map) {
677 case 0:
678 break;
679 case 1:
680 map = map2;
681 break;
682 case -1:
683 if (map2)
684 map = map2;
685 break;
686 case -2:
687 if (map2
688 && map2->map_state != IMSM_T_STATE_UNINITIALIZED
689 && map2->num_members > map->num_members)
690 map = map2;
691 break;
692 default:
693 map = NULL;
694 }
695 return map;
5e7b0330 696
a965f303 697}
cdddbdbc 698
3393c6af
DW
699/* return the size of the device.
700 * migr_state increases the returned size if map[0] were to be duplicated
701 */
702static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
703{
704 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
705 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
706
707 /* migrating means an additional map */
a965f303
DW
708 if (dev->vol.migr_state)
709 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
710 else if (migr_state)
711 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
712
713 return size;
714}
715
54c2c1ea
DW
716#ifndef MDASSEMBLE
717/* retrieve disk serial number list from a metadata update */
718static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
719{
720 void *u = update;
721 struct disk_info *inf;
722
723 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
724 sizeof_imsm_dev(&update->dev, 0);
725
726 return inf;
727}
728#endif
729
949c47a0 730static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
731{
732 int offset;
733 int i;
734 void *_mpb = mpb;
735
949c47a0 736 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
737 return NULL;
738
739 /* devices start after all disks */
740 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
741
742 for (i = 0; i <= index; i++)
743 if (i == index)
744 return _mpb + offset;
745 else
3393c6af 746 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
747
748 return NULL;
749}
750
949c47a0
DW
751static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
752{
ba2de7ba
DW
753 struct intel_dev *dv;
754
949c47a0
DW
755 if (index >= super->anchor->num_raid_devs)
756 return NULL;
ba2de7ba
DW
757 for (dv = super->devlist; dv; dv = dv->next)
758 if (dv->index == index)
759 return dv->dev;
760 return NULL;
949c47a0
DW
761}
762
98130f40
AK
763/*
764 * for second_map:
765 * == 0 get first map
766 * == 1 get second map
767 * == -1 than get map according to the current migr_state
768 */
769static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
770 int slot,
771 int second_map)
7eef0453
DW
772{
773 struct imsm_map *map;
774
5e7b0330 775 map = get_imsm_map(dev, second_map);
7eef0453 776
ff077194
DW
777 /* top byte identifies disk under rebuild */
778 return __le32_to_cpu(map->disk_ord_tbl[slot]);
779}
780
781#define ord_to_idx(ord) (((ord) << 8) >> 8)
98130f40 782static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
ff077194 783{
98130f40 784 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
ff077194
DW
785
786 return ord_to_idx(ord);
7eef0453
DW
787}
788
be73972f
DW
789static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
790{
791 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
792}
793
f21e18ca 794static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
620b1713
DW
795{
796 int slot;
797 __u32 ord;
798
799 for (slot = 0; slot < map->num_members; slot++) {
800 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
801 if (ord_to_idx(ord) == idx)
802 return slot;
803 }
804
805 return -1;
806}
807
cdddbdbc
DW
808static int get_imsm_raid_level(struct imsm_map *map)
809{
810 if (map->raid_level == 1) {
811 if (map->num_members == 2)
812 return 1;
813 else
814 return 10;
815 }
816
817 return map->raid_level;
818}
819
c2c087e6
DW
820static int cmp_extent(const void *av, const void *bv)
821{
822 const struct extent *a = av;
823 const struct extent *b = bv;
824 if (a->start < b->start)
825 return -1;
826 if (a->start > b->start)
827 return 1;
828 return 0;
829}
830
0dcecb2e 831static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 832{
c2c087e6 833 int memberships = 0;
620b1713 834 int i;
c2c087e6 835
949c47a0
DW
836 for (i = 0; i < super->anchor->num_raid_devs; i++) {
837 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 838 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 839
620b1713
DW
840 if (get_imsm_disk_slot(map, dl->index) >= 0)
841 memberships++;
c2c087e6 842 }
0dcecb2e
DW
843
844 return memberships;
845}
846
b81221b7
CA
847static __u32 imsm_min_reserved_sectors(struct intel_super *super);
848
0dcecb2e
DW
849static struct extent *get_extents(struct intel_super *super, struct dl *dl)
850{
851 /* find a list of used extents on the given physical device */
852 struct extent *rv, *e;
620b1713 853 int i;
0dcecb2e 854 int memberships = count_memberships(dl, super);
b276dd33
DW
855 __u32 reservation;
856
857 /* trim the reserved area for spares, so they can join any array
858 * regardless of whether the OROM has assigned sectors from the
859 * IMSM_RESERVED_SECTORS region
860 */
861 if (dl->index == -1)
b81221b7 862 reservation = imsm_min_reserved_sectors(super);
b276dd33
DW
863 else
864 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
0dcecb2e 865
c2c087e6
DW
866 rv = malloc(sizeof(struct extent) * (memberships + 1));
867 if (!rv)
868 return NULL;
869 e = rv;
870
949c47a0
DW
871 for (i = 0; i < super->anchor->num_raid_devs; i++) {
872 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 873 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 874
620b1713
DW
875 if (get_imsm_disk_slot(map, dl->index) >= 0) {
876 e->start = __le32_to_cpu(map->pba_of_lba0);
877 e->size = __le32_to_cpu(map->blocks_per_member);
878 e++;
c2c087e6
DW
879 }
880 }
881 qsort(rv, memberships, sizeof(*rv), cmp_extent);
882
14e8215b
DW
883 /* determine the start of the metadata
884 * when no raid devices are defined use the default
885 * ...otherwise allow the metadata to truncate the value
886 * as is the case with older versions of imsm
887 */
888 if (memberships) {
889 struct extent *last = &rv[memberships - 1];
890 __u32 remainder;
891
892 remainder = __le32_to_cpu(dl->disk.total_blocks) -
893 (last->start + last->size);
dda5855f
DW
894 /* round down to 1k block to satisfy precision of the kernel
895 * 'size' interface
896 */
897 remainder &= ~1UL;
898 /* make sure remainder is still sane */
f21e18ca 899 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
dda5855f 900 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
901 if (reservation > remainder)
902 reservation = remainder;
903 }
904 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
905 e->size = 0;
906 return rv;
907}
908
14e8215b
DW
909/* try to determine how much space is reserved for metadata from
910 * the last get_extents() entry, otherwise fallback to the
911 * default
912 */
913static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
914{
915 struct extent *e;
916 int i;
917 __u32 rv;
918
919 /* for spares just return a minimal reservation which will grow
920 * once the spare is picked up by an array
921 */
922 if (dl->index == -1)
923 return MPB_SECTOR_CNT;
924
925 e = get_extents(super, dl);
926 if (!e)
927 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
928
929 /* scroll to last entry */
930 for (i = 0; e[i].size; i++)
931 continue;
932
933 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
934
935 free(e);
936
937 return rv;
938}
939
25ed7e59
DW
940static int is_spare(struct imsm_disk *disk)
941{
942 return (disk->status & SPARE_DISK) == SPARE_DISK;
943}
944
945static int is_configured(struct imsm_disk *disk)
946{
947 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
948}
949
950static int is_failed(struct imsm_disk *disk)
951{
952 return (disk->status & FAILED_DISK) == FAILED_DISK;
953}
954
b81221b7
CA
955/* try to determine how much space is reserved for metadata from
956 * the last get_extents() entry on the smallest active disk,
957 * otherwise fallback to the default
958 */
959static __u32 imsm_min_reserved_sectors(struct intel_super *super)
960{
961 struct extent *e;
962 int i;
963 __u32 min_active, remainder;
964 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
965 struct dl *dl, *dl_min = NULL;
966
967 if (!super)
968 return rv;
969
970 min_active = 0;
971 for (dl = super->disks; dl; dl = dl->next) {
972 if (dl->index < 0)
973 continue;
974 if (dl->disk.total_blocks < min_active || min_active == 0) {
975 dl_min = dl;
976 min_active = dl->disk.total_blocks;
977 }
978 }
979 if (!dl_min)
980 return rv;
981
982 /* find last lba used by subarrays on the smallest active disk */
983 e = get_extents(super, dl_min);
984 if (!e)
985 return rv;
986 for (i = 0; e[i].size; i++)
987 continue;
988
989 remainder = min_active - e[i].start;
990 free(e);
991
992 /* to give priority to recovery we should not require full
993 IMSM_RESERVED_SECTORS from the spare */
994 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
995
996 /* if real reservation is smaller use that value */
997 return (remainder < rv) ? remainder : rv;
998}
999
80e7f8c3
AC
1000/* Return minimum size of a spare that can be used in this array*/
1001static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1002{
1003 struct intel_super *super = st->sb;
1004 struct dl *dl;
1005 struct extent *e;
1006 int i;
1007 unsigned long long rv = 0;
1008
1009 if (!super)
1010 return rv;
1011 /* find first active disk in array */
1012 dl = super->disks;
1013 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1014 dl = dl->next;
1015 if (!dl)
1016 return rv;
1017 /* find last lba used by subarrays */
1018 e = get_extents(super, dl);
1019 if (!e)
1020 return rv;
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023 if (i > 0)
1024 rv = e[i-1].start + e[i-1].size;
1025 free(e);
b81221b7 1026
80e7f8c3 1027 /* add the amount of space needed for metadata */
b81221b7
CA
1028 rv = rv + imsm_min_reserved_sectors(super);
1029
80e7f8c3
AC
1030 return rv * 512;
1031}
1032
1799c9e8 1033#ifndef MDASSEMBLE
c47b0ff6
AK
1034static __u64 blocks_per_migr_unit(struct intel_super *super,
1035 struct imsm_dev *dev);
1e5c6983 1036
464d40e8
LD
1037static int is_gen_migration(struct imsm_dev *dev);
1038
c47b0ff6
AK
1039static void print_imsm_dev(struct intel_super *super,
1040 struct imsm_dev *dev,
1041 char *uuid,
1042 int disk_idx)
cdddbdbc
DW
1043{
1044 __u64 sz;
0d80bb2f 1045 int slot, i;
a965f303 1046 struct imsm_map *map = get_imsm_map(dev, 0);
dd8bcb3b 1047 struct imsm_map *map2 = get_imsm_map(dev, 1);
b10b37b8 1048 __u32 ord;
cdddbdbc
DW
1049
1050 printf("\n");
1e7bc0ed 1051 printf("[%.16s]:\n", dev->volume);
44470971 1052 printf(" UUID : %s\n", uuid);
dd8bcb3b
AK
1053 printf(" RAID Level : %d", get_imsm_raid_level(map));
1054 if (map2)
1055 printf(" <-- %d", get_imsm_raid_level(map2));
1056 printf("\n");
1057 printf(" Members : %d", map->num_members);
1058 if (map2)
1059 printf(" <-- %d", map2->num_members);
1060 printf("\n");
0d80bb2f
DW
1061 printf(" Slots : [");
1062 for (i = 0; i < map->num_members; i++) {
dd8bcb3b 1063 ord = get_imsm_ord_tbl_ent(dev, i, 0);
0d80bb2f
DW
1064 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1065 }
dd8bcb3b
AK
1066 printf("]");
1067 if (map2) {
1068 printf(" <-- [");
1069 for (i = 0; i < map2->num_members; i++) {
1070 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1071 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1072 }
1073 printf("]");
1074 }
1075 printf("\n");
7095bccb
AK
1076 printf(" Failed disk : ");
1077 if (map->failed_disk_num == 0xff)
1078 printf("none");
1079 else
1080 printf("%i", map->failed_disk_num);
1081 printf("\n");
620b1713
DW
1082 slot = get_imsm_disk_slot(map, disk_idx);
1083 if (slot >= 0) {
98130f40 1084 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
b10b37b8
DW
1085 printf(" This Slot : %d%s\n", slot,
1086 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1087 } else
cdddbdbc
DW
1088 printf(" This Slot : ?\n");
1089 sz = __le32_to_cpu(dev->size_high);
1090 sz <<= 32;
1091 sz += __le32_to_cpu(dev->size_low);
1092 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1093 human_size(sz * 512));
1094 sz = __le32_to_cpu(map->blocks_per_member);
1095 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1096 human_size(sz * 512));
1097 printf(" Sector Offset : %u\n",
1098 __le32_to_cpu(map->pba_of_lba0));
1099 printf(" Num Stripes : %u\n",
1100 __le32_to_cpu(map->num_data_stripes));
dd8bcb3b 1101 printf(" Chunk Size : %u KiB",
cdddbdbc 1102 __le16_to_cpu(map->blocks_per_strip) / 2);
dd8bcb3b
AK
1103 if (map2)
1104 printf(" <-- %u KiB",
1105 __le16_to_cpu(map2->blocks_per_strip) / 2);
1106 printf("\n");
cdddbdbc 1107 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 1108 printf(" Migrate State : ");
1484e727
DW
1109 if (dev->vol.migr_state) {
1110 if (migr_type(dev) == MIGR_INIT)
8655a7b1 1111 printf("initialize\n");
1484e727 1112 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 1113 printf("rebuild\n");
1484e727 1114 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 1115 printf("check\n");
1484e727 1116 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 1117 printf("general migration\n");
1484e727 1118 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 1119 printf("state change\n");
1484e727 1120 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 1121 printf("repair\n");
1484e727 1122 else
8655a7b1
DW
1123 printf("<unknown:%d>\n", migr_type(dev));
1124 } else
1125 printf("idle\n");
3393c6af
DW
1126 printf(" Map State : %s", map_state_str[map->map_state]);
1127 if (dev->vol.migr_state) {
1128 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 1129
b10b37b8 1130 printf(" <-- %s", map_state_str[map->map_state]);
464d40e8
LD
1131 printf("\n Checkpoint : %u ",
1132 __le32_to_cpu(dev->vol.curr_migr_unit));
1133 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1134 printf("(N/A)");
1135 else
1136 printf("(%llu)", (unsigned long long)
1137 blocks_per_migr_unit(super, dev));
3393c6af
DW
1138 }
1139 printf("\n");
cdddbdbc 1140 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
1141}
1142
0ec1f4e8 1143static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
cdddbdbc 1144{
1f24f035 1145 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
1146 __u64 sz;
1147
0ec1f4e8 1148 if (index < -1 || !disk)
e9d82038
DW
1149 return;
1150
cdddbdbc 1151 printf("\n");
1f24f035 1152 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
0ec1f4e8
DW
1153 if (index >= 0)
1154 printf(" Disk%02d Serial : %s\n", index, str);
1155 else
1156 printf(" Disk Serial : %s\n", str);
25ed7e59
DW
1157 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1158 is_configured(disk) ? " active" : "",
1159 is_failed(disk) ? " failed" : "");
cdddbdbc 1160 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 1161 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
1162 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1163 human_size(sz * 512));
1164}
1165
520e69e2
AK
1166void examine_migr_rec_imsm(struct intel_super *super)
1167{
1168 struct migr_record *migr_rec = super->migr_rec;
1169 struct imsm_super *mpb = super->anchor;
1170 int i;
1171
1172 for (i = 0; i < mpb->num_raid_devs; i++) {
1173 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1174 if (is_gen_migration(dev) == 0)
1175 continue;
1176
1177 printf("\nMigration Record Information:");
1178 if (super->disks->index > 1) {
1179 printf(" Empty\n ");
1180 printf("Examine one of first two disks in array\n");
1181 break;
1182 }
1183 printf("\n Status : ");
1184 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1185 printf("Normal\n");
1186 else
1187 printf("Contains Data\n");
1188 printf(" Current Unit : %u\n",
1189 __le32_to_cpu(migr_rec->curr_migr_unit));
1190 printf(" Family : %u\n",
1191 __le32_to_cpu(migr_rec->family_num));
1192 printf(" Ascending : %u\n",
1193 __le32_to_cpu(migr_rec->ascending_migr));
1194 printf(" Blocks Per Unit : %u\n",
1195 __le32_to_cpu(migr_rec->blocks_per_unit));
1196 printf(" Dest. Depth Per Unit : %u\n",
1197 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1198 printf(" Checkpoint Area pba : %u\n",
1199 __le32_to_cpu(migr_rec->ckpt_area_pba));
1200 printf(" First member lba : %u\n",
1201 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1202 printf(" Total Number of Units : %u\n",
1203 __le32_to_cpu(migr_rec->num_migr_units));
1204 printf(" Size of volume : %u\n",
1205 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1206 printf(" Expansion space for LBA64 : %u\n",
1207 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1208 printf(" Record was read from : %u\n",
1209 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1210
1211 break;
1212 }
1213}
9e2d750d 1214#endif /* MDASSEMBLE */
19482bcc
AK
1215/*******************************************************************************
1216 * function: imsm_check_attributes
1217 * Description: Function checks if features represented by attributes flags
1218 * are supported by mdadm.
1219 * Parameters:
1220 * attributes - Attributes read from metadata
1221 * Returns:
1222 * 0 - passed attributes contains unsupported features flags
1223 * 1 - all features are supported
1224 ******************************************************************************/
1225static int imsm_check_attributes(__u32 attributes)
1226{
1227 int ret_val = 1;
418f9b36
N
1228 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1229
1230 not_supported &= ~MPB_ATTRIB_IGNORED;
19482bcc
AK
1231
1232 not_supported &= attributes;
1233 if (not_supported) {
418f9b36
N
1234 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1235 (unsigned)__le32_to_cpu(not_supported));
19482bcc
AK
1236 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1237 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1238 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1239 }
1240 if (not_supported & MPB_ATTRIB_2TB) {
1241 dprintf("\t\tMPB_ATTRIB_2TB\n");
1242 not_supported ^= MPB_ATTRIB_2TB;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAID0) {
1245 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1246 not_supported ^= MPB_ATTRIB_RAID0;
1247 }
1248 if (not_supported & MPB_ATTRIB_RAID1) {
1249 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1250 not_supported ^= MPB_ATTRIB_RAID1;
1251 }
1252 if (not_supported & MPB_ATTRIB_RAID10) {
1253 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1254 not_supported ^= MPB_ATTRIB_RAID10;
1255 }
1256 if (not_supported & MPB_ATTRIB_RAID1E) {
1257 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1258 not_supported ^= MPB_ATTRIB_RAID1E;
1259 }
1260 if (not_supported & MPB_ATTRIB_RAID5) {
1261 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1262 not_supported ^= MPB_ATTRIB_RAID5;
1263 }
1264 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1265 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1266 not_supported ^= MPB_ATTRIB_RAIDCNG;
1267 }
1268 if (not_supported & MPB_ATTRIB_BBM) {
1269 dprintf("\t\tMPB_ATTRIB_BBM\n");
1270 not_supported ^= MPB_ATTRIB_BBM;
1271 }
1272 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1273 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1274 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1275 }
1276 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1277 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1278 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1279 }
1280 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1281 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1282 not_supported ^= MPB_ATTRIB_2TB_DISK;
1283 }
1284 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1285 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1286 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1287 }
1288 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1289 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1290 not_supported ^= MPB_ATTRIB_NEVER_USE;
1291 }
1292
1293 if (not_supported)
1294 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1295
1296 ret_val = 0;
1297 }
1298
1299 return ret_val;
1300}
1301
9e2d750d 1302#ifndef MDASSEMBLE
a5d85af7 1303static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
44470971 1304
cdddbdbc
DW
1305static void examine_super_imsm(struct supertype *st, char *homehost)
1306{
1307 struct intel_super *super = st->sb;
949c47a0 1308 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
1309 char str[MAX_SIGNATURE_LENGTH];
1310 int i;
27fd6274
DW
1311 struct mdinfo info;
1312 char nbuf[64];
cdddbdbc 1313 __u32 sum;
14e8215b 1314 __u32 reserved = imsm_reserved_sectors(super, super->disks);
94827db3 1315 struct dl *dl;
27fd6274 1316
cdddbdbc
DW
1317 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1318 printf(" Magic : %s\n", str);
1319 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1320 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 1321 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
1322 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1323 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
19482bcc
AK
1324 printf(" Attributes : ");
1325 if (imsm_check_attributes(mpb->attributes))
1326 printf("All supported\n");
1327 else
1328 printf("not supported\n");
a5d85af7 1329 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1330 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 1331 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1332 sum = __le32_to_cpu(mpb->check_sum);
1333 printf(" Checksum : %08x %s\n", sum,
949c47a0 1334 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 1335 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
1336 printf(" Disks : %d\n", mpb->num_disks);
1337 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
0ec1f4e8 1338 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
604b746f
JD
1339 if (super->bbm_log) {
1340 struct bbm_log *log = super->bbm_log;
1341
1342 printf("\n");
1343 printf("Bad Block Management Log:\n");
1344 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1345 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1346 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1347 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
1348 printf(" First Spare : %llx\n",
1349 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 1350 }
44470971
DW
1351 for (i = 0; i < mpb->num_raid_devs; i++) {
1352 struct mdinfo info;
1353 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1354
1355 super->current_vol = i;
a5d85af7 1356 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1357 fname_from_uuid(st, &info, nbuf, ':');
c47b0ff6 1358 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
44470971 1359 }
cdddbdbc
DW
1360 for (i = 0; i < mpb->num_disks; i++) {
1361 if (i == super->disks->index)
1362 continue;
0ec1f4e8 1363 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
cdddbdbc 1364 }
94827db3 1365
0ec1f4e8
DW
1366 for (dl = super->disks; dl; dl = dl->next)
1367 if (dl->index == -1)
1368 print_imsm_disk(&dl->disk, -1, reserved);
520e69e2
AK
1369
1370 examine_migr_rec_imsm(super);
cdddbdbc
DW
1371}
1372
061f2c6a 1373static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 1374{
27fd6274 1375 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
1376 struct mdinfo info;
1377 char nbuf[64];
1e7bc0ed 1378 struct intel_super *super = st->sb;
1e7bc0ed 1379
0d5a423f
DW
1380 if (!super->anchor->num_raid_devs) {
1381 printf("ARRAY metadata=imsm\n");
1e7bc0ed 1382 return;
0d5a423f 1383 }
ff54de6e 1384
a5d85af7 1385 getinfo_super_imsm(st, &info, NULL);
4737ae25
N
1386 fname_from_uuid(st, &info, nbuf, ':');
1387 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1388}
1389
1390static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1391{
1392 /* We just write a generic IMSM ARRAY entry */
1393 struct mdinfo info;
1394 char nbuf[64];
1395 char nbuf1[64];
1396 struct intel_super *super = st->sb;
1397 int i;
1398
1399 if (!super->anchor->num_raid_devs)
1400 return;
1401
a5d85af7 1402 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1403 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
1404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1405 struct imsm_dev *dev = get_imsm_dev(super, i);
1406
1407 super->current_vol = i;
a5d85af7 1408 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1409 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 1410 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 1411 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 1412 }
cdddbdbc
DW
1413}
1414
9d84c8ea
DW
1415static void export_examine_super_imsm(struct supertype *st)
1416{
1417 struct intel_super *super = st->sb;
1418 struct imsm_super *mpb = super->anchor;
1419 struct mdinfo info;
1420 char nbuf[64];
1421
a5d85af7 1422 getinfo_super_imsm(st, &info, NULL);
9d84c8ea
DW
1423 fname_from_uuid(st, &info, nbuf, ':');
1424 printf("MD_METADATA=imsm\n");
1425 printf("MD_LEVEL=container\n");
1426 printf("MD_UUID=%s\n", nbuf+5);
1427 printf("MD_DEVICES=%u\n", mpb->num_disks);
1428}
1429
cdddbdbc
DW
1430static void detail_super_imsm(struct supertype *st, char *homehost)
1431{
3ebe00a1
DW
1432 struct mdinfo info;
1433 char nbuf[64];
1434
a5d85af7 1435 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1436 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 1437 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
1438}
1439
1440static void brief_detail_super_imsm(struct supertype *st)
1441{
ff54de6e
N
1442 struct mdinfo info;
1443 char nbuf[64];
a5d85af7 1444 getinfo_super_imsm(st, &info, NULL);
ae2bfd4e 1445 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 1446 printf(" UUID=%s", nbuf + 5);
cdddbdbc 1447}
d665cc31
DW
1448
1449static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1450static void fd2devname(int fd, char *name);
1451
120dc887 1452static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
d665cc31 1453{
120dc887
LM
1454 /* dump an unsorted list of devices attached to AHCI Intel storage
1455 * controller, as well as non-connected ports
d665cc31
DW
1456 */
1457 int hba_len = strlen(hba_path) + 1;
1458 struct dirent *ent;
1459 DIR *dir;
1460 char *path = NULL;
1461 int err = 0;
1462 unsigned long port_mask = (1 << port_count) - 1;
1463
f21e18ca 1464 if (port_count > (int)sizeof(port_mask) * 8) {
d665cc31
DW
1465 if (verbose)
1466 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1467 return 2;
1468 }
1469
1470 /* scroll through /sys/dev/block looking for devices attached to
1471 * this hba
1472 */
1473 dir = opendir("/sys/dev/block");
1474 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1475 int fd;
1476 char model[64];
1477 char vendor[64];
1478 char buf[1024];
1479 int major, minor;
1480 char *device;
1481 char *c;
1482 int port;
1483 int type;
1484
1485 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1486 continue;
1487 path = devt_to_devpath(makedev(major, minor));
1488 if (!path)
1489 continue;
1490 if (!path_attached_to_hba(path, hba_path)) {
1491 free(path);
1492 path = NULL;
1493 continue;
1494 }
1495
1496 /* retrieve the scsi device type */
1497 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1498 if (verbose)
1499 fprintf(stderr, Name ": failed to allocate 'device'\n");
1500 err = 2;
1501 break;
1502 }
1503 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1504 if (load_sys(device, buf) != 0) {
1505 if (verbose)
1506 fprintf(stderr, Name ": failed to read device type for %s\n",
1507 path);
1508 err = 2;
1509 free(device);
1510 break;
1511 }
1512 type = strtoul(buf, NULL, 10);
1513
1514 /* if it's not a disk print the vendor and model */
1515 if (!(type == 0 || type == 7 || type == 14)) {
1516 vendor[0] = '\0';
1517 model[0] = '\0';
1518 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1519 if (load_sys(device, buf) == 0) {
1520 strncpy(vendor, buf, sizeof(vendor));
1521 vendor[sizeof(vendor) - 1] = '\0';
1522 c = (char *) &vendor[sizeof(vendor) - 1];
1523 while (isspace(*c) || *c == '\0')
1524 *c-- = '\0';
1525
1526 }
1527 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1528 if (load_sys(device, buf) == 0) {
1529 strncpy(model, buf, sizeof(model));
1530 model[sizeof(model) - 1] = '\0';
1531 c = (char *) &model[sizeof(model) - 1];
1532 while (isspace(*c) || *c == '\0')
1533 *c-- = '\0';
1534 }
1535
1536 if (vendor[0] && model[0])
1537 sprintf(buf, "%.64s %.64s", vendor, model);
1538 else
1539 switch (type) { /* numbers from hald/linux/device.c */
1540 case 1: sprintf(buf, "tape"); break;
1541 case 2: sprintf(buf, "printer"); break;
1542 case 3: sprintf(buf, "processor"); break;
1543 case 4:
1544 case 5: sprintf(buf, "cdrom"); break;
1545 case 6: sprintf(buf, "scanner"); break;
1546 case 8: sprintf(buf, "media_changer"); break;
1547 case 9: sprintf(buf, "comm"); break;
1548 case 12: sprintf(buf, "raid"); break;
1549 default: sprintf(buf, "unknown");
1550 }
1551 } else
1552 buf[0] = '\0';
1553 free(device);
1554
1555 /* chop device path to 'host%d' and calculate the port number */
1556 c = strchr(&path[hba_len], '/');
4e5e717d
AW
1557 if (!c) {
1558 if (verbose)
1559 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1560 err = 2;
1561 break;
1562 }
d665cc31
DW
1563 *c = '\0';
1564 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1565 port -= host_base;
1566 else {
1567 if (verbose) {
1568 *c = '/'; /* repair the full string */
1569 fprintf(stderr, Name ": failed to determine port number for %s\n",
1570 path);
1571 }
1572 err = 2;
1573 break;
1574 }
1575
1576 /* mark this port as used */
1577 port_mask &= ~(1 << port);
1578
1579 /* print out the device information */
1580 if (buf[0]) {
1581 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1582 continue;
1583 }
1584
1585 fd = dev_open(ent->d_name, O_RDONLY);
1586 if (fd < 0)
1587 printf(" Port%d : - disk info unavailable -\n", port);
1588 else {
1589 fd2devname(fd, buf);
1590 printf(" Port%d : %s", port, buf);
1591 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
664d5325 1592 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
d665cc31 1593 else
664d5325 1594 printf(" ()\n");
4dab422a 1595 close(fd);
d665cc31 1596 }
d665cc31
DW
1597 free(path);
1598 path = NULL;
1599 }
1600 if (path)
1601 free(path);
1602 if (dir)
1603 closedir(dir);
1604 if (err == 0) {
1605 int i;
1606
1607 for (i = 0; i < port_count; i++)
1608 if (port_mask & (1 << i))
1609 printf(" Port%d : - no device attached -\n", i);
1610 }
1611
1612 return err;
1613}
1614
120dc887
LM
1615static void print_found_intel_controllers(struct sys_dev *elem)
1616{
1617 for (; elem; elem = elem->next) {
1618 fprintf(stderr, Name ": found Intel(R) ");
1619 if (elem->type == SYS_DEV_SATA)
1620 fprintf(stderr, "SATA ");
155cbb4c
LM
1621 else if (elem->type == SYS_DEV_SAS)
1622 fprintf(stderr, "SAS ");
120dc887
LM
1623 fprintf(stderr, "RAID controller");
1624 if (elem->pci_id)
1625 fprintf(stderr, " at %s", elem->pci_id);
1626 fprintf(stderr, ".\n");
1627 }
1628 fflush(stderr);
1629}
1630
120dc887
LM
1631static int ahci_get_port_count(const char *hba_path, int *port_count)
1632{
1633 struct dirent *ent;
1634 DIR *dir;
1635 int host_base = -1;
1636
1637 *port_count = 0;
1638 if ((dir = opendir(hba_path)) == NULL)
1639 return -1;
1640
1641 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1642 int host;
1643
1644 if (sscanf(ent->d_name, "host%d", &host) != 1)
1645 continue;
1646 if (*port_count == 0)
1647 host_base = host;
1648 else if (host < host_base)
1649 host_base = host;
1650
1651 if (host + 1 > *port_count + host_base)
1652 *port_count = host + 1 - host_base;
1653 }
1654 closedir(dir);
1655 return host_base;
1656}
1657
a891a3c2
LM
1658static void print_imsm_capability(const struct imsm_orom *orom)
1659{
1660 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1661 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1662 orom->hotfix_ver, orom->build);
1663 printf(" RAID Levels :%s%s%s%s%s\n",
1664 imsm_orom_has_raid0(orom) ? " raid0" : "",
1665 imsm_orom_has_raid1(orom) ? " raid1" : "",
1666 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1667 imsm_orom_has_raid10(orom) ? " raid10" : "",
1668 imsm_orom_has_raid5(orom) ? " raid5" : "");
1669 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1670 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1671 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1672 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1673 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1674 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1675 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1676 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1677 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1678 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1679 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1680 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1681 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1682 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1683 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1684 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1685 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1686 printf(" Max Disks : %d\n", orom->tds);
1687 printf(" Max Volumes : %d\n", orom->vpa);
1688 return;
1689}
1690
5615172f 1691static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1692{
1693 /* There are two components to imsm platform support, the ahci SATA
1694 * controller and the option-rom. To find the SATA controller we
1695 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1696 * controller with the Intel vendor id is present. This approach
1697 * allows mdadm to leverage the kernel's ahci detection logic, with the
1698 * caveat that if ahci.ko is not loaded mdadm will not be able to
1699 * detect platform raid capabilities. The option-rom resides in a
1700 * platform "Adapter ROM". We scan for its signature to retrieve the
1701 * platform capabilities. If raid support is disabled in the BIOS the
1702 * option-rom capability structure will not be available.
1703 */
1704 const struct imsm_orom *orom;
1705 struct sys_dev *list, *hba;
d665cc31
DW
1706 int host_base = 0;
1707 int port_count = 0;
120dc887 1708 int result=0;
d665cc31 1709
5615172f 1710 if (enumerate_only) {
a891a3c2 1711 if (check_env("IMSM_NO_PLATFORM"))
5615172f 1712 return 0;
a891a3c2
LM
1713 list = find_intel_devices();
1714 if (!list)
1715 return 2;
1716 for (hba = list; hba; hba = hba->next) {
1717 orom = find_imsm_capability(hba->type);
1718 if (!orom) {
1719 result = 2;
1720 break;
1721 }
1722 }
1723 free_sys_dev(&list);
1724 return result;
5615172f
DW
1725 }
1726
155cbb4c
LM
1727 list = find_intel_devices();
1728 if (!list) {
d665cc31 1729 if (verbose)
155cbb4c
LM
1730 fprintf(stderr, Name ": no active Intel(R) RAID "
1731 "controller found.\n");
d665cc31
DW
1732 free_sys_dev(&list);
1733 return 2;
1734 } else if (verbose)
155cbb4c 1735 print_found_intel_controllers(list);
d665cc31 1736
a891a3c2
LM
1737 for (hba = list; hba; hba = hba->next) {
1738 orom = find_imsm_capability(hba->type);
1739 if (!orom)
1740 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1741 hba->path, get_sys_dev_type(hba->type));
1742 else
1743 print_imsm_capability(orom);
d665cc31
DW
1744 }
1745
120dc887
LM
1746 for (hba = list; hba; hba = hba->next) {
1747 printf(" I/O Controller : %s (%s)\n",
1748 hba->path, get_sys_dev_type(hba->type));
d665cc31 1749
120dc887
LM
1750 if (hba->type == SYS_DEV_SATA) {
1751 host_base = ahci_get_port_count(hba->path, &port_count);
1752 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1753 if (verbose)
1754 fprintf(stderr, Name ": failed to enumerate "
1755 "ports on SATA controller at %s.", hba->pci_id);
1756 result |= 2;
1757 }
1758 }
d665cc31 1759 }
155cbb4c 1760
120dc887
LM
1761 free_sys_dev(&list);
1762 return result;
d665cc31 1763}
cdddbdbc
DW
1764#endif
1765
1766static int match_home_imsm(struct supertype *st, char *homehost)
1767{
5115ca67
DW
1768 /* the imsm metadata format does not specify any host
1769 * identification information. We return -1 since we can never
1770 * confirm nor deny whether a given array is "meant" for this
148acb7b 1771 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1772 * exclude member disks that do not belong, and we rely on
1773 * mdadm.conf to specify the arrays that should be assembled.
1774 * Auto-assembly may still pick up "foreign" arrays.
1775 */
cdddbdbc 1776
9362c1c8 1777 return -1;
cdddbdbc
DW
1778}
1779
1780static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1781{
51006d85
N
1782 /* The uuid returned here is used for:
1783 * uuid to put into bitmap file (Create, Grow)
1784 * uuid for backup header when saving critical section (Grow)
1785 * comparing uuids when re-adding a device into an array
1786 * In these cases the uuid required is that of the data-array,
1787 * not the device-set.
1788 * uuid to recognise same set when adding a missing device back
1789 * to an array. This is a uuid for the device-set.
1790 *
1791 * For each of these we can make do with a truncated
1792 * or hashed uuid rather than the original, as long as
1793 * everyone agrees.
1794 * In each case the uuid required is that of the data-array,
1795 * not the device-set.
43dad3d6 1796 */
51006d85
N
1797 /* imsm does not track uuid's so we synthesis one using sha1 on
1798 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1799 * - the orig_family_num of the container
51006d85
N
1800 * - the index number of the volume
1801 * - the 'serial' number of the volume.
1802 * Hopefully these are all constant.
1803 */
1804 struct intel_super *super = st->sb;
43dad3d6 1805
51006d85
N
1806 char buf[20];
1807 struct sha1_ctx ctx;
1808 struct imsm_dev *dev = NULL;
148acb7b 1809 __u32 family_num;
51006d85 1810
148acb7b
DW
1811 /* some mdadm versions failed to set ->orig_family_num, in which
1812 * case fall back to ->family_num. orig_family_num will be
1813 * fixed up with the first metadata update.
1814 */
1815 family_num = super->anchor->orig_family_num;
1816 if (family_num == 0)
1817 family_num = super->anchor->family_num;
51006d85 1818 sha1_init_ctx(&ctx);
92bd8f8d 1819 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1820 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1821 if (super->current_vol >= 0)
1822 dev = get_imsm_dev(super, super->current_vol);
1823 if (dev) {
1824 __u32 vol = super->current_vol;
1825 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1826 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1827 }
1828 sha1_finish_ctx(&ctx, buf);
1829 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1830}
1831
0d481d37 1832#if 0
4f5bc454
DW
1833static void
1834get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1835{
cdddbdbc
DW
1836 __u8 *v = get_imsm_version(mpb);
1837 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1838 char major[] = { 0, 0, 0 };
1839 char minor[] = { 0 ,0, 0 };
1840 char patch[] = { 0, 0, 0 };
1841 char *ver_parse[] = { major, minor, patch };
1842 int i, j;
1843
1844 i = j = 0;
1845 while (*v != '\0' && v < end) {
1846 if (*v != '.' && j < 2)
1847 ver_parse[i][j++] = *v;
1848 else {
1849 i++;
1850 j = 0;
1851 }
1852 v++;
1853 }
1854
4f5bc454
DW
1855 *m = strtol(minor, NULL, 0);
1856 *p = strtol(patch, NULL, 0);
1857}
0d481d37 1858#endif
4f5bc454 1859
1e5c6983
DW
1860static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1861{
1862 /* migr_strip_size when repairing or initializing parity */
1863 struct imsm_map *map = get_imsm_map(dev, 0);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 5:
1868 case 10:
1869 return chunk;
1870 default:
1871 return 128*1024 >> 9;
1872 }
1873}
1874
1875static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1876{
1877 /* migr_strip_size when rebuilding a degraded disk, no idea why
1878 * this is different than migr_strip_size_resync(), but it's good
1879 * to be compatible
1880 */
1881 struct imsm_map *map = get_imsm_map(dev, 1);
1882 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1883
1884 switch (get_imsm_raid_level(map)) {
1885 case 1:
1886 case 10:
1887 if (map->num_members % map->num_domains == 0)
1888 return 128*1024 >> 9;
1889 else
1890 return chunk;
1891 case 5:
1892 return max((__u32) 64*1024 >> 9, chunk);
1893 default:
1894 return 128*1024 >> 9;
1895 }
1896}
1897
1898static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1899{
1900 struct imsm_map *lo = get_imsm_map(dev, 0);
1901 struct imsm_map *hi = get_imsm_map(dev, 1);
1902 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1903 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1904
1905 return max((__u32) 1, hi_chunk / lo_chunk);
1906}
1907
1908static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1909{
1910 struct imsm_map *lo = get_imsm_map(dev, 0);
1911 int level = get_imsm_raid_level(lo);
1912
1913 if (level == 1 || level == 10) {
1914 struct imsm_map *hi = get_imsm_map(dev, 1);
1915
1916 return hi->num_domains;
1917 } else
1918 return num_stripes_per_unit_resync(dev);
1919}
1920
98130f40 1921static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1e5c6983
DW
1922{
1923 /* named 'imsm_' because raid0, raid1 and raid10
1924 * counter-intuitively have the same number of data disks
1925 */
98130f40 1926 struct imsm_map *map = get_imsm_map(dev, second_map);
1e5c6983
DW
1927
1928 switch (get_imsm_raid_level(map)) {
1929 case 0:
1930 case 1:
1931 case 10:
1932 return map->num_members;
1933 case 5:
1934 return map->num_members - 1;
1935 default:
1936 dprintf("%s: unsupported raid level\n", __func__);
1937 return 0;
1938 }
1939}
1940
1941static __u32 parity_segment_depth(struct imsm_dev *dev)
1942{
1943 struct imsm_map *map = get_imsm_map(dev, 0);
1944 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1945
1946 switch(get_imsm_raid_level(map)) {
1947 case 1:
1948 case 10:
1949 return chunk * map->num_domains;
1950 case 5:
1951 return chunk * map->num_members;
1952 default:
1953 return chunk;
1954 }
1955}
1956
1957static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1958{
1959 struct imsm_map *map = get_imsm_map(dev, 1);
1960 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1961 __u32 strip = block / chunk;
1962
1963 switch (get_imsm_raid_level(map)) {
1964 case 1:
1965 case 10: {
1966 __u32 vol_strip = (strip * map->num_domains) + 1;
1967 __u32 vol_stripe = vol_strip / map->num_members;
1968
1969 return vol_stripe * chunk + block % chunk;
1970 } case 5: {
1971 __u32 stripe = strip / (map->num_members - 1);
1972
1973 return stripe * chunk + block % chunk;
1974 }
1975 default:
1976 return 0;
1977 }
1978}
1979
c47b0ff6
AK
1980static __u64 blocks_per_migr_unit(struct intel_super *super,
1981 struct imsm_dev *dev)
1e5c6983
DW
1982{
1983 /* calculate the conversion factor between per member 'blocks'
1984 * (md/{resync,rebuild}_start) and imsm migration units, return
1985 * 0 for the 'not migrating' and 'unsupported migration' cases
1986 */
1987 if (!dev->vol.migr_state)
1988 return 0;
1989
1990 switch (migr_type(dev)) {
c47b0ff6
AK
1991 case MIGR_GEN_MIGR: {
1992 struct migr_record *migr_rec = super->migr_rec;
1993 return __le32_to_cpu(migr_rec->blocks_per_unit);
1994 }
1e5c6983
DW
1995 case MIGR_VERIFY:
1996 case MIGR_REPAIR:
1997 case MIGR_INIT: {
1998 struct imsm_map *map = get_imsm_map(dev, 0);
1999 __u32 stripes_per_unit;
2000 __u32 blocks_per_unit;
2001 __u32 parity_depth;
2002 __u32 migr_chunk;
2003 __u32 block_map;
2004 __u32 block_rel;
2005 __u32 segment;
2006 __u32 stripe;
2007 __u8 disks;
2008
2009 /* yes, this is really the translation of migr_units to
2010 * per-member blocks in the 'resync' case
2011 */
2012 stripes_per_unit = num_stripes_per_unit_resync(dev);
2013 migr_chunk = migr_strip_blocks_resync(dev);
98130f40 2014 disks = imsm_num_data_members(dev, 0);
1e5c6983 2015 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
7b1ab482 2016 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1e5c6983
DW
2017 segment = blocks_per_unit / stripe;
2018 block_rel = blocks_per_unit - segment * stripe;
2019 parity_depth = parity_segment_depth(dev);
2020 block_map = map_migr_block(dev, block_rel);
2021 return block_map + parity_depth * segment;
2022 }
2023 case MIGR_REBUILD: {
2024 __u32 stripes_per_unit;
2025 __u32 migr_chunk;
2026
2027 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2028 migr_chunk = migr_strip_blocks_rebuild(dev);
2029 return migr_chunk * stripes_per_unit;
2030 }
1e5c6983
DW
2031 case MIGR_STATE_CHANGE:
2032 default:
2033 return 0;
2034 }
2035}
2036
c2c087e6
DW
2037static int imsm_level_to_layout(int level)
2038{
2039 switch (level) {
2040 case 0:
2041 case 1:
2042 return 0;
2043 case 5:
2044 case 6:
a380c027 2045 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 2046 case 10:
c92a2527 2047 return 0x102;
c2c087e6 2048 }
a18a888e 2049 return UnSet;
c2c087e6
DW
2050}
2051
8e59f3d8
AK
2052/*******************************************************************************
2053 * Function: read_imsm_migr_rec
2054 * Description: Function reads imsm migration record from last sector of disk
2055 * Parameters:
2056 * fd : disk descriptor
2057 * super : metadata info
2058 * Returns:
2059 * 0 : success,
2060 * -1 : fail
2061 ******************************************************************************/
2062static int read_imsm_migr_rec(int fd, struct intel_super *super)
2063{
2064 int ret_val = -1;
2065 unsigned long long dsize;
2066
2067 get_dev_size(fd, NULL, &dsize);
2068 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2069 fprintf(stderr,
2070 Name ": Cannot seek to anchor block: %s\n",
2071 strerror(errno));
2072 goto out;
2073 }
2074 if (read(fd, super->migr_rec_buf, 512) != 512) {
2075 fprintf(stderr,
2076 Name ": Cannot read migr record block: %s\n",
2077 strerror(errno));
2078 goto out;
2079 }
2080 ret_val = 0;
2081
2082out:
2083 return ret_val;
2084}
2085
2086/*******************************************************************************
2087 * Function: load_imsm_migr_rec
2088 * Description: Function reads imsm migration record (it is stored at the last
2089 * sector of disk)
2090 * Parameters:
2091 * super : imsm internal array info
2092 * info : general array info
2093 * Returns:
2094 * 0 : success
2095 * -1 : fail
2096 ******************************************************************************/
2097static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2098{
2099 struct mdinfo *sd;
2100 struct dl *dl = NULL;
2101 char nm[30];
2102 int retval = -1;
2103 int fd = -1;
2104
2105 if (info) {
2106 for (sd = info->devs ; sd ; sd = sd->next) {
2107 /* read only from one of the first two slots */
2108 if ((sd->disk.raid_disk > 1) ||
2109 (sd->disk.raid_disk < 0))
2110 continue;
2111 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2112 fd = dev_open(nm, O_RDONLY);
2113 if (fd >= 0)
2114 break;
2115 }
2116 }
2117 if (fd < 0) {
2118 for (dl = super->disks; dl; dl = dl->next) {
2119 /* read only from one of the first two slots */
2120 if (dl->index > 1)
2121 continue;
2122 sprintf(nm, "%d:%d", dl->major, dl->minor);
2123 fd = dev_open(nm, O_RDONLY);
2124 if (fd >= 0)
2125 break;
2126 }
2127 }
2128 if (fd < 0)
2129 goto out;
2130 retval = read_imsm_migr_rec(fd, super);
2131
2132out:
2133 if (fd >= 0)
2134 close(fd);
2135 return retval;
2136}
2137
9e2d750d 2138#ifndef MDASSEMBLE
c17608ea
AK
2139/*******************************************************************************
2140 * function: imsm_create_metadata_checkpoint_update
2141 * Description: It creates update for checkpoint change.
2142 * Parameters:
2143 * super : imsm internal array info
2144 * u : pointer to prepared update
2145 * Returns:
2146 * Uptate length.
2147 * If length is equal to 0, input pointer u contains no update
2148 ******************************************************************************/
2149static int imsm_create_metadata_checkpoint_update(
2150 struct intel_super *super,
2151 struct imsm_update_general_migration_checkpoint **u)
2152{
2153
2154 int update_memory_size = 0;
2155
2156 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2157
2158 if (u == NULL)
2159 return 0;
2160 *u = NULL;
2161
2162 /* size of all update data without anchor */
2163 update_memory_size =
2164 sizeof(struct imsm_update_general_migration_checkpoint);
2165
2166 *u = calloc(1, update_memory_size);
2167 if (*u == NULL) {
2168 dprintf("error: cannot get memory for "
2169 "imsm_create_metadata_checkpoint_update update\n");
2170 return 0;
2171 }
2172 (*u)->type = update_general_migration_checkpoint;
2173 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2174 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2175 (*u)->curr_migr_unit);
2176
2177 return update_memory_size;
2178}
2179
2180
2181static void imsm_update_metadata_locally(struct supertype *st,
2182 void *buf, int len);
2183
687629c2
AK
2184/*******************************************************************************
2185 * Function: write_imsm_migr_rec
2186 * Description: Function writes imsm migration record
2187 * (at the last sector of disk)
2188 * Parameters:
2189 * super : imsm internal array info
2190 * Returns:
2191 * 0 : success
2192 * -1 : if fail
2193 ******************************************************************************/
2194static int write_imsm_migr_rec(struct supertype *st)
2195{
2196 struct intel_super *super = st->sb;
2197 unsigned long long dsize;
2198 char nm[30];
2199 int fd = -1;
2200 int retval = -1;
2201 struct dl *sd;
c17608ea
AK
2202 int len;
2203 struct imsm_update_general_migration_checkpoint *u;
687629c2
AK
2204
2205 for (sd = super->disks ; sd ; sd = sd->next) {
2206 /* write to 2 first slots only */
2207 if ((sd->index < 0) || (sd->index > 1))
2208 continue;
2209 sprintf(nm, "%d:%d", sd->major, sd->minor);
2210 fd = dev_open(nm, O_RDWR);
2211 if (fd < 0)
2212 continue;
2213 get_dev_size(fd, NULL, &dsize);
2214 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2215 fprintf(stderr,
2216 Name ": Cannot seek to anchor block: %s\n",
2217 strerror(errno));
2218 goto out;
2219 }
2220 if (write(fd, super->migr_rec_buf, 512) != 512) {
2221 fprintf(stderr,
2222 Name ": Cannot write migr record block: %s\n",
2223 strerror(errno));
2224 goto out;
2225 }
2226 close(fd);
2227 fd = -1;
2228 }
c17608ea
AK
2229 /* update checkpoint information in metadata */
2230 len = imsm_create_metadata_checkpoint_update(super, &u);
2231
2232 if (len <= 0) {
2233 dprintf("imsm: Cannot prepare update\n");
2234 goto out;
2235 }
2236 /* update metadata locally */
2237 imsm_update_metadata_locally(st, u, len);
2238 /* and possibly remotely */
2239 if (st->update_tail) {
2240 append_metadata_update(st, u, len);
2241 /* during reshape we do all work inside metadata handler
2242 * manage_reshape(), so metadata update has to be triggered
2243 * insida it
2244 */
2245 flush_metadata_updates(st);
2246 st->update_tail = &st->updates;
2247 } else
2248 free(u);
687629c2
AK
2249
2250 retval = 0;
2251 out:
2252 if (fd >= 0)
2253 close(fd);
2254 return retval;
2255}
9e2d750d 2256#endif /* MDASSEMBLE */
687629c2 2257
e2962bfc
AK
2258/* spare/missing disks activations are not allowe when
2259 * array/container performs reshape operation, because
2260 * all arrays in container works on the same disks set
2261 */
2262int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2263{
2264 int rv = 0;
2265 struct intel_dev *i_dev;
2266 struct imsm_dev *dev;
2267
2268 /* check whole container
2269 */
2270 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2271 dev = i_dev->dev;
3ad25638 2272 if (is_gen_migration(dev)) {
e2962bfc
AK
2273 /* No repair during any migration in container
2274 */
2275 rv = 1;
2276 break;
2277 }
2278 }
2279 return rv;
2280}
2281
a5d85af7 2282static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
bf5a934a
DW
2283{
2284 struct intel_super *super = st->sb;
c47b0ff6 2285 struct migr_record *migr_rec = super->migr_rec;
949c47a0 2286 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 2287 struct imsm_map *map = get_imsm_map(dev, 0);
81ac8b4d 2288 struct imsm_map *prev_map = get_imsm_map(dev, 1);
b335e593 2289 struct imsm_map *map_to_analyse = map;
efb30e7f 2290 struct dl *dl;
e207da2f 2291 char *devname;
139dae11 2292 unsigned int component_size_alligment;
a5d85af7 2293 int map_disks = info->array.raid_disks;
bf5a934a 2294
95eeceeb 2295 memset(info, 0, sizeof(*info));
b335e593
AK
2296 if (prev_map)
2297 map_to_analyse = prev_map;
2298
ca0748fa 2299 dl = super->current_disk;
9894ec0d 2300
bf5a934a 2301 info->container_member = super->current_vol;
cd0430a1 2302 info->array.raid_disks = map->num_members;
b335e593 2303 info->array.level = get_imsm_raid_level(map_to_analyse);
bf5a934a
DW
2304 info->array.layout = imsm_level_to_layout(info->array.level);
2305 info->array.md_minor = -1;
2306 info->array.ctime = 0;
2307 info->array.utime = 0;
b335e593
AK
2308 info->array.chunk_size =
2309 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
301406c9 2310 info->array.state = !dev->vol.dirty;
da9b4a62
DW
2311 info->custom_array_size = __le32_to_cpu(dev->size_high);
2312 info->custom_array_size <<= 32;
2313 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3ad25638
AK
2314 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2315
b601104e
LD
2316 if (prev_map && map->map_state == prev_map->map_state &&
2317 (migr_type(dev) == MIGR_GEN_MIGR)) {
3f83228a 2318 info->reshape_active = 1;
b335e593
AK
2319 info->new_level = get_imsm_raid_level(map);
2320 info->new_layout = imsm_level_to_layout(info->new_level);
2321 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3f83228a 2322 info->delta_disks = map->num_members - prev_map->num_members;
493f5dd6
N
2323 if (info->delta_disks) {
2324 /* this needs to be applied to every array
2325 * in the container.
2326 */
81219e70 2327 info->reshape_active = CONTAINER_RESHAPE;
493f5dd6 2328 }
3f83228a
N
2329 /* We shape information that we give to md might have to be
2330 * modify to cope with md's requirement for reshaping arrays.
2331 * For example, when reshaping a RAID0, md requires it to be
2332 * presented as a degraded RAID4.
2333 * Also if a RAID0 is migrating to a RAID5 we need to specify
2334 * the array as already being RAID5, but the 'before' layout
2335 * is a RAID4-like layout.
2336 */
2337 switch (info->array.level) {
2338 case 0:
2339 switch(info->new_level) {
2340 case 0:
2341 /* conversion is happening as RAID4 */
2342 info->array.level = 4;
2343 info->array.raid_disks += 1;
2344 break;
2345 case 5:
2346 /* conversion is happening as RAID5 */
2347 info->array.level = 5;
2348 info->array.layout = ALGORITHM_PARITY_N;
3f83228a
N
2349 info->delta_disks -= 1;
2350 break;
2351 default:
2352 /* FIXME error message */
2353 info->array.level = UnSet;
2354 break;
2355 }
2356 break;
2357 }
b335e593
AK
2358 } else {
2359 info->new_level = UnSet;
2360 info->new_layout = UnSet;
2361 info->new_chunk = info->array.chunk_size;
3f83228a 2362 info->delta_disks = 0;
b335e593 2363 }
ca0748fa 2364
efb30e7f
DW
2365 if (dl) {
2366 info->disk.major = dl->major;
2367 info->disk.minor = dl->minor;
ca0748fa 2368 info->disk.number = dl->index;
656b6b5a
N
2369 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2370 dl->index);
efb30e7f 2371 }
bf5a934a 2372
b335e593
AK
2373 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2374 info->component_size =
2375 __le32_to_cpu(map_to_analyse->blocks_per_member);
139dae11
AK
2376
2377 /* check component size aligment
2378 */
2379 component_size_alligment =
2380 info->component_size % (info->array.chunk_size/512);
2381
2382 if (component_size_alligment &&
2383 (info->array.level != 1) && (info->array.level != UnSet)) {
2384 dprintf("imsm: reported component size alligned from %llu ",
2385 info->component_size);
2386 info->component_size -= component_size_alligment;
2387 dprintf("to %llu (%i).\n",
2388 info->component_size, component_size_alligment);
2389 }
2390
301406c9 2391 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 2392 info->recovery_start = MaxSector;
bf5a934a 2393
d2e6d5d6 2394 info->reshape_progress = 0;
b6796ce1 2395 info->resync_start = MaxSector;
b9172665
AK
2396 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2397 dev->vol.dirty) &&
2398 imsm_reshape_blocks_arrays_changes(super) == 0) {
301406c9 2399 info->resync_start = 0;
b6796ce1
AK
2400 }
2401 if (dev->vol.migr_state) {
1e5c6983
DW
2402 switch (migr_type(dev)) {
2403 case MIGR_REPAIR:
2404 case MIGR_INIT: {
c47b0ff6
AK
2405 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2406 dev);
1e5c6983
DW
2407 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2408
2409 info->resync_start = blocks_per_unit * units;
2410 break;
2411 }
d2e6d5d6 2412 case MIGR_GEN_MIGR: {
c47b0ff6
AK
2413 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2414 dev);
2415 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
04fa9523
AK
2416 unsigned long long array_blocks;
2417 int used_disks;
d2e6d5d6 2418
befb629b
AK
2419 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2420 (units <
2421 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2422 (super->migr_rec->rec_status ==
2423 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2424 units++;
2425
d2e6d5d6 2426 info->reshape_progress = blocks_per_unit * units;
6289d1e0 2427
d2e6d5d6
AK
2428 dprintf("IMSM: General Migration checkpoint : %llu "
2429 "(%llu) -> read reshape progress : %llu\n",
19986c72
MB
2430 (unsigned long long)units,
2431 (unsigned long long)blocks_per_unit,
2432 info->reshape_progress);
75156c46
AK
2433
2434 used_disks = imsm_num_data_members(dev, 1);
2435 if (used_disks > 0) {
2436 array_blocks = map->blocks_per_member *
2437 used_disks;
2438 /* round array size down to closest MB
2439 */
2440 info->custom_array_size = (array_blocks
2441 >> SECT_PER_MB_SHIFT)
2442 << SECT_PER_MB_SHIFT;
2443 }
d2e6d5d6 2444 }
1e5c6983
DW
2445 case MIGR_VERIFY:
2446 /* we could emulate the checkpointing of
2447 * 'sync_action=check' migrations, but for now
2448 * we just immediately complete them
2449 */
2450 case MIGR_REBUILD:
2451 /* this is handled by container_content_imsm() */
1e5c6983
DW
2452 case MIGR_STATE_CHANGE:
2453 /* FIXME handle other migrations */
2454 default:
2455 /* we are not dirty, so... */
2456 info->resync_start = MaxSector;
2457 }
b6796ce1 2458 }
301406c9
DW
2459
2460 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2461 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 2462
f35f2525
N
2463 info->array.major_version = -1;
2464 info->array.minor_version = -2;
e207da2f
AW
2465 devname = devnum2devname(st->container_dev);
2466 *info->text_version = '\0';
2467 if (devname)
2468 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2469 free(devname);
a67dd8cc 2470 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 2471 uuid_from_super_imsm(st, info->uuid);
a5d85af7
N
2472
2473 if (dmap) {
2474 int i, j;
2475 for (i=0; i<map_disks; i++) {
2476 dmap[i] = 0;
2477 if (i < info->array.raid_disks) {
2478 struct imsm_disk *dsk;
98130f40 2479 j = get_imsm_disk_idx(dev, i, -1);
a5d85af7
N
2480 dsk = get_imsm_disk(super, j);
2481 if (dsk && (dsk->status & CONFIGURED_DISK))
2482 dmap[i] = 1;
2483 }
2484 }
2485 }
81ac8b4d 2486}
bf5a934a 2487
97b4d0e9
DW
2488static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2489static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2490
2491static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2492{
2493 struct dl *d;
2494
2495 for (d = super->missing; d; d = d->next)
2496 if (d->index == index)
2497 return &d->disk;
2498 return NULL;
2499}
2500
a5d85af7 2501static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
4f5bc454
DW
2502{
2503 struct intel_super *super = st->sb;
4f5bc454 2504 struct imsm_disk *disk;
a5d85af7 2505 int map_disks = info->array.raid_disks;
ab3cb6b3
N
2506 int max_enough = -1;
2507 int i;
2508 struct imsm_super *mpb;
4f5bc454 2509
bf5a934a 2510 if (super->current_vol >= 0) {
a5d85af7 2511 getinfo_super_imsm_volume(st, info, map);
bf5a934a
DW
2512 return;
2513 }
95eeceeb 2514 memset(info, 0, sizeof(*info));
d23fe947
DW
2515
2516 /* Set raid_disks to zero so that Assemble will always pull in valid
2517 * spares
2518 */
2519 info->array.raid_disks = 0;
cdddbdbc
DW
2520 info->array.level = LEVEL_CONTAINER;
2521 info->array.layout = 0;
2522 info->array.md_minor = -1;
c2c087e6 2523 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
2524 info->array.utime = 0;
2525 info->array.chunk_size = 0;
2526
2527 info->disk.major = 0;
2528 info->disk.minor = 0;
cdddbdbc 2529 info->disk.raid_disk = -1;
c2c087e6 2530 info->reshape_active = 0;
f35f2525
N
2531 info->array.major_version = -1;
2532 info->array.minor_version = -2;
c2c087e6 2533 strcpy(info->text_version, "imsm");
a67dd8cc 2534 info->safe_mode_delay = 0;
c2c087e6
DW
2535 info->disk.number = -1;
2536 info->disk.state = 0;
c5afc314 2537 info->name[0] = 0;
921d9e16 2538 info->recovery_start = MaxSector;
3ad25638 2539 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
c2c087e6 2540
97b4d0e9 2541 /* do we have the all the insync disks that we expect? */
ab3cb6b3 2542 mpb = super->anchor;
97b4d0e9 2543
ab3cb6b3
N
2544 for (i = 0; i < mpb->num_raid_devs; i++) {
2545 struct imsm_dev *dev = get_imsm_dev(super, i);
2546 int failed, enough, j, missing = 0;
2547 struct imsm_map *map;
2548 __u8 state;
97b4d0e9 2549
ab3cb6b3
N
2550 failed = imsm_count_failed(super, dev);
2551 state = imsm_check_degraded(super, dev, failed);
a510b1c7 2552 map = get_imsm_map(dev, 0);
ab3cb6b3
N
2553
2554 /* any newly missing disks?
2555 * (catches single-degraded vs double-degraded)
2556 */
2557 for (j = 0; j < map->num_members; j++) {
9645010f 2558 __u32 ord = get_imsm_ord_tbl_ent(dev, j, 0);
ab3cb6b3
N
2559 __u32 idx = ord_to_idx(ord);
2560
2561 if (!(ord & IMSM_ORD_REBUILD) &&
2562 get_imsm_missing(super, idx)) {
2563 missing = 1;
2564 break;
2565 }
97b4d0e9 2566 }
ab3cb6b3
N
2567
2568 if (state == IMSM_T_STATE_FAILED)
2569 enough = -1;
2570 else if (state == IMSM_T_STATE_DEGRADED &&
2571 (state != map->map_state || missing))
2572 enough = 0;
2573 else /* we're normal, or already degraded */
2574 enough = 1;
2575
2576 /* in the missing/failed disk case check to see
2577 * if at least one array is runnable
2578 */
2579 max_enough = max(max_enough, enough);
2580 }
2581 dprintf("%s: enough: %d\n", __func__, max_enough);
2582 info->container_enough = max_enough;
97b4d0e9 2583
4a04ec6c 2584 if (super->disks) {
14e8215b
DW
2585 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2586
b9f594fe 2587 disk = &super->disks->disk;
14e8215b
DW
2588 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2589 info->component_size = reserved;
25ed7e59 2590 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
2591 /* we don't change info->disk.raid_disk here because
2592 * this state will be finalized in mdmon after we have
2593 * found the 'most fresh' version of the metadata
2594 */
25ed7e59
DW
2595 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2596 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 2597 }
a575e2a7
DW
2598
2599 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2600 * ->compare_super may have updated the 'num_raid_devs' field for spares
2601 */
2602 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 2603 uuid_from_super_imsm(st, info->uuid);
22e263f6
AC
2604 else
2605 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
a5d85af7
N
2606
2607 /* I don't know how to compute 'map' on imsm, so use safe default */
2608 if (map) {
2609 int i;
2610 for (i = 0; i < map_disks; i++)
2611 map[i] = 1;
2612 }
2613
cdddbdbc
DW
2614}
2615
5c4cd5da
AC
2616/* allocates memory and fills disk in mdinfo structure
2617 * for each disk in array */
2618struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2619{
2620 struct mdinfo *mddev = NULL;
2621 struct intel_super *super = st->sb;
2622 struct imsm_disk *disk;
2623 int count = 0;
2624 struct dl *dl;
2625 if (!super || !super->disks)
2626 return NULL;
2627 dl = super->disks;
2628 mddev = malloc(sizeof(*mddev));
2629 if (!mddev) {
2630 fprintf(stderr, Name ": Failed to allocate memory.\n");
2631 return NULL;
2632 }
2633 memset(mddev, 0, sizeof(*mddev));
2634 while (dl) {
2635 struct mdinfo *tmp;
2636 disk = &dl->disk;
2637 tmp = malloc(sizeof(*tmp));
2638 if (!tmp) {
2639 fprintf(stderr, Name ": Failed to allocate memory.\n");
2640 if (mddev)
2641 sysfs_free(mddev);
2642 return NULL;
2643 }
2644 memset(tmp, 0, sizeof(*tmp));
2645 if (mddev->devs)
2646 tmp->next = mddev->devs;
2647 mddev->devs = tmp;
2648 tmp->disk.number = count++;
2649 tmp->disk.major = dl->major;
2650 tmp->disk.minor = dl->minor;
2651 tmp->disk.state = is_configured(disk) ?
2652 (1 << MD_DISK_ACTIVE) : 0;
2653 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2654 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2655 tmp->disk.raid_disk = -1;
2656 dl = dl->next;
2657 }
2658 return mddev;
2659}
2660
cdddbdbc
DW
2661static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2662 char *update, char *devname, int verbose,
2663 int uuid_set, char *homehost)
2664{
f352c545
DW
2665 /* For 'assemble' and 'force' we need to return non-zero if any
2666 * change was made. For others, the return value is ignored.
2667 * Update options are:
2668 * force-one : This device looks a bit old but needs to be included,
2669 * update age info appropriately.
2670 * assemble: clear any 'faulty' flag to allow this device to
2671 * be assembled.
2672 * force-array: Array is degraded but being forced, mark it clean
2673 * if that will be needed to assemble it.
2674 *
2675 * newdev: not used ????
2676 * grow: Array has gained a new device - this is currently for
2677 * linear only
2678 * resync: mark as dirty so a resync will happen.
2679 * name: update the name - preserving the homehost
6e46bf34 2680 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
2681 *
2682 * Following are not relevant for this imsm:
2683 * sparc2.2 : update from old dodgey metadata
2684 * super-minor: change the preferred_minor number
2685 * summaries: update redundant counters.
f352c545
DW
2686 * homehost: update the recorded homehost
2687 * _reshape_progress: record new reshape_progress position.
2688 */
6e46bf34
DW
2689 int rv = 1;
2690 struct intel_super *super = st->sb;
2691 struct imsm_super *mpb;
f352c545 2692
6e46bf34
DW
2693 /* we can only update container info */
2694 if (!super || super->current_vol >= 0 || !super->anchor)
2695 return 1;
2696
2697 mpb = super->anchor;
2698
2699 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1e2b2765 2700 rv = -1;
6e46bf34
DW
2701 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2702 mpb->orig_family_num = *((__u32 *) info->update_private);
2703 rv = 0;
2704 } else if (strcmp(update, "uuid") == 0) {
2705 __u32 *new_family = malloc(sizeof(*new_family));
2706
2707 /* update orig_family_number with the incoming random
2708 * data, report the new effective uuid, and store the
2709 * new orig_family_num for future updates.
2710 */
2711 if (new_family) {
2712 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2713 uuid_from_super_imsm(st, info->uuid);
2714 *new_family = mpb->orig_family_num;
2715 info->update_private = new_family;
2716 rv = 0;
2717 }
2718 } else if (strcmp(update, "assemble") == 0)
2719 rv = 0;
2720 else
1e2b2765 2721 rv = -1;
f352c545 2722
6e46bf34
DW
2723 /* successful update? recompute checksum */
2724 if (rv == 0)
2725 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
2726
2727 return rv;
cdddbdbc
DW
2728}
2729
c2c087e6 2730static size_t disks_to_mpb_size(int disks)
cdddbdbc 2731{
c2c087e6 2732 size_t size;
cdddbdbc 2733
c2c087e6
DW
2734 size = sizeof(struct imsm_super);
2735 size += (disks - 1) * sizeof(struct imsm_disk);
2736 size += 2 * sizeof(struct imsm_dev);
2737 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2738 size += (4 - 2) * sizeof(struct imsm_map);
2739 /* 4 possible disk_ord_tbl's */
2740 size += 4 * (disks - 1) * sizeof(__u32);
2741
2742 return size;
2743}
2744
2745static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2746{
2747 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2748 return 0;
2749
2750 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
2751}
2752
ba2de7ba
DW
2753static void free_devlist(struct intel_super *super)
2754{
2755 struct intel_dev *dv;
2756
2757 while (super->devlist) {
2758 dv = super->devlist->next;
2759 free(super->devlist->dev);
2760 free(super->devlist);
2761 super->devlist = dv;
2762 }
2763}
2764
2765static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2766{
2767 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2768}
2769
cdddbdbc
DW
2770static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2771{
2772 /*
2773 * return:
2774 * 0 same, or first was empty, and second was copied
2775 * 1 second had wrong number
2776 * 2 wrong uuid
2777 * 3 wrong other info
2778 */
2779 struct intel_super *first = st->sb;
2780 struct intel_super *sec = tst->sb;
2781
2782 if (!first) {
2783 st->sb = tst->sb;
2784 tst->sb = NULL;
2785 return 0;
2786 }
8603ea6f
LM
2787 /* in platform dependent environment test if the disks
2788 * use the same Intel hba
2789 */
2790 if (!check_env("IMSM_NO_PLATFORM")) {
ea2bc72b
LM
2791 if (!first->hba || !sec->hba ||
2792 (first->hba->type != sec->hba->type)) {
8603ea6f
LM
2793 fprintf(stderr,
2794 "HBAs of devices does not match %s != %s\n",
ea2bc72b
LM
2795 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2796 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
8603ea6f
LM
2797 return 3;
2798 }
2799 }
cdddbdbc 2800
d23fe947
DW
2801 /* if an anchor does not have num_raid_devs set then it is a free
2802 * floating spare
2803 */
2804 if (first->anchor->num_raid_devs > 0 &&
2805 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
2806 /* Determine if these disks might ever have been
2807 * related. Further disambiguation can only take place
2808 * in load_super_imsm_all
2809 */
2810 __u32 first_family = first->anchor->orig_family_num;
2811 __u32 sec_family = sec->anchor->orig_family_num;
2812
f796af5d
DW
2813 if (memcmp(first->anchor->sig, sec->anchor->sig,
2814 MAX_SIGNATURE_LENGTH) != 0)
2815 return 3;
2816
a2b97981
DW
2817 if (first_family == 0)
2818 first_family = first->anchor->family_num;
2819 if (sec_family == 0)
2820 sec_family = sec->anchor->family_num;
2821
2822 if (first_family != sec_family)
d23fe947 2823 return 3;
f796af5d 2824
d23fe947 2825 }
cdddbdbc 2826
f796af5d 2827
3e372e5a
DW
2828 /* if 'first' is a spare promote it to a populated mpb with sec's
2829 * family number
2830 */
2831 if (first->anchor->num_raid_devs == 0 &&
2832 sec->anchor->num_raid_devs > 0) {
78d30f94 2833 int i;
ba2de7ba
DW
2834 struct intel_dev *dv;
2835 struct imsm_dev *dev;
78d30f94
DW
2836
2837 /* we need to copy raid device info from sec if an allocation
2838 * fails here we don't associate the spare
2839 */
2840 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
2841 dv = malloc(sizeof(*dv));
2842 if (!dv)
2843 break;
2844 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2845 if (!dev) {
2846 free(dv);
2847 break;
78d30f94 2848 }
ba2de7ba
DW
2849 dv->dev = dev;
2850 dv->index = i;
2851 dv->next = first->devlist;
2852 first->devlist = dv;
78d30f94 2853 }
709743c5 2854 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
2855 /* allocation failure */
2856 free_devlist(first);
2857 fprintf(stderr, "imsm: failed to associate spare\n");
2858 return 3;
78d30f94 2859 }
3e372e5a 2860 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 2861 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 2862 first->anchor->family_num = sec->anchor->family_num;
ac6449be 2863 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
2864 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2865 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
2866 }
2867
cdddbdbc
DW
2868 return 0;
2869}
2870
0030e8d6
DW
2871static void fd2devname(int fd, char *name)
2872{
2873 struct stat st;
2874 char path[256];
33a6535d 2875 char dname[PATH_MAX];
0030e8d6
DW
2876 char *nm;
2877 int rv;
2878
2879 name[0] = '\0';
2880 if (fstat(fd, &st) != 0)
2881 return;
2882 sprintf(path, "/sys/dev/block/%d:%d",
2883 major(st.st_rdev), minor(st.st_rdev));
2884
9cf014ec 2885 rv = readlink(path, dname, sizeof(dname)-1);
0030e8d6
DW
2886 if (rv <= 0)
2887 return;
2888
2889 dname[rv] = '\0';
2890 nm = strrchr(dname, '/');
7897de29
JS
2891 if (nm) {
2892 nm++;
2893 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2894 }
0030e8d6
DW
2895}
2896
cdddbdbc
DW
2897extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2898
2899static int imsm_read_serial(int fd, char *devname,
2900 __u8 serial[MAX_RAID_SERIAL_LEN])
2901{
2902 unsigned char scsi_serial[255];
cdddbdbc
DW
2903 int rv;
2904 int rsp_len;
1f24f035 2905 int len;
316e2bf4
DW
2906 char *dest;
2907 char *src;
2908 char *rsp_buf;
2909 int i;
cdddbdbc
DW
2910
2911 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 2912
f9ba0ff1
DW
2913 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2914
40ebbb9c 2915 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
2916 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2917 fd2devname(fd, (char *) serial);
0030e8d6
DW
2918 return 0;
2919 }
2920
cdddbdbc
DW
2921 if (rv != 0) {
2922 if (devname)
2923 fprintf(stderr,
2924 Name ": Failed to retrieve serial for %s\n",
2925 devname);
2926 return rv;
2927 }
2928
2929 rsp_len = scsi_serial[3];
03cd4cc8
DW
2930 if (!rsp_len) {
2931 if (devname)
2932 fprintf(stderr,
2933 Name ": Failed to retrieve serial for %s\n",
2934 devname);
2935 return 2;
2936 }
1f24f035 2937 rsp_buf = (char *) &scsi_serial[4];
5c3db629 2938
316e2bf4
DW
2939 /* trim all whitespace and non-printable characters and convert
2940 * ':' to ';'
2941 */
2942 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2943 src = &rsp_buf[i];
2944 if (*src > 0x20) {
2945 /* ':' is reserved for use in placeholder serial
2946 * numbers for missing disks
2947 */
2948 if (*src == ':')
2949 *dest++ = ';';
2950 else
2951 *dest++ = *src;
2952 }
2953 }
2954 len = dest - rsp_buf;
2955 dest = rsp_buf;
2956
2957 /* truncate leading characters */
2958 if (len > MAX_RAID_SERIAL_LEN) {
2959 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 2960 len = MAX_RAID_SERIAL_LEN;
316e2bf4 2961 }
5c3db629 2962
5c3db629 2963 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 2964 memcpy(serial, dest, len);
cdddbdbc
DW
2965
2966 return 0;
2967}
2968
1f24f035
DW
2969static int serialcmp(__u8 *s1, __u8 *s2)
2970{
2971 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2972}
2973
2974static void serialcpy(__u8 *dest, __u8 *src)
2975{
2976 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2977}
2978
54c2c1ea
DW
2979static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2980{
2981 struct dl *dl;
2982
2983 for (dl = super->disks; dl; dl = dl->next)
2984 if (serialcmp(dl->serial, serial) == 0)
2985 break;
2986
2987 return dl;
2988}
2989
a2b97981
DW
2990static struct imsm_disk *
2991__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2992{
2993 int i;
2994
2995 for (i = 0; i < mpb->num_disks; i++) {
2996 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2997
2998 if (serialcmp(disk->serial, serial) == 0) {
2999 if (idx)
3000 *idx = i;
3001 return disk;
3002 }
3003 }
3004
3005 return NULL;
3006}
3007
cdddbdbc
DW
3008static int
3009load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3010{
a2b97981 3011 struct imsm_disk *disk;
cdddbdbc
DW
3012 struct dl *dl;
3013 struct stat stb;
cdddbdbc 3014 int rv;
a2b97981 3015 char name[40];
d23fe947
DW
3016 __u8 serial[MAX_RAID_SERIAL_LEN];
3017
3018 rv = imsm_read_serial(fd, devname, serial);
3019
3020 if (rv != 0)
3021 return 2;
3022
a2b97981 3023 dl = calloc(1, sizeof(*dl));
b9f594fe 3024 if (!dl) {
cdddbdbc
DW
3025 if (devname)
3026 fprintf(stderr,
3027 Name ": failed to allocate disk buffer for %s\n",
3028 devname);
3029 return 2;
3030 }
cdddbdbc 3031
a2b97981
DW
3032 fstat(fd, &stb);
3033 dl->major = major(stb.st_rdev);
3034 dl->minor = minor(stb.st_rdev);
3035 dl->next = super->disks;
3036 dl->fd = keep_fd ? fd : -1;
3037 assert(super->disks == NULL);
3038 super->disks = dl;
3039 serialcpy(dl->serial, serial);
3040 dl->index = -2;
3041 dl->e = NULL;
3042 fd2devname(fd, name);
3043 if (devname)
3044 dl->devname = strdup(devname);
3045 else
3046 dl->devname = strdup(name);
cdddbdbc 3047
d23fe947 3048 /* look up this disk's index in the current anchor */
a2b97981
DW
3049 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3050 if (disk) {
3051 dl->disk = *disk;
3052 /* only set index on disks that are a member of a
3053 * populated contianer, i.e. one with raid_devs
3054 */
3055 if (is_failed(&dl->disk))
3f6efecc 3056 dl->index = -2;
a2b97981
DW
3057 else if (is_spare(&dl->disk))
3058 dl->index = -1;
3f6efecc
DW
3059 }
3060
949c47a0
DW
3061 return 0;
3062}
3063
0e600426 3064#ifndef MDASSEMBLE
0c046afd
DW
3065/* When migrating map0 contains the 'destination' state while map1
3066 * contains the current state. When not migrating map0 contains the
3067 * current state. This routine assumes that map[0].map_state is set to
3068 * the current array state before being called.
3069 *
3070 * Migration is indicated by one of the following states
3071 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 3072 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 3073 * map1state=unitialized)
1484e727 3074 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 3075 * map1state=normal)
e3bba0e0 3076 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd 3077 * map1state=degraded)
8e59f3d8
AK
3078 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3079 * map1state=normal)
0c046afd 3080 */
8e59f3d8
AK
3081static void migrate(struct imsm_dev *dev, struct intel_super *super,
3082 __u8 to_state, int migr_type)
3393c6af 3083{
0c046afd 3084 struct imsm_map *dest;
3393c6af
DW
3085 struct imsm_map *src = get_imsm_map(dev, 0);
3086
0c046afd 3087 dev->vol.migr_state = 1;
1484e727 3088 set_migr_type(dev, migr_type);
f8f603f1 3089 dev->vol.curr_migr_unit = 0;
0c046afd
DW
3090 dest = get_imsm_map(dev, 1);
3091
0556e1a2 3092 /* duplicate and then set the target end state in map[0] */
3393c6af 3093 memcpy(dest, src, sizeof_imsm_map(src));
28bce06f
AK
3094 if ((migr_type == MIGR_REBUILD) ||
3095 (migr_type == MIGR_GEN_MIGR)) {
0556e1a2
DW
3096 __u32 ord;
3097 int i;
3098
3099 for (i = 0; i < src->num_members; i++) {
3100 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3101 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3102 }
3103 }
3104
8e59f3d8
AK
3105 if (migr_type == MIGR_GEN_MIGR)
3106 /* Clear migration record */
3107 memset(super->migr_rec, 0, sizeof(struct migr_record));
3108
0c046afd 3109 src->map_state = to_state;
949c47a0 3110}
f8f603f1
DW
3111
3112static void end_migration(struct imsm_dev *dev, __u8 map_state)
3113{
3114 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 3115 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
28bce06f 3116 int i, j;
0556e1a2
DW
3117
3118 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3119 * completed in the last migration.
3120 *
28bce06f 3121 * FIXME add support for raid-level-migration
0556e1a2
DW
3122 */
3123 for (i = 0; i < prev->num_members; i++)
28bce06f
AK
3124 for (j = 0; j < map->num_members; j++)
3125 /* during online capacity expansion
3126 * disks position can be changed if takeover is used
3127 */
3128 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3129 ord_to_idx(prev->disk_ord_tbl[i])) {
3130 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3131 break;
3132 }
f8f603f1
DW
3133
3134 dev->vol.migr_state = 0;
ea672ee1 3135 set_migr_type(dev, 0);
f8f603f1
DW
3136 dev->vol.curr_migr_unit = 0;
3137 map->map_state = map_state;
3138}
0e600426 3139#endif
949c47a0
DW
3140
3141static int parse_raid_devices(struct intel_super *super)
3142{
3143 int i;
3144 struct imsm_dev *dev_new;
4d7b1503 3145 size_t len, len_migr;
401d313b 3146 size_t max_len = 0;
4d7b1503
DW
3147 size_t space_needed = 0;
3148 struct imsm_super *mpb = super->anchor;
949c47a0
DW
3149
3150 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3151 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 3152 struct intel_dev *dv;
949c47a0 3153
4d7b1503
DW
3154 len = sizeof_imsm_dev(dev_iter, 0);
3155 len_migr = sizeof_imsm_dev(dev_iter, 1);
3156 if (len_migr > len)
3157 space_needed += len_migr - len;
3158
ba2de7ba
DW
3159 dv = malloc(sizeof(*dv));
3160 if (!dv)
3161 return 1;
401d313b
AK
3162 if (max_len < len_migr)
3163 max_len = len_migr;
3164 if (max_len > len_migr)
3165 space_needed += max_len - len_migr;
3166 dev_new = malloc(max_len);
ba2de7ba
DW
3167 if (!dev_new) {
3168 free(dv);
949c47a0 3169 return 1;
ba2de7ba 3170 }
949c47a0 3171 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
3172 dv->dev = dev_new;
3173 dv->index = i;
3174 dv->next = super->devlist;
3175 super->devlist = dv;
949c47a0 3176 }
cdddbdbc 3177
4d7b1503
DW
3178 /* ensure that super->buf is large enough when all raid devices
3179 * are migrating
3180 */
3181 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3182 void *buf;
3183
3184 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3185 if (posix_memalign(&buf, 512, len) != 0)
3186 return 1;
3187
1f45a8ad
DW
3188 memcpy(buf, super->buf, super->len);
3189 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
3190 free(super->buf);
3191 super->buf = buf;
3192 super->len = len;
3193 }
3194
cdddbdbc
DW
3195 return 0;
3196}
3197
604b746f
JD
3198/* retrieve a pointer to the bbm log which starts after all raid devices */
3199struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3200{
3201 void *ptr = NULL;
3202
3203 if (__le32_to_cpu(mpb->bbm_log_size)) {
3204 ptr = mpb;
3205 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3206 }
3207
3208 return ptr;
3209}
3210
e2f41b2c
AK
3211/*******************************************************************************
3212 * Function: check_mpb_migr_compatibility
3213 * Description: Function checks for unsupported migration features:
3214 * - migration optimization area (pba_of_lba0)
3215 * - descending reshape (ascending_migr)
3216 * Parameters:
3217 * super : imsm metadata information
3218 * Returns:
3219 * 0 : migration is compatible
3220 * -1 : migration is not compatible
3221 ******************************************************************************/
3222int check_mpb_migr_compatibility(struct intel_super *super)
3223{
3224 struct imsm_map *map0, *map1;
3225 struct migr_record *migr_rec = super->migr_rec;
3226 int i;
3227
3228 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3229 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3230
3231 if (dev_iter &&
3232 dev_iter->vol.migr_state == 1 &&
3233 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3234 /* This device is migrating */
3235 map0 = get_imsm_map(dev_iter, 0);
3236 map1 = get_imsm_map(dev_iter, 1);
3237 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3238 /* migration optimization area was used */
3239 return -1;
3240 if (migr_rec->ascending_migr == 0
3241 && migr_rec->dest_depth_per_unit > 0)
3242 /* descending reshape not supported yet */
3243 return -1;
3244 }
3245 }
3246 return 0;
3247}
3248
d23fe947 3249static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 3250
cdddbdbc 3251/* load_imsm_mpb - read matrix metadata
f2f5c343 3252 * allocates super->mpb to be freed by free_imsm
cdddbdbc
DW
3253 */
3254static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3255{
3256 unsigned long long dsize;
cdddbdbc
DW
3257 unsigned long long sectors;
3258 struct stat;
6416d527 3259 struct imsm_super *anchor;
cdddbdbc
DW
3260 __u32 check_sum;
3261
cdddbdbc 3262 get_dev_size(fd, NULL, &dsize);
64436f06
N
3263 if (dsize < 1024) {
3264 if (devname)
3265 fprintf(stderr,
3266 Name ": %s: device to small for imsm\n",
3267 devname);
3268 return 1;
3269 }
cdddbdbc
DW
3270
3271 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3272 if (devname)
2e062e82
AK
3273 fprintf(stderr, Name
3274 ": Cannot seek to anchor block on %s: %s\n",
cdddbdbc
DW
3275 devname, strerror(errno));
3276 return 1;
3277 }
3278
949c47a0 3279 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
3280 if (devname)
3281 fprintf(stderr,
3282 Name ": Failed to allocate imsm anchor buffer"
3283 " on %s\n", devname);
3284 return 1;
3285 }
949c47a0 3286 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
3287 if (devname)
3288 fprintf(stderr,
3289 Name ": Cannot read anchor block on %s: %s\n",
3290 devname, strerror(errno));
6416d527 3291 free(anchor);
cdddbdbc
DW
3292 return 1;
3293 }
3294
6416d527 3295 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
3296 if (devname)
3297 fprintf(stderr,
3298 Name ": no IMSM anchor on %s\n", devname);
6416d527 3299 free(anchor);
cdddbdbc
DW
3300 return 2;
3301 }
3302
d23fe947 3303 __free_imsm(super, 0);
f2f5c343
LM
3304 /* reload capability and hba */
3305
3306 /* capability and hba must be updated with new super allocation */
d424212e 3307 find_intel_hba_capability(fd, super, devname);
949c47a0
DW
3308 super->len = ROUND_UP(anchor->mpb_size, 512);
3309 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
3310 if (devname)
3311 fprintf(stderr,
3312 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 3313 super->len);
6416d527 3314 free(anchor);
cdddbdbc
DW
3315 return 2;
3316 }
949c47a0 3317 memcpy(super->buf, anchor, 512);
cdddbdbc 3318
6416d527
NB
3319 sectors = mpb_sectors(anchor) - 1;
3320 free(anchor);
8e59f3d8
AK
3321
3322 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3323 fprintf(stderr, Name
3324 ": %s could not allocate migr_rec buffer\n", __func__);
3325 free(super->buf);
3326 return 2;
3327 }
3328
949c47a0 3329 if (!sectors) {
ecf45690
DW
3330 check_sum = __gen_imsm_checksum(super->anchor);
3331 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3332 if (devname)
3333 fprintf(stderr,
3334 Name ": IMSM checksum %x != %x on %s\n",
3335 check_sum,
3336 __le32_to_cpu(super->anchor->check_sum),
3337 devname);
3338 return 2;
3339 }
3340
a2b97981 3341 return 0;
949c47a0 3342 }
cdddbdbc
DW
3343
3344 /* read the extended mpb */
3345 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3346 if (devname)
3347 fprintf(stderr,
3348 Name ": Cannot seek to extended mpb on %s: %s\n",
3349 devname, strerror(errno));
3350 return 1;
3351 }
3352
f21e18ca 3353 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
3354 if (devname)
3355 fprintf(stderr,
3356 Name ": Cannot read extended mpb on %s: %s\n",
3357 devname, strerror(errno));
3358 return 2;
3359 }
3360
949c47a0
DW
3361 check_sum = __gen_imsm_checksum(super->anchor);
3362 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
3363 if (devname)
3364 fprintf(stderr,
3365 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 3366 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 3367 devname);
db575f3b 3368 return 3;
cdddbdbc
DW
3369 }
3370
604b746f
JD
3371 /* FIXME the BBM log is disk specific so we cannot use this global
3372 * buffer for all disks. Ok for now since we only look at the global
3373 * bbm_log_size parameter to gate assembly
3374 */
3375 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3376
a2b97981
DW
3377 return 0;
3378}
3379
8e59f3d8
AK
3380static int read_imsm_migr_rec(int fd, struct intel_super *super);
3381
a2b97981
DW
3382static int
3383load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3384{
3385 int err;
3386
3387 err = load_imsm_mpb(fd, super, devname);
3388 if (err)
3389 return err;
3390 err = load_imsm_disk(fd, super, devname, keep_fd);
3391 if (err)
3392 return err;
3393 err = parse_raid_devices(super);
4d7b1503 3394
a2b97981 3395 return err;
cdddbdbc
DW
3396}
3397
ae6aad82
DW
3398static void __free_imsm_disk(struct dl *d)
3399{
3400 if (d->fd >= 0)
3401 close(d->fd);
3402 if (d->devname)
3403 free(d->devname);
0dcecb2e
DW
3404 if (d->e)
3405 free(d->e);
ae6aad82
DW
3406 free(d);
3407
3408}
1a64be56 3409
cdddbdbc
DW
3410static void free_imsm_disks(struct intel_super *super)
3411{
47ee5a45 3412 struct dl *d;
cdddbdbc 3413
47ee5a45
DW
3414 while (super->disks) {
3415 d = super->disks;
cdddbdbc 3416 super->disks = d->next;
ae6aad82 3417 __free_imsm_disk(d);
cdddbdbc 3418 }
cb82edca
AK
3419 while (super->disk_mgmt_list) {
3420 d = super->disk_mgmt_list;
3421 super->disk_mgmt_list = d->next;
3422 __free_imsm_disk(d);
3423 }
47ee5a45
DW
3424 while (super->missing) {
3425 d = super->missing;
3426 super->missing = d->next;
3427 __free_imsm_disk(d);
3428 }
3429
cdddbdbc
DW
3430}
3431
9ca2c81c 3432/* free all the pieces hanging off of a super pointer */
d23fe947 3433static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 3434{
88654014
LM
3435 struct intel_hba *elem, *next;
3436
9ca2c81c 3437 if (super->buf) {
949c47a0 3438 free(super->buf);
9ca2c81c
DW
3439 super->buf = NULL;
3440 }
f2f5c343
LM
3441 /* unlink capability description */
3442 super->orom = NULL;
8e59f3d8
AK
3443 if (super->migr_rec_buf) {
3444 free(super->migr_rec_buf);
3445 super->migr_rec_buf = NULL;
3446 }
d23fe947
DW
3447 if (free_disks)
3448 free_imsm_disks(super);
ba2de7ba 3449 free_devlist(super);
88654014
LM
3450 elem = super->hba;
3451 while (elem) {
3452 if (elem->path)
3453 free((void *)elem->path);
3454 next = elem->next;
3455 free(elem);
3456 elem = next;
88c32bb1 3457 }
88654014 3458 super->hba = NULL;
cdddbdbc
DW
3459}
3460
9ca2c81c
DW
3461static void free_imsm(struct intel_super *super)
3462{
d23fe947 3463 __free_imsm(super, 1);
9ca2c81c
DW
3464 free(super);
3465}
cdddbdbc
DW
3466
3467static void free_super_imsm(struct supertype *st)
3468{
3469 struct intel_super *super = st->sb;
3470
3471 if (!super)
3472 return;
3473
3474 free_imsm(super);
3475 st->sb = NULL;
3476}
3477
49133e57 3478static struct intel_super *alloc_super(void)
c2c087e6
DW
3479{
3480 struct intel_super *super = malloc(sizeof(*super));
3481
3482 if (super) {
3483 memset(super, 0, sizeof(*super));
bf5a934a 3484 super->current_vol = -1;
0dcecb2e 3485 super->create_offset = ~((__u32 ) 0);
c2c087e6 3486 }
c2c087e6
DW
3487 return super;
3488}
3489
f0f5a016
LM
3490/*
3491 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3492 */
d424212e 3493static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
f0f5a016
LM
3494{
3495 struct sys_dev *hba_name;
3496 int rv = 0;
3497
3498 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
f2f5c343 3499 super->orom = NULL;
f0f5a016
LM
3500 super->hba = NULL;
3501 return 0;
3502 }
3503 hba_name = find_disk_attached_hba(fd, NULL);
3504 if (!hba_name) {
d424212e 3505 if (devname)
f0f5a016
LM
3506 fprintf(stderr,
3507 Name ": %s is not attached to Intel(R) RAID controller.\n",
d424212e 3508 devname);
f0f5a016
LM
3509 return 1;
3510 }
3511 rv = attach_hba_to_super(super, hba_name);
3512 if (rv == 2) {
d424212e
N
3513 if (devname) {
3514 struct intel_hba *hba = super->hba;
f0f5a016 3515
f0f5a016
LM
3516 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3517 "controller (%s),\n"
3518 " but the container is assigned to Intel(R) "
3519 "%s RAID controller (",
d424212e 3520 devname,
f0f5a016
LM
3521 hba_name->path,
3522 hba_name->pci_id ? : "Err!",
3523 get_sys_dev_type(hba_name->type));
3524
f0f5a016
LM
3525 while (hba) {
3526 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3527 if (hba->next)
3528 fprintf(stderr, ", ");
3529 hba = hba->next;
3530 }
3531
3532 fprintf(stderr, ").\n"
3533 " Mixing devices attached to different controllers "
3534 "is not allowed.\n");
3535 }
3536 free_sys_dev(&hba_name);
3537 return 2;
3538 }
f2f5c343 3539 super->orom = find_imsm_capability(hba_name->type);
f0f5a016 3540 free_sys_dev(&hba_name);
f2f5c343
LM
3541 if (!super->orom)
3542 return 3;
f0f5a016
LM
3543 return 0;
3544}
3545
47ee5a45
DW
3546/* find_missing - helper routine for load_super_imsm_all that identifies
3547 * disks that have disappeared from the system. This routine relies on
3548 * the mpb being uptodate, which it is at load time.
3549 */
3550static int find_missing(struct intel_super *super)
3551{
3552 int i;
3553 struct imsm_super *mpb = super->anchor;
3554 struct dl *dl;
3555 struct imsm_disk *disk;
47ee5a45
DW
3556
3557 for (i = 0; i < mpb->num_disks; i++) {
3558 disk = __get_imsm_disk(mpb, i);
54c2c1ea 3559 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
3560 if (dl)
3561 continue;
47ee5a45
DW
3562
3563 dl = malloc(sizeof(*dl));
3564 if (!dl)
3565 return 1;
3566 dl->major = 0;
3567 dl->minor = 0;
3568 dl->fd = -1;
3569 dl->devname = strdup("missing");
3570 dl->index = i;
3571 serialcpy(dl->serial, disk->serial);
3572 dl->disk = *disk;
689c9bf3 3573 dl->e = NULL;
47ee5a45
DW
3574 dl->next = super->missing;
3575 super->missing = dl;
3576 }
3577
3578 return 0;
3579}
3580
3960e579 3581#ifndef MDASSEMBLE
a2b97981
DW
3582static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3583{
3584 struct intel_disk *idisk = disk_list;
3585
3586 while (idisk) {
3587 if (serialcmp(idisk->disk.serial, serial) == 0)
3588 break;
3589 idisk = idisk->next;
3590 }
3591
3592 return idisk;
3593}
3594
3595static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3596 struct intel_super *super,
3597 struct intel_disk **disk_list)
3598{
3599 struct imsm_disk *d = &super->disks->disk;
3600 struct imsm_super *mpb = super->anchor;
3601 int i, j;
3602
3603 for (i = 0; i < tbl_size; i++) {
3604 struct imsm_super *tbl_mpb = table[i]->anchor;
3605 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3606
3607 if (tbl_mpb->family_num == mpb->family_num) {
3608 if (tbl_mpb->check_sum == mpb->check_sum) {
3609 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3610 __func__, super->disks->major,
3611 super->disks->minor,
3612 table[i]->disks->major,
3613 table[i]->disks->minor);
3614 break;
3615 }
3616
3617 if (((is_configured(d) && !is_configured(tbl_d)) ||
3618 is_configured(d) == is_configured(tbl_d)) &&
3619 tbl_mpb->generation_num < mpb->generation_num) {
3620 /* current version of the mpb is a
3621 * better candidate than the one in
3622 * super_table, but copy over "cross
3623 * generational" status
3624 */
3625 struct intel_disk *idisk;
3626
3627 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3628 __func__, super->disks->major,
3629 super->disks->minor,
3630 table[i]->disks->major,
3631 table[i]->disks->minor);
3632
3633 idisk = disk_list_get(tbl_d->serial, *disk_list);
3634 if (idisk && is_failed(&idisk->disk))
3635 tbl_d->status |= FAILED_DISK;
3636 break;
3637 } else {
3638 struct intel_disk *idisk;
3639 struct imsm_disk *disk;
3640
3641 /* tbl_mpb is more up to date, but copy
3642 * over cross generational status before
3643 * returning
3644 */
3645 disk = __serial_to_disk(d->serial, mpb, NULL);
3646 if (disk && is_failed(disk))
3647 d->status |= FAILED_DISK;
3648
3649 idisk = disk_list_get(d->serial, *disk_list);
3650 if (idisk) {
3651 idisk->owner = i;
3652 if (disk && is_configured(disk))
3653 idisk->disk.status |= CONFIGURED_DISK;
3654 }
3655
3656 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3657 __func__, super->disks->major,
3658 super->disks->minor,
3659 table[i]->disks->major,
3660 table[i]->disks->minor);
3661
3662 return tbl_size;
3663 }
3664 }
3665 }
3666
3667 if (i >= tbl_size)
3668 table[tbl_size++] = super;
3669 else
3670 table[i] = super;
3671
3672 /* update/extend the merged list of imsm_disk records */
3673 for (j = 0; j < mpb->num_disks; j++) {
3674 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3675 struct intel_disk *idisk;
3676
3677 idisk = disk_list_get(disk->serial, *disk_list);
3678 if (idisk) {
3679 idisk->disk.status |= disk->status;
3680 if (is_configured(&idisk->disk) ||
3681 is_failed(&idisk->disk))
3682 idisk->disk.status &= ~(SPARE_DISK);
3683 } else {
3684 idisk = calloc(1, sizeof(*idisk));
3685 if (!idisk)
3686 return -1;
3687 idisk->owner = IMSM_UNKNOWN_OWNER;
3688 idisk->disk = *disk;
3689 idisk->next = *disk_list;
3690 *disk_list = idisk;
3691 }
3692
3693 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3694 idisk->owner = i;
3695 }
3696
3697 return tbl_size;
3698}
3699
3700static struct intel_super *
3701validate_members(struct intel_super *super, struct intel_disk *disk_list,
3702 const int owner)
3703{
3704 struct imsm_super *mpb = super->anchor;
3705 int ok_count = 0;
3706 int i;
3707
3708 for (i = 0; i < mpb->num_disks; i++) {
3709 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3710 struct intel_disk *idisk;
3711
3712 idisk = disk_list_get(disk->serial, disk_list);
3713 if (idisk) {
3714 if (idisk->owner == owner ||
3715 idisk->owner == IMSM_UNKNOWN_OWNER)
3716 ok_count++;
3717 else
3718 dprintf("%s: '%.16s' owner %d != %d\n",
3719 __func__, disk->serial, idisk->owner,
3720 owner);
3721 } else {
3722 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3723 __func__, __le32_to_cpu(mpb->family_num), i,
3724 disk->serial);
3725 break;
3726 }
3727 }
3728
3729 if (ok_count == mpb->num_disks)
3730 return super;
3731 return NULL;
3732}
3733
3734static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3735{
3736 struct intel_super *s;
3737
3738 for (s = super_list; s; s = s->next) {
3739 if (family_num != s->anchor->family_num)
3740 continue;
3741 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3742 __le32_to_cpu(family_num), s->disks->devname);
3743 }
3744}
3745
3746static struct intel_super *
3747imsm_thunderdome(struct intel_super **super_list, int len)
3748{
3749 struct intel_super *super_table[len];
3750 struct intel_disk *disk_list = NULL;
3751 struct intel_super *champion, *spare;
3752 struct intel_super *s, **del;
3753 int tbl_size = 0;
3754 int conflict;
3755 int i;
3756
3757 memset(super_table, 0, sizeof(super_table));
3758 for (s = *super_list; s; s = s->next)
3759 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3760
3761 for (i = 0; i < tbl_size; i++) {
3762 struct imsm_disk *d;
3763 struct intel_disk *idisk;
3764 struct imsm_super *mpb = super_table[i]->anchor;
3765
3766 s = super_table[i];
3767 d = &s->disks->disk;
3768
3769 /* 'd' must appear in merged disk list for its
3770 * configuration to be valid
3771 */
3772 idisk = disk_list_get(d->serial, disk_list);
3773 if (idisk && idisk->owner == i)
3774 s = validate_members(s, disk_list, i);
3775 else
3776 s = NULL;
3777
3778 if (!s)
3779 dprintf("%s: marking family: %#x from %d:%d offline\n",
3780 __func__, mpb->family_num,
3781 super_table[i]->disks->major,
3782 super_table[i]->disks->minor);
3783 super_table[i] = s;
3784 }
3785
3786 /* This is where the mdadm implementation differs from the Windows
3787 * driver which has no strict concept of a container. We can only
3788 * assemble one family from a container, so when returning a prodigal
3789 * array member to this system the code will not be able to disambiguate
3790 * the container contents that should be assembled ("foreign" versus
3791 * "local"). It requires user intervention to set the orig_family_num
3792 * to a new value to establish a new container. The Windows driver in
3793 * this situation fixes up the volume name in place and manages the
3794 * foreign array as an independent entity.
3795 */
3796 s = NULL;
3797 spare = NULL;
3798 conflict = 0;
3799 for (i = 0; i < tbl_size; i++) {
3800 struct intel_super *tbl_ent = super_table[i];
3801 int is_spare = 0;
3802
3803 if (!tbl_ent)
3804 continue;
3805
3806 if (tbl_ent->anchor->num_raid_devs == 0) {
3807 spare = tbl_ent;
3808 is_spare = 1;
3809 }
3810
3811 if (s && !is_spare) {
3812 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3813 conflict++;
3814 } else if (!s && !is_spare)
3815 s = tbl_ent;
3816 }
3817
3818 if (!s)
3819 s = spare;
3820 if (!s) {
3821 champion = NULL;
3822 goto out;
3823 }
3824 champion = s;
3825
3826 if (conflict)
3827 fprintf(stderr, "Chose family %#x on '%s', "
3828 "assemble conflicts to new container with '--update=uuid'\n",
3829 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3830
3831 /* collect all dl's onto 'champion', and update them to
3832 * champion's version of the status
3833 */
3834 for (s = *super_list; s; s = s->next) {
3835 struct imsm_super *mpb = champion->anchor;
3836 struct dl *dl = s->disks;
3837
3838 if (s == champion)
3839 continue;
3840
3841 for (i = 0; i < mpb->num_disks; i++) {
3842 struct imsm_disk *disk;
3843
3844 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3845 if (disk) {
3846 dl->disk = *disk;
3847 /* only set index on disks that are a member of
3848 * a populated contianer, i.e. one with
3849 * raid_devs
3850 */
3851 if (is_failed(&dl->disk))
3852 dl->index = -2;
3853 else if (is_spare(&dl->disk))
3854 dl->index = -1;
3855 break;
3856 }
3857 }
3858
3859 if (i >= mpb->num_disks) {
3860 struct intel_disk *idisk;
3861
3862 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 3863 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
3864 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3865 dl->index = -1;
3866 else {
3867 dl->index = -2;
3868 continue;
3869 }
3870 }
3871
3872 dl->next = champion->disks;
3873 champion->disks = dl;
3874 s->disks = NULL;
3875 }
3876
3877 /* delete 'champion' from super_list */
3878 for (del = super_list; *del; ) {
3879 if (*del == champion) {
3880 *del = (*del)->next;
3881 break;
3882 } else
3883 del = &(*del)->next;
3884 }
3885 champion->next = NULL;
3886
3887 out:
3888 while (disk_list) {
3889 struct intel_disk *idisk = disk_list;
3890
3891 disk_list = disk_list->next;
3892 free(idisk);
3893 }
3894
3895 return champion;
3896}
3897
cdddbdbc 3898static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
e1902a7b 3899 char *devname)
cdddbdbc
DW
3900{
3901 struct mdinfo *sra;
a2b97981
DW
3902 struct intel_super *super_list = NULL;
3903 struct intel_super *super = NULL;
db575f3b 3904 int devnum = fd2devnum(fd);
a2b97981 3905 struct mdinfo *sd;
db575f3b 3906 int retry;
a2b97981
DW
3907 int err = 0;
3908 int i;
dab4a513
DW
3909
3910 /* check if 'fd' an opened container */
b526e52d 3911 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
cdddbdbc
DW
3912 if (!sra)
3913 return 1;
3914
3915 if (sra->array.major_version != -1 ||
3916 sra->array.minor_version != -2 ||
1602d52c
AW
3917 strcmp(sra->text_version, "imsm") != 0) {
3918 err = 1;
3919 goto error;
3920 }
a2b97981
DW
3921 /* load all mpbs */
3922 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
49133e57 3923 struct intel_super *s = alloc_super();
7a6ecd55 3924 char nm[32];
a2b97981 3925 int dfd;
f2f5c343 3926 int rv;
a2b97981
DW
3927
3928 err = 1;
3929 if (!s)
3930 goto error;
3931 s->next = super_list;
3932 super_list = s;
cdddbdbc 3933
a2b97981 3934 err = 2;
cdddbdbc 3935 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
e1902a7b 3936 dfd = dev_open(nm, O_RDWR);
a2b97981
DW
3937 if (dfd < 0)
3938 goto error;
3939
d424212e 3940 rv = find_intel_hba_capability(dfd, s, devname);
f2f5c343
LM
3941 /* no orom/efi or non-intel hba of the disk */
3942 if (rv != 0)
3943 goto error;
3944
e1902a7b 3945 err = load_and_parse_mpb(dfd, s, NULL, 1);
db575f3b
DW
3946
3947 /* retry the load if we might have raced against mdmon */
a2b97981 3948 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
3949 for (retry = 0; retry < 3; retry++) {
3950 usleep(3000);
e1902a7b 3951 err = load_and_parse_mpb(dfd, s, NULL, 1);
a2b97981 3952 if (err != 3)
db575f3b
DW
3953 break;
3954 }
a2b97981
DW
3955 if (err)
3956 goto error;
cdddbdbc
DW
3957 }
3958
a2b97981
DW
3959 /* all mpbs enter, maybe one leaves */
3960 super = imsm_thunderdome(&super_list, i);
3961 if (!super) {
3962 err = 1;
3963 goto error;
cdddbdbc
DW
3964 }
3965
47ee5a45
DW
3966 if (find_missing(super) != 0) {
3967 free_imsm(super);
a2b97981
DW
3968 err = 2;
3969 goto error;
47ee5a45 3970 }
8e59f3d8
AK
3971
3972 /* load migration record */
3973 err = load_imsm_migr_rec(super, NULL);
3974 if (err) {
3975 err = 4;
3976 goto error;
3977 }
e2f41b2c
AK
3978
3979 /* Check migration compatibility */
3980 if (check_mpb_migr_compatibility(super) != 0) {
3981 fprintf(stderr, Name ": Unsupported migration detected");
3982 if (devname)
3983 fprintf(stderr, " on %s\n", devname);
3984 else
3985 fprintf(stderr, " (IMSM).\n");
3986
3987 err = 5;
3988 goto error;
3989 }
3990
a2b97981
DW
3991 err = 0;
3992
3993 error:
3994 while (super_list) {
3995 struct intel_super *s = super_list;
3996
3997 super_list = super_list->next;
3998 free_imsm(s);
3999 }
1602d52c 4000 sysfs_free(sra);
a2b97981
DW
4001
4002 if (err)
4003 return err;
f7e7067b 4004
cdddbdbc 4005 *sbp = super;
db575f3b 4006 st->container_dev = devnum;
a2b97981 4007 if (err == 0 && st->ss == NULL) {
bf5a934a 4008 st->ss = &super_imsm;
cdddbdbc
DW
4009 st->minor_version = 0;
4010 st->max_devs = IMSM_MAX_DEVICES;
4011 }
cdddbdbc
DW
4012 return 0;
4013}
2b959fbf
N
4014
4015static int load_container_imsm(struct supertype *st, int fd, char *devname)
4016{
4017 return load_super_imsm_all(st, fd, &st->sb, devname);
4018}
cdddbdbc
DW
4019#endif
4020
4021static int load_super_imsm(struct supertype *st, int fd, char *devname)
4022{
4023 struct intel_super *super;
4024 int rv;
4025
691c6ee1
N
4026 if (test_partition(fd))
4027 /* IMSM not allowed on partitions */
4028 return 1;
4029
37424f13
DW
4030 free_super_imsm(st);
4031
49133e57 4032 super = alloc_super();
cdddbdbc
DW
4033 if (!super) {
4034 fprintf(stderr,
4035 Name ": malloc of %zu failed.\n",
4036 sizeof(*super));
4037 return 1;
4038 }
ea2bc72b
LM
4039 /* Load hba and capabilities if they exist.
4040 * But do not preclude loading metadata in case capabilities or hba are
4041 * non-compliant and ignore_hw_compat is set.
4042 */
d424212e 4043 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4044 /* no orom/efi or non-intel hba of the disk */
ea2bc72b 4045 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
f2f5c343
LM
4046 if (devname)
4047 fprintf(stderr,
4048 Name ": No OROM/EFI properties for %s\n", devname);
4049 free_imsm(super);
4050 return 2;
4051 }
a2b97981 4052 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
4053
4054 if (rv) {
4055 if (devname)
4056 fprintf(stderr,
4057 Name ": Failed to load all information "
4058 "sections on %s\n", devname);
4059 free_imsm(super);
4060 return rv;
4061 }
4062
4063 st->sb = super;
4064 if (st->ss == NULL) {
4065 st->ss = &super_imsm;
4066 st->minor_version = 0;
4067 st->max_devs = IMSM_MAX_DEVICES;
4068 }
8e59f3d8
AK
4069
4070 /* load migration record */
2e062e82
AK
4071 if (load_imsm_migr_rec(super, NULL) == 0) {
4072 /* Check for unsupported migration features */
4073 if (check_mpb_migr_compatibility(super) != 0) {
4074 fprintf(stderr,
4075 Name ": Unsupported migration detected");
4076 if (devname)
4077 fprintf(stderr, " on %s\n", devname);
4078 else
4079 fprintf(stderr, " (IMSM).\n");
4080 return 3;
4081 }
e2f41b2c
AK
4082 }
4083
cdddbdbc
DW
4084 return 0;
4085}
4086
ef6ffade
DW
4087static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4088{
4089 if (info->level == 1)
4090 return 128;
4091 return info->chunk_size >> 9;
4092}
4093
ff596308 4094static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
4095{
4096 __u32 num_stripes;
4097
4098 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 4099 num_stripes /= num_domains;
ef6ffade
DW
4100
4101 return num_stripes;
4102}
4103
fcfd9599
DW
4104static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4105{
4025c288
DW
4106 if (info->level == 1)
4107 return info->size * 2;
4108 else
4109 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
4110}
4111
4d1313e9
DW
4112static void imsm_update_version_info(struct intel_super *super)
4113{
4114 /* update the version and attributes */
4115 struct imsm_super *mpb = super->anchor;
4116 char *version;
4117 struct imsm_dev *dev;
4118 struct imsm_map *map;
4119 int i;
4120
4121 for (i = 0; i < mpb->num_raid_devs; i++) {
4122 dev = get_imsm_dev(super, i);
4123 map = get_imsm_map(dev, 0);
4124 if (__le32_to_cpu(dev->size_high) > 0)
4125 mpb->attributes |= MPB_ATTRIB_2TB;
4126
4127 /* FIXME detect when an array spans a port multiplier */
4128 #if 0
4129 mpb->attributes |= MPB_ATTRIB_PM;
4130 #endif
4131
4132 if (mpb->num_raid_devs > 1 ||
4133 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4134 version = MPB_VERSION_ATTRIBS;
4135 switch (get_imsm_raid_level(map)) {
4136 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4137 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4138 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4139 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4140 }
4141 } else {
4142 if (map->num_members >= 5)
4143 version = MPB_VERSION_5OR6_DISK_ARRAY;
4144 else if (dev->status == DEV_CLONE_N_GO)
4145 version = MPB_VERSION_CNG;
4146 else if (get_imsm_raid_level(map) == 5)
4147 version = MPB_VERSION_RAID5;
4148 else if (map->num_members >= 3)
4149 version = MPB_VERSION_3OR4_DISK_ARRAY;
4150 else if (get_imsm_raid_level(map) == 1)
4151 version = MPB_VERSION_RAID1;
4152 else
4153 version = MPB_VERSION_RAID0;
4154 }
4155 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4156 }
4157}
4158
aa534678
DW
4159static int check_name(struct intel_super *super, char *name, int quiet)
4160{
4161 struct imsm_super *mpb = super->anchor;
4162 char *reason = NULL;
4163 int i;
4164
4165 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4166 reason = "must be 16 characters or less";
4167
4168 for (i = 0; i < mpb->num_raid_devs; i++) {
4169 struct imsm_dev *dev = get_imsm_dev(super, i);
4170
4171 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4172 reason = "already exists";
4173 break;
4174 }
4175 }
4176
4177 if (reason && !quiet)
4178 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4179
4180 return !reason;
4181}
4182
8b353278
DW
4183static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4184 unsigned long long size, char *name,
4185 char *homehost, int *uuid)
cdddbdbc 4186{
c2c087e6
DW
4187 /* We are creating a volume inside a pre-existing container.
4188 * so st->sb is already set.
4189 */
4190 struct intel_super *super = st->sb;
949c47a0 4191 struct imsm_super *mpb = super->anchor;
ba2de7ba 4192 struct intel_dev *dv;
c2c087e6
DW
4193 struct imsm_dev *dev;
4194 struct imsm_vol *vol;
4195 struct imsm_map *map;
4196 int idx = mpb->num_raid_devs;
4197 int i;
4198 unsigned long long array_blocks;
2c092cad 4199 size_t size_old, size_new;
ff596308 4200 __u32 num_data_stripes;
cdddbdbc 4201
88c32bb1 4202 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 4203 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 4204 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
4205 return 0;
4206 }
4207
2c092cad
DW
4208 /* ensure the mpb is large enough for the new data */
4209 size_old = __le32_to_cpu(mpb->mpb_size);
4210 size_new = disks_to_mpb_size(info->nr_disks);
4211 if (size_new > size_old) {
4212 void *mpb_new;
4213 size_t size_round = ROUND_UP(size_new, 512);
4214
4215 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4216 fprintf(stderr, Name": could not allocate new mpb\n");
4217 return 0;
4218 }
8e59f3d8
AK
4219 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4220 fprintf(stderr, Name
4221 ": %s could not allocate migr_rec buffer\n",
4222 __func__);
4223 free(super->buf);
4224 free(super);
ea944c8f 4225 free(mpb_new);
8e59f3d8
AK
4226 return 0;
4227 }
2c092cad
DW
4228 memcpy(mpb_new, mpb, size_old);
4229 free(mpb);
4230 mpb = mpb_new;
949c47a0 4231 super->anchor = mpb_new;
2c092cad
DW
4232 mpb->mpb_size = __cpu_to_le32(size_new);
4233 memset(mpb_new + size_old, 0, size_round - size_old);
4234 }
bf5a934a 4235 super->current_vol = idx;
3960e579
DW
4236
4237 /* handle 'failed_disks' by either:
4238 * a) create dummy disk entries in the table if this the first
4239 * volume in the array. We add them here as this is the only
4240 * opportunity to add them. add_to_super_imsm_volume()
4241 * handles the non-failed disks and continues incrementing
4242 * mpb->num_disks.
4243 * b) validate that 'failed_disks' matches the current number
4244 * of missing disks if the container is populated
d23fe947 4245 */
3960e579 4246 if (super->current_vol == 0) {
d23fe947 4247 mpb->num_disks = 0;
3960e579
DW
4248 for (i = 0; i < info->failed_disks; i++) {
4249 struct imsm_disk *disk;
4250
4251 mpb->num_disks++;
4252 disk = __get_imsm_disk(mpb, i);
4253 disk->status = CONFIGURED_DISK | FAILED_DISK;
4254 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4255 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4256 "missing:%d", i);
4257 }
4258 find_missing(super);
4259 } else {
4260 int missing = 0;
4261 struct dl *d;
4262
4263 for (d = super->missing; d; d = d->next)
4264 missing++;
4265 if (info->failed_disks > missing) {
4266 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4267 return 0;
4268 }
4269 }
5a038140 4270
aa534678
DW
4271 if (!check_name(super, name, 0))
4272 return 0;
ba2de7ba
DW
4273 dv = malloc(sizeof(*dv));
4274 if (!dv) {
4275 fprintf(stderr, Name ": failed to allocate device list entry\n");
4276 return 0;
4277 }
1a2487c2 4278 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
949c47a0 4279 if (!dev) {
ba2de7ba 4280 free(dv);
949c47a0
DW
4281 fprintf(stderr, Name": could not allocate raid device\n");
4282 return 0;
4283 }
1a2487c2 4284
c2c087e6 4285 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
4286 if (info->level == 1)
4287 array_blocks = info_to_blocks_per_member(info);
4288 else
4289 array_blocks = calc_array_size(info->level, info->raid_disks,
4290 info->layout, info->chunk_size,
4291 info->size*2);
979d38be
DW
4292 /* round array size down to closest MB */
4293 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4294
c2c087e6
DW
4295 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4296 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1a2487c2 4297 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
c2c087e6
DW
4298 vol = &dev->vol;
4299 vol->migr_state = 0;
1484e727 4300 set_migr_type(dev, MIGR_INIT);
3960e579 4301 vol->dirty = !info->state;
f8f603f1 4302 vol->curr_migr_unit = 0;
a965f303 4303 map = get_imsm_map(dev, 0);
0dcecb2e 4304 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 4305 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 4306 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 4307 map->failed_disk_num = ~0;
3960e579 4308 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
252d23c0 4309 map->ddf = 1;
ef6ffade
DW
4310
4311 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
4312 free(dev);
4313 free(dv);
ef6ffade
DW
4314 fprintf(stderr, Name": imsm does not support more than 2 disks"
4315 "in a raid1 volume\n");
4316 return 0;
4317 }
81062a36
DW
4318
4319 map->raid_level = info->level;
4d1313e9 4320 if (info->level == 10) {
c2c087e6 4321 map->raid_level = 1;
4d1313e9 4322 map->num_domains = info->raid_disks / 2;
81062a36
DW
4323 } else if (info->level == 1)
4324 map->num_domains = info->raid_disks;
4325 else
ff596308 4326 map->num_domains = 1;
81062a36 4327
ff596308
DW
4328 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4329 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 4330
c2c087e6
DW
4331 map->num_members = info->raid_disks;
4332 for (i = 0; i < map->num_members; i++) {
4333 /* initialized in add_to_super */
4eb26970 4334 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
c2c087e6 4335 }
949c47a0 4336 mpb->num_raid_devs++;
ba2de7ba
DW
4337
4338 dv->dev = dev;
4339 dv->index = super->current_vol;
4340 dv->next = super->devlist;
4341 super->devlist = dv;
c2c087e6 4342
4d1313e9
DW
4343 imsm_update_version_info(super);
4344
c2c087e6 4345 return 1;
cdddbdbc
DW
4346}
4347
bf5a934a
DW
4348static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4349 unsigned long long size, char *name,
4350 char *homehost, int *uuid)
4351{
4352 /* This is primarily called by Create when creating a new array.
4353 * We will then get add_to_super called for each component, and then
4354 * write_init_super called to write it out to each device.
4355 * For IMSM, Create can create on fresh devices or on a pre-existing
4356 * array.
4357 * To create on a pre-existing array a different method will be called.
4358 * This one is just for fresh drives.
4359 */
4360 struct intel_super *super;
4361 struct imsm_super *mpb;
4362 size_t mpb_size;
4d1313e9 4363 char *version;
bf5a934a 4364
bf5a934a 4365 if (st->sb)
e683ca88
DW
4366 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4367
4368 if (info)
4369 mpb_size = disks_to_mpb_size(info->nr_disks);
4370 else
4371 mpb_size = 512;
bf5a934a 4372
49133e57 4373 super = alloc_super();
e683ca88 4374 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 4375 free(super);
e683ca88
DW
4376 super = NULL;
4377 }
4378 if (!super) {
4379 fprintf(stderr, Name
4380 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
4381 return 0;
4382 }
8e59f3d8
AK
4383 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4384 fprintf(stderr, Name
4385 ": %s could not allocate migr_rec buffer\n", __func__);
4386 free(super->buf);
4387 free(super);
4388 return 0;
4389 }
e683ca88 4390 memset(super->buf, 0, mpb_size);
ef649044 4391 mpb = super->buf;
e683ca88
DW
4392 mpb->mpb_size = __cpu_to_le32(mpb_size);
4393 st->sb = super;
4394
4395 if (info == NULL) {
4396 /* zeroing superblock */
4397 return 0;
4398 }
bf5a934a 4399
4d1313e9
DW
4400 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4401
4402 version = (char *) mpb->sig;
4403 strcpy(version, MPB_SIGNATURE);
4404 version += strlen(MPB_SIGNATURE);
4405 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 4406
bf5a934a
DW
4407 return 1;
4408}
4409
0e600426 4410#ifndef MDASSEMBLE
f20c3968 4411static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
4412 int fd, char *devname)
4413{
4414 struct intel_super *super = st->sb;
d23fe947 4415 struct imsm_super *mpb = super->anchor;
3960e579 4416 struct imsm_disk *_disk;
bf5a934a
DW
4417 struct imsm_dev *dev;
4418 struct imsm_map *map;
3960e579 4419 struct dl *dl, *df;
4eb26970 4420 int slot;
bf5a934a 4421
949c47a0 4422 dev = get_imsm_dev(super, super->current_vol);
a965f303 4423 map = get_imsm_map(dev, 0);
bf5a934a 4424
208933a7
N
4425 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4426 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4427 devname);
4428 return 1;
4429 }
4430
efb30e7f
DW
4431 if (fd == -1) {
4432 /* we're doing autolayout so grab the pre-marked (in
4433 * validate_geometry) raid_disk
4434 */
4435 for (dl = super->disks; dl; dl = dl->next)
4436 if (dl->raiddisk == dk->raid_disk)
4437 break;
4438 } else {
4439 for (dl = super->disks; dl ; dl = dl->next)
4440 if (dl->major == dk->major &&
4441 dl->minor == dk->minor)
4442 break;
4443 }
d23fe947 4444
208933a7
N
4445 if (!dl) {
4446 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 4447 return 1;
208933a7 4448 }
bf5a934a 4449
d23fe947
DW
4450 /* add a pristine spare to the metadata */
4451 if (dl->index < 0) {
4452 dl->index = super->anchor->num_disks;
4453 super->anchor->num_disks++;
4454 }
4eb26970
DW
4455 /* Check the device has not already been added */
4456 slot = get_imsm_disk_slot(map, dl->index);
4457 if (slot >= 0 &&
98130f40 4458 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4eb26970
DW
4459 fprintf(stderr, Name ": %s has been included in this array twice\n",
4460 devname);
4461 return 1;
4462 }
656b6b5a 4463 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
ee5aad5a 4464 dl->disk.status = CONFIGURED_DISK;
d23fe947 4465
3960e579
DW
4466 /* update size of 'missing' disks to be at least as large as the
4467 * largest acitve member (we only have dummy missing disks when
4468 * creating the first volume)
4469 */
4470 if (super->current_vol == 0) {
4471 for (df = super->missing; df; df = df->next) {
4472 if (dl->disk.total_blocks > df->disk.total_blocks)
4473 df->disk.total_blocks = dl->disk.total_blocks;
4474 _disk = __get_imsm_disk(mpb, df->index);
4475 *_disk = df->disk;
4476 }
4477 }
4478
4479 /* refresh unset/failed slots to point to valid 'missing' entries */
4480 for (df = super->missing; df; df = df->next)
4481 for (slot = 0; slot < mpb->num_disks; slot++) {
4482 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4483
4484 if ((ord & IMSM_ORD_REBUILD) == 0)
4485 continue;
4486 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
1ace8403
AK
4487 if (is_gen_migration(dev)) {
4488 struct imsm_map *map2 = get_imsm_map(dev, 1);
4489 if (slot < map2->num_members) {
4490 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4491 slot,
4492 1);
4493 if ((unsigned)df->index ==
4494 ord_to_idx(ord2))
4495 set_imsm_ord_tbl_ent(map2,
4496 slot,
4497 df->index |
4498 IMSM_ORD_REBUILD);
4499 }
4500 }
3960e579
DW
4501 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4502 break;
4503 }
4504
d23fe947
DW
4505 /* if we are creating the first raid device update the family number */
4506 if (super->current_vol == 0) {
4507 __u32 sum;
4508 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
d23fe947 4509
3960e579 4510 _disk = __get_imsm_disk(mpb, dl->index);
791b666a
AW
4511 if (!_dev || !_disk) {
4512 fprintf(stderr, Name ": BUG mpb setup error\n");
4513 return 1;
4514 }
d23fe947
DW
4515 *_dev = *dev;
4516 *_disk = dl->disk;
148acb7b
DW
4517 sum = random32();
4518 sum += __gen_imsm_checksum(mpb);
d23fe947 4519 mpb->family_num = __cpu_to_le32(sum);
148acb7b 4520 mpb->orig_family_num = mpb->family_num;
d23fe947 4521 }
ca0748fa 4522 super->current_disk = dl;
f20c3968 4523 return 0;
bf5a934a
DW
4524}
4525
a8619d23
AK
4526/* mark_spare()
4527 * Function marks disk as spare and restores disk serial
4528 * in case it was previously marked as failed by takeover operation
4529 * reruns:
4530 * -1 : critical error
4531 * 0 : disk is marked as spare but serial is not set
4532 * 1 : success
4533 */
4534int mark_spare(struct dl *disk)
4535{
4536 __u8 serial[MAX_RAID_SERIAL_LEN];
4537 int ret_val = -1;
4538
4539 if (!disk)
4540 return ret_val;
4541
4542 ret_val = 0;
4543 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4544 /* Restore disk serial number, because takeover marks disk
4545 * as failed and adds to serial ':0' before it becomes
4546 * a spare disk.
4547 */
4548 serialcpy(disk->serial, serial);
4549 serialcpy(disk->disk.serial, serial);
4550 ret_val = 1;
4551 }
4552 disk->disk.status = SPARE_DISK;
4553 disk->index = -1;
4554
4555 return ret_val;
4556}
88654014 4557
f20c3968 4558static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
88654014 4559 int fd, char *devname)
cdddbdbc 4560{
c2c087e6 4561 struct intel_super *super = st->sb;
c2c087e6
DW
4562 struct dl *dd;
4563 unsigned long long size;
f2f27e63 4564 __u32 id;
c2c087e6
DW
4565 int rv;
4566 struct stat stb;
4567
88654014
LM
4568 /* If we are on an RAID enabled platform check that the disk is
4569 * attached to the raid controller.
4570 * We do not need to test disks attachment for container based additions,
4571 * they shall be already tested when container was created/assembled.
88c32bb1 4572 */
d424212e 4573 rv = find_intel_hba_capability(fd, super, devname);
f2f5c343 4574 /* no orom/efi or non-intel hba of the disk */
f0f5a016
LM
4575 if (rv != 0) {
4576 dprintf("capability: %p fd: %d ret: %d\n",
4577 super->orom, fd, rv);
4578 return 1;
88c32bb1
DW
4579 }
4580
f20c3968
DW
4581 if (super->current_vol >= 0)
4582 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 4583
c2c087e6
DW
4584 fstat(fd, &stb);
4585 dd = malloc(sizeof(*dd));
b9f594fe 4586 if (!dd) {
c2c087e6
DW
4587 fprintf(stderr,
4588 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 4589 return 1;
c2c087e6
DW
4590 }
4591 memset(dd, 0, sizeof(*dd));
4592 dd->major = major(stb.st_rdev);
4593 dd->minor = minor(stb.st_rdev);
c2c087e6 4594 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 4595 dd->fd = fd;
689c9bf3 4596 dd->e = NULL;
1a64be56 4597 dd->action = DISK_ADD;
c2c087e6 4598 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 4599 if (rv) {
c2c087e6 4600 fprintf(stderr,
0030e8d6 4601 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 4602 free(dd);
0030e8d6 4603 abort();
c2c087e6
DW
4604 }
4605
c2c087e6
DW
4606 get_dev_size(fd, NULL, &size);
4607 size /= 512;
1f24f035 4608 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 4609 dd->disk.total_blocks = __cpu_to_le32(size);
a8619d23 4610 mark_spare(dd);
c2c087e6 4611 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 4612 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 4613 else
b9f594fe 4614 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
4615
4616 if (st->update_tail) {
1a64be56
LM
4617 dd->next = super->disk_mgmt_list;
4618 super->disk_mgmt_list = dd;
43dad3d6
DW
4619 } else {
4620 dd->next = super->disks;
4621 super->disks = dd;
ceaf0ee1 4622 super->updates_pending++;
43dad3d6 4623 }
f20c3968
DW
4624
4625 return 0;
cdddbdbc
DW
4626}
4627
1a64be56
LM
4628
4629static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4630{
4631 struct intel_super *super = st->sb;
4632 struct dl *dd;
4633
4634 /* remove from super works only in mdmon - for communication
4635 * manager - monitor. Check if communication memory buffer
4636 * is prepared.
4637 */
4638 if (!st->update_tail) {
4639 fprintf(stderr,
4640 Name ": %s shall be used in mdmon context only"
4641 "(line %d).\n", __func__, __LINE__);
4642 return 1;
4643 }
4644 dd = malloc(sizeof(*dd));
4645 if (!dd) {
4646 fprintf(stderr,
4647 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4648 return 1;
4649 }
4650 memset(dd, 0, sizeof(*dd));
4651 dd->major = dk->major;
4652 dd->minor = dk->minor;
1a64be56 4653 dd->fd = -1;
a8619d23 4654 mark_spare(dd);
1a64be56
LM
4655 dd->action = DISK_REMOVE;
4656
4657 dd->next = super->disk_mgmt_list;
4658 super->disk_mgmt_list = dd;
4659
4660
4661 return 0;
4662}
4663
f796af5d
DW
4664static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4665
4666static union {
4667 char buf[512];
4668 struct imsm_super anchor;
4669} spare_record __attribute__ ((aligned(512)));
c2c087e6 4670
d23fe947
DW
4671/* spare records have their own family number and do not have any defined raid
4672 * devices
4673 */
4674static int write_super_imsm_spares(struct intel_super *super, int doclose)
4675{
d23fe947 4676 struct imsm_super *mpb = super->anchor;
f796af5d 4677 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
4678 __u32 sum;
4679 struct dl *d;
4680
f796af5d
DW
4681 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4682 spare->generation_num = __cpu_to_le32(1UL),
4683 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4684 spare->num_disks = 1,
4685 spare->num_raid_devs = 0,
4686 spare->cache_size = mpb->cache_size,
4687 spare->pwr_cycle_count = __cpu_to_le32(1),
4688
4689 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4690 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
4691
4692 for (d = super->disks; d; d = d->next) {
8796fdc4 4693 if (d->index != -1)
d23fe947
DW
4694 continue;
4695
f796af5d
DW
4696 spare->disk[0] = d->disk;
4697 sum = __gen_imsm_checksum(spare);
4698 spare->family_num = __cpu_to_le32(sum);
4699 spare->orig_family_num = 0;
4700 sum = __gen_imsm_checksum(spare);
4701 spare->check_sum = __cpu_to_le32(sum);
d23fe947 4702
f796af5d 4703 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
4704 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4705 __func__, d->major, d->minor, strerror(errno));
e74255d9 4706 return 1;
d23fe947
DW
4707 }
4708 if (doclose) {
4709 close(d->fd);
4710 d->fd = -1;
4711 }
4712 }
4713
e74255d9 4714 return 0;
d23fe947
DW
4715}
4716
36988a3d 4717static int write_super_imsm(struct supertype *st, int doclose)
cdddbdbc 4718{
36988a3d 4719 struct intel_super *super = st->sb;
949c47a0 4720 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
4721 struct dl *d;
4722 __u32 generation;
4723 __u32 sum;
d23fe947 4724 int spares = 0;
949c47a0 4725 int i;
a48ac0a8 4726 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
36988a3d 4727 int num_disks = 0;
146c6260 4728 int clear_migration_record = 1;
cdddbdbc 4729
c2c087e6
DW
4730 /* 'generation' is incremented everytime the metadata is written */
4731 generation = __le32_to_cpu(mpb->generation_num);
4732 generation++;
4733 mpb->generation_num = __cpu_to_le32(generation);
4734
148acb7b
DW
4735 /* fix up cases where previous mdadm releases failed to set
4736 * orig_family_num
4737 */
4738 if (mpb->orig_family_num == 0)
4739 mpb->orig_family_num = mpb->family_num;
4740
d23fe947 4741 for (d = super->disks; d; d = d->next) {
8796fdc4 4742 if (d->index == -1)
d23fe947 4743 spares++;
36988a3d 4744 else {
d23fe947 4745 mpb->disk[d->index] = d->disk;
36988a3d
AK
4746 num_disks++;
4747 }
d23fe947 4748 }
36988a3d 4749 for (d = super->missing; d; d = d->next) {
47ee5a45 4750 mpb->disk[d->index] = d->disk;
36988a3d
AK
4751 num_disks++;
4752 }
4753 mpb->num_disks = num_disks;
4754 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
b9f594fe 4755
949c47a0
DW
4756 for (i = 0; i < mpb->num_raid_devs; i++) {
4757 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
36988a3d
AK
4758 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4759 if (dev && dev2) {
4760 imsm_copy_dev(dev, dev2);
4761 mpb_size += sizeof_imsm_dev(dev, 0);
4762 }
146c6260
AK
4763 if (is_gen_migration(dev2))
4764 clear_migration_record = 0;
949c47a0 4765 }
a48ac0a8
DW
4766 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4767 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 4768
c2c087e6 4769 /* recalculate checksum */
949c47a0 4770 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
4771 mpb->check_sum = __cpu_to_le32(sum);
4772
146c6260
AK
4773 if (clear_migration_record)
4774 memset(super->migr_rec_buf, 0, 512);
4775
d23fe947 4776 /* write the mpb for disks that compose raid devices */
c2c087e6 4777 for (d = super->disks; d ; d = d->next) {
86c54047 4778 if (d->index < 0 || is_failed(&d->disk))
d23fe947 4779 continue;
f796af5d 4780 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
4781 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4782 __func__, d->major, d->minor, strerror(errno));
146c6260
AK
4783 if (clear_migration_record) {
4784 unsigned long long dsize;
4785
4786 get_dev_size(d->fd, NULL, &dsize);
4787 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
9e2d750d
N
4788 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4789 perror("Write migr_rec failed");
146c6260
AK
4790 }
4791 }
c2c087e6
DW
4792 if (doclose) {
4793 close(d->fd);
4794 d->fd = -1;
4795 }
4796 }
4797
d23fe947
DW
4798 if (spares)
4799 return write_super_imsm_spares(super, doclose);
4800
e74255d9 4801 return 0;
c2c087e6
DW
4802}
4803
0e600426 4804
9b1fb677 4805static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
4806{
4807 size_t len;
4808 struct imsm_update_create_array *u;
4809 struct intel_super *super = st->sb;
9b1fb677 4810 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
4811 struct imsm_map *map = get_imsm_map(dev, 0);
4812 struct disk_info *inf;
4813 struct imsm_disk *disk;
4814 int i;
43dad3d6 4815
54c2c1ea
DW
4816 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4817 sizeof(*inf) * map->num_members;
43dad3d6
DW
4818 u = malloc(len);
4819 if (!u) {
4820 fprintf(stderr, "%s: failed to allocate update buffer\n",
4821 __func__);
4822 return 1;
4823 }
4824
4825 u->type = update_create_array;
9b1fb677 4826 u->dev_idx = dev_idx;
43dad3d6 4827 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
4828 inf = get_disk_info(u);
4829 for (i = 0; i < map->num_members; i++) {
98130f40 4830 int idx = get_imsm_disk_idx(dev, i, -1);
9b1fb677 4831
54c2c1ea
DW
4832 disk = get_imsm_disk(super, idx);
4833 serialcpy(inf[i].serial, disk->serial);
4834 }
43dad3d6
DW
4835 append_metadata_update(st, u, len);
4836
4837 return 0;
4838}
4839
1a64be56 4840static int mgmt_disk(struct supertype *st)
43dad3d6
DW
4841{
4842 struct intel_super *super = st->sb;
4843 size_t len;
1a64be56 4844 struct imsm_update_add_remove_disk *u;
43dad3d6 4845
1a64be56 4846 if (!super->disk_mgmt_list)
43dad3d6
DW
4847 return 0;
4848
4849 len = sizeof(*u);
4850 u = malloc(len);
4851 if (!u) {
4852 fprintf(stderr, "%s: failed to allocate update buffer\n",
4853 __func__);
4854 return 1;
4855 }
4856
1a64be56 4857 u->type = update_add_remove_disk;
43dad3d6
DW
4858 append_metadata_update(st, u, len);
4859
4860 return 0;
4861}
4862
c2c087e6
DW
4863static int write_init_super_imsm(struct supertype *st)
4864{
9b1fb677
DW
4865 struct intel_super *super = st->sb;
4866 int current_vol = super->current_vol;
4867
4868 /* we are done with current_vol reset it to point st at the container */
4869 super->current_vol = -1;
4870
8273f55e 4871 if (st->update_tail) {
43dad3d6
DW
4872 /* queue the recently created array / added disk
4873 * as a metadata update */
43dad3d6 4874 int rv;
8273f55e 4875
43dad3d6 4876 /* determine if we are creating a volume or adding a disk */
9b1fb677 4877 if (current_vol < 0) {
1a64be56
LM
4878 /* in the mgmt (add/remove) disk case we are running
4879 * in mdmon context, so don't close fd's
43dad3d6 4880 */
1a64be56 4881 return mgmt_disk(st);
43dad3d6 4882 } else
9b1fb677 4883 rv = create_array(st, current_vol);
8273f55e 4884
43dad3d6 4885 return rv;
d682f344
N
4886 } else {
4887 struct dl *d;
4888 for (d = super->disks; d; d = d->next)
4889 Kill(d->devname, NULL, 0, 1, 1);
36988a3d 4890 return write_super_imsm(st, 1);
d682f344 4891 }
cdddbdbc 4892}
0e600426 4893#endif
cdddbdbc 4894
e683ca88 4895static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 4896{
e683ca88
DW
4897 struct intel_super *super = st->sb;
4898 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 4899
e683ca88 4900 if (!mpb)
ad97895e
DW
4901 return 1;
4902
1799c9e8 4903#ifndef MDASSEMBLE
e683ca88 4904 return store_imsm_mpb(fd, mpb);
1799c9e8
N
4905#else
4906 return 1;
4907#endif
cdddbdbc
DW
4908}
4909
0e600426
N
4910static int imsm_bbm_log_size(struct imsm_super *mpb)
4911{
4912 return __le32_to_cpu(mpb->bbm_log_size);
4913}
4914
4915#ifndef MDASSEMBLE
cdddbdbc
DW
4916static int validate_geometry_imsm_container(struct supertype *st, int level,
4917 int layout, int raiddisks, int chunk,
c2c087e6 4918 unsigned long long size, char *dev,
2c514b71
NB
4919 unsigned long long *freesize,
4920 int verbose)
cdddbdbc 4921{
c2c087e6
DW
4922 int fd;
4923 unsigned long long ldsize;
f2f5c343
LM
4924 struct intel_super *super=NULL;
4925 int rv = 0;
cdddbdbc 4926
c2c087e6
DW
4927 if (level != LEVEL_CONTAINER)
4928 return 0;
4929 if (!dev)
4930 return 1;
4931
4932 fd = open(dev, O_RDONLY|O_EXCL, 0);
4933 if (fd < 0) {
2c514b71
NB
4934 if (verbose)
4935 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4936 dev, strerror(errno));
c2c087e6
DW
4937 return 0;
4938 }
4939 if (!get_dev_size(fd, dev, &ldsize)) {
4940 close(fd);
4941 return 0;
4942 }
f2f5c343
LM
4943
4944 /* capabilities retrieve could be possible
4945 * note that there is no fd for the disks in array.
4946 */
4947 super = alloc_super();
4948 if (!super) {
4949 fprintf(stderr,
4950 Name ": malloc of %zu failed.\n",
4951 sizeof(*super));
4952 close(fd);
4953 return 0;
4954 }
4955
d424212e 4956 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
f2f5c343
LM
4957 if (rv != 0) {
4958#if DEBUG
4959 char str[256];
4960 fd2devname(fd, str);
4961 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4962 fd, str, super->orom, rv, raiddisks);
4963#endif
4964 /* no orom/efi or non-intel hba of the disk */
4965 close(fd);
4966 free_imsm(super);
4967 return 0;
4968 }
c2c087e6 4969 close(fd);
f2f5c343
LM
4970 if (super->orom && raiddisks > super->orom->tds) {
4971 if (verbose)
4972 fprintf(stderr, Name ": %d exceeds maximum number of"
4973 " platform supported disks: %d\n",
4974 raiddisks, super->orom->tds);
4975
4976 free_imsm(super);
4977 return 0;
4978 }
c2c087e6
DW
4979
4980 *freesize = avail_size_imsm(st, ldsize >> 9);
f2f5c343 4981 free_imsm(super);
c2c087e6
DW
4982
4983 return 1;
cdddbdbc
DW
4984}
4985
0dcecb2e
DW
4986static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4987{
4988 const unsigned long long base_start = e[*idx].start;
4989 unsigned long long end = base_start + e[*idx].size;
4990 int i;
4991
4992 if (base_start == end)
4993 return 0;
4994
4995 *idx = *idx + 1;
4996 for (i = *idx; i < num_extents; i++) {
4997 /* extend overlapping extents */
4998 if (e[i].start >= base_start &&
4999 e[i].start <= end) {
5000 if (e[i].size == 0)
5001 return 0;
5002 if (e[i].start + e[i].size > end)
5003 end = e[i].start + e[i].size;
5004 } else if (e[i].start > end) {
5005 *idx = i;
5006 break;
5007 }
5008 }
5009
5010 return end - base_start;
5011}
5012
5013static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5014{
5015 /* build a composite disk with all known extents and generate a new
5016 * 'maxsize' given the "all disks in an array must share a common start
5017 * offset" constraint
5018 */
5019 struct extent *e = calloc(sum_extents, sizeof(*e));
5020 struct dl *dl;
5021 int i, j;
5022 int start_extent;
5023 unsigned long long pos;
b9d77223 5024 unsigned long long start = 0;
0dcecb2e
DW
5025 unsigned long long maxsize;
5026 unsigned long reserve;
5027
5028 if (!e)
a7dd165b 5029 return 0;
0dcecb2e
DW
5030
5031 /* coalesce and sort all extents. also, check to see if we need to
5032 * reserve space between member arrays
5033 */
5034 j = 0;
5035 for (dl = super->disks; dl; dl = dl->next) {
5036 if (!dl->e)
5037 continue;
5038 for (i = 0; i < dl->extent_cnt; i++)
5039 e[j++] = dl->e[i];
5040 }
5041 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5042
5043 /* merge extents */
5044 i = 0;
5045 j = 0;
5046 while (i < sum_extents) {
5047 e[j].start = e[i].start;
5048 e[j].size = find_size(e, &i, sum_extents);
5049 j++;
5050 if (e[j-1].size == 0)
5051 break;
5052 }
5053
5054 pos = 0;
5055 maxsize = 0;
5056 start_extent = 0;
5057 i = 0;
5058 do {
5059 unsigned long long esize;
5060
5061 esize = e[i].start - pos;
5062 if (esize >= maxsize) {
5063 maxsize = esize;
5064 start = pos;
5065 start_extent = i;
5066 }
5067 pos = e[i].start + e[i].size;
5068 i++;
5069 } while (e[i-1].size);
5070 free(e);
5071
a7dd165b
DW
5072 if (maxsize == 0)
5073 return 0;
5074
5075 /* FIXME assumes volume at offset 0 is the first volume in a
5076 * container
5077 */
0dcecb2e
DW
5078 if (start_extent > 0)
5079 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5080 else
5081 reserve = 0;
5082
5083 if (maxsize < reserve)
a7dd165b 5084 return 0;
0dcecb2e
DW
5085
5086 super->create_offset = ~((__u32) 0);
5087 if (start + reserve > super->create_offset)
a7dd165b 5088 return 0; /* start overflows create_offset */
0dcecb2e
DW
5089 super->create_offset = start + reserve;
5090
5091 return maxsize - reserve;
5092}
5093
88c32bb1
DW
5094static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5095{
5096 if (level < 0 || level == 6 || level == 4)
5097 return 0;
5098
5099 /* if we have an orom prevent invalid raid levels */
5100 if (orom)
5101 switch (level) {
5102 case 0: return imsm_orom_has_raid0(orom);
5103 case 1:
5104 if (raiddisks > 2)
5105 return imsm_orom_has_raid1e(orom);
1c556e92
DW
5106 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5107 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5108 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
5109 }
5110 else
5111 return 1; /* not on an Intel RAID platform so anything goes */
5112
5113 return 0;
5114}
5115
cd9d1ac7
DW
5116static int imsm_default_chunk(const struct imsm_orom *orom)
5117{
5118 /* up to 512 if the plaform supports it, otherwise the platform max.
5119 * 128 if no platform detected
5120 */
5121 int fs = max(7, orom ? fls(orom->sss) : 0);
5122
5123 return min(512, (1 << fs));
5124}
73408129 5125
35f81cbb 5126#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
5127static int
5128validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
c21e737b 5129 int raiddisks, int *chunk, int verbose)
6592ce37 5130{
660260d0
DW
5131 /* check/set platform and metadata limits/defaults */
5132 if (super->orom && raiddisks > super->orom->dpa) {
5133 pr_vrb(": platform supports a maximum of %d disks per array\n",
5134 super->orom->dpa);
73408129
LM
5135 return 0;
5136 }
5137
5138 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
660260d0 5139 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6592ce37
DW
5140 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5141 level, raiddisks, raiddisks > 1 ? "s" : "");
5142 return 0;
5143 }
cd9d1ac7
DW
5144
5145 if (chunk && (*chunk == 0 || *chunk == UnSet))
5146 *chunk = imsm_default_chunk(super->orom);
5147
5148 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5149 pr_vrb(": platform does not support a chunk size of: "
5150 "%d\n", *chunk);
5151 return 0;
6592ce37 5152 }
cd9d1ac7 5153
6592ce37
DW
5154 if (layout != imsm_level_to_layout(level)) {
5155 if (level == 5)
5156 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5157 else if (level == 10)
5158 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5159 else
5160 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5161 layout, level);
5162 return 0;
5163 }
6592ce37
DW
5164 return 1;
5165}
5166
c2c087e6
DW
5167/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5168 * FIX ME add ahci details
5169 */
8b353278 5170static int validate_geometry_imsm_volume(struct supertype *st, int level,
c21e737b 5171 int layout, int raiddisks, int *chunk,
c2c087e6 5172 unsigned long long size, char *dev,
2c514b71
NB
5173 unsigned long long *freesize,
5174 int verbose)
cdddbdbc 5175{
c2c087e6
DW
5176 struct stat stb;
5177 struct intel_super *super = st->sb;
b2916f25 5178 struct imsm_super *mpb;
c2c087e6
DW
5179 struct dl *dl;
5180 unsigned long long pos = 0;
5181 unsigned long long maxsize;
5182 struct extent *e;
5183 int i;
cdddbdbc 5184
88c32bb1
DW
5185 /* We must have the container info already read in. */
5186 if (!super)
c2c087e6
DW
5187 return 0;
5188
b2916f25
JS
5189 mpb = super->anchor;
5190
e7cb06c8
LO
5191 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5192 fprintf(stderr, Name ": the option-rom requires all "
5193 "member disks to be a member of all volumes.\n");
5194 return 0;
5195 }
5196
d54559f0
LM
5197 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5198 fprintf(stderr, Name ": RAID gemetry validation failed. "
5199 "Cannot proceed with the action(s).\n");
c2c087e6 5200 return 0;
d54559f0 5201 }
c2c087e6
DW
5202 if (!dev) {
5203 /* General test: make sure there is space for
2da8544a
DW
5204 * 'raiddisks' device extents of size 'size' at a given
5205 * offset
c2c087e6 5206 */
e46273eb 5207 unsigned long long minsize = size;
b7528a20 5208 unsigned long long start_offset = MaxSector;
c2c087e6
DW
5209 int dcnt = 0;
5210 if (minsize == 0)
5211 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5212 for (dl = super->disks; dl ; dl = dl->next) {
5213 int found = 0;
5214
bf5a934a 5215 pos = 0;
c2c087e6
DW
5216 i = 0;
5217 e = get_extents(super, dl);
5218 if (!e) continue;
5219 do {
5220 unsigned long long esize;
5221 esize = e[i].start - pos;
5222 if (esize >= minsize)
5223 found = 1;
b7528a20 5224 if (found && start_offset == MaxSector) {
2da8544a
DW
5225 start_offset = pos;
5226 break;
5227 } else if (found && pos != start_offset) {
5228 found = 0;
5229 break;
5230 }
c2c087e6
DW
5231 pos = e[i].start + e[i].size;
5232 i++;
5233 } while (e[i-1].size);
5234 if (found)
5235 dcnt++;
5236 free(e);
5237 }
5238 if (dcnt < raiddisks) {
2c514b71
NB
5239 if (verbose)
5240 fprintf(stderr, Name ": imsm: Not enough "
5241 "devices with space for this array "
5242 "(%d < %d)\n",
5243 dcnt, raiddisks);
c2c087e6
DW
5244 return 0;
5245 }
5246 return 1;
5247 }
0dcecb2e 5248
c2c087e6
DW
5249 /* This device must be a member of the set */
5250 if (stat(dev, &stb) < 0)
5251 return 0;
5252 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5253 return 0;
5254 for (dl = super->disks ; dl ; dl = dl->next) {
f21e18ca
N
5255 if (dl->major == (int)major(stb.st_rdev) &&
5256 dl->minor == (int)minor(stb.st_rdev))
c2c087e6
DW
5257 break;
5258 }
5259 if (!dl) {
2c514b71
NB
5260 if (verbose)
5261 fprintf(stderr, Name ": %s is not in the "
5262 "same imsm set\n", dev);
c2c087e6 5263 return 0;
a20d2ba5
DW
5264 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5265 /* If a volume is present then the current creation attempt
5266 * cannot incorporate new spares because the orom may not
5267 * understand this configuration (all member disks must be
5268 * members of each array in the container).
5269 */
5270 fprintf(stderr, Name ": %s is a spare and a volume"
5271 " is already defined for this container\n", dev);
5272 fprintf(stderr, Name ": The option-rom requires all member"
5273 " disks to be a member of all volumes\n");
5274 return 0;
c2c087e6 5275 }
0dcecb2e
DW
5276
5277 /* retrieve the largest free space block */
c2c087e6
DW
5278 e = get_extents(super, dl);
5279 maxsize = 0;
5280 i = 0;
0dcecb2e
DW
5281 if (e) {
5282 do {
5283 unsigned long long esize;
5284
5285 esize = e[i].start - pos;
5286 if (esize >= maxsize)
5287 maxsize = esize;
5288 pos = e[i].start + e[i].size;
5289 i++;
5290 } while (e[i-1].size);
5291 dl->e = e;
5292 dl->extent_cnt = i;
5293 } else {
5294 if (verbose)
5295 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5296 dev);
5297 return 0;
5298 }
5299 if (maxsize < size) {
5300 if (verbose)
5301 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5302 dev, maxsize, size);
5303 return 0;
5304 }
5305
5306 /* count total number of extents for merge */
5307 i = 0;
5308 for (dl = super->disks; dl; dl = dl->next)
5309 if (dl->e)
5310 i += dl->extent_cnt;
5311
5312 maxsize = merge_extents(super, i);
3baa56ab
LO
5313
5314 if (!check_env("IMSM_NO_PLATFORM") &&
5315 mpb->num_raid_devs > 0 && size && size != maxsize) {
5316 fprintf(stderr, Name ": attempting to create a second "
5317 "volume with size less then remaining space. "
5318 "Aborting...\n");
5319 return 0;
5320 }
5321
a7dd165b 5322 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
5323 if (verbose)
5324 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5325 maxsize, size);
5326 return 0;
0dcecb2e
DW
5327 }
5328
c2c087e6
DW
5329 *freesize = maxsize;
5330
5331 return 1;
cdddbdbc
DW
5332}
5333
efb30e7f
DW
5334static int reserve_space(struct supertype *st, int raiddisks,
5335 unsigned long long size, int chunk,
5336 unsigned long long *freesize)
5337{
5338 struct intel_super *super = st->sb;
5339 struct imsm_super *mpb = super->anchor;
5340 struct dl *dl;
5341 int i;
5342 int extent_cnt;
5343 struct extent *e;
5344 unsigned long long maxsize;
5345 unsigned long long minsize;
5346 int cnt;
5347 int used;
5348
5349 /* find the largest common start free region of the possible disks */
5350 used = 0;
5351 extent_cnt = 0;
5352 cnt = 0;
5353 for (dl = super->disks; dl; dl = dl->next) {
5354 dl->raiddisk = -1;
5355
5356 if (dl->index >= 0)
5357 used++;
5358
5359 /* don't activate new spares if we are orom constrained
5360 * and there is already a volume active in the container
5361 */
5362 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5363 continue;
5364
5365 e = get_extents(super, dl);
5366 if (!e)
5367 continue;
5368 for (i = 1; e[i-1].size; i++)
5369 ;
5370 dl->e = e;
5371 dl->extent_cnt = i;
5372 extent_cnt += i;
5373 cnt++;
5374 }
5375
5376 maxsize = merge_extents(super, extent_cnt);
5377 minsize = size;
5378 if (size == 0)
612e59d8
CA
5379 /* chunk is in K */
5380 minsize = chunk * 2;
efb30e7f
DW
5381
5382 if (cnt < raiddisks ||
5383 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
5384 maxsize < minsize ||
5385 maxsize == 0) {
efb30e7f
DW
5386 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5387 return 0; /* No enough free spaces large enough */
5388 }
5389
5390 if (size == 0) {
5391 size = maxsize;
5392 if (chunk) {
612e59d8
CA
5393 size /= 2 * chunk;
5394 size *= 2 * chunk;
efb30e7f
DW
5395 }
5396 }
5397
5398 cnt = 0;
5399 for (dl = super->disks; dl; dl = dl->next)
5400 if (dl->e)
5401 dl->raiddisk = cnt++;
5402
5403 *freesize = size;
5404
5405 return 1;
5406}
5407
bf5a934a 5408static int validate_geometry_imsm(struct supertype *st, int level, int layout,
c21e737b 5409 int raiddisks, int *chunk, unsigned long long size,
bf5a934a
DW
5410 char *dev, unsigned long long *freesize,
5411 int verbose)
5412{
5413 int fd, cfd;
5414 struct mdinfo *sra;
20cbe8d2 5415 int is_member = 0;
bf5a934a 5416
d54559f0
LM
5417 /* load capability
5418 * if given unused devices create a container
bf5a934a
DW
5419 * if given given devices in a container create a member volume
5420 */
5421 if (level == LEVEL_CONTAINER) {
5422 /* Must be a fresh device to add to a container */
5423 return validate_geometry_imsm_container(st, level, layout,
c21e737b
CA
5424 raiddisks,
5425 chunk?*chunk:0, size,
bf5a934a
DW
5426 dev, freesize,
5427 verbose);
5428 }
5429
8592f29d 5430 if (!dev) {
e91a3bad
LM
5431 if (st->sb) {
5432 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5433 raiddisks, chunk,
5434 verbose))
5435 return 0;
efb30e7f
DW
5436 /* we are being asked to automatically layout a
5437 * new volume based on the current contents of
5438 * the container. If the the parameters can be
5439 * satisfied reserve_space will record the disks,
5440 * start offset, and size of the volume to be
5441 * created. add_to_super and getinfo_super
5442 * detect when autolayout is in progress.
5443 */
e91a3bad
LM
5444 if (freesize)
5445 return reserve_space(st, raiddisks, size,
5446 chunk?*chunk:0, freesize);
8592f29d
N
5447 }
5448 return 1;
5449 }
bf5a934a
DW
5450 if (st->sb) {
5451 /* creating in a given container */
5452 return validate_geometry_imsm_volume(st, level, layout,
5453 raiddisks, chunk, size,
5454 dev, freesize, verbose);
5455 }
5456
bf5a934a
DW
5457 /* This device needs to be a device in an 'imsm' container */
5458 fd = open(dev, O_RDONLY|O_EXCL, 0);
5459 if (fd >= 0) {
5460 if (verbose)
5461 fprintf(stderr,
5462 Name ": Cannot create this array on device %s\n",
5463 dev);
5464 close(fd);
5465 return 0;
5466 }
5467 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5468 if (verbose)
5469 fprintf(stderr, Name ": Cannot open %s: %s\n",
5470 dev, strerror(errno));
5471 return 0;
5472 }
5473 /* Well, it is in use by someone, maybe an 'imsm' container. */
5474 cfd = open_container(fd);
20cbe8d2 5475 close(fd);
bf5a934a 5476 if (cfd < 0) {
bf5a934a
DW
5477 if (verbose)
5478 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5479 dev);
5480 return 0;
5481 }
5482 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 5483 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
5484 strcmp(sra->text_version, "imsm") == 0)
5485 is_member = 1;
5486 sysfs_free(sra);
5487 if (is_member) {
bf5a934a
DW
5488 /* This is a member of a imsm container. Load the container
5489 * and try to create a volume
5490 */
5491 struct intel_super *super;
5492
e1902a7b 5493 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
bf5a934a
DW
5494 st->sb = super;
5495 st->container_dev = fd2devnum(cfd);
5496 close(cfd);
5497 return validate_geometry_imsm_volume(st, level, layout,
5498 raiddisks, chunk,
5499 size, dev,
ecbd9e81
N
5500 freesize, 1)
5501 ? 1 : -1;
bf5a934a 5502 }
20cbe8d2 5503 }
bf5a934a 5504
20cbe8d2
AW
5505 if (verbose)
5506 fprintf(stderr, Name ": failed container membership check\n");
5507
5508 close(cfd);
5509 return 0;
bf5a934a 5510}
0bd16cf2 5511
30f58b22 5512static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
0bd16cf2
DJ
5513{
5514 struct intel_super *super = st->sb;
5515
30f58b22
DW
5516 if (level && *level == UnSet)
5517 *level = LEVEL_CONTAINER;
5518
5519 if (level && layout && *layout == UnSet)
5520 *layout = imsm_level_to_layout(*level);
0bd16cf2 5521
cd9d1ac7
DW
5522 if (chunk && (*chunk == UnSet || *chunk == 0))
5523 *chunk = imsm_default_chunk(super->orom);
0bd16cf2
DJ
5524}
5525
33414a01
DW
5526static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5527
5528static int kill_subarray_imsm(struct supertype *st)
5529{
5530 /* remove the subarray currently referenced by ->current_vol */
5531 __u8 i;
5532 struct intel_dev **dp;
5533 struct intel_super *super = st->sb;
5534 __u8 current_vol = super->current_vol;
5535 struct imsm_super *mpb = super->anchor;
5536
5537 if (super->current_vol < 0)
5538 return 2;
5539 super->current_vol = -1; /* invalidate subarray cursor */
5540
5541 /* block deletions that would change the uuid of active subarrays
5542 *
5543 * FIXME when immutable ids are available, but note that we'll
5544 * also need to fixup the invalidated/active subarray indexes in
5545 * mdstat
5546 */
5547 for (i = 0; i < mpb->num_raid_devs; i++) {
5548 char subarray[4];
5549
5550 if (i < current_vol)
5551 continue;
5552 sprintf(subarray, "%u", i);
5553 if (is_subarray_active(subarray, st->devname)) {
5554 fprintf(stderr,
5555 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5556 current_vol, i);
5557
5558 return 2;
5559 }
5560 }
5561
5562 if (st->update_tail) {
5563 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5564
5565 if (!u)
5566 return 2;
5567 u->type = update_kill_array;
5568 u->dev_idx = current_vol;
5569 append_metadata_update(st, u, sizeof(*u));
5570
5571 return 0;
5572 }
5573
5574 for (dp = &super->devlist; *dp;)
5575 if ((*dp)->index == current_vol) {
5576 *dp = (*dp)->next;
5577 } else {
5578 handle_missing(super, (*dp)->dev);
5579 if ((*dp)->index > current_vol)
5580 (*dp)->index--;
5581 dp = &(*dp)->next;
5582 }
5583
5584 /* no more raid devices, all active components are now spares,
5585 * but of course failed are still failed
5586 */
5587 if (--mpb->num_raid_devs == 0) {
5588 struct dl *d;
5589
5590 for (d = super->disks; d; d = d->next)
a8619d23
AK
5591 if (d->index > -2)
5592 mark_spare(d);
33414a01
DW
5593 }
5594
5595 super->updates_pending++;
5596
5597 return 0;
5598}
aa534678 5599
a951a4f7 5600static int update_subarray_imsm(struct supertype *st, char *subarray,
fa56eddb 5601 char *update, struct mddev_ident *ident)
aa534678
DW
5602{
5603 /* update the subarray currently referenced by ->current_vol */
5604 struct intel_super *super = st->sb;
5605 struct imsm_super *mpb = super->anchor;
5606
aa534678
DW
5607 if (strcmp(update, "name") == 0) {
5608 char *name = ident->name;
a951a4f7
N
5609 char *ep;
5610 int vol;
aa534678 5611
a951a4f7 5612 if (is_subarray_active(subarray, st->devname)) {
aa534678
DW
5613 fprintf(stderr,
5614 Name ": Unable to update name of active subarray\n");
5615 return 2;
5616 }
5617
5618 if (!check_name(super, name, 0))
5619 return 2;
5620
a951a4f7
N
5621 vol = strtoul(subarray, &ep, 10);
5622 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5623 return 2;
5624
aa534678
DW
5625 if (st->update_tail) {
5626 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5627
5628 if (!u)
5629 return 2;
5630 u->type = update_rename_array;
a951a4f7 5631 u->dev_idx = vol;
aa534678
DW
5632 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5633 append_metadata_update(st, u, sizeof(*u));
5634 } else {
5635 struct imsm_dev *dev;
5636 int i;
5637
a951a4f7 5638 dev = get_imsm_dev(super, vol);
aa534678
DW
5639 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5640 for (i = 0; i < mpb->num_raid_devs; i++) {
5641 dev = get_imsm_dev(super, i);
5642 handle_missing(super, dev);
5643 }
5644 super->updates_pending++;
5645 }
5646 } else
5647 return 2;
5648
5649 return 0;
5650}
bf5a934a 5651
28bce06f
AK
5652static int is_gen_migration(struct imsm_dev *dev)
5653{
7534230b
AK
5654 if (dev == NULL)
5655 return 0;
5656
28bce06f
AK
5657 if (!dev->vol.migr_state)
5658 return 0;
5659
5660 if (migr_type(dev) == MIGR_GEN_MIGR)
5661 return 1;
5662
5663 return 0;
5664}
71204a50 5665#endif /* MDASSEMBLE */
28bce06f 5666
1e5c6983
DW
5667static int is_rebuilding(struct imsm_dev *dev)
5668{
5669 struct imsm_map *migr_map;
5670
5671 if (!dev->vol.migr_state)
5672 return 0;
5673
5674 if (migr_type(dev) != MIGR_REBUILD)
5675 return 0;
5676
5677 migr_map = get_imsm_map(dev, 1);
5678
5679 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5680 return 1;
5681 else
5682 return 0;
5683}
5684
c47b0ff6
AK
5685static void update_recovery_start(struct intel_super *super,
5686 struct imsm_dev *dev,
5687 struct mdinfo *array)
1e5c6983
DW
5688{
5689 struct mdinfo *rebuild = NULL;
5690 struct mdinfo *d;
5691 __u32 units;
5692
5693 if (!is_rebuilding(dev))
5694 return;
5695
5696 /* Find the rebuild target, but punt on the dual rebuild case */
5697 for (d = array->devs; d; d = d->next)
5698 if (d->recovery_start == 0) {
5699 if (rebuild)
5700 return;
5701 rebuild = d;
5702 }
5703
4363fd80
DW
5704 if (!rebuild) {
5705 /* (?) none of the disks are marked with
5706 * IMSM_ORD_REBUILD, so assume they are missing and the
5707 * disk_ord_tbl was not correctly updated
5708 */
5709 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5710 return;
5711 }
5712
1e5c6983 5713 units = __le32_to_cpu(dev->vol.curr_migr_unit);
c47b0ff6 5714 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
1e5c6983
DW
5715}
5716
9e2d750d 5717#ifndef MDASSEMBLE
276d77db 5718static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
9e2d750d 5719#endif
1e5c6983 5720
00bbdbda 5721static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
cdddbdbc 5722{
4f5bc454
DW
5723 /* Given a container loaded by load_super_imsm_all,
5724 * extract information about all the arrays into
5725 * an mdinfo tree.
00bbdbda 5726 * If 'subarray' is given, just extract info about that array.
4f5bc454
DW
5727 *
5728 * For each imsm_dev create an mdinfo, fill it in,
5729 * then look for matching devices in super->disks
5730 * and create appropriate device mdinfo.
5731 */
5732 struct intel_super *super = st->sb;
949c47a0 5733 struct imsm_super *mpb = super->anchor;
4f5bc454 5734 struct mdinfo *rest = NULL;
00bbdbda 5735 unsigned int i;
81219e70 5736 int sb_errors = 0;
abef11a3
AK
5737 struct dl *d;
5738 int spare_disks = 0;
cdddbdbc 5739
19482bcc
AK
5740 /* do not assemble arrays when not all attributes are supported */
5741 if (imsm_check_attributes(mpb->attributes) == 0) {
81219e70
LM
5742 sb_errors = 1;
5743 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5744 "Arrays activation is blocked.\n");
19482bcc
AK
5745 }
5746
a06d022d 5747 /* check for bad blocks */
81219e70
LM
5748 if (imsm_bbm_log_size(super->anchor)) {
5749 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5750 "Arrays activation is blocked.\n");
5751 sb_errors = 1;
5752 }
5753
604b746f 5754
abef11a3
AK
5755 /* count spare devices, not used in maps
5756 */
5757 for (d = super->disks; d; d = d->next)
5758 if (d->index == -1)
5759 spare_disks++;
5760
4f5bc454 5761 for (i = 0; i < mpb->num_raid_devs; i++) {
00bbdbda
N
5762 struct imsm_dev *dev;
5763 struct imsm_map *map;
86e3692b 5764 struct imsm_map *map2;
4f5bc454 5765 struct mdinfo *this;
2db86302 5766 int slot, chunk;
00bbdbda
N
5767 char *ep;
5768
5769 if (subarray &&
5770 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5771 continue;
5772
5773 dev = get_imsm_dev(super, i);
5774 map = get_imsm_map(dev, 0);
86e3692b 5775 map2 = get_imsm_map(dev, 1);
4f5bc454 5776
1ce0101c
DW
5777 /* do not publish arrays that are in the middle of an
5778 * unsupported migration
5779 */
5780 if (dev->vol.migr_state &&
28bce06f 5781 (migr_type(dev) == MIGR_STATE_CHANGE)) {
1ce0101c
DW
5782 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5783 " unsupported migration in progress\n",
5784 dev->volume);
5785 continue;
5786 }
2db86302
LM
5787 /* do not publish arrays that are not support by controller's
5788 * OROM/EFI
5789 */
1ce0101c 5790
2db86302 5791 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4f5bc454 5792 this = malloc(sizeof(*this));
0fbd635c 5793 if (!this) {
cf1be220 5794 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
5795 sizeof(*this));
5796 break;
5797 }
4f5bc454 5798
301406c9 5799 super->current_vol = i;
a5d85af7 5800 getinfo_super_imsm_volume(st, this, NULL);
9894ec0d 5801 this->next = rest;
81219e70
LM
5802#ifndef MDASSEMBLE
5803 /* mdadm does not support all metadata features- set the bit in all arrays state */
5804 if (!validate_geometry_imsm_orom(super,
5805 get_imsm_raid_level(map), /* RAID level */
5806 imsm_level_to_layout(get_imsm_raid_level(map)),
5807 map->num_members, /* raid disks */
5808 &chunk,
5809 1 /* verbose */)) {
446894ea
N
5810 fprintf(stderr, Name ": IMSM RAID geometry validation"
5811 " failed. Array %s activation is blocked.\n",
81219e70
LM
5812 dev->volume);
5813 this->array.state |=
5814 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5815 (1<<MD_SB_BLOCK_VOLUME);
5816 }
5817#endif
5818
5819 /* if array has bad blocks, set suitable bit in all arrays state */
5820 if (sb_errors)
5821 this->array.state |=
5822 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5823 (1<<MD_SB_BLOCK_VOLUME);
5824
4f5bc454 5825 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 5826 unsigned long long recovery_start;
4f5bc454
DW
5827 struct mdinfo *info_d;
5828 struct dl *d;
5829 int idx;
9a1608e5 5830 int skip;
7eef0453 5831 __u32 ord;
4f5bc454 5832
9a1608e5 5833 skip = 0;
98130f40 5834 idx = get_imsm_disk_idx(dev, slot, 0);
196b0d44 5835 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4f5bc454
DW
5836 for (d = super->disks; d ; d = d->next)
5837 if (d->index == idx)
0fbd635c 5838 break;
4f5bc454 5839
1e5c6983 5840 recovery_start = MaxSector;
4f5bc454 5841 if (d == NULL)
9a1608e5 5842 skip = 1;
25ed7e59 5843 if (d && is_failed(&d->disk))
9a1608e5 5844 skip = 1;
7eef0453 5845 if (ord & IMSM_ORD_REBUILD)
1e5c6983 5846 recovery_start = 0;
9a1608e5
DW
5847
5848 /*
5849 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
5850 * reset resync start to avoid a dirty-degraded
5851 * situation when performing the intial sync
9a1608e5
DW
5852 *
5853 * FIXME handle dirty degraded
5854 */
1e5c6983 5855 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 5856 this->resync_start = MaxSector;
9a1608e5
DW
5857 if (skip)
5858 continue;
4f5bc454 5859
1e5c6983 5860 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
5861 if (!info_d) {
5862 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 5863 " for volume %.16s\n", dev->volume);
1e5c6983
DW
5864 info_d = this->devs;
5865 while (info_d) {
5866 struct mdinfo *d = info_d->next;
5867
5868 free(info_d);
5869 info_d = d;
5870 }
9a1608e5
DW
5871 free(this);
5872 this = rest;
5873 break;
5874 }
4f5bc454
DW
5875 info_d->next = this->devs;
5876 this->devs = info_d;
5877
4f5bc454
DW
5878 info_d->disk.number = d->index;
5879 info_d->disk.major = d->major;
5880 info_d->disk.minor = d->minor;
5881 info_d->disk.raid_disk = slot;
1e5c6983 5882 info_d->recovery_start = recovery_start;
86e3692b
AK
5883 if (map2) {
5884 if (slot < map2->num_members)
5885 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5886 else
5887 this->array.spare_disks++;
86e3692b
AK
5888 } else {
5889 if (slot < map->num_members)
5890 info_d->disk.state = (1 << MD_DISK_ACTIVE);
04c3c514
AK
5891 else
5892 this->array.spare_disks++;
86e3692b 5893 }
1e5c6983
DW
5894 if (info_d->recovery_start == MaxSector)
5895 this->array.working_disks++;
4f5bc454
DW
5896
5897 info_d->events = __le32_to_cpu(mpb->generation_num);
5898 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5899 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 5900 }
1e5c6983 5901 /* now that the disk list is up-to-date fixup recovery_start */
c47b0ff6 5902 update_recovery_start(super, dev, this);
abef11a3 5903 this->array.spare_disks += spare_disks;
276d77db 5904
9e2d750d 5905#ifndef MDASSEMBLE
276d77db
AK
5906 /* check for reshape */
5907 if (this->reshape_active == 1)
5908 recover_backup_imsm(st, this);
9e2d750d 5909#endif
9a1608e5 5910 rest = this;
4f5bc454
DW
5911 }
5912
5913 return rest;
cdddbdbc
DW
5914}
5915
845dea95 5916
fb49eef2 5917static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 5918{
a965f303 5919 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
5920
5921 if (!failed)
3393c6af
DW
5922 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5923 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
5924
5925 switch (get_imsm_raid_level(map)) {
5926 case 0:
5927 return IMSM_T_STATE_FAILED;
5928 break;
5929 case 1:
5930 if (failed < map->num_members)
5931 return IMSM_T_STATE_DEGRADED;
5932 else
5933 return IMSM_T_STATE_FAILED;
5934 break;
5935 case 10:
5936 {
5937 /**
c92a2527
DW
5938 * check to see if any mirrors have failed, otherwise we
5939 * are degraded. Even numbered slots are mirrored on
5940 * slot+1
c2a1e7da 5941 */
c2a1e7da 5942 int i;
d9b420a5
N
5943 /* gcc -Os complains that this is unused */
5944 int insync = insync;
c2a1e7da
DW
5945
5946 for (i = 0; i < map->num_members; i++) {
98130f40 5947 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
c92a2527
DW
5948 int idx = ord_to_idx(ord);
5949 struct imsm_disk *disk;
c2a1e7da 5950
c92a2527
DW
5951 /* reset the potential in-sync count on even-numbered
5952 * slots. num_copies is always 2 for imsm raid10
5953 */
5954 if ((i & 1) == 0)
5955 insync = 2;
c2a1e7da 5956
c92a2527 5957 disk = get_imsm_disk(super, idx);
25ed7e59 5958 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 5959 insync--;
c2a1e7da 5960
c92a2527
DW
5961 /* no in-sync disks left in this mirror the
5962 * array has failed
5963 */
5964 if (insync == 0)
5965 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
5966 }
5967
5968 return IMSM_T_STATE_DEGRADED;
5969 }
5970 case 5:
5971 if (failed < 2)
5972 return IMSM_T_STATE_DEGRADED;
5973 else
5974 return IMSM_T_STATE_FAILED;
5975 break;
5976 default:
5977 break;
5978 }
5979
5980 return map->map_state;
5981}
5982
ff077194 5983static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
5984{
5985 int i;
5986 int failed = 0;
5987 struct imsm_disk *disk;
ff077194 5988 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2 5989 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
68fe4598 5990 struct imsm_map *map_for_loop;
0556e1a2
DW
5991 __u32 ord;
5992 int idx;
c2a1e7da 5993
0556e1a2
DW
5994 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5995 * disks that are being rebuilt. New failures are recorded to
5996 * map[0]. So we look through all the disks we started with and
5997 * see if any failures are still present, or if any new ones
5998 * have arrived
0556e1a2 5999 */
68fe4598
LD
6000 map_for_loop = prev;
6001 if (is_gen_migration(dev))
6002 if (prev && (map->num_members > prev->num_members))
6003 map_for_loop = map;
6004
6005 for (i = 0; i < map_for_loop->num_members; i++) {
6006 ord = 0;
6007 if (i < prev->num_members)
6008 ord |= __le32_to_cpu(prev->disk_ord_tbl[i]);
6009 if (i < map->num_members)
6010 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
0556e1a2 6011 idx = ord_to_idx(ord);
c2a1e7da 6012
949c47a0 6013 disk = get_imsm_disk(super, idx);
25ed7e59 6014 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 6015 failed++;
c2a1e7da
DW
6016 }
6017
6018 return failed;
845dea95
NB
6019}
6020
97b4d0e9
DW
6021#ifndef MDASSEMBLE
6022static int imsm_open_new(struct supertype *c, struct active_array *a,
6023 char *inst)
6024{
6025 struct intel_super *super = c->sb;
6026 struct imsm_super *mpb = super->anchor;
6027
6028 if (atoi(inst) >= mpb->num_raid_devs) {
6029 fprintf(stderr, "%s: subarry index %d, out of range\n",
6030 __func__, atoi(inst));
6031 return -ENODEV;
6032 }
6033
6034 dprintf("imsm: open_new %s\n", inst);
6035 a->info.container_member = atoi(inst);
6036 return 0;
6037}
6038
0c046afd
DW
6039static int is_resyncing(struct imsm_dev *dev)
6040{
6041 struct imsm_map *migr_map;
6042
6043 if (!dev->vol.migr_state)
6044 return 0;
6045
1484e727
DW
6046 if (migr_type(dev) == MIGR_INIT ||
6047 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
6048 return 1;
6049
4c9bc37b
AK
6050 if (migr_type(dev) == MIGR_GEN_MIGR)
6051 return 0;
6052
0c046afd
DW
6053 migr_map = get_imsm_map(dev, 1);
6054
4c9bc37b
AK
6055 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6056 (dev->vol.migr_type != MIGR_GEN_MIGR))
0c046afd
DW
6057 return 1;
6058 else
6059 return 0;
6060}
6061
0556e1a2
DW
6062/* return true if we recorded new information */
6063static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 6064{
0556e1a2
DW
6065 __u32 ord;
6066 int slot;
6067 struct imsm_map *map;
86c54047
DW
6068 char buf[MAX_RAID_SERIAL_LEN+3];
6069 unsigned int len, shift = 0;
0556e1a2
DW
6070
6071 /* new failures are always set in map[0] */
6072 map = get_imsm_map(dev, 0);
6073
6074 slot = get_imsm_disk_slot(map, idx);
6075 if (slot < 0)
6076 return 0;
6077
6078 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 6079 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
6080 return 0;
6081
7d0c5e24
LD
6082 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6083 buf[MAX_RAID_SERIAL_LEN] = '\000';
6084 strcat(buf, ":0");
86c54047
DW
6085 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6086 shift = len - MAX_RAID_SERIAL_LEN + 1;
6087 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6088
f2f27e63 6089 disk->status |= FAILED_DISK;
0556e1a2 6090 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
1ace8403
AK
6091 if (is_gen_migration(dev)) {
6092 struct imsm_map *map2 = get_imsm_map(dev, 1);
6093 if (slot < map2->num_members)
6094 set_imsm_ord_tbl_ent(map2, slot,
6095 idx | IMSM_ORD_REBUILD);
6096 }
f21e18ca 6097 if (map->failed_disk_num == 0xff)
0556e1a2
DW
6098 map->failed_disk_num = slot;
6099 return 1;
6100}
6101
6102static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6103{
6104 mark_failure(dev, disk, idx);
6105
6106 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6107 return;
6108
47ee5a45
DW
6109 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6110 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6111}
6112
33414a01
DW
6113static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6114{
33414a01 6115 struct dl *dl;
33414a01
DW
6116
6117 if (!super->missing)
6118 return;
33414a01
DW
6119
6120 dprintf("imsm: mark missing\n");
33414a01
DW
6121 for (dl = super->missing; dl; dl = dl->next)
6122 mark_missing(dev, &dl->disk, dl->index);
6123 super->updates_pending++;
6124}
6125
70bdf0dc
AK
6126static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6127{
6128 int used_disks = imsm_num_data_members(dev, 0);
6129 unsigned long long array_blocks;
6130 struct imsm_map *map;
6131
6132 if (used_disks == 0) {
6133 /* when problems occures
6134 * return current array_blocks value
6135 */
6136 array_blocks = __le32_to_cpu(dev->size_high);
6137 array_blocks = array_blocks << 32;
6138 array_blocks += __le32_to_cpu(dev->size_low);
6139
6140 return array_blocks;
6141 }
6142
6143 /* set array size in metadata
6144 */
6145 map = get_imsm_map(dev, 0);
6146 array_blocks = map->blocks_per_member * used_disks;
6147
6148 /* round array size down to closest MB
6149 */
6150 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6151 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6152 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6153
6154 return array_blocks;
6155}
6156
28bce06f
AK
6157static void imsm_set_disk(struct active_array *a, int n, int state);
6158
0e2d1a4e
AK
6159static void imsm_progress_container_reshape(struct intel_super *super)
6160{
6161 /* if no device has a migr_state, but some device has a
6162 * different number of members than the previous device, start
6163 * changing the number of devices in this device to match
6164 * previous.
6165 */
6166 struct imsm_super *mpb = super->anchor;
6167 int prev_disks = -1;
6168 int i;
1dfaa380 6169 int copy_map_size;
0e2d1a4e
AK
6170
6171 for (i = 0; i < mpb->num_raid_devs; i++) {
6172 struct imsm_dev *dev = get_imsm_dev(super, i);
6173 struct imsm_map *map = get_imsm_map(dev, 0);
6174 struct imsm_map *map2;
6175 int prev_num_members;
0e2d1a4e
AK
6176
6177 if (dev->vol.migr_state)
6178 return;
6179
6180 if (prev_disks == -1)
6181 prev_disks = map->num_members;
6182 if (prev_disks == map->num_members)
6183 continue;
6184
6185 /* OK, this array needs to enter reshape mode.
6186 * i.e it needs a migr_state
6187 */
6188
1dfaa380 6189 copy_map_size = sizeof_imsm_map(map);
0e2d1a4e
AK
6190 prev_num_members = map->num_members;
6191 map->num_members = prev_disks;
6192 dev->vol.migr_state = 1;
6193 dev->vol.curr_migr_unit = 0;
ea672ee1 6194 set_migr_type(dev, MIGR_GEN_MIGR);
0e2d1a4e
AK
6195 for (i = prev_num_members;
6196 i < map->num_members; i++)
6197 set_imsm_ord_tbl_ent(map, i, i);
6198 map2 = get_imsm_map(dev, 1);
6199 /* Copy the current map */
1dfaa380 6200 memcpy(map2, map, copy_map_size);
0e2d1a4e
AK
6201 map2->num_members = prev_num_members;
6202
70bdf0dc 6203 imsm_set_array_size(dev);
0e2d1a4e
AK
6204 super->updates_pending++;
6205 }
6206}
6207
aad6f216 6208/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
0c046afd
DW
6209 * states are handled in imsm_set_disk() with one exception, when a
6210 * resync is stopped due to a new failure this routine will set the
6211 * 'degraded' state for the array.
6212 */
01f157d7 6213static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
6214{
6215 int inst = a->info.container_member;
6216 struct intel_super *super = a->container->sb;
949c47a0 6217 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6218 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
6219 int failed = imsm_count_failed(super, dev);
6220 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 6221 __u32 blocks_per_unit;
a862209d 6222
1af97990
AK
6223 if (dev->vol.migr_state &&
6224 dev->vol.migr_type == MIGR_GEN_MIGR) {
6225 /* array state change is blocked due to reshape action
aad6f216
N
6226 * We might need to
6227 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6228 * - finish the reshape (if last_checkpoint is big and action != reshape)
6229 * - update curr_migr_unit
1af97990 6230 */
aad6f216
N
6231 if (a->curr_action == reshape) {
6232 /* still reshaping, maybe update curr_migr_unit */
633b5610 6233 goto mark_checkpoint;
aad6f216
N
6234 } else {
6235 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6236 /* for some reason we aborted the reshape.
b66e591b
AK
6237 *
6238 * disable automatic metadata rollback
6239 * user action is required to recover process
aad6f216 6240 */
b66e591b 6241 if (0) {
aad6f216
N
6242 struct imsm_map *map2 = get_imsm_map(dev, 1);
6243 dev->vol.migr_state = 0;
ea672ee1 6244 set_migr_type(dev, 0);
aad6f216
N
6245 dev->vol.curr_migr_unit = 0;
6246 memcpy(map, map2, sizeof_imsm_map(map2));
6247 super->updates_pending++;
b66e591b 6248 }
aad6f216
N
6249 }
6250 if (a->last_checkpoint >= a->info.component_size) {
6251 unsigned long long array_blocks;
6252 int used_disks;
e154ced3 6253 struct mdinfo *mdi;
aad6f216 6254
9653001d 6255 used_disks = imsm_num_data_members(dev, 0);
d55adef9
AK
6256 if (used_disks > 0) {
6257 array_blocks =
6258 map->blocks_per_member *
6259 used_disks;
6260 /* round array size down to closest MB
6261 */
6262 array_blocks = (array_blocks
6263 >> SECT_PER_MB_SHIFT)
6264 << SECT_PER_MB_SHIFT;
d55adef9
AK
6265 a->info.custom_array_size = array_blocks;
6266 /* encourage manager to update array
6267 * size
6268 */
e154ced3 6269
d55adef9 6270 a->check_reshape = 1;
633b5610 6271 }
e154ced3
AK
6272 /* finalize online capacity expansion/reshape */
6273 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6274 imsm_set_disk(a,
6275 mdi->disk.raid_disk,
6276 mdi->curr_state);
6277
0e2d1a4e 6278 imsm_progress_container_reshape(super);
e154ced3 6279 }
aad6f216 6280 }
1af97990
AK
6281 }
6282
47ee5a45 6283 /* before we activate this array handle any missing disks */
33414a01
DW
6284 if (consistent == 2)
6285 handle_missing(super, dev);
1e5c6983 6286
0c046afd 6287 if (consistent == 2 &&
b7941fd6 6288 (!is_resync_complete(&a->info) ||
0c046afd
DW
6289 map_state != IMSM_T_STATE_NORMAL ||
6290 dev->vol.migr_state))
01f157d7 6291 consistent = 0;
272906ef 6292
b7941fd6 6293 if (is_resync_complete(&a->info)) {
0c046afd 6294 /* complete intialization / resync,
0556e1a2
DW
6295 * recovery and interrupted recovery is completed in
6296 * ->set_disk
0c046afd
DW
6297 */
6298 if (is_resyncing(dev)) {
6299 dprintf("imsm: mark resync done\n");
f8f603f1 6300 end_migration(dev, map_state);
115c3803 6301 super->updates_pending++;
484240d8 6302 a->last_checkpoint = 0;
115c3803 6303 }
b9172665
AK
6304 } else if ((!is_resyncing(dev) && !failed) &&
6305 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
0c046afd 6306 /* mark the start of the init process if nothing is failed */
b7941fd6 6307 dprintf("imsm: mark resync start\n");
1484e727 6308 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8e59f3d8 6309 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727 6310 else
8e59f3d8 6311 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 6312 super->updates_pending++;
115c3803 6313 }
a862209d 6314
633b5610 6315mark_checkpoint:
5b83bacf
AK
6316 /* skip checkpointing for general migration,
6317 * it is controlled in mdadm
6318 */
6319 if (is_gen_migration(dev))
6320 goto skip_mark_checkpoint;
6321
1e5c6983 6322 /* check if we can update curr_migr_unit from resync_start, recovery_start */
c47b0ff6 6323 blocks_per_unit = blocks_per_migr_unit(super, dev);
4f0a7acc 6324 if (blocks_per_unit) {
1e5c6983
DW
6325 __u32 units32;
6326 __u64 units;
6327
4f0a7acc 6328 units = a->last_checkpoint / blocks_per_unit;
1e5c6983
DW
6329 units32 = units;
6330
6331 /* check that we did not overflow 32-bits, and that
6332 * curr_migr_unit needs updating
6333 */
6334 if (units32 == units &&
bfd80a56 6335 units32 != 0 &&
1e5c6983
DW
6336 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6337 dprintf("imsm: mark checkpoint (%u)\n", units32);
6338 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6339 super->updates_pending++;
6340 }
6341 }
f8f603f1 6342
5b83bacf 6343skip_mark_checkpoint:
3393c6af 6344 /* mark dirty / clean */
0c046afd 6345 if (dev->vol.dirty != !consistent) {
b7941fd6 6346 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
6347 if (consistent)
6348 dev->vol.dirty = 0;
6349 else
6350 dev->vol.dirty = 1;
a862209d
DW
6351 super->updates_pending++;
6352 }
28bce06f 6353
01f157d7 6354 return consistent;
a862209d
DW
6355}
6356
8d45d196 6357static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 6358{
8d45d196
DW
6359 int inst = a->info.container_member;
6360 struct intel_super *super = a->container->sb;
949c47a0 6361 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6362 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 6363 struct imsm_disk *disk;
0c046afd 6364 int failed;
b10b37b8 6365 __u32 ord;
0c046afd 6366 __u8 map_state;
8d45d196
DW
6367
6368 if (n > map->num_members)
6369 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6370 n, map->num_members - 1);
6371
6372 if (n < 0)
6373 return;
6374
4e6e574a 6375 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 6376
9535fc47 6377 ord = get_imsm_ord_tbl_ent(dev, n, -2);
b10b37b8 6378 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 6379
5802a811 6380 /* check for new failures */
0556e1a2
DW
6381 if (state & DS_FAULTY) {
6382 if (mark_failure(dev, disk, ord_to_idx(ord)))
6383 super->updates_pending++;
8d45d196 6384 }
47ee5a45 6385
19859edc 6386 /* check if in_sync */
0556e1a2 6387 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
6388 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6389
6390 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
6391 super->updates_pending++;
6392 }
8d45d196 6393
0c046afd
DW
6394 failed = imsm_count_failed(super, dev);
6395 map_state = imsm_check_degraded(super, dev, failed);
5802a811 6396
0c046afd
DW
6397 /* check if recovery complete, newly degraded, or failed */
6398 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 6399 end_migration(dev, map_state);
0556e1a2
DW
6400 map = get_imsm_map(dev, 0);
6401 map->failed_disk_num = ~0;
0c046afd 6402 super->updates_pending++;
484240d8 6403 a->last_checkpoint = 0;
0c046afd
DW
6404 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6405 map->map_state != map_state &&
6406 !dev->vol.migr_state) {
6407 dprintf("imsm: mark degraded\n");
6408 map->map_state = map_state;
6409 super->updates_pending++;
484240d8 6410 a->last_checkpoint = 0;
0c046afd
DW
6411 } else if (map_state == IMSM_T_STATE_FAILED &&
6412 map->map_state != map_state) {
6413 dprintf("imsm: mark failed\n");
f8f603f1 6414 end_migration(dev, map_state);
0c046afd 6415 super->updates_pending++;
484240d8 6416 a->last_checkpoint = 0;
28bce06f
AK
6417 } else if (is_gen_migration(dev)) {
6418 dprintf("imsm: Detected General Migration in state: ");
bf2f0071
AK
6419
6420 switch (map_state) {
6421 case IMSM_T_STATE_NORMAL:
6422 dprintf("normal\n");
6423 if (a->last_checkpoint >= a->info.component_size)
6424 end_migration(dev, map_state);
28bce06f
AK
6425 map = get_imsm_map(dev, 0);
6426 map->failed_disk_num = ~0;
bf2f0071
AK
6427 break;
6428 case IMSM_T_STATE_DEGRADED:
6429 dprintf("degraded\n");
6430 if (a->last_checkpoint >= a->info.component_size)
28bce06f 6431 end_migration(dev, map_state);
bf2f0071
AK
6432 break;
6433 default:
6434 dprintf("failed\n");
28bce06f 6435 }
bf2f0071 6436 map->map_state = map_state;
28bce06f 6437 super->updates_pending++;
5802a811 6438 }
845dea95
NB
6439}
6440
f796af5d 6441static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 6442{
f796af5d 6443 void *buf = mpb;
c2a1e7da
DW
6444 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6445 unsigned long long dsize;
6446 unsigned long long sectors;
6447
6448 get_dev_size(fd, NULL, &dsize);
6449
272f648f
DW
6450 if (mpb_size > 512) {
6451 /* -1 to account for anchor */
6452 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 6453
272f648f
DW
6454 /* write the extended mpb to the sectors preceeding the anchor */
6455 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6456 return 1;
c2a1e7da 6457
f21e18ca
N
6458 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6459 != 512 * sectors)
272f648f
DW
6460 return 1;
6461 }
c2a1e7da 6462
272f648f
DW
6463 /* first block is stored on second to last sector of the disk */
6464 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
6465 return 1;
6466
f796af5d 6467 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
6468 return 1;
6469
c2a1e7da
DW
6470 return 0;
6471}
6472
2e735d19 6473static void imsm_sync_metadata(struct supertype *container)
845dea95 6474{
2e735d19 6475 struct intel_super *super = container->sb;
c2a1e7da 6476
1a64be56 6477 dprintf("sync metadata: %d\n", super->updates_pending);
c2a1e7da
DW
6478 if (!super->updates_pending)
6479 return;
6480
36988a3d 6481 write_super_imsm(container, 0);
c2a1e7da
DW
6482
6483 super->updates_pending = 0;
845dea95
NB
6484}
6485
272906ef
DW
6486static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6487{
6488 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6489 int i = get_imsm_disk_idx(dev, idx, -1);
272906ef
DW
6490 struct dl *dl;
6491
6492 for (dl = super->disks; dl; dl = dl->next)
6493 if (dl->index == i)
6494 break;
6495
25ed7e59 6496 if (dl && is_failed(&dl->disk))
272906ef
DW
6497 dl = NULL;
6498
6499 if (dl)
6500 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6501
6502 return dl;
6503}
6504
a20d2ba5 6505static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8ba77d32
AK
6506 struct active_array *a, int activate_new,
6507 struct mdinfo *additional_test_list)
272906ef
DW
6508{
6509 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
98130f40 6510 int idx = get_imsm_disk_idx(dev, slot, -1);
a20d2ba5
DW
6511 struct imsm_super *mpb = super->anchor;
6512 struct imsm_map *map;
272906ef
DW
6513 unsigned long long pos;
6514 struct mdinfo *d;
6515 struct extent *ex;
a20d2ba5 6516 int i, j;
272906ef 6517 int found;
569cc43f
DW
6518 __u32 array_start = 0;
6519 __u32 array_end = 0;
272906ef 6520 struct dl *dl;
6c932028 6521 struct mdinfo *test_list;
272906ef
DW
6522
6523 for (dl = super->disks; dl; dl = dl->next) {
6524 /* If in this array, skip */
6525 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
6526 if (d->state_fd >= 0 &&
6527 d->disk.major == dl->major &&
272906ef 6528 d->disk.minor == dl->minor) {
8ba77d32
AK
6529 dprintf("%x:%x already in array\n",
6530 dl->major, dl->minor);
272906ef
DW
6531 break;
6532 }
6533 if (d)
6534 continue;
6c932028
AK
6535 test_list = additional_test_list;
6536 while (test_list) {
6537 if (test_list->disk.major == dl->major &&
6538 test_list->disk.minor == dl->minor) {
8ba77d32
AK
6539 dprintf("%x:%x already in additional test list\n",
6540 dl->major, dl->minor);
6541 break;
6542 }
6c932028 6543 test_list = test_list->next;
8ba77d32 6544 }
6c932028 6545 if (test_list)
8ba77d32 6546 continue;
272906ef 6547
e553d2a4 6548 /* skip in use or failed drives */
25ed7e59 6549 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
6550 dl->index == -2) {
6551 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 6552 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
6553 continue;
6554 }
6555
a20d2ba5
DW
6556 /* skip pure spares when we are looking for partially
6557 * assimilated drives
6558 */
6559 if (dl->index == -1 && !activate_new)
6560 continue;
6561
272906ef 6562 /* Does this unused device have the requisite free space?
a20d2ba5 6563 * It needs to be able to cover all member volumes
272906ef
DW
6564 */
6565 ex = get_extents(super, dl);
6566 if (!ex) {
6567 dprintf("cannot get extents\n");
6568 continue;
6569 }
a20d2ba5
DW
6570 for (i = 0; i < mpb->num_raid_devs; i++) {
6571 dev = get_imsm_dev(super, i);
6572 map = get_imsm_map(dev, 0);
272906ef 6573
a20d2ba5
DW
6574 /* check if this disk is already a member of
6575 * this array
272906ef 6576 */
620b1713 6577 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
6578 continue;
6579
6580 found = 0;
6581 j = 0;
6582 pos = 0;
6583 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
6584 array_end = array_start +
6585 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
6586
6587 do {
6588 /* check that we can start at pba_of_lba0 with
6589 * blocks_per_member of space
6590 */
329c8278 6591 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
6592 found = 1;
6593 break;
6594 }
6595 pos = ex[j].start + ex[j].size;
6596 j++;
6597 } while (ex[j-1].size);
6598
6599 if (!found)
272906ef 6600 break;
a20d2ba5 6601 }
272906ef
DW
6602
6603 free(ex);
a20d2ba5 6604 if (i < mpb->num_raid_devs) {
329c8278
DW
6605 dprintf("%x:%x does not have %u to %u available\n",
6606 dl->major, dl->minor, array_start, array_end);
272906ef
DW
6607 /* No room */
6608 continue;
a20d2ba5
DW
6609 }
6610 return dl;
272906ef
DW
6611 }
6612
6613 return dl;
6614}
6615
95d07a2c
LM
6616
6617static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6618{
6619 struct imsm_dev *dev2;
6620 struct imsm_map *map;
6621 struct dl *idisk;
6622 int slot;
6623 int idx;
6624 __u8 state;
6625
6626 dev2 = get_imsm_dev(cont->sb, dev_idx);
6627 if (dev2) {
6628 state = imsm_check_degraded(cont->sb, dev2, failed);
6629 if (state == IMSM_T_STATE_FAILED) {
6630 map = get_imsm_map(dev2, 0);
6631 if (!map)
6632 return 1;
6633 for (slot = 0; slot < map->num_members; slot++) {
6634 /*
6635 * Check if failed disks are deleted from intel
6636 * disk list or are marked to be deleted
6637 */
98130f40 6638 idx = get_imsm_disk_idx(dev2, slot, -1);
95d07a2c
LM
6639 idisk = get_imsm_dl_disk(cont->sb, idx);
6640 /*
6641 * Do not rebuild the array if failed disks
6642 * from failed sub-array are not removed from
6643 * container.
6644 */
6645 if (idisk &&
6646 is_failed(&idisk->disk) &&
6647 (idisk->action != DISK_REMOVE))
6648 return 0;
6649 }
6650 }
6651 }
6652 return 1;
6653}
6654
88758e9d
DW
6655static struct mdinfo *imsm_activate_spare(struct active_array *a,
6656 struct metadata_update **updates)
6657{
6658 /**
d23fe947
DW
6659 * Find a device with unused free space and use it to replace a
6660 * failed/vacant region in an array. We replace failed regions one a
6661 * array at a time. The result is that a new spare disk will be added
6662 * to the first failed array and after the monitor has finished
6663 * propagating failures the remainder will be consumed.
88758e9d 6664 *
d23fe947
DW
6665 * FIXME add a capability for mdmon to request spares from another
6666 * container.
88758e9d
DW
6667 */
6668
6669 struct intel_super *super = a->container->sb;
88758e9d 6670 int inst = a->info.container_member;
949c47a0 6671 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 6672 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
6673 int failed = a->info.array.raid_disks;
6674 struct mdinfo *rv = NULL;
6675 struct mdinfo *d;
6676 struct mdinfo *di;
6677 struct metadata_update *mu;
6678 struct dl *dl;
6679 struct imsm_update_activate_spare *u;
6680 int num_spares = 0;
6681 int i;
95d07a2c 6682 int allowed;
88758e9d
DW
6683
6684 for (d = a->info.devs ; d ; d = d->next) {
6685 if ((d->curr_state & DS_FAULTY) &&
6686 d->state_fd >= 0)
6687 /* wait for Removal to happen */
6688 return NULL;
6689 if (d->state_fd >= 0)
6690 failed--;
6691 }
6692
6693 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6694 inst, failed, a->info.array.raid_disks, a->info.array.level);
1af97990 6695
e2962bfc
AK
6696 if (imsm_reshape_blocks_arrays_changes(super))
6697 return NULL;
1af97990 6698
89c67882
AK
6699 if (a->info.array.level == 4)
6700 /* No repair for takeovered array
6701 * imsm doesn't support raid4
6702 */
6703 return NULL;
6704
fb49eef2 6705 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
6706 return NULL;
6707
95d07a2c
LM
6708 /*
6709 * If there are any failed disks check state of the other volume.
6710 * Block rebuild if the another one is failed until failed disks
6711 * are removed from container.
6712 */
6713 if (failed) {
c4acd1e5 6714 dprintf("found failed disks in %.*s, check if there another"
95d07a2c 6715 "failed sub-array.\n",
c4acd1e5 6716 MAX_RAID_SERIAL_LEN, dev->volume);
95d07a2c
LM
6717 /* check if states of the other volumes allow for rebuild */
6718 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6719 if (i != inst) {
6720 allowed = imsm_rebuild_allowed(a->container,
6721 i, failed);
6722 if (!allowed)
6723 return NULL;
6724 }
6725 }
6726 }
6727
88758e9d 6728 /* For each slot, if it is not working, find a spare */
88758e9d
DW
6729 for (i = 0; i < a->info.array.raid_disks; i++) {
6730 for (d = a->info.devs ; d ; d = d->next)
6731 if (d->disk.raid_disk == i)
6732 break;
6733 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6734 if (d && (d->state_fd >= 0))
6735 continue;
6736
272906ef 6737 /*
a20d2ba5
DW
6738 * OK, this device needs recovery. Try to re-add the
6739 * previous occupant of this slot, if this fails see if
6740 * we can continue the assimilation of a spare that was
6741 * partially assimilated, finally try to activate a new
6742 * spare.
272906ef
DW
6743 */
6744 dl = imsm_readd(super, i, a);
6745 if (!dl)
b303fe21 6746 dl = imsm_add_spare(super, i, a, 0, rv);
a20d2ba5 6747 if (!dl)
b303fe21 6748 dl = imsm_add_spare(super, i, a, 1, rv);
272906ef
DW
6749 if (!dl)
6750 continue;
6751
6752 /* found a usable disk with enough space */
6753 di = malloc(sizeof(*di));
79244939
DW
6754 if (!di)
6755 continue;
272906ef
DW
6756 memset(di, 0, sizeof(*di));
6757
6758 /* dl->index will be -1 in the case we are activating a
6759 * pristine spare. imsm_process_update() will create a
6760 * new index in this case. Once a disk is found to be
6761 * failed in all member arrays it is kicked from the
6762 * metadata
6763 */
6764 di->disk.number = dl->index;
d23fe947 6765
272906ef
DW
6766 /* (ab)use di->devs to store a pointer to the device
6767 * we chose
6768 */
6769 di->devs = (struct mdinfo *) dl;
6770
6771 di->disk.raid_disk = i;
6772 di->disk.major = dl->major;
6773 di->disk.minor = dl->minor;
6774 di->disk.state = 0;
d23534e4 6775 di->recovery_start = 0;
272906ef
DW
6776 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6777 di->component_size = a->info.component_size;
6778 di->container_member = inst;
148acb7b 6779 super->random = random32();
272906ef
DW
6780 di->next = rv;
6781 rv = di;
6782 num_spares++;
6783 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6784 i, di->data_offset);
88758e9d
DW
6785 }
6786
6787 if (!rv)
6788 /* No spares found */
6789 return rv;
6790 /* Now 'rv' has a list of devices to return.
6791 * Create a metadata_update record to update the
6792 * disk_ord_tbl for the array
6793 */
6794 mu = malloc(sizeof(*mu));
79244939
DW
6795 if (mu) {
6796 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6797 if (mu->buf == NULL) {
6798 free(mu);
6799 mu = NULL;
6800 }
6801 }
6802 if (!mu) {
6803 while (rv) {
6804 struct mdinfo *n = rv->next;
6805
6806 free(rv);
6807 rv = n;
6808 }
6809 return NULL;
6810 }
6811
88758e9d 6812 mu->space = NULL;
cb23f1f4 6813 mu->space_list = NULL;
88758e9d
DW
6814 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6815 mu->next = *updates;
6816 u = (struct imsm_update_activate_spare *) mu->buf;
6817
6818 for (di = rv ; di ; di = di->next) {
6819 u->type = update_activate_spare;
d23fe947
DW
6820 u->dl = (struct dl *) di->devs;
6821 di->devs = NULL;
88758e9d
DW
6822 u->slot = di->disk.raid_disk;
6823 u->array = inst;
6824 u->next = u + 1;
6825 u++;
6826 }
6827 (u-1)->next = NULL;
6828 *updates = mu;
6829
6830 return rv;
6831}
6832
54c2c1ea 6833static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 6834{
54c2c1ea
DW
6835 struct imsm_dev *dev = get_imsm_dev(super, idx);
6836 struct imsm_map *map = get_imsm_map(dev, 0);
6837 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6838 struct disk_info *inf = get_disk_info(u);
6839 struct imsm_disk *disk;
8273f55e
DW
6840 int i;
6841 int j;
8273f55e 6842
54c2c1ea 6843 for (i = 0; i < map->num_members; i++) {
98130f40 6844 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
54c2c1ea
DW
6845 for (j = 0; j < new_map->num_members; j++)
6846 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
6847 return 1;
6848 }
6849
6850 return 0;
6851}
6852
1a64be56
LM
6853
6854static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6855{
6856 struct dl *dl = NULL;
6857 for (dl = super->disks; dl; dl = dl->next)
6858 if ((dl->major == major) && (dl->minor == minor))
6859 return dl;
6860 return NULL;
6861}
6862
6863static int remove_disk_super(struct intel_super *super, int major, int minor)
6864{
6865 struct dl *prev = NULL;
6866 struct dl *dl;
6867
6868 prev = NULL;
6869 for (dl = super->disks; dl; dl = dl->next) {
6870 if ((dl->major == major) && (dl->minor == minor)) {
6871 /* remove */
6872 if (prev)
6873 prev->next = dl->next;
6874 else
6875 super->disks = dl->next;
6876 dl->next = NULL;
6877 __free_imsm_disk(dl);
6878 dprintf("%s: removed %x:%x\n",
6879 __func__, major, minor);
6880 break;
6881 }
6882 prev = dl;
6883 }
6884 return 0;
6885}
6886
f21e18ca 6887static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
ae6aad82 6888
1a64be56
LM
6889static int add_remove_disk_update(struct intel_super *super)
6890{
6891 int check_degraded = 0;
6892 struct dl *disk = NULL;
6893 /* add/remove some spares to/from the metadata/contrainer */
6894 while (super->disk_mgmt_list) {
6895 struct dl *disk_cfg;
6896
6897 disk_cfg = super->disk_mgmt_list;
6898 super->disk_mgmt_list = disk_cfg->next;
6899 disk_cfg->next = NULL;
6900
6901 if (disk_cfg->action == DISK_ADD) {
6902 disk_cfg->next = super->disks;
6903 super->disks = disk_cfg;
6904 check_degraded = 1;
6905 dprintf("%s: added %x:%x\n",
6906 __func__, disk_cfg->major,
6907 disk_cfg->minor);
6908 } else if (disk_cfg->action == DISK_REMOVE) {
6909 dprintf("Disk remove action processed: %x.%x\n",
6910 disk_cfg->major, disk_cfg->minor);
6911 disk = get_disk_super(super,
6912 disk_cfg->major,
6913 disk_cfg->minor);
6914 if (disk) {
6915 /* store action status */
6916 disk->action = DISK_REMOVE;
6917 /* remove spare disks only */
6918 if (disk->index == -1) {
6919 remove_disk_super(super,
6920 disk_cfg->major,
6921 disk_cfg->minor);
6922 }
6923 }
6924 /* release allocate disk structure */
6925 __free_imsm_disk(disk_cfg);
6926 }
6927 }
6928 return check_degraded;
6929}
6930
a29911da
PC
6931
6932static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6933 struct intel_super *super,
6934 void ***space_list)
6935{
6936 struct intel_dev *id;
6937 void **tofree = NULL;
6938 int ret_val = 0;
6939
6940 dprintf("apply_reshape_migration_update()\n");
6941 if ((u->subdev < 0) ||
6942 (u->subdev > 1)) {
6943 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6944 return ret_val;
6945 }
6946 if ((space_list == NULL) || (*space_list == NULL)) {
6947 dprintf("imsm: Error: Memory is not allocated\n");
6948 return ret_val;
6949 }
6950
6951 for (id = super->devlist ; id; id = id->next) {
6952 if (id->index == (unsigned)u->subdev) {
6953 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6954 struct imsm_map *map;
6955 struct imsm_dev *new_dev =
6956 (struct imsm_dev *)*space_list;
6957 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6958 int to_state;
6959 struct dl *new_disk;
6960
6961 if (new_dev == NULL)
6962 return ret_val;
6963 *space_list = **space_list;
6964 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6965 map = get_imsm_map(new_dev, 0);
6966 if (migr_map) {
6967 dprintf("imsm: Error: migration in progress");
6968 return ret_val;
6969 }
6970
6971 to_state = map->map_state;
6972 if ((u->new_level == 5) && (map->raid_level == 0)) {
6973 map->num_members++;
6974 /* this should not happen */
6975 if (u->new_disks[0] < 0) {
6976 map->failed_disk_num =
6977 map->num_members - 1;
6978 to_state = IMSM_T_STATE_DEGRADED;
6979 } else
6980 to_state = IMSM_T_STATE_NORMAL;
6981 }
8e59f3d8 6982 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
a29911da
PC
6983 if (u->new_level > -1)
6984 map->raid_level = u->new_level;
6985 migr_map = get_imsm_map(new_dev, 1);
6986 if ((u->new_level == 5) &&
6987 (migr_map->raid_level == 0)) {
6988 int ord = map->num_members - 1;
6989 migr_map->num_members--;
6990 if (u->new_disks[0] < 0)
6991 ord |= IMSM_ORD_REBUILD;
6992 set_imsm_ord_tbl_ent(map,
6993 map->num_members - 1,
6994 ord);
6995 }
6996 id->dev = new_dev;
6997 tofree = (void **)dev;
6998
4bba0439
PC
6999 /* update chunk size
7000 */
7001 if (u->new_chunksize > 0)
7002 map->blocks_per_strip =
7003 __cpu_to_le16(u->new_chunksize * 2);
7004
a29911da
PC
7005 /* add disk
7006 */
7007 if ((u->new_level != 5) ||
7008 (migr_map->raid_level != 0) ||
7009 (migr_map->raid_level == map->raid_level))
7010 goto skip_disk_add;
7011
7012 if (u->new_disks[0] >= 0) {
7013 /* use passes spare
7014 */
7015 new_disk = get_disk_super(super,
7016 major(u->new_disks[0]),
7017 minor(u->new_disks[0]));
7018 dprintf("imsm: new disk for reshape is: %i:%i "
7019 "(%p, index = %i)\n",
7020 major(u->new_disks[0]),
7021 minor(u->new_disks[0]),
7022 new_disk, new_disk->index);
7023 if (new_disk == NULL)
7024 goto error_disk_add;
7025
7026 new_disk->index = map->num_members - 1;
7027 /* slot to fill in autolayout
7028 */
7029 new_disk->raiddisk = new_disk->index;
7030 new_disk->disk.status |= CONFIGURED_DISK;
7031 new_disk->disk.status &= ~SPARE_DISK;
7032 } else
7033 goto error_disk_add;
7034
7035skip_disk_add:
7036 *tofree = *space_list;
7037 /* calculate new size
7038 */
7039 imsm_set_array_size(new_dev);
7040
7041 ret_val = 1;
7042 }
7043 }
7044
7045 if (tofree)
7046 *space_list = tofree;
7047 return ret_val;
7048
7049error_disk_add:
7050 dprintf("Error: imsm: Cannot find disk.\n");
7051 return ret_val;
7052}
7053
061d7da3
LO
7054static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7055 struct intel_super *super,
7056 struct active_array *active_array)
7057{
7058 struct imsm_super *mpb = super->anchor;
7059 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7060 struct imsm_map *map = get_imsm_map(dev, 0);
7061 struct imsm_map *migr_map;
7062 struct active_array *a;
7063 struct imsm_disk *disk;
7064 __u8 to_state;
7065 struct dl *dl;
7066 unsigned int found;
7067 int failed;
5961eeec 7068 int victim;
061d7da3 7069 int i;
5961eeec 7070 int second_map_created = 0;
061d7da3 7071
5961eeec 7072 for (; u; u = u->next) {
7073 victim = get_imsm_disk_idx(dev, u->slot, -1);
061d7da3 7074
5961eeec 7075 if (victim < 0)
7076 return 0;
061d7da3 7077
5961eeec 7078 for (dl = super->disks; dl; dl = dl->next)
7079 if (dl == u->dl)
7080 break;
061d7da3 7081
5961eeec 7082 if (!dl) {
7083 fprintf(stderr, "error: imsm_activate_spare passed "
7084 "an unknown disk (index: %d)\n",
7085 u->dl->index);
7086 return 0;
7087 }
061d7da3 7088
5961eeec 7089 /* count failures (excluding rebuilds and the victim)
7090 * to determine map[0] state
7091 */
7092 failed = 0;
7093 for (i = 0; i < map->num_members; i++) {
7094 if (i == u->slot)
7095 continue;
7096 disk = get_imsm_disk(super,
7097 get_imsm_disk_idx(dev, i, -1));
7098 if (!disk || is_failed(disk))
7099 failed++;
7100 }
061d7da3 7101
5961eeec 7102 /* adding a pristine spare, assign a new index */
7103 if (dl->index < 0) {
7104 dl->index = super->anchor->num_disks;
7105 super->anchor->num_disks++;
7106 }
7107 disk = &dl->disk;
7108 disk->status |= CONFIGURED_DISK;
7109 disk->status &= ~SPARE_DISK;
7110
7111 /* mark rebuild */
7112 to_state = imsm_check_degraded(super, dev, failed);
7113 if (!second_map_created) {
7114 second_map_created = 1;
7115 map->map_state = IMSM_T_STATE_DEGRADED;
7116 migrate(dev, super, to_state, MIGR_REBUILD);
7117 } else
7118 map->map_state = to_state;
7119 migr_map = get_imsm_map(dev, 1);
7120 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7121 set_imsm_ord_tbl_ent(migr_map, u->slot,
7122 dl->index | IMSM_ORD_REBUILD);
7123
7124 /* update the family_num to mark a new container
7125 * generation, being careful to record the existing
7126 * family_num in orig_family_num to clean up after
7127 * earlier mdadm versions that neglected to set it.
7128 */
7129 if (mpb->orig_family_num == 0)
7130 mpb->orig_family_num = mpb->family_num;
7131 mpb->family_num += super->random;
7132
7133 /* count arrays using the victim in the metadata */
7134 found = 0;
7135 for (a = active_array; a ; a = a->next) {
7136 dev = get_imsm_dev(super, a->info.container_member);
7137 map = get_imsm_map(dev, 0);
061d7da3 7138
5961eeec 7139 if (get_imsm_disk_slot(map, victim) >= 0)
7140 found++;
7141 }
061d7da3 7142
5961eeec 7143 /* delete the victim if it is no longer being
7144 * utilized anywhere
061d7da3 7145 */
5961eeec 7146 if (!found) {
7147 struct dl **dlp;
061d7da3 7148
5961eeec 7149 /* We know that 'manager' isn't touching anything,
7150 * so it is safe to delete
7151 */
7152 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
061d7da3
LO
7153 if ((*dlp)->index == victim)
7154 break;
5961eeec 7155
7156 /* victim may be on the missing list */
7157 if (!*dlp)
7158 for (dlp = &super->missing; *dlp;
7159 dlp = &(*dlp)->next)
7160 if ((*dlp)->index == victim)
7161 break;
7162 imsm_delete(super, dlp, victim);
7163 }
061d7da3
LO
7164 }
7165
7166 return 1;
7167}
a29911da 7168
2e5dc010
N
7169static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7170 struct intel_super *super,
7171 void ***space_list)
7172{
7173 struct dl *new_disk;
7174 struct intel_dev *id;
7175 int i;
7176 int delta_disks = u->new_raid_disks - u->old_raid_disks;
ee4beede 7177 int disk_count = u->old_raid_disks;
2e5dc010
N
7178 void **tofree = NULL;
7179 int devices_to_reshape = 1;
7180 struct imsm_super *mpb = super->anchor;
7181 int ret_val = 0;
d098291a 7182 unsigned int dev_id;
2e5dc010 7183
ed7333bd 7184 dprintf("imsm: apply_reshape_container_disks_update()\n");
2e5dc010
N
7185
7186 /* enable spares to use in array */
7187 for (i = 0; i < delta_disks; i++) {
7188 new_disk = get_disk_super(super,
7189 major(u->new_disks[i]),
7190 minor(u->new_disks[i]));
ed7333bd
AK
7191 dprintf("imsm: new disk for reshape is: %i:%i "
7192 "(%p, index = %i)\n",
2e5dc010
N
7193 major(u->new_disks[i]), minor(u->new_disks[i]),
7194 new_disk, new_disk->index);
7195 if ((new_disk == NULL) ||
7196 ((new_disk->index >= 0) &&
7197 (new_disk->index < u->old_raid_disks)))
7198 goto update_reshape_exit;
ee4beede 7199 new_disk->index = disk_count++;
2e5dc010
N
7200 /* slot to fill in autolayout
7201 */
7202 new_disk->raiddisk = new_disk->index;
7203 new_disk->disk.status |=
7204 CONFIGURED_DISK;
7205 new_disk->disk.status &= ~SPARE_DISK;
7206 }
7207
ed7333bd
AK
7208 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7209 mpb->num_raid_devs);
2e5dc010
N
7210 /* manage changes in volume
7211 */
d098291a 7212 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
2e5dc010
N
7213 void **sp = *space_list;
7214 struct imsm_dev *newdev;
7215 struct imsm_map *newmap, *oldmap;
7216
d098291a
AK
7217 for (id = super->devlist ; id; id = id->next) {
7218 if (id->index == dev_id)
7219 break;
7220 }
7221 if (id == NULL)
7222 break;
2e5dc010
N
7223 if (!sp)
7224 continue;
7225 *space_list = *sp;
7226 newdev = (void*)sp;
7227 /* Copy the dev, but not (all of) the map */
7228 memcpy(newdev, id->dev, sizeof(*newdev));
7229 oldmap = get_imsm_map(id->dev, 0);
7230 newmap = get_imsm_map(newdev, 0);
7231 /* Copy the current map */
7232 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7233 /* update one device only
7234 */
7235 if (devices_to_reshape) {
ed7333bd
AK
7236 dprintf("imsm: modifying subdev: %i\n",
7237 id->index);
2e5dc010
N
7238 devices_to_reshape--;
7239 newdev->vol.migr_state = 1;
7240 newdev->vol.curr_migr_unit = 0;
ea672ee1 7241 set_migr_type(newdev, MIGR_GEN_MIGR);
2e5dc010
N
7242 newmap->num_members = u->new_raid_disks;
7243 for (i = 0; i < delta_disks; i++) {
7244 set_imsm_ord_tbl_ent(newmap,
7245 u->old_raid_disks + i,
7246 u->old_raid_disks + i);
7247 }
7248 /* New map is correct, now need to save old map
7249 */
7250 newmap = get_imsm_map(newdev, 1);
7251 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7252
70bdf0dc 7253 imsm_set_array_size(newdev);
2e5dc010
N
7254 }
7255
7256 sp = (void **)id->dev;
7257 id->dev = newdev;
7258 *sp = tofree;
7259 tofree = sp;
8e59f3d8
AK
7260
7261 /* Clear migration record */
7262 memset(super->migr_rec, 0, sizeof(struct migr_record));
2e5dc010 7263 }
819bc634
AK
7264 if (tofree)
7265 *space_list = tofree;
2e5dc010
N
7266 ret_val = 1;
7267
7268update_reshape_exit:
7269
7270 return ret_val;
7271}
7272
bb025c2f 7273static int apply_takeover_update(struct imsm_update_takeover *u,
8ca6df95
KW
7274 struct intel_super *super,
7275 void ***space_list)
bb025c2f
KW
7276{
7277 struct imsm_dev *dev = NULL;
8ca6df95
KW
7278 struct intel_dev *dv;
7279 struct imsm_dev *dev_new;
bb025c2f
KW
7280 struct imsm_map *map;
7281 struct dl *dm, *du;
8ca6df95 7282 int i;
bb025c2f
KW
7283
7284 for (dv = super->devlist; dv; dv = dv->next)
7285 if (dv->index == (unsigned int)u->subarray) {
7286 dev = dv->dev;
7287 break;
7288 }
7289
7290 if (dev == NULL)
7291 return 0;
7292
7293 map = get_imsm_map(dev, 0);
7294
7295 if (u->direction == R10_TO_R0) {
43d5ec18
KW
7296 /* Number of failed disks must be half of initial disk number */
7297 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7298 return 0;
7299
bb025c2f
KW
7300 /* iterate through devices to mark removed disks as spare */
7301 for (dm = super->disks; dm; dm = dm->next) {
7302 if (dm->disk.status & FAILED_DISK) {
7303 int idx = dm->index;
7304 /* update indexes on the disk list */
7305/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7306 the index values will end up being correct.... NB */
7307 for (du = super->disks; du; du = du->next)
7308 if (du->index > idx)
7309 du->index--;
7310 /* mark as spare disk */
a8619d23 7311 mark_spare(dm);
bb025c2f
KW
7312 }
7313 }
bb025c2f
KW
7314 /* update map */
7315 map->num_members = map->num_members / 2;
7316 map->map_state = IMSM_T_STATE_NORMAL;
7317 map->num_domains = 1;
7318 map->raid_level = 0;
7319 map->failed_disk_num = -1;
7320 }
7321
8ca6df95
KW
7322 if (u->direction == R0_TO_R10) {
7323 void **space;
7324 /* update slots in current disk list */
7325 for (dm = super->disks; dm; dm = dm->next) {
7326 if (dm->index >= 0)
7327 dm->index *= 2;
7328 }
7329 /* create new *missing* disks */
7330 for (i = 0; i < map->num_members; i++) {
7331 space = *space_list;
7332 if (!space)
7333 continue;
7334 *space_list = *space;
7335 du = (void *)space;
7336 memcpy(du, super->disks, sizeof(*du));
8ca6df95
KW
7337 du->fd = -1;
7338 du->minor = 0;
7339 du->major = 0;
7340 du->index = (i * 2) + 1;
7341 sprintf((char *)du->disk.serial,
7342 " MISSING_%d", du->index);
7343 sprintf((char *)du->serial,
7344 "MISSING_%d", du->index);
7345 du->next = super->missing;
7346 super->missing = du;
7347 }
7348 /* create new dev and map */
7349 space = *space_list;
7350 if (!space)
7351 return 0;
7352 *space_list = *space;
7353 dev_new = (void *)space;
7354 memcpy(dev_new, dev, sizeof(*dev));
7355 /* update new map */
7356 map = get_imsm_map(dev_new, 0);
8ca6df95 7357 map->num_members = map->num_members * 2;
1a2487c2 7358 map->map_state = IMSM_T_STATE_DEGRADED;
8ca6df95
KW
7359 map->num_domains = 2;
7360 map->raid_level = 1;
7361 /* replace dev<->dev_new */
7362 dv->dev = dev_new;
7363 }
bb025c2f
KW
7364 /* update disk order table */
7365 for (du = super->disks; du; du = du->next)
7366 if (du->index >= 0)
7367 set_imsm_ord_tbl_ent(map, du->index, du->index);
8ca6df95 7368 for (du = super->missing; du; du = du->next)
1a2487c2
KW
7369 if (du->index >= 0) {
7370 set_imsm_ord_tbl_ent(map, du->index, du->index);
e4c72d1d 7371 mark_missing(dv->dev, &du->disk, du->index);
1a2487c2 7372 }
bb025c2f
KW
7373
7374 return 1;
7375}
7376
e8319a19
DW
7377static void imsm_process_update(struct supertype *st,
7378 struct metadata_update *update)
7379{
7380 /**
7381 * crack open the metadata_update envelope to find the update record
7382 * update can be one of:
d195167d
AK
7383 * update_reshape_container_disks - all the arrays in the container
7384 * are being reshaped to have more devices. We need to mark
7385 * the arrays for general migration and convert selected spares
7386 * into active devices.
7387 * update_activate_spare - a spare device has replaced a failed
e8319a19
DW
7388 * device in an array, update the disk_ord_tbl. If this disk is
7389 * present in all member arrays then also clear the SPARE_DISK
7390 * flag
d195167d
AK
7391 * update_create_array
7392 * update_kill_array
7393 * update_rename_array
7394 * update_add_remove_disk
e8319a19
DW
7395 */
7396 struct intel_super *super = st->sb;
4d7b1503 7397 struct imsm_super *mpb;
e8319a19
DW
7398 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7399
4d7b1503
DW
7400 /* update requires a larger buf but the allocation failed */
7401 if (super->next_len && !super->next_buf) {
7402 super->next_len = 0;
7403 return;
7404 }
7405
7406 if (super->next_buf) {
7407 memcpy(super->next_buf, super->buf, super->len);
7408 free(super->buf);
7409 super->len = super->next_len;
7410 super->buf = super->next_buf;
7411
7412 super->next_len = 0;
7413 super->next_buf = NULL;
7414 }
7415
7416 mpb = super->anchor;
7417
e8319a19 7418 switch (type) {
0ec5d470
AK
7419 case update_general_migration_checkpoint: {
7420 struct intel_dev *id;
7421 struct imsm_update_general_migration_checkpoint *u =
7422 (void *)update->buf;
7423
7424 dprintf("imsm: process_update() "
7425 "for update_general_migration_checkpoint called\n");
7426
7427 /* find device under general migration */
7428 for (id = super->devlist ; id; id = id->next) {
7429 if (is_gen_migration(id->dev)) {
7430 id->dev->vol.curr_migr_unit =
7431 __cpu_to_le32(u->curr_migr_unit);
7432 super->updates_pending++;
7433 }
7434 }
7435 break;
7436 }
bb025c2f
KW
7437 case update_takeover: {
7438 struct imsm_update_takeover *u = (void *)update->buf;
1a2487c2
KW
7439 if (apply_takeover_update(u, super, &update->space_list)) {
7440 imsm_update_version_info(super);
bb025c2f 7441 super->updates_pending++;
1a2487c2 7442 }
bb025c2f
KW
7443 break;
7444 }
7445
78b10e66 7446 case update_reshape_container_disks: {
d195167d 7447 struct imsm_update_reshape *u = (void *)update->buf;
2e5dc010
N
7448 if (apply_reshape_container_disks_update(
7449 u, super, &update->space_list))
7450 super->updates_pending++;
78b10e66
N
7451 break;
7452 }
48c5303a 7453 case update_reshape_migration: {
a29911da
PC
7454 struct imsm_update_reshape_migration *u = (void *)update->buf;
7455 if (apply_reshape_migration_update(
7456 u, super, &update->space_list))
7457 super->updates_pending++;
48c5303a
PC
7458 break;
7459 }
e8319a19
DW
7460 case update_activate_spare: {
7461 struct imsm_update_activate_spare *u = (void *) update->buf;
061d7da3
LO
7462 if (apply_update_activate_spare(u, super, st->arrays))
7463 super->updates_pending++;
8273f55e
DW
7464 break;
7465 }
7466 case update_create_array: {
7467 /* someone wants to create a new array, we need to be aware of
7468 * a few races/collisions:
7469 * 1/ 'Create' called by two separate instances of mdadm
7470 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7471 * devices that have since been assimilated via
7472 * activate_spare.
7473 * In the event this update can not be carried out mdadm will
7474 * (FIX ME) notice that its update did not take hold.
7475 */
7476 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7477 struct intel_dev *dv;
8273f55e
DW
7478 struct imsm_dev *dev;
7479 struct imsm_map *map, *new_map;
7480 unsigned long long start, end;
7481 unsigned long long new_start, new_end;
7482 int i;
54c2c1ea
DW
7483 struct disk_info *inf;
7484 struct dl *dl;
8273f55e
DW
7485
7486 /* handle racing creates: first come first serve */
7487 if (u->dev_idx < mpb->num_raid_devs) {
7488 dprintf("%s: subarray %d already defined\n",
7489 __func__, u->dev_idx);
ba2de7ba 7490 goto create_error;
8273f55e
DW
7491 }
7492
7493 /* check update is next in sequence */
7494 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
7495 dprintf("%s: can not create array %d expected index %d\n",
7496 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 7497 goto create_error;
8273f55e
DW
7498 }
7499
a965f303 7500 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
7501 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7502 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 7503 inf = get_disk_info(u);
8273f55e
DW
7504
7505 /* handle activate_spare versus create race:
7506 * check to make sure that overlapping arrays do not include
7507 * overalpping disks
7508 */
7509 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 7510 dev = get_imsm_dev(super, i);
a965f303 7511 map = get_imsm_map(dev, 0);
8273f55e
DW
7512 start = __le32_to_cpu(map->pba_of_lba0);
7513 end = start + __le32_to_cpu(map->blocks_per_member);
7514 if ((new_start >= start && new_start <= end) ||
7515 (start >= new_start && start <= new_end))
54c2c1ea
DW
7516 /* overlap */;
7517 else
7518 continue;
7519
7520 if (disks_overlap(super, i, u)) {
8273f55e 7521 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 7522 goto create_error;
8273f55e
DW
7523 }
7524 }
8273f55e 7525
949c47a0
DW
7526 /* check that prepare update was successful */
7527 if (!update->space) {
7528 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 7529 goto create_error;
949c47a0
DW
7530 }
7531
54c2c1ea
DW
7532 /* check that all disks are still active before committing
7533 * changes. FIXME: could we instead handle this by creating a
7534 * degraded array? That's probably not what the user expects,
7535 * so better to drop this update on the floor.
7536 */
7537 for (i = 0; i < new_map->num_members; i++) {
7538 dl = serial_to_dl(inf[i].serial, super);
7539 if (!dl) {
7540 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 7541 goto create_error;
54c2c1ea 7542 }
949c47a0
DW
7543 }
7544
8273f55e 7545 super->updates_pending++;
54c2c1ea
DW
7546
7547 /* convert spares to members and fixup ord_tbl */
7548 for (i = 0; i < new_map->num_members; i++) {
7549 dl = serial_to_dl(inf[i].serial, super);
7550 if (dl->index == -1) {
7551 dl->index = mpb->num_disks;
7552 mpb->num_disks++;
7553 dl->disk.status |= CONFIGURED_DISK;
7554 dl->disk.status &= ~SPARE_DISK;
7555 }
7556 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7557 }
7558
ba2de7ba
DW
7559 dv = update->space;
7560 dev = dv->dev;
949c47a0
DW
7561 update->space = NULL;
7562 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
7563 dv->index = u->dev_idx;
7564 dv->next = super->devlist;
7565 super->devlist = dv;
8273f55e 7566 mpb->num_raid_devs++;
8273f55e 7567
4d1313e9 7568 imsm_update_version_info(super);
8273f55e 7569 break;
ba2de7ba
DW
7570 create_error:
7571 /* mdmon knows how to release update->space, but not
7572 * ((struct intel_dev *) update->space)->dev
7573 */
7574 if (update->space) {
7575 dv = update->space;
7576 free(dv->dev);
7577 }
8273f55e 7578 break;
e8319a19 7579 }
33414a01
DW
7580 case update_kill_array: {
7581 struct imsm_update_kill_array *u = (void *) update->buf;
7582 int victim = u->dev_idx;
7583 struct active_array *a;
7584 struct intel_dev **dp;
7585 struct imsm_dev *dev;
7586
7587 /* sanity check that we are not affecting the uuid of
7588 * active arrays, or deleting an active array
7589 *
7590 * FIXME when immutable ids are available, but note that
7591 * we'll also need to fixup the invalidated/active
7592 * subarray indexes in mdstat
7593 */
7594 for (a = st->arrays; a; a = a->next)
7595 if (a->info.container_member >= victim)
7596 break;
7597 /* by definition if mdmon is running at least one array
7598 * is active in the container, so checking
7599 * mpb->num_raid_devs is just extra paranoia
7600 */
7601 dev = get_imsm_dev(super, victim);
7602 if (a || !dev || mpb->num_raid_devs == 1) {
7603 dprintf("failed to delete subarray-%d\n", victim);
7604 break;
7605 }
7606
7607 for (dp = &super->devlist; *dp;)
f21e18ca 7608 if ((*dp)->index == (unsigned)super->current_vol) {
33414a01
DW
7609 *dp = (*dp)->next;
7610 } else {
f21e18ca 7611 if ((*dp)->index > (unsigned)victim)
33414a01
DW
7612 (*dp)->index--;
7613 dp = &(*dp)->next;
7614 }
7615 mpb->num_raid_devs--;
7616 super->updates_pending++;
7617 break;
7618 }
aa534678
DW
7619 case update_rename_array: {
7620 struct imsm_update_rename_array *u = (void *) update->buf;
7621 char name[MAX_RAID_SERIAL_LEN+1];
7622 int target = u->dev_idx;
7623 struct active_array *a;
7624 struct imsm_dev *dev;
7625
7626 /* sanity check that we are not affecting the uuid of
7627 * an active array
7628 */
7629 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7630 name[MAX_RAID_SERIAL_LEN] = '\0';
7631 for (a = st->arrays; a; a = a->next)
7632 if (a->info.container_member == target)
7633 break;
7634 dev = get_imsm_dev(super, u->dev_idx);
7635 if (a || !dev || !check_name(super, name, 1)) {
7636 dprintf("failed to rename subarray-%d\n", target);
7637 break;
7638 }
7639
cdbe98cd 7640 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
aa534678
DW
7641 super->updates_pending++;
7642 break;
7643 }
1a64be56 7644 case update_add_remove_disk: {
43dad3d6 7645 /* we may be able to repair some arrays if disks are
1a64be56
LM
7646 * being added, check teh status of add_remove_disk
7647 * if discs has been added.
7648 */
7649 if (add_remove_disk_update(super)) {
43dad3d6 7650 struct active_array *a;
072b727f
DW
7651
7652 super->updates_pending++;
1a64be56 7653 for (a = st->arrays; a; a = a->next)
43dad3d6
DW
7654 a->check_degraded = 1;
7655 }
43dad3d6 7656 break;
e8319a19 7657 }
1a64be56
LM
7658 default:
7659 fprintf(stderr, "error: unsuported process update type:"
7660 "(type: %d)\n", type);
7661 }
e8319a19 7662}
88758e9d 7663
bc0b9d34
PC
7664static struct mdinfo *get_spares_for_grow(struct supertype *st);
7665
8273f55e
DW
7666static void imsm_prepare_update(struct supertype *st,
7667 struct metadata_update *update)
7668{
949c47a0 7669 /**
4d7b1503
DW
7670 * Allocate space to hold new disk entries, raid-device entries or a new
7671 * mpb if necessary. The manager synchronously waits for updates to
7672 * complete in the monitor, so new mpb buffers allocated here can be
7673 * integrated by the monitor thread without worrying about live pointers
7674 * in the manager thread.
8273f55e 7675 */
949c47a0 7676 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
7677 struct intel_super *super = st->sb;
7678 struct imsm_super *mpb = super->anchor;
7679 size_t buf_len;
7680 size_t len = 0;
949c47a0
DW
7681
7682 switch (type) {
0ec5d470
AK
7683 case update_general_migration_checkpoint:
7684 dprintf("imsm: prepare_update() "
7685 "for update_general_migration_checkpoint called\n");
7686 break;
abedf5fc
KW
7687 case update_takeover: {
7688 struct imsm_update_takeover *u = (void *)update->buf;
7689 if (u->direction == R0_TO_R10) {
7690 void **tail = (void **)&update->space_list;
7691 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7692 struct imsm_map *map = get_imsm_map(dev, 0);
7693 int num_members = map->num_members;
7694 void *space;
7695 int size, i;
7696 int err = 0;
7697 /* allocate memory for added disks */
7698 for (i = 0; i < num_members; i++) {
7699 size = sizeof(struct dl);
7700 space = malloc(size);
7701 if (!space) {
7702 err++;
7703 break;
7704 }
7705 *tail = space;
7706 tail = space;
7707 *tail = NULL;
7708 }
7709 /* allocate memory for new device */
7710 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7711 (num_members * sizeof(__u32));
7712 space = malloc(size);
7713 if (!space)
7714 err++;
7715 else {
7716 *tail = space;
7717 tail = space;
7718 *tail = NULL;
7719 }
7720 if (!err) {
7721 len = disks_to_mpb_size(num_members * 2);
7722 } else {
7723 /* if allocation didn't success, free buffer */
7724 while (update->space_list) {
7725 void **sp = update->space_list;
7726 update->space_list = *sp;
7727 free(sp);
7728 }
7729 }
7730 }
7731
7732 break;
7733 }
78b10e66 7734 case update_reshape_container_disks: {
d195167d
AK
7735 /* Every raid device in the container is about to
7736 * gain some more devices, and we will enter a
7737 * reconfiguration.
7738 * So each 'imsm_map' will be bigger, and the imsm_vol
7739 * will now hold 2 of them.
7740 * Thus we need new 'struct imsm_dev' allocations sized
7741 * as sizeof_imsm_dev but with more devices in both maps.
7742 */
7743 struct imsm_update_reshape *u = (void *)update->buf;
7744 struct intel_dev *dl;
7745 void **space_tail = (void**)&update->space_list;
7746
7747 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7748
7749 for (dl = super->devlist; dl; dl = dl->next) {
7750 int size = sizeof_imsm_dev(dl->dev, 1);
7751 void *s;
d677e0b8
AK
7752 if (u->new_raid_disks > u->old_raid_disks)
7753 size += sizeof(__u32)*2*
7754 (u->new_raid_disks - u->old_raid_disks);
d195167d
AK
7755 s = malloc(size);
7756 if (!s)
7757 break;
7758 *space_tail = s;
7759 space_tail = s;
7760 *space_tail = NULL;
7761 }
7762
7763 len = disks_to_mpb_size(u->new_raid_disks);
7764 dprintf("New anchor length is %llu\n", (unsigned long long)len);
78b10e66
N
7765 break;
7766 }
48c5303a 7767 case update_reshape_migration: {
bc0b9d34
PC
7768 /* for migration level 0->5 we need to add disks
7769 * so the same as for container operation we will copy
7770 * device to the bigger location.
7771 * in memory prepared device and new disk area are prepared
7772 * for usage in process update
7773 */
7774 struct imsm_update_reshape_migration *u = (void *)update->buf;
7775 struct intel_dev *id;
7776 void **space_tail = (void **)&update->space_list;
7777 int size;
7778 void *s;
7779 int current_level = -1;
7780
7781 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7782
7783 /* add space for bigger array in update
7784 */
7785 for (id = super->devlist; id; id = id->next) {
7786 if (id->index == (unsigned)u->subdev) {
7787 size = sizeof_imsm_dev(id->dev, 1);
7788 if (u->new_raid_disks > u->old_raid_disks)
7789 size += sizeof(__u32)*2*
7790 (u->new_raid_disks - u->old_raid_disks);
7791 s = malloc(size);
7792 if (!s)
7793 break;
7794 *space_tail = s;
7795 space_tail = s;
7796 *space_tail = NULL;
7797 break;
7798 }
7799 }
7800 if (update->space_list == NULL)
7801 break;
7802
7803 /* add space for disk in update
7804 */
7805 size = sizeof(struct dl);
7806 s = malloc(size);
7807 if (!s) {
7808 free(update->space_list);
7809 update->space_list = NULL;
7810 break;
7811 }
7812 *space_tail = s;
7813 space_tail = s;
7814 *space_tail = NULL;
7815
7816 /* add spare device to update
7817 */
7818 for (id = super->devlist ; id; id = id->next)
7819 if (id->index == (unsigned)u->subdev) {
7820 struct imsm_dev *dev;
7821 struct imsm_map *map;
7822
7823 dev = get_imsm_dev(super, u->subdev);
7824 map = get_imsm_map(dev, 0);
7825 current_level = map->raid_level;
7826 break;
7827 }
7828 if ((u->new_level == 5) && (u->new_level != current_level)) {
7829 struct mdinfo *spares;
7830
7831 spares = get_spares_for_grow(st);
7832 if (spares) {
7833 struct dl *dl;
7834 struct mdinfo *dev;
7835
7836 dev = spares->devs;
7837 if (dev) {
7838 u->new_disks[0] =
7839 makedev(dev->disk.major,
7840 dev->disk.minor);
7841 dl = get_disk_super(super,
7842 dev->disk.major,
7843 dev->disk.minor);
7844 dl->index = u->old_raid_disks;
7845 dev = dev->next;
7846 }
7847 sysfs_free(spares);
7848 }
7849 }
7850 len = disks_to_mpb_size(u->new_raid_disks);
7851 dprintf("New anchor length is %llu\n", (unsigned long long)len);
48c5303a
PC
7852 break;
7853 }
949c47a0
DW
7854 case update_create_array: {
7855 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 7856 struct intel_dev *dv;
54c2c1ea
DW
7857 struct imsm_dev *dev = &u->dev;
7858 struct imsm_map *map = get_imsm_map(dev, 0);
7859 struct dl *dl;
7860 struct disk_info *inf;
7861 int i;
7862 int activate = 0;
949c47a0 7863
54c2c1ea
DW
7864 inf = get_disk_info(u);
7865 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
7866 /* allocate a new super->devlist entry */
7867 dv = malloc(sizeof(*dv));
7868 if (dv) {
7869 dv->dev = malloc(len);
7870 if (dv->dev)
7871 update->space = dv;
7872 else {
7873 free(dv);
7874 update->space = NULL;
7875 }
7876 }
949c47a0 7877
54c2c1ea
DW
7878 /* count how many spares will be converted to members */
7879 for (i = 0; i < map->num_members; i++) {
7880 dl = serial_to_dl(inf[i].serial, super);
7881 if (!dl) {
7882 /* hmm maybe it failed?, nothing we can do about
7883 * it here
7884 */
7885 continue;
7886 }
7887 if (count_memberships(dl, super) == 0)
7888 activate++;
7889 }
7890 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
7891 break;
7892 default:
7893 break;
7894 }
7895 }
8273f55e 7896
4d7b1503
DW
7897 /* check if we need a larger metadata buffer */
7898 if (super->next_buf)
7899 buf_len = super->next_len;
7900 else
7901 buf_len = super->len;
7902
7903 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7904 /* ok we need a larger buf than what is currently allocated
7905 * if this allocation fails process_update will notice that
7906 * ->next_len is set and ->next_buf is NULL
7907 */
7908 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7909 if (super->next_buf)
7910 free(super->next_buf);
7911
7912 super->next_len = buf_len;
1f45a8ad
DW
7913 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7914 memset(super->next_buf, 0, buf_len);
7915 else
4d7b1503
DW
7916 super->next_buf = NULL;
7917 }
8273f55e
DW
7918}
7919
ae6aad82 7920/* must be called while manager is quiesced */
f21e18ca 7921static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
ae6aad82
DW
7922{
7923 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
7924 struct dl *iter;
7925 struct imsm_dev *dev;
7926 struct imsm_map *map;
24565c9a
DW
7927 int i, j, num_members;
7928 __u32 ord;
ae6aad82 7929
24565c9a
DW
7930 dprintf("%s: deleting device[%d] from imsm_super\n",
7931 __func__, index);
ae6aad82
DW
7932
7933 /* shift all indexes down one */
7934 for (iter = super->disks; iter; iter = iter->next)
f21e18ca 7935 if (iter->index > (int)index)
ae6aad82 7936 iter->index--;
47ee5a45 7937 for (iter = super->missing; iter; iter = iter->next)
f21e18ca 7938 if (iter->index > (int)index)
47ee5a45 7939 iter->index--;
ae6aad82
DW
7940
7941 for (i = 0; i < mpb->num_raid_devs; i++) {
7942 dev = get_imsm_dev(super, i);
7943 map = get_imsm_map(dev, 0);
24565c9a
DW
7944 num_members = map->num_members;
7945 for (j = 0; j < num_members; j++) {
7946 /* update ord entries being careful not to propagate
7947 * ord-flags to the first map
7948 */
98130f40 7949 ord = get_imsm_ord_tbl_ent(dev, j, -1);
ae6aad82 7950
24565c9a
DW
7951 if (ord_to_idx(ord) <= index)
7952 continue;
ae6aad82 7953
24565c9a
DW
7954 map = get_imsm_map(dev, 0);
7955 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7956 map = get_imsm_map(dev, 1);
7957 if (map)
7958 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
7959 }
7960 }
7961
7962 mpb->num_disks--;
7963 super->updates_pending++;
24565c9a
DW
7964 if (*dlp) {
7965 struct dl *dl = *dlp;
7966
7967 *dlp = (*dlp)->next;
7968 __free_imsm_disk(dl);
7969 }
ae6aad82 7970}
9e2d750d 7971#endif /* MDASSEMBLE */
687629c2
AK
7972/*******************************************************************************
7973 * Function: open_backup_targets
7974 * Description: Function opens file descriptors for all devices given in
7975 * info->devs
7976 * Parameters:
7977 * info : general array info
7978 * raid_disks : number of disks
7979 * raid_fds : table of device's file descriptors
7980 * Returns:
7981 * 0 : success
7982 * -1 : fail
7983 ******************************************************************************/
7984int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7985{
7986 struct mdinfo *sd;
7987
7988 for (sd = info->devs ; sd ; sd = sd->next) {
7989 char *dn;
7990
7991 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7992 dprintf("disk is faulty!!\n");
7993 continue;
7994 }
7995
7996 if ((sd->disk.raid_disk >= raid_disks) ||
7997 (sd->disk.raid_disk < 0))
7998 continue;
7999
8000 dn = map_dev(sd->disk.major,
8001 sd->disk.minor, 1);
8002 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8003 if (raid_fds[sd->disk.raid_disk] < 0) {
8004 fprintf(stderr, "cannot open component\n");
8005 return -1;
8006 }
8007 }
8008 return 0;
8009}
8010
9e2d750d 8011#ifndef MDASSEMBLE
687629c2
AK
8012/*******************************************************************************
8013 * Function: init_migr_record_imsm
8014 * Description: Function inits imsm migration record
8015 * Parameters:
8016 * super : imsm internal array info
8017 * dev : device under migration
8018 * info : general array info to find the smallest device
8019 * Returns:
8020 * none
8021 ******************************************************************************/
8022void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8023 struct mdinfo *info)
8024{
8025 struct intel_super *super = st->sb;
8026 struct migr_record *migr_rec = super->migr_rec;
8027 int new_data_disks;
8028 unsigned long long dsize, dev_sectors;
8029 long long unsigned min_dev_sectors = -1LLU;
8030 struct mdinfo *sd;
8031 char nm[30];
8032 int fd;
8033 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8034 struct imsm_map *map_src = get_imsm_map(dev, 1);
8035 unsigned long long num_migr_units;
3ef4403c 8036 unsigned long long array_blocks;
687629c2
AK
8037
8038 memset(migr_rec, 0, sizeof(struct migr_record));
8039 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8040
8041 /* only ascending reshape supported now */
8042 migr_rec->ascending_migr = __cpu_to_le32(1);
8043
8044 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8045 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8046 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8047 new_data_disks = imsm_num_data_members(dev, 0);
8048 migr_rec->blocks_per_unit =
8049 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8050 migr_rec->dest_depth_per_unit =
8051 __cpu_to_le32(migr_rec->dest_depth_per_unit);
3ef4403c 8052 array_blocks = info->component_size * new_data_disks;
687629c2
AK
8053 num_migr_units =
8054 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8055
8056 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8057 num_migr_units++;
8058 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8059
8060 migr_rec->post_migr_vol_cap = dev->size_low;
8061 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8062
8063
8064 /* Find the smallest dev */
8065 for (sd = info->devs ; sd ; sd = sd->next) {
8066 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8067 fd = dev_open(nm, O_RDONLY);
8068 if (fd < 0)
8069 continue;
8070 get_dev_size(fd, NULL, &dsize);
8071 dev_sectors = dsize / 512;
8072 if (dev_sectors < min_dev_sectors)
8073 min_dev_sectors = dev_sectors;
8074 close(fd);
8075 }
8076 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8077 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8078
8079 write_imsm_migr_rec(st);
8080
8081 return;
8082}
8083
8084/*******************************************************************************
8085 * Function: save_backup_imsm
8086 * Description: Function saves critical data stripes to Migration Copy Area
8087 * and updates the current migration unit status.
8088 * Use restore_stripes() to form a destination stripe,
8089 * and to write it to the Copy Area.
8090 * Parameters:
8091 * st : supertype information
aea93171 8092 * dev : imsm device that backup is saved for
687629c2
AK
8093 * info : general array info
8094 * buf : input buffer
687629c2
AK
8095 * length : length of data to backup (blocks_per_unit)
8096 * Returns:
8097 * 0 : success
8098 *, -1 : fail
8099 ******************************************************************************/
8100int save_backup_imsm(struct supertype *st,
8101 struct imsm_dev *dev,
8102 struct mdinfo *info,
8103 void *buf,
687629c2
AK
8104 int length)
8105{
8106 int rv = -1;
8107 struct intel_super *super = st->sb;
8108 unsigned long long *target_offsets = NULL;
8109 int *targets = NULL;
8110 int i;
8111 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8112 int new_disks = map_dest->num_members;
ab724b98
AK
8113 int dest_layout = 0;
8114 int dest_chunk;
d1877f69
AK
8115 unsigned long long start;
8116 int data_disks = imsm_num_data_members(dev, 0);
687629c2
AK
8117
8118 targets = malloc(new_disks * sizeof(int));
8119 if (!targets)
8120 goto abort;
8121
7e45b550
AK
8122 for (i = 0; i < new_disks; i++)
8123 targets[i] = -1;
8124
687629c2
AK
8125 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8126 if (!target_offsets)
8127 goto abort;
8128
d1877f69 8129 start = info->reshape_progress * 512;
687629c2 8130 for (i = 0; i < new_disks; i++) {
687629c2
AK
8131 target_offsets[i] = (unsigned long long)
8132 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
d1877f69
AK
8133 /* move back copy area adderss, it will be moved forward
8134 * in restore_stripes() using start input variable
8135 */
8136 target_offsets[i] -= start/data_disks;
687629c2
AK
8137 }
8138
8139 if (open_backup_targets(info, new_disks, targets))
8140 goto abort;
8141
68eb8bc6 8142 dest_layout = imsm_level_to_layout(map_dest->raid_level);
ab724b98
AK
8143 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8144
687629c2
AK
8145 if (restore_stripes(targets, /* list of dest devices */
8146 target_offsets, /* migration record offsets */
8147 new_disks,
ab724b98
AK
8148 dest_chunk,
8149 map_dest->raid_level,
8150 dest_layout,
8151 -1, /* source backup file descriptor */
8152 0, /* input buf offset
8153 * always 0 buf is already offseted */
d1877f69 8154 start,
687629c2
AK
8155 length,
8156 buf) != 0) {
8157 fprintf(stderr, Name ": Error restoring stripes\n");
8158 goto abort;
8159 }
8160
8161 rv = 0;
8162
8163abort:
8164 if (targets) {
8165 for (i = 0; i < new_disks; i++)
8166 if (targets[i] >= 0)
8167 close(targets[i]);
8168 free(targets);
8169 }
8170 free(target_offsets);
8171
8172 return rv;
8173}
8174
8175/*******************************************************************************
8176 * Function: save_checkpoint_imsm
8177 * Description: Function called for current unit status update
8178 * in the migration record. It writes it to disk.
8179 * Parameters:
8180 * super : imsm internal array info
8181 * info : general array info
8182 * Returns:
8183 * 0: success
8184 * 1: failure
0228d92c
AK
8185 * 2: failure, means no valid migration record
8186 * / no general migration in progress /
687629c2
AK
8187 ******************************************************************************/
8188int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8189{
8190 struct intel_super *super = st->sb;
f8b72ef5
AK
8191 unsigned long long blocks_per_unit;
8192 unsigned long long curr_migr_unit;
8193
2e062e82
AK
8194 if (load_imsm_migr_rec(super, info) != 0) {
8195 dprintf("imsm: ERROR: Cannot read migration record "
8196 "for checkpoint save.\n");
8197 return 1;
8198 }
8199
f8b72ef5
AK
8200 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8201 if (blocks_per_unit == 0) {
0228d92c
AK
8202 dprintf("imsm: no migration in progress.\n");
8203 return 2;
687629c2 8204 }
f8b72ef5
AK
8205 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8206 /* check if array is alligned to copy area
8207 * if it is not alligned, add one to current migration unit value
8208 * this can happend on array reshape finish only
8209 */
8210 if (info->reshape_progress % blocks_per_unit)
8211 curr_migr_unit++;
687629c2
AK
8212
8213 super->migr_rec->curr_migr_unit =
f8b72ef5 8214 __cpu_to_le32(curr_migr_unit);
687629c2
AK
8215 super->migr_rec->rec_status = __cpu_to_le32(state);
8216 super->migr_rec->dest_1st_member_lba =
f8b72ef5
AK
8217 __cpu_to_le32(curr_migr_unit *
8218 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
687629c2
AK
8219 if (write_imsm_migr_rec(st) < 0) {
8220 dprintf("imsm: Cannot write migration record "
8221 "outside backup area\n");
8222 return 1;
8223 }
8224
8225 return 0;
8226}
8227
276d77db
AK
8228/*******************************************************************************
8229 * Function: recover_backup_imsm
8230 * Description: Function recovers critical data from the Migration Copy Area
8231 * while assembling an array.
8232 * Parameters:
8233 * super : imsm internal array info
8234 * info : general array info
8235 * Returns:
8236 * 0 : success (or there is no data to recover)
8237 * 1 : fail
8238 ******************************************************************************/
8239int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8240{
8241 struct intel_super *super = st->sb;
8242 struct migr_record *migr_rec = super->migr_rec;
8243 struct imsm_map *map_dest = NULL;
8244 struct intel_dev *id = NULL;
8245 unsigned long long read_offset;
8246 unsigned long long write_offset;
8247 unsigned unit_len;
8248 int *targets = NULL;
8249 int new_disks, i, err;
8250 char *buf = NULL;
8251 int retval = 1;
8252 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8253 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
276d77db 8254 char buffer[20];
6c3560c0
AK
8255 int skipped_disks = 0;
8256 int max_degradation;
276d77db
AK
8257
8258 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8259 if (err < 1)
8260 return 1;
8261
8262 /* recover data only during assemblation */
8263 if (strncmp(buffer, "inactive", 8) != 0)
8264 return 0;
8265 /* no data to recover */
8266 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8267 return 0;
8268 if (curr_migr_unit >= num_migr_units)
8269 return 1;
8270
8271 /* find device during reshape */
8272 for (id = super->devlist; id; id = id->next)
8273 if (is_gen_migration(id->dev))
8274 break;
8275 if (id == NULL)
8276 return 1;
8277
8278 map_dest = get_imsm_map(id->dev, 0);
8279 new_disks = map_dest->num_members;
6c3560c0 8280 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
276d77db
AK
8281
8282 read_offset = (unsigned long long)
8283 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8284
8285 write_offset = ((unsigned long long)
8286 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
75b69ea4 8287 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
276d77db
AK
8288
8289 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8290 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8291 goto abort;
8292 targets = malloc(new_disks * sizeof(int));
8293 if (!targets)
8294 goto abort;
8295
8296 open_backup_targets(info, new_disks, targets);
8297
8298 for (i = 0; i < new_disks; i++) {
6c3560c0
AK
8299 if (targets[i] < 0) {
8300 skipped_disks++;
8301 continue;
8302 }
276d77db
AK
8303 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8304 fprintf(stderr,
8305 Name ": Cannot seek to block: %s\n",
8306 strerror(errno));
8307 goto abort;
8308 }
9ec11d1a 8309 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8310 fprintf(stderr,
8311 Name ": Cannot read copy area block: %s\n",
8312 strerror(errno));
8313 goto abort;
8314 }
8315 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8316 fprintf(stderr,
8317 Name ": Cannot seek to block: %s\n",
8318 strerror(errno));
8319 goto abort;
8320 }
9ec11d1a 8321 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
276d77db
AK
8322 fprintf(stderr,
8323 Name ": Cannot restore block: %s\n",
8324 strerror(errno));
8325 goto abort;
8326 }
8327 }
8328
6c3560c0
AK
8329 if (skipped_disks > max_degradation) {
8330 fprintf(stderr,
8331 Name ": Cannot restore data from backup."
8332 " Too many failed disks\n");
8333 goto abort;
8334 }
8335
befb629b
AK
8336 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8337 /* ignore error == 2, this can mean end of reshape here
8338 */
8339 dprintf("imsm: Cannot write checkpoint to "
8340 "migration record (UNIT_SRC_NORMAL) during restart\n");
8341 } else
276d77db 8342 retval = 0;
276d77db
AK
8343
8344abort:
8345 if (targets) {
8346 for (i = 0; i < new_disks; i++)
8347 if (targets[i])
8348 close(targets[i]);
8349 free(targets);
8350 }
8351 free(buf);
8352 return retval;
8353}
8354
2cda7640
ML
8355static char disk_by_path[] = "/dev/disk/by-path/";
8356
8357static const char *imsm_get_disk_controller_domain(const char *path)
8358{
2cda7640 8359 char disk_path[PATH_MAX];
96234762
LM
8360 char *drv=NULL;
8361 struct stat st;
2cda7640 8362
96234762
LM
8363 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8364 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8365 if (stat(disk_path, &st) == 0) {
8366 struct sys_dev* hba;
8367 char *path=NULL;
8368
8369 path = devt_to_devpath(st.st_rdev);
8370 if (path == NULL)
8371 return "unknown";
8372 hba = find_disk_attached_hba(-1, path);
8373 if (hba && hba->type == SYS_DEV_SAS)
8374 drv = "isci";
8375 else if (hba && hba->type == SYS_DEV_SATA)
8376 drv = "ahci";
8377 else
8378 drv = "unknown";
8379 dprintf("path: %s hba: %s attached: %s\n",
8380 path, (hba) ? hba->path : "NULL", drv);
8381 free(path);
8382 if (hba)
8383 free_sys_dev(&hba);
2cda7640 8384 }
96234762 8385 return drv;
2cda7640
ML
8386}
8387
78b10e66
N
8388static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8389{
8390 char subdev_name[20];
8391 struct mdstat_ent *mdstat;
8392
8393 sprintf(subdev_name, "%d", subdev);
8394 mdstat = mdstat_by_subdev(subdev_name, container);
8395 if (!mdstat)
8396 return -1;
8397
8398 *minor = mdstat->devnum;
8399 free_mdstat(mdstat);
8400 return 0;
8401}
8402
8403static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8404 struct geo_params *geo,
8405 int *old_raid_disks)
8406{
694575e7
KW
8407 /* currently we only support increasing the number of devices
8408 * for a container. This increases the number of device for each
8409 * member array. They must all be RAID0 or RAID5.
8410 */
78b10e66
N
8411 int ret_val = 0;
8412 struct mdinfo *info, *member;
8413 int devices_that_can_grow = 0;
8414
8415 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8416 "st->devnum = (%i)\n",
8417 st->devnum);
8418
8419 if (geo->size != -1 ||
8420 geo->level != UnSet ||
8421 geo->layout != UnSet ||
8422 geo->chunksize != 0 ||
8423 geo->raid_disks == UnSet) {
8424 dprintf("imsm: Container operation is allowed for "
8425 "raid disks number change only.\n");
8426 return ret_val;
8427 }
8428
8429 info = container_content_imsm(st, NULL);
8430 for (member = info; member; member = member->next) {
8431 int result;
8432 int minor;
8433
8434 dprintf("imsm: checking device_num: %i\n",
8435 member->container_member);
8436
d7d205bd 8437 if (geo->raid_disks <= member->array.raid_disks) {
78b10e66
N
8438 /* we work on container for Online Capacity Expansion
8439 * only so raid_disks has to grow
8440 */
8441 dprintf("imsm: for container operation raid disks "
8442 "increase is required\n");
8443 break;
8444 }
8445
8446 if ((info->array.level != 0) &&
8447 (info->array.level != 5)) {
8448 /* we cannot use this container with other raid level
8449 */
690aae1a 8450 dprintf("imsm: for container operation wrong"
78b10e66
N
8451 " raid level (%i) detected\n",
8452 info->array.level);
8453 break;
8454 } else {
8455 /* check for platform support
8456 * for this raid level configuration
8457 */
8458 struct intel_super *super = st->sb;
8459 if (!is_raid_level_supported(super->orom,
8460 member->array.level,
8461 geo->raid_disks)) {
690aae1a 8462 dprintf("platform does not support raid%d with"
78b10e66
N
8463 " %d disk%s\n",
8464 info->array.level,
8465 geo->raid_disks,
8466 geo->raid_disks > 1 ? "s" : "");
8467 break;
8468 }
2a4a08e7
AK
8469 /* check if component size is aligned to chunk size
8470 */
8471 if (info->component_size %
8472 (info->array.chunk_size/512)) {
8473 dprintf("Component size is not aligned to "
8474 "chunk size\n");
8475 break;
8476 }
78b10e66
N
8477 }
8478
8479 if (*old_raid_disks &&
8480 info->array.raid_disks != *old_raid_disks)
8481 break;
8482 *old_raid_disks = info->array.raid_disks;
8483
8484 /* All raid5 and raid0 volumes in container
8485 * have to be ready for Online Capacity Expansion
8486 * so they need to be assembled. We have already
8487 * checked that no recovery etc is happening.
8488 */
8489 result = imsm_find_array_minor_by_subdev(member->container_member,
8490 st->container_dev,
8491 &minor);
8492 if (result < 0) {
8493 dprintf("imsm: cannot find array\n");
8494 break;
8495 }
8496 devices_that_can_grow++;
8497 }
8498 sysfs_free(info);
8499 if (!member && devices_that_can_grow)
8500 ret_val = 1;
8501
8502 if (ret_val)
8503 dprintf("\tContainer operation allowed\n");
8504 else
8505 dprintf("\tError: %i\n", ret_val);
8506
8507 return ret_val;
8508}
8509
8510/* Function: get_spares_for_grow
8511 * Description: Allocates memory and creates list of spare devices
8512 * avaliable in container. Checks if spare drive size is acceptable.
8513 * Parameters: Pointer to the supertype structure
8514 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8515 * NULL if fail
8516 */
8517static struct mdinfo *get_spares_for_grow(struct supertype *st)
8518{
78b10e66 8519 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
326727d9 8520 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
78b10e66
N
8521}
8522
8523/******************************************************************************
8524 * function: imsm_create_metadata_update_for_reshape
8525 * Function creates update for whole IMSM container.
8526 *
8527 ******************************************************************************/
8528static int imsm_create_metadata_update_for_reshape(
8529 struct supertype *st,
8530 struct geo_params *geo,
8531 int old_raid_disks,
8532 struct imsm_update_reshape **updatep)
8533{
8534 struct intel_super *super = st->sb;
8535 struct imsm_super *mpb = super->anchor;
8536 int update_memory_size = 0;
8537 struct imsm_update_reshape *u = NULL;
8538 struct mdinfo *spares = NULL;
8539 int i;
8540 int delta_disks = 0;
bbd24d86 8541 struct mdinfo *dev;
78b10e66
N
8542
8543 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8544 geo->raid_disks);
8545
8546 delta_disks = geo->raid_disks - old_raid_disks;
8547
8548 /* size of all update data without anchor */
8549 update_memory_size = sizeof(struct imsm_update_reshape);
8550
8551 /* now add space for spare disks that we need to add. */
8552 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8553
8554 u = calloc(1, update_memory_size);
8555 if (u == NULL) {
8556 dprintf("error: "
8557 "cannot get memory for imsm_update_reshape update\n");
8558 return 0;
8559 }
8560 u->type = update_reshape_container_disks;
8561 u->old_raid_disks = old_raid_disks;
8562 u->new_raid_disks = geo->raid_disks;
8563
8564 /* now get spare disks list
8565 */
8566 spares = get_spares_for_grow(st);
8567
8568 if (spares == NULL
8569 || delta_disks > spares->array.spare_disks) {
e14e5960
KW
8570 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8571 "for %s.\n", geo->dev_name);
e4c72d1d 8572 i = -1;
78b10e66
N
8573 goto abort;
8574 }
8575
8576 /* we have got spares
8577 * update disk list in imsm_disk list table in anchor
8578 */
8579 dprintf("imsm: %i spares are available.\n\n",
8580 spares->array.spare_disks);
8581
bbd24d86 8582 dev = spares->devs;
78b10e66 8583 for (i = 0; i < delta_disks; i++) {
78b10e66
N
8584 struct dl *dl;
8585
bbd24d86
AK
8586 if (dev == NULL)
8587 break;
78b10e66
N
8588 u->new_disks[i] = makedev(dev->disk.major,
8589 dev->disk.minor);
8590 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
ee4beede
AK
8591 dl->index = mpb->num_disks;
8592 mpb->num_disks++;
bbd24d86 8593 dev = dev->next;
78b10e66 8594 }
78b10e66
N
8595
8596abort:
8597 /* free spares
8598 */
8599 sysfs_free(spares);
8600
d677e0b8 8601 dprintf("imsm: reshape update preparation :");
78b10e66 8602 if (i == delta_disks) {
d677e0b8 8603 dprintf(" OK\n");
78b10e66
N
8604 *updatep = u;
8605 return update_memory_size;
8606 }
8607 free(u);
d677e0b8 8608 dprintf(" Error\n");
78b10e66
N
8609
8610 return 0;
8611}
8612
48c5303a
PC
8613/******************************************************************************
8614 * function: imsm_create_metadata_update_for_migration()
8615 * Creates update for IMSM array.
8616 *
8617 ******************************************************************************/
8618static int imsm_create_metadata_update_for_migration(
8619 struct supertype *st,
8620 struct geo_params *geo,
8621 struct imsm_update_reshape_migration **updatep)
8622{
8623 struct intel_super *super = st->sb;
8624 int update_memory_size = 0;
8625 struct imsm_update_reshape_migration *u = NULL;
8626 struct imsm_dev *dev;
8627 int previous_level = -1;
8628
8629 dprintf("imsm_create_metadata_update_for_migration(enter)"
8630 " New Level = %i\n", geo->level);
8631
8632 /* size of all update data without anchor */
8633 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8634
8635 u = calloc(1, update_memory_size);
8636 if (u == NULL) {
8637 dprintf("error: cannot get memory for "
8638 "imsm_create_metadata_update_for_migration\n");
8639 return 0;
8640 }
8641 u->type = update_reshape_migration;
8642 u->subdev = super->current_vol;
8643 u->new_level = geo->level;
8644 u->new_layout = geo->layout;
8645 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8646 u->new_disks[0] = -1;
4bba0439 8647 u->new_chunksize = -1;
48c5303a
PC
8648
8649 dev = get_imsm_dev(super, u->subdev);
8650 if (dev) {
8651 struct imsm_map *map;
8652
8653 map = get_imsm_map(dev, 0);
4bba0439
PC
8654 if (map) {
8655 int current_chunk_size =
8656 __le16_to_cpu(map->blocks_per_strip) / 2;
8657
8658 if (geo->chunksize != current_chunk_size) {
8659 u->new_chunksize = geo->chunksize / 1024;
8660 dprintf("imsm: "
8661 "chunk size change from %i to %i\n",
8662 current_chunk_size, u->new_chunksize);
8663 }
48c5303a 8664 previous_level = map->raid_level;
4bba0439 8665 }
48c5303a
PC
8666 }
8667 if ((geo->level == 5) && (previous_level == 0)) {
8668 struct mdinfo *spares = NULL;
8669
8670 u->new_raid_disks++;
8671 spares = get_spares_for_grow(st);
8672 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8673 free(u);
8674 sysfs_free(spares);
8675 update_memory_size = 0;
8676 dprintf("error: cannot get spare device "
8677 "for requested migration");
8678 return 0;
8679 }
8680 sysfs_free(spares);
8681 }
8682 dprintf("imsm: reshape update preparation : OK\n");
8683 *updatep = u;
8684
8685 return update_memory_size;
8686}
8687
8dd70bce
AK
8688static void imsm_update_metadata_locally(struct supertype *st,
8689 void *buf, int len)
8690{
8691 struct metadata_update mu;
8692
8693 mu.buf = buf;
8694 mu.len = len;
8695 mu.space = NULL;
8696 mu.space_list = NULL;
8697 mu.next = NULL;
8698 imsm_prepare_update(st, &mu);
8699 imsm_process_update(st, &mu);
8700
8701 while (mu.space_list) {
8702 void **space = mu.space_list;
8703 mu.space_list = *space;
8704 free(space);
8705 }
8706}
78b10e66 8707
471bceb6 8708/***************************************************************************
694575e7 8709* Function: imsm_analyze_change
471bceb6
KW
8710* Description: Function analyze change for single volume
8711* and validate if transition is supported
694575e7
KW
8712* Parameters: Geometry parameters, supertype structure
8713* Returns: Operation type code on success, -1 if fail
471bceb6
KW
8714****************************************************************************/
8715enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8716 struct geo_params *geo)
694575e7 8717{
471bceb6
KW
8718 struct mdinfo info;
8719 int change = -1;
8720 int check_devs = 0;
c21e737b 8721 int chunk;
e91a3bad
LM
8722 int devNumChange=0;
8723 int layout = -1;
471bceb6
KW
8724
8725 getinfo_super_imsm_volume(st, &info, NULL);
471bceb6
KW
8726 if ((geo->level != info.array.level) &&
8727 (geo->level >= 0) &&
8728 (geo->level != UnSet)) {
8729 switch (info.array.level) {
8730 case 0:
8731 if (geo->level == 5) {
b5347799 8732 change = CH_MIGRATION;
e13ce846
AK
8733 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8734 fprintf(stderr,
8735 Name " Error. Requested Layout "
8736 "not supported (left-asymmetric layout "
8737 "is supported only)!\n");
8738 change = -1;
8739 goto analyse_change_exit;
8740 }
e91a3bad 8741 layout = geo->layout;
471bceb6 8742 check_devs = 1;
e91a3bad
LM
8743 devNumChange = 1; /* parity disk added */
8744 } else if (geo->level == 10) {
471bceb6
KW
8745 change = CH_TAKEOVER;
8746 check_devs = 1;
e91a3bad
LM
8747 devNumChange = 2; /* two mirrors added */
8748 layout = 0x102; /* imsm supported layout */
471bceb6 8749 }
dfe77a9e
KW
8750 break;
8751 case 1:
471bceb6
KW
8752 case 10:
8753 if (geo->level == 0) {
8754 change = CH_TAKEOVER;
8755 check_devs = 1;
e91a3bad
LM
8756 devNumChange = -(geo->raid_disks/2);
8757 layout = 0; /* imsm raid0 layout */
471bceb6
KW
8758 }
8759 break;
8760 }
8761 if (change == -1) {
8762 fprintf(stderr,
8763 Name " Error. Level Migration from %d to %d "
8764 "not supported!\n",
8765 info.array.level, geo->level);
8766 goto analyse_change_exit;
8767 }
8768 } else
8769 geo->level = info.array.level;
8770
8771 if ((geo->layout != info.array.layout)
8772 && ((geo->layout != UnSet) && (geo->layout != -1))) {
b5347799 8773 change = CH_MIGRATION;
471bceb6
KW
8774 if ((info.array.layout == 0)
8775 && (info.array.level == 5)
8776 && (geo->layout == 5)) {
8777 /* reshape 5 -> 4 */
8778 } else if ((info.array.layout == 5)
8779 && (info.array.level == 5)
8780 && (geo->layout == 0)) {
8781 /* reshape 4 -> 5 */
8782 geo->layout = 0;
8783 geo->level = 5;
8784 } else {
8785 fprintf(stderr,
8786 Name " Error. Layout Migration from %d to %d "
8787 "not supported!\n",
8788 info.array.layout, geo->layout);
8789 change = -1;
8790 goto analyse_change_exit;
8791 }
8792 } else
8793 geo->layout = info.array.layout;
8794
8795 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8796 && (geo->chunksize != info.array.chunk_size))
b5347799 8797 change = CH_MIGRATION;
471bceb6
KW
8798 else
8799 geo->chunksize = info.array.chunk_size;
8800
c21e737b 8801 chunk = geo->chunksize / 1024;
471bceb6
KW
8802 if (!validate_geometry_imsm(st,
8803 geo->level,
e91a3bad
LM
8804 layout,
8805 geo->raid_disks + devNumChange,
c21e737b 8806 &chunk,
471bceb6
KW
8807 geo->size,
8808 0, 0, 1))
8809 change = -1;
8810
8811 if (check_devs) {
8812 struct intel_super *super = st->sb;
8813 struct imsm_super *mpb = super->anchor;
8814
8815 if (mpb->num_raid_devs > 1) {
8816 fprintf(stderr,
8817 Name " Error. Cannot perform operation on %s"
8818 "- for this operation it MUST be single "
8819 "array in container\n",
8820 geo->dev_name);
8821 change = -1;
8822 }
8823 }
8824
8825analyse_change_exit:
8826
8827 return change;
694575e7
KW
8828}
8829
bb025c2f
KW
8830int imsm_takeover(struct supertype *st, struct geo_params *geo)
8831{
8832 struct intel_super *super = st->sb;
8833 struct imsm_update_takeover *u;
8834
8835 u = malloc(sizeof(struct imsm_update_takeover));
8836 if (u == NULL)
8837 return 1;
8838
8839 u->type = update_takeover;
8840 u->subarray = super->current_vol;
8841
8842 /* 10->0 transition */
8843 if (geo->level == 0)
8844 u->direction = R10_TO_R0;
8845
0529c688
KW
8846 /* 0->10 transition */
8847 if (geo->level == 10)
8848 u->direction = R0_TO_R10;
8849
bb025c2f
KW
8850 /* update metadata locally */
8851 imsm_update_metadata_locally(st, u,
8852 sizeof(struct imsm_update_takeover));
8853 /* and possibly remotely */
8854 if (st->update_tail)
8855 append_metadata_update(st, u,
8856 sizeof(struct imsm_update_takeover));
8857 else
8858 free(u);
8859
8860 return 0;
8861}
8862
78b10e66
N
8863static int imsm_reshape_super(struct supertype *st, long long size, int level,
8864 int layout, int chunksize, int raid_disks,
41784c88
AK
8865 int delta_disks, char *backup, char *dev,
8866 int verbose)
78b10e66 8867{
78b10e66
N
8868 int ret_val = 1;
8869 struct geo_params geo;
8870
8871 dprintf("imsm: reshape_super called.\n");
8872
71204a50 8873 memset(&geo, 0, sizeof(struct geo_params));
78b10e66
N
8874
8875 geo.dev_name = dev;
694575e7 8876 geo.dev_id = st->devnum;
78b10e66
N
8877 geo.size = size;
8878 geo.level = level;
8879 geo.layout = layout;
8880 geo.chunksize = chunksize;
8881 geo.raid_disks = raid_disks;
41784c88
AK
8882 if (delta_disks != UnSet)
8883 geo.raid_disks += delta_disks;
78b10e66
N
8884
8885 dprintf("\tfor level : %i\n", geo.level);
8886 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8887
8888 if (experimental() == 0)
8889 return ret_val;
8890
78b10e66 8891 if (st->container_dev == st->devnum) {
694575e7
KW
8892 /* On container level we can only increase number of devices. */
8893 dprintf("imsm: info: Container operation\n");
78b10e66 8894 int old_raid_disks = 0;
6dc0be30 8895
78b10e66
N
8896 if (imsm_reshape_is_allowed_on_container(
8897 st, &geo, &old_raid_disks)) {
8898 struct imsm_update_reshape *u = NULL;
8899 int len;
8900
8901 len = imsm_create_metadata_update_for_reshape(
8902 st, &geo, old_raid_disks, &u);
8903
ed08d51c
AK
8904 if (len <= 0) {
8905 dprintf("imsm: Cannot prepare update\n");
8906 goto exit_imsm_reshape_super;
8907 }
8908
8dd70bce
AK
8909 ret_val = 0;
8910 /* update metadata locally */
8911 imsm_update_metadata_locally(st, u, len);
8912 /* and possibly remotely */
8913 if (st->update_tail)
8914 append_metadata_update(st, u, len);
8915 else
ed08d51c 8916 free(u);
8dd70bce 8917
694575e7 8918 } else {
e7ff7e40
AK
8919 fprintf(stderr, Name ": (imsm) Operation "
8920 "is not allowed on this container\n");
694575e7
KW
8921 }
8922 } else {
8923 /* On volume level we support following operations
471bceb6
KW
8924 * - takeover: raid10 -> raid0; raid0 -> raid10
8925 * - chunk size migration
8926 * - migration: raid5 -> raid0; raid0 -> raid5
8927 */
8928 struct intel_super *super = st->sb;
8929 struct intel_dev *dev = super->devlist;
8930 int change, devnum;
694575e7 8931 dprintf("imsm: info: Volume operation\n");
471bceb6
KW
8932 /* find requested device */
8933 while (dev) {
19986c72
MB
8934 if (imsm_find_array_minor_by_subdev(
8935 dev->index, st->container_dev, &devnum) == 0
8936 && devnum == geo.dev_id)
471bceb6
KW
8937 break;
8938 dev = dev->next;
8939 }
8940 if (dev == NULL) {
8941 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8942 geo.dev_name, geo.dev_id);
8943 goto exit_imsm_reshape_super;
8944 }
8945 super->current_vol = dev->index;
694575e7
KW
8946 change = imsm_analyze_change(st, &geo);
8947 switch (change) {
471bceb6 8948 case CH_TAKEOVER:
bb025c2f 8949 ret_val = imsm_takeover(st, &geo);
694575e7 8950 break;
48c5303a
PC
8951 case CH_MIGRATION: {
8952 struct imsm_update_reshape_migration *u = NULL;
8953 int len =
8954 imsm_create_metadata_update_for_migration(
8955 st, &geo, &u);
8956 if (len < 1) {
8957 dprintf("imsm: "
8958 "Cannot prepare update\n");
8959 break;
8960 }
471bceb6 8961 ret_val = 0;
48c5303a
PC
8962 /* update metadata locally */
8963 imsm_update_metadata_locally(st, u, len);
8964 /* and possibly remotely */
8965 if (st->update_tail)
8966 append_metadata_update(st, u, len);
8967 else
8968 free(u);
8969 }
8970 break;
471bceb6
KW
8971 default:
8972 ret_val = 1;
694575e7 8973 }
694575e7 8974 }
78b10e66 8975
ed08d51c 8976exit_imsm_reshape_super:
78b10e66
N
8977 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8978 return ret_val;
8979}
2cda7640 8980
eee67a47
AK
8981/*******************************************************************************
8982 * Function: wait_for_reshape_imsm
8983 * Description: Function writes new sync_max value and waits until
8984 * reshape process reach new position
8985 * Parameters:
8986 * sra : general array info
eee67a47
AK
8987 * ndata : number of disks in new array's layout
8988 * Returns:
8989 * 0 : success,
8990 * 1 : there is no reshape in progress,
8991 * -1 : fail
8992 ******************************************************************************/
ae9f01f8 8993int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
eee67a47
AK
8994{
8995 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8996 unsigned long long completed;
ae9f01f8
AK
8997 /* to_complete : new sync_max position */
8998 unsigned long long to_complete = sra->reshape_progress;
8999 unsigned long long position_to_set = to_complete / ndata;
eee67a47 9000
ae9f01f8
AK
9001 if (fd < 0) {
9002 dprintf("imsm: wait_for_reshape_imsm() "
9003 "cannot open reshape_position\n");
eee67a47 9004 return 1;
ae9f01f8 9005 }
eee67a47 9006
ae9f01f8
AK
9007 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9008 dprintf("imsm: wait_for_reshape_imsm() "
9009 "cannot read reshape_position (no reshape in progres)\n");
9010 close(fd);
9011 return 0;
9012 }
eee67a47 9013
ae9f01f8
AK
9014 if (completed > to_complete) {
9015 dprintf("imsm: wait_for_reshape_imsm() "
9016 "wrong next position to set %llu (%llu)\n",
9017 to_complete, completed);
9018 close(fd);
9019 return -1;
9020 }
9021 dprintf("Position set: %llu\n", position_to_set);
9022 if (sysfs_set_num(sra, NULL, "sync_max",
9023 position_to_set) != 0) {
9024 dprintf("imsm: wait_for_reshape_imsm() "
9025 "cannot set reshape position to %llu\n",
9026 position_to_set);
9027 close(fd);
9028 return -1;
eee67a47
AK
9029 }
9030
eee67a47
AK
9031 do {
9032 char action[20];
9033 fd_set rfds;
9034 FD_ZERO(&rfds);
9035 FD_SET(fd, &rfds);
a47e44fb
AK
9036 select(fd+1, &rfds, NULL, NULL, NULL);
9037 if (sysfs_get_str(sra, NULL, "sync_action",
9038 action, 20) > 0 &&
9039 strncmp(action, "reshape", 7) != 0)
9040 break;
eee67a47 9041 if (sysfs_fd_get_ll(fd, &completed) < 0) {
ae9f01f8
AK
9042 dprintf("imsm: wait_for_reshape_imsm() "
9043 "cannot read reshape_position (in loop)\n");
eee67a47
AK
9044 close(fd);
9045 return 1;
9046 }
eee67a47
AK
9047 } while (completed < to_complete);
9048 close(fd);
9049 return 0;
9050
9051}
9052
b915c95f
AK
9053/*******************************************************************************
9054 * Function: check_degradation_change
9055 * Description: Check that array hasn't become failed.
9056 * Parameters:
9057 * info : for sysfs access
9058 * sources : source disks descriptors
9059 * degraded: previous degradation level
9060 * Returns:
9061 * degradation level
9062 ******************************************************************************/
9063int check_degradation_change(struct mdinfo *info,
9064 int *sources,
9065 int degraded)
9066{
9067 unsigned long long new_degraded;
9068 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9069 if (new_degraded != (unsigned long long)degraded) {
9070 /* check each device to ensure it is still working */
9071 struct mdinfo *sd;
9072 new_degraded = 0;
9073 for (sd = info->devs ; sd ; sd = sd->next) {
9074 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9075 continue;
9076 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9077 char sbuf[20];
9078 if (sysfs_get_str(info,
9079 sd, "state", sbuf, 20) < 0 ||
9080 strstr(sbuf, "faulty") ||
9081 strstr(sbuf, "in_sync") == NULL) {
9082 /* this device is dead */
9083 sd->disk.state = (1<<MD_DISK_FAULTY);
9084 if (sd->disk.raid_disk >= 0 &&
9085 sources[sd->disk.raid_disk] >= 0) {
9086 close(sources[
9087 sd->disk.raid_disk]);
9088 sources[sd->disk.raid_disk] =
9089 -1;
9090 }
9091 new_degraded++;
9092 }
9093 }
9094 }
9095 }
9096
9097 return new_degraded;
9098}
9099
10f22854
AK
9100/*******************************************************************************
9101 * Function: imsm_manage_reshape
9102 * Description: Function finds array under reshape and it manages reshape
9103 * process. It creates stripes backups (if required) and sets
9104 * checheckpoits.
9105 * Parameters:
9106 * afd : Backup handle (nattive) - not used
9107 * sra : general array info
9108 * reshape : reshape parameters - not used
9109 * st : supertype structure
9110 * blocks : size of critical section [blocks]
9111 * fds : table of source device descriptor
9112 * offsets : start of array (offest per devices)
9113 * dests : not used
9114 * destfd : table of destination device descriptor
9115 * destoffsets : table of destination offsets (per device)
9116 * Returns:
9117 * 1 : success, reshape is done
9118 * 0 : fail
9119 ******************************************************************************/
999b4972
N
9120static int imsm_manage_reshape(
9121 int afd, struct mdinfo *sra, struct reshape *reshape,
10f22854 9122 struct supertype *st, unsigned long backup_blocks,
999b4972
N
9123 int *fds, unsigned long long *offsets,
9124 int dests, int *destfd, unsigned long long *destoffsets)
9125{
10f22854
AK
9126 int ret_val = 0;
9127 struct intel_super *super = st->sb;
9128 struct intel_dev *dv = NULL;
9129 struct imsm_dev *dev = NULL;
a6b6d984 9130 struct imsm_map *map_src;
10f22854
AK
9131 int migr_vol_qan = 0;
9132 int ndata, odata; /* [bytes] */
9133 int chunk; /* [bytes] */
9134 struct migr_record *migr_rec;
9135 char *buf = NULL;
9136 unsigned int buf_size; /* [bytes] */
9137 unsigned long long max_position; /* array size [bytes] */
9138 unsigned long long next_step; /* [blocks]/[bytes] */
9139 unsigned long long old_data_stripe_length;
10f22854
AK
9140 unsigned long long start_src; /* [bytes] */
9141 unsigned long long start; /* [bytes] */
9142 unsigned long long start_buf_shift; /* [bytes] */
b915c95f 9143 int degraded = 0;
ab724b98 9144 int source_layout = 0;
10f22854 9145
1ab242d8 9146 if (!fds || !offsets || !sra)
10f22854
AK
9147 goto abort;
9148
9149 /* Find volume during the reshape */
9150 for (dv = super->devlist; dv; dv = dv->next) {
9151 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9152 && dv->dev->vol.migr_state == 1) {
9153 dev = dv->dev;
9154 migr_vol_qan++;
9155 }
9156 }
9157 /* Only one volume can migrate at the same time */
9158 if (migr_vol_qan != 1) {
9159 fprintf(stderr, Name " : %s", migr_vol_qan ?
9160 "Number of migrating volumes greater than 1\n" :
9161 "There is no volume during migrationg\n");
9162 goto abort;
9163 }
9164
9165 map_src = get_imsm_map(dev, 1);
9166 if (map_src == NULL)
9167 goto abort;
10f22854
AK
9168
9169 ndata = imsm_num_data_members(dev, 0);
9170 odata = imsm_num_data_members(dev, 1);
9171
7b1ab482 9172 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10f22854
AK
9173 old_data_stripe_length = odata * chunk;
9174
9175 migr_rec = super->migr_rec;
9176
10f22854
AK
9177 /* initialize migration record for start condition */
9178 if (sra->reshape_progress == 0)
9179 init_migr_record_imsm(st, dev, sra);
b2c59438
AK
9180 else {
9181 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9182 dprintf("imsm: cannot restart migration when data "
9183 "are present in copy area.\n");
9184 goto abort;
9185 }
9186 }
10f22854
AK
9187
9188 /* size for data */
9189 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9190 /* extend buffer size for parity disk */
9191 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9192 /* add space for stripe aligment */
9193 buf_size += old_data_stripe_length;
9194 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9195 dprintf("imsm: Cannot allocate checpoint buffer\n");
9196 goto abort;
9197 }
9198
3ef4403c 9199 max_position = sra->component_size * ndata;
68eb8bc6 9200 source_layout = imsm_level_to_layout(map_src->raid_level);
10f22854
AK
9201
9202 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9203 __le32_to_cpu(migr_rec->num_migr_units)) {
9204 /* current reshape position [blocks] */
9205 unsigned long long current_position =
9206 __le32_to_cpu(migr_rec->blocks_per_unit)
9207 * __le32_to_cpu(migr_rec->curr_migr_unit);
9208 unsigned long long border;
9209
b915c95f
AK
9210 /* Check that array hasn't become failed.
9211 */
9212 degraded = check_degradation_change(sra, fds, degraded);
9213 if (degraded > 1) {
9214 dprintf("imsm: Abort reshape due to degradation"
9215 " level (%i)\n", degraded);
9216 goto abort;
9217 }
9218
10f22854
AK
9219 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9220
9221 if ((current_position + next_step) > max_position)
9222 next_step = max_position - current_position;
9223
92144abf 9224 start = current_position * 512;
10f22854
AK
9225
9226 /* allign reading start to old geometry */
9227 start_buf_shift = start % old_data_stripe_length;
9228 start_src = start - start_buf_shift;
9229
9230 border = (start_src / odata) - (start / ndata);
9231 border /= 512;
9232 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9233 /* save critical stripes to buf
9234 * start - start address of current unit
9235 * to backup [bytes]
9236 * start_src - start address of current unit
9237 * to backup alligned to source array
9238 * [bytes]
9239 */
9240 unsigned long long next_step_filler = 0;
9241 unsigned long long copy_length = next_step * 512;
9242
9243 /* allign copy area length to stripe in old geometry */
9244 next_step_filler = ((copy_length + start_buf_shift)
9245 % old_data_stripe_length);
9246 if (next_step_filler)
9247 next_step_filler = (old_data_stripe_length
9248 - next_step_filler);
9249 dprintf("save_stripes() parameters: start = %llu,"
9250 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9251 "\tstart_in_buf_shift = %llu,"
9252 "\tnext_step_filler = %llu\n",
9253 start, start_src, copy_length,
9254 start_buf_shift, next_step_filler);
9255
9256 if (save_stripes(fds, offsets, map_src->num_members,
ab724b98
AK
9257 chunk, map_src->raid_level,
9258 source_layout, 0, NULL, start_src,
10f22854
AK
9259 copy_length +
9260 next_step_filler + start_buf_shift,
9261 buf)) {
9262 dprintf("imsm: Cannot save stripes"
9263 " to buffer\n");
9264 goto abort;
9265 }
9266 /* Convert data to destination format and store it
9267 * in backup general migration area
9268 */
9269 if (save_backup_imsm(st, dev, sra,
aea93171 9270 buf + start_buf_shift, copy_length)) {
10f22854
AK
9271 dprintf("imsm: Cannot save stripes to "
9272 "target devices\n");
9273 goto abort;
9274 }
9275 if (save_checkpoint_imsm(st, sra,
9276 UNIT_SRC_IN_CP_AREA)) {
9277 dprintf("imsm: Cannot write checkpoint to "
9278 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9279 goto abort;
9280 }
8016a6d4
AK
9281 } else {
9282 /* set next step to use whole border area */
9283 border /= next_step;
9284 if (border > 1)
9285 next_step *= border;
10f22854
AK
9286 }
9287 /* When data backed up, checkpoint stored,
9288 * kick the kernel to reshape unit of data
9289 */
9290 next_step = next_step + sra->reshape_progress;
8016a6d4
AK
9291 /* limit next step to array max position */
9292 if (next_step > max_position)
9293 next_step = max_position;
10f22854
AK
9294 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9295 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
ae9f01f8 9296 sra->reshape_progress = next_step;
10f22854
AK
9297
9298 /* wait until reshape finish */
ae9f01f8 9299 if (wait_for_reshape_imsm(sra, ndata) < 0) {
c47b0ff6
AK
9300 dprintf("wait_for_reshape_imsm returned error!\n");
9301 goto abort;
9302 }
10f22854 9303
0228d92c
AK
9304 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9305 /* ignore error == 2, this can mean end of reshape here
9306 */
10f22854
AK
9307 dprintf("imsm: Cannot write checkpoint to "
9308 "migration record (UNIT_SRC_NORMAL)\n");
9309 goto abort;
9310 }
9311
9312 }
9313
9314 /* return '1' if done */
9315 ret_val = 1;
9316abort:
9317 free(buf);
9318 abort_reshape(sra);
9319
9320 return ret_val;
999b4972 9321}
71204a50 9322#endif /* MDASSEMBLE */
999b4972 9323
cdddbdbc
DW
9324struct superswitch super_imsm = {
9325#ifndef MDASSEMBLE
9326 .examine_super = examine_super_imsm,
9327 .brief_examine_super = brief_examine_super_imsm,
4737ae25 9328 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 9329 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
9330 .detail_super = detail_super_imsm,
9331 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 9332 .write_init_super = write_init_super_imsm,
0e600426
N
9333 .validate_geometry = validate_geometry_imsm,
9334 .add_to_super = add_to_super_imsm,
1a64be56 9335 .remove_from_super = remove_from_super_imsm,
d665cc31 9336 .detail_platform = detail_platform_imsm,
33414a01 9337 .kill_subarray = kill_subarray_imsm,
aa534678 9338 .update_subarray = update_subarray_imsm,
2b959fbf 9339 .load_container = load_container_imsm,
71204a50
N
9340 .default_geometry = default_geometry_imsm,
9341 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9342 .reshape_super = imsm_reshape_super,
9343 .manage_reshape = imsm_manage_reshape,
9e2d750d 9344 .recover_backup = recover_backup_imsm,
cdddbdbc
DW
9345#endif
9346 .match_home = match_home_imsm,
9347 .uuid_from_super= uuid_from_super_imsm,
9348 .getinfo_super = getinfo_super_imsm,
5c4cd5da 9349 .getinfo_super_disks = getinfo_super_disks_imsm,
cdddbdbc
DW
9350 .update_super = update_super_imsm,
9351
9352 .avail_size = avail_size_imsm,
80e7f8c3 9353 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
cdddbdbc
DW
9354
9355 .compare_super = compare_super_imsm,
9356
9357 .load_super = load_super_imsm,
bf5a934a 9358 .init_super = init_super_imsm,
e683ca88 9359 .store_super = store_super_imsm,
cdddbdbc
DW
9360 .free_super = free_super_imsm,
9361 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 9362 .container_content = container_content_imsm,
cdddbdbc 9363
276d77db 9364
cdddbdbc 9365 .external = 1,
4cce4069 9366 .name = "imsm",
845dea95 9367
0e600426 9368#ifndef MDASSEMBLE
845dea95
NB
9369/* for mdmon */
9370 .open_new = imsm_open_new,
ed9d66aa 9371 .set_array_state= imsm_set_array_state,
845dea95
NB
9372 .set_disk = imsm_set_disk,
9373 .sync_metadata = imsm_sync_metadata,
88758e9d 9374 .activate_spare = imsm_activate_spare,
e8319a19 9375 .process_update = imsm_process_update,
8273f55e 9376 .prepare_update = imsm_prepare_update,
0e600426 9377#endif /* MDASSEMBLE */
cdddbdbc 9378};