]> git.ipfire.org Git - thirdparty/mdadm.git/blame_incremental - super-intel.c
imsm: add the ddf field
[thirdparty/mdadm.git] / super-intel.c
... / ...
CommitLineData
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define HAVE_STDINT_H 1
21#include "mdadm.h"
22#include "mdmon.h"
23#include "sha1.h"
24#include "platform-intel.h"
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
28#include <dirent.h>
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37#define MPB_VERSION_RAID5 "1.2.02"
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54#define MPB_SECTOR_CNT 418
55#define IMSM_RESERVED_SECTORS 4096
56#define SECT_PER_MB_SHIFT 11
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67#define USABLE_DISK __cpu_to_le32(0x08) /* Fully usable unless FAILED_DISK is set */
68 __u32 status; /* 0xF0 - 0xF3 */
69 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
70#define IMSM_DISK_FILLERS 4
71 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
72};
73
74/* RAID map configuration infos. */
75struct imsm_map {
76 __u32 pba_of_lba0; /* start address of partition */
77 __u32 blocks_per_member;/* blocks per member */
78 __u32 num_data_stripes; /* number of data stripes */
79 __u16 blocks_per_strip;
80 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
81#define IMSM_T_STATE_NORMAL 0
82#define IMSM_T_STATE_UNINITIALIZED 1
83#define IMSM_T_STATE_DEGRADED 2
84#define IMSM_T_STATE_FAILED 3
85 __u8 raid_level;
86#define IMSM_T_RAID0 0
87#define IMSM_T_RAID1 1
88#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
89 __u8 num_members; /* number of member disks */
90 __u8 num_domains; /* number of parity domains */
91 __u8 failed_disk_num; /* valid only when state is degraded */
92 __u8 ddf;
93 __u32 filler[7]; /* expansion area */
94#define IMSM_ORD_REBUILD (1 << 24)
95 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
96 * top byte contains some flags
97 */
98} __attribute__ ((packed));
99
100struct imsm_vol {
101 __u32 curr_migr_unit;
102 __u32 checkpoint_id; /* id to access curr_migr_unit */
103 __u8 migr_state; /* Normal or Migrating */
104#define MIGR_INIT 0
105#define MIGR_REBUILD 1
106#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
107#define MIGR_GEN_MIGR 3
108#define MIGR_STATE_CHANGE 4
109#define MIGR_REPAIR 5
110 __u8 migr_type; /* Initializing, Rebuilding, ... */
111 __u8 dirty;
112 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
113 __u16 verify_errors; /* number of mismatches */
114 __u16 bad_blocks; /* number of bad blocks during verify */
115 __u32 filler[4];
116 struct imsm_map map[1];
117 /* here comes another one if migr_state */
118} __attribute__ ((packed));
119
120struct imsm_dev {
121 __u8 volume[MAX_RAID_SERIAL_LEN];
122 __u32 size_low;
123 __u32 size_high;
124#define DEV_BOOTABLE __cpu_to_le32(0x01)
125#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
126#define DEV_READ_COALESCING __cpu_to_le32(0x04)
127#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
128#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
129#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
130#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
131#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
132#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
133#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
134#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
135#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
136#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
137 __u32 status; /* Persistent RaidDev status */
138 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
139 __u8 migr_priority;
140 __u8 num_sub_vols;
141 __u8 tid;
142 __u8 cng_master_disk;
143 __u16 cache_policy;
144 __u8 cng_state;
145 __u8 cng_sub_state;
146#define IMSM_DEV_FILLERS 10
147 __u32 filler[IMSM_DEV_FILLERS];
148 struct imsm_vol vol;
149} __attribute__ ((packed));
150
151struct imsm_super {
152 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
153 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
154 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
155 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
156 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
157 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
158 __u32 attributes; /* 0x34 - 0x37 */
159 __u8 num_disks; /* 0x38 Number of configured disks */
160 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
161 __u8 error_log_pos; /* 0x3A */
162 __u8 fill[1]; /* 0x3B */
163 __u32 cache_size; /* 0x3c - 0x40 in mb */
164 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
165 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
166 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
167#define IMSM_FILLERS 35
168 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
169 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
170 /* here comes imsm_dev[num_raid_devs] */
171 /* here comes BBM logs */
172} __attribute__ ((packed));
173
174#define BBM_LOG_MAX_ENTRIES 254
175
176struct bbm_log_entry {
177 __u64 defective_block_start;
178#define UNREADABLE 0xFFFFFFFF
179 __u32 spare_block_offset;
180 __u16 remapped_marked_count;
181 __u16 disk_ordinal;
182} __attribute__ ((__packed__));
183
184struct bbm_log {
185 __u32 signature; /* 0xABADB10C */
186 __u32 entry_count;
187 __u32 reserved_spare_block_count; /* 0 */
188 __u32 reserved; /* 0xFFFF */
189 __u64 first_spare_lba;
190 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
191} __attribute__ ((__packed__));
192
193
194#ifndef MDASSEMBLE
195static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
196#endif
197
198static __u8 migr_type(struct imsm_dev *dev)
199{
200 if (dev->vol.migr_type == MIGR_VERIFY &&
201 dev->status & DEV_VERIFY_AND_FIX)
202 return MIGR_REPAIR;
203 else
204 return dev->vol.migr_type;
205}
206
207static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
208{
209 /* for compatibility with older oroms convert MIGR_REPAIR, into
210 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
211 */
212 if (migr_type == MIGR_REPAIR) {
213 dev->vol.migr_type = MIGR_VERIFY;
214 dev->status |= DEV_VERIFY_AND_FIX;
215 } else {
216 dev->vol.migr_type = migr_type;
217 dev->status &= ~DEV_VERIFY_AND_FIX;
218 }
219}
220
221static unsigned int sector_count(__u32 bytes)
222{
223 return ((bytes + (512-1)) & (~(512-1))) / 512;
224}
225
226static unsigned int mpb_sectors(struct imsm_super *mpb)
227{
228 return sector_count(__le32_to_cpu(mpb->mpb_size));
229}
230
231struct intel_dev {
232 struct imsm_dev *dev;
233 struct intel_dev *next;
234 int index;
235};
236
237/* internal representation of IMSM metadata */
238struct intel_super {
239 union {
240 void *buf; /* O_DIRECT buffer for reading/writing metadata */
241 struct imsm_super *anchor; /* immovable parameters */
242 };
243 size_t len; /* size of the 'buf' allocation */
244 void *next_buf; /* for realloc'ing buf from the manager */
245 size_t next_len;
246 int updates_pending; /* count of pending updates for mdmon */
247 int creating_imsm; /* flag to indicate container creation */
248 int current_vol; /* index of raid device undergoing creation */
249 __u32 create_offset; /* common start for 'current_vol' */
250 struct intel_dev *devlist;
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
257 struct imsm_disk disk;
258 int fd;
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
261 int raiddisk; /* slot to fill in autolayout */
262 } *disks;
263 struct dl *add; /* list of disks to add while mdmon active */
264 struct dl *missing; /* disks removed while we weren't looking */
265 struct bbm_log *bbm_log;
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
268};
269
270struct extent {
271 unsigned long long start, size;
272};
273
274/* definition of messages passed to imsm_process_update */
275enum imsm_update_type {
276 update_activate_spare,
277 update_create_array,
278 update_add_disk,
279};
280
281struct imsm_update_activate_spare {
282 enum imsm_update_type type;
283 struct dl *dl;
284 int slot;
285 int array;
286 struct imsm_update_activate_spare *next;
287};
288
289struct disk_info {
290 __u8 serial[MAX_RAID_SERIAL_LEN];
291};
292
293struct imsm_update_create_array {
294 enum imsm_update_type type;
295 int dev_idx;
296 struct imsm_dev dev;
297};
298
299struct imsm_update_add_disk {
300 enum imsm_update_type type;
301};
302
303static struct supertype *match_metadata_desc_imsm(char *arg)
304{
305 struct supertype *st;
306
307 if (strcmp(arg, "imsm") != 0 &&
308 strcmp(arg, "default") != 0
309 )
310 return NULL;
311
312 st = malloc(sizeof(*st));
313 memset(st, 0, sizeof(*st));
314 st->ss = &super_imsm;
315 st->max_devs = IMSM_MAX_DEVICES;
316 st->minor_version = 0;
317 st->sb = NULL;
318 return st;
319}
320
321#ifndef MDASSEMBLE
322static __u8 *get_imsm_version(struct imsm_super *mpb)
323{
324 return &mpb->sig[MPB_SIG_LEN];
325}
326#endif
327
328/* retrieve a disk directly from the anchor when the anchor is known to be
329 * up-to-date, currently only at load time
330 */
331static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
332{
333 if (index >= mpb->num_disks)
334 return NULL;
335 return &mpb->disk[index];
336}
337
338#ifndef MDASSEMBLE
339/* retrieve a disk from the parsed metadata */
340static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
341{
342 struct dl *d;
343
344 for (d = super->disks; d; d = d->next)
345 if (d->index == index)
346 return &d->disk;
347
348 return NULL;
349}
350#endif
351
352/* generate a checksum directly from the anchor when the anchor is known to be
353 * up-to-date, currently only at load or write_super after coalescing
354 */
355static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
356{
357 __u32 end = mpb->mpb_size / sizeof(end);
358 __u32 *p = (__u32 *) mpb;
359 __u32 sum = 0;
360
361 while (end--) {
362 sum += __le32_to_cpu(*p);
363 p++;
364 }
365
366 return sum - __le32_to_cpu(mpb->check_sum);
367}
368
369static size_t sizeof_imsm_map(struct imsm_map *map)
370{
371 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
372}
373
374struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
375{
376 struct imsm_map *map = &dev->vol.map[0];
377
378 if (second_map && !dev->vol.migr_state)
379 return NULL;
380 else if (second_map) {
381 void *ptr = map;
382
383 return ptr + sizeof_imsm_map(map);
384 } else
385 return map;
386
387}
388
389/* return the size of the device.
390 * migr_state increases the returned size if map[0] were to be duplicated
391 */
392static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
393{
394 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
395 sizeof_imsm_map(get_imsm_map(dev, 0));
396
397 /* migrating means an additional map */
398 if (dev->vol.migr_state)
399 size += sizeof_imsm_map(get_imsm_map(dev, 1));
400 else if (migr_state)
401 size += sizeof_imsm_map(get_imsm_map(dev, 0));
402
403 return size;
404}
405
406#ifndef MDASSEMBLE
407/* retrieve disk serial number list from a metadata update */
408static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
409{
410 void *u = update;
411 struct disk_info *inf;
412
413 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
414 sizeof_imsm_dev(&update->dev, 0);
415
416 return inf;
417}
418#endif
419
420static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
421{
422 int offset;
423 int i;
424 void *_mpb = mpb;
425
426 if (index >= mpb->num_raid_devs)
427 return NULL;
428
429 /* devices start after all disks */
430 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
431
432 for (i = 0; i <= index; i++)
433 if (i == index)
434 return _mpb + offset;
435 else
436 offset += sizeof_imsm_dev(_mpb + offset, 0);
437
438 return NULL;
439}
440
441static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
442{
443 struct intel_dev *dv;
444
445 if (index >= super->anchor->num_raid_devs)
446 return NULL;
447 for (dv = super->devlist; dv; dv = dv->next)
448 if (dv->index == index)
449 return dv->dev;
450 return NULL;
451}
452
453static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
454{
455 struct imsm_map *map;
456
457 if (dev->vol.migr_state)
458 map = get_imsm_map(dev, 1);
459 else
460 map = get_imsm_map(dev, 0);
461
462 /* top byte identifies disk under rebuild */
463 return __le32_to_cpu(map->disk_ord_tbl[slot]);
464}
465
466#define ord_to_idx(ord) (((ord) << 8) >> 8)
467static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
468{
469 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
470
471 return ord_to_idx(ord);
472}
473
474static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
475{
476 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
477}
478
479static int get_imsm_disk_slot(struct imsm_map *map, int idx)
480{
481 int slot;
482 __u32 ord;
483
484 for (slot = 0; slot < map->num_members; slot++) {
485 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
486 if (ord_to_idx(ord) == idx)
487 return slot;
488 }
489
490 return -1;
491}
492
493static int get_imsm_raid_level(struct imsm_map *map)
494{
495 if (map->raid_level == 1) {
496 if (map->num_members == 2)
497 return 1;
498 else
499 return 10;
500 }
501
502 return map->raid_level;
503}
504
505static int cmp_extent(const void *av, const void *bv)
506{
507 const struct extent *a = av;
508 const struct extent *b = bv;
509 if (a->start < b->start)
510 return -1;
511 if (a->start > b->start)
512 return 1;
513 return 0;
514}
515
516static int count_memberships(struct dl *dl, struct intel_super *super)
517{
518 int memberships = 0;
519 int i;
520
521 for (i = 0; i < super->anchor->num_raid_devs; i++) {
522 struct imsm_dev *dev = get_imsm_dev(super, i);
523 struct imsm_map *map = get_imsm_map(dev, 0);
524
525 if (get_imsm_disk_slot(map, dl->index) >= 0)
526 memberships++;
527 }
528
529 return memberships;
530}
531
532static struct extent *get_extents(struct intel_super *super, struct dl *dl)
533{
534 /* find a list of used extents on the given physical device */
535 struct extent *rv, *e;
536 int i;
537 int memberships = count_memberships(dl, super);
538 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
539
540 rv = malloc(sizeof(struct extent) * (memberships + 1));
541 if (!rv)
542 return NULL;
543 e = rv;
544
545 for (i = 0; i < super->anchor->num_raid_devs; i++) {
546 struct imsm_dev *dev = get_imsm_dev(super, i);
547 struct imsm_map *map = get_imsm_map(dev, 0);
548
549 if (get_imsm_disk_slot(map, dl->index) >= 0) {
550 e->start = __le32_to_cpu(map->pba_of_lba0);
551 e->size = __le32_to_cpu(map->blocks_per_member);
552 e++;
553 }
554 }
555 qsort(rv, memberships, sizeof(*rv), cmp_extent);
556
557 /* determine the start of the metadata
558 * when no raid devices are defined use the default
559 * ...otherwise allow the metadata to truncate the value
560 * as is the case with older versions of imsm
561 */
562 if (memberships) {
563 struct extent *last = &rv[memberships - 1];
564 __u32 remainder;
565
566 remainder = __le32_to_cpu(dl->disk.total_blocks) -
567 (last->start + last->size);
568 /* round down to 1k block to satisfy precision of the kernel
569 * 'size' interface
570 */
571 remainder &= ~1UL;
572 /* make sure remainder is still sane */
573 if (remainder < ROUND_UP(super->len, 512) >> 9)
574 remainder = ROUND_UP(super->len, 512) >> 9;
575 if (reservation > remainder)
576 reservation = remainder;
577 }
578 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
579 e->size = 0;
580 return rv;
581}
582
583/* try to determine how much space is reserved for metadata from
584 * the last get_extents() entry, otherwise fallback to the
585 * default
586 */
587static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
588{
589 struct extent *e;
590 int i;
591 __u32 rv;
592
593 /* for spares just return a minimal reservation which will grow
594 * once the spare is picked up by an array
595 */
596 if (dl->index == -1)
597 return MPB_SECTOR_CNT;
598
599 e = get_extents(super, dl);
600 if (!e)
601 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
602
603 /* scroll to last entry */
604 for (i = 0; e[i].size; i++)
605 continue;
606
607 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
608
609 free(e);
610
611 return rv;
612}
613
614#ifndef MDASSEMBLE
615static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
616{
617 __u64 sz;
618 int slot;
619 struct imsm_map *map = get_imsm_map(dev, 0);
620 __u32 ord;
621
622 printf("\n");
623 printf("[%.16s]:\n", dev->volume);
624 printf(" UUID : %s\n", uuid);
625 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
626 printf(" Members : %d\n", map->num_members);
627 slot = get_imsm_disk_slot(map, disk_idx);
628 if (slot >= 0) {
629 ord = get_imsm_ord_tbl_ent(dev, slot);
630 printf(" This Slot : %d%s\n", slot,
631 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
632 } else
633 printf(" This Slot : ?\n");
634 sz = __le32_to_cpu(dev->size_high);
635 sz <<= 32;
636 sz += __le32_to_cpu(dev->size_low);
637 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
638 human_size(sz * 512));
639 sz = __le32_to_cpu(map->blocks_per_member);
640 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
641 human_size(sz * 512));
642 printf(" Sector Offset : %u\n",
643 __le32_to_cpu(map->pba_of_lba0));
644 printf(" Num Stripes : %u\n",
645 __le32_to_cpu(map->num_data_stripes));
646 printf(" Chunk Size : %u KiB\n",
647 __le16_to_cpu(map->blocks_per_strip) / 2);
648 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
649 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle\n");
650 if (dev->vol.migr_state) {
651 if (migr_type(dev) == MIGR_INIT)
652 printf(": initializing\n");
653 else if (migr_type(dev) == MIGR_REBUILD)
654 printf(": rebuilding\n");
655 else if (migr_type(dev) == MIGR_VERIFY)
656 printf(": check\n");
657 else if (migr_type(dev) == MIGR_GEN_MIGR)
658 printf(": general migration\n");
659 else if (migr_type(dev) == MIGR_STATE_CHANGE)
660 printf(": state change\n");
661 else if (migr_type(dev) == MIGR_REPAIR)
662 printf(": repair\n");
663 else
664 printf(": <unknown:%d>\n", migr_type(dev));
665 }
666 printf(" Map State : %s", map_state_str[map->map_state]);
667 if (dev->vol.migr_state) {
668 struct imsm_map *map = get_imsm_map(dev, 1);
669 printf(" <-- %s", map_state_str[map->map_state]);
670 }
671 printf("\n");
672 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
673}
674
675static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
676{
677 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
678 char str[MAX_RAID_SERIAL_LEN + 1];
679 __u32 s;
680 __u64 sz;
681
682 if (index < 0)
683 return;
684
685 printf("\n");
686 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
687 printf(" Disk%02d Serial : %s\n", index, str);
688 s = disk->status;
689 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
690 s&CONFIGURED_DISK ? " active" : "",
691 s&FAILED_DISK ? " failed" : "",
692 s&USABLE_DISK ? " usable" : "");
693 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
694 sz = __le32_to_cpu(disk->total_blocks) - reserved;
695 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
696 human_size(sz * 512));
697}
698
699static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
700
701static void examine_super_imsm(struct supertype *st, char *homehost)
702{
703 struct intel_super *super = st->sb;
704 struct imsm_super *mpb = super->anchor;
705 char str[MAX_SIGNATURE_LENGTH];
706 int i;
707 struct mdinfo info;
708 char nbuf[64];
709 __u32 sum;
710 __u32 reserved = imsm_reserved_sectors(super, super->disks);
711
712
713 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
714 printf(" Magic : %s\n", str);
715 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
716 printf(" Version : %s\n", get_imsm_version(mpb));
717 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
718 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
719 getinfo_super_imsm(st, &info);
720 fname_from_uuid(st, &info, nbuf, ':');
721 printf(" UUID : %s\n", nbuf + 5);
722 sum = __le32_to_cpu(mpb->check_sum);
723 printf(" Checksum : %08x %s\n", sum,
724 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
725 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
726 printf(" Disks : %d\n", mpb->num_disks);
727 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
728 print_imsm_disk(mpb, super->disks->index, reserved);
729 if (super->bbm_log) {
730 struct bbm_log *log = super->bbm_log;
731
732 printf("\n");
733 printf("Bad Block Management Log:\n");
734 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
735 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
736 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
737 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
738 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
739 }
740 for (i = 0; i < mpb->num_raid_devs; i++) {
741 struct mdinfo info;
742 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
743
744 super->current_vol = i;
745 getinfo_super_imsm(st, &info);
746 fname_from_uuid(st, &info, nbuf, ':');
747 print_imsm_dev(dev, nbuf + 5, super->disks->index);
748 }
749 for (i = 0; i < mpb->num_disks; i++) {
750 if (i == super->disks->index)
751 continue;
752 print_imsm_disk(mpb, i, reserved);
753 }
754}
755
756static void brief_examine_super_imsm(struct supertype *st)
757{
758 /* We just write a generic IMSM ARRAY entry */
759 struct mdinfo info;
760 char nbuf[64];
761 char nbuf1[64];
762 struct intel_super *super = st->sb;
763 int i;
764
765 if (!super->anchor->num_raid_devs)
766 return;
767
768 getinfo_super_imsm(st, &info);
769 fname_from_uuid(st, &info, nbuf, ':');
770 printf("ARRAY metadata=imsm auto=md UUID=%s\n", nbuf + 5);
771 for (i = 0; i < super->anchor->num_raid_devs; i++) {
772 struct imsm_dev *dev = get_imsm_dev(super, i);
773
774 super->current_vol = i;
775 getinfo_super_imsm(st, &info);
776 fname_from_uuid(st, &info, nbuf1, ':');
777 printf("ARRAY /dev/md/%.16s container=%s\n"
778 " member=%d auto=mdp UUID=%s\n",
779 dev->volume, nbuf + 5, i, nbuf1 + 5);
780 }
781}
782
783static void export_examine_super_imsm(struct supertype *st)
784{
785 struct intel_super *super = st->sb;
786 struct imsm_super *mpb = super->anchor;
787 struct mdinfo info;
788 char nbuf[64];
789
790 getinfo_super_imsm(st, &info);
791 fname_from_uuid(st, &info, nbuf, ':');
792 printf("MD_METADATA=imsm\n");
793 printf("MD_LEVEL=container\n");
794 printf("MD_UUID=%s\n", nbuf+5);
795 printf("MD_DEVICES=%u\n", mpb->num_disks);
796}
797
798static void detail_super_imsm(struct supertype *st, char *homehost)
799{
800 struct mdinfo info;
801 char nbuf[64];
802
803 getinfo_super_imsm(st, &info);
804 fname_from_uuid(st, &info, nbuf, ':');
805 printf("\n UUID : %s\n", nbuf + 5);
806}
807
808static void brief_detail_super_imsm(struct supertype *st)
809{
810 struct mdinfo info;
811 char nbuf[64];
812 getinfo_super_imsm(st, &info);
813 fname_from_uuid(st, &info, nbuf, ':');
814 printf(" UUID=%s", nbuf + 5);
815}
816
817static int imsm_read_serial(int fd, char *devname, __u8 *serial);
818static void fd2devname(int fd, char *name);
819
820static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
821{
822 /* dump an unsorted list of devices attached to ahci, as well as
823 * non-connected ports
824 */
825 int hba_len = strlen(hba_path) + 1;
826 struct dirent *ent;
827 DIR *dir;
828 char *path = NULL;
829 int err = 0;
830 unsigned long port_mask = (1 << port_count) - 1;
831
832 if (port_count > sizeof(port_mask) * 8) {
833 if (verbose)
834 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
835 return 2;
836 }
837
838 /* scroll through /sys/dev/block looking for devices attached to
839 * this hba
840 */
841 dir = opendir("/sys/dev/block");
842 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
843 int fd;
844 char model[64];
845 char vendor[64];
846 char buf[1024];
847 int major, minor;
848 char *device;
849 char *c;
850 int port;
851 int type;
852
853 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
854 continue;
855 path = devt_to_devpath(makedev(major, minor));
856 if (!path)
857 continue;
858 if (!path_attached_to_hba(path, hba_path)) {
859 free(path);
860 path = NULL;
861 continue;
862 }
863
864 /* retrieve the scsi device type */
865 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
866 if (verbose)
867 fprintf(stderr, Name ": failed to allocate 'device'\n");
868 err = 2;
869 break;
870 }
871 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
872 if (load_sys(device, buf) != 0) {
873 if (verbose)
874 fprintf(stderr, Name ": failed to read device type for %s\n",
875 path);
876 err = 2;
877 free(device);
878 break;
879 }
880 type = strtoul(buf, NULL, 10);
881
882 /* if it's not a disk print the vendor and model */
883 if (!(type == 0 || type == 7 || type == 14)) {
884 vendor[0] = '\0';
885 model[0] = '\0';
886 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
887 if (load_sys(device, buf) == 0) {
888 strncpy(vendor, buf, sizeof(vendor));
889 vendor[sizeof(vendor) - 1] = '\0';
890 c = (char *) &vendor[sizeof(vendor) - 1];
891 while (isspace(*c) || *c == '\0')
892 *c-- = '\0';
893
894 }
895 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
896 if (load_sys(device, buf) == 0) {
897 strncpy(model, buf, sizeof(model));
898 model[sizeof(model) - 1] = '\0';
899 c = (char *) &model[sizeof(model) - 1];
900 while (isspace(*c) || *c == '\0')
901 *c-- = '\0';
902 }
903
904 if (vendor[0] && model[0])
905 sprintf(buf, "%.64s %.64s", vendor, model);
906 else
907 switch (type) { /* numbers from hald/linux/device.c */
908 case 1: sprintf(buf, "tape"); break;
909 case 2: sprintf(buf, "printer"); break;
910 case 3: sprintf(buf, "processor"); break;
911 case 4:
912 case 5: sprintf(buf, "cdrom"); break;
913 case 6: sprintf(buf, "scanner"); break;
914 case 8: sprintf(buf, "media_changer"); break;
915 case 9: sprintf(buf, "comm"); break;
916 case 12: sprintf(buf, "raid"); break;
917 default: sprintf(buf, "unknown");
918 }
919 } else
920 buf[0] = '\0';
921 free(device);
922
923 /* chop device path to 'host%d' and calculate the port number */
924 c = strchr(&path[hba_len], '/');
925 *c = '\0';
926 if (sscanf(&path[hba_len], "host%d", &port) == 1)
927 port -= host_base;
928 else {
929 if (verbose) {
930 *c = '/'; /* repair the full string */
931 fprintf(stderr, Name ": failed to determine port number for %s\n",
932 path);
933 }
934 err = 2;
935 break;
936 }
937
938 /* mark this port as used */
939 port_mask &= ~(1 << port);
940
941 /* print out the device information */
942 if (buf[0]) {
943 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
944 continue;
945 }
946
947 fd = dev_open(ent->d_name, O_RDONLY);
948 if (fd < 0)
949 printf(" Port%d : - disk info unavailable -\n", port);
950 else {
951 fd2devname(fd, buf);
952 printf(" Port%d : %s", port, buf);
953 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
954 printf(" (%s)\n", buf);
955 else
956 printf("()\n");
957 }
958 close(fd);
959 free(path);
960 path = NULL;
961 }
962 if (path)
963 free(path);
964 if (dir)
965 closedir(dir);
966 if (err == 0) {
967 int i;
968
969 for (i = 0; i < port_count; i++)
970 if (port_mask & (1 << i))
971 printf(" Port%d : - no device attached -\n", i);
972 }
973
974 return err;
975}
976
977static int detail_platform_imsm(int verbose, int enumerate_only)
978{
979 /* There are two components to imsm platform support, the ahci SATA
980 * controller and the option-rom. To find the SATA controller we
981 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
982 * controller with the Intel vendor id is present. This approach
983 * allows mdadm to leverage the kernel's ahci detection logic, with the
984 * caveat that if ahci.ko is not loaded mdadm will not be able to
985 * detect platform raid capabilities. The option-rom resides in a
986 * platform "Adapter ROM". We scan for its signature to retrieve the
987 * platform capabilities. If raid support is disabled in the BIOS the
988 * option-rom capability structure will not be available.
989 */
990 const struct imsm_orom *orom;
991 struct sys_dev *list, *hba;
992 DIR *dir;
993 struct dirent *ent;
994 const char *hba_path;
995 int host_base = 0;
996 int port_count = 0;
997
998 if (enumerate_only) {
999 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1000 return 0;
1001 return 2;
1002 }
1003
1004 list = find_driver_devices("pci", "ahci");
1005 for (hba = list; hba; hba = hba->next)
1006 if (devpath_to_vendor(hba->path) == 0x8086)
1007 break;
1008
1009 if (!hba) {
1010 if (verbose)
1011 fprintf(stderr, Name ": unable to find active ahci controller\n");
1012 free_sys_dev(&list);
1013 return 2;
1014 } else if (verbose)
1015 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1016 hba_path = hba->path;
1017 hba->path = NULL;
1018 free_sys_dev(&list);
1019
1020 orom = find_imsm_orom();
1021 if (!orom) {
1022 if (verbose)
1023 fprintf(stderr, Name ": imsm option-rom not found\n");
1024 return 2;
1025 }
1026
1027 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1028 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1029 orom->hotfix_ver, orom->build);
1030 printf(" RAID Levels :%s%s%s%s%s\n",
1031 imsm_orom_has_raid0(orom) ? " raid0" : "",
1032 imsm_orom_has_raid1(orom) ? " raid1" : "",
1033 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1034 imsm_orom_has_raid10(orom) ? " raid10" : "",
1035 imsm_orom_has_raid5(orom) ? " raid5" : "");
1036 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1037 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1038 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1039 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1040 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1041 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1042 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1043 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1044 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1045 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1046 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1047 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1048 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1049 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1050 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1051 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1052 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1053 printf(" Max Disks : %d\n", orom->tds);
1054 printf(" Max Volumes : %d\n", orom->vpa);
1055 printf(" I/O Controller : %s\n", hba_path);
1056
1057 /* find the smallest scsi host number to determine a port number base */
1058 dir = opendir(hba_path);
1059 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1060 int host;
1061
1062 if (sscanf(ent->d_name, "host%d", &host) != 1)
1063 continue;
1064 if (port_count == 0)
1065 host_base = host;
1066 else if (host < host_base)
1067 host_base = host;
1068
1069 if (host + 1 > port_count + host_base)
1070 port_count = host + 1 - host_base;
1071
1072 }
1073 if (dir)
1074 closedir(dir);
1075
1076 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1077 host_base, verbose) != 0) {
1078 if (verbose)
1079 fprintf(stderr, Name ": failed to enumerate ports\n");
1080 return 2;
1081 }
1082
1083 return 0;
1084}
1085#endif
1086
1087static int match_home_imsm(struct supertype *st, char *homehost)
1088{
1089 /* the imsm metadata format does not specify any host
1090 * identification information. We return -1 since we can never
1091 * confirm nor deny whether a given array is "meant" for this
1092 * host. We rely on compare_super and the 'family_num' field to
1093 * exclude member disks that do not belong, and we rely on
1094 * mdadm.conf to specify the arrays that should be assembled.
1095 * Auto-assembly may still pick up "foreign" arrays.
1096 */
1097
1098 return -1;
1099}
1100
1101static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1102{
1103 /* The uuid returned here is used for:
1104 * uuid to put into bitmap file (Create, Grow)
1105 * uuid for backup header when saving critical section (Grow)
1106 * comparing uuids when re-adding a device into an array
1107 * In these cases the uuid required is that of the data-array,
1108 * not the device-set.
1109 * uuid to recognise same set when adding a missing device back
1110 * to an array. This is a uuid for the device-set.
1111 *
1112 * For each of these we can make do with a truncated
1113 * or hashed uuid rather than the original, as long as
1114 * everyone agrees.
1115 * In each case the uuid required is that of the data-array,
1116 * not the device-set.
1117 */
1118 /* imsm does not track uuid's so we synthesis one using sha1 on
1119 * - The signature (Which is constant for all imsm array, but no matter)
1120 * - the family_num of the container
1121 * - the index number of the volume
1122 * - the 'serial' number of the volume.
1123 * Hopefully these are all constant.
1124 */
1125 struct intel_super *super = st->sb;
1126
1127 char buf[20];
1128 struct sha1_ctx ctx;
1129 struct imsm_dev *dev = NULL;
1130
1131 sha1_init_ctx(&ctx);
1132 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1133 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
1134 if (super->current_vol >= 0)
1135 dev = get_imsm_dev(super, super->current_vol);
1136 if (dev) {
1137 __u32 vol = super->current_vol;
1138 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1139 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1140 }
1141 sha1_finish_ctx(&ctx, buf);
1142 memcpy(uuid, buf, 4*4);
1143}
1144
1145#if 0
1146static void
1147get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1148{
1149 __u8 *v = get_imsm_version(mpb);
1150 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1151 char major[] = { 0, 0, 0 };
1152 char minor[] = { 0 ,0, 0 };
1153 char patch[] = { 0, 0, 0 };
1154 char *ver_parse[] = { major, minor, patch };
1155 int i, j;
1156
1157 i = j = 0;
1158 while (*v != '\0' && v < end) {
1159 if (*v != '.' && j < 2)
1160 ver_parse[i][j++] = *v;
1161 else {
1162 i++;
1163 j = 0;
1164 }
1165 v++;
1166 }
1167
1168 *m = strtol(minor, NULL, 0);
1169 *p = strtol(patch, NULL, 0);
1170}
1171#endif
1172
1173static int imsm_level_to_layout(int level)
1174{
1175 switch (level) {
1176 case 0:
1177 case 1:
1178 return 0;
1179 case 5:
1180 case 6:
1181 return ALGORITHM_LEFT_ASYMMETRIC;
1182 case 10:
1183 return 0x102;
1184 }
1185 return UnSet;
1186}
1187
1188static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1189{
1190 struct intel_super *super = st->sb;
1191 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1192 struct imsm_map *map = get_imsm_map(dev, 0);
1193 struct dl *dl;
1194
1195 for (dl = super->disks; dl; dl = dl->next)
1196 if (dl->raiddisk == info->disk.raid_disk)
1197 break;
1198 info->container_member = super->current_vol;
1199 info->array.raid_disks = map->num_members;
1200 info->array.level = get_imsm_raid_level(map);
1201 info->array.layout = imsm_level_to_layout(info->array.level);
1202 info->array.md_minor = -1;
1203 info->array.ctime = 0;
1204 info->array.utime = 0;
1205 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1206 info->array.state = !dev->vol.dirty;
1207 info->custom_array_size = __le32_to_cpu(dev->size_high);
1208 info->custom_array_size <<= 32;
1209 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1210
1211 info->disk.major = 0;
1212 info->disk.minor = 0;
1213 if (dl) {
1214 info->disk.major = dl->major;
1215 info->disk.minor = dl->minor;
1216 }
1217
1218 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1219 info->component_size = __le32_to_cpu(map->blocks_per_member);
1220 memset(info->uuid, 0, sizeof(info->uuid));
1221
1222 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1223 info->resync_start = 0;
1224 else if (dev->vol.migr_state)
1225 /* FIXME add curr_migr_unit to resync_start conversion */
1226 info->resync_start = 0;
1227 else
1228 info->resync_start = ~0ULL;
1229
1230 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1231 info->name[MAX_RAID_SERIAL_LEN] = 0;
1232
1233 info->array.major_version = -1;
1234 info->array.minor_version = -2;
1235 sprintf(info->text_version, "/%s/%d",
1236 devnum2devname(st->container_dev),
1237 info->container_member);
1238 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1239 uuid_from_super_imsm(st, info->uuid);
1240}
1241
1242/* check the config file to see if we can return a real uuid for this spare */
1243static void fixup_container_spare_uuid(struct mdinfo *inf)
1244{
1245 struct mddev_ident_s *array_list;
1246
1247 if (inf->array.level != LEVEL_CONTAINER ||
1248 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1249 return;
1250
1251 array_list = conf_get_ident(NULL);
1252
1253 for (; array_list; array_list = array_list->next) {
1254 if (array_list->uuid_set) {
1255 struct supertype *_sst; /* spare supertype */
1256 struct supertype *_cst; /* container supertype */
1257
1258 _cst = array_list->st;
1259 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1260 if (_sst) {
1261 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1262 free(_sst);
1263 break;
1264 }
1265 }
1266 }
1267}
1268
1269static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1270{
1271 struct intel_super *super = st->sb;
1272 struct imsm_disk *disk;
1273 __u32 s;
1274
1275 if (super->current_vol >= 0) {
1276 getinfo_super_imsm_volume(st, info);
1277 return;
1278 }
1279
1280 /* Set raid_disks to zero so that Assemble will always pull in valid
1281 * spares
1282 */
1283 info->array.raid_disks = 0;
1284 info->array.level = LEVEL_CONTAINER;
1285 info->array.layout = 0;
1286 info->array.md_minor = -1;
1287 info->array.ctime = 0; /* N/A for imsm */
1288 info->array.utime = 0;
1289 info->array.chunk_size = 0;
1290
1291 info->disk.major = 0;
1292 info->disk.minor = 0;
1293 info->disk.raid_disk = -1;
1294 info->reshape_active = 0;
1295 info->array.major_version = -1;
1296 info->array.minor_version = -2;
1297 strcpy(info->text_version, "imsm");
1298 info->safe_mode_delay = 0;
1299 info->disk.number = -1;
1300 info->disk.state = 0;
1301 info->name[0] = 0;
1302
1303 if (super->disks) {
1304 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1305
1306 disk = &super->disks->disk;
1307 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1308 info->component_size = reserved;
1309 s = disk->status;
1310 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1311 /* we don't change info->disk.raid_disk here because
1312 * this state will be finalized in mdmon after we have
1313 * found the 'most fresh' version of the metadata
1314 */
1315 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1316 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
1317 }
1318
1319 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1320 * ->compare_super may have updated the 'num_raid_devs' field for spares
1321 */
1322 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1323 uuid_from_super_imsm(st, info->uuid);
1324 else {
1325 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1326 fixup_container_spare_uuid(info);
1327 }
1328}
1329
1330static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1331 char *update, char *devname, int verbose,
1332 int uuid_set, char *homehost)
1333{
1334 /* FIXME */
1335
1336 /* For 'assemble' and 'force' we need to return non-zero if any
1337 * change was made. For others, the return value is ignored.
1338 * Update options are:
1339 * force-one : This device looks a bit old but needs to be included,
1340 * update age info appropriately.
1341 * assemble: clear any 'faulty' flag to allow this device to
1342 * be assembled.
1343 * force-array: Array is degraded but being forced, mark it clean
1344 * if that will be needed to assemble it.
1345 *
1346 * newdev: not used ????
1347 * grow: Array has gained a new device - this is currently for
1348 * linear only
1349 * resync: mark as dirty so a resync will happen.
1350 * name: update the name - preserving the homehost
1351 *
1352 * Following are not relevant for this imsm:
1353 * sparc2.2 : update from old dodgey metadata
1354 * super-minor: change the preferred_minor number
1355 * summaries: update redundant counters.
1356 * uuid: Change the uuid of the array to match watch is given
1357 * homehost: update the recorded homehost
1358 * _reshape_progress: record new reshape_progress position.
1359 */
1360 int rv = 0;
1361 //struct intel_super *super = st->sb;
1362 //struct imsm_super *mpb = super->mpb;
1363
1364 if (strcmp(update, "grow") == 0) {
1365 }
1366 if (strcmp(update, "resync") == 0) {
1367 /* dev->vol.dirty = 1; */
1368 }
1369
1370 /* IMSM has no concept of UUID or homehost */
1371
1372 return rv;
1373}
1374
1375static size_t disks_to_mpb_size(int disks)
1376{
1377 size_t size;
1378
1379 size = sizeof(struct imsm_super);
1380 size += (disks - 1) * sizeof(struct imsm_disk);
1381 size += 2 * sizeof(struct imsm_dev);
1382 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1383 size += (4 - 2) * sizeof(struct imsm_map);
1384 /* 4 possible disk_ord_tbl's */
1385 size += 4 * (disks - 1) * sizeof(__u32);
1386
1387 return size;
1388}
1389
1390static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1391{
1392 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1393 return 0;
1394
1395 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1396}
1397
1398static void free_devlist(struct intel_super *super)
1399{
1400 struct intel_dev *dv;
1401
1402 while (super->devlist) {
1403 dv = super->devlist->next;
1404 free(super->devlist->dev);
1405 free(super->devlist);
1406 super->devlist = dv;
1407 }
1408}
1409
1410static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1411{
1412 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1413}
1414
1415static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1416{
1417 /*
1418 * return:
1419 * 0 same, or first was empty, and second was copied
1420 * 1 second had wrong number
1421 * 2 wrong uuid
1422 * 3 wrong other info
1423 */
1424 struct intel_super *first = st->sb;
1425 struct intel_super *sec = tst->sb;
1426
1427 if (!first) {
1428 st->sb = tst->sb;
1429 tst->sb = NULL;
1430 return 0;
1431 }
1432
1433 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
1434 return 3;
1435
1436 /* if an anchor does not have num_raid_devs set then it is a free
1437 * floating spare
1438 */
1439 if (first->anchor->num_raid_devs > 0 &&
1440 sec->anchor->num_raid_devs > 0) {
1441 if (first->anchor->family_num != sec->anchor->family_num)
1442 return 3;
1443 }
1444
1445 /* if 'first' is a spare promote it to a populated mpb with sec's
1446 * family number
1447 */
1448 if (first->anchor->num_raid_devs == 0 &&
1449 sec->anchor->num_raid_devs > 0) {
1450 int i;
1451 struct intel_dev *dv;
1452 struct imsm_dev *dev;
1453
1454 /* we need to copy raid device info from sec if an allocation
1455 * fails here we don't associate the spare
1456 */
1457 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1458 dv = malloc(sizeof(*dv));
1459 if (!dv)
1460 break;
1461 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1462 if (!dev) {
1463 free(dv);
1464 break;
1465 }
1466 dv->dev = dev;
1467 dv->index = i;
1468 dv->next = first->devlist;
1469 first->devlist = dv;
1470 }
1471 if (i <= sec->anchor->num_raid_devs) {
1472 /* allocation failure */
1473 free_devlist(first);
1474 fprintf(stderr, "imsm: failed to associate spare\n");
1475 return 3;
1476 }
1477 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1478 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1479
1480 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1481 first->anchor->family_num = sec->anchor->family_num;
1482 }
1483
1484 return 0;
1485}
1486
1487static void fd2devname(int fd, char *name)
1488{
1489 struct stat st;
1490 char path[256];
1491 char dname[100];
1492 char *nm;
1493 int rv;
1494
1495 name[0] = '\0';
1496 if (fstat(fd, &st) != 0)
1497 return;
1498 sprintf(path, "/sys/dev/block/%d:%d",
1499 major(st.st_rdev), minor(st.st_rdev));
1500
1501 rv = readlink(path, dname, sizeof(dname));
1502 if (rv <= 0)
1503 return;
1504
1505 dname[rv] = '\0';
1506 nm = strrchr(dname, '/');
1507 nm++;
1508 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1509}
1510
1511
1512extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1513
1514static int imsm_read_serial(int fd, char *devname,
1515 __u8 serial[MAX_RAID_SERIAL_LEN])
1516{
1517 unsigned char scsi_serial[255];
1518 int rv;
1519 int rsp_len;
1520 int len;
1521 char *dest;
1522 char *src;
1523 char *rsp_buf;
1524 int i;
1525
1526 memset(scsi_serial, 0, sizeof(scsi_serial));
1527
1528 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1529
1530 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1531 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1532 fd2devname(fd, (char *) serial);
1533 return 0;
1534 }
1535
1536 if (rv != 0) {
1537 if (devname)
1538 fprintf(stderr,
1539 Name ": Failed to retrieve serial for %s\n",
1540 devname);
1541 return rv;
1542 }
1543
1544 rsp_len = scsi_serial[3];
1545 if (!rsp_len) {
1546 if (devname)
1547 fprintf(stderr,
1548 Name ": Failed to retrieve serial for %s\n",
1549 devname);
1550 return 2;
1551 }
1552 rsp_buf = (char *) &scsi_serial[4];
1553
1554 /* trim all whitespace and non-printable characters and convert
1555 * ':' to ';'
1556 */
1557 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1558 src = &rsp_buf[i];
1559 if (*src > 0x20) {
1560 /* ':' is reserved for use in placeholder serial
1561 * numbers for missing disks
1562 */
1563 if (*src == ':')
1564 *dest++ = ';';
1565 else
1566 *dest++ = *src;
1567 }
1568 }
1569 len = dest - rsp_buf;
1570 dest = rsp_buf;
1571
1572 /* truncate leading characters */
1573 if (len > MAX_RAID_SERIAL_LEN) {
1574 dest += len - MAX_RAID_SERIAL_LEN;
1575 len = MAX_RAID_SERIAL_LEN;
1576 }
1577
1578 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1579 memcpy(serial, dest, len);
1580
1581 return 0;
1582}
1583
1584static int serialcmp(__u8 *s1, __u8 *s2)
1585{
1586 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1587}
1588
1589static void serialcpy(__u8 *dest, __u8 *src)
1590{
1591 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1592}
1593
1594static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1595{
1596 struct dl *dl;
1597
1598 for (dl = super->disks; dl; dl = dl->next)
1599 if (serialcmp(dl->serial, serial) == 0)
1600 break;
1601
1602 return dl;
1603}
1604
1605static int
1606load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1607{
1608 struct dl *dl;
1609 struct stat stb;
1610 int rv;
1611 int i;
1612 int alloc = 1;
1613 __u8 serial[MAX_RAID_SERIAL_LEN];
1614
1615 rv = imsm_read_serial(fd, devname, serial);
1616
1617 if (rv != 0)
1618 return 2;
1619
1620 /* check if this is a disk we have seen before. it may be a spare in
1621 * super->disks while the current anchor believes it is a raid member,
1622 * check if we need to update dl->index
1623 */
1624 dl = serial_to_dl(serial, super);
1625 if (!dl)
1626 dl = malloc(sizeof(*dl));
1627 else
1628 alloc = 0;
1629
1630 if (!dl) {
1631 if (devname)
1632 fprintf(stderr,
1633 Name ": failed to allocate disk buffer for %s\n",
1634 devname);
1635 return 2;
1636 }
1637
1638 if (alloc) {
1639 fstat(fd, &stb);
1640 dl->major = major(stb.st_rdev);
1641 dl->minor = minor(stb.st_rdev);
1642 dl->next = super->disks;
1643 dl->fd = keep_fd ? fd : -1;
1644 dl->devname = devname ? strdup(devname) : NULL;
1645 serialcpy(dl->serial, serial);
1646 dl->index = -2;
1647 dl->e = NULL;
1648 } else if (keep_fd) {
1649 close(dl->fd);
1650 dl->fd = fd;
1651 }
1652
1653 /* look up this disk's index in the current anchor */
1654 for (i = 0; i < super->anchor->num_disks; i++) {
1655 struct imsm_disk *disk_iter;
1656
1657 disk_iter = __get_imsm_disk(super->anchor, i);
1658
1659 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1660 dl->disk = *disk_iter;
1661 /* only set index on disks that are a member of a
1662 * populated contianer, i.e. one with raid_devs
1663 */
1664 if (dl->disk.status & FAILED_DISK)
1665 dl->index = -2;
1666 else if (dl->disk.status & SPARE_DISK)
1667 dl->index = -1;
1668 else
1669 dl->index = i;
1670
1671 break;
1672 }
1673 }
1674
1675 /* no match, maybe a stale failed drive */
1676 if (i == super->anchor->num_disks && dl->index >= 0) {
1677 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1678 if (dl->disk.status & FAILED_DISK)
1679 dl->index = -2;
1680 }
1681
1682 if (alloc)
1683 super->disks = dl;
1684
1685 return 0;
1686}
1687
1688#ifndef MDASSEMBLE
1689/* When migrating map0 contains the 'destination' state while map1
1690 * contains the current state. When not migrating map0 contains the
1691 * current state. This routine assumes that map[0].map_state is set to
1692 * the current array state before being called.
1693 *
1694 * Migration is indicated by one of the following states
1695 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1696 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1697 * map1state=unitialized)
1698 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
1699 * map1state=normal)
1700 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1701 * map1state=degraded)
1702 */
1703static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
1704{
1705 struct imsm_map *dest;
1706 struct imsm_map *src = get_imsm_map(dev, 0);
1707
1708 dev->vol.migr_state = 1;
1709 set_migr_type(dev, migr_type);
1710 dev->vol.curr_migr_unit = 0;
1711 dest = get_imsm_map(dev, 1);
1712
1713 /* duplicate and then set the target end state in map[0] */
1714 memcpy(dest, src, sizeof_imsm_map(src));
1715 if (migr_type == MIGR_REBUILD) {
1716 __u32 ord;
1717 int i;
1718
1719 for (i = 0; i < src->num_members; i++) {
1720 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1721 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1722 }
1723 }
1724
1725 src->map_state = to_state;
1726}
1727
1728static void end_migration(struct imsm_dev *dev, __u8 map_state)
1729{
1730 struct imsm_map *map = get_imsm_map(dev, 0);
1731 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1732 int i;
1733
1734 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1735 * completed in the last migration.
1736 *
1737 * FIXME add support for online capacity expansion and
1738 * raid-level-migration
1739 */
1740 for (i = 0; i < prev->num_members; i++)
1741 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
1742
1743 dev->vol.migr_state = 0;
1744 dev->vol.curr_migr_unit = 0;
1745 map->map_state = map_state;
1746}
1747#endif
1748
1749static int parse_raid_devices(struct intel_super *super)
1750{
1751 int i;
1752 struct imsm_dev *dev_new;
1753 size_t len, len_migr;
1754 size_t space_needed = 0;
1755 struct imsm_super *mpb = super->anchor;
1756
1757 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1758 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1759 struct intel_dev *dv;
1760
1761 len = sizeof_imsm_dev(dev_iter, 0);
1762 len_migr = sizeof_imsm_dev(dev_iter, 1);
1763 if (len_migr > len)
1764 space_needed += len_migr - len;
1765
1766 dv = malloc(sizeof(*dv));
1767 if (!dv)
1768 return 1;
1769 dev_new = malloc(len_migr);
1770 if (!dev_new) {
1771 free(dv);
1772 return 1;
1773 }
1774 imsm_copy_dev(dev_new, dev_iter);
1775 dv->dev = dev_new;
1776 dv->index = i;
1777 dv->next = super->devlist;
1778 super->devlist = dv;
1779 }
1780
1781 /* ensure that super->buf is large enough when all raid devices
1782 * are migrating
1783 */
1784 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1785 void *buf;
1786
1787 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1788 if (posix_memalign(&buf, 512, len) != 0)
1789 return 1;
1790
1791 memcpy(buf, super->buf, super->len);
1792 memset(buf + super->len, 0, len - super->len);
1793 free(super->buf);
1794 super->buf = buf;
1795 super->len = len;
1796 }
1797
1798 return 0;
1799}
1800
1801/* retrieve a pointer to the bbm log which starts after all raid devices */
1802struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1803{
1804 void *ptr = NULL;
1805
1806 if (__le32_to_cpu(mpb->bbm_log_size)) {
1807 ptr = mpb;
1808 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1809 }
1810
1811 return ptr;
1812}
1813
1814static void __free_imsm(struct intel_super *super, int free_disks);
1815
1816/* load_imsm_mpb - read matrix metadata
1817 * allocates super->mpb to be freed by free_super
1818 */
1819static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1820{
1821 unsigned long long dsize;
1822 unsigned long long sectors;
1823 struct stat;
1824 struct imsm_super *anchor;
1825 __u32 check_sum;
1826 int rc;
1827
1828 get_dev_size(fd, NULL, &dsize);
1829
1830 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1831 if (devname)
1832 fprintf(stderr,
1833 Name ": Cannot seek to anchor block on %s: %s\n",
1834 devname, strerror(errno));
1835 return 1;
1836 }
1837
1838 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1839 if (devname)
1840 fprintf(stderr,
1841 Name ": Failed to allocate imsm anchor buffer"
1842 " on %s\n", devname);
1843 return 1;
1844 }
1845 if (read(fd, anchor, 512) != 512) {
1846 if (devname)
1847 fprintf(stderr,
1848 Name ": Cannot read anchor block on %s: %s\n",
1849 devname, strerror(errno));
1850 free(anchor);
1851 return 1;
1852 }
1853
1854 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1855 if (devname)
1856 fprintf(stderr,
1857 Name ": no IMSM anchor on %s\n", devname);
1858 free(anchor);
1859 return 2;
1860 }
1861
1862 __free_imsm(super, 0);
1863 super->len = ROUND_UP(anchor->mpb_size, 512);
1864 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1865 if (devname)
1866 fprintf(stderr,
1867 Name ": unable to allocate %zu byte mpb buffer\n",
1868 super->len);
1869 free(anchor);
1870 return 2;
1871 }
1872 memcpy(super->buf, anchor, 512);
1873
1874 sectors = mpb_sectors(anchor) - 1;
1875 free(anchor);
1876 if (!sectors) {
1877 check_sum = __gen_imsm_checksum(super->anchor);
1878 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1879 if (devname)
1880 fprintf(stderr,
1881 Name ": IMSM checksum %x != %x on %s\n",
1882 check_sum,
1883 __le32_to_cpu(super->anchor->check_sum),
1884 devname);
1885 return 2;
1886 }
1887
1888 rc = load_imsm_disk(fd, super, devname, 0);
1889 if (rc == 0)
1890 rc = parse_raid_devices(super);
1891 return rc;
1892 }
1893
1894 /* read the extended mpb */
1895 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1896 if (devname)
1897 fprintf(stderr,
1898 Name ": Cannot seek to extended mpb on %s: %s\n",
1899 devname, strerror(errno));
1900 return 1;
1901 }
1902
1903 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1904 if (devname)
1905 fprintf(stderr,
1906 Name ": Cannot read extended mpb on %s: %s\n",
1907 devname, strerror(errno));
1908 return 2;
1909 }
1910
1911 check_sum = __gen_imsm_checksum(super->anchor);
1912 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1913 if (devname)
1914 fprintf(stderr,
1915 Name ": IMSM checksum %x != %x on %s\n",
1916 check_sum, __le32_to_cpu(super->anchor->check_sum),
1917 devname);
1918 return 3;
1919 }
1920
1921 /* FIXME the BBM log is disk specific so we cannot use this global
1922 * buffer for all disks. Ok for now since we only look at the global
1923 * bbm_log_size parameter to gate assembly
1924 */
1925 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1926
1927 rc = load_imsm_disk(fd, super, devname, 0);
1928 if (rc == 0)
1929 rc = parse_raid_devices(super);
1930
1931 return rc;
1932}
1933
1934static void __free_imsm_disk(struct dl *d)
1935{
1936 if (d->fd >= 0)
1937 close(d->fd);
1938 if (d->devname)
1939 free(d->devname);
1940 if (d->e)
1941 free(d->e);
1942 free(d);
1943
1944}
1945static void free_imsm_disks(struct intel_super *super)
1946{
1947 struct dl *d;
1948
1949 while (super->disks) {
1950 d = super->disks;
1951 super->disks = d->next;
1952 __free_imsm_disk(d);
1953 }
1954 while (super->missing) {
1955 d = super->missing;
1956 super->missing = d->next;
1957 __free_imsm_disk(d);
1958 }
1959
1960}
1961
1962/* free all the pieces hanging off of a super pointer */
1963static void __free_imsm(struct intel_super *super, int free_disks)
1964{
1965 if (super->buf) {
1966 free(super->buf);
1967 super->buf = NULL;
1968 }
1969 if (free_disks)
1970 free_imsm_disks(super);
1971 free_devlist(super);
1972 if (super->hba) {
1973 free((void *) super->hba);
1974 super->hba = NULL;
1975 }
1976}
1977
1978static void free_imsm(struct intel_super *super)
1979{
1980 __free_imsm(super, 1);
1981 free(super);
1982}
1983
1984static void free_super_imsm(struct supertype *st)
1985{
1986 struct intel_super *super = st->sb;
1987
1988 if (!super)
1989 return;
1990
1991 free_imsm(super);
1992 st->sb = NULL;
1993}
1994
1995static struct intel_super *alloc_super(int creating_imsm)
1996{
1997 struct intel_super *super = malloc(sizeof(*super));
1998
1999 if (super) {
2000 memset(super, 0, sizeof(*super));
2001 super->creating_imsm = creating_imsm;
2002 super->current_vol = -1;
2003 super->create_offset = ~((__u32 ) 0);
2004 if (!check_env("IMSM_NO_PLATFORM"))
2005 super->orom = find_imsm_orom();
2006 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2007 struct sys_dev *list, *ent;
2008
2009 /* find the first intel ahci controller */
2010 list = find_driver_devices("pci", "ahci");
2011 for (ent = list; ent; ent = ent->next)
2012 if (devpath_to_vendor(ent->path) == 0x8086)
2013 break;
2014 if (ent) {
2015 super->hba = ent->path;
2016 ent->path = NULL;
2017 }
2018 free_sys_dev(&list);
2019 }
2020 }
2021
2022 return super;
2023}
2024
2025#ifndef MDASSEMBLE
2026/* find_missing - helper routine for load_super_imsm_all that identifies
2027 * disks that have disappeared from the system. This routine relies on
2028 * the mpb being uptodate, which it is at load time.
2029 */
2030static int find_missing(struct intel_super *super)
2031{
2032 int i;
2033 struct imsm_super *mpb = super->anchor;
2034 struct dl *dl;
2035 struct imsm_disk *disk;
2036
2037 for (i = 0; i < mpb->num_disks; i++) {
2038 disk = __get_imsm_disk(mpb, i);
2039 dl = serial_to_dl(disk->serial, super);
2040 if (dl)
2041 continue;
2042
2043 dl = malloc(sizeof(*dl));
2044 if (!dl)
2045 return 1;
2046 dl->major = 0;
2047 dl->minor = 0;
2048 dl->fd = -1;
2049 dl->devname = strdup("missing");
2050 dl->index = i;
2051 serialcpy(dl->serial, disk->serial);
2052 dl->disk = *disk;
2053 dl->e = NULL;
2054 dl->next = super->missing;
2055 super->missing = dl;
2056 }
2057
2058 return 0;
2059}
2060
2061static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2062 char *devname, int keep_fd)
2063{
2064 struct mdinfo *sra;
2065 struct intel_super *super;
2066 struct mdinfo *sd, *best = NULL;
2067 __u32 bestgen = 0;
2068 __u32 gen;
2069 char nm[20];
2070 int dfd;
2071 int rv;
2072 int devnum = fd2devnum(fd);
2073 int retry;
2074 enum sysfs_read_flags flags;
2075
2076 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2077 if (mdmon_running(devnum))
2078 flags |= SKIP_GONE_DEVS;
2079
2080 /* check if 'fd' an opened container */
2081 sra = sysfs_read(fd, 0, flags);
2082 if (!sra)
2083 return 1;
2084
2085 if (sra->array.major_version != -1 ||
2086 sra->array.minor_version != -2 ||
2087 strcmp(sra->text_version, "imsm") != 0)
2088 return 1;
2089
2090 super = alloc_super(0);
2091 if (!super)
2092 return 1;
2093
2094 /* find the most up to date disk in this array, skipping spares */
2095 for (sd = sra->devs; sd; sd = sd->next) {
2096 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2097 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2098 if (dfd < 0) {
2099 free_imsm(super);
2100 return 2;
2101 }
2102 rv = load_imsm_mpb(dfd, super, NULL);
2103
2104 /* retry the load if we might have raced against mdmon */
2105 if (rv == 3 && mdmon_running(devnum))
2106 for (retry = 0; retry < 3; retry++) {
2107 usleep(3000);
2108 rv = load_imsm_mpb(dfd, super, NULL);
2109 if (rv != 3)
2110 break;
2111 }
2112 if (!keep_fd)
2113 close(dfd);
2114 if (rv == 0) {
2115 if (super->anchor->num_raid_devs == 0)
2116 gen = 0;
2117 else
2118 gen = __le32_to_cpu(super->anchor->generation_num);
2119 if (!best || gen > bestgen) {
2120 bestgen = gen;
2121 best = sd;
2122 }
2123 } else {
2124 free_imsm(super);
2125 return rv;
2126 }
2127 }
2128
2129 if (!best) {
2130 free_imsm(super);
2131 return 1;
2132 }
2133
2134 /* load the most up to date anchor */
2135 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2136 dfd = dev_open(nm, O_RDONLY);
2137 if (dfd < 0) {
2138 free_imsm(super);
2139 return 1;
2140 }
2141 rv = load_imsm_mpb(dfd, super, NULL);
2142 close(dfd);
2143 if (rv != 0) {
2144 free_imsm(super);
2145 return 2;
2146 }
2147
2148 /* re-parse the disk list with the current anchor */
2149 for (sd = sra->devs ; sd ; sd = sd->next) {
2150 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2151 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2152 if (dfd < 0) {
2153 free_imsm(super);
2154 return 2;
2155 }
2156 load_imsm_disk(dfd, super, NULL, keep_fd);
2157 if (!keep_fd)
2158 close(dfd);
2159 }
2160
2161
2162 if (find_missing(super) != 0) {
2163 free_imsm(super);
2164 return 2;
2165 }
2166
2167 if (st->subarray[0]) {
2168 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2169 super->current_vol = atoi(st->subarray);
2170 else
2171 return 1;
2172 }
2173
2174 *sbp = super;
2175 st->container_dev = devnum;
2176 if (st->ss == NULL) {
2177 st->ss = &super_imsm;
2178 st->minor_version = 0;
2179 st->max_devs = IMSM_MAX_DEVICES;
2180 }
2181 st->loaded_container = 1;
2182
2183 return 0;
2184}
2185#endif
2186
2187static int load_super_imsm(struct supertype *st, int fd, char *devname)
2188{
2189 struct intel_super *super;
2190 int rv;
2191
2192#ifndef MDASSEMBLE
2193 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2194 return 0;
2195#endif
2196 if (st->subarray[0])
2197 return 1; /* FIXME */
2198
2199 super = alloc_super(0);
2200 if (!super) {
2201 fprintf(stderr,
2202 Name ": malloc of %zu failed.\n",
2203 sizeof(*super));
2204 return 1;
2205 }
2206
2207 rv = load_imsm_mpb(fd, super, devname);
2208
2209 if (rv) {
2210 if (devname)
2211 fprintf(stderr,
2212 Name ": Failed to load all information "
2213 "sections on %s\n", devname);
2214 free_imsm(super);
2215 return rv;
2216 }
2217
2218 st->sb = super;
2219 if (st->ss == NULL) {
2220 st->ss = &super_imsm;
2221 st->minor_version = 0;
2222 st->max_devs = IMSM_MAX_DEVICES;
2223 }
2224 st->loaded_container = 0;
2225
2226 return 0;
2227}
2228
2229static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2230{
2231 if (info->level == 1)
2232 return 128;
2233 return info->chunk_size >> 9;
2234}
2235
2236static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2237{
2238 __u32 num_stripes;
2239
2240 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2241 num_stripes /= num_domains;
2242
2243 return num_stripes;
2244}
2245
2246static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2247{
2248 if (info->level == 1)
2249 return info->size * 2;
2250 else
2251 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2252}
2253
2254static void imsm_update_version_info(struct intel_super *super)
2255{
2256 /* update the version and attributes */
2257 struct imsm_super *mpb = super->anchor;
2258 char *version;
2259 struct imsm_dev *dev;
2260 struct imsm_map *map;
2261 int i;
2262
2263 for (i = 0; i < mpb->num_raid_devs; i++) {
2264 dev = get_imsm_dev(super, i);
2265 map = get_imsm_map(dev, 0);
2266 if (__le32_to_cpu(dev->size_high) > 0)
2267 mpb->attributes |= MPB_ATTRIB_2TB;
2268
2269 /* FIXME detect when an array spans a port multiplier */
2270 #if 0
2271 mpb->attributes |= MPB_ATTRIB_PM;
2272 #endif
2273
2274 if (mpb->num_raid_devs > 1 ||
2275 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2276 version = MPB_VERSION_ATTRIBS;
2277 switch (get_imsm_raid_level(map)) {
2278 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2279 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2280 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2281 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2282 }
2283 } else {
2284 if (map->num_members >= 5)
2285 version = MPB_VERSION_5OR6_DISK_ARRAY;
2286 else if (dev->status == DEV_CLONE_N_GO)
2287 version = MPB_VERSION_CNG;
2288 else if (get_imsm_raid_level(map) == 5)
2289 version = MPB_VERSION_RAID5;
2290 else if (map->num_members >= 3)
2291 version = MPB_VERSION_3OR4_DISK_ARRAY;
2292 else if (get_imsm_raid_level(map) == 1)
2293 version = MPB_VERSION_RAID1;
2294 else
2295 version = MPB_VERSION_RAID0;
2296 }
2297 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2298 }
2299}
2300
2301static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2302 unsigned long long size, char *name,
2303 char *homehost, int *uuid)
2304{
2305 /* We are creating a volume inside a pre-existing container.
2306 * so st->sb is already set.
2307 */
2308 struct intel_super *super = st->sb;
2309 struct imsm_super *mpb = super->anchor;
2310 struct intel_dev *dv;
2311 struct imsm_dev *dev;
2312 struct imsm_vol *vol;
2313 struct imsm_map *map;
2314 int idx = mpb->num_raid_devs;
2315 int i;
2316 unsigned long long array_blocks;
2317 size_t size_old, size_new;
2318 __u32 num_data_stripes;
2319
2320 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2321 fprintf(stderr, Name": This imsm-container already has the "
2322 "maximum of %d volumes\n", super->orom->vpa);
2323 return 0;
2324 }
2325
2326 /* ensure the mpb is large enough for the new data */
2327 size_old = __le32_to_cpu(mpb->mpb_size);
2328 size_new = disks_to_mpb_size(info->nr_disks);
2329 if (size_new > size_old) {
2330 void *mpb_new;
2331 size_t size_round = ROUND_UP(size_new, 512);
2332
2333 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2334 fprintf(stderr, Name": could not allocate new mpb\n");
2335 return 0;
2336 }
2337 memcpy(mpb_new, mpb, size_old);
2338 free(mpb);
2339 mpb = mpb_new;
2340 super->anchor = mpb_new;
2341 mpb->mpb_size = __cpu_to_le32(size_new);
2342 memset(mpb_new + size_old, 0, size_round - size_old);
2343 }
2344 super->current_vol = idx;
2345 /* when creating the first raid device in this container set num_disks
2346 * to zero, i.e. delete this spare and add raid member devices in
2347 * add_to_super_imsm_volume()
2348 */
2349 if (super->current_vol == 0)
2350 mpb->num_disks = 0;
2351
2352 for (i = 0; i < super->current_vol; i++) {
2353 dev = get_imsm_dev(super, i);
2354 if (strncmp((char *) dev->volume, name,
2355 MAX_RAID_SERIAL_LEN) == 0) {
2356 fprintf(stderr, Name": '%s' is already defined for this container\n",
2357 name);
2358 return 0;
2359 }
2360 }
2361
2362 sprintf(st->subarray, "%d", idx);
2363 dv = malloc(sizeof(*dv));
2364 if (!dv) {
2365 fprintf(stderr, Name ": failed to allocate device list entry\n");
2366 return 0;
2367 }
2368 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2369 if (!dev) {
2370 free(dv);
2371 fprintf(stderr, Name": could not allocate raid device\n");
2372 return 0;
2373 }
2374 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2375 if (info->level == 1)
2376 array_blocks = info_to_blocks_per_member(info);
2377 else
2378 array_blocks = calc_array_size(info->level, info->raid_disks,
2379 info->layout, info->chunk_size,
2380 info->size*2);
2381 /* round array size down to closest MB */
2382 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2383
2384 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2385 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2386 dev->status = __cpu_to_le32(0);
2387 dev->reserved_blocks = __cpu_to_le32(0);
2388 vol = &dev->vol;
2389 vol->migr_state = 0;
2390 set_migr_type(dev, MIGR_INIT);
2391 vol->dirty = 0;
2392 vol->curr_migr_unit = 0;
2393 map = get_imsm_map(dev, 0);
2394 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
2395 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
2396 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
2397 map->failed_disk_num = ~0;
2398 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2399 IMSM_T_STATE_NORMAL;
2400 map->ddf = 1;
2401
2402 if (info->level == 1 && info->raid_disks > 2) {
2403 fprintf(stderr, Name": imsm does not support more than 2 disks"
2404 "in a raid1 volume\n");
2405 return 0;
2406 }
2407 if (info->level == 10) {
2408 map->raid_level = 1;
2409 map->num_domains = info->raid_disks / 2;
2410 } else {
2411 map->raid_level = info->level;
2412 map->num_domains = 1;
2413 }
2414 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
2415 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
2416
2417 map->num_members = info->raid_disks;
2418 for (i = 0; i < map->num_members; i++) {
2419 /* initialized in add_to_super */
2420 set_imsm_ord_tbl_ent(map, i, 0);
2421 }
2422 mpb->num_raid_devs++;
2423
2424 dv->dev = dev;
2425 dv->index = super->current_vol;
2426 dv->next = super->devlist;
2427 super->devlist = dv;
2428
2429 imsm_update_version_info(super);
2430
2431 return 1;
2432}
2433
2434static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2435 unsigned long long size, char *name,
2436 char *homehost, int *uuid)
2437{
2438 /* This is primarily called by Create when creating a new array.
2439 * We will then get add_to_super called for each component, and then
2440 * write_init_super called to write it out to each device.
2441 * For IMSM, Create can create on fresh devices or on a pre-existing
2442 * array.
2443 * To create on a pre-existing array a different method will be called.
2444 * This one is just for fresh drives.
2445 */
2446 struct intel_super *super;
2447 struct imsm_super *mpb;
2448 size_t mpb_size;
2449 char *version;
2450
2451 if (!info) {
2452 st->sb = NULL;
2453 return 0;
2454 }
2455 if (st->sb)
2456 return init_super_imsm_volume(st, info, size, name, homehost,
2457 uuid);
2458
2459 super = alloc_super(1);
2460 if (!super)
2461 return 0;
2462 mpb_size = disks_to_mpb_size(info->nr_disks);
2463 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
2464 free(super);
2465 return 0;
2466 }
2467 mpb = super->buf;
2468 memset(mpb, 0, mpb_size);
2469
2470 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2471
2472 version = (char *) mpb->sig;
2473 strcpy(version, MPB_SIGNATURE);
2474 version += strlen(MPB_SIGNATURE);
2475 strcpy(version, MPB_VERSION_RAID0);
2476 mpb->mpb_size = mpb_size;
2477
2478 st->sb = super;
2479 return 1;
2480}
2481
2482#ifndef MDASSEMBLE
2483static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
2484 int fd, char *devname)
2485{
2486 struct intel_super *super = st->sb;
2487 struct imsm_super *mpb = super->anchor;
2488 struct dl *dl;
2489 struct imsm_dev *dev;
2490 struct imsm_map *map;
2491
2492 dev = get_imsm_dev(super, super->current_vol);
2493 map = get_imsm_map(dev, 0);
2494
2495 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2496 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2497 devname);
2498 return 1;
2499 }
2500
2501 if (fd == -1) {
2502 /* we're doing autolayout so grab the pre-marked (in
2503 * validate_geometry) raid_disk
2504 */
2505 for (dl = super->disks; dl; dl = dl->next)
2506 if (dl->raiddisk == dk->raid_disk)
2507 break;
2508 } else {
2509 for (dl = super->disks; dl ; dl = dl->next)
2510 if (dl->major == dk->major &&
2511 dl->minor == dk->minor)
2512 break;
2513 }
2514
2515 if (!dl) {
2516 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
2517 return 1;
2518 }
2519
2520 /* add a pristine spare to the metadata */
2521 if (dl->index < 0) {
2522 dl->index = super->anchor->num_disks;
2523 super->anchor->num_disks++;
2524 }
2525 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
2526 dl->disk.status = CONFIGURED_DISK | USABLE_DISK;
2527
2528 /* if we are creating the first raid device update the family number */
2529 if (super->current_vol == 0) {
2530 __u32 sum;
2531 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2532 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2533
2534 *_dev = *dev;
2535 *_disk = dl->disk;
2536 sum = __gen_imsm_checksum(mpb);
2537 mpb->family_num = __cpu_to_le32(sum);
2538 }
2539
2540 return 0;
2541}
2542
2543static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
2544 int fd, char *devname)
2545{
2546 struct intel_super *super = st->sb;
2547 struct dl *dd;
2548 unsigned long long size;
2549 __u32 id;
2550 int rv;
2551 struct stat stb;
2552
2553 /* if we are on an RAID enabled platform check that the disk is
2554 * attached to the raid controller
2555 */
2556 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2557 fprintf(stderr,
2558 Name ": %s is not attached to the raid controller: %s\n",
2559 devname ? : "disk", super->hba);
2560 return 1;
2561 }
2562
2563 if (super->current_vol >= 0)
2564 return add_to_super_imsm_volume(st, dk, fd, devname);
2565
2566 fstat(fd, &stb);
2567 dd = malloc(sizeof(*dd));
2568 if (!dd) {
2569 fprintf(stderr,
2570 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
2571 return 1;
2572 }
2573 memset(dd, 0, sizeof(*dd));
2574 dd->major = major(stb.st_rdev);
2575 dd->minor = minor(stb.st_rdev);
2576 dd->index = -1;
2577 dd->devname = devname ? strdup(devname) : NULL;
2578 dd->fd = fd;
2579 dd->e = NULL;
2580 rv = imsm_read_serial(fd, devname, dd->serial);
2581 if (rv) {
2582 fprintf(stderr,
2583 Name ": failed to retrieve scsi serial, aborting\n");
2584 free(dd);
2585 abort();
2586 }
2587
2588 get_dev_size(fd, NULL, &size);
2589 size /= 512;
2590 serialcpy(dd->disk.serial, dd->serial);
2591 dd->disk.total_blocks = __cpu_to_le32(size);
2592 dd->disk.status = USABLE_DISK | SPARE_DISK;
2593 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
2594 dd->disk.scsi_id = __cpu_to_le32(id);
2595 else
2596 dd->disk.scsi_id = __cpu_to_le32(0);
2597
2598 if (st->update_tail) {
2599 dd->next = super->add;
2600 super->add = dd;
2601 } else {
2602 dd->next = super->disks;
2603 super->disks = dd;
2604 }
2605
2606 return 0;
2607}
2608
2609static int store_imsm_mpb(int fd, struct intel_super *super);
2610
2611/* spare records have their own family number and do not have any defined raid
2612 * devices
2613 */
2614static int write_super_imsm_spares(struct intel_super *super, int doclose)
2615{
2616 struct imsm_super mpb_save;
2617 struct imsm_super *mpb = super->anchor;
2618 __u32 sum;
2619 struct dl *d;
2620
2621 mpb_save = *mpb;
2622 mpb->num_raid_devs = 0;
2623 mpb->num_disks = 1;
2624 mpb->mpb_size = sizeof(struct imsm_super);
2625 mpb->generation_num = __cpu_to_le32(1UL);
2626
2627 for (d = super->disks; d; d = d->next) {
2628 if (d->index != -1)
2629 continue;
2630
2631 mpb->disk[0] = d->disk;
2632 sum = __gen_imsm_checksum(mpb);
2633 mpb->family_num = __cpu_to_le32(sum);
2634 sum = __gen_imsm_checksum(mpb);
2635 mpb->check_sum = __cpu_to_le32(sum);
2636
2637 if (store_imsm_mpb(d->fd, super)) {
2638 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2639 __func__, d->major, d->minor, strerror(errno));
2640 *mpb = mpb_save;
2641 return 1;
2642 }
2643 if (doclose) {
2644 close(d->fd);
2645 d->fd = -1;
2646 }
2647 }
2648
2649 *mpb = mpb_save;
2650 return 0;
2651}
2652
2653static int write_super_imsm(struct intel_super *super, int doclose)
2654{
2655 struct imsm_super *mpb = super->anchor;
2656 struct dl *d;
2657 __u32 generation;
2658 __u32 sum;
2659 int spares = 0;
2660 int i;
2661 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
2662
2663 /* 'generation' is incremented everytime the metadata is written */
2664 generation = __le32_to_cpu(mpb->generation_num);
2665 generation++;
2666 mpb->generation_num = __cpu_to_le32(generation);
2667
2668 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
2669 for (d = super->disks; d; d = d->next) {
2670 if (d->index == -1)
2671 spares++;
2672 else
2673 mpb->disk[d->index] = d->disk;
2674 }
2675 for (d = super->missing; d; d = d->next)
2676 mpb->disk[d->index] = d->disk;
2677
2678 for (i = 0; i < mpb->num_raid_devs; i++) {
2679 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2680
2681 imsm_copy_dev(dev, get_imsm_dev(super, i));
2682 mpb_size += sizeof_imsm_dev(dev, 0);
2683 }
2684 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
2685 mpb->mpb_size = __cpu_to_le32(mpb_size);
2686
2687 /* recalculate checksum */
2688 sum = __gen_imsm_checksum(mpb);
2689 mpb->check_sum = __cpu_to_le32(sum);
2690
2691 /* write the mpb for disks that compose raid devices */
2692 for (d = super->disks; d ; d = d->next) {
2693 if (d->index < 0)
2694 continue;
2695 if (store_imsm_mpb(d->fd, super))
2696 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2697 __func__, d->major, d->minor, strerror(errno));
2698 if (doclose) {
2699 close(d->fd);
2700 d->fd = -1;
2701 }
2702 }
2703
2704 if (spares)
2705 return write_super_imsm_spares(super, doclose);
2706
2707 return 0;
2708}
2709
2710
2711static int create_array(struct supertype *st)
2712{
2713 size_t len;
2714 struct imsm_update_create_array *u;
2715 struct intel_super *super = st->sb;
2716 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2717 struct imsm_map *map = get_imsm_map(dev, 0);
2718 struct disk_info *inf;
2719 struct imsm_disk *disk;
2720 int i;
2721 int idx;
2722
2723 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
2724 sizeof(*inf) * map->num_members;
2725 u = malloc(len);
2726 if (!u) {
2727 fprintf(stderr, "%s: failed to allocate update buffer\n",
2728 __func__);
2729 return 1;
2730 }
2731
2732 u->type = update_create_array;
2733 u->dev_idx = super->current_vol;
2734 imsm_copy_dev(&u->dev, dev);
2735 inf = get_disk_info(u);
2736 for (i = 0; i < map->num_members; i++) {
2737 idx = get_imsm_disk_idx(dev, i);
2738 disk = get_imsm_disk(super, idx);
2739 serialcpy(inf[i].serial, disk->serial);
2740 }
2741 append_metadata_update(st, u, len);
2742
2743 return 0;
2744}
2745
2746static int _add_disk(struct supertype *st)
2747{
2748 struct intel_super *super = st->sb;
2749 size_t len;
2750 struct imsm_update_add_disk *u;
2751
2752 if (!super->add)
2753 return 0;
2754
2755 len = sizeof(*u);
2756 u = malloc(len);
2757 if (!u) {
2758 fprintf(stderr, "%s: failed to allocate update buffer\n",
2759 __func__);
2760 return 1;
2761 }
2762
2763 u->type = update_add_disk;
2764 append_metadata_update(st, u, len);
2765
2766 return 0;
2767}
2768
2769static int write_init_super_imsm(struct supertype *st)
2770{
2771 if (st->update_tail) {
2772 /* queue the recently created array / added disk
2773 * as a metadata update */
2774 struct intel_super *super = st->sb;
2775 struct dl *d;
2776 int rv;
2777
2778 /* determine if we are creating a volume or adding a disk */
2779 if (super->current_vol < 0) {
2780 /* in the add disk case we are running in mdmon
2781 * context, so don't close fd's
2782 */
2783 return _add_disk(st);
2784 } else
2785 rv = create_array(st);
2786
2787 for (d = super->disks; d ; d = d->next) {
2788 close(d->fd);
2789 d->fd = -1;
2790 }
2791
2792 return rv;
2793 } else
2794 return write_super_imsm(st->sb, 1);
2795}
2796#endif
2797
2798static int store_zero_imsm(struct supertype *st, int fd)
2799{
2800 unsigned long long dsize;
2801 void *buf;
2802
2803 get_dev_size(fd, NULL, &dsize);
2804
2805 /* first block is stored on second to last sector of the disk */
2806 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2807 return 1;
2808
2809 if (posix_memalign(&buf, 512, 512) != 0)
2810 return 1;
2811
2812 memset(buf, 0, 512);
2813 if (write(fd, buf, 512) != 512)
2814 return 1;
2815 return 0;
2816}
2817
2818static int imsm_bbm_log_size(struct imsm_super *mpb)
2819{
2820 return __le32_to_cpu(mpb->bbm_log_size);
2821}
2822
2823#ifndef MDASSEMBLE
2824static int validate_geometry_imsm_container(struct supertype *st, int level,
2825 int layout, int raiddisks, int chunk,
2826 unsigned long long size, char *dev,
2827 unsigned long long *freesize,
2828 int verbose)
2829{
2830 int fd;
2831 unsigned long long ldsize;
2832 const struct imsm_orom *orom;
2833
2834 if (level != LEVEL_CONTAINER)
2835 return 0;
2836 if (!dev)
2837 return 1;
2838
2839 if (check_env("IMSM_NO_PLATFORM"))
2840 orom = NULL;
2841 else
2842 orom = find_imsm_orom();
2843 if (orom && raiddisks > orom->tds) {
2844 if (verbose)
2845 fprintf(stderr, Name ": %d exceeds maximum number of"
2846 " platform supported disks: %d\n",
2847 raiddisks, orom->tds);
2848 return 0;
2849 }
2850
2851 fd = open(dev, O_RDONLY|O_EXCL, 0);
2852 if (fd < 0) {
2853 if (verbose)
2854 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2855 dev, strerror(errno));
2856 return 0;
2857 }
2858 if (!get_dev_size(fd, dev, &ldsize)) {
2859 close(fd);
2860 return 0;
2861 }
2862 close(fd);
2863
2864 *freesize = avail_size_imsm(st, ldsize >> 9);
2865
2866 return 1;
2867}
2868
2869static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
2870{
2871 const unsigned long long base_start = e[*idx].start;
2872 unsigned long long end = base_start + e[*idx].size;
2873 int i;
2874
2875 if (base_start == end)
2876 return 0;
2877
2878 *idx = *idx + 1;
2879 for (i = *idx; i < num_extents; i++) {
2880 /* extend overlapping extents */
2881 if (e[i].start >= base_start &&
2882 e[i].start <= end) {
2883 if (e[i].size == 0)
2884 return 0;
2885 if (e[i].start + e[i].size > end)
2886 end = e[i].start + e[i].size;
2887 } else if (e[i].start > end) {
2888 *idx = i;
2889 break;
2890 }
2891 }
2892
2893 return end - base_start;
2894}
2895
2896static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
2897{
2898 /* build a composite disk with all known extents and generate a new
2899 * 'maxsize' given the "all disks in an array must share a common start
2900 * offset" constraint
2901 */
2902 struct extent *e = calloc(sum_extents, sizeof(*e));
2903 struct dl *dl;
2904 int i, j;
2905 int start_extent;
2906 unsigned long long pos;
2907 unsigned long long start = 0;
2908 unsigned long long maxsize;
2909 unsigned long reserve;
2910
2911 if (!e)
2912 return ~0ULL; /* error */
2913
2914 /* coalesce and sort all extents. also, check to see if we need to
2915 * reserve space between member arrays
2916 */
2917 j = 0;
2918 for (dl = super->disks; dl; dl = dl->next) {
2919 if (!dl->e)
2920 continue;
2921 for (i = 0; i < dl->extent_cnt; i++)
2922 e[j++] = dl->e[i];
2923 }
2924 qsort(e, sum_extents, sizeof(*e), cmp_extent);
2925
2926 /* merge extents */
2927 i = 0;
2928 j = 0;
2929 while (i < sum_extents) {
2930 e[j].start = e[i].start;
2931 e[j].size = find_size(e, &i, sum_extents);
2932 j++;
2933 if (e[j-1].size == 0)
2934 break;
2935 }
2936
2937 pos = 0;
2938 maxsize = 0;
2939 start_extent = 0;
2940 i = 0;
2941 do {
2942 unsigned long long esize;
2943
2944 esize = e[i].start - pos;
2945 if (esize >= maxsize) {
2946 maxsize = esize;
2947 start = pos;
2948 start_extent = i;
2949 }
2950 pos = e[i].start + e[i].size;
2951 i++;
2952 } while (e[i-1].size);
2953 free(e);
2954
2955 if (start_extent > 0)
2956 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
2957 else
2958 reserve = 0;
2959
2960 if (maxsize < reserve)
2961 return ~0ULL;
2962
2963 super->create_offset = ~((__u32) 0);
2964 if (start + reserve > super->create_offset)
2965 return ~0ULL; /* start overflows create_offset */
2966 super->create_offset = start + reserve;
2967
2968 return maxsize - reserve;
2969}
2970
2971static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
2972{
2973 if (level < 0 || level == 6 || level == 4)
2974 return 0;
2975
2976 /* if we have an orom prevent invalid raid levels */
2977 if (orom)
2978 switch (level) {
2979 case 0: return imsm_orom_has_raid0(orom);
2980 case 1:
2981 if (raiddisks > 2)
2982 return imsm_orom_has_raid1e(orom);
2983 return imsm_orom_has_raid1(orom) && raiddisks == 2;
2984 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
2985 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
2986 }
2987 else
2988 return 1; /* not on an Intel RAID platform so anything goes */
2989
2990 return 0;
2991}
2992
2993#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
2994/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2995 * FIX ME add ahci details
2996 */
2997static int validate_geometry_imsm_volume(struct supertype *st, int level,
2998 int layout, int raiddisks, int chunk,
2999 unsigned long long size, char *dev,
3000 unsigned long long *freesize,
3001 int verbose)
3002{
3003 struct stat stb;
3004 struct intel_super *super = st->sb;
3005 struct imsm_super *mpb = super->anchor;
3006 struct dl *dl;
3007 unsigned long long pos = 0;
3008 unsigned long long maxsize;
3009 struct extent *e;
3010 int i;
3011
3012 /* We must have the container info already read in. */
3013 if (!super)
3014 return 0;
3015
3016 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3017 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3018 level, raiddisks, raiddisks > 1 ? "s" : "");
3019 return 0;
3020 }
3021 if (super->orom && level != 1 &&
3022 !imsm_orom_has_chunk(super->orom, chunk)) {
3023 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3024 return 0;
3025 }
3026 if (layout != imsm_level_to_layout(level)) {
3027 if (level == 5)
3028 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3029 else if (level == 10)
3030 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3031 else
3032 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3033 layout, level);
3034 return 0;
3035 }
3036
3037 if (!dev) {
3038 /* General test: make sure there is space for
3039 * 'raiddisks' device extents of size 'size' at a given
3040 * offset
3041 */
3042 unsigned long long minsize = size;
3043 unsigned long long start_offset = ~0ULL;
3044 int dcnt = 0;
3045 if (minsize == 0)
3046 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3047 for (dl = super->disks; dl ; dl = dl->next) {
3048 int found = 0;
3049
3050 pos = 0;
3051 i = 0;
3052 e = get_extents(super, dl);
3053 if (!e) continue;
3054 do {
3055 unsigned long long esize;
3056 esize = e[i].start - pos;
3057 if (esize >= minsize)
3058 found = 1;
3059 if (found && start_offset == ~0ULL) {
3060 start_offset = pos;
3061 break;
3062 } else if (found && pos != start_offset) {
3063 found = 0;
3064 break;
3065 }
3066 pos = e[i].start + e[i].size;
3067 i++;
3068 } while (e[i-1].size);
3069 if (found)
3070 dcnt++;
3071 free(e);
3072 }
3073 if (dcnt < raiddisks) {
3074 if (verbose)
3075 fprintf(stderr, Name ": imsm: Not enough "
3076 "devices with space for this array "
3077 "(%d < %d)\n",
3078 dcnt, raiddisks);
3079 return 0;
3080 }
3081 return 1;
3082 }
3083
3084 /* This device must be a member of the set */
3085 if (stat(dev, &stb) < 0)
3086 return 0;
3087 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3088 return 0;
3089 for (dl = super->disks ; dl ; dl = dl->next) {
3090 if (dl->major == major(stb.st_rdev) &&
3091 dl->minor == minor(stb.st_rdev))
3092 break;
3093 }
3094 if (!dl) {
3095 if (verbose)
3096 fprintf(stderr, Name ": %s is not in the "
3097 "same imsm set\n", dev);
3098 return 0;
3099 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3100 /* If a volume is present then the current creation attempt
3101 * cannot incorporate new spares because the orom may not
3102 * understand this configuration (all member disks must be
3103 * members of each array in the container).
3104 */
3105 fprintf(stderr, Name ": %s is a spare and a volume"
3106 " is already defined for this container\n", dev);
3107 fprintf(stderr, Name ": The option-rom requires all member"
3108 " disks to be a member of all volumes\n");
3109 return 0;
3110 }
3111
3112 /* retrieve the largest free space block */
3113 e = get_extents(super, dl);
3114 maxsize = 0;
3115 i = 0;
3116 if (e) {
3117 do {
3118 unsigned long long esize;
3119
3120 esize = e[i].start - pos;
3121 if (esize >= maxsize)
3122 maxsize = esize;
3123 pos = e[i].start + e[i].size;
3124 i++;
3125 } while (e[i-1].size);
3126 dl->e = e;
3127 dl->extent_cnt = i;
3128 } else {
3129 if (verbose)
3130 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3131 dev);
3132 return 0;
3133 }
3134 if (maxsize < size) {
3135 if (verbose)
3136 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3137 dev, maxsize, size);
3138 return 0;
3139 }
3140
3141 /* count total number of extents for merge */
3142 i = 0;
3143 for (dl = super->disks; dl; dl = dl->next)
3144 if (dl->e)
3145 i += dl->extent_cnt;
3146
3147 maxsize = merge_extents(super, i);
3148 if (maxsize < size) {
3149 if (verbose)
3150 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3151 maxsize, size);
3152 return 0;
3153 } else if (maxsize == ~0ULL) {
3154 if (verbose)
3155 fprintf(stderr, Name ": failed to merge %d extents\n", i);
3156 return 0;
3157 }
3158
3159 *freesize = maxsize;
3160
3161 return 1;
3162}
3163
3164static int reserve_space(struct supertype *st, int raiddisks,
3165 unsigned long long size, int chunk,
3166 unsigned long long *freesize)
3167{
3168 struct intel_super *super = st->sb;
3169 struct imsm_super *mpb = super->anchor;
3170 struct dl *dl;
3171 int i;
3172 int extent_cnt;
3173 struct extent *e;
3174 unsigned long long maxsize;
3175 unsigned long long minsize;
3176 int cnt;
3177 int used;
3178
3179 /* find the largest common start free region of the possible disks */
3180 used = 0;
3181 extent_cnt = 0;
3182 cnt = 0;
3183 for (dl = super->disks; dl; dl = dl->next) {
3184 dl->raiddisk = -1;
3185
3186 if (dl->index >= 0)
3187 used++;
3188
3189 /* don't activate new spares if we are orom constrained
3190 * and there is already a volume active in the container
3191 */
3192 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3193 continue;
3194
3195 e = get_extents(super, dl);
3196 if (!e)
3197 continue;
3198 for (i = 1; e[i-1].size; i++)
3199 ;
3200 dl->e = e;
3201 dl->extent_cnt = i;
3202 extent_cnt += i;
3203 cnt++;
3204 }
3205
3206 maxsize = merge_extents(super, extent_cnt);
3207 minsize = size;
3208 if (size == 0)
3209 minsize = chunk;
3210
3211 if (cnt < raiddisks ||
3212 (super->orom && used && used != raiddisks) ||
3213 maxsize < minsize) {
3214 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3215 return 0; /* No enough free spaces large enough */
3216 }
3217
3218 if (size == 0) {
3219 size = maxsize;
3220 if (chunk) {
3221 size /= chunk;
3222 size *= chunk;
3223 }
3224 }
3225
3226 cnt = 0;
3227 for (dl = super->disks; dl; dl = dl->next)
3228 if (dl->e)
3229 dl->raiddisk = cnt++;
3230
3231 *freesize = size;
3232
3233 return 1;
3234}
3235
3236static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3237 int raiddisks, int chunk, unsigned long long size,
3238 char *dev, unsigned long long *freesize,
3239 int verbose)
3240{
3241 int fd, cfd;
3242 struct mdinfo *sra;
3243
3244 /* if given unused devices create a container
3245 * if given given devices in a container create a member volume
3246 */
3247 if (level == LEVEL_CONTAINER) {
3248 /* Must be a fresh device to add to a container */
3249 return validate_geometry_imsm_container(st, level, layout,
3250 raiddisks, chunk, size,
3251 dev, freesize,
3252 verbose);
3253 }
3254
3255 if (!dev) {
3256 if (st->sb && freesize) {
3257 /* we are being asked to automatically layout a
3258 * new volume based on the current contents of
3259 * the container. If the the parameters can be
3260 * satisfied reserve_space will record the disks,
3261 * start offset, and size of the volume to be
3262 * created. add_to_super and getinfo_super
3263 * detect when autolayout is in progress.
3264 */
3265 return reserve_space(st, raiddisks, size, chunk, freesize);
3266 }
3267 return 1;
3268 }
3269 if (st->sb) {
3270 /* creating in a given container */
3271 return validate_geometry_imsm_volume(st, level, layout,
3272 raiddisks, chunk, size,
3273 dev, freesize, verbose);
3274 }
3275
3276 /* limit creation to the following levels */
3277 if (!dev)
3278 switch (level) {
3279 case 0:
3280 case 1:
3281 case 10:
3282 case 5:
3283 break;
3284 default:
3285 return 1;
3286 }
3287
3288 /* This device needs to be a device in an 'imsm' container */
3289 fd = open(dev, O_RDONLY|O_EXCL, 0);
3290 if (fd >= 0) {
3291 if (verbose)
3292 fprintf(stderr,
3293 Name ": Cannot create this array on device %s\n",
3294 dev);
3295 close(fd);
3296 return 0;
3297 }
3298 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3299 if (verbose)
3300 fprintf(stderr, Name ": Cannot open %s: %s\n",
3301 dev, strerror(errno));
3302 return 0;
3303 }
3304 /* Well, it is in use by someone, maybe an 'imsm' container. */
3305 cfd = open_container(fd);
3306 if (cfd < 0) {
3307 close(fd);
3308 if (verbose)
3309 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3310 dev);
3311 return 0;
3312 }
3313 sra = sysfs_read(cfd, 0, GET_VERSION);
3314 close(fd);
3315 if (sra && sra->array.major_version == -1 &&
3316 strcmp(sra->text_version, "imsm") == 0) {
3317 /* This is a member of a imsm container. Load the container
3318 * and try to create a volume
3319 */
3320 struct intel_super *super;
3321
3322 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3323 st->sb = super;
3324 st->container_dev = fd2devnum(cfd);
3325 close(cfd);
3326 return validate_geometry_imsm_volume(st, level, layout,
3327 raiddisks, chunk,
3328 size, dev,
3329 freesize, verbose);
3330 }
3331 close(cfd);
3332 } else /* may belong to another container */
3333 return 0;
3334
3335 return 1;
3336}
3337#endif /* MDASSEMBLE */
3338
3339static struct mdinfo *container_content_imsm(struct supertype *st)
3340{
3341 /* Given a container loaded by load_super_imsm_all,
3342 * extract information about all the arrays into
3343 * an mdinfo tree.
3344 *
3345 * For each imsm_dev create an mdinfo, fill it in,
3346 * then look for matching devices in super->disks
3347 * and create appropriate device mdinfo.
3348 */
3349 struct intel_super *super = st->sb;
3350 struct imsm_super *mpb = super->anchor;
3351 struct mdinfo *rest = NULL;
3352 int i;
3353
3354 /* do not assemble arrays that might have bad blocks */
3355 if (imsm_bbm_log_size(super->anchor)) {
3356 fprintf(stderr, Name ": BBM log found in metadata. "
3357 "Cannot activate array(s).\n");
3358 return NULL;
3359 }
3360
3361 for (i = 0; i < mpb->num_raid_devs; i++) {
3362 struct imsm_dev *dev = get_imsm_dev(super, i);
3363 struct imsm_map *map = get_imsm_map(dev, 0);
3364 struct mdinfo *this;
3365 int slot;
3366
3367 /* do not publish arrays that are in the middle of an
3368 * unsupported migration
3369 */
3370 if (dev->vol.migr_state &&
3371 (migr_type(dev) == MIGR_GEN_MIGR ||
3372 migr_type(dev) == MIGR_STATE_CHANGE)) {
3373 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
3374 " unsupported migration in progress\n",
3375 dev->volume);
3376 continue;
3377 }
3378
3379 this = malloc(sizeof(*this));
3380 memset(this, 0, sizeof(*this));
3381 this->next = rest;
3382
3383 super->current_vol = i;
3384 getinfo_super_imsm_volume(st, this);
3385 for (slot = 0 ; slot < map->num_members; slot++) {
3386 struct mdinfo *info_d;
3387 struct dl *d;
3388 int idx;
3389 int skip;
3390 __u32 s;
3391 __u32 ord;
3392
3393 skip = 0;
3394 idx = get_imsm_disk_idx(dev, slot);
3395 ord = get_imsm_ord_tbl_ent(dev, slot);
3396 for (d = super->disks; d ; d = d->next)
3397 if (d->index == idx)
3398 break;
3399
3400 if (d == NULL)
3401 skip = 1;
3402
3403 s = d ? d->disk.status : 0;
3404 if (s & FAILED_DISK)
3405 skip = 1;
3406 if (!(s & USABLE_DISK))
3407 skip = 1;
3408 if (ord & IMSM_ORD_REBUILD)
3409 skip = 1;
3410
3411 /*
3412 * if we skip some disks the array will be assmebled degraded;
3413 * reset resync start to avoid a dirty-degraded situation
3414 *
3415 * FIXME handle dirty degraded
3416 */
3417 if (skip && !dev->vol.dirty)
3418 this->resync_start = ~0ULL;
3419 if (skip)
3420 continue;
3421
3422 info_d = malloc(sizeof(*info_d));
3423 if (!info_d) {
3424 fprintf(stderr, Name ": failed to allocate disk"
3425 " for volume %.16s\n", dev->volume);
3426 free(this);
3427 this = rest;
3428 break;
3429 }
3430 memset(info_d, 0, sizeof(*info_d));
3431 info_d->next = this->devs;
3432 this->devs = info_d;
3433
3434 info_d->disk.number = d->index;
3435 info_d->disk.major = d->major;
3436 info_d->disk.minor = d->minor;
3437 info_d->disk.raid_disk = slot;
3438
3439 this->array.working_disks++;
3440
3441 info_d->events = __le32_to_cpu(mpb->generation_num);
3442 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
3443 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
3444 if (d->devname)
3445 strcpy(info_d->name, d->devname);
3446 }
3447 rest = this;
3448 }
3449
3450 return rest;
3451}
3452
3453
3454#ifndef MDASSEMBLE
3455static int imsm_open_new(struct supertype *c, struct active_array *a,
3456 char *inst)
3457{
3458 struct intel_super *super = c->sb;
3459 struct imsm_super *mpb = super->anchor;
3460
3461 if (atoi(inst) >= mpb->num_raid_devs) {
3462 fprintf(stderr, "%s: subarry index %d, out of range\n",
3463 __func__, atoi(inst));
3464 return -ENODEV;
3465 }
3466
3467 dprintf("imsm: open_new %s\n", inst);
3468 a->info.container_member = atoi(inst);
3469 return 0;
3470}
3471
3472static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
3473{
3474 struct imsm_map *map = get_imsm_map(dev, 0);
3475
3476 if (!failed)
3477 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3478 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
3479
3480 switch (get_imsm_raid_level(map)) {
3481 case 0:
3482 return IMSM_T_STATE_FAILED;
3483 break;
3484 case 1:
3485 if (failed < map->num_members)
3486 return IMSM_T_STATE_DEGRADED;
3487 else
3488 return IMSM_T_STATE_FAILED;
3489 break;
3490 case 10:
3491 {
3492 /**
3493 * check to see if any mirrors have failed, otherwise we
3494 * are degraded. Even numbered slots are mirrored on
3495 * slot+1
3496 */
3497 int i;
3498 /* gcc -Os complains that this is unused */
3499 int insync = insync;
3500
3501 for (i = 0; i < map->num_members; i++) {
3502 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
3503 int idx = ord_to_idx(ord);
3504 struct imsm_disk *disk;
3505
3506 /* reset the potential in-sync count on even-numbered
3507 * slots. num_copies is always 2 for imsm raid10
3508 */
3509 if ((i & 1) == 0)
3510 insync = 2;
3511
3512 disk = get_imsm_disk(super, idx);
3513 if (!disk || disk->status & FAILED_DISK ||
3514 ord & IMSM_ORD_REBUILD)
3515 insync--;
3516
3517 /* no in-sync disks left in this mirror the
3518 * array has failed
3519 */
3520 if (insync == 0)
3521 return IMSM_T_STATE_FAILED;
3522 }
3523
3524 return IMSM_T_STATE_DEGRADED;
3525 }
3526 case 5:
3527 if (failed < 2)
3528 return IMSM_T_STATE_DEGRADED;
3529 else
3530 return IMSM_T_STATE_FAILED;
3531 break;
3532 default:
3533 break;
3534 }
3535
3536 return map->map_state;
3537}
3538
3539static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
3540{
3541 int i;
3542 int failed = 0;
3543 struct imsm_disk *disk;
3544 struct imsm_map *map = get_imsm_map(dev, 0);
3545 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3546 __u32 ord;
3547 int idx;
3548
3549 /* at the beginning of migration we set IMSM_ORD_REBUILD on
3550 * disks that are being rebuilt. New failures are recorded to
3551 * map[0]. So we look through all the disks we started with and
3552 * see if any failures are still present, or if any new ones
3553 * have arrived
3554 *
3555 * FIXME add support for online capacity expansion and
3556 * raid-level-migration
3557 */
3558 for (i = 0; i < prev->num_members; i++) {
3559 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
3560 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
3561 idx = ord_to_idx(ord);
3562
3563 disk = get_imsm_disk(super, idx);
3564 if (!disk || disk->status & FAILED_DISK ||
3565 ord & IMSM_ORD_REBUILD)
3566 failed++;
3567 }
3568
3569 return failed;
3570}
3571
3572static int is_resyncing(struct imsm_dev *dev)
3573{
3574 struct imsm_map *migr_map;
3575
3576 if (!dev->vol.migr_state)
3577 return 0;
3578
3579 if (migr_type(dev) == MIGR_INIT ||
3580 migr_type(dev) == MIGR_REPAIR)
3581 return 1;
3582
3583 migr_map = get_imsm_map(dev, 1);
3584
3585 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
3586 return 1;
3587 else
3588 return 0;
3589}
3590
3591static int is_rebuilding(struct imsm_dev *dev)
3592{
3593 struct imsm_map *migr_map;
3594
3595 if (!dev->vol.migr_state)
3596 return 0;
3597
3598 if (migr_type(dev) != MIGR_REBUILD)
3599 return 0;
3600
3601 migr_map = get_imsm_map(dev, 1);
3602
3603 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
3604 return 1;
3605 else
3606 return 0;
3607}
3608
3609/* return true if we recorded new information */
3610static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3611{
3612 __u32 ord;
3613 int slot;
3614 struct imsm_map *map;
3615
3616 /* new failures are always set in map[0] */
3617 map = get_imsm_map(dev, 0);
3618
3619 slot = get_imsm_disk_slot(map, idx);
3620 if (slot < 0)
3621 return 0;
3622
3623 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
3624 if ((disk->status & FAILED_DISK) && (ord & IMSM_ORD_REBUILD))
3625 return 0;
3626
3627 disk->status |= FAILED_DISK;
3628 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
3629 if (map->failed_disk_num == ~0)
3630 map->failed_disk_num = slot;
3631 return 1;
3632}
3633
3634static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3635{
3636 mark_failure(dev, disk, idx);
3637
3638 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
3639 return;
3640
3641 disk->scsi_id = __cpu_to_le32(~(__u32)0);
3642 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
3643}
3644
3645/* Handle dirty -> clean transititions and resync. Degraded and rebuild
3646 * states are handled in imsm_set_disk() with one exception, when a
3647 * resync is stopped due to a new failure this routine will set the
3648 * 'degraded' state for the array.
3649 */
3650static int imsm_set_array_state(struct active_array *a, int consistent)
3651{
3652 int inst = a->info.container_member;
3653 struct intel_super *super = a->container->sb;
3654 struct imsm_dev *dev = get_imsm_dev(super, inst);
3655 struct imsm_map *map = get_imsm_map(dev, 0);
3656 int failed = imsm_count_failed(super, dev);
3657 __u8 map_state = imsm_check_degraded(super, dev, failed);
3658
3659 /* before we activate this array handle any missing disks */
3660 if (consistent == 2 && super->missing) {
3661 struct dl *dl;
3662
3663 dprintf("imsm: mark missing\n");
3664 end_migration(dev, map_state);
3665 for (dl = super->missing; dl; dl = dl->next)
3666 mark_missing(dev, &dl->disk, dl->index);
3667 super->updates_pending++;
3668 }
3669
3670 if (consistent == 2 &&
3671 (!is_resync_complete(a) ||
3672 map_state != IMSM_T_STATE_NORMAL ||
3673 dev->vol.migr_state))
3674 consistent = 0;
3675
3676 if (is_resync_complete(a)) {
3677 /* complete intialization / resync,
3678 * recovery and interrupted recovery is completed in
3679 * ->set_disk
3680 */
3681 if (is_resyncing(dev)) {
3682 dprintf("imsm: mark resync done\n");
3683 end_migration(dev, map_state);
3684 super->updates_pending++;
3685 }
3686 } else if (!is_resyncing(dev) && !failed) {
3687 /* mark the start of the init process if nothing is failed */
3688 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
3689 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
3690 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
3691 else
3692 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3693 super->updates_pending++;
3694 }
3695
3696 /* FIXME check if we can update curr_migr_unit from resync_start */
3697
3698 /* mark dirty / clean */
3699 if (dev->vol.dirty != !consistent) {
3700 dprintf("imsm: mark '%s' (%llu)\n",
3701 consistent ? "clean" : "dirty", a->resync_start);
3702 if (consistent)
3703 dev->vol.dirty = 0;
3704 else
3705 dev->vol.dirty = 1;
3706 super->updates_pending++;
3707 }
3708 return consistent;
3709}
3710
3711static void imsm_set_disk(struct active_array *a, int n, int state)
3712{
3713 int inst = a->info.container_member;
3714 struct intel_super *super = a->container->sb;
3715 struct imsm_dev *dev = get_imsm_dev(super, inst);
3716 struct imsm_map *map = get_imsm_map(dev, 0);
3717 struct imsm_disk *disk;
3718 int failed;
3719 __u32 ord;
3720 __u8 map_state;
3721
3722 if (n > map->num_members)
3723 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
3724 n, map->num_members - 1);
3725
3726 if (n < 0)
3727 return;
3728
3729 dprintf("imsm: set_disk %d:%x\n", n, state);
3730
3731 ord = get_imsm_ord_tbl_ent(dev, n);
3732 disk = get_imsm_disk(super, ord_to_idx(ord));
3733
3734 /* check for new failures */
3735 if (state & DS_FAULTY) {
3736 if (mark_failure(dev, disk, ord_to_idx(ord)))
3737 super->updates_pending++;
3738 }
3739
3740 /* check if in_sync */
3741 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
3742 struct imsm_map *migr_map = get_imsm_map(dev, 1);
3743
3744 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
3745 super->updates_pending++;
3746 }
3747
3748 failed = imsm_count_failed(super, dev);
3749 map_state = imsm_check_degraded(super, dev, failed);
3750
3751 /* check if recovery complete, newly degraded, or failed */
3752 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
3753 end_migration(dev, map_state);
3754 map = get_imsm_map(dev, 0);
3755 map->failed_disk_num = ~0;
3756 super->updates_pending++;
3757 } else if (map_state == IMSM_T_STATE_DEGRADED &&
3758 map->map_state != map_state &&
3759 !dev->vol.migr_state) {
3760 dprintf("imsm: mark degraded\n");
3761 map->map_state = map_state;
3762 super->updates_pending++;
3763 } else if (map_state == IMSM_T_STATE_FAILED &&
3764 map->map_state != map_state) {
3765 dprintf("imsm: mark failed\n");
3766 end_migration(dev, map_state);
3767 super->updates_pending++;
3768 }
3769}
3770
3771static int store_imsm_mpb(int fd, struct intel_super *super)
3772{
3773 struct imsm_super *mpb = super->anchor;
3774 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
3775 unsigned long long dsize;
3776 unsigned long long sectors;
3777
3778 get_dev_size(fd, NULL, &dsize);
3779
3780 if (mpb_size > 512) {
3781 /* -1 to account for anchor */
3782 sectors = mpb_sectors(mpb) - 1;
3783
3784 /* write the extended mpb to the sectors preceeding the anchor */
3785 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
3786 return 1;
3787
3788 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
3789 return 1;
3790 }
3791
3792 /* first block is stored on second to last sector of the disk */
3793 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
3794 return 1;
3795
3796 if (write(fd, super->buf, 512) != 512)
3797 return 1;
3798
3799 return 0;
3800}
3801
3802static void imsm_sync_metadata(struct supertype *container)
3803{
3804 struct intel_super *super = container->sb;
3805
3806 if (!super->updates_pending)
3807 return;
3808
3809 write_super_imsm(super, 0);
3810
3811 super->updates_pending = 0;
3812}
3813
3814static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
3815{
3816 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3817 int i = get_imsm_disk_idx(dev, idx);
3818 struct dl *dl;
3819
3820 for (dl = super->disks; dl; dl = dl->next)
3821 if (dl->index == i)
3822 break;
3823
3824 if (dl && dl->disk.status & FAILED_DISK)
3825 dl = NULL;
3826
3827 if (dl)
3828 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
3829
3830 return dl;
3831}
3832
3833static struct dl *imsm_add_spare(struct intel_super *super, int slot,
3834 struct active_array *a, int activate_new)
3835{
3836 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3837 int idx = get_imsm_disk_idx(dev, slot);
3838 struct imsm_super *mpb = super->anchor;
3839 struct imsm_map *map;
3840 unsigned long long esize;
3841 unsigned long long pos;
3842 struct mdinfo *d;
3843 struct extent *ex;
3844 int i, j;
3845 int found;
3846 __u32 array_start;
3847 __u32 blocks;
3848 struct dl *dl;
3849
3850 for (dl = super->disks; dl; dl = dl->next) {
3851 /* If in this array, skip */
3852 for (d = a->info.devs ; d ; d = d->next)
3853 if (d->state_fd >= 0 &&
3854 d->disk.major == dl->major &&
3855 d->disk.minor == dl->minor) {
3856 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3857 break;
3858 }
3859 if (d)
3860 continue;
3861
3862 /* skip in use or failed drives */
3863 if (dl->disk.status & FAILED_DISK || idx == dl->index ||
3864 dl->index == -2) {
3865 dprintf("%x:%x status (failed: %d index: %d)\n",
3866 dl->major, dl->minor,
3867 (dl->disk.status & FAILED_DISK) == FAILED_DISK, idx);
3868 continue;
3869 }
3870
3871 /* skip pure spares when we are looking for partially
3872 * assimilated drives
3873 */
3874 if (dl->index == -1 && !activate_new)
3875 continue;
3876
3877 /* Does this unused device have the requisite free space?
3878 * It needs to be able to cover all member volumes
3879 */
3880 ex = get_extents(super, dl);
3881 if (!ex) {
3882 dprintf("cannot get extents\n");
3883 continue;
3884 }
3885 for (i = 0; i < mpb->num_raid_devs; i++) {
3886 dev = get_imsm_dev(super, i);
3887 map = get_imsm_map(dev, 0);
3888
3889 /* check if this disk is already a member of
3890 * this array
3891 */
3892 if (get_imsm_disk_slot(map, dl->index) >= 0)
3893 continue;
3894
3895 found = 0;
3896 j = 0;
3897 pos = 0;
3898 array_start = __le32_to_cpu(map->pba_of_lba0);
3899 blocks = __le32_to_cpu(map->blocks_per_member);
3900
3901 do {
3902 /* check that we can start at pba_of_lba0 with
3903 * blocks_per_member of space
3904 */
3905 esize = ex[j].start - pos;
3906 if (array_start >= pos &&
3907 array_start + blocks < ex[j].start) {
3908 found = 1;
3909 break;
3910 }
3911 pos = ex[j].start + ex[j].size;
3912 j++;
3913 } while (ex[j-1].size);
3914
3915 if (!found)
3916 break;
3917 }
3918
3919 free(ex);
3920 if (i < mpb->num_raid_devs) {
3921 dprintf("%x:%x does not have %u at %u\n",
3922 dl->major, dl->minor,
3923 blocks, array_start);
3924 /* No room */
3925 continue;
3926 }
3927 return dl;
3928 }
3929
3930 return dl;
3931}
3932
3933static struct mdinfo *imsm_activate_spare(struct active_array *a,
3934 struct metadata_update **updates)
3935{
3936 /**
3937 * Find a device with unused free space and use it to replace a
3938 * failed/vacant region in an array. We replace failed regions one a
3939 * array at a time. The result is that a new spare disk will be added
3940 * to the first failed array and after the monitor has finished
3941 * propagating failures the remainder will be consumed.
3942 *
3943 * FIXME add a capability for mdmon to request spares from another
3944 * container.
3945 */
3946
3947 struct intel_super *super = a->container->sb;
3948 int inst = a->info.container_member;
3949 struct imsm_dev *dev = get_imsm_dev(super, inst);
3950 struct imsm_map *map = get_imsm_map(dev, 0);
3951 int failed = a->info.array.raid_disks;
3952 struct mdinfo *rv = NULL;
3953 struct mdinfo *d;
3954 struct mdinfo *di;
3955 struct metadata_update *mu;
3956 struct dl *dl;
3957 struct imsm_update_activate_spare *u;
3958 int num_spares = 0;
3959 int i;
3960
3961 for (d = a->info.devs ; d ; d = d->next) {
3962 if ((d->curr_state & DS_FAULTY) &&
3963 d->state_fd >= 0)
3964 /* wait for Removal to happen */
3965 return NULL;
3966 if (d->state_fd >= 0)
3967 failed--;
3968 }
3969
3970 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
3971 inst, failed, a->info.array.raid_disks, a->info.array.level);
3972 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
3973 return NULL;
3974
3975 /* For each slot, if it is not working, find a spare */
3976 for (i = 0; i < a->info.array.raid_disks; i++) {
3977 for (d = a->info.devs ; d ; d = d->next)
3978 if (d->disk.raid_disk == i)
3979 break;
3980 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3981 if (d && (d->state_fd >= 0))
3982 continue;
3983
3984 /*
3985 * OK, this device needs recovery. Try to re-add the
3986 * previous occupant of this slot, if this fails see if
3987 * we can continue the assimilation of a spare that was
3988 * partially assimilated, finally try to activate a new
3989 * spare.
3990 */
3991 dl = imsm_readd(super, i, a);
3992 if (!dl)
3993 dl = imsm_add_spare(super, i, a, 0);
3994 if (!dl)
3995 dl = imsm_add_spare(super, i, a, 1);
3996 if (!dl)
3997 continue;
3998
3999 /* found a usable disk with enough space */
4000 di = malloc(sizeof(*di));
4001 if (!di)
4002 continue;
4003 memset(di, 0, sizeof(*di));
4004
4005 /* dl->index will be -1 in the case we are activating a
4006 * pristine spare. imsm_process_update() will create a
4007 * new index in this case. Once a disk is found to be
4008 * failed in all member arrays it is kicked from the
4009 * metadata
4010 */
4011 di->disk.number = dl->index;
4012
4013 /* (ab)use di->devs to store a pointer to the device
4014 * we chose
4015 */
4016 di->devs = (struct mdinfo *) dl;
4017
4018 di->disk.raid_disk = i;
4019 di->disk.major = dl->major;
4020 di->disk.minor = dl->minor;
4021 di->disk.state = 0;
4022 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4023 di->component_size = a->info.component_size;
4024 di->container_member = inst;
4025 di->next = rv;
4026 rv = di;
4027 num_spares++;
4028 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4029 i, di->data_offset);
4030
4031 break;
4032 }
4033
4034 if (!rv)
4035 /* No spares found */
4036 return rv;
4037 /* Now 'rv' has a list of devices to return.
4038 * Create a metadata_update record to update the
4039 * disk_ord_tbl for the array
4040 */
4041 mu = malloc(sizeof(*mu));
4042 if (mu) {
4043 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4044 if (mu->buf == NULL) {
4045 free(mu);
4046 mu = NULL;
4047 }
4048 }
4049 if (!mu) {
4050 while (rv) {
4051 struct mdinfo *n = rv->next;
4052
4053 free(rv);
4054 rv = n;
4055 }
4056 return NULL;
4057 }
4058
4059 mu->space = NULL;
4060 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4061 mu->next = *updates;
4062 u = (struct imsm_update_activate_spare *) mu->buf;
4063
4064 for (di = rv ; di ; di = di->next) {
4065 u->type = update_activate_spare;
4066 u->dl = (struct dl *) di->devs;
4067 di->devs = NULL;
4068 u->slot = di->disk.raid_disk;
4069 u->array = inst;
4070 u->next = u + 1;
4071 u++;
4072 }
4073 (u-1)->next = NULL;
4074 *updates = mu;
4075
4076 return rv;
4077}
4078
4079static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
4080{
4081 struct imsm_dev *dev = get_imsm_dev(super, idx);
4082 struct imsm_map *map = get_imsm_map(dev, 0);
4083 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4084 struct disk_info *inf = get_disk_info(u);
4085 struct imsm_disk *disk;
4086 int i;
4087 int j;
4088
4089 for (i = 0; i < map->num_members; i++) {
4090 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4091 for (j = 0; j < new_map->num_members; j++)
4092 if (serialcmp(disk->serial, inf[j].serial) == 0)
4093 return 1;
4094 }
4095
4096 return 0;
4097}
4098
4099static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4100
4101static void imsm_process_update(struct supertype *st,
4102 struct metadata_update *update)
4103{
4104 /**
4105 * crack open the metadata_update envelope to find the update record
4106 * update can be one of:
4107 * update_activate_spare - a spare device has replaced a failed
4108 * device in an array, update the disk_ord_tbl. If this disk is
4109 * present in all member arrays then also clear the SPARE_DISK
4110 * flag
4111 */
4112 struct intel_super *super = st->sb;
4113 struct imsm_super *mpb;
4114 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4115
4116 /* update requires a larger buf but the allocation failed */
4117 if (super->next_len && !super->next_buf) {
4118 super->next_len = 0;
4119 return;
4120 }
4121
4122 if (super->next_buf) {
4123 memcpy(super->next_buf, super->buf, super->len);
4124 free(super->buf);
4125 super->len = super->next_len;
4126 super->buf = super->next_buf;
4127
4128 super->next_len = 0;
4129 super->next_buf = NULL;
4130 }
4131
4132 mpb = super->anchor;
4133
4134 switch (type) {
4135 case update_activate_spare: {
4136 struct imsm_update_activate_spare *u = (void *) update->buf;
4137 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4138 struct imsm_map *map = get_imsm_map(dev, 0);
4139 struct imsm_map *migr_map;
4140 struct active_array *a;
4141 struct imsm_disk *disk;
4142 __u8 to_state;
4143 struct dl *dl;
4144 unsigned int found;
4145 int failed;
4146 int victim = get_imsm_disk_idx(dev, u->slot);
4147 int i;
4148
4149 for (dl = super->disks; dl; dl = dl->next)
4150 if (dl == u->dl)
4151 break;
4152
4153 if (!dl) {
4154 fprintf(stderr, "error: imsm_activate_spare passed "
4155 "an unknown disk (index: %d)\n",
4156 u->dl->index);
4157 return;
4158 }
4159
4160 super->updates_pending++;
4161
4162 /* count failures (excluding rebuilds and the victim)
4163 * to determine map[0] state
4164 */
4165 failed = 0;
4166 for (i = 0; i < map->num_members; i++) {
4167 if (i == u->slot)
4168 continue;
4169 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4170 if (!disk || disk->status & FAILED_DISK)
4171 failed++;
4172 }
4173
4174 /* adding a pristine spare, assign a new index */
4175 if (dl->index < 0) {
4176 dl->index = super->anchor->num_disks;
4177 super->anchor->num_disks++;
4178 }
4179 disk = &dl->disk;
4180 disk->status |= CONFIGURED_DISK;
4181 disk->status &= ~SPARE_DISK;
4182
4183 /* mark rebuild */
4184 to_state = imsm_check_degraded(super, dev, failed);
4185 map->map_state = IMSM_T_STATE_DEGRADED;
4186 migrate(dev, to_state, MIGR_REBUILD);
4187 migr_map = get_imsm_map(dev, 1);
4188 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4189 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4190
4191 /* count arrays using the victim in the metadata */
4192 found = 0;
4193 for (a = st->arrays; a ; a = a->next) {
4194 dev = get_imsm_dev(super, a->info.container_member);
4195 map = get_imsm_map(dev, 0);
4196
4197 if (get_imsm_disk_slot(map, victim) >= 0)
4198 found++;
4199 }
4200
4201 /* delete the victim if it is no longer being
4202 * utilized anywhere
4203 */
4204 if (!found) {
4205 struct dl **dlp;
4206
4207 /* We know that 'manager' isn't touching anything,
4208 * so it is safe to delete
4209 */
4210 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4211 if ((*dlp)->index == victim)
4212 break;
4213
4214 /* victim may be on the missing list */
4215 if (!*dlp)
4216 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4217 if ((*dlp)->index == victim)
4218 break;
4219 imsm_delete(super, dlp, victim);
4220 }
4221 break;
4222 }
4223 case update_create_array: {
4224 /* someone wants to create a new array, we need to be aware of
4225 * a few races/collisions:
4226 * 1/ 'Create' called by two separate instances of mdadm
4227 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4228 * devices that have since been assimilated via
4229 * activate_spare.
4230 * In the event this update can not be carried out mdadm will
4231 * (FIX ME) notice that its update did not take hold.
4232 */
4233 struct imsm_update_create_array *u = (void *) update->buf;
4234 struct intel_dev *dv;
4235 struct imsm_dev *dev;
4236 struct imsm_map *map, *new_map;
4237 unsigned long long start, end;
4238 unsigned long long new_start, new_end;
4239 int i;
4240 struct disk_info *inf;
4241 struct dl *dl;
4242
4243 /* handle racing creates: first come first serve */
4244 if (u->dev_idx < mpb->num_raid_devs) {
4245 dprintf("%s: subarray %d already defined\n",
4246 __func__, u->dev_idx);
4247 goto create_error;
4248 }
4249
4250 /* check update is next in sequence */
4251 if (u->dev_idx != mpb->num_raid_devs) {
4252 dprintf("%s: can not create array %d expected index %d\n",
4253 __func__, u->dev_idx, mpb->num_raid_devs);
4254 goto create_error;
4255 }
4256
4257 new_map = get_imsm_map(&u->dev, 0);
4258 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4259 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4260 inf = get_disk_info(u);
4261
4262 /* handle activate_spare versus create race:
4263 * check to make sure that overlapping arrays do not include
4264 * overalpping disks
4265 */
4266 for (i = 0; i < mpb->num_raid_devs; i++) {
4267 dev = get_imsm_dev(super, i);
4268 map = get_imsm_map(dev, 0);
4269 start = __le32_to_cpu(map->pba_of_lba0);
4270 end = start + __le32_to_cpu(map->blocks_per_member);
4271 if ((new_start >= start && new_start <= end) ||
4272 (start >= new_start && start <= new_end))
4273 /* overlap */;
4274 else
4275 continue;
4276
4277 if (disks_overlap(super, i, u)) {
4278 dprintf("%s: arrays overlap\n", __func__);
4279 goto create_error;
4280 }
4281 }
4282
4283 /* check that prepare update was successful */
4284 if (!update->space) {
4285 dprintf("%s: prepare update failed\n", __func__);
4286 goto create_error;
4287 }
4288
4289 /* check that all disks are still active before committing
4290 * changes. FIXME: could we instead handle this by creating a
4291 * degraded array? That's probably not what the user expects,
4292 * so better to drop this update on the floor.
4293 */
4294 for (i = 0; i < new_map->num_members; i++) {
4295 dl = serial_to_dl(inf[i].serial, super);
4296 if (!dl) {
4297 dprintf("%s: disk disappeared\n", __func__);
4298 goto create_error;
4299 }
4300 }
4301
4302 super->updates_pending++;
4303
4304 /* convert spares to members and fixup ord_tbl */
4305 for (i = 0; i < new_map->num_members; i++) {
4306 dl = serial_to_dl(inf[i].serial, super);
4307 if (dl->index == -1) {
4308 dl->index = mpb->num_disks;
4309 mpb->num_disks++;
4310 dl->disk.status |= CONFIGURED_DISK;
4311 dl->disk.status &= ~SPARE_DISK;
4312 }
4313 set_imsm_ord_tbl_ent(new_map, i, dl->index);
4314 }
4315
4316 dv = update->space;
4317 dev = dv->dev;
4318 update->space = NULL;
4319 imsm_copy_dev(dev, &u->dev);
4320 dv->index = u->dev_idx;
4321 dv->next = super->devlist;
4322 super->devlist = dv;
4323 mpb->num_raid_devs++;
4324
4325 imsm_update_version_info(super);
4326 break;
4327 create_error:
4328 /* mdmon knows how to release update->space, but not
4329 * ((struct intel_dev *) update->space)->dev
4330 */
4331 if (update->space) {
4332 dv = update->space;
4333 free(dv->dev);
4334 }
4335 break;
4336 }
4337 case update_add_disk:
4338
4339 /* we may be able to repair some arrays if disks are
4340 * being added */
4341 if (super->add) {
4342 struct active_array *a;
4343
4344 super->updates_pending++;
4345 for (a = st->arrays; a; a = a->next)
4346 a->check_degraded = 1;
4347 }
4348 /* add some spares to the metadata */
4349 while (super->add) {
4350 struct dl *al;
4351
4352 al = super->add;
4353 super->add = al->next;
4354 al->next = super->disks;
4355 super->disks = al;
4356 dprintf("%s: added %x:%x\n",
4357 __func__, al->major, al->minor);
4358 }
4359
4360 break;
4361 }
4362}
4363
4364static void imsm_prepare_update(struct supertype *st,
4365 struct metadata_update *update)
4366{
4367 /**
4368 * Allocate space to hold new disk entries, raid-device entries or a new
4369 * mpb if necessary. The manager synchronously waits for updates to
4370 * complete in the monitor, so new mpb buffers allocated here can be
4371 * integrated by the monitor thread without worrying about live pointers
4372 * in the manager thread.
4373 */
4374 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4375 struct intel_super *super = st->sb;
4376 struct imsm_super *mpb = super->anchor;
4377 size_t buf_len;
4378 size_t len = 0;
4379
4380 switch (type) {
4381 case update_create_array: {
4382 struct imsm_update_create_array *u = (void *) update->buf;
4383 struct intel_dev *dv;
4384 struct imsm_dev *dev = &u->dev;
4385 struct imsm_map *map = get_imsm_map(dev, 0);
4386 struct dl *dl;
4387 struct disk_info *inf;
4388 int i;
4389 int activate = 0;
4390
4391 inf = get_disk_info(u);
4392 len = sizeof_imsm_dev(dev, 1);
4393 /* allocate a new super->devlist entry */
4394 dv = malloc(sizeof(*dv));
4395 if (dv) {
4396 dv->dev = malloc(len);
4397 if (dv->dev)
4398 update->space = dv;
4399 else {
4400 free(dv);
4401 update->space = NULL;
4402 }
4403 }
4404
4405 /* count how many spares will be converted to members */
4406 for (i = 0; i < map->num_members; i++) {
4407 dl = serial_to_dl(inf[i].serial, super);
4408 if (!dl) {
4409 /* hmm maybe it failed?, nothing we can do about
4410 * it here
4411 */
4412 continue;
4413 }
4414 if (count_memberships(dl, super) == 0)
4415 activate++;
4416 }
4417 len += activate * sizeof(struct imsm_disk);
4418 break;
4419 default:
4420 break;
4421 }
4422 }
4423
4424 /* check if we need a larger metadata buffer */
4425 if (super->next_buf)
4426 buf_len = super->next_len;
4427 else
4428 buf_len = super->len;
4429
4430 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
4431 /* ok we need a larger buf than what is currently allocated
4432 * if this allocation fails process_update will notice that
4433 * ->next_len is set and ->next_buf is NULL
4434 */
4435 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
4436 if (super->next_buf)
4437 free(super->next_buf);
4438
4439 super->next_len = buf_len;
4440 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
4441 memset(super->next_buf, 0, buf_len);
4442 else
4443 super->next_buf = NULL;
4444 }
4445}
4446
4447/* must be called while manager is quiesced */
4448static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
4449{
4450 struct imsm_super *mpb = super->anchor;
4451 struct dl *iter;
4452 struct imsm_dev *dev;
4453 struct imsm_map *map;
4454 int i, j, num_members;
4455 __u32 ord;
4456
4457 dprintf("%s: deleting device[%d] from imsm_super\n",
4458 __func__, index);
4459
4460 /* shift all indexes down one */
4461 for (iter = super->disks; iter; iter = iter->next)
4462 if (iter->index > index)
4463 iter->index--;
4464 for (iter = super->missing; iter; iter = iter->next)
4465 if (iter->index > index)
4466 iter->index--;
4467
4468 for (i = 0; i < mpb->num_raid_devs; i++) {
4469 dev = get_imsm_dev(super, i);
4470 map = get_imsm_map(dev, 0);
4471 num_members = map->num_members;
4472 for (j = 0; j < num_members; j++) {
4473 /* update ord entries being careful not to propagate
4474 * ord-flags to the first map
4475 */
4476 ord = get_imsm_ord_tbl_ent(dev, j);
4477
4478 if (ord_to_idx(ord) <= index)
4479 continue;
4480
4481 map = get_imsm_map(dev, 0);
4482 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
4483 map = get_imsm_map(dev, 1);
4484 if (map)
4485 set_imsm_ord_tbl_ent(map, j, ord - 1);
4486 }
4487 }
4488
4489 mpb->num_disks--;
4490 super->updates_pending++;
4491 if (*dlp) {
4492 struct dl *dl = *dlp;
4493
4494 *dlp = (*dlp)->next;
4495 __free_imsm_disk(dl);
4496 }
4497}
4498#endif /* MDASSEMBLE */
4499
4500struct superswitch super_imsm = {
4501#ifndef MDASSEMBLE
4502 .examine_super = examine_super_imsm,
4503 .brief_examine_super = brief_examine_super_imsm,
4504 .export_examine_super = export_examine_super_imsm,
4505 .detail_super = detail_super_imsm,
4506 .brief_detail_super = brief_detail_super_imsm,
4507 .write_init_super = write_init_super_imsm,
4508 .validate_geometry = validate_geometry_imsm,
4509 .add_to_super = add_to_super_imsm,
4510 .detail_platform = detail_platform_imsm,
4511#endif
4512 .match_home = match_home_imsm,
4513 .uuid_from_super= uuid_from_super_imsm,
4514 .getinfo_super = getinfo_super_imsm,
4515 .update_super = update_super_imsm,
4516
4517 .avail_size = avail_size_imsm,
4518
4519 .compare_super = compare_super_imsm,
4520
4521 .load_super = load_super_imsm,
4522 .init_super = init_super_imsm,
4523 .store_super = store_zero_imsm,
4524 .free_super = free_super_imsm,
4525 .match_metadata_desc = match_metadata_desc_imsm,
4526 .container_content = container_content_imsm,
4527 .default_layout = imsm_level_to_layout,
4528
4529 .external = 1,
4530 .name = "imsm",
4531
4532#ifndef MDASSEMBLE
4533/* for mdmon */
4534 .open_new = imsm_open_new,
4535 .load_super = load_super_imsm,
4536 .set_array_state= imsm_set_array_state,
4537 .set_disk = imsm_set_disk,
4538 .sync_metadata = imsm_sync_metadata,
4539 .activate_spare = imsm_activate_spare,
4540 .process_update = imsm_process_update,
4541 .prepare_update = imsm_prepare_update,
4542#endif /* MDASSEMBLE */
4543};