]> git.ipfire.org Git - thirdparty/mdadm.git/blame_incremental - util.c
mdadm/util: unify fstat checking blkdev into function
[thirdparty/mdadm.git] / util.c
... / ...
CommitLineData
1/*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25#include "mdadm.h"
26#include "md_p.h"
27#include <sys/socket.h>
28#include <sys/utsname.h>
29#include <sys/wait.h>
30#include <sys/un.h>
31#include <sys/resource.h>
32#include <sys/vfs.h>
33#include <linux/magic.h>
34#include <poll.h>
35#include <ctype.h>
36#include <dirent.h>
37#include <signal.h>
38#include <dlfcn.h>
39
40
41/*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46#define BLKPG _IO(0x12,105)
47
48/* The argument structure */
49struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54};
55
56/* The subfunctions (for the op field) */
57#define BLKPG_ADD_PARTITION 1
58#define BLKPG_DEL_PARTITION 2
59
60/* Sizes of name fields. Unused at present. */
61#define BLKPG_DEVNAMELTH 64
62#define BLKPG_VOLNAMELTH 64
63
64/* The data structure for ADD_PARTITION and DEL_PARTITION */
65struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72};
73
74#include "part.h"
75
76/* Force a compilation error if condition is true */
77#define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79/* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83#define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85static int is_dlm_hooks_ready = 0;
86
87int dlm_funs_ready(void)
88{
89 return is_dlm_hooks_ready ? 1 : 0;
90}
91
92static struct dlm_hooks *dlm_hooks = NULL;
93struct dlm_lock_resource *dlm_lock_res = NULL;
94static int ast_called = 0;
95
96struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99};
100
101/* Using poll(2) to wait for and dispatch ASTs */
102static int poll_for_ast(dlm_lshandle_t ls)
103{
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121}
122
123static void dlm_ast(void *arg)
124{
125 ast_called = 1;
126}
127
128static char *cluster_name = NULL;
129/* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130int cluster_get_dlmlock(int *lockid)
131{
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135
136 ret = get_cluster_name(&cluster_name);
137 if (ret) {
138 pr_err("The md can't get cluster name\n");
139 return -1;
140 }
141
142 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
143 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
144 if (!dlm_lock_res->ls) {
145 pr_err("%s failed to create lockspace\n", cluster_name);
146 return -ENOMEM;
147 }
148
149 snprintf(str, 64, "bitmap%s", cluster_name);
150 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
151 flags, str, strlen(str), 0, dlm_ast,
152 dlm_lock_res, NULL, NULL);
153 if (ret) {
154 pr_err("error %d when get PW mode on lock %s\n", errno, str);
155 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
156 return ret;
157 }
158
159 /* Wait for it to complete */
160 poll_for_ast(dlm_lock_res->ls);
161 *lockid = dlm_lock_res->lksb.sb_lkid;
162
163 return dlm_lock_res->lksb.sb_status;
164}
165
166int cluster_release_dlmlock(int lockid)
167{
168 int ret = -1;
169
170 if (!cluster_name)
171 return -1;
172
173 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
174 &dlm_lock_res->lksb, dlm_lock_res);
175 if (ret) {
176 pr_err("error %d happened when unlock\n", errno);
177 /* XXX make sure the lock is unlocked eventually */
178 goto out;
179 }
180
181 /* Wait for it to complete */
182 poll_for_ast(dlm_lock_res->ls);
183
184 errno = dlm_lock_res->lksb.sb_status;
185 if (errno != EUNLOCK) {
186 pr_err("error %d happened in ast when unlock lockspace\n", errno);
187 /* XXX make sure the lockspace is unlocked eventually */
188 goto out;
189 }
190
191 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
192 if (ret) {
193 pr_err("error %d happened when release lockspace\n", errno);
194 /* XXX make sure the lockspace is released eventually */
195 goto out;
196 }
197 free(dlm_lock_res);
198
199out:
200 return ret;
201}
202
203int md_array_valid(int fd)
204{
205 struct mdinfo *sra;
206 int ret;
207
208 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
209 if (sra) {
210 if (sra->array_state != ARRAY_UNKNOWN_STATE)
211 ret = 0;
212 else
213 ret = -ENODEV;
214
215 free(sra);
216 } else {
217 /*
218 * GET_ARRAY_INFO doesn't provide access to the proper state
219 * information, so fallback to a basic check for raid_disks != 0
220 */
221 ret = ioctl(fd, RAID_VERSION);
222 }
223
224 return !ret;
225}
226
227int md_array_active(int fd)
228{
229 struct mdinfo *sra;
230 struct mdu_array_info_s array;
231 int ret;
232
233 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
234 if (sra) {
235 if (sra->array_state != ARRAY_CLEAR &&
236 sra->array_state != ARRAY_INACTIVE &&
237 sra->array_state != ARRAY_UNKNOWN_STATE)
238 ret = 0;
239 else
240 ret = -ENODEV;
241
242 free(sra);
243 } else {
244 /*
245 * GET_ARRAY_INFO doesn't provide access to the proper state
246 * information, so fallback to a basic check for raid_disks != 0
247 */
248 ret = ioctl(fd, GET_ARRAY_INFO, &array);
249 }
250
251 return !ret;
252}
253
254/*
255 * Get array info from the kernel. Longer term we want to deprecate the
256 * ioctl and get it from sysfs.
257 */
258int md_get_array_info(int fd, struct mdu_array_info_s *array)
259{
260 return ioctl(fd, GET_ARRAY_INFO, array);
261}
262
263/*
264 * Set array info
265 */
266int md_set_array_info(int fd, struct mdu_array_info_s *array)
267{
268 return ioctl(fd, SET_ARRAY_INFO, array);
269}
270
271/*
272 * Get disk info from the kernel.
273 */
274int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
275{
276 return ioctl(fd, GET_DISK_INFO, disk);
277}
278
279/*
280 * Parse a 128 bit uuid in 4 integers
281 * format is 32 hexx nibbles with options :.<space> separator
282 * If not exactly 32 hex digits are found, return 0
283 * else return 1
284 */
285int parse_uuid(char *str, int uuid[4])
286{
287 int hit = 0; /* number of Hex digIT */
288 int i;
289 char c;
290 for (i = 0; i < 4; i++)
291 uuid[i] = 0;
292
293 while ((c = *str++) != 0) {
294 int n;
295 if (c >= '0' && c <= '9')
296 n = c-'0';
297 else if (c >= 'a' && c <= 'f')
298 n = 10 + c - 'a';
299 else if (c >= 'A' && c <= 'F')
300 n = 10 + c - 'A';
301 else if (strchr(":. -", c))
302 continue;
303 else return 0;
304
305 if (hit<32) {
306 uuid[hit/8] <<= 4;
307 uuid[hit/8] += n;
308 }
309 hit++;
310 }
311 if (hit == 32)
312 return 1;
313 return 0;
314}
315
316int get_linux_version()
317{
318 struct utsname name;
319 char *cp;
320 int a = 0, b = 0,c = 0;
321 if (uname(&name) <0)
322 return -1;
323
324 cp = name.release;
325 a = strtoul(cp, &cp, 10);
326 if (*cp == '.')
327 b = strtoul(cp+1, &cp, 10);
328 if (*cp == '.')
329 c = strtoul(cp+1, &cp, 10);
330
331 return (a*1000000)+(b*1000)+c;
332}
333
334int mdadm_version(char *version)
335{
336 int a, b, c;
337 char *cp;
338
339 if (!version)
340 version = Version;
341
342 cp = strchr(version, '-');
343 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
344 return -1;
345 cp += 3;
346 a = strtoul(cp, &cp, 10);
347 if (*cp != '.')
348 return -1;
349 b = strtoul(cp+1, &cp, 10);
350 if (*cp == '.')
351 c = strtoul(cp+1, &cp, 10);
352 else
353 c = 0;
354 if (*cp != ' ' && *cp != '-')
355 return -1;
356 return (a*1000000)+(b*1000)+c;
357}
358
359unsigned long long parse_size(char *size)
360{
361 /* parse 'size' which should be a number optionally
362 * followed by 'K', 'M', or 'G'.
363 * Without a suffix, K is assumed.
364 * Number returned is in sectors (half-K)
365 * INVALID_SECTORS returned on error.
366 */
367 char *c;
368 long long s = strtoll(size, &c, 10);
369 if (s > 0) {
370 switch (*c) {
371 case 'K':
372 c++;
373 default:
374 s *= 2;
375 break;
376 case 'M':
377 c++;
378 s *= 1024 * 2;
379 break;
380 case 'G':
381 c++;
382 s *= 1024 * 1024 * 2;
383 break;
384 case 's': /* sectors */
385 c++;
386 break;
387 }
388 } else
389 s = INVALID_SECTORS;
390 if (*c)
391 s = INVALID_SECTORS;
392 return s;
393}
394
395int parse_layout_10(char *layout)
396{
397 int copies, rv;
398 char *cp;
399 /* Parse the layout string for raid10 */
400 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
401 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
402 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
403 copies > 200 ||
404 *cp)
405 return -1;
406 if (layout[0] == 'n')
407 rv = 256 + copies;
408 else if (layout[0] == 'o')
409 rv = 0x10000 + (copies<<8) + 1;
410 else
411 rv = 1 + (copies<<8);
412 return rv;
413}
414
415int parse_layout_faulty(char *layout)
416{
417 /* Parse the layout string for 'faulty' */
418 int ln = strcspn(layout, "0123456789");
419 char *m = xstrdup(layout);
420 int mode;
421 m[ln] = 0;
422 mode = map_name(faultylayout, m);
423 if (mode == UnSet)
424 return -1;
425
426 return mode | (atoi(layout+ln)<< ModeShift);
427}
428
429long parse_num(char *num)
430{
431 /* Either return a valid number, or -1 */
432 char *c;
433 long rv = strtol(num, &c, 10);
434 if (rv < 0 || *c || !num[0])
435 return -1;
436 else
437 return rv;
438}
439
440int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
441{
442 char *dev;
443 *slot = strtoul(input, &dev, 10);
444 if (dev == input || dev[0] != ':')
445 return -1;
446 *devname = dev+1;
447 return 0;
448}
449
450void remove_partitions(int fd)
451{
452 /* remove partitions from this block devices.
453 * This is used for components added to an array
454 */
455#ifdef BLKPG_DEL_PARTITION
456 struct blkpg_ioctl_arg a;
457 struct blkpg_partition p;
458
459 a.op = BLKPG_DEL_PARTITION;
460 a.data = (void*)&p;
461 a.datalen = sizeof(p);
462 a.flags = 0;
463 memset(a.data, 0, a.datalen);
464 for (p.pno = 0; p.pno < 16; p.pno++)
465 ioctl(fd, BLKPG, &a);
466#endif
467}
468
469int test_partition(int fd)
470{
471 /* Check if fd is a whole-disk or a partition.
472 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
473 * will return ENXIO on an invalid partition number.
474 */
475 struct blkpg_ioctl_arg a;
476 struct blkpg_partition p;
477 a.op = BLKPG_DEL_PARTITION;
478 a.data = (void*)&p;
479 a.datalen = sizeof(p);
480 a.flags = 0;
481 memset(a.data, 0, a.datalen);
482 p.pno = 1<<30;
483 if (ioctl(fd, BLKPG, &a) == 0)
484 /* Very unlikely, but not a partition */
485 return 0;
486 if (errno == ENXIO || errno == ENOTTY)
487 /* not a partition */
488 return 0;
489
490 return 1;
491}
492
493int test_partition_from_id(dev_t id)
494{
495 char buf[20];
496 int fd, rv;
497
498 sprintf(buf, "%d:%d", major(id), minor(id));
499 fd = dev_open(buf, O_RDONLY);
500 if (fd < 0)
501 return -1;
502 rv = test_partition(fd);
503 close(fd);
504 return rv;
505}
506
507int enough(int level, int raid_disks, int layout, int clean, char *avail)
508{
509 int copies, first;
510 int i;
511 int avail_disks = 0;
512
513 for (i = 0; i < raid_disks; i++)
514 avail_disks += !!avail[i];
515
516 switch (level) {
517 case 10:
518 /* This is the tricky one - we need to check
519 * which actual disks are present.
520 */
521 copies = (layout&255)* ((layout>>8) & 255);
522 first = 0;
523 do {
524 /* there must be one of the 'copies' form 'first' */
525 int n = copies;
526 int cnt = 0;
527 int this = first;
528 while (n--) {
529 if (avail[this])
530 cnt++;
531 this = (this+1) % raid_disks;
532 }
533 if (cnt == 0)
534 return 0;
535 first = (first+(layout&255)) % raid_disks;
536 } while (first != 0);
537 return 1;
538
539 case LEVEL_MULTIPATH:
540 return avail_disks>= 1;
541 case LEVEL_LINEAR:
542 case 0:
543 return avail_disks == raid_disks;
544 case 1:
545 return avail_disks >= 1;
546 case 4:
547 if (avail_disks == raid_disks - 1 &&
548 !avail[raid_disks - 1])
549 /* If just the parity device is missing, then we
550 * have enough, even if not clean
551 */
552 return 1;
553 /* FALL THROUGH */
554 case 5:
555 if (clean)
556 return avail_disks >= raid_disks-1;
557 else
558 return avail_disks >= raid_disks;
559 case 6:
560 if (clean)
561 return avail_disks >= raid_disks-2;
562 else
563 return avail_disks >= raid_disks;
564 default:
565 return 0;
566 }
567}
568
569const int uuid_zero[4] = { 0, 0, 0, 0 };
570
571int same_uuid(int a[4], int b[4], int swapuuid)
572{
573 if (swapuuid) {
574 /* parse uuids are hostendian.
575 * uuid's from some superblocks are big-ending
576 * if there is a difference, we need to swap..
577 */
578 unsigned char *ac = (unsigned char *)a;
579 unsigned char *bc = (unsigned char *)b;
580 int i;
581 for (i = 0; i < 16; i += 4) {
582 if (ac[i+0] != bc[i+3] ||
583 ac[i+1] != bc[i+2] ||
584 ac[i+2] != bc[i+1] ||
585 ac[i+3] != bc[i+0])
586 return 0;
587 }
588 return 1;
589 } else {
590 if (a[0]==b[0] &&
591 a[1]==b[1] &&
592 a[2]==b[2] &&
593 a[3]==b[3])
594 return 1;
595 return 0;
596 }
597}
598
599void copy_uuid(void *a, int b[4], int swapuuid)
600{
601 if (swapuuid) {
602 /* parse uuids are hostendian.
603 * uuid's from some superblocks are big-ending
604 * if there is a difference, we need to swap..
605 */
606 unsigned char *ac = (unsigned char *)a;
607 unsigned char *bc = (unsigned char *)b;
608 int i;
609 for (i = 0; i < 16; i += 4) {
610 ac[i+0] = bc[i+3];
611 ac[i+1] = bc[i+2];
612 ac[i+2] = bc[i+1];
613 ac[i+3] = bc[i+0];
614 }
615 } else
616 memcpy(a, b, 16);
617}
618
619char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
620{
621 int i, j;
622 char uuid[16];
623 char *c = buf;
624 strcpy(c, "UUID-");
625 c += strlen(c);
626 copy_uuid(uuid, id, swap);
627 for (i = 0; i < 4; i++) {
628 if (i)
629 *c++ = sep;
630 for (j = 3; j >= 0; j--) {
631 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
632 c+= 2;
633 }
634 }
635 return buf;
636
637}
638
639char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
640{
641 // dirty hack to work around an issue with super1 superblocks...
642 // super1 superblocks need swapuuid set in order for assembly to
643 // work, but can't have it set if we want this printout to match
644 // all the other uuid printouts in super1.c, so we force swapuuid
645 // to 1 to make our printout match the rest of super1
646 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
647}
648
649int check_ext2(int fd, char *name)
650{
651 /*
652 * Check for an ext2fs file system.
653 * Superblock is always 1K at 1K offset
654 *
655 * s_magic is le16 at 56 == 0xEF53
656 * report mtime - le32 at 44
657 * blocks - le32 at 4
658 * logblksize - le32 at 24
659 */
660 unsigned char sb[1024];
661 time_t mtime;
662 unsigned long long size;
663 int bsize;
664 if (lseek(fd, 1024,0)!= 1024)
665 return 0;
666 if (read(fd, sb, 1024)!= 1024)
667 return 0;
668 if (sb[56] != 0x53 || sb[57] != 0xef)
669 return 0;
670
671 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
672 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
673 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
674 size <<= bsize;
675 pr_err("%s appears to contain an ext2fs file system\n",
676 name);
677 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
678 return 1;
679}
680
681int check_reiser(int fd, char *name)
682{
683 /*
684 * superblock is at 64K
685 * size is 1024;
686 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
687 *
688 */
689 unsigned char sb[1024];
690 unsigned long long size;
691 if (lseek(fd, 64*1024, 0) != 64*1024)
692 return 0;
693 if (read(fd, sb, 1024) != 1024)
694 return 0;
695 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
696 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
697 return 0;
698 pr_err("%s appears to contain a reiserfs file system\n",name);
699 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
700 cont_err("size = %lluK\n", size*4);
701
702 return 1;
703}
704
705int check_raid(int fd, char *name)
706{
707 struct mdinfo info;
708 time_t crtime;
709 char *level;
710 struct supertype *st = guess_super(fd);
711
712 if (!st)
713 return 0;
714 if (st->ss->add_to_super != NULL) {
715 st->ss->load_super(st, fd, name);
716 /* Looks like a raid array .. */
717 pr_err("%s appears to be part of a raid array:\n", name);
718 st->ss->getinfo_super(st, &info, NULL);
719 st->ss->free_super(st);
720 crtime = info.array.ctime;
721 level = map_num(pers, info.array.level);
722 if (!level)
723 level = "-unknown-";
724 cont_err("level=%s devices=%d ctime=%s",
725 level, info.array.raid_disks, ctime(&crtime));
726 } else {
727 /* Looks like GPT or MBR */
728 pr_err("partition table exists on %s\n", name);
729 }
730 return 1;
731}
732
733int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
734{
735 struct stat stb;
736
737 if (fstat(fd, &stb) != 0) {
738 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
739 return 0;
740 }
741 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
742 pr_err("%s is not a block device.\n", devname);
743 return 0;
744 }
745 if (rdev)
746 *rdev = stb.st_rdev;
747 return 1;
748}
749
750int ask(char *mesg)
751{
752 char *add = "";
753 int i;
754 for (i = 0; i < 5; i++) {
755 char buf[100];
756 fprintf(stderr, "%s%s", mesg, add);
757 fflush(stderr);
758 if (fgets(buf, 100, stdin)==NULL)
759 return 0;
760 if (buf[0]=='y' || buf[0]=='Y')
761 return 1;
762 if (buf[0]=='n' || buf[0]=='N')
763 return 0;
764 add = "(y/n) ";
765 }
766 pr_err("assuming 'no'\n");
767 return 0;
768}
769
770int is_standard(char *dev, int *nump)
771{
772 /* tests if dev is a "standard" md dev name.
773 * i.e if the last component is "/dNN" or "/mdNN",
774 * where NN is a string of digits
775 * Returns 1 if a partitionable standard,
776 * -1 if non-partitonable,
777 * 0 if not a standard name.
778 */
779 char *d = strrchr(dev, '/');
780 int type = 0;
781 int num;
782 if (!d)
783 return 0;
784 if (strncmp(d, "/d",2) == 0)
785 d += 2, type = 1; /* /dev/md/dN{pM} */
786 else if (strncmp(d, "/md_d", 5) == 0)
787 d += 5, type = 1; /* /dev/md_dN{pM} */
788 else if (strncmp(d, "/md", 3) == 0)
789 d += 3, type = -1; /* /dev/mdN */
790 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
791 d += 1, type = -1; /* /dev/md/N */
792 else
793 return 0;
794 if (!*d)
795 return 0;
796 num = atoi(d);
797 while (isdigit(*d))
798 d++;
799 if (*d)
800 return 0;
801 if (nump) *nump = num;
802
803 return type;
804}
805
806unsigned long calc_csum(void *super, int bytes)
807{
808 unsigned long long newcsum = 0;
809 int i;
810 unsigned int csum;
811 unsigned int *superc = (unsigned int*) super;
812
813 for(i = 0; i < bytes/4; i++)
814 newcsum += superc[i];
815 csum = (newcsum& 0xffffffff) + (newcsum>>32);
816#ifdef __alpha__
817/* The in-kernel checksum calculation is always 16bit on
818 * the alpha, though it is 32 bit on i386...
819 * I wonder what it is elsewhere... (it uses an API in
820 * a way that it shouldn't).
821 */
822 csum = (csum & 0xffff) + (csum >> 16);
823 csum = (csum & 0xffff) + (csum >> 16);
824#endif
825 return csum;
826}
827
828char *human_size(long long bytes)
829{
830 static char buf[47];
831
832 /* We convert bytes to either centi-M{ega,ibi}bytes or
833 * centi-G{igi,ibi}bytes, with appropriate rounding,
834 * and then print 1/100th of those as a decimal.
835 * We allow upto 2048Megabytes before converting to
836 * gigabytes, as that shows more precision and isn't
837 * too large a number.
838 * Terabytes are not yet handled.
839 */
840
841 if (bytes < 5000*1024)
842 buf[0] = 0;
843 else if (bytes < 2*1024LL*1024LL*1024LL) {
844 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
845 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
846 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
847 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
848 } else {
849 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
850 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
851 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
852 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
853 }
854 return buf;
855}
856
857char *human_size_brief(long long bytes, int prefix)
858{
859 static char buf[30];
860
861 /* We convert bytes to either centi-M{ega,ibi}bytes or
862 * centi-G{igi,ibi}bytes, with appropriate rounding,
863 * and then print 1/100th of those as a decimal.
864 * We allow upto 2048Megabytes before converting to
865 * gigabytes, as that shows more precision and isn't
866 * too large a number.
867 * Terabytes are not yet handled.
868 *
869 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
870 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
871 */
872
873 if (bytes < 5000*1024)
874 buf[0] = 0;
875 else if (prefix == IEC) {
876 if (bytes < 2*1024LL*1024LL*1024LL) {
877 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
878 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
879 cMiB/100, cMiB % 100);
880 } else {
881 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
882 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
883 cGiB/100, cGiB % 100);
884 }
885 }
886 else if (prefix == JEDEC) {
887 if (bytes < 2*1024LL*1024LL*1024LL) {
888 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
889 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
890 cMB/100, cMB % 100);
891 } else {
892 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
893 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
894 cGB/100, cGB % 100);
895 }
896 }
897 else
898 buf[0] = 0;
899
900 return buf;
901}
902
903void print_r10_layout(int layout)
904{
905 int near = layout & 255;
906 int far = (layout >> 8) & 255;
907 int offset = (layout&0x10000);
908 char *sep = "";
909
910 if (near != 1) {
911 printf("%s near=%d", sep, near);
912 sep = ",";
913 }
914 if (far != 1)
915 printf("%s %s=%d", sep, offset?"offset":"far", far);
916 if (near*far == 1)
917 printf("NO REDUNDANCY");
918}
919
920unsigned long long calc_array_size(int level, int raid_disks, int layout,
921 int chunksize, unsigned long long devsize)
922{
923 if (level == 1)
924 return devsize;
925 devsize &= ~(unsigned long long)((chunksize>>9)-1);
926 return get_data_disks(level, layout, raid_disks) * devsize;
927}
928
929int get_data_disks(int level, int layout, int raid_disks)
930{
931 int data_disks = 0;
932 switch (level) {
933 case 0: data_disks = raid_disks;
934 break;
935 case 1: data_disks = 1;
936 break;
937 case 4:
938 case 5: data_disks = raid_disks - 1;
939 break;
940 case 6: data_disks = raid_disks - 2;
941 break;
942 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
943 break;
944 }
945
946 return data_disks;
947}
948
949dev_t devnm2devid(char *devnm)
950{
951 /* First look in /sys/block/$DEVNM/dev for %d:%d
952 * If that fails, try parsing out a number
953 */
954 char path[100];
955 char *ep;
956 int fd;
957 int mjr,mnr;
958
959 sprintf(path, "/sys/block/%s/dev", devnm);
960 fd = open(path, O_RDONLY);
961 if (fd >= 0) {
962 char buf[20];
963 int n = read(fd, buf, sizeof(buf));
964 close(fd);
965 if (n > 0)
966 buf[n] = 0;
967 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
968 return makedev(mjr, mnr);
969 }
970 if (strncmp(devnm, "md_d", 4) == 0 &&
971 isdigit(devnm[4]) &&
972 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
973 ep > devnm && *ep == 0)
974 return makedev(get_mdp_major(), mnr << MdpMinorShift);
975
976 if (strncmp(devnm, "md", 2) == 0 &&
977 isdigit(devnm[2]) &&
978 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
979 ep > devnm && *ep == 0)
980 return makedev(MD_MAJOR, mnr);
981
982 return 0;
983}
984
985char *get_md_name(char *devnm)
986{
987 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
988 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
989
990 static char devname[50];
991 struct stat stb;
992 dev_t rdev = devnm2devid(devnm);
993 char *dn;
994
995 if (rdev == 0)
996 return 0;
997 if (strncmp(devnm, "md_", 3) == 0) {
998 snprintf(devname, sizeof(devname), "/dev/md/%s",
999 devnm + 3);
1000 if (stat(devname, &stb) == 0
1001 && (S_IFMT&stb.st_mode) == S_IFBLK
1002 && (stb.st_rdev == rdev))
1003 return devname;
1004 }
1005 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1006 if (stat(devname, &stb) == 0
1007 && (S_IFMT&stb.st_mode) == S_IFBLK
1008 && (stb.st_rdev == rdev))
1009 return devname;
1010
1011 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1012 if (stat(devname, &stb) == 0
1013 && (S_IFMT&stb.st_mode) == S_IFBLK
1014 && (stb.st_rdev == rdev))
1015 return devname;
1016
1017 dn = map_dev(major(rdev), minor(rdev), 0);
1018 if (dn)
1019 return dn;
1020 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1021 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1022 if (errno != EEXIST)
1023 return NULL;
1024
1025 if (stat(devname, &stb) == 0
1026 && (S_IFMT&stb.st_mode) == S_IFBLK
1027 && (stb.st_rdev == rdev))
1028 return devname;
1029 unlink(devname);
1030 return NULL;
1031}
1032
1033void put_md_name(char *name)
1034{
1035 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1036 unlink(name);
1037}
1038
1039int get_maj_min(char *dev, int *major, int *minor)
1040{
1041 char *e;
1042 *major = strtoul(dev, &e, 0);
1043 return (e > dev && *e == ':' && e[1] &&
1044 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1045 *e == 0);
1046}
1047
1048int dev_open(char *dev, int flags)
1049{
1050 /* like 'open', but if 'dev' matches %d:%d, create a temp
1051 * block device and open that
1052 */
1053 int fd = -1;
1054 char devname[32];
1055 int major;
1056 int minor;
1057
1058 if (!dev)
1059 return -1;
1060 flags |= O_DIRECT;
1061
1062 if (get_maj_min(dev, &major, &minor)) {
1063 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1064 (int)getpid(), major, minor);
1065 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1066 fd = open(devname, flags);
1067 unlink(devname);
1068 }
1069 if (fd < 0) {
1070 /* Try /tmp as /dev appear to be read-only */
1071 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1072 (int)getpid(), major, minor);
1073 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1074 fd = open(devname, flags);
1075 unlink(devname);
1076 }
1077 }
1078 } else
1079 fd = open(dev, flags);
1080 return fd;
1081}
1082
1083int open_dev_flags(char *devnm, int flags)
1084{
1085 dev_t devid;
1086 char buf[20];
1087
1088 devid = devnm2devid(devnm);
1089 sprintf(buf, "%d:%d", major(devid), minor(devid));
1090 return dev_open(buf, flags);
1091}
1092
1093int open_dev(char *devnm)
1094{
1095 return open_dev_flags(devnm, O_RDONLY);
1096}
1097
1098int open_dev_excl(char *devnm)
1099{
1100 char buf[20];
1101 int i;
1102 int flags = O_RDWR;
1103 dev_t devid = devnm2devid(devnm);
1104 long delay = 1000;
1105
1106 sprintf(buf, "%d:%d", major(devid), minor(devid));
1107 for (i = 0; i < 25; i++) {
1108 int fd = dev_open(buf, flags|O_EXCL);
1109 if (fd >= 0)
1110 return fd;
1111 if (errno == EACCES && flags == O_RDWR) {
1112 flags = O_RDONLY;
1113 continue;
1114 }
1115 if (errno != EBUSY)
1116 return fd;
1117 usleep(delay);
1118 if (delay < 200000)
1119 delay *= 2;
1120 }
1121 return -1;
1122}
1123
1124int same_dev(char *one, char *two)
1125{
1126 struct stat st1, st2;
1127 if (stat(one, &st1) != 0)
1128 return 0;
1129 if (stat(two, &st2) != 0)
1130 return 0;
1131 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1132 return 0;
1133 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1134 return 0;
1135 return st1.st_rdev == st2.st_rdev;
1136}
1137
1138void wait_for(char *dev, int fd)
1139{
1140 int i;
1141 struct stat stb_want;
1142 long delay = 1000;
1143
1144 if (fstat(fd, &stb_want) != 0 ||
1145 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1146 return;
1147
1148 for (i = 0; i < 25; i++) {
1149 struct stat stb;
1150 if (stat(dev, &stb) == 0 &&
1151 (stb.st_mode & S_IFMT) == S_IFBLK &&
1152 (stb.st_rdev == stb_want.st_rdev))
1153 return;
1154 usleep(delay);
1155 if (delay < 200000)
1156 delay *= 2;
1157 }
1158 if (i == 25)
1159 dprintf("timeout waiting for %s\n", dev);
1160}
1161
1162struct superswitch *superlist[] =
1163{
1164 &super0, &super1,
1165 &super_ddf, &super_imsm,
1166 &mbr, &gpt,
1167 NULL
1168};
1169
1170struct supertype *super_by_fd(int fd, char **subarrayp)
1171{
1172 mdu_array_info_t array;
1173 int vers;
1174 int minor;
1175 struct supertype *st = NULL;
1176 struct mdinfo *sra;
1177 char *verstr;
1178 char version[20];
1179 int i;
1180 char *subarray = NULL;
1181 char container[32] = "";
1182
1183 sra = sysfs_read(fd, NULL, GET_VERSION);
1184
1185 if (sra) {
1186 vers = sra->array.major_version;
1187 minor = sra->array.minor_version;
1188 verstr = sra->text_version;
1189 } else {
1190 if (md_get_array_info(fd, &array))
1191 array.major_version = array.minor_version = 0;
1192 vers = array.major_version;
1193 minor = array.minor_version;
1194 verstr = "";
1195 }
1196
1197 if (vers != -1) {
1198 sprintf(version, "%d.%d", vers, minor);
1199 verstr = version;
1200 }
1201 if (minor == -2 && is_subarray(verstr)) {
1202 char *dev = verstr+1;
1203
1204 subarray = strchr(dev, '/');
1205 if (subarray) {
1206 *subarray++ = '\0';
1207 subarray = xstrdup(subarray);
1208 }
1209 strcpy(container, dev);
1210 sysfs_free(sra);
1211 sra = sysfs_read(-1, container, GET_VERSION);
1212 if (sra && sra->text_version[0])
1213 verstr = sra->text_version;
1214 else
1215 verstr = "-no-metadata-";
1216 }
1217
1218 for (i = 0; st == NULL && superlist[i]; i++)
1219 st = superlist[i]->match_metadata_desc(verstr);
1220
1221 sysfs_free(sra);
1222 if (st) {
1223 st->sb = NULL;
1224 if (subarrayp)
1225 *subarrayp = subarray;
1226 strcpy(st->container_devnm, container);
1227 strcpy(st->devnm, fd2devnm(fd));
1228 } else
1229 free(subarray);
1230
1231 return st;
1232}
1233
1234int dev_size_from_id(dev_t id, unsigned long long *size)
1235{
1236 char buf[20];
1237 int fd;
1238
1239 sprintf(buf, "%d:%d", major(id), minor(id));
1240 fd = dev_open(buf, O_RDONLY);
1241 if (fd < 0)
1242 return 0;
1243 if (get_dev_size(fd, NULL, size)) {
1244 close(fd);
1245 return 1;
1246 }
1247 close(fd);
1248 return 0;
1249}
1250
1251struct supertype *dup_super(struct supertype *orig)
1252{
1253 struct supertype *st;
1254
1255 if (!orig)
1256 return orig;
1257 st = xcalloc(1, sizeof(*st));
1258 st->ss = orig->ss;
1259 st->max_devs = orig->max_devs;
1260 st->minor_version = orig->minor_version;
1261 st->ignore_hw_compat = orig->ignore_hw_compat;
1262 st->data_offset = orig->data_offset;
1263 st->sb = NULL;
1264 st->info = NULL;
1265 return st;
1266}
1267
1268struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1269{
1270 /* try each load_super to find the best match,
1271 * and return the best superswitch
1272 */
1273 struct superswitch *ss;
1274 struct supertype *st;
1275 unsigned int besttime = 0;
1276 int bestsuper = -1;
1277 int i;
1278
1279 st = xcalloc(1, sizeof(*st));
1280 st->container_devnm[0] = 0;
1281
1282 for (i = 0; superlist[i]; i++) {
1283 int rv;
1284 ss = superlist[i];
1285 if (guess_type == guess_array && ss->add_to_super == NULL)
1286 continue;
1287 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1288 continue;
1289 memset(st, 0, sizeof(*st));
1290 st->ignore_hw_compat = 1;
1291 rv = ss->load_super(st, fd, NULL);
1292 if (rv == 0) {
1293 struct mdinfo info;
1294 st->ss->getinfo_super(st, &info, NULL);
1295 if (bestsuper == -1 ||
1296 besttime < info.array.ctime) {
1297 bestsuper = i;
1298 besttime = info.array.ctime;
1299 }
1300 ss->free_super(st);
1301 }
1302 }
1303 if (bestsuper != -1) {
1304 int rv;
1305 memset(st, 0, sizeof(*st));
1306 st->ignore_hw_compat = 1;
1307 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1308 if (rv == 0) {
1309 superlist[bestsuper]->free_super(st);
1310 return st;
1311 }
1312 }
1313 free(st);
1314 return NULL;
1315}
1316
1317/* Return size of device in bytes */
1318int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1319{
1320 unsigned long long ldsize;
1321 struct stat st;
1322
1323 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1324 ldsize = (unsigned long long)st.st_size;
1325 else
1326#ifdef BLKGETSIZE64
1327 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1328#endif
1329 {
1330 unsigned long dsize;
1331 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1332 ldsize = dsize;
1333 ldsize <<= 9;
1334 } else {
1335 if (dname)
1336 pr_err("Cannot get size of %s: %s\n",
1337 dname, strerror(errno));
1338 return 0;
1339 }
1340 }
1341 *sizep = ldsize;
1342 return 1;
1343}
1344
1345/* Return sector size of device in bytes */
1346int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1347{
1348 unsigned int sectsize;
1349
1350 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1351 if (dname)
1352 pr_err("Cannot get sector size of %s: %s\n",
1353 dname, strerror(errno));
1354 return 0;
1355 }
1356
1357 *sectsizep = sectsize;
1358 return 1;
1359}
1360
1361/* Return true if this can only be a container, not a member device.
1362 * i.e. is and md device and size is zero
1363 */
1364int must_be_container(int fd)
1365{
1366 struct mdinfo *mdi;
1367 unsigned long long size;
1368
1369 mdi = sysfs_read(fd, NULL, GET_VERSION);
1370 if (!mdi)
1371 return 0;
1372 sysfs_free(mdi);
1373
1374 if (get_dev_size(fd, NULL, &size) == 0)
1375 return 1;
1376 if (size == 0)
1377 return 1;
1378 return 0;
1379}
1380
1381/* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1382 * Returns: 1 if successful
1383 * -1 for unknown partition type
1384 * 0 for other errors
1385 */
1386static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1387{
1388 struct GPT gpt;
1389 unsigned char empty_gpt_entry[16]= {0};
1390 struct GPT_part_entry *part;
1391 char buf[512];
1392 unsigned long long curr_part_end;
1393 unsigned all_partitions, entry_size;
1394 unsigned part_nr;
1395 unsigned int sector_size = 0;
1396
1397 *endofpart = 0;
1398
1399 BUILD_BUG_ON(sizeof(gpt) != 512);
1400 /* skip protective MBR */
1401 if (!get_dev_sector_size(fd, NULL, &sector_size))
1402 return 0;
1403 lseek(fd, sector_size, SEEK_SET);
1404 /* read GPT header */
1405 if (read(fd, &gpt, 512) != 512)
1406 return 0;
1407
1408 /* get the number of partition entries and the entry size */
1409 all_partitions = __le32_to_cpu(gpt.part_cnt);
1410 entry_size = __le32_to_cpu(gpt.part_size);
1411
1412 /* Check GPT signature*/
1413 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1414 return -1;
1415
1416 /* sanity checks */
1417 if (all_partitions > 1024 ||
1418 entry_size > sizeof(buf))
1419 return -1;
1420
1421 part = (struct GPT_part_entry *)buf;
1422
1423 /* set offset to third block (GPT entries) */
1424 lseek(fd, sector_size*2, SEEK_SET);
1425 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1426 /* read partition entry */
1427 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1428 return 0;
1429
1430 /* is this valid partition? */
1431 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1432 /* check the last lba for the current partition */
1433 curr_part_end = __le64_to_cpu(part->ending_lba);
1434 if (curr_part_end > *endofpart)
1435 *endofpart = curr_part_end;
1436 }
1437
1438 }
1439 return 1;
1440}
1441
1442/* Sets endofpart parameter to the last block used by the last partition on the device.
1443 * Returns: 1 if successful
1444 * -1 for unknown partition type
1445 * 0 for other errors
1446 */
1447static int get_last_partition_end(int fd, unsigned long long *endofpart)
1448{
1449 struct MBR boot_sect;
1450 unsigned long long curr_part_end;
1451 unsigned part_nr;
1452 unsigned int sector_size;
1453 int retval = 0;
1454
1455 *endofpart = 0;
1456
1457 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1458 /* read MBR */
1459 lseek(fd, 0, 0);
1460 if (read(fd, &boot_sect, 512) != 512)
1461 goto abort;
1462
1463 /* check MBP signature */
1464 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1465 retval = 1;
1466 /* found the correct signature */
1467
1468 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1469 /*
1470 * Have to make every access through boot_sect rather
1471 * than using a pointer to the partition table (or an
1472 * entry), since the entries are not properly aligned.
1473 */
1474
1475 /* check for GPT type */
1476 if (boot_sect.parts[part_nr].part_type ==
1477 MBR_GPT_PARTITION_TYPE) {
1478 retval = get_gpt_last_partition_end(fd, endofpart);
1479 break;
1480 }
1481 /* check the last used lba for the current partition */
1482 curr_part_end =
1483 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1484 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1485 if (curr_part_end > *endofpart)
1486 *endofpart = curr_part_end;
1487 }
1488 } else {
1489 /* Unknown partition table */
1490 retval = -1;
1491 }
1492 /* calculate number of 512-byte blocks */
1493 if (get_dev_sector_size(fd, NULL, &sector_size))
1494 *endofpart *= (sector_size / 512);
1495 abort:
1496 return retval;
1497}
1498
1499int check_partitions(int fd, char *dname, unsigned long long freesize,
1500 unsigned long long size)
1501{
1502 /*
1503 * Check where the last partition ends
1504 */
1505 unsigned long long endofpart;
1506
1507 if (get_last_partition_end(fd, &endofpart) > 0) {
1508 /* There appears to be a partition table here */
1509 if (freesize == 0) {
1510 /* partitions will not be visible in new device */
1511 pr_err("partition table exists on %s but will be lost or\n"
1512 " meaningless after creating array\n",
1513 dname);
1514 return 1;
1515 } else if (endofpart > freesize) {
1516 /* last partition overlaps metadata */
1517 pr_err("metadata will over-write last partition on %s.\n",
1518 dname);
1519 return 1;
1520 } else if (size && endofpart > size) {
1521 /* partitions will be truncated in new device */
1522 pr_err("array size is too small to cover all partitions on %s.\n",
1523 dname);
1524 return 1;
1525 }
1526 }
1527 return 0;
1528}
1529
1530int open_container(int fd)
1531{
1532 /* 'fd' is a block device. Find out if it is in use
1533 * by a container, and return an open fd on that container.
1534 */
1535 char path[256];
1536 char *e;
1537 DIR *dir;
1538 struct dirent *de;
1539 int dfd, n;
1540 char buf[200];
1541 int major, minor;
1542 struct stat st;
1543
1544 if (fstat(fd, &st) != 0)
1545 return -1;
1546 sprintf(path, "/sys/dev/block/%d:%d/holders",
1547 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1548 e = path + strlen(path);
1549
1550 dir = opendir(path);
1551 if (!dir)
1552 return -1;
1553 while ((de = readdir(dir))) {
1554 if (de->d_ino == 0)
1555 continue;
1556 if (de->d_name[0] == '.')
1557 continue;
1558 /* Need to make sure it is a container and not a volume */
1559 sprintf(e, "/%s/md/metadata_version", de->d_name);
1560 dfd = open(path, O_RDONLY);
1561 if (dfd < 0)
1562 continue;
1563 n = read(dfd, buf, sizeof(buf));
1564 close(dfd);
1565 if (n <= 0 || (unsigned)n >= sizeof(buf))
1566 continue;
1567 buf[n] = 0;
1568 if (strncmp(buf, "external", 8) != 0 ||
1569 n < 10 ||
1570 buf[9] == '/')
1571 continue;
1572 sprintf(e, "/%s/dev", de->d_name);
1573 dfd = open(path, O_RDONLY);
1574 if (dfd < 0)
1575 continue;
1576 n = read(dfd, buf, sizeof(buf));
1577 close(dfd);
1578 if (n <= 0 || (unsigned)n >= sizeof(buf))
1579 continue;
1580 buf[n] = 0;
1581 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1582 continue;
1583 sprintf(buf, "%d:%d", major, minor);
1584 dfd = dev_open(buf, O_RDONLY);
1585 if (dfd >= 0) {
1586 closedir(dir);
1587 return dfd;
1588 }
1589 }
1590 closedir(dir);
1591 return -1;
1592}
1593
1594struct superswitch *version_to_superswitch(char *vers)
1595{
1596 int i;
1597
1598 for (i = 0; superlist[i]; i++) {
1599 struct superswitch *ss = superlist[i];
1600
1601 if (strcmp(vers, ss->name) == 0)
1602 return ss;
1603 }
1604
1605 return NULL;
1606}
1607
1608int metadata_container_matches(char *metadata, char *devnm)
1609{
1610 /* Check if 'devnm' is the container named in 'metadata'
1611 * which is
1612 * /containername/componentname or
1613 * -containername/componentname
1614 */
1615 int l;
1616 if (*metadata != '/' && *metadata != '-')
1617 return 0;
1618 l = strlen(devnm);
1619 if (strncmp(metadata+1, devnm, l) != 0)
1620 return 0;
1621 if (metadata[l+1] != '/')
1622 return 0;
1623 return 1;
1624}
1625
1626int metadata_subdev_matches(char *metadata, char *devnm)
1627{
1628 /* Check if 'devnm' is the subdev named in 'metadata'
1629 * which is
1630 * /containername/subdev or
1631 * -containername/subdev
1632 */
1633 char *sl;
1634 if (*metadata != '/' && *metadata != '-')
1635 return 0;
1636 sl = strchr(metadata+1, '/');
1637 if (!sl)
1638 return 0;
1639 if (strcmp(sl+1, devnm) == 0)
1640 return 1;
1641 return 0;
1642}
1643
1644int is_container_member(struct mdstat_ent *mdstat, char *container)
1645{
1646 if (mdstat->metadata_version == NULL ||
1647 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1648 !metadata_container_matches(mdstat->metadata_version+9, container))
1649 return 0;
1650
1651 return 1;
1652}
1653
1654int is_subarray_active(char *subarray, char *container)
1655{
1656 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1657 struct mdstat_ent *ent;
1658
1659 for (ent = mdstat; ent; ent = ent->next)
1660 if (is_container_member(ent, container))
1661 if (strcmp(to_subarray(ent, container), subarray) == 0)
1662 break;
1663
1664 free_mdstat(mdstat);
1665
1666 return ent != NULL;
1667}
1668
1669/* open_subarray - opens a subarray in a container
1670 * @dev: container device name
1671 * @st: empty supertype
1672 * @quiet: block reporting errors flag
1673 *
1674 * On success returns an fd to a container and fills in *st
1675 */
1676int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1677{
1678 struct mdinfo *mdi;
1679 struct mdinfo *info;
1680 int fd, err = 1;
1681 char *_devnm;
1682
1683 fd = open(dev, O_RDWR|O_EXCL);
1684 if (fd < 0) {
1685 if (!quiet)
1686 pr_err("Couldn't open %s, aborting\n",
1687 dev);
1688 return -1;
1689 }
1690
1691 _devnm = fd2devnm(fd);
1692 if (_devnm == NULL) {
1693 if (!quiet)
1694 pr_err("Failed to determine device number for %s\n",
1695 dev);
1696 goto close_fd;
1697 }
1698 strcpy(st->devnm, _devnm);
1699
1700 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1701 if (!mdi) {
1702 if (!quiet)
1703 pr_err("Failed to read sysfs for %s\n",
1704 dev);
1705 goto close_fd;
1706 }
1707
1708 if (mdi->array.level != UnSet) {
1709 if (!quiet)
1710 pr_err("%s is not a container\n", dev);
1711 goto free_sysfs;
1712 }
1713
1714 st->ss = version_to_superswitch(mdi->text_version);
1715 if (!st->ss) {
1716 if (!quiet)
1717 pr_err("Operation not supported for %s metadata\n",
1718 mdi->text_version);
1719 goto free_sysfs;
1720 }
1721
1722 if (st->devnm[0] == 0) {
1723 if (!quiet)
1724 pr_err("Failed to allocate device name\n");
1725 goto free_sysfs;
1726 }
1727
1728 if (!st->ss->load_container) {
1729 if (!quiet)
1730 pr_err("%s is not a container\n", dev);
1731 goto free_sysfs;
1732 }
1733
1734 if (st->ss->load_container(st, fd, NULL)) {
1735 if (!quiet)
1736 pr_err("Failed to load metadata for %s\n",
1737 dev);
1738 goto free_sysfs;
1739 }
1740
1741 info = st->ss->container_content(st, subarray);
1742 if (!info) {
1743 if (!quiet)
1744 pr_err("Failed to find subarray-%s in %s\n",
1745 subarray, dev);
1746 goto free_super;
1747 }
1748 free(info);
1749
1750 err = 0;
1751
1752 free_super:
1753 if (err)
1754 st->ss->free_super(st);
1755 free_sysfs:
1756 sysfs_free(mdi);
1757 close_fd:
1758 if (err)
1759 close(fd);
1760
1761 if (err)
1762 return -1;
1763 else
1764 return fd;
1765}
1766
1767int add_disk(int mdfd, struct supertype *st,
1768 struct mdinfo *sra, struct mdinfo *info)
1769{
1770 /* Add a device to an array, in one of 2 ways. */
1771 int rv;
1772
1773 if (st->ss->external) {
1774 if (info->disk.state & (1<<MD_DISK_SYNC))
1775 info->recovery_start = MaxSector;
1776 else
1777 info->recovery_start = 0;
1778 rv = sysfs_add_disk(sra, info, 0);
1779 if (! rv) {
1780 struct mdinfo *sd2;
1781 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1782 if (sd2 == info)
1783 break;
1784 if (sd2 == NULL) {
1785 sd2 = xmalloc(sizeof(*sd2));
1786 *sd2 = *info;
1787 sd2->next = sra->devs;
1788 sra->devs = sd2;
1789 }
1790 }
1791 } else
1792 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1793 return rv;
1794}
1795
1796int remove_disk(int mdfd, struct supertype *st,
1797 struct mdinfo *sra, struct mdinfo *info)
1798{
1799 int rv;
1800
1801 /* Remove the disk given by 'info' from the array */
1802 if (st->ss->external)
1803 rv = sysfs_set_str(sra, info, "slot", "none");
1804 else
1805 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1806 info->disk.minor));
1807 return rv;
1808}
1809
1810int hot_remove_disk(int mdfd, unsigned long dev, int force)
1811{
1812 int cnt = force ? 500 : 5;
1813 int ret;
1814
1815 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1816 * outstanding IO requests to the device.
1817 * In this case, it can be helpful to wait a little while,
1818 * up to 5 seconds if 'force' is set, or 50 msec if not.
1819 */
1820 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1821 errno == EBUSY &&
1822 cnt-- > 0)
1823 usleep(10000);
1824
1825 return ret;
1826}
1827
1828int sys_hot_remove_disk(int statefd, int force)
1829{
1830 int cnt = force ? 500 : 5;
1831 int ret;
1832
1833 while ((ret = write(statefd, "remove", 6)) == -1 &&
1834 errno == EBUSY &&
1835 cnt-- > 0)
1836 usleep(10000);
1837 return ret == 6 ? 0 : -1;
1838}
1839
1840int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1841{
1842 /* Initialise kernel's knowledge of array.
1843 * This varies between externally managed arrays
1844 * and older kernels
1845 */
1846 mdu_array_info_t inf;
1847 int rv;
1848
1849 if (st->ss->external)
1850 return sysfs_set_array(info, 9003);
1851
1852 memset(&inf, 0, sizeof(inf));
1853 inf.major_version = info->array.major_version;
1854 inf.minor_version = info->array.minor_version;
1855 rv = md_set_array_info(mdfd, &inf);
1856
1857 return rv;
1858}
1859
1860unsigned long long min_recovery_start(struct mdinfo *array)
1861{
1862 /* find the minimum recovery_start in an array for metadata
1863 * formats that only record per-array recovery progress instead
1864 * of per-device
1865 */
1866 unsigned long long recovery_start = MaxSector;
1867 struct mdinfo *d;
1868
1869 for (d = array->devs; d; d = d->next)
1870 recovery_start = min(recovery_start, d->recovery_start);
1871
1872 return recovery_start;
1873}
1874
1875int mdmon_pid(char *devnm)
1876{
1877 char path[100];
1878 char pid[10];
1879 int fd;
1880 int n;
1881
1882 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1883
1884 fd = open(path, O_RDONLY | O_NOATIME, 0);
1885
1886 if (fd < 0)
1887 return -1;
1888 n = read(fd, pid, 9);
1889 close(fd);
1890 if (n <= 0)
1891 return -1;
1892 return atoi(pid);
1893}
1894
1895int mdmon_running(char *devnm)
1896{
1897 int pid = mdmon_pid(devnm);
1898 if (pid <= 0)
1899 return 0;
1900 if (kill(pid, 0) == 0)
1901 return 1;
1902 return 0;
1903}
1904
1905int start_mdmon(char *devnm)
1906{
1907 int i, skipped;
1908 int len;
1909 pid_t pid;
1910 int status;
1911 char pathbuf[1024];
1912 char *paths[4] = {
1913 pathbuf,
1914 BINDIR "/mdmon",
1915 "./mdmon",
1916 NULL
1917 };
1918
1919 if (check_env("MDADM_NO_MDMON"))
1920 return 0;
1921
1922 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1923 if (len > 0) {
1924 char *sl;
1925 pathbuf[len] = 0;
1926 sl = strrchr(pathbuf, '/');
1927 if (sl)
1928 sl++;
1929 else
1930 sl = pathbuf;
1931 strcpy(sl, "mdmon");
1932 } else
1933 pathbuf[0] = '\0';
1934
1935 /* First try to run systemctl */
1936 if (!check_env("MDADM_NO_SYSTEMCTL"))
1937 switch(fork()) {
1938 case 0:
1939 /* FIXME yuk. CLOSE_EXEC?? */
1940 skipped = 0;
1941 for (i = 3; skipped < 20; i++)
1942 if (close(i) < 0)
1943 skipped++;
1944 else
1945 skipped = 0;
1946
1947 /* Don't want to see error messages from
1948 * systemctl. If the service doesn't exist,
1949 * we start mdmon ourselves.
1950 */
1951 close(2);
1952 open("/dev/null", O_WRONLY);
1953 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1954 devnm);
1955 status = execl("/usr/bin/systemctl", "systemctl",
1956 "start",
1957 pathbuf, NULL);
1958 status = execl("/bin/systemctl", "systemctl", "start",
1959 pathbuf, NULL);
1960 exit(1);
1961 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1962 return -1;
1963 default: /* parent - good */
1964 pid = wait(&status);
1965 if (pid >= 0 && status == 0)
1966 return 0;
1967 }
1968
1969 /* That failed, try running mdmon directly */
1970 switch(fork()) {
1971 case 0:
1972 /* FIXME yuk. CLOSE_EXEC?? */
1973 skipped = 0;
1974 for (i = 3; skipped < 20; i++)
1975 if (close(i) < 0)
1976 skipped++;
1977 else
1978 skipped = 0;
1979
1980 for (i = 0; paths[i]; i++)
1981 if (paths[i][0]) {
1982 execl(paths[i], paths[i],
1983 devnm, NULL);
1984 }
1985 exit(1);
1986 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1987 return -1;
1988 default: /* parent - good */
1989 pid = wait(&status);
1990 if (pid < 0 || status != 0) {
1991 pr_err("failed to launch mdmon. Array remains readonly\n");
1992 return -1;
1993 }
1994 }
1995 return 0;
1996}
1997
1998__u32 random32(void)
1999{
2000 __u32 rv;
2001 int rfd = open("/dev/urandom", O_RDONLY);
2002 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2003 rv = random();
2004 if (rfd >= 0)
2005 close(rfd);
2006 return rv;
2007}
2008
2009void random_uuid(__u8 *buf)
2010{
2011 int fd, i, len;
2012 __u32 r[4];
2013
2014 fd = open("/dev/urandom", O_RDONLY);
2015 if (fd < 0)
2016 goto use_random;
2017 len = read(fd, buf, 16);
2018 close(fd);
2019 if (len != 16)
2020 goto use_random;
2021
2022 return;
2023
2024use_random:
2025 for (i = 0; i < 4; i++)
2026 r[i] = random();
2027 memcpy(buf, r, 16);
2028}
2029
2030int flush_metadata_updates(struct supertype *st)
2031{
2032 int sfd;
2033 if (!st->updates) {
2034 st->update_tail = NULL;
2035 return -1;
2036 }
2037
2038 sfd = connect_monitor(st->container_devnm);
2039 if (sfd < 0)
2040 return -1;
2041
2042 while (st->updates) {
2043 struct metadata_update *mu = st->updates;
2044 st->updates = mu->next;
2045
2046 send_message(sfd, mu, 0);
2047 wait_reply(sfd, 0);
2048 free(mu->buf);
2049 free(mu);
2050 }
2051 ack(sfd, 0);
2052 wait_reply(sfd, 0);
2053 close(sfd);
2054 st->update_tail = NULL;
2055 return 0;
2056}
2057
2058void append_metadata_update(struct supertype *st, void *buf, int len)
2059{
2060
2061 struct metadata_update *mu = xmalloc(sizeof(*mu));
2062
2063 mu->buf = buf;
2064 mu->len = len;
2065 mu->space = NULL;
2066 mu->space_list = NULL;
2067 mu->next = NULL;
2068 *st->update_tail = mu;
2069 st->update_tail = &mu->next;
2070}
2071
2072#ifdef __TINYC__
2073/* tinyc doesn't optimize this check in ioctl.h out ... */
2074unsigned int __invalid_size_argument_for_IOC = 0;
2075#endif
2076
2077int experimental(void)
2078{
2079 if (check_env("MDADM_EXPERIMENTAL"))
2080 return 1;
2081 else {
2082 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2083 return 0;
2084 }
2085}
2086
2087/* Pick all spares matching given criteria from a container
2088 * if min_size == 0 do not check size
2089 * if domlist == NULL do not check domains
2090 * if spare_group given add it to domains of each spare
2091 * metadata allows to test domains using metadata of destination array */
2092struct mdinfo *container_choose_spares(struct supertype *st,
2093 unsigned long long min_size,
2094 struct domainlist *domlist,
2095 char *spare_group,
2096 const char *metadata, int get_one)
2097{
2098 struct mdinfo *d, **dp, *disks = NULL;
2099
2100 /* get list of all disks in container */
2101 if (st->ss->getinfo_super_disks)
2102 disks = st->ss->getinfo_super_disks(st);
2103
2104 if (!disks)
2105 return disks;
2106 /* find spare devices on the list */
2107 dp = &disks->devs;
2108 disks->array.spare_disks = 0;
2109 while (*dp) {
2110 int found = 0;
2111 d = *dp;
2112 if (d->disk.state == 0) {
2113 /* check if size is acceptable */
2114 unsigned long long dev_size;
2115 dev_t dev = makedev(d->disk.major,d->disk.minor);
2116
2117 if (!min_size ||
2118 (dev_size_from_id(dev, &dev_size) &&
2119 dev_size >= min_size))
2120 found = 1;
2121 /* check if domain matches */
2122 if (found && domlist) {
2123 struct dev_policy *pol = devid_policy(dev);
2124 if (spare_group)
2125 pol_add(&pol, pol_domain,
2126 spare_group, NULL);
2127 if (domain_test(domlist, pol, metadata) != 1)
2128 found = 0;
2129 dev_policy_free(pol);
2130 }
2131 }
2132 if (found) {
2133 dp = &d->next;
2134 disks->array.spare_disks++;
2135 if (get_one) {
2136 sysfs_free(*dp);
2137 d->next = NULL;
2138 }
2139 } else {
2140 *dp = d->next;
2141 d->next = NULL;
2142 sysfs_free(d);
2143 }
2144 }
2145 return disks;
2146}
2147
2148/* Checks if paths point to the same device
2149 * Returns 0 if they do.
2150 * Returns 1 if they don't.
2151 * Returns -1 if something went wrong,
2152 * e.g. paths are empty or the files
2153 * they point to don't exist */
2154int compare_paths (char* path1, char* path2)
2155{
2156 struct stat st1,st2;
2157
2158 if (path1 == NULL || path2 == NULL)
2159 return -1;
2160 if (stat(path1,&st1) != 0)
2161 return -1;
2162 if (stat(path2,&st2) != 0)
2163 return -1;
2164 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2165 return 0;
2166 return 1;
2167}
2168
2169/* Make sure we can open as many devices as needed */
2170void enable_fds(int devices)
2171{
2172 unsigned int fds = 20 + devices;
2173 struct rlimit lim;
2174 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2175 || lim.rlim_cur >= fds)
2176 return;
2177 if (lim.rlim_max < fds)
2178 lim.rlim_max = fds;
2179 lim.rlim_cur = fds;
2180 setrlimit(RLIMIT_NOFILE, &lim);
2181}
2182
2183int in_initrd(void)
2184{
2185 /* This is based on similar function in systemd. */
2186 struct statfs s;
2187 /* statfs.f_type is signed long on s390x and MIPS, causing all
2188 sorts of sign extension problems with RAMFS_MAGIC being
2189 defined as 0x858458f6 */
2190 return statfs("/", &s) >= 0 &&
2191 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2192 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2193 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2194}
2195
2196void reopen_mddev(int mdfd)
2197{
2198 /* Re-open without any O_EXCL, but keep
2199 * the same fd
2200 */
2201 char *devnm;
2202 int fd;
2203 devnm = fd2devnm(mdfd);
2204 close(mdfd);
2205 fd = open_dev(devnm);
2206 if (fd >= 0 && fd != mdfd)
2207 dup2(fd, mdfd);
2208}
2209
2210static struct cmap_hooks *cmap_hooks = NULL;
2211static int is_cmap_hooks_ready = 0;
2212
2213void set_cmap_hooks(void)
2214{
2215 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2216 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2217 if (!cmap_hooks->cmap_handle)
2218 return;
2219
2220 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2221 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2222 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2223
2224 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2225 !cmap_hooks->finalize)
2226 dlclose(cmap_hooks->cmap_handle);
2227 else
2228 is_cmap_hooks_ready = 1;
2229}
2230
2231int get_cluster_name(char **cluster_name)
2232{
2233 int rv = -1;
2234 cmap_handle_t handle;
2235
2236 if (!is_cmap_hooks_ready)
2237 return rv;
2238
2239 rv = cmap_hooks->initialize(&handle);
2240 if (rv != CS_OK)
2241 goto out;
2242
2243 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2244 if (rv != CS_OK) {
2245 free(*cluster_name);
2246 rv = -1;
2247 goto name_err;
2248 }
2249
2250 rv = 0;
2251name_err:
2252 cmap_hooks->finalize(handle);
2253out:
2254 return rv;
2255}
2256
2257void set_dlm_hooks(void)
2258{
2259 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2260 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2261 if (!dlm_hooks->dlm_handle)
2262 return;
2263
2264 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2265 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2266 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2267 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2268 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2269 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2270
2271 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2272 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2273 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2274 dlclose(dlm_hooks->dlm_handle);
2275 else
2276 is_dlm_hooks_ready = 1;
2277}
2278
2279void set_hooks(void)
2280{
2281 set_dlm_hooks();
2282 set_cmap_hooks();
2283}