]> git.ipfire.org Git - thirdparty/mdadm.git/blob - managemon.c
c7711040f89f4520ffff5879506b7ca19cf598ec
[thirdparty/mdadm.git] / managemon.c
1
2 /*
3 * The management thread for monitoring active md arrays.
4 * This thread does things which might block such as memory
5 * allocation.
6 * In particular:
7 *
8 * - Find out about new arrays in this container.
9 * Allocate the data structures and open the files.
10 *
11 * For this we watch /proc/mdstat and find new arrays with
12 * metadata type that confirms sharing. e.g. "md4"
13 * When we find a new array we slip it into the list of
14 * arrays and signal 'monitor' by writing to a pipe.
15 *
16 * - Respond to reshape requests by allocating new data structures
17 * and opening new files.
18 *
19 * These come as a change to raid_disks. We allocate a new
20 * version of the data structures and slip it into the list.
21 * 'monitor' will notice and release the old version.
22 * Changes to level, chunksize, layout.. do not need re-allocation.
23 * Reductions in raid_disks don't really either, but we handle
24 * them the same way for consistency.
25 *
26 * - When a device is added to the container, we add it to the metadata
27 * as a spare.
28 *
29 * - assist with activating spares by opening relevant sysfs file.
30 *
31 * - Pass on metadata updates from external programs such as
32 * mdadm creating a new array.
33 *
34 * This is most-messy.
35 * It might involve adding a new array or changing the status of
36 * a spare, or any reconfig that the kernel doesn't get involved in.
37 *
38 * The required updates are received via a named pipe. There will
39 * be one named pipe for each container. Each message contains a
40 * sync marker: 0x5a5aa5a5, A byte count, and the message. This is
41 * passed to the metadata handler which will interpret and process it.
42 * For 'DDF' messages are internal data blocks with the leading
43 * 'magic number' signifying what sort of data it is.
44 *
45 */
46
47 /*
48 * We select on /proc/mdstat and the named pipe.
49 * We create new arrays or updated version of arrays and slip
50 * them into the head of the list, then signal 'monitor' via a pipe write.
51 * 'monitor' will notice and place the old array on a return list.
52 * Metadata updates are placed on a queue just like they arrive
53 * from the named pipe.
54 *
55 * When new arrays are found based on correct metadata string, we
56 * need to identify them with an entry in the metadata. Maybe we require
57 * the metadata to be mdX/NN when NN is the index into an appropriate table.
58 *
59 */
60
61 /*
62 * List of tasks:
63 * - Watch for spares to be added to the container, and write updated
64 * metadata to them.
65 * - Watch for new arrays using this container, confirm they match metadata
66 * and if so, start monitoring them
67 * - Watch for spares being added to monitored arrays. This shouldn't
68 * happen, as we should do all the adding. Just remove them.
69 * - Watch for change in raid-disks, chunk-size, etc. Update metadata and
70 * start a reshape.
71 */
72 #ifndef _GNU_SOURCE
73 #define _GNU_SOURCE
74 #endif
75 #include "mdadm.h"
76 #include "mdmon.h"
77 #include <sys/socket.h>
78
79 static void close_aa(struct active_array *aa)
80 {
81 struct mdinfo *d;
82
83 for (d = aa->info.devs; d; d = d->next)
84 close(d->state_fd);
85
86 close(aa->action_fd);
87 close(aa->info.state_fd);
88 close(aa->resync_start_fd);
89 close(aa->sync_pos_fd);
90 }
91
92 static void free_aa(struct active_array *aa)
93 {
94 /* Note that this doesn't close fds if they are being used
95 * by a clone. ->container will be set for a clone
96 */
97 if (!aa->container)
98 close_aa(aa);
99 while (aa->info.devs) {
100 struct mdinfo *d = aa->info.devs;
101 aa->info.devs = d->next;
102 free(d);
103 }
104 free(aa);
105 }
106
107 static void write_wakeup(struct supertype *c)
108 {
109 static struct md_generic_cmd cmd = { .action = md_action_ping_monitor };
110 int err;
111
112 active_cmd = &cmd;
113
114 /* send the monitor thread a pointer to the ping action */
115 write(c->mgr_pipe[1], &err, 1);
116 read(c->mon_pipe[0], &err, 1);
117 }
118
119 static void replace_array(struct supertype *container,
120 struct active_array *old,
121 struct active_array *new)
122 {
123 /* To replace an array, we add it to the top of the list
124 * marked with ->replaces to point to the original.
125 * 'monitor' will take the original out of the list
126 * and put it on 'discard_this'. We take it from there
127 * and discard it.
128 */
129
130 while (pending_discard) {
131 while (discard_this == NULL)
132 sleep(1);
133 if (discard_this != pending_discard)
134 abort();
135 discard_this->next = NULL;
136 free_aa(discard_this);
137 discard_this = NULL;
138 pending_discard = NULL;
139 }
140 pending_discard = old;
141 new->replaces = old;
142 new->next = container->arrays;
143 container->arrays = new;
144 write_wakeup(container);
145 }
146
147
148 static void manage_container(struct mdstat_ent *mdstat,
149 struct supertype *container)
150 {
151 /* The only thing of interest here is if a new device
152 * has been added to the container. We add it to the
153 * array ignoring any metadata on it.
154 * FIXME should we look for compatible metadata and take hints
155 * about spare assignment.... probably not.
156 *
157 */
158 if (mdstat->devcnt != container->devcnt) {
159 /* read /sys/block/NAME/md/dev-??/block/dev to find out
160 * what is there, and compare with container->info.devs
161 * To see what is removed and what is added.
162 * These need to be remove from, or added to, the array
163 */
164 // FIXME
165 container->devcnt = mdstat->devcnt;
166 }
167 }
168
169 static void manage_member(struct mdstat_ent *mdstat,
170 struct active_array *a)
171 {
172 /* Compare mdstat info with known state of member array.
173 * We do not need to look for device state changes here, that
174 * is dealt with by the monitor.
175 *
176 * We just look for changes which suggest that a reshape is
177 * being requested.
178 * Unfortunately decreases in raid_disks don't show up in
179 * mdstat until the reshape completes FIXME.
180 */
181 // FIXME
182 a->info.array.raid_disks = mdstat->raid_disks;
183 a->info.array.chunk_size = mdstat->chunk_size;
184 // MORE
185
186 }
187
188 static void manage_new(struct mdstat_ent *mdstat,
189 struct supertype *container,
190 struct active_array *victim)
191 {
192 /* A new array has appeared in this container.
193 * Hopefully it is already recorded in the metadata.
194 * Check, then create the new array to report it to
195 * the monitor.
196 */
197
198 struct active_array *new;
199 struct mdinfo *mdi, *di;
200 char *n;
201 int inst;
202 int i;
203
204 new = malloc(sizeof(*new));
205
206 memset(new, 0, sizeof(*new));
207
208 new->devnum = mdstat->devnum;
209
210 new->prev_state = new->curr_state = new->next_state = inactive;
211 new->prev_action= new->curr_action= new->next_action= idle;
212
213 new->container = container;
214
215 n = &mdstat->metadata_version[10+strlen(container->devname)+1];
216 inst = atoi(n);
217 if (inst < 0)
218 abort();//FIXME
219
220 mdi = sysfs_read(-1, new->devnum,
221 GET_LEVEL|GET_CHUNK|GET_DISKS|
222 GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE);
223 if (!mdi) {
224 /* Eeek. Cannot monitor this array.
225 * Mark it to be ignored by setting container to NULL
226 */
227 new->container = NULL;
228 replace_array(container, victim, new);
229 return;
230 }
231
232 new->info.array = mdi->array;
233
234 for (i = 0; i < new->info.array.raid_disks; i++) {
235 struct mdinfo *newd = malloc(sizeof(*newd));
236
237 for (di = mdi->devs; di; di = di->next)
238 if (i == di->disk.raid_disk)
239 break;
240
241 if (di) {
242 memcpy(newd, di, sizeof(*newd));
243
244 sprintf(newd->sys_name, "rd%d", i);
245
246 newd->state_fd = sysfs_open(new->devnum,
247 newd->sys_name,
248 "state");
249
250 newd->prev_state = read_dev_state(newd->state_fd);
251 newd->curr_state = newd->curr_state;
252 } else {
253 newd->state_fd = -1;
254 }
255 newd->next = new->info.devs;
256 new->info.devs = newd;
257 }
258 new->action_fd = sysfs_open(new->devnum, NULL, "sync_action");
259 new->info.state_fd = sysfs_open(new->devnum, NULL, "array_state");
260 new->resync_start_fd = sysfs_open(new->devnum, NULL, "resync_start");
261 new->sync_pos_fd = sysfs_open(new->devnum, NULL, "sync_completed");
262 new->sync_pos = 0;
263
264 sysfs_free(mdi);
265 // finds and compares.
266 if (container->ss->open_new(container, new, inst) < 0) {
267 // FIXME close all those files
268 new->container = NULL;
269 replace_array(container, victim, new);
270 return;
271 }
272 replace_array(container, victim, new);
273 return;
274 }
275
276 void manage(struct mdstat_ent *mdstat, struct supertype *container)
277 {
278 /* We have just read mdstat and need to compare it with
279 * the known active arrays.
280 * Arrays with the wrong metadata are ignored.
281 */
282
283 for ( ; mdstat ; mdstat = mdstat->next) {
284 struct active_array *a;
285 if (mdstat->devnum == container->devnum) {
286 manage_container(mdstat, container);
287 continue;
288 }
289 if (mdstat->metadata_version == NULL ||
290 strncmp(mdstat->metadata_version, "external:/", 10) != 0 ||
291 strncmp(mdstat->metadata_version+10, container->devname,
292 strlen(container->devname)) != 0 ||
293 mdstat->metadata_version[10+strlen(container->devname)]
294 != '/')
295 /* Not for this array */
296 continue;
297 /* Looks like a member of this container */
298 for (a = container->arrays; a; a = a->next) {
299 if (mdstat->devnum == a->devnum) {
300 if (a->container)
301 manage_member(mdstat, a);
302 break;
303 }
304 }
305 if (a == NULL || !a->container)
306 manage_new(mdstat, container, a);
307 }
308 }
309
310 static int handle_message(struct supertype *container, struct md_message *msg)
311 {
312 int err;
313 struct md_generic_cmd *cmd = msg->buf;
314
315 if (!cmd)
316 return 0;
317
318 switch (cmd->action) {
319 case md_action_remove_device:
320
321 /* forward to the monitor */
322 active_cmd = cmd;
323 write(container->mgr_pipe[1], &err, 1);
324 read(container->mon_pipe[0], &err, 1);
325 return err;
326
327 default:
328 return -1;
329 }
330 }
331
332 void read_sock(struct supertype *container)
333 {
334 int fd;
335 struct md_message msg;
336 int terminate = 0;
337 long fl;
338 int tmo = 3; /* 3 second timeout before hanging up the socket */
339
340 fd = accept(container->sock, NULL, NULL);
341 if (fd < 0)
342 return;
343
344 fl = fcntl(fd, F_GETFL, 0);
345 fl |= O_NONBLOCK;
346 fcntl(fd, F_SETFL, fl);
347
348 do {
349 int err;
350
351 msg.buf = NULL;
352
353 /* read and validate the message */
354 if (receive_message(fd, &msg, tmo) == 0) {
355 err = handle_message(container, &msg);
356 if (!err)
357 ack(fd, msg.seq, tmo);
358 else
359 nack(fd, err, tmo);
360 } else {
361 terminate = 1;
362 nack(fd, -1, tmo);
363 }
364
365 if (msg.buf)
366 free(msg.buf);
367 } while (!terminate);
368
369 close(fd);
370 }
371 void do_manager(struct supertype *container)
372 {
373 struct mdstat_ent *mdstat;
374
375 do {
376 mdstat = mdstat_read(1, 0);
377
378 manage(mdstat, container);
379
380 read_sock(container);
381
382 free_mdstat(mdstat);
383
384 mdstat_wait_fd(container->sock);
385 } while(1);
386 }