]> git.ipfire.org Git - thirdparty/mdadm.git/blob - managemon.c
Make metadata updates from manage to monitor 'synchronous'
[thirdparty/mdadm.git] / managemon.c
1
2 /*
3 * The management thread for monitoring active md arrays.
4 * This thread does things which might block such as memory
5 * allocation.
6 * In particular:
7 *
8 * - Find out about new arrays in this container.
9 * Allocate the data structures and open the files.
10 *
11 * For this we watch /proc/mdstat and find new arrays with
12 * metadata type that confirms sharing. e.g. "md4"
13 * When we find a new array we slip it into the list of
14 * arrays and signal 'monitor' by writing to a pipe.
15 *
16 * - Respond to reshape requests by allocating new data structures
17 * and opening new files.
18 *
19 * These come as a change to raid_disks. We allocate a new
20 * version of the data structures and slip it into the list.
21 * 'monitor' will notice and release the old version.
22 * Changes to level, chunksize, layout.. do not need re-allocation.
23 * Reductions in raid_disks don't really either, but we handle
24 * them the same way for consistency.
25 *
26 * - When a device is added to the container, we add it to the metadata
27 * as a spare.
28 *
29 * - Deal with degraded array
30 * We only do this when first noticing the array is degraded.
31 * This can be when we first see the array, when sync completes or
32 * when recovery completes.
33 *
34 * Check if number of failed devices suggests recovery is needed, and
35 * skip if not.
36 * Ask metadata to allocate a spare device
37 * Add device as not in_sync and give a role
38 * Update metadata.
39 * Open sysfs files and pass to monitor.
40 * Make sure that monitor Starts recovery....
41 *
42 * - Pass on metadata updates from external programs such as
43 * mdadm creating a new array.
44 *
45 * This is most-messy.
46 * It might involve adding a new array or changing the status of
47 * a spare, or any reconfig that the kernel doesn't get involved in.
48 *
49 * The required updates are received via a named pipe. There will
50 * be one named pipe for each container. Each message contains a
51 * sync marker: 0x5a5aa5a5, A byte count, and the message. This is
52 * passed to the metadata handler which will interpret and process it.
53 * For 'DDF' messages are internal data blocks with the leading
54 * 'magic number' signifying what sort of data it is.
55 *
56 */
57
58 /*
59 * We select on /proc/mdstat and the named pipe.
60 * We create new arrays or updated version of arrays and slip
61 * them into the head of the list, then signal 'monitor' via a pipe write.
62 * 'monitor' will notice and place the old array on a return list.
63 * Metadata updates are placed on a queue just like they arrive
64 * from the named pipe.
65 *
66 * When new arrays are found based on correct metadata string, we
67 * need to identify them with an entry in the metadata. Maybe we require
68 * the metadata to be mdX/NN when NN is the index into an appropriate table.
69 *
70 */
71
72 /*
73 * List of tasks:
74 * - Watch for spares to be added to the container, and write updated
75 * metadata to them.
76 * - Watch for new arrays using this container, confirm they match metadata
77 * and if so, start monitoring them
78 * - Watch for spares being added to monitored arrays. This shouldn't
79 * happen, as we should do all the adding. Just remove them.
80 * - Watch for change in raid-disks, chunk-size, etc. Update metadata and
81 * start a reshape.
82 */
83 #ifndef _GNU_SOURCE
84 #define _GNU_SOURCE
85 #endif
86 #include "mdadm.h"
87 #include "mdmon.h"
88 #include <sys/syscall.h>
89 #include <sys/socket.h>
90 #include <signal.h>
91
92 static void close_aa(struct active_array *aa)
93 {
94 struct mdinfo *d;
95
96 for (d = aa->info.devs; d; d = d->next)
97 close(d->state_fd);
98
99 close(aa->action_fd);
100 close(aa->info.state_fd);
101 close(aa->resync_start_fd);
102 }
103
104 static void free_aa(struct active_array *aa)
105 {
106 /* Note that this doesn't close fds if they are being used
107 * by a clone. ->container will be set for a clone
108 */
109 dprintf("%s: devnum: %d\n", __func__, aa->devnum);
110 if (!aa->container)
111 close_aa(aa);
112 while (aa->info.devs) {
113 struct mdinfo *d = aa->info.devs;
114 aa->info.devs = d->next;
115 free(d);
116 }
117 free(aa);
118 }
119
120 static struct active_array *duplicate_aa(struct active_array *aa)
121 {
122 struct active_array *newa = malloc(sizeof(*newa));
123 struct mdinfo **dp1, **dp2;
124
125 *newa = *aa;
126 newa->next = NULL;
127 newa->replaces = NULL;
128 newa->info.next = NULL;
129
130 dp2 = &newa->info.devs;
131
132 for (dp1 = &aa->info.devs; *dp1; dp1 = &(*dp1)->next) {
133 struct mdinfo *d;
134 if ((*dp1)->state_fd < 0)
135 continue;
136
137 d = malloc(sizeof(*d));
138 *d = **dp1;
139 *dp2 = d;
140 dp2 = & d->next;
141 }
142 *dp2 = NULL;
143
144 return newa;
145 }
146
147 static void wakeup_monitor(void)
148 {
149 /* tgkill(getpid(), mon_tid, SIGUSR1); */
150 int pid = getpid();
151 syscall(SYS_tgkill, pid, mon_tid, SIGUSR1);
152 }
153
154 static void remove_old(void)
155 {
156 if (discard_this) {
157 discard_this->next = NULL;
158 free_aa(discard_this);
159 if (pending_discard == discard_this)
160 pending_discard = NULL;
161 discard_this = NULL;
162 wakeup_monitor();
163 }
164 }
165
166 static void replace_array(struct supertype *container,
167 struct active_array *old,
168 struct active_array *new)
169 {
170 /* To replace an array, we add it to the top of the list
171 * marked with ->replaces to point to the original.
172 * 'monitor' will take the original out of the list
173 * and put it on 'discard_this'. We take it from there
174 * and discard it.
175 */
176 remove_old();
177 while (pending_discard) {
178 while (discard_this == NULL)
179 sleep(1);
180 remove_old();
181 }
182 pending_discard = old;
183 new->replaces = old;
184 new->next = container->arrays;
185 container->arrays = new;
186 wakeup_monitor();
187 }
188
189 struct metadata_update *update_queue = NULL;
190 struct metadata_update *update_queue_handled = NULL;
191 struct metadata_update *update_queue_pending = NULL;
192
193 void check_update_queue(struct supertype *container)
194 {
195 while (update_queue_handled) {
196 struct metadata_update *this = update_queue_handled;
197 update_queue_handled = this->next;
198 free(this->buf);
199 if (this->space)
200 free(this->space);
201 free(this);
202 }
203 if (update_queue == NULL &&
204 update_queue_pending) {
205 update_queue = update_queue_pending;
206 update_queue_pending = NULL;
207 wakeup_monitor();
208 }
209 }
210
211 static void queue_metadata_update(struct metadata_update *mu)
212 {
213 struct metadata_update **qp;
214
215 qp = &update_queue_pending;
216 while (*qp)
217 qp = & ((*qp)->next);
218 *qp = mu;
219 }
220
221 static void manage_container(struct mdstat_ent *mdstat,
222 struct supertype *container)
223 {
224 /* The only thing of interest here is if a new device
225 * has been added to the container. We add it to the
226 * array ignoring any metadata on it.
227 * FIXME should we look for compatible metadata and take hints
228 * about spare assignment.... probably not.
229 */
230 if (mdstat->devcnt != container->devcnt) {
231 /* read /sys/block/NAME/md/dev-??/block/dev to find out
232 * what is there, and compare with container->info.devs
233 * To see what is removed and what is added.
234 * These need to be remove from, or added to, the array
235 */
236 // FIXME
237 container->devcnt = mdstat->devcnt;
238 }
239 }
240
241 static void manage_member(struct mdstat_ent *mdstat,
242 struct active_array *a)
243 {
244 /* Compare mdstat info with known state of member array.
245 * We do not need to look for device state changes here, that
246 * is dealt with by the monitor.
247 *
248 * We just look for changes which suggest that a reshape is
249 * being requested.
250 * Unfortunately decreases in raid_disks don't show up in
251 * mdstat until the reshape completes FIXME.
252 *
253 * Actually, we also want to handle degraded arrays here by
254 * trying to find and assign a spare.
255 * We do that whenever the monitor tells us too.
256 */
257 // FIXME
258 a->info.array.raid_disks = mdstat->raid_disks;
259 a->info.array.chunk_size = mdstat->chunk_size;
260 // MORE
261
262 if (a->check_degraded) {
263 struct metadata_update *updates = NULL;
264 struct mdinfo *newdev;
265 struct active_array *newa;
266
267 a->check_degraded = 0;
268
269 /* The array may not be degraded, this is just a good time
270 * to check.
271 */
272 newdev = a->container->ss->activate_spare(a, &updates);
273 if (newdev) {
274 struct mdinfo *d;
275 /* Cool, we can add a device or several. */
276 newa = duplicate_aa(a);
277 /* suspend recovery - maybe not needed */
278
279 /* Add device to array and set offset/size/slot.
280 * and open files for each newdev */
281 for (d = newdev; d ; d = d->next) {
282 struct mdinfo *newd;
283 if (sysfs_add_disk(&newa->info, d) < 0)
284 continue;
285 newd = newa->info.devs;
286 newd->state_fd = sysfs_open(a->devnum,
287 newd->sys_name,
288 "state");
289 newd->prev_state
290 = read_dev_state(newd->state_fd);
291 newd->curr_state = newd->prev_state;
292 }
293 queue_metadata_update(updates);
294 replace_array(a->container, a, newa);
295 sysfs_set_str(&a->info, NULL, "sync_action", "recover");
296 }
297 }
298 }
299
300 static int aa_ready(struct active_array *aa)
301 {
302 struct mdinfo *d;
303 int level = aa->info.array.level;
304
305 for (d = aa->info.devs; d; d = d->next)
306 if (d->state_fd < 0)
307 return 0;
308
309 if (aa->info.state_fd < 0)
310 return 0;
311
312 if (level > 0 && (aa->action_fd < 0 || aa->resync_start_fd < 0))
313 return 0;
314
315 if (!aa->container)
316 return 0;
317
318 return 1;
319 }
320
321 static void manage_new(struct mdstat_ent *mdstat,
322 struct supertype *container,
323 struct active_array *victim)
324 {
325 /* A new array has appeared in this container.
326 * Hopefully it is already recorded in the metadata.
327 * Check, then create the new array to report it to
328 * the monitor.
329 */
330
331 struct active_array *new;
332 struct mdinfo *mdi, *di;
333 char *inst;
334 int i;
335 int failed = 0;
336
337 /* check if array is ready to be monitored */
338 if (!mdstat->active)
339 return;
340
341 mdi = sysfs_read(-1, mdstat->devnum,
342 GET_LEVEL|GET_CHUNK|GET_DISKS|GET_COMPONENT|
343 GET_DEGRADED|GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE);
344
345 new = malloc(sizeof(*new));
346
347 if (!new || !mdi) {
348 if (mdi)
349 sysfs_free(mdi);
350 if (new)
351 free(new);
352 return;
353 }
354 memset(new, 0, sizeof(*new));
355
356 new->devnum = mdstat->devnum;
357 strcpy(new->info.sys_name, devnum2devname(new->devnum));
358
359 new->prev_state = new->curr_state = new->next_state = inactive;
360 new->prev_action= new->curr_action= new->next_action= idle;
361
362 new->container = container;
363
364 inst = &mdstat->metadata_version[10+strlen(container->devname)+1];
365
366 new->info.array = mdi->array;
367 new->info.component_size = mdi->component_size;
368
369 for (i = 0; i < new->info.array.raid_disks; i++) {
370 struct mdinfo *newd = malloc(sizeof(*newd));
371
372 for (di = mdi->devs; di; di = di->next)
373 if (i == di->disk.raid_disk)
374 break;
375
376 if (di) {
377 memcpy(newd, di, sizeof(*newd));
378
379 newd->state_fd = sysfs_open(new->devnum,
380 newd->sys_name,
381 "state");
382
383 newd->prev_state = read_dev_state(newd->state_fd);
384 newd->curr_state = newd->prev_state;
385 } else if (failed + 1 > new->info.array.failed_disks) {
386 /* we cannot properly monitor without all working disks */
387 new->container = NULL;
388 break;
389 } else {
390 failed++;
391 free(newd);
392 continue;
393 }
394 sprintf(newd->sys_name, "rd%d", i);
395 newd->next = new->info.devs;
396 new->info.devs = newd;
397 }
398
399 new->action_fd = sysfs_open(new->devnum, NULL, "sync_action");
400 new->info.state_fd = sysfs_open(new->devnum, NULL, "array_state");
401 new->resync_start_fd = sysfs_open(new->devnum, NULL, "resync_start");
402 get_resync_start(new);
403 dprintf("%s: inst: %d action: %d state: %d\n", __func__, atoi(inst),
404 new->action_fd, new->info.state_fd);
405
406 sysfs_free(mdi);
407
408 /* if everything checks out tell the metadata handler we want to
409 * manage this instance
410 */
411 if (!aa_ready(new) || container->ss->open_new(container, new, inst) < 0) {
412 fprintf(stderr, "mdmon: failed to monitor %s\n",
413 mdstat->metadata_version);
414 new->container = NULL;
415 free_aa(new);
416 } else
417 replace_array(container, victim, new);
418 }
419
420 void manage(struct mdstat_ent *mdstat, struct supertype *container)
421 {
422 /* We have just read mdstat and need to compare it with
423 * the known active arrays.
424 * Arrays with the wrong metadata are ignored.
425 */
426
427 for ( ; mdstat ; mdstat = mdstat->next) {
428 struct active_array *a;
429 if (mdstat->devnum == container->devnum) {
430 manage_container(mdstat, container);
431 continue;
432 }
433 if (mdstat->metadata_version == NULL ||
434 strncmp(mdstat->metadata_version, "external:/", 10) != 0 ||
435 strncmp(mdstat->metadata_version+10, container->devname,
436 strlen(container->devname)) != 0 ||
437 mdstat->metadata_version[10+strlen(container->devname)]
438 != '/')
439 /* Not for this array */
440 continue;
441 /* Looks like a member of this container */
442 for (a = container->arrays; a; a = a->next) {
443 if (mdstat->devnum == a->devnum) {
444 if (a->container)
445 manage_member(mdstat, a);
446 break;
447 }
448 }
449 if (a == NULL || !a->container)
450 manage_new(mdstat, container, a);
451 }
452 }
453
454 static void handle_message(struct supertype *container, struct metadata_update *msg)
455 {
456 /* queue this metadata update through to the monitor */
457
458 struct metadata_update *mu;
459
460 if (msg->len == 0) {
461 int cnt;
462
463 while (update_queue_pending || update_queue) {
464 check_update_queue(container);
465 usleep(15*1000);
466 }
467
468 cnt = monitor_loop_cnt;
469 if (cnt & 1)
470 cnt += 2; /* wait until next pselect */
471 else
472 cnt += 3; /* wait for 2 pselects */
473 wakeup_monitor();
474
475 while (monitor_loop_cnt - cnt < 0)
476 usleep(10 * 1000);
477 } else {
478 mu = malloc(sizeof(*mu));
479 mu->len = msg->len;
480 mu->buf = msg->buf;
481 msg->buf = NULL;
482 mu->space = NULL;
483 mu->next = NULL;
484 if (container->ss->prepare_update)
485 container->ss->prepare_update(container, mu);
486 queue_metadata_update(mu);
487 }
488 }
489
490 void read_sock(struct supertype *container)
491 {
492 int fd;
493 struct metadata_update msg;
494 int terminate = 0;
495 long fl;
496 int tmo = 3; /* 3 second timeout before hanging up the socket */
497
498 fd = accept(container->sock, NULL, NULL);
499 if (fd < 0)
500 return;
501
502 fl = fcntl(fd, F_GETFL, 0);
503 fl |= O_NONBLOCK;
504 fcntl(fd, F_SETFL, fl);
505
506 do {
507 msg.buf = NULL;
508
509 /* read and validate the message */
510 if (receive_message(fd, &msg, tmo) == 0) {
511 handle_message(container, &msg);
512 if (ack(fd, tmo) < 0)
513 terminate = 1;
514 } else
515 terminate = 1;
516
517 } while (!terminate);
518
519 close(fd);
520 }
521
522 int exit_now = 0;
523 int manager_ready = 0;
524 void do_manager(struct supertype *container)
525 {
526 struct mdstat_ent *mdstat;
527 sigset_t set;
528
529 sigprocmask(SIG_UNBLOCK, NULL, &set);
530 sigdelset(&set, SIGUSR1);
531
532 do {
533
534 if (exit_now)
535 exit(0);
536
537 /* Can only 'manage' things if 'monitor' is not making
538 * structural changes to metadata, so need to check
539 * update_queue
540 */
541 if (update_queue == NULL) {
542 mdstat = mdstat_read(1, 0);
543
544 manage(mdstat, container);
545
546 read_sock(container);
547
548 free_mdstat(mdstat);
549 }
550 remove_old();
551
552 check_update_queue(container);
553
554 manager_ready = 1;
555
556 if (update_queue == NULL)
557 mdstat_wait_fd(container->sock, &set);
558 else
559 /* If an update is happening, just wait for signal */
560 pselect(0, NULL, NULL, NULL, NULL, &set);
561 } while(1);
562 }