]> git.ipfire.org Git - thirdparty/mdadm.git/blob - managemon.c
Merge branch 'devel' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/mdadm...
[thirdparty/mdadm.git] / managemon.c
1
2 /*
3 * The management thread for monitoring active md arrays.
4 * This thread does things which might block such as memory
5 * allocation.
6 * In particular:
7 *
8 * - Find out about new arrays in this container.
9 * Allocate the data structures and open the files.
10 *
11 * For this we watch /proc/mdstat and find new arrays with
12 * metadata type that confirms sharing. e.g. "md4"
13 * When we find a new array we slip it into the list of
14 * arrays and signal 'monitor' by writing to a pipe.
15 *
16 * - Respond to reshape requests by allocating new data structures
17 * and opening new files.
18 *
19 * These come as a change to raid_disks. We allocate a new
20 * version of the data structures and slip it into the list.
21 * 'monitor' will notice and release the old version.
22 * Changes to level, chunksize, layout.. do not need re-allocation.
23 * Reductions in raid_disks don't really either, but we handle
24 * them the same way for consistency.
25 *
26 * - When a device is added to the container, we add it to the metadata
27 * as a spare.
28 *
29 * - Deal with degraded array
30 * We only do this when first noticing the array is degraded.
31 * This can be when we first see the array, when sync completes or
32 * when recovery completes.
33 *
34 * Check if number of failed devices suggests recovery is needed, and
35 * skip if not.
36 * Ask metadata to allocate a spare device
37 * Add device as not in_sync and give a role
38 * Update metadata.
39 * Open sysfs files and pass to monitor.
40 * Make sure that monitor Starts recovery....
41 *
42 * - Pass on metadata updates from external programs such as
43 * mdadm creating a new array.
44 *
45 * This is most-messy.
46 * It might involve adding a new array or changing the status of
47 * a spare, or any reconfig that the kernel doesn't get involved in.
48 *
49 * The required updates are received via a named pipe. There will
50 * be one named pipe for each container. Each message contains a
51 * sync marker: 0x5a5aa5a5, A byte count, and the message. This is
52 * passed to the metadata handler which will interpret and process it.
53 * For 'DDF' messages are internal data blocks with the leading
54 * 'magic number' signifying what sort of data it is.
55 *
56 */
57
58 /*
59 * We select on /proc/mdstat and the named pipe.
60 * We create new arrays or updated version of arrays and slip
61 * them into the head of the list, then signal 'monitor' via a pipe write.
62 * 'monitor' will notice and place the old array on a return list.
63 * Metadata updates are placed on a queue just like they arrive
64 * from the named pipe.
65 *
66 * When new arrays are found based on correct metadata string, we
67 * need to identify them with an entry in the metadata. Maybe we require
68 * the metadata to be mdX/NN when NN is the index into an appropriate table.
69 *
70 */
71
72 /*
73 * List of tasks:
74 * - Watch for spares to be added to the container, and write updated
75 * metadata to them.
76 * - Watch for new arrays using this container, confirm they match metadata
77 * and if so, start monitoring them
78 * - Watch for spares being added to monitored arrays. This shouldn't
79 * happen, as we should do all the adding. Just remove them.
80 * - Watch for change in raid-disks, chunk-size, etc. Update metadata and
81 * start a reshape.
82 */
83 #ifndef _GNU_SOURCE
84 #define _GNU_SOURCE
85 #endif
86 #include "mdadm.h"
87 #include "mdmon.h"
88 #include <sys/syscall.h>
89 #include <sys/socket.h>
90 #include <signal.h>
91
92 static void close_aa(struct active_array *aa)
93 {
94 struct mdinfo *d;
95
96 for (d = aa->info.devs; d; d = d->next)
97 close(d->state_fd);
98
99 close(aa->action_fd);
100 close(aa->info.state_fd);
101 close(aa->resync_start_fd);
102 }
103
104 static void free_aa(struct active_array *aa)
105 {
106 /* Note that this doesn't close fds if they are being used
107 * by a clone. ->container will be set for a clone
108 */
109 dprintf("%s: devnum: %d\n", __func__, aa->devnum);
110 if (!aa->container)
111 close_aa(aa);
112 while (aa->info.devs) {
113 struct mdinfo *d = aa->info.devs;
114 aa->info.devs = d->next;
115 free(d);
116 }
117 free(aa);
118 }
119
120 static struct active_array *duplicate_aa(struct active_array *aa)
121 {
122 struct active_array *newa = malloc(sizeof(*newa));
123 struct mdinfo **dp1, **dp2;
124
125 *newa = *aa;
126 newa->next = NULL;
127 newa->replaces = NULL;
128 newa->info.next = NULL;
129
130 dp2 = &newa->info.devs;
131
132 for (dp1 = &aa->info.devs; *dp1; dp1 = &(*dp1)->next) {
133 struct mdinfo *d;
134 if ((*dp1)->state_fd < 0)
135 continue;
136
137 d = malloc(sizeof(*d));
138 *d = **dp1;
139 *dp2 = d;
140 dp2 = & d->next;
141 }
142 *dp2 = NULL;
143
144 return newa;
145 }
146
147 static void wakeup_monitor(void)
148 {
149 /* tgkill(getpid(), mon_tid, SIGUSR1); */
150 int pid = getpid();
151 syscall(SYS_tgkill, pid, mon_tid, SIGUSR1);
152 }
153
154 static void remove_old(void)
155 {
156 if (discard_this) {
157 discard_this->next = NULL;
158 free_aa(discard_this);
159 if (pending_discard == discard_this)
160 pending_discard = NULL;
161 discard_this = NULL;
162 wakeup_monitor();
163 }
164 }
165
166 static void replace_array(struct supertype *container,
167 struct active_array *old,
168 struct active_array *new)
169 {
170 /* To replace an array, we add it to the top of the list
171 * marked with ->replaces to point to the original.
172 * 'monitor' will take the original out of the list
173 * and put it on 'discard_this'. We take it from there
174 * and discard it.
175 */
176 remove_old();
177 while (pending_discard) {
178 while (discard_this == NULL)
179 sleep(1);
180 remove_old();
181 }
182 pending_discard = old;
183 new->replaces = old;
184 new->next = container->arrays;
185 container->arrays = new;
186 wakeup_monitor();
187 }
188
189 struct metadata_update *update_queue = NULL;
190 struct metadata_update *update_queue_handled = NULL;
191 struct metadata_update *update_queue_pending = NULL;
192
193 void check_update_queue(struct supertype *container)
194 {
195 while (update_queue_handled) {
196 struct metadata_update *this = update_queue_handled;
197 update_queue_handled = this->next;
198 free(this->buf);
199 if (this->space)
200 free(this->space);
201 free(this);
202 }
203 if (update_queue == NULL &&
204 update_queue_pending) {
205 update_queue = update_queue_pending;
206 update_queue_pending = NULL;
207 wakeup_monitor();
208 }
209 }
210
211 static void queue_metadata_update(struct metadata_update *mu)
212 {
213 struct metadata_update **qp;
214
215 qp = &update_queue_pending;
216 while (*qp)
217 qp = & ((*qp)->next);
218 *qp = mu;
219 }
220
221 void wait_update_handled(void)
222 {
223 /* Wait for any pending update to be handled by monitor.
224 * i.e. wait until update_queue is NULL
225 */
226 while (update_queue)
227 usleep(100 * 1000);
228 }
229
230 static void manage_container(struct mdstat_ent *mdstat,
231 struct supertype *container)
232 {
233 /* The only thing of interest here is if a new device
234 * has been added to the container. We add it to the
235 * array ignoring any metadata on it.
236 * FIXME should we look for compatible metadata and take hints
237 * about spare assignment.... probably not.
238 */
239 if (mdstat->devcnt != container->devcnt) {
240 /* read /sys/block/NAME/md/dev-??/block/dev to find out
241 * what is there, and compare with container->info.devs
242 * To see what is removed and what is added.
243 * These need to be remove from, or added to, the array
244 */
245 // FIXME
246 container->devcnt = mdstat->devcnt;
247 }
248 }
249
250 static void manage_member(struct mdstat_ent *mdstat,
251 struct active_array *a)
252 {
253 /* Compare mdstat info with known state of member array.
254 * We do not need to look for device state changes here, that
255 * is dealt with by the monitor.
256 *
257 * We just look for changes which suggest that a reshape is
258 * being requested.
259 * Unfortunately decreases in raid_disks don't show up in
260 * mdstat until the reshape completes FIXME.
261 *
262 * Actually, we also want to handle degraded arrays here by
263 * trying to find and assign a spare.
264 * We do that whenever the monitor tells us too.
265 */
266 // FIXME
267 a->info.array.raid_disks = mdstat->raid_disks;
268 a->info.array.chunk_size = mdstat->chunk_size;
269 // MORE
270
271 if (a->check_degraded) {
272 struct metadata_update *updates = NULL;
273 struct mdinfo *newdev;
274 struct active_array *newa;
275 wait_update_handled();
276 a->check_degraded = 0;
277
278 /* The array may not be degraded, this is just a good time
279 * to check.
280 */
281 newdev = a->container->ss->activate_spare(a, &updates);
282 if (newdev) {
283 struct mdinfo *d;
284 /* Cool, we can add a device or several. */
285 newa = duplicate_aa(a);
286 /* suspend recovery - maybe not needed */
287
288 /* Add device to array and set offset/size/slot.
289 * and open files for each newdev */
290 for (d = newdev; d ; d = d->next) {
291 struct mdinfo *newd;
292 if (sysfs_add_disk(&newa->info, d) < 0)
293 continue;
294 newd = newa->info.devs;
295 newd->state_fd = sysfs_open(a->devnum,
296 newd->sys_name,
297 "state");
298 newd->prev_state
299 = read_dev_state(newd->state_fd);
300 newd->curr_state = newd->prev_state;
301 }
302 queue_metadata_update(updates);
303 replace_array(a->container, a, newa);
304 sysfs_set_str(&a->info, NULL, "sync_action", "repair");
305 }
306 }
307 }
308
309 static int aa_ready(struct active_array *aa)
310 {
311 struct mdinfo *d;
312 int level = aa->info.array.level;
313
314 for (d = aa->info.devs; d; d = d->next)
315 if (d->state_fd < 0)
316 return 0;
317
318 if (aa->info.state_fd < 0)
319 return 0;
320
321 if (level > 0 && (aa->action_fd < 0 || aa->resync_start_fd < 0))
322 return 0;
323
324 if (!aa->container)
325 return 0;
326
327 return 1;
328 }
329
330 static void manage_new(struct mdstat_ent *mdstat,
331 struct supertype *container,
332 struct active_array *victim)
333 {
334 /* A new array has appeared in this container.
335 * Hopefully it is already recorded in the metadata.
336 * Check, then create the new array to report it to
337 * the monitor.
338 */
339
340 struct active_array *new;
341 struct mdinfo *mdi, *di;
342 char *inst;
343 int i;
344
345 /* check if array is ready to be monitored */
346 if (!mdstat->active)
347 return;
348
349 mdi = sysfs_read(-1, mdstat->devnum,
350 GET_LEVEL|GET_CHUNK|GET_DISKS|GET_COMPONENT|
351 GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE);
352
353 new = malloc(sizeof(*new));
354
355 if (!new || !mdi) {
356 if (mdi)
357 sysfs_free(mdi);
358 if (new)
359 free(new);
360 return;
361 }
362 memset(new, 0, sizeof(*new));
363
364 new->devnum = mdstat->devnum;
365 strcpy(new->info.sys_name, devnum2devname(new->devnum));
366
367 new->prev_state = new->curr_state = new->next_state = inactive;
368 new->prev_action= new->curr_action= new->next_action= idle;
369
370 new->container = container;
371
372 inst = &mdstat->metadata_version[10+strlen(container->devname)+1];
373
374 new->info.array = mdi->array;
375 new->info.component_size = mdi->component_size;
376
377 for (i = 0; i < new->info.array.raid_disks; i++) {
378 struct mdinfo *newd = malloc(sizeof(*newd));
379
380 for (di = mdi->devs; di; di = di->next)
381 if (i == di->disk.raid_disk)
382 break;
383
384 if (di) {
385 memcpy(newd, di, sizeof(*newd));
386
387 newd->state_fd = sysfs_open(new->devnum,
388 newd->sys_name,
389 "state");
390
391 newd->prev_state = read_dev_state(newd->state_fd);
392 newd->curr_state = newd->prev_state;
393 } else {
394 /* we cannot properly monitor without all raid_disks */
395 new->container = NULL;
396 break;
397 }
398 sprintf(newd->sys_name, "rd%d", i);
399 newd->next = new->info.devs;
400 new->info.devs = newd;
401 }
402
403 new->action_fd = sysfs_open(new->devnum, NULL, "sync_action");
404 new->info.state_fd = sysfs_open(new->devnum, NULL, "array_state");
405 new->resync_start_fd = sysfs_open(new->devnum, NULL, "resync_start");
406 get_resync_start(new);
407 dprintf("%s: inst: %d action: %d state: %d\n", __func__, atoi(inst),
408 new->action_fd, new->info.state_fd);
409
410 sysfs_free(mdi);
411
412 /* if everything checks out tell the metadata handler we want to
413 * manage this instance
414 */
415 if (!aa_ready(new) || container->ss->open_new(container, new, inst) < 0) {
416 fprintf(stderr, "mdmon: failed to monitor %s\n",
417 mdstat->metadata_version);
418 new->container = NULL;
419 free_aa(new);
420 } else
421 replace_array(container, victim, new);
422 }
423
424 void manage(struct mdstat_ent *mdstat, struct supertype *container)
425 {
426 /* We have just read mdstat and need to compare it with
427 * the known active arrays.
428 * Arrays with the wrong metadata are ignored.
429 */
430
431 for ( ; mdstat ; mdstat = mdstat->next) {
432 struct active_array *a;
433 if (mdstat->devnum == container->devnum) {
434 manage_container(mdstat, container);
435 continue;
436 }
437 if (mdstat->metadata_version == NULL ||
438 strncmp(mdstat->metadata_version, "external:/", 10) != 0 ||
439 strncmp(mdstat->metadata_version+10, container->devname,
440 strlen(container->devname)) != 0 ||
441 mdstat->metadata_version[10+strlen(container->devname)]
442 != '/')
443 /* Not for this array */
444 continue;
445 /* Looks like a member of this container */
446 for (a = container->arrays; a; a = a->next) {
447 if (mdstat->devnum == a->devnum) {
448 if (a->container)
449 manage_member(mdstat, a);
450 break;
451 }
452 }
453 if (a == NULL || !a->container)
454 manage_new(mdstat, container, a);
455 }
456 }
457
458 static void handle_message(struct supertype *container, struct metadata_update *msg)
459 {
460 /* queue this metadata update through to the monitor */
461
462 struct metadata_update *mu;
463
464 if (msg->len == 0) {
465 int cnt = monitor_loop_cnt;
466 if (cnt & 1)
467 cnt += 2; /* wait until next pselect */
468 else
469 cnt += 3; /* wait for 2 pselects */
470 wakeup_monitor();
471 wait_update_handled();
472 while (monitor_loop_cnt - cnt < 0)
473 usleep(10 * 1000);
474 } else {
475 mu = malloc(sizeof(*mu));
476 mu->len = msg->len;
477 mu->buf = msg->buf;
478 msg->buf = NULL;
479 mu->space = NULL;
480 mu->next = NULL;
481 if (container->ss->prepare_update)
482 container->ss->prepare_update(container, mu);
483 queue_metadata_update(mu);
484 }
485 }
486
487 void read_sock(struct supertype *container)
488 {
489 int fd;
490 struct metadata_update msg;
491 int terminate = 0;
492 long fl;
493 int tmo = 3; /* 3 second timeout before hanging up the socket */
494
495 fd = accept(container->sock, NULL, NULL);
496 if (fd < 0)
497 return;
498
499 fl = fcntl(fd, F_GETFL, 0);
500 fl |= O_NONBLOCK;
501 fcntl(fd, F_SETFL, fl);
502
503 do {
504 msg.buf = NULL;
505
506 /* read and validate the message */
507 if (receive_message(fd, &msg, tmo) == 0) {
508 handle_message(container, &msg);
509 if (ack(fd, tmo) < 0)
510 terminate = 1;
511 } else
512 terminate = 1;
513
514 } while (!terminate);
515
516 close(fd);
517 }
518
519 int exit_now = 0;
520 int manager_ready = 0;
521 void do_manager(struct supertype *container)
522 {
523 struct mdstat_ent *mdstat;
524 sigset_t set;
525
526 sigprocmask(SIG_UNBLOCK, NULL, &set);
527 sigdelset(&set, SIGUSR1);
528
529 do {
530
531 if (exit_now)
532 exit(0);
533
534 mdstat = mdstat_read(1, 0);
535
536 manage(mdstat, container);
537
538 read_sock(container);
539
540 free_mdstat(mdstat);
541
542 remove_old();
543
544 check_update_queue(container);
545
546 manager_ready = 1;
547
548 mdstat_wait_fd(container->sock, &set);
549 } while(1);
550 }