]> git.ipfire.org Git - thirdparty/mdadm.git/blob - monitor.c
Detail: clean up handing of the 'info' we load from superblock.
[thirdparty/mdadm.git] / monitor.c
1 /*
2 * mdmon - monitor external metadata arrays
3 *
4 * Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
5 * Copyright (C) 2007-2009 Intel Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include <sys/syscall.h>
24 #include <sys/select.h>
25 #include <signal.h>
26
27 static char *array_states[] = {
28 "clear", "inactive", "suspended", "readonly", "read-auto",
29 "clean", "active", "write-pending", "active-idle", NULL };
30 static char *sync_actions[] = {
31 "idle", "reshape", "resync", "recover", "check", "repair", NULL
32 };
33
34 static int write_attr(char *attr, int fd)
35 {
36 return write(fd, attr, strlen(attr));
37 }
38
39 static void add_fd(fd_set *fds, int *maxfd, int fd)
40 {
41 if (fd < 0)
42 return;
43 if (fd > *maxfd)
44 *maxfd = fd;
45 FD_SET(fd, fds);
46 }
47
48 static int read_attr(char *buf, int len, int fd)
49 {
50 int n;
51
52 if (fd < 0) {
53 buf[0] = 0;
54 return 0;
55 }
56 lseek(fd, 0, 0);
57 n = read(fd, buf, len - 1);
58
59 if (n <= 0) {
60 buf[0] = 0;
61 return 0;
62 }
63 buf[n] = 0;
64 if (buf[n-1] == '\n')
65 buf[n-1] = 0;
66 return n;
67 }
68
69 static unsigned long long read_resync_start(int fd)
70 {
71 char buf[30];
72 int n;
73
74 n = read_attr(buf, 30, fd);
75 if (n <= 0)
76 return 0;
77 if (strncmp(buf, "none", 4) == 0)
78 return MaxSector;
79 else
80 return strtoull(buf, NULL, 10);
81 }
82
83 static unsigned long long read_sync_completed(int fd)
84 {
85 unsigned long long val;
86 char buf[50];
87 int n;
88 char *ep;
89
90 n = read_attr(buf, 50, fd);
91
92 if (n <= 0)
93 return 0;
94 buf[n] = 0;
95 val = strtoull(buf, &ep, 0);
96 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
97 return 0;
98 return val;
99 }
100
101 static enum array_state read_state(int fd)
102 {
103 char buf[20];
104 int n = read_attr(buf, 20, fd);
105
106 if (n <= 0)
107 return bad_word;
108 return (enum array_state) sysfs_match_word(buf, array_states);
109 }
110
111 static enum sync_action read_action( int fd)
112 {
113 char buf[20];
114 int n = read_attr(buf, 20, fd);
115
116 if (n <= 0)
117 return bad_action;
118 return (enum sync_action) sysfs_match_word(buf, sync_actions);
119 }
120
121 int read_dev_state(int fd)
122 {
123 char buf[60];
124 int n = read_attr(buf, 60, fd);
125 char *cp;
126 int rv = 0;
127
128 if (n <= 0)
129 return 0;
130
131 cp = buf;
132 while (cp) {
133 if (sysfs_attr_match(cp, "faulty"))
134 rv |= DS_FAULTY;
135 if (sysfs_attr_match(cp, "in_sync"))
136 rv |= DS_INSYNC;
137 if (sysfs_attr_match(cp, "write_mostly"))
138 rv |= DS_WRITE_MOSTLY;
139 if (sysfs_attr_match(cp, "spare"))
140 rv |= DS_SPARE;
141 if (sysfs_attr_match(cp, "blocked"))
142 rv |= DS_BLOCKED;
143 cp = strchr(cp, ',');
144 if (cp)
145 cp++;
146 }
147 return rv;
148 }
149
150 static void signal_manager(void)
151 {
152 /* tgkill(getpid(), mon_tid, SIGUSR1); */
153 int pid = getpid();
154 syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1);
155 }
156
157 /* Monitor a set of active md arrays - all of which share the
158 * same metadata - and respond to events that require
159 * metadata update.
160 *
161 * New arrays are detected by another thread which allocates
162 * required memory and attaches the data structure to our list.
163 *
164 * Events:
165 * Array stops.
166 * This is detected by array_state going to 'clear' or 'inactive'.
167 * while we thought it was active.
168 * Response is to mark metadata as clean and 'clear' the array(??)
169 * write-pending
170 * array_state if 'write-pending'
171 * We mark metadata as 'dirty' then set array to 'active'.
172 * active_idle
173 * Either ignore, or mark clean, then mark metadata as clean.
174 *
175 * device fails
176 * detected by rd-N/state reporting "faulty"
177 * mark device as 'failed' in metadata, let the kernel release the
178 * device by writing '-blocked' to rd/state, and finally write 'remove' to
179 * rd/state. Before a disk can be replaced it must be failed and removed
180 * from all container members, this will be preemptive for the other
181 * arrays... safe?
182 *
183 * sync completes
184 * sync_action was 'resync' and becomes 'idle' and resync_start becomes
185 * MaxSector
186 * Notify metadata that sync is complete.
187 *
188 * recovery completes
189 * sync_action changes from 'recover' to 'idle'
190 * Check each device state and mark metadata if 'faulty' or 'in_sync'.
191 *
192 * deal with resync
193 * This only happens on finding a new array... mdadm will have set
194 * 'resync_start' to the correct value. If 'resync_start' indicates that an
195 * resync needs to occur set the array to the 'active' state rather than the
196 * initial read-auto state.
197 *
198 *
199 *
200 * We wait for a change (poll/select) on array_state, sync_action, and
201 * each rd-X/state file.
202 * When we get any change, we check everything. So read each state file,
203 * then decide what to do.
204 *
205 * The core action is to write new metadata to all devices in the array.
206 * This is done at most once on any wakeup.
207 * After that we might:
208 * - update the array_state
209 * - set the role of some devices.
210 * - request a sync_action
211 *
212 */
213
214 static int read_and_act(struct active_array *a)
215 {
216 unsigned long long sync_completed;
217 int check_degraded = 0;
218 int deactivate = 0;
219 struct mdinfo *mdi;
220 int dirty = 0;
221
222 a->next_state = bad_word;
223 a->next_action = bad_action;
224
225 a->curr_state = read_state(a->info.state_fd);
226 a->curr_action = read_action(a->action_fd);
227 a->info.resync_start = read_resync_start(a->resync_start_fd);
228 sync_completed = read_sync_completed(a->sync_completed_fd);
229 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
230 mdi->next_state = 0;
231 if (mdi->state_fd >= 0) {
232 mdi->recovery_start = read_resync_start(mdi->recovery_fd);
233 mdi->curr_state = read_dev_state(mdi->state_fd);
234 }
235 }
236
237 if (a->curr_state <= inactive &&
238 a->prev_state > inactive) {
239 /* array has been stopped */
240 a->container->ss->set_array_state(a, 1);
241 a->next_state = clear;
242 deactivate = 1;
243 }
244 if (a->curr_state == write_pending) {
245 a->container->ss->set_array_state(a, 0);
246 a->next_state = active;
247 dirty = 1;
248 }
249 if (a->curr_state == active_idle) {
250 /* Set array to 'clean' FIRST, then mark clean
251 * in the metadata
252 */
253 a->next_state = clean;
254 dirty = 1;
255 }
256 if (a->curr_state == clean) {
257 a->container->ss->set_array_state(a, 1);
258 }
259 if (a->curr_state == active ||
260 a->curr_state == suspended ||
261 a->curr_state == bad_word)
262 dirty = 1;
263 if (a->curr_state == readonly) {
264 /* Well, I'm ready to handle things. If readonly
265 * wasn't requested, transition to read-auto.
266 */
267 char buf[64];
268 read_attr(buf, sizeof(buf), a->metadata_fd);
269 if (strncmp(buf, "external:-", 10) == 0) {
270 /* explicit request for readonly array. Leave it alone */
271 ;
272 } else {
273 if (a->container->ss->set_array_state(a, 2))
274 a->next_state = read_auto; /* array is clean */
275 else {
276 a->next_state = active; /* Now active for recovery etc */
277 dirty = 1;
278 }
279 }
280 }
281
282 if (!deactivate &&
283 a->curr_action == idle &&
284 a->prev_action == resync) {
285 /* A resync has finished. The endpoint is recorded in
286 * 'sync_start'. We don't update the metadata
287 * until the array goes inactive or readonly though.
288 * Just check if we need to fiddle spares.
289 */
290 a->container->ss->set_array_state(a, a->curr_state <= clean);
291 check_degraded = 1;
292 }
293
294 if (!deactivate &&
295 a->curr_action == idle &&
296 a->prev_action == recover) {
297 /* A recovery has finished. Some disks may be in sync now,
298 * and the array may no longer be degraded
299 */
300 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
301 a->container->ss->set_disk(a, mdi->disk.raid_disk,
302 mdi->curr_state);
303 if (! (mdi->curr_state & DS_INSYNC))
304 check_degraded = 1;
305 }
306 }
307
308 /* Check for failures and if found:
309 * 1/ Record the failure in the metadata and unblock the device.
310 * FIXME update the kernel to stop notifying on failed drives when
311 * the array is readonly and we have cleared 'blocked'
312 * 2/ Try to remove the device if the array is writable, or can be
313 * made writable.
314 */
315 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
316 if (mdi->curr_state & DS_FAULTY) {
317 a->container->ss->set_disk(a, mdi->disk.raid_disk,
318 mdi->curr_state);
319 check_degraded = 1;
320 mdi->next_state |= DS_UNBLOCK;
321 if (a->curr_state == read_auto) {
322 a->container->ss->set_array_state(a, 0);
323 a->next_state = active;
324 }
325 if (a->curr_state > readonly)
326 mdi->next_state |= DS_REMOVE;
327 }
328 }
329
330 /* Check for recovery checkpoint notifications. We need to be a
331 * minimum distance away from the last checkpoint to prevent
332 * over checkpointing. Note reshape checkpointing is not
333 * handled here.
334 */
335 if (sync_completed > a->last_checkpoint &&
336 sync_completed - a->last_checkpoint > a->info.component_size >> 4 &&
337 a->curr_action > reshape) {
338 /* A (non-reshape) sync_action has reached a checkpoint.
339 * Record the updated position in the metadata
340 */
341 a->last_checkpoint = sync_completed;
342 a->container->ss->set_array_state(a, a->curr_state <= clean);
343 } else if (sync_completed > a->last_checkpoint)
344 a->last_checkpoint = sync_completed;
345
346 a->container->ss->sync_metadata(a->container);
347 dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member,
348 array_states[a->curr_state], sync_actions[a->curr_action]);
349
350 /* Effect state changes in the array */
351 if (a->next_state != bad_word) {
352 dprintf(" state:%s", array_states[a->next_state]);
353 write_attr(array_states[a->next_state], a->info.state_fd);
354 }
355 if (a->next_action != bad_action) {
356 write_attr(sync_actions[a->next_action], a->action_fd);
357 dprintf(" action:%s", sync_actions[a->next_action]);
358 }
359 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
360 if (mdi->next_state & DS_UNBLOCK) {
361 dprintf(" %d:-blocked", mdi->disk.raid_disk);
362 write_attr("-blocked", mdi->state_fd);
363 }
364
365 if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) {
366 int remove_result;
367
368 /* the kernel may not be able to immediately remove the
369 * disk, we can simply wait until the next event to try
370 * again.
371 */
372 remove_result = write_attr("remove", mdi->state_fd);
373 if (remove_result > 0) {
374 dprintf(" %d:removed", mdi->disk.raid_disk);
375 close(mdi->state_fd);
376 mdi->state_fd = -1;
377 }
378 }
379 if (mdi->next_state & DS_INSYNC) {
380 write_attr("+in_sync", mdi->state_fd);
381 dprintf(" %d:+in_sync", mdi->disk.raid_disk);
382 }
383 }
384 dprintf(" )\n");
385
386 /* move curr_ to prev_ */
387 a->prev_state = a->curr_state;
388
389 a->prev_action = a->curr_action;
390
391 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
392 mdi->prev_state = mdi->curr_state;
393 mdi->next_state = 0;
394 }
395
396 if (check_degraded) {
397 /* manager will do the actual check */
398 a->check_degraded = 1;
399 signal_manager();
400 }
401
402 if (deactivate)
403 a->container = NULL;
404
405 return dirty;
406 }
407
408 static struct mdinfo *
409 find_device(struct active_array *a, int major, int minor)
410 {
411 struct mdinfo *mdi;
412
413 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
414 if (mdi->disk.major == major && mdi->disk.minor == minor)
415 return mdi;
416
417 return NULL;
418 }
419
420 static void reconcile_failed(struct active_array *aa, struct mdinfo *failed)
421 {
422 struct active_array *a;
423 struct mdinfo *victim;
424
425 for (a = aa; a; a = a->next) {
426 if (!a->container)
427 continue;
428 victim = find_device(a, failed->disk.major, failed->disk.minor);
429 if (!victim)
430 continue;
431
432 if (!(victim->curr_state & DS_FAULTY))
433 write_attr("faulty", victim->state_fd);
434 }
435 }
436
437 #ifdef DEBUG
438 static void dprint_wake_reasons(fd_set *fds)
439 {
440 int i;
441 char proc_path[256];
442 char link[256];
443 char *basename;
444 int rv;
445
446 fprintf(stderr, "monitor: wake ( ");
447 for (i = 0; i < FD_SETSIZE; i++) {
448 if (FD_ISSET(i, fds)) {
449 sprintf(proc_path, "/proc/%d/fd/%d",
450 (int) getpid(), i);
451
452 rv = readlink(proc_path, link, sizeof(link) - 1);
453 if (rv < 0) {
454 fprintf(stderr, "%d:unknown ", i);
455 continue;
456 }
457 link[rv] = '\0';
458 basename = strrchr(link, '/');
459 fprintf(stderr, "%d:%s ",
460 i, basename ? ++basename : link);
461 }
462 }
463 fprintf(stderr, ")\n");
464 }
465 #endif
466
467 int monitor_loop_cnt;
468
469 static int wait_and_act(struct supertype *container, int nowait)
470 {
471 fd_set rfds;
472 int maxfd = 0;
473 struct active_array **aap = &container->arrays;
474 struct active_array *a, **ap;
475 int rv;
476 struct mdinfo *mdi;
477 static unsigned int dirty_arrays = ~0; /* start at some non-zero value */
478
479 FD_ZERO(&rfds);
480
481 for (ap = aap ; *ap ;) {
482 a = *ap;
483 /* once an array has been deactivated we want to
484 * ask the manager to discard it.
485 */
486 if (!a->container) {
487 if (discard_this) {
488 ap = &(*ap)->next;
489 continue;
490 }
491 *ap = a->next;
492 a->next = NULL;
493 discard_this = a;
494 signal_manager();
495 continue;
496 }
497
498 add_fd(&rfds, &maxfd, a->info.state_fd);
499 add_fd(&rfds, &maxfd, a->action_fd);
500 add_fd(&rfds, &maxfd, a->sync_completed_fd);
501 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
502 add_fd(&rfds, &maxfd, mdi->state_fd);
503
504 ap = &(*ap)->next;
505 }
506
507 if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) {
508 /* No interesting arrays, or we have been told to
509 * terminate and everything is clean. Lets see about
510 * exiting. Note that blocking at this point is not a
511 * problem as there are no active arrays, there is
512 * nothing that we need to be ready to do.
513 */
514 int fd = open_dev_excl(container->devnum);
515 if (fd >= 0 || errno != EBUSY) {
516 /* OK, we are safe to leave */
517 if (sigterm && !dirty_arrays)
518 dprintf("caught sigterm, all clean... exiting\n");
519 else
520 dprintf("no arrays to monitor... exiting\n");
521 if (!sigterm)
522 /* On SIGTERM, someone (the take-over mdmon) will
523 * clean up
524 */
525 remove_pidfile(container->devname);
526 exit_now = 1;
527 signal_manager();
528 exit(0);
529 }
530 }
531
532 if (!nowait) {
533 sigset_t set;
534 sigprocmask(SIG_UNBLOCK, NULL, &set);
535 sigdelset(&set, SIGUSR1);
536 monitor_loop_cnt |= 1;
537 rv = pselect(maxfd+1, NULL, NULL, &rfds, NULL, &set);
538 monitor_loop_cnt += 1;
539 if (rv == -1 && errno == EINTR)
540 rv = 0;
541 #ifdef DEBUG
542 dprint_wake_reasons(&rfds);
543 #endif
544
545 }
546
547 if (update_queue) {
548 struct metadata_update *this;
549
550 for (this = update_queue; this ; this = this->next)
551 container->ss->process_update(container, this);
552
553 update_queue_handled = update_queue;
554 update_queue = NULL;
555 signal_manager();
556 container->ss->sync_metadata(container);
557 }
558
559 rv = 0;
560 dirty_arrays = 0;
561 for (a = *aap; a ; a = a->next) {
562 int is_dirty;
563
564 if (a->replaces && !discard_this) {
565 struct active_array **ap;
566 for (ap = &a->next; *ap && *ap != a->replaces;
567 ap = & (*ap)->next)
568 ;
569 if (*ap)
570 *ap = (*ap)->next;
571 discard_this = a->replaces;
572 a->replaces = NULL;
573 /* FIXME check if device->state_fd need to be cleared?*/
574 signal_manager();
575 }
576 if (a->container) {
577 is_dirty = read_and_act(a);
578 rv |= 1;
579 dirty_arrays += is_dirty;
580 /* when terminating stop manipulating the array after it
581 * is clean, but make sure read_and_act() is given a
582 * chance to handle 'active_idle'
583 */
584 if (sigterm && !is_dirty)
585 a->container = NULL; /* stop touching this array */
586 }
587 }
588
589 /* propagate failures across container members */
590 for (a = *aap; a ; a = a->next) {
591 if (!a->container)
592 continue;
593 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
594 if (mdi->curr_state & DS_FAULTY)
595 reconcile_failed(*aap, mdi);
596 }
597
598 return rv;
599 }
600
601 void do_monitor(struct supertype *container)
602 {
603 int rv;
604 int first = 1;
605 do {
606 rv = wait_and_act(container, first);
607 first = 0;
608 } while (rv >= 0);
609 }