]> git.ipfire.org Git - thirdparty/mdadm.git/blob - monitor.c
Merge branch 'master' in devel-3.0
[thirdparty/mdadm.git] / monitor.c
1 /*
2 * mdmon - monitor external metadata arrays
3 *
4 * Copyright (C) 2007-2008 Neil Brown <neilb@suse.de>
5 * Copyright (C) 2007-2008 Intel Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include <sys/syscall.h>
24 #include <sys/select.h>
25 #include <signal.h>
26
27 static char *array_states[] = {
28 "clear", "inactive", "suspended", "readonly", "read-auto",
29 "clean", "active", "write-pending", "active-idle", NULL };
30 static char *sync_actions[] = {
31 "idle", "reshape", "resync", "recover", "check", "repair", NULL
32 };
33
34 static int write_attr(char *attr, int fd)
35 {
36 return write(fd, attr, strlen(attr));
37 }
38
39 static void add_fd(fd_set *fds, int *maxfd, int fd)
40 {
41 if (fd < 0)
42 return;
43 if (fd > *maxfd)
44 *maxfd = fd;
45 FD_SET(fd, fds);
46 }
47
48 static int read_attr(char *buf, int len, int fd)
49 {
50 int n;
51
52 if (fd < 0) {
53 buf[0] = 0;
54 return 0;
55 }
56 lseek(fd, 0, 0);
57 n = read(fd, buf, len - 1);
58
59 if (n <= 0) {
60 buf[0] = 0;
61 return 0;
62 }
63 buf[n] = 0;
64 if (buf[n-1] == '\n')
65 buf[n-1] = 0;
66 return n;
67 }
68
69 int get_resync_start(struct active_array *a)
70 {
71 char buf[30];
72 int n;
73
74 n = read_attr(buf, 30, a->resync_start_fd);
75 if (n <= 0)
76 return n;
77
78 a->resync_start = strtoull(buf, NULL, 10);
79
80 return 1;
81 }
82
83
84 static enum array_state read_state(int fd)
85 {
86 char buf[20];
87 int n = read_attr(buf, 20, fd);
88
89 if (n <= 0)
90 return bad_word;
91 return (enum array_state) sysfs_match_word(buf, array_states);
92 }
93
94 static enum sync_action read_action( int fd)
95 {
96 char buf[20];
97 int n = read_attr(buf, 20, fd);
98
99 if (n <= 0)
100 return bad_action;
101 return (enum sync_action) sysfs_match_word(buf, sync_actions);
102 }
103
104 int read_dev_state(int fd)
105 {
106 char buf[60];
107 int n = read_attr(buf, 60, fd);
108 char *cp;
109 int rv = 0;
110
111 if (n <= 0)
112 return 0;
113
114 cp = buf;
115 while (cp) {
116 if (sysfs_attr_match(cp, "faulty"))
117 rv |= DS_FAULTY;
118 if (sysfs_attr_match(cp, "in_sync"))
119 rv |= DS_INSYNC;
120 if (sysfs_attr_match(cp, "write_mostly"))
121 rv |= DS_WRITE_MOSTLY;
122 if (sysfs_attr_match(cp, "spare"))
123 rv |= DS_SPARE;
124 if (sysfs_attr_match(cp, "blocked"))
125 rv |= DS_BLOCKED;
126 cp = strchr(cp, ',');
127 if (cp)
128 cp++;
129 }
130 return rv;
131 }
132
133 static void signal_manager(void)
134 {
135 /* tgkill(getpid(), mon_tid, SIGUSR1); */
136 int pid = getpid();
137 syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1);
138 }
139
140 /* Monitor a set of active md arrays - all of which share the
141 * same metadata - and respond to events that require
142 * metadata update.
143 *
144 * New arrays are detected by another thread which allocates
145 * required memory and attaches the data structure to our list.
146 *
147 * Events:
148 * Array stops.
149 * This is detected by array_state going to 'clear' or 'inactive'.
150 * while we thought it was active.
151 * Response is to mark metadata as clean and 'clear' the array(??)
152 * write-pending
153 * array_state if 'write-pending'
154 * We mark metadata as 'dirty' then set array to 'active'.
155 * active_idle
156 * Either ignore, or mark clean, then mark metadata as clean.
157 *
158 * device fails
159 * detected by rd-N/state reporting "faulty"
160 * mark device as 'failed' in metadata, let the kernel release the
161 * device by writing '-blocked' to rd/state, and finally write 'remove' to
162 * rd/state. Before a disk can be replaced it must be failed and removed
163 * from all container members, this will be preemptive for the other
164 * arrays... safe?
165 *
166 * sync completes
167 * sync_action was 'resync' and becomes 'idle' and resync_start becomes
168 * MaxSector
169 * Notify metadata that sync is complete.
170 *
171 * recovery completes
172 * sync_action changes from 'recover' to 'idle'
173 * Check each device state and mark metadata if 'faulty' or 'in_sync'.
174 *
175 * deal with resync
176 * This only happens on finding a new array... mdadm will have set
177 * 'resync_start' to the correct value. If 'resync_start' indicates that an
178 * resync needs to occur set the array to the 'active' state rather than the
179 * initial read-auto state.
180 *
181 *
182 *
183 * We wait for a change (poll/select) on array_state, sync_action, and
184 * each rd-X/state file.
185 * When we get any change, we check everything. So read each state file,
186 * then decide what to do.
187 *
188 * The core action is to write new metadata to all devices in the array.
189 * This is done at most once on any wakeup.
190 * After that we might:
191 * - update the array_state
192 * - set the role of some devices.
193 * - request a sync_action
194 *
195 */
196
197 static int read_and_act(struct active_array *a)
198 {
199 int check_degraded = 0;
200 int deactivate = 0;
201 struct mdinfo *mdi;
202 int dirty = 0;
203
204 a->next_state = bad_word;
205 a->next_action = bad_action;
206
207 a->curr_state = read_state(a->info.state_fd);
208 a->curr_action = read_action(a->action_fd);
209 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
210 mdi->next_state = 0;
211 if (mdi->state_fd >= 0)
212 mdi->curr_state = read_dev_state(mdi->state_fd);
213 }
214
215 if (a->curr_state <= inactive &&
216 a->prev_state > inactive) {
217 /* array has been stopped */
218 get_resync_start(a);
219 a->container->ss->set_array_state(a, 1);
220 a->next_state = clear;
221 deactivate = 1;
222 }
223 if (a->curr_state == write_pending) {
224 get_resync_start(a);
225 a->container->ss->set_array_state(a, 0);
226 a->next_state = active;
227 dirty = 1;
228 }
229 if (a->curr_state == active_idle) {
230 /* Set array to 'clean' FIRST, then mark clean
231 * in the metadata
232 */
233 a->next_state = clean;
234 dirty = 1;
235 }
236 if (a->curr_state == clean) {
237 get_resync_start(a);
238 a->container->ss->set_array_state(a, 1);
239 }
240 if (a->curr_state == active ||
241 a->curr_state == suspended ||
242 a->curr_state == bad_word)
243 dirty = 1;
244 if (a->curr_state == readonly) {
245 /* Well, I'm ready to handle things. If readonly
246 * wasn't requested, transition to read-auto.
247 */
248 char buf[64];
249 read_attr(buf, sizeof(buf), a->metadata_fd);
250 if (strncmp(buf, "external:-", 10) == 0) {
251 /* explicit request for readonly array. Leave it alone */
252 ;
253 } else {
254 get_resync_start(a);
255 if (a->container->ss->set_array_state(a, 2))
256 a->next_state = read_auto; /* array is clean */
257 else {
258 a->next_state = active; /* Now active for recovery etc */
259 dirty = 1;
260 }
261 }
262 }
263
264 if (!deactivate &&
265 a->curr_action == idle &&
266 a->prev_action == resync) {
267 /* A resync has finished. The endpoint is recorded in
268 * 'sync_start'. We don't update the metadata
269 * until the array goes inactive or readonly though.
270 * Just check if we need to fiddle spares.
271 */
272 get_resync_start(a);
273 a->container->ss->set_array_state(a, a->curr_state <= clean);
274 check_degraded = 1;
275 }
276
277 if (!deactivate &&
278 a->curr_action == idle &&
279 a->prev_action == recover) {
280 /* A recovery has finished. Some disks may be in sync now,
281 * and the array may no longer be degraded
282 */
283 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
284 a->container->ss->set_disk(a, mdi->disk.raid_disk,
285 mdi->curr_state);
286 if (! (mdi->curr_state & DS_INSYNC))
287 check_degraded = 1;
288 }
289 }
290
291 /* Check for failures and if found:
292 * 1/ Record the failure in the metadata and unblock the device.
293 * FIXME update the kernel to stop notifying on failed drives when
294 * the array is readonly and we have cleared 'blocked'
295 * 2/ Try to remove the device if the array is writable, or can be
296 * made writable.
297 */
298 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
299 if (mdi->curr_state & DS_FAULTY) {
300 a->container->ss->set_disk(a, mdi->disk.raid_disk,
301 mdi->curr_state);
302 check_degraded = 1;
303 mdi->next_state |= DS_UNBLOCK;
304 if (a->curr_state == read_auto) {
305 a->container->ss->set_array_state(a, 0);
306 a->next_state = active;
307 }
308 if (a->curr_state > readonly)
309 mdi->next_state |= DS_REMOVE;
310 }
311 }
312
313 a->container->ss->sync_metadata(a->container);
314 dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member,
315 array_states[a->curr_state], sync_actions[a->curr_action]);
316
317 /* Effect state changes in the array */
318 if (a->next_state != bad_word) {
319 dprintf(" state:%s", array_states[a->next_state]);
320 write_attr(array_states[a->next_state], a->info.state_fd);
321 }
322 if (a->next_action != bad_action) {
323 write_attr(sync_actions[a->next_action], a->action_fd);
324 dprintf(" action:%s", sync_actions[a->next_action]);
325 }
326 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
327 if (mdi->next_state & DS_UNBLOCK) {
328 dprintf(" %d:-blocked", mdi->disk.raid_disk);
329 write_attr("-blocked", mdi->state_fd);
330 }
331
332 if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) {
333 int remove_result;
334
335 /* the kernel may not be able to immediately remove the
336 * disk, we can simply wait until the next event to try
337 * again.
338 */
339 remove_result = write_attr("remove", mdi->state_fd);
340 if (remove_result > 0) {
341 dprintf(" %d:removed", mdi->disk.raid_disk);
342 close(mdi->state_fd);
343 mdi->state_fd = -1;
344 }
345 }
346 if (mdi->next_state & DS_INSYNC) {
347 write_attr("+in_sync", mdi->state_fd);
348 dprintf(" %d:+in_sync", mdi->disk.raid_disk);
349 }
350 }
351 dprintf(" )\n");
352
353 /* move curr_ to prev_ */
354 a->prev_state = a->curr_state;
355
356 a->prev_action = a->curr_action;
357
358 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
359 mdi->prev_state = mdi->curr_state;
360 mdi->next_state = 0;
361 }
362
363 if (check_degraded) {
364 /* manager will do the actual check */
365 a->check_degraded = 1;
366 signal_manager();
367 }
368
369 if (deactivate)
370 a->container = NULL;
371
372 return dirty;
373 }
374
375 static struct mdinfo *
376 find_device(struct active_array *a, int major, int minor)
377 {
378 struct mdinfo *mdi;
379
380 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
381 if (mdi->disk.major == major && mdi->disk.minor == minor)
382 return mdi;
383
384 return NULL;
385 }
386
387 static void reconcile_failed(struct active_array *aa, struct mdinfo *failed)
388 {
389 struct active_array *a;
390 struct mdinfo *victim;
391
392 for (a = aa; a; a = a->next) {
393 if (!a->container)
394 continue;
395 victim = find_device(a, failed->disk.major, failed->disk.minor);
396 if (!victim)
397 continue;
398
399 if (!(victim->curr_state & DS_FAULTY))
400 write_attr("faulty", victim->state_fd);
401 }
402 }
403
404 #ifdef DEBUG
405 static void dprint_wake_reasons(fd_set *fds)
406 {
407 int i;
408 char proc_path[256];
409 char link[256];
410 char *basename;
411 int rv;
412
413 fprintf(stderr, "monitor: wake ( ");
414 for (i = 0; i < FD_SETSIZE; i++) {
415 if (FD_ISSET(i, fds)) {
416 sprintf(proc_path, "/proc/%d/fd/%d",
417 (int) getpid(), i);
418
419 rv = readlink(proc_path, link, sizeof(link) - 1);
420 if (rv < 0) {
421 fprintf(stderr, "%d:unknown ", i);
422 continue;
423 }
424 link[rv] = '\0';
425 basename = strrchr(link, '/');
426 fprintf(stderr, "%d:%s ",
427 i, basename ? ++basename : link);
428 }
429 }
430 fprintf(stderr, ")\n");
431 }
432 #endif
433
434 int monitor_loop_cnt;
435
436 static int wait_and_act(struct supertype *container, int nowait)
437 {
438 fd_set rfds;
439 int maxfd = 0;
440 struct active_array **aap = &container->arrays;
441 struct active_array *a, **ap;
442 int rv;
443 struct mdinfo *mdi;
444 static unsigned int dirty_arrays = ~0; /* start at some non-zero value */
445
446 FD_ZERO(&rfds);
447
448 for (ap = aap ; *ap ;) {
449 a = *ap;
450 /* once an array has been deactivated we want to
451 * ask the manager to discard it.
452 */
453 if (!a->container) {
454 if (discard_this) {
455 ap = &(*ap)->next;
456 continue;
457 }
458 *ap = a->next;
459 a->next = NULL;
460 discard_this = a;
461 signal_manager();
462 continue;
463 }
464
465 add_fd(&rfds, &maxfd, a->info.state_fd);
466 add_fd(&rfds, &maxfd, a->action_fd);
467 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
468 add_fd(&rfds, &maxfd, mdi->state_fd);
469
470 ap = &(*ap)->next;
471 }
472
473 if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) {
474 /* No interesting arrays, or we have been told to
475 * terminate and everything is clean. Lets see about
476 * exiting. Note that blocking at this point is not a
477 * problem as there are no active arrays, there is
478 * nothing that we need to be ready to do.
479 */
480 int fd = open_dev_excl(container->devnum);
481 if (fd >= 0 || errno != EBUSY) {
482 /* OK, we are safe to leave */
483 if (sigterm && !dirty_arrays)
484 dprintf("caught sigterm, all clean... exiting\n");
485 else
486 dprintf("no arrays to monitor... exiting\n");
487 remove_pidfile(container->devname);
488 exit_now = 1;
489 signal_manager();
490 exit(0);
491 }
492 }
493
494 if (!nowait) {
495 sigset_t set;
496 sigprocmask(SIG_UNBLOCK, NULL, &set);
497 sigdelset(&set, SIGUSR1);
498 monitor_loop_cnt |= 1;
499 rv = pselect(maxfd+1, &rfds, NULL, NULL, NULL, &set);
500 monitor_loop_cnt += 1;
501 if (rv == -1 && errno == EINTR)
502 rv = 0;
503 #ifdef DEBUG
504 dprint_wake_reasons(&rfds);
505 #endif
506
507 }
508
509 if (update_queue) {
510 struct metadata_update *this;
511
512 for (this = update_queue; this ; this = this->next)
513 container->ss->process_update(container, this);
514
515 update_queue_handled = update_queue;
516 update_queue = NULL;
517 signal_manager();
518 container->ss->sync_metadata(container);
519 }
520
521 rv = 0;
522 dirty_arrays = 0;
523 for (a = *aap; a ; a = a->next) {
524 int is_dirty;
525
526 if (a->replaces && !discard_this) {
527 struct active_array **ap;
528 for (ap = &a->next; *ap && *ap != a->replaces;
529 ap = & (*ap)->next)
530 ;
531 if (*ap)
532 *ap = (*ap)->next;
533 discard_this = a->replaces;
534 a->replaces = NULL;
535 /* FIXME check if device->state_fd need to be cleared?*/
536 signal_manager();
537 }
538 if (a->container) {
539 is_dirty = read_and_act(a);
540 rv |= 1;
541 dirty_arrays += is_dirty;
542 /* when terminating stop manipulating the array after it
543 * is clean, but make sure read_and_act() is given a
544 * chance to handle 'active_idle'
545 */
546 if (sigterm && !is_dirty)
547 a->container = NULL; /* stop touching this array */
548 }
549 }
550
551 /* propagate failures across container members */
552 for (a = *aap; a ; a = a->next) {
553 if (!a->container)
554 continue;
555 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
556 if (mdi->curr_state & DS_FAULTY)
557 reconcile_failed(*aap, mdi);
558 }
559
560 return rv;
561 }
562
563 void do_monitor(struct supertype *container)
564 {
565 int rv;
566 int first = 1;
567 do {
568 rv = wait_and_act(container, first);
569 first = 0;
570 } while (rv >= 0);
571 }