Always initialise a struct super_type to zero
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2  * mdadm - manage Linux "md" devices aka RAID arrays.
3  *
4  * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5  *
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  *    Author: Neil Brown
22  *    Email: <neil@brown.name>
23  *
24  * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25  * (July 28 2006).  Reused by permission of SNIA.
26  */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 static inline int ROUND_UP(int a, int base)
35 {
36         return ((a+base-1)/base)*base;
37 }
38
39 /* a non-official T10 name for creation GUIDs */
40 static char T10[] = "Linux-MD";
41
42 /* DDF timestamps are 1980 based, so we need to add
43  * second-in-decade-of-seventies to convert to linux timestamps.
44  * 10 years with 2 leap years.
45  */
46 #define DECADE (3600*24*(365*10+2))
47 unsigned long crc32(
48         unsigned long crc,
49         const unsigned char *buf,
50         unsigned len);
51
52 /* The DDF metadata handling.
53  * DDF metadata lives at the end of the device.
54  * The last 512 byte block provides an 'anchor' which is used to locate
55  * the rest of the metadata which usually lives immediately behind the anchor.
56  *
57  * Note:
58  *  - all multibyte numeric fields are bigendian.
59  *  - all strings are space padded.
60  *
61  */
62
63 /* Primary Raid Level (PRL) */
64 #define DDF_RAID0       0x00
65 #define DDF_RAID1       0x01
66 #define DDF_RAID3       0x03
67 #define DDF_RAID4       0x04
68 #define DDF_RAID5       0x05
69 #define DDF_RAID1E      0x11
70 #define DDF_JBOD        0x0f
71 #define DDF_CONCAT      0x1f
72 #define DDF_RAID5E      0x15
73 #define DDF_RAID5EE     0x25
74 #define DDF_RAID6       0x16    /* Vendor unique layout */
75
76 /* Raid Level Qualifier (RLQ) */
77 #define DDF_RAID0_SIMPLE        0x00
78 #define DDF_RAID1_SIMPLE        0x00 /* just 2 devices in this plex */
79 #define DDF_RAID1_MULTI         0x01 /* exactly 3 devices in this plex */
80 #define DDF_RAID3_0             0x00 /* parity in first extent */
81 #define DDF_RAID3_N             0x01 /* parity in last extent */
82 #define DDF_RAID4_0             0x00 /* parity in first extent */
83 #define DDF_RAID4_N             0x01 /* parity in last extent */
84 /* these apply to raid5e and raid5ee as well */
85 #define DDF_RAID5_0_RESTART     0x00 /* same as 'right asymmetric' - layout 1 */
86 #define DDF_RAID5_N_RESTART     0x02 /* same as 'left asymmetric' - layout 0 */
87 #define DDF_RAID5_N_CONTINUE    0x03 /* same as 'left symmetric' - layout 2 */
88
89 #define DDF_RAID1E_ADJACENT     0x00 /* raid10 nearcopies==2 */
90 #define DDF_RAID1E_OFFSET       0x01 /* raid10 offsetcopies==2 */
91
92 /* Secondary RAID Level (SRL) */
93 #define DDF_2STRIPED    0x00    /* This is weirder than RAID0 !! */
94 #define DDF_2MIRRORED   0x01
95 #define DDF_2CONCAT     0x02
96 #define DDF_2SPANNED    0x03    /* This is also weird - be careful */
97
98 /* Magic numbers */
99 #define DDF_HEADER_MAGIC        __cpu_to_be32(0xDE11DE11)
100 #define DDF_CONTROLLER_MAGIC    __cpu_to_be32(0xAD111111)
101 #define DDF_PHYS_RECORDS_MAGIC  __cpu_to_be32(0x22222222)
102 #define DDF_PHYS_DATA_MAGIC     __cpu_to_be32(0x33333333)
103 #define DDF_VIRT_RECORDS_MAGIC  __cpu_to_be32(0xDDDDDDDD)
104 #define DDF_VD_CONF_MAGIC       __cpu_to_be32(0xEEEEEEEE)
105 #define DDF_SPARE_ASSIGN_MAGIC  __cpu_to_be32(0x55555555)
106 #define DDF_VU_CONF_MAGIC       __cpu_to_be32(0x88888888)
107 #define DDF_VENDOR_LOG_MAGIC    __cpu_to_be32(0x01dBEEF0)
108 #define DDF_BBM_LOG_MAGIC       __cpu_to_be32(0xABADB10C)
109
110 #define DDF_GUID_LEN    24
111 #define DDF_REVISION    "01.00.00"
112
113 struct ddf_header {
114         __u32   magic;          /* DDF_HEADER_MAGIC */
115         __u32   crc;
116         char    guid[DDF_GUID_LEN];
117         char    revision[8];    /* 01.00.00 */
118         __u32   seq;            /* starts at '1' */
119         __u32   timestamp;
120         __u8    openflag;
121         __u8    foreignflag;
122         __u8    enforcegroups;
123         __u8    pad0;           /* 0xff */
124         __u8    pad1[12];       /* 12 * 0xff */
125         /* 64 bytes so far */
126         __u8    header_ext[32]; /* reserved: fill with 0xff */
127         __u64   primary_lba;
128         __u64   secondary_lba;
129         __u8    type;
130         __u8    pad2[3];        /* 0xff */
131         __u32   workspace_len;  /* sectors for vendor space -
132                                  * at least 32768(sectors) */
133         __u64   workspace_lba;
134         __u16   max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
135         __u16   max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
136         __u16   max_partitions; /* i.e. max num of configuration
137                                    record entries per disk */
138         __u16   config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
139                                                  *12/512) */
140         __u16   max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
141         __u8    pad3[54];       /* 0xff */
142         /* 192 bytes so far */
143         __u32   controller_section_offset;
144         __u32   controller_section_length;
145         __u32   phys_section_offset;
146         __u32   phys_section_length;
147         __u32   virt_section_offset;
148         __u32   virt_section_length;
149         __u32   config_section_offset;
150         __u32   config_section_length;
151         __u32   data_section_offset;
152         __u32   data_section_length;
153         __u32   bbm_section_offset;
154         __u32   bbm_section_length;
155         __u32   diag_space_offset;
156         __u32   diag_space_length;
157         __u32   vendor_offset;
158         __u32   vendor_length;
159         /* 256 bytes so far */
160         __u8    pad4[256];      /* 0xff */
161 };
162
163 /* type field */
164 #define DDF_HEADER_ANCHOR       0x00
165 #define DDF_HEADER_PRIMARY      0x01
166 #define DDF_HEADER_SECONDARY    0x02
167
168 /* The content of the 'controller section' - global scope */
169 struct ddf_controller_data {
170         __u32   magic;                  /* DDF_CONTROLLER_MAGIC */
171         __u32   crc;
172         char    guid[DDF_GUID_LEN];
173         struct controller_type {
174                 __u16 vendor_id;
175                 __u16 device_id;
176                 __u16 sub_vendor_id;
177                 __u16 sub_device_id;
178         } type;
179         char    product_id[16];
180         __u8    pad[8]; /* 0xff */
181         __u8    vendor_data[448];
182 };
183
184 /* The content of phys_section - global scope */
185 struct phys_disk {
186         __u32   magic;          /* DDF_PHYS_RECORDS_MAGIC */
187         __u32   crc;
188         __u16   used_pdes;
189         __u16   max_pdes;
190         __u8    pad[52];
191         struct phys_disk_entry {
192                 char    guid[DDF_GUID_LEN];
193                 __u32   refnum;
194                 __u16   type;
195                 __u16   state;
196                 __u64   config_size; /* DDF structures must be after here */
197                 char    path[18];       /* another horrible structure really */
198                 __u8    pad[6];
199         } entries[0];
200 };
201
202 /* phys_disk_entry.type is a bitmap - bigendian remember */
203 #define DDF_Forced_PD_GUID              1
204 #define DDF_Active_in_VD                2
205 #define DDF_Global_Spare                4 /* VD_CONF records are ignored */
206 #define DDF_Spare                       8 /* overrides Global_spare */
207 #define DDF_Foreign                     16
208 #define DDF_Legacy                      32 /* no DDF on this device */
209
210 #define DDF_Interface_mask              0xf00
211 #define DDF_Interface_SCSI              0x100
212 #define DDF_Interface_SAS               0x200
213 #define DDF_Interface_SATA              0x300
214 #define DDF_Interface_FC                0x400
215
216 /* phys_disk_entry.state is a bigendian bitmap */
217 #define DDF_Online                      1
218 #define DDF_Failed                      2 /* overrides  1,4,8 */
219 #define DDF_Rebuilding                  4
220 #define DDF_Transition                  8
221 #define DDF_SMART                       16
222 #define DDF_ReadErrors                  32
223 #define DDF_Missing                     64
224
225 /* The content of the virt_section global scope */
226 struct virtual_disk {
227         __u32   magic;          /* DDF_VIRT_RECORDS_MAGIC */
228         __u32   crc;
229         __u16   populated_vdes;
230         __u16   max_vdes;
231         __u8    pad[52];
232         struct virtual_entry {
233                 char    guid[DDF_GUID_LEN];
234                 __u16   unit;
235                 __u16   pad0;   /* 0xffff */
236                 __u16   guid_crc;
237                 __u16   type;
238                 __u8    state;
239                 __u8    init_state;
240                 __u8    pad1[14];
241                 char    name[16];
242         } entries[0];
243 };
244
245 /* virtual_entry.type is a bitmap - bigendian */
246 #define DDF_Shared              1
247 #define DDF_Enforce_Groups      2
248 #define DDF_Unicode             4
249 #define DDF_Owner_Valid         8
250
251 /* virtual_entry.state is a bigendian bitmap */
252 #define DDF_state_mask          0x7
253 #define DDF_state_optimal       0x0
254 #define DDF_state_degraded      0x1
255 #define DDF_state_deleted       0x2
256 #define DDF_state_missing       0x3
257 #define DDF_state_failed        0x4
258 #define DDF_state_part_optimal  0x5
259
260 #define DDF_state_morphing      0x8
261 #define DDF_state_inconsistent  0x10
262
263 /* virtual_entry.init_state is a bigendian bitmap */
264 #define DDF_initstate_mask      0x03
265 #define DDF_init_not            0x00
266 #define DDF_init_quick          0x01 /* initialisation is progress.
267                                       * i.e. 'state_inconsistent' */
268 #define DDF_init_full           0x02
269
270 #define DDF_access_mask         0xc0
271 #define DDF_access_rw           0x00
272 #define DDF_access_ro           0x80
273 #define DDF_access_blocked      0xc0
274
275 /* The content of the config_section - local scope
276  * It has multiple records each config_record_len sectors
277  * They can be vd_config or spare_assign
278  */
279
280 struct vd_config {
281         __u32   magic;          /* DDF_VD_CONF_MAGIC */
282         __u32   crc;
283         char    guid[DDF_GUID_LEN];
284         __u32   timestamp;
285         __u32   seqnum;
286         __u8    pad0[24];
287         __u16   prim_elmnt_count;
288         __u8    chunk_shift;    /* 0 == 512, 1==1024 etc */
289         __u8    prl;
290         __u8    rlq;
291         __u8    sec_elmnt_count;
292         __u8    sec_elmnt_seq;
293         __u8    srl;
294         __u64   blocks;         /* blocks per component could be different
295                                  * on different component devices...(only
296                                  * for concat I hope) */
297         __u64   array_blocks;   /* blocks in array */
298         __u8    pad1[8];
299         __u32   spare_refs[8];
300         __u8    cache_pol[8];
301         __u8    bg_rate;
302         __u8    pad2[3];
303         __u8    pad3[52];
304         __u8    pad4[192];
305         __u8    v0[32]; /* reserved- 0xff */
306         __u8    v1[32]; /* reserved- 0xff */
307         __u8    v2[16]; /* reserved- 0xff */
308         __u8    v3[16]; /* reserved- 0xff */
309         __u8    vendor[32];
310         __u32   phys_refnum[0]; /* refnum of each disk in sequence */
311       /*__u64   lba_offset[0];  LBA offset in each phys.  Note extents in a
312                                 bvd are always the same size */
313 };
314
315 /* vd_config.cache_pol[7] is a bitmap */
316 #define DDF_cache_writeback     1       /* else writethrough */
317 #define DDF_cache_wadaptive     2       /* only applies if writeback */
318 #define DDF_cache_readahead     4
319 #define DDF_cache_radaptive     8       /* only if doing read-ahead */
320 #define DDF_cache_ifnobatt      16      /* even to write cache if battery is poor */
321 #define DDF_cache_wallowed      32      /* enable write caching */
322 #define DDF_cache_rallowed      64      /* enable read caching */
323
324 struct spare_assign {
325         __u32   magic;          /* DDF_SPARE_ASSIGN_MAGIC */
326         __u32   crc;
327         __u32   timestamp;
328         __u8    reserved[7];
329         __u8    type;
330         __u16   populated;      /* SAEs used */
331         __u16   max;            /* max SAEs */
332         __u8    pad[8];
333         struct spare_assign_entry {
334                 char    guid[DDF_GUID_LEN];
335                 __u16   secondary_element;
336                 __u8    pad[6];
337         } spare_ents[0];
338 };
339 /* spare_assign.type is a bitmap */
340 #define DDF_spare_dedicated     0x1     /* else global */
341 #define DDF_spare_revertible    0x2     /* else committable */
342 #define DDF_spare_active        0x4     /* else not active */
343 #define DDF_spare_affinity      0x8     /* enclosure affinity */
344
345 /* The data_section contents - local scope */
346 struct disk_data {
347         __u32   magic;          /* DDF_PHYS_DATA_MAGIC */
348         __u32   crc;
349         char    guid[DDF_GUID_LEN];
350         __u32   refnum;         /* crc of some magic drive data ... */
351         __u8    forced_ref;     /* set when above was not result of magic */
352         __u8    forced_guid;    /* set if guid was forced rather than magic */
353         __u8    vendor[32];
354         __u8    pad[442];
355 };
356
357 /* bbm_section content */
358 struct bad_block_log {
359         __u32   magic;
360         __u32   crc;
361         __u16   entry_count;
362         __u32   spare_count;
363         __u8    pad[10];
364         __u64   first_spare;
365         struct mapped_block {
366                 __u64   defective_start;
367                 __u32   replacement_start;
368                 __u16   remap_count;
369                 __u8    pad[2];
370         } entries[0];
371 };
372
373 /* Struct for internally holding ddf structures */
374 /* The DDF structure stored on each device is potentially
375  * quite different, as some data is global and some is local.
376  * The global data is:
377  *   - ddf header
378  *   - controller_data
379  *   - Physical disk records
380  *   - Virtual disk records
381  * The local data is:
382  *   - Configuration records
383  *   - Physical Disk data section
384  *  (  and Bad block and vendor which I don't care about yet).
385  *
386  * The local data is parsed into separate lists as it is read
387  * and reconstructed for writing.  This means that we only need
388  * to make config changes once and they are automatically
389  * propagated to all devices.
390  * Note that the ddf_super has space of the conf and disk data
391  * for this disk and also for a list of all such data.
392  * The list is only used for the superblock that is being
393  * built in Create or Assemble to describe the whole array.
394  */
395 struct ddf_super {
396         struct ddf_header anchor, primary, secondary, *active;
397         struct ddf_controller_data controller;
398         struct phys_disk        *phys;
399         struct virtual_disk     *virt;
400         int pdsize, vdsize;
401         int max_part, mppe, conf_rec_len;
402         struct vcl {
403                 struct vcl      *next;
404                 __u64           *lba_offset; /* location in 'conf' of
405                                               * the lba table */
406                 struct vd_config conf;
407         } *conflist, *newconf;
408         int conf_num; /* Index into 'virt' of entry matching 'newconf' */
409         struct dl {
410                 struct dl       *next;
411                 struct disk_data disk;
412                 int major, minor;
413                 char *devname;
414                 int fd;
415                 int pdnum;      /* index in ->phys */
416                 struct spare_assign *spare;
417                 struct vcl *vlist[0]; /* max_part in size */
418         } *dlist;
419 };
420
421 #ifndef offsetof
422 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
423 #endif
424
425 extern struct superswitch super_ddf_container, super_ddf_bvd, super_ddf;
426
427 static int calc_crc(void *buf, int len)
428 {
429         /* crcs are always at the same place as in the ddf_header */
430         struct ddf_header *ddf = buf;
431         __u32 oldcrc = ddf->crc;
432         __u32 newcrc;
433         ddf->crc = 0xffffffff;
434
435         newcrc = crc32(0, buf, len);
436         ddf->crc = oldcrc;
437         return newcrc;
438 }
439
440 static int load_ddf_header(int fd, unsigned long long lba,
441                            unsigned long long size,
442                            int type,
443                            struct ddf_header *hdr, struct ddf_header *anchor)
444 {
445         /* read a ddf header (primary or secondary) from fd/lba
446          * and check that it is consistent with anchor
447          * Need to check:
448          *   magic, crc, guid, rev, and LBA's header_type, and
449          *  everything after header_type must be the same
450          */
451         if (lba >= size-1)
452                 return 0;
453
454         if (lseek64(fd, lba<<9, 0) < 0)
455                 return 0;
456
457         if (read(fd, hdr, 512) != 512)
458                 return 0;
459
460         if (hdr->magic != DDF_HEADER_MAGIC)
461                 return 0;
462         if (calc_crc(hdr, 512) != hdr->crc)
463                 return 0;
464         if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
465             memcmp(anchor->revision, hdr->revision, 8) != 0 ||
466             anchor->primary_lba != hdr->primary_lba ||
467             anchor->secondary_lba != hdr->secondary_lba ||
468             hdr->type != type ||
469             memcmp(anchor->pad2, hdr->pad2, 512 -
470                    offsetof(struct ddf_header, pad2)) != 0)
471                 return 0;
472
473         /* Looks good enough to me... */
474         return 1;
475 }
476
477 static void *load_section(int fd, struct ddf_super *super, void *buf,
478                           __u32 offset_be, __u32 len_be, int check)
479 {
480         unsigned long long offset = __be32_to_cpu(offset_be);
481         unsigned long long len = __be32_to_cpu(len_be);
482         int dofree = (buf == NULL);
483
484         if (check)
485                 if (len != 2 && len != 8 && len != 32
486                     && len != 128 && len != 512)
487                         return NULL;
488
489         if (len > 1024)
490                 return NULL;
491         if (buf) {
492                 /* All pre-allocated sections are a single block */
493                 if (len != 1)
494                         return NULL;
495         } else
496                 buf = malloc(len<<9);
497         if (!buf)
498                 return NULL;
499
500         if (super->active->type == 1)
501                 offset += __be64_to_cpu(super->active->primary_lba);
502         else
503                 offset += __be64_to_cpu(super->active->secondary_lba);
504
505         if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
506                 if (dofree)
507                         free(buf);
508                 return NULL;
509         }
510         if (read(fd, buf, len<<9) != (len<<9)) {
511                 if (dofree)
512                         free(buf);
513                 return NULL;
514         }
515         return buf;
516 }
517
518 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
519 {
520         unsigned long long dsize;
521
522         get_dev_size(fd, NULL, &dsize);
523
524         if (lseek64(fd, dsize-512, 0) < 0) {
525                 if (devname)
526                         fprintf(stderr,
527                                 Name": Cannot seek to anchor block on %s: %s\n",
528                                 devname, strerror(errno));
529                 return 1;
530         }
531         if (read(fd, &super->anchor, 512) != 512) {
532                 if (devname)
533                         fprintf(stderr,
534                                 Name ": Cannot read anchor block on %s: %s\n",
535                                 devname, strerror(errno));
536                 return 1;
537         }
538         if (super->anchor.magic != DDF_HEADER_MAGIC) {
539                 if (devname)
540                         fprintf(stderr, Name ": no DDF anchor found on %s\n",
541                                 devname);
542                 return 2;
543         }
544         if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
545                 if (devname)
546                         fprintf(stderr, Name ": bad CRC on anchor on %s\n",
547                                 devname);
548                 return 2;
549         }
550         if (memcmp(super->anchor.revision, DDF_REVISION, 8) != 0) {
551                 if (devname)
552                         fprintf(stderr, Name ": can only support super revision"
553                                 " %.8s, not %.8s on %s\n",
554                                 DDF_REVISION, super->anchor.revision, devname);
555                 return 2;
556         }
557         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
558                             dsize >> 9,  1,
559                             &super->primary, &super->anchor) == 0) {
560                 if (devname)
561                         fprintf(stderr,
562                                 Name ": Failed to load primary DDF header "
563                                 "on %s\n", devname);
564                 return 2;
565         }
566         super->active = &super->primary;
567         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
568                             dsize >> 9,  2,
569                             &super->secondary, &super->anchor)) {
570                 if ((__be32_to_cpu(super->primary.seq)
571                      < __be32_to_cpu(super->secondary.seq) &&
572                      !super->secondary.openflag)
573                     || (__be32_to_cpu(super->primary.seq)
574                         == __be32_to_cpu(super->secondary.seq) &&
575                         super->primary.openflag && !super->secondary.openflag)
576                         )
577                         super->active = &super->secondary;
578         }
579         return 0;
580 }
581
582 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
583 {
584         void *ok;
585         ok = load_section(fd, super, &super->controller,
586                           super->active->controller_section_offset,
587                           super->active->controller_section_length,
588                           0);
589         super->phys = load_section(fd, super, NULL,
590                                    super->active->phys_section_offset,
591                                    super->active->phys_section_length,
592                                    1);
593         super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
594
595         super->virt = load_section(fd, super, NULL,
596                                    super->active->virt_section_offset,
597                                    super->active->virt_section_length,
598                                    1);
599         super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
600         if (!ok ||
601             !super->phys ||
602             !super->virt) {
603                 free(super->phys);
604                 free(super->virt);
605                 super->phys = NULL;
606                 super->virt = NULL;
607                 return 2;
608         }
609         super->conflist = NULL;
610         super->dlist = NULL;
611
612         super->max_part = __be16_to_cpu(super->active->max_partitions);
613         super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
614         super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
615         return 0;
616 }
617
618 static int load_ddf_local(int fd, struct ddf_super *super,
619                           char *devname, int keep)
620 {
621         struct dl *dl;
622         struct stat stb;
623         char *conf;
624         int i;
625         int vnum;
626
627         /* First the local disk info */
628         dl = malloc(sizeof(*dl) +
629                     (super->max_part) * sizeof(dl->vlist[0]));
630
631         load_section(fd, super, &dl->disk,
632                      super->active->data_section_offset,
633                      super->active->data_section_length,
634                      0);
635         dl->devname = devname ? strdup(devname) : NULL;
636
637         fstat(fd, &stb);
638         dl->major = major(stb.st_rdev);
639         dl->minor = minor(stb.st_rdev);
640         dl->next = super->dlist;
641         dl->fd = keep ? fd : -1;
642         dl->spare = NULL;
643         for (i=0 ; i < super->max_part ; i++)
644                 dl->vlist[i] = NULL;
645         super->dlist = dl;
646         dl->pdnum = 0;
647         for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
648                 if (memcmp(super->phys->entries[i].guid,
649                            dl->disk.guid, DDF_GUID_LEN) == 0)
650                         dl->pdnum = i;
651
652
653         /* Now the config list. */
654         /* 'conf' is an array of config entries, some of which are
655          * probably invalid.  Those which are good need to be copied into
656          * the conflist
657          */
658
659         conf = load_section(fd, super, NULL,
660                             super->active->config_section_offset,
661                             super->active->config_section_length,
662                             0);
663
664         vnum = 0;
665         for (i = 0;
666              i < __be32_to_cpu(super->active->config_section_length);
667              i += super->conf_rec_len) {
668                 struct vd_config *vd =
669                         (struct vd_config *)((char*)conf + i*512);
670                 struct vcl *vcl;
671
672                 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
673                         if (dl->spare)
674                                 continue;
675                         dl->spare = malloc(super->conf_rec_len*512);
676                         memcpy(dl->spare, vd, super->conf_rec_len*512);
677                         continue;
678                 }
679                 if (vd->magic != DDF_VD_CONF_MAGIC)
680                         continue;
681                 for (vcl = super->conflist; vcl; vcl = vcl->next) {
682                         if (memcmp(vcl->conf.guid,
683                                    vd->guid, DDF_GUID_LEN) == 0)
684                                 break;
685                 }
686
687                 if (vcl) {
688                         dl->vlist[vnum++] = vcl;
689                         if (__be32_to_cpu(vd->seqnum) <=
690                             __be32_to_cpu(vcl->conf.seqnum))
691                                 continue;
692                 } else {
693                         vcl = malloc(super->conf_rec_len*512 +
694                                      offsetof(struct vcl, conf));
695                         vcl->next = super->conflist;
696                         super->conflist = vcl;
697                         dl->vlist[vnum++] = vcl;
698                 }
699                 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
700                 vcl->lba_offset = (__u64*)
701                         &vcl->conf.phys_refnum[super->mppe];
702         }
703         free(conf);
704
705         return 0;
706 }
707
708 #ifndef MDASSEMBLE
709 static int load_super_ddf_all(struct supertype *st, int fd,
710                               void **sbp, char *devname, int keep_fd);
711 #endif
712 static int load_super_ddf(struct supertype *st, int fd,
713                           char *devname)
714 {
715         unsigned long long dsize;
716         struct ddf_super *super;
717         int rv;
718
719 #ifndef MDASSEMBLE
720         if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
721                 return 0;
722 #endif
723
724         if (get_dev_size(fd, devname, &dsize) == 0)
725                 return 1;
726
727         /* 32M is a lower bound */
728         if (dsize <= 32*1024*1024) {
729                 if (devname) {
730                         fprintf(stderr,
731                                 Name ": %s is too small for ddf: "
732                                 "size is %llu sectors.\n",
733                                 devname, dsize>>9);
734                         return 1;
735                 }
736         }
737         if (dsize & 511) {
738                 if (devname) {
739                         fprintf(stderr,
740                                 Name ": %s is an odd size for ddf: "
741                                 "size is %llu bytes.\n",
742                                 devname, dsize);
743                         return 1;
744                 }
745         }
746
747         super = malloc(sizeof(*super));
748         if (!super) {
749                 fprintf(stderr, Name ": malloc of %zu failed.\n",
750                         sizeof(*super));
751                 return 1;
752         }
753         memset(super, 0, sizeof(*super));
754
755         rv = load_ddf_headers(fd, super, devname);
756         if (rv) {
757                 free(super);
758                 return rv;
759         }
760
761         /* Have valid headers and have chosen the best. Let's read in the rest*/
762
763         rv = load_ddf_global(fd, super, devname);
764
765         if (rv) {
766                 if (devname)
767                         fprintf(stderr,
768                                 Name ": Failed to load all information "
769                                 "sections on %s\n", devname);
770                 free(super);
771                 return rv;
772         }
773
774         load_ddf_local(fd, super, devname, 0);
775
776         /* Should possibly check the sections .... */
777
778         st->sb = super;
779         if (st->ss == NULL) {
780                 st->ss = &super_ddf;
781                 st->minor_version = 0;
782                 st->max_devs = 512;
783         }
784         return 0;
785
786 }
787
788 static void free_super_ddf(struct supertype *st)
789 {
790         struct ddf_super *ddf = st->sb;
791         if (ddf == NULL)
792                 return;
793         free(ddf->phys);
794         free(ddf->virt);
795         while (ddf->conflist) {
796                 struct vcl *v = ddf->conflist;
797                 ddf->conflist = v->next;
798                 free(v);
799         }
800         while (ddf->dlist) {
801                 struct dl *d = ddf->dlist;
802                 ddf->dlist = d->next;
803                 if (d->fd >= 0)
804                         close(d->fd);
805                 if (d->spare)
806                         free(d->spare);
807                 free(d);
808         }
809         free(ddf);
810         st->sb = NULL;
811 }
812
813 static struct supertype *match_metadata_desc_ddf(char *arg)
814 {
815         /* 'ddf' only support containers */
816         struct supertype *st;
817         if (strcmp(arg, "ddf") != 0 &&
818             strcmp(arg, "default") != 0
819                 )
820                 return NULL;
821
822         st = malloc(sizeof(*st));
823         memset(st, 0, sizeof(*st));
824         st->ss = &super_ddf;
825         st->max_devs = 512;
826         st->minor_version = 0;
827         st->sb = NULL;
828         return st;
829 }
830
831 static struct supertype *match_metadata_desc_ddf_bvd(char *arg)
832 {
833         struct supertype *st;
834         if (strcmp(arg, "ddf/bvd") != 0 &&
835             strcmp(arg, "bvd") != 0 &&
836             strcmp(arg, "default") != 0
837                 )
838                 return NULL;
839
840         st = malloc(sizeof(*st));
841         memset(st, 0, sizeof(*st));
842         st->ss = &super_ddf_bvd;
843         st->max_devs = 512;
844         st->minor_version = 0;
845         st->sb = NULL;
846         return st;
847 }
848 static struct supertype *match_metadata_desc_ddf_svd(char *arg)
849 {
850         struct supertype *st;
851         if (strcmp(arg, "ddf/svd") != 0 &&
852             strcmp(arg, "svd") != 0 &&
853             strcmp(arg, "default") != 0
854                 )
855                 return NULL;
856
857         st = malloc(sizeof(*st));
858         memset(st, 0, sizeof(*st));
859         st->ss = &super_ddf_svd;
860         st->max_devs = 512;
861         st->minor_version = 0;
862         st->sb = NULL;
863         return st;
864 }
865
866 #ifndef MDASSEMBLE
867
868 static mapping_t ddf_state[] = {
869         { "Optimal", 0},
870         { "Degraded", 1},
871         { "Deleted", 2},
872         { "Missing", 3},
873         { "Failed", 4},
874         { "Partially Optimal", 5},
875         { "-reserved-", 6},
876         { "-reserved-", 7},
877         { NULL, 0}
878 };
879
880 static mapping_t ddf_init_state[] = {
881         { "Not Initialised", 0},
882         { "QuickInit in Progress", 1},
883         { "Fully Initialised", 2},
884         { "*UNKNOWN*", 3},
885         { NULL, 0}
886 };
887 static mapping_t ddf_access[] = {
888         { "Read/Write", 0},
889         { "Reserved", 1},
890         { "Read Only", 2},
891         { "Blocked (no access)", 3},
892         { NULL ,0}
893 };
894
895 static mapping_t ddf_level[] = {
896         { "RAID0", DDF_RAID0},
897         { "RAID1", DDF_RAID1},
898         { "RAID3", DDF_RAID3},
899         { "RAID4", DDF_RAID4},
900         { "RAID5", DDF_RAID5},
901         { "RAID1E",DDF_RAID1E},
902         { "JBOD",  DDF_JBOD},
903         { "CONCAT",DDF_CONCAT},
904         { "RAID5E",DDF_RAID5E},
905         { "RAID5EE",DDF_RAID5EE},
906         { "RAID6", DDF_RAID6},
907         { NULL, 0}
908 };
909 static mapping_t ddf_sec_level[] = {
910         { "Striped", DDF_2STRIPED},
911         { "Mirrored", DDF_2MIRRORED},
912         { "Concat", DDF_2CONCAT},
913         { "Spanned", DDF_2SPANNED},
914         { NULL, 0}
915 };
916 #endif
917
918 struct num_mapping {
919         int num1, num2;
920 };
921 static struct num_mapping ddf_level_num[] = {
922         { DDF_RAID0, 0 },
923         { DDF_RAID1, 1 },
924         { DDF_RAID3, LEVEL_UNSUPPORTED },
925         { DDF_RAID4, 4 },
926         { DDF_RAID5, 5 },
927         { DDF_RAID1E, LEVEL_UNSUPPORTED },
928         { DDF_JBOD, LEVEL_UNSUPPORTED },
929         { DDF_CONCAT, LEVEL_LINEAR },
930         { DDF_RAID5E, LEVEL_UNSUPPORTED },
931         { DDF_RAID5EE, LEVEL_UNSUPPORTED },
932         { DDF_RAID6, 6},
933         { MAXINT, MAXINT }
934 };
935
936 static int map_num1(struct num_mapping *map, int num)
937 {
938         int i;
939         for (i=0 ; map[i].num1 != MAXINT; i++)
940                 if (map[i].num1 == num)
941                         break;
942         return map[i].num2;
943 }
944
945 #ifndef MDASSEMBLE
946 static void print_guid(char *guid, int tstamp)
947 {
948         /* A GUIDs are part (or all) ASCII and part binary.
949          * They tend to be space padded.
950          * We ignore trailing spaces and print numbers
951          * <0x20 and >=0x7f as \xXX
952          * Some GUIDs have a time stamp in bytes 16-19.
953          * We print that if appropriate
954          */
955         int l = DDF_GUID_LEN;
956         int i;
957         while (l && guid[l-1] == ' ')
958                 l--;
959         for (i=0 ; i<l ; i++) {
960                 if (guid[i] >= 0x20 && guid[i] < 0x7f)
961                         fputc(guid[i], stdout);
962                 else
963                         fprintf(stdout, "\\x%02x", guid[i]&255);
964         }
965         if (tstamp) {
966                 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
967                 char tbuf[100];
968                 struct tm *tm;
969                 tm = localtime(&then);
970                 strftime(tbuf, 100, " (%D %T)",tm);
971                 fputs(tbuf, stdout);
972         }
973 }
974
975 static void examine_vd(int n, struct ddf_super *sb, char *guid)
976 {
977         int crl = sb->conf_rec_len;
978         struct vcl *vcl;
979
980         for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
981                 struct vd_config *vc = &vcl->conf;
982
983                 if (calc_crc(vc, crl*512) != vc->crc)
984                         continue;
985                 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
986                         continue;
987
988                 /* Ok, we know about this VD, let's give more details */
989                 printf(" Raid Devices[%d] : %d\n", n,
990                        __be16_to_cpu(vc->prim_elmnt_count));
991                 printf("   Chunk Size[%d] : %d sectors\n", n,
992                        1 << vc->chunk_shift);
993                 printf("   Raid Level[%d] : %s\n", n,
994                        map_num(ddf_level, vc->prl)?:"-unknown-");
995                 if (vc->sec_elmnt_count != 1) {
996                         printf("  Secondary Position[%d] : %d of %d\n", n,
997                                vc->sec_elmnt_seq, vc->sec_elmnt_count);
998                         printf("  Secondary Level[%d] : %s\n", n,
999                                map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1000                 }
1001                 printf("  Device Size[%d] : %llu\n", n,
1002                        __be64_to_cpu(vc->blocks)/2);
1003                 printf("   Array Size[%d] : %llu\n", n,
1004                        __be64_to_cpu(vc->array_blocks)/2);
1005         }
1006 }
1007
1008 static void examine_vds(struct ddf_super *sb)
1009 {
1010         int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1011         int i;
1012         printf("  Virtual Disks : %d\n", cnt);
1013
1014         for (i=0; i<cnt; i++) {
1015                 struct virtual_entry *ve = &sb->virt->entries[i];
1016                 printf("      VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1017                 printf("\n");
1018                 printf("         unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1019                 printf("        state[%d] : %s, %s%s\n", i,
1020                        map_num(ddf_state, ve->state & 7),
1021                        (ve->state & 8) ? "Morphing, ": "",
1022                        (ve->state & 16)? "Not Consistent" : "Consistent");
1023                 printf("   init state[%d] : %s\n", i,
1024                        map_num(ddf_init_state, ve->init_state&3));
1025                 printf("       access[%d] : %s\n", i,
1026                        map_num(ddf_access, (ve->init_state>>6) & 3));
1027                 printf("         Name[%d] : %.16s\n", i, ve->name);
1028                 examine_vd(i, sb, ve->guid);
1029         }
1030         if (cnt) printf("\n");
1031 }
1032
1033 static void examine_pds(struct ddf_super *sb)
1034 {
1035         int cnt = __be16_to_cpu(sb->phys->used_pdes);
1036         int i;
1037         struct dl *dl;
1038         printf(" Physical Disks : %d\n", cnt);
1039
1040         for (i=0 ; i<cnt ; i++) {
1041                 struct phys_disk_entry *pd = &sb->phys->entries[i];
1042                 int type = __be16_to_cpu(pd->type);
1043                 int state = __be16_to_cpu(pd->state);
1044
1045                 printf("      PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1046                 printf("\n");
1047                 printf("          ref[%d] : %08x\n", i,
1048                        __be32_to_cpu(pd->refnum));
1049                 printf("         mode[%d] : %s%s%s%s%s\n", i,
1050                        (type&2) ? "active":"",
1051                        (type&4) ? "Global Spare":"",
1052                        (type&8) ? "spare" : "",
1053                        (type&16)? ", foreign" : "",
1054                        (type&32)? "pass-through" : "");
1055                 printf("        state[%d] : %s%s%s%s%s%s%s\n", i,
1056                        (state&1)? "Online": "Offline",
1057                        (state&2)? ", Failed": "",
1058                        (state&4)? ", Rebuilding": "",
1059                        (state&8)? ", in-transition": "",
1060                        (state&16)? ", SMART errors": "",
1061                        (state&32)? ", Unrecovered Read Errors": "",
1062                        (state&64)? ", Missing" : "");
1063                 printf("   Avail Size[%d] : %llu K\n", i,
1064                        __be64_to_cpu(pd->config_size)>>1);
1065                 for (dl = sb->dlist; dl ; dl = dl->next) {
1066                         if (dl->disk.refnum == pd->refnum) {
1067                                 char *dv = map_dev(dl->major, dl->minor, 0);
1068                                 if (dv)
1069                                         printf("       Device[%d] : %s\n",
1070                                                i, dv);
1071                         }
1072                 }
1073                 printf("\n");
1074         }
1075 }
1076
1077 static void examine_super_ddf(struct supertype *st, char *homehost)
1078 {
1079         struct ddf_super *sb = st->sb;
1080
1081         printf("          Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1082         printf("        Version : %.8s\n", sb->anchor.revision);
1083         printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1084         printf("\n");
1085         printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1086         printf("\n");
1087         printf("            Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1088         printf("  Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1089                ?"yes" : "no");
1090         examine_vds(sb);
1091         examine_pds(sb);
1092 }
1093
1094 static void brief_examine_super_ddf(struct supertype *st)
1095 {
1096         /* We just write a generic DDF ARRAY entry
1097          * The uuid is all hex, 6 groups of 4 bytes
1098          */
1099         struct ddf_super *ddf = st->sb;
1100         int i;
1101         printf("ARRAY /dev/ddf UUID=");
1102         for (i = 0; i < DDF_GUID_LEN; i++) {
1103                 printf("%02x", ddf->anchor.guid[i]);
1104                 if ((i&3) == 0 && i != 0)
1105                         printf(":");
1106         }
1107         printf("\n");
1108 }
1109
1110 static void detail_super_ddf(struct supertype *st, char *homehost)
1111 {
1112         /* FIXME later
1113          * Could print DDF GUID
1114          * Need to find which array
1115          *  If whole, briefly list all arrays
1116          *  If one, give name
1117          */
1118 }
1119
1120 static void brief_detail_super_ddf(struct supertype *st)
1121 {
1122         /* FIXME I really need to know which array we are detailing.
1123          * Can that be stored in ddf_super??
1124          */
1125 //      struct ddf_super *ddf = st->sb;
1126 }
1127
1128
1129 #endif
1130
1131 static int match_home_ddf(struct supertype *st, char *homehost)
1132 {
1133         /* It matches 'this' host if the controller is a
1134          * Linux-MD controller with vendor_data matching
1135          * the hostname
1136          */
1137         struct ddf_super *ddf = st->sb;
1138         int len = strlen(homehost);
1139
1140         return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1141                 len < sizeof(ddf->controller.vendor_data) &&
1142                 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1143                 ddf->controller.vendor_data[len] == 0);
1144 }
1145
1146 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1147 {
1148         struct vcl *v;
1149         if (inst < 0 || inst > __be16_to_cpu(ddf->virt->populated_vdes))
1150                 return NULL;
1151         for (v = ddf->conflist; v; v = v->next)
1152                 if (memcmp(v->conf.guid,
1153                            ddf->virt->entries[inst].guid,
1154                            DDF_GUID_LEN) == 0)
1155                         return &v->conf;
1156         return NULL;
1157 }
1158
1159 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1160 {
1161         /* Find the entry in phys_disk which has the given refnum
1162          * and return it's index
1163          */
1164         int i;
1165         for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1166                 if (ddf->phys->entries[i].refnum == phys_refnum)
1167                         return i;
1168         return -1;
1169 }
1170
1171 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1172 {
1173         /* The uuid returned here is used for:
1174          *  uuid to put into bitmap file (Create, Grow)
1175          *  uuid for backup header when saving critical section (Grow)
1176          *  comparing uuids when re-adding a device into an array
1177          * For each of these we can make do with a truncated
1178          * or hashed uuid rather than the original, as long as
1179          * everyone agrees.
1180          * In each case the uuid required is that of the data-array,
1181          * not the device-set.
1182          * In the case of SVD we assume the BVD is of interest,
1183          * though that might be the case if a bitmap were made for
1184          * a mirrored SVD - worry about that later.
1185          * So we need to find the VD configuration record for the
1186          * relevant BVD and extract the GUID and Secondary_Element_Seq.
1187          * The first 16 bytes of the sha1 of these is used.
1188          */
1189         struct ddf_super *ddf = st->sb;
1190         struct vd_config *vd = find_vdcr(ddf, ddf->conf_num);
1191
1192         if (!vd)
1193                 memset(uuid, 0, sizeof (uuid));
1194         else {
1195                 char buf[20];
1196                 struct sha1_ctx ctx;
1197                 sha1_init_ctx(&ctx);
1198                 sha1_process_bytes(&vd->guid, DDF_GUID_LEN, &ctx);
1199                 if (vd->sec_elmnt_count > 1)
1200                         sha1_process_bytes(&vd->sec_elmnt_seq, 1, &ctx);
1201                 sha1_finish_ctx(&ctx, buf);
1202                 memcpy(uuid, buf, sizeof(uuid));
1203         }
1204 }
1205
1206 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1207 {
1208         struct ddf_super *ddf = st->sb;
1209         int i;
1210
1211         info->array.major_version = 1000;
1212         info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1213         info->array.patch_version = 0;
1214         info->array.raid_disks    = __be16_to_cpu(ddf->phys->used_pdes);
1215         info->array.level         = LEVEL_CONTAINER;
1216         info->array.layout        = 0;
1217         info->array.md_minor      = -1;
1218         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)
1219                                                          (ddf->anchor.guid+16));
1220         info->array.utime         = 0;
1221         info->array.chunk_size    = 0;
1222
1223 //      info->data_offset         = ???;
1224 //      info->component_size      = ???;
1225
1226         info->disk.major = 0;
1227         info->disk.minor = 0;
1228         if (ddf->dlist) {
1229                 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1230                 info->disk.raid_disk = -1;
1231                 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes) ; i++)
1232                         if (ddf->phys->entries[i].refnum ==
1233                             ddf->dlist->disk.refnum) {
1234                                 info->disk.raid_disk = i;
1235                                 break;
1236                         }
1237         } else {
1238                 info->disk.number = -1;
1239 //              info->disk.raid_disk = find refnum in the table and use index;
1240         }
1241         info->disk.state = (1 << MD_DISK_SYNC);
1242
1243         info->reshape_active = 0;
1244
1245         strcpy(info->text_version, "ddf");
1246
1247 //      uuid_from_super_ddf(info->uuid, sbv);
1248
1249 //      info->name[] ?? ;
1250 }
1251
1252 static void getinfo_super_n_container(struct supertype *st, struct mdinfo *info)
1253 {
1254         /* just need offset and size */
1255         struct ddf_super *ddf = st->sb;
1256         int n = info->disk.number;
1257
1258         info->data_offset = __be64_to_cpu(ddf->phys->entries[n].config_size);
1259         info->component_size = 32*1024*1024 / 512;
1260 }
1261
1262 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1263
1264 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1265 {
1266         struct ddf_super *ddf = st->sb;
1267         struct vd_config *vd = find_vdcr(ddf, info->container_member);
1268
1269         /* FIXME this returns BVD info - what if we want SVD ?? */
1270
1271         info->array.major_version = 1000;
1272         info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1273         info->array.patch_version = 0;
1274         info->array.raid_disks    = __be16_to_cpu(vd->prim_elmnt_count);
1275         info->array.level         = map_num1(ddf_level_num, vd->prl);
1276         info->array.layout        = rlq_to_layout(vd->rlq, vd->prl,
1277                                                   info->array.raid_disks);
1278         info->array.md_minor      = -1;
1279         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)(vd->guid+16));
1280         info->array.utime         = DECADE + __be32_to_cpu(vd->timestamp);
1281         info->array.chunk_size    = 512 << vd->chunk_shift;
1282
1283 //      info->data_offset         = ???;
1284 //      info->component_size      = ???;
1285
1286         info->disk.major = 0;
1287         info->disk.minor = 0;
1288 //      info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1289 //      info->disk.raid_disk = find refnum in the table and use index;
1290 //      info->disk.state = ???;
1291
1292         info->resync_start = 0;
1293         if (!(ddf->virt->entries[info->container_member].state
1294               & DDF_state_inconsistent)  &&
1295             (ddf->virt->entries[info->container_member].init_state
1296              & DDF_initstate_mask)
1297             == DDF_init_full)
1298                 info->resync_start = ~0ULL;
1299
1300         uuid_from_super_ddf(st, info->uuid);
1301
1302         sprintf(info->text_version, "/%s/%d",
1303                 devnum2devname(st->container_dev),
1304                 info->container_member);
1305
1306 //      info->name[] ?? ;
1307 }
1308
1309 static void getinfo_super_n_bvd(struct supertype *st, struct mdinfo *info)
1310 {
1311         /* Find the particular details for info->disk.raid_disk.
1312          * This includes data_offset, component_size,
1313          */
1314         struct ddf_super *ddf = st->sb;
1315         __u64 *lba_offset = ddf->newconf->lba_offset;
1316         struct vd_config *conf = &ddf->newconf->conf;
1317         info->data_offset = __be64_to_cpu(lba_offset[info->disk.raid_disk]);
1318         info->component_size = __be64_to_cpu(conf->blocks);
1319 }
1320
1321 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1322                             char *update,
1323                             char *devname, int verbose,
1324                             int uuid_set, char *homehost)
1325 {
1326         /* For 'assemble' and 'force' we need to return non-zero if any
1327          * change was made.  For others, the return value is ignored.
1328          * Update options are:
1329          *  force-one : This device looks a bit old but needs to be included,
1330          *        update age info appropriately.
1331          *  assemble: clear any 'faulty' flag to allow this device to
1332          *              be assembled.
1333          *  force-array: Array is degraded but being forced, mark it clean
1334          *         if that will be needed to assemble it.
1335          *
1336          *  newdev:  not used ????
1337          *  grow:  Array has gained a new device - this is currently for
1338          *              linear only
1339          *  resync: mark as dirty so a resync will happen.
1340          *  uuid:  Change the uuid of the array to match watch is given
1341          *  homehost:  update the recorded homehost
1342          *  name:  update the name - preserving the homehost
1343          *  _reshape_progress: record new reshape_progress position.
1344          *
1345          * Following are not relevant for this version:
1346          *  sparc2.2 : update from old dodgey metadata
1347          *  super-minor: change the preferred_minor number
1348          *  summaries:  update redundant counters.
1349          */
1350         int rv = 0;
1351 //      struct ddf_super *ddf = st->sb;
1352 //      struct vd_config *vd = find_vdcr(ddf, info->container_member);
1353 //      struct virtual_entry *ve = find_ve(ddf);
1354
1355
1356         /* we don't need to handle "force-*" or "assemble" as
1357          * there is no need to 'trick' the kernel.  We the metadata is
1358          * first updated to activate the array, all the implied modifications
1359          * will just happen.
1360          */
1361
1362         if (strcmp(update, "grow") == 0) {
1363                 /* FIXME */
1364         }
1365         if (strcmp(update, "resync") == 0) {
1366 //              info->resync_checkpoint = 0;
1367         }
1368         /* We ignore UUID updates as they make even less sense
1369          * with DDF
1370          */
1371         if (strcmp(update, "homehost") == 0) {
1372                 /* homehost is stored in controller->vendor_data,
1373                  * or it is when we are the vendor
1374                  */
1375 //              if (info->vendor_is_local)
1376 //                      strcpy(ddf->controller.vendor_data, homehost);
1377         }
1378         if (strcmp(update, "name") == 0) {
1379                 /* name is stored in virtual_entry->name */
1380 //              memset(ve->name, ' ', 16);
1381 //              strncpy(ve->name, info->name, 16);
1382         }
1383         if (strcmp(update, "_reshape_progress") == 0) {
1384                 /* We don't support reshape yet */
1385         }
1386
1387 //      update_all_csum(ddf);
1388
1389         return rv;
1390 }
1391
1392 static void make_header_guid(char *guid)
1393 {
1394         __u32 stamp;
1395         int rfd;
1396         /* Create a DDF Header of Virtual Disk GUID */
1397
1398         /* 24 bytes of fiction required.
1399          * first 8 are a 'vendor-id'  - "Linux-MD"
1400          * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1401          * Remaining 8 random number plus timestamp
1402          */
1403         memcpy(guid, T10, sizeof(T10));
1404         stamp = __cpu_to_be32(0xdeadbeef);
1405         memcpy(guid+8, &stamp, 4);
1406         stamp = __cpu_to_be32(0);
1407         memcpy(guid+12, &stamp, 4);
1408         stamp = __cpu_to_be32(time(0) - DECADE);
1409         memcpy(guid+16, &stamp, 4);
1410         rfd = open("/dev/urandom", O_RDONLY);
1411         if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1412                 stamp = random();
1413         memcpy(guid+20, &stamp, 4);
1414         if (rfd >= 0) close(rfd);
1415 }
1416 static int init_super_ddf(struct supertype *st,
1417                           mdu_array_info_t *info,
1418                           unsigned long long size, char *name, char *homehost,
1419                           int *uuid)
1420 {
1421         /* This is primarily called by Create when creating a new array.
1422          * We will then get add_to_super called for each component, and then
1423          * write_init_super called to write it out to each device.
1424          * For DDF, Create can create on fresh devices or on a pre-existing
1425          * array.
1426          * To create on a pre-existing array a different method will be called.
1427          * This one is just for fresh drives.
1428          *
1429          * We need to create the entire 'ddf' structure which includes:
1430          *  DDF headers - these are easy.
1431          *  Controller data - a Sector describing this controller .. not that
1432          *                  this is a controller exactly.
1433          *  Physical Disk Record - one entry per device, so
1434          *                      leave plenty of space.
1435          *  Virtual Disk Records - again, just leave plenty of space.
1436          *                   This just lists VDs, doesn't give details
1437          *  Config records - describes the VDs that use this disk
1438          *  DiskData  - describes 'this' device.
1439          *  BadBlockManagement - empty
1440          *  Diag Space - empty
1441          *  Vendor Logs - Could we put bitmaps here?
1442          *
1443          */
1444         struct ddf_super *ddf;
1445         char hostname[17];
1446         int hostlen;
1447         int max_phys_disks, max_virt_disks;
1448         unsigned long long sector;
1449         int clen;
1450         int i;
1451         int pdsize, vdsize;
1452         struct phys_disk *pd;
1453         struct virtual_disk *vd;
1454
1455         ddf = malloc(sizeof(*ddf));
1456         ddf->dlist = NULL; /* no physical disks yet */
1457         ddf->conflist = NULL; /* No virtual disks yet */
1458
1459         /* At least 32MB *must* be reserved for the ddf.  So let's just
1460          * start 32MB from the end, and put the primary header there.
1461          * Don't do secondary for now.
1462          * We don't know exactly where that will be yet as it could be
1463          * different on each device.  To just set up the lengths.
1464          *
1465          */
1466
1467         ddf->anchor.magic = DDF_HEADER_MAGIC;
1468         make_header_guid(ddf->anchor.guid);
1469
1470         memcpy(ddf->anchor.revision, DDF_REVISION, 8);
1471         ddf->anchor.seq = __cpu_to_be32(1);
1472         ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1473         ddf->anchor.openflag = 0xFF;
1474         ddf->anchor.foreignflag = 0;
1475         ddf->anchor.enforcegroups = 0; /* Is this best?? */
1476         ddf->anchor.pad0 = 0xff;
1477         memset(ddf->anchor.pad1, 0xff, 12);
1478         memset(ddf->anchor.header_ext, 0xff, 32);
1479         ddf->anchor.primary_lba = ~(__u64)0;
1480         ddf->anchor.secondary_lba = ~(__u64)0;
1481         ddf->anchor.type = DDF_HEADER_ANCHOR;
1482         memset(ddf->anchor.pad2, 0xff, 3);
1483         ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1484         ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1485                                                   of 32M reserved.. */
1486         max_phys_disks = 1023;   /* Should be enough */
1487         ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1488         max_virt_disks = 255;
1489         ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1490         ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1491         ddf->max_part = 64;
1492         ddf->conf_rec_len = 1 + 256 * 12 / 512;
1493         ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1494         ddf->anchor.max_primary_element_entries = __cpu_to_be16(256);
1495         ddf->mppe = 256;
1496         memset(ddf->anchor.pad3, 0xff, 54);
1497
1498         /* controller sections is one sector long immediately
1499          * after the ddf header */
1500         sector = 1;
1501         ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1502         ddf->anchor.controller_section_length = __cpu_to_be32(1);
1503         sector += 1;
1504
1505         /* phys is 8 sectors after that */
1506         pdsize = ROUND_UP(sizeof(struct phys_disk) +
1507                           sizeof(struct phys_disk_entry)*max_phys_disks,
1508                           512);
1509         switch(pdsize/512) {
1510         case 2: case 8: case 32: case 128: case 512: break;
1511         default: abort();
1512         }
1513         ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1514         ddf->anchor.phys_section_length =
1515                 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1516         sector += pdsize/512;
1517
1518         /* virt is another 32 sectors */
1519         vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1520                           sizeof(struct virtual_entry) * max_virt_disks,
1521                           512);
1522         switch(vdsize/512) {
1523         case 2: case 8: case 32: case 128: case 512: break;
1524         default: abort();
1525         }
1526         ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1527         ddf->anchor.virt_section_length =
1528                 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1529         sector += vdsize/512;
1530
1531         clen = (1 + 256*12/512) * (64+1);
1532         ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1533         ddf->anchor.config_section_length = __cpu_to_be32(clen);
1534         sector += clen;
1535
1536         ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1537         ddf->anchor.data_section_length = __cpu_to_be32(1);
1538         sector += 1;
1539
1540         ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1541         ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1542         ddf->anchor.diag_space_length = __cpu_to_be32(0);
1543         ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1544         ddf->anchor.vendor_length = __cpu_to_be32(0);
1545         ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1546
1547         memset(ddf->anchor.pad4, 0xff, 256);
1548
1549         memcpy(&ddf->primary, &ddf->anchor, 512);
1550         memcpy(&ddf->secondary, &ddf->anchor, 512);
1551
1552         ddf->primary.openflag = 1; /* I guess.. */
1553         ddf->primary.type = DDF_HEADER_PRIMARY;
1554
1555         ddf->secondary.openflag = 1; /* I guess.. */
1556         ddf->secondary.type = DDF_HEADER_SECONDARY;
1557
1558         ddf->active = &ddf->primary;
1559
1560         ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1561
1562         /* 24 more bytes of fiction required.
1563          * first 8 are a 'vendor-id'  - "Linux-MD"
1564          * Remaining 16 are serial number.... maybe a hostname would do?
1565          */
1566         memcpy(ddf->controller.guid, T10, sizeof(T10));
1567         gethostname(hostname, sizeof(hostname));
1568         hostname[sizeof(hostname) - 1] = 0;
1569         hostlen = strlen(hostname);
1570         memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1571         for (i = strlen(T10) ; i+hostlen < 24; i++)
1572                 ddf->controller.guid[i] = ' ';
1573
1574         ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1575         ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1576         ddf->controller.type.sub_vendor_id = 0;
1577         ddf->controller.type.sub_device_id = 0;
1578         memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1579         memset(ddf->controller.pad, 0xff, 8);
1580         memset(ddf->controller.vendor_data, 0xff, 448);
1581
1582         pd = ddf->phys = malloc(pdsize);
1583         ddf->pdsize = pdsize;
1584
1585         memset(pd, 0xff, pdsize);
1586         memset(pd, 0, sizeof(*pd));
1587         pd->magic = DDF_PHYS_DATA_MAGIC;
1588         pd->used_pdes = __cpu_to_be16(0);
1589         pd->max_pdes = __cpu_to_be16(max_phys_disks);
1590         memset(pd->pad, 0xff, 52);
1591
1592         vd = ddf->virt = malloc(vdsize);
1593         ddf->vdsize = vdsize;
1594         memset(vd, 0, vdsize);
1595         vd->magic = DDF_VIRT_RECORDS_MAGIC;
1596         vd->populated_vdes = __cpu_to_be16(0);
1597         vd->max_vdes = __cpu_to_be16(max_virt_disks);
1598         memset(vd->pad, 0xff, 52);
1599
1600         for (i=0; i<max_virt_disks; i++)
1601                 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1602
1603         st->sb = ddf;
1604         return 1;
1605 }
1606
1607 static int all_ff(char *guid)
1608 {
1609         int i;
1610         for (i = 0; i < DDF_GUID_LEN; i++)
1611                 if (guid[i] != (char)0xff)
1612                         return 0;
1613         return 1;
1614 }
1615 static int chunk_to_shift(int chunksize)
1616 {
1617         return ffs(chunksize/512)-1;
1618 }
1619
1620 static int level_to_prl(int level)
1621 {
1622         switch (level) {
1623         case LEVEL_LINEAR: return DDF_CONCAT;
1624         case 0: return DDF_RAID0;
1625         case 1: return DDF_RAID1;
1626         case 4: return DDF_RAID4;
1627         case 5: return DDF_RAID5;
1628         case 6: return DDF_RAID6;
1629         default: return -1;
1630         }
1631 }
1632 static int layout_to_rlq(int level, int layout, int raiddisks)
1633 {
1634         switch(level) {
1635         case 0:
1636                 return DDF_RAID0_SIMPLE;
1637         case 1:
1638                 switch(raiddisks) {
1639                 case 2: return DDF_RAID1_SIMPLE;
1640                 case 3: return DDF_RAID1_MULTI;
1641                 default: return -1;
1642                 }
1643         case 4:
1644                 switch(layout) {
1645                 case 0: return DDF_RAID4_N;
1646                 }
1647                 break;
1648         case 5:
1649         case 6:
1650                 switch(layout) {
1651                 case ALGORITHM_LEFT_ASYMMETRIC:
1652                         return DDF_RAID5_N_RESTART;
1653                 case ALGORITHM_RIGHT_ASYMMETRIC:
1654                         return DDF_RAID5_0_RESTART;
1655                 case ALGORITHM_LEFT_SYMMETRIC:
1656                         return DDF_RAID5_N_CONTINUE;
1657                 case ALGORITHM_RIGHT_SYMMETRIC:
1658                         return -1; /* not mentioned in standard */
1659                 }
1660         }
1661         return -1;
1662 }
1663
1664 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1665 {
1666         switch(prl) {
1667         case DDF_RAID0:
1668                 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1669         case DDF_RAID1:
1670                 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1671                              on raiddisks*/
1672         case DDF_RAID4:
1673                 switch(rlq) {
1674                 case DDF_RAID4_N:
1675                         return 0;
1676                 default:
1677                         /* not supported */
1678                         return -1; /* FIXME this isn't checked */
1679                 }
1680         case DDF_RAID5:
1681         case DDF_RAID6:
1682                 switch(rlq) {
1683                 case DDF_RAID5_N_RESTART:
1684                         return ALGORITHM_LEFT_ASYMMETRIC;
1685                 case DDF_RAID5_0_RESTART:
1686                         return ALGORITHM_RIGHT_ASYMMETRIC;
1687                 case DDF_RAID5_N_CONTINUE:
1688                         return ALGORITHM_LEFT_SYMMETRIC;
1689                 default:
1690                         return -1;
1691                 }
1692         }
1693         return -1;
1694 }
1695
1696 static int init_super_ddf_bvd(struct supertype *st,
1697                               mdu_array_info_t *info,
1698                               unsigned long long size,
1699                               char *name, char *homehost,
1700                               int *uuid)
1701 {
1702         /* We are creating a BVD inside a pre-existing container.
1703          * so st->sb is already set.
1704          * We need to create a new vd_config and a new virtual_entry
1705          */
1706         struct ddf_super *ddf = st->sb;
1707         int venum;
1708         struct virtual_entry *ve;
1709         struct vcl *vcl;
1710         struct vd_config *vc;
1711
1712         if (__be16_to_cpu(ddf->virt->populated_vdes)
1713             >= __be16_to_cpu(ddf->virt->max_vdes)) {
1714                 fprintf(stderr, Name": This ddf already has the "
1715                         "maximum of %d virtual devices\n",
1716                         __be16_to_cpu(ddf->virt->max_vdes));
1717                 return 0;
1718         }
1719
1720         for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1721                 if (all_ff(ddf->virt->entries[venum].guid))
1722                         break;
1723         if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1724                 fprintf(stderr, Name ": Cannot find spare slot for "
1725                         "virtual disk - DDF is corrupt\n");
1726                 return 0;
1727         }
1728         ve = &ddf->virt->entries[venum];
1729         ddf->conf_num = venum;
1730
1731         /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1732          * timestamp, random number
1733          */
1734         make_header_guid(ve->guid);
1735         ve->unit = __cpu_to_be16(info->md_minor);
1736         ve->pad0 = 0xFFFF;
1737         ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1738         ve->type = 0;
1739         ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1740         if (info->state & 1) /* clean */
1741                 ve->init_state = DDF_init_full;
1742         else
1743                 ve->init_state = DDF_init_not;
1744
1745         memset(ve->pad1, 0xff, 14);
1746         memset(ve->name, ' ', 16);
1747         if (name)
1748                 strncpy(ve->name, name, 16);
1749         ddf->virt->populated_vdes =
1750                 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1751
1752         /* Now create a new vd_config */
1753         vcl = malloc(offsetof(struct vcl, conf) + ddf->conf_rec_len * 512);
1754         vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1755
1756         vc = &vcl->conf;
1757
1758         vc->magic = DDF_VD_CONF_MAGIC;
1759         memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1760         vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1761         vc->seqnum = __cpu_to_be32(1);
1762         memset(vc->pad0, 0xff, 24);
1763         vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1764         vc->chunk_shift = chunk_to_shift(info->chunk_size);
1765         vc->prl = level_to_prl(info->level);
1766         vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1767         vc->sec_elmnt_count = 1;
1768         vc->sec_elmnt_seq = 0;
1769         vc->srl = 0;
1770         vc->blocks = __cpu_to_be64(info->size * 2);
1771         vc->array_blocks = __cpu_to_be64(
1772                 calc_array_size(info->level, info->raid_disks, info->layout,
1773                                 info->chunk_size, info->size*2));
1774         memset(vc->pad1, 0xff, 8);
1775         vc->spare_refs[0] = 0xffffffff;
1776         vc->spare_refs[1] = 0xffffffff;
1777         vc->spare_refs[2] = 0xffffffff;
1778         vc->spare_refs[3] = 0xffffffff;
1779         vc->spare_refs[4] = 0xffffffff;
1780         vc->spare_refs[5] = 0xffffffff;
1781         vc->spare_refs[6] = 0xffffffff;
1782         vc->spare_refs[7] = 0xffffffff;
1783         memset(vc->cache_pol, 0, 8);
1784         vc->bg_rate = 0x80;
1785         memset(vc->pad2, 0xff, 3);
1786         memset(vc->pad3, 0xff, 52);
1787         memset(vc->pad4, 0xff, 192);
1788         memset(vc->v0, 0xff, 32);
1789         memset(vc->v1, 0xff, 32);
1790         memset(vc->v2, 0xff, 16);
1791         memset(vc->v3, 0xff, 16);
1792         memset(vc->vendor, 0xff, 32);
1793
1794         memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1795         memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1796
1797         vcl->next = ddf->conflist;
1798         ddf->conflist = vcl;
1799         ddf->newconf = vcl;
1800         return 1;
1801 }
1802
1803 static void add_to_super_ddf_bvd(struct supertype *st,
1804                                  mdu_disk_info_t *dk, int fd, char *devname)
1805 {
1806         /* fd and devname identify a device with-in the ddf container (st).
1807          * dk identifies a location in the new BVD.
1808          * We need to find suitable free space in that device and update
1809          * the phys_refnum and lba_offset for the newly created vd_config.
1810          * We might also want to update the type in the phys_disk
1811          * section.
1812          */
1813         struct dl *dl;
1814         struct ddf_super *ddf = st->sb;
1815         struct vd_config *vc;
1816         __u64 *lba_offset;
1817         int working;
1818         int i;
1819         int max_virt_disks;
1820
1821         for (dl = ddf->dlist; dl ; dl = dl->next)
1822                 if (dl->major == dk->major &&
1823                     dl->minor == dk->minor)
1824                         break;
1825         if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1826                 return;
1827
1828         vc = &ddf->newconf->conf;
1829         lba_offset = ddf->newconf->lba_offset;
1830         vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1831         lba_offset[dk->raid_disk] = 0; /* FIXME */
1832
1833         for (i=0; i < ddf->max_part ; i++)
1834                 if (dl->vlist[i] == NULL)
1835                         break;
1836         if (i == ddf->max_part)
1837                 return;
1838         dl->vlist[i] = ddf->newconf;
1839
1840         dl->fd = fd;
1841         dl->devname = devname;
1842
1843         /* Check how many working raid_disks, and if we can mark
1844          * array as optimal yet
1845          */
1846         working = 0;
1847
1848         for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1849                 if (vc->phys_refnum[i] != 0xffffffff)
1850                         working++;
1851         /* Find which virtual_entry */
1852         max_virt_disks = __be16_to_cpu(ddf->active->max_vd_entries);
1853         for (i=0; i < max_virt_disks ; i++)
1854                 if (memcmp(ddf->virt->entries[i].guid,
1855                            vc->guid, DDF_GUID_LEN)==0)
1856                         break;
1857         if (i == max_virt_disks)
1858                 return;
1859         if (working == __be16_to_cpu(vc->prim_elmnt_count))
1860                 ddf->virt->entries[i].state =
1861                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1862                         | DDF_state_optimal;
1863
1864         if (vc->prl == DDF_RAID6 &&
1865             working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1866                 ddf->virt->entries[i].state =
1867                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1868                         | DDF_state_part_optimal;
1869
1870         ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1871         ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1872 }
1873
1874 /* add a device to a container, either while creating it or while
1875  * expanding a pre-existing container
1876  */
1877 static void add_to_super_ddf(struct supertype *st,
1878                              mdu_disk_info_t *dk, int fd, char *devname)
1879 {
1880         struct ddf_super *ddf = st->sb;
1881         struct dl *dd;
1882         time_t now;
1883         struct tm *tm;
1884         unsigned long long size;
1885         struct phys_disk_entry *pde;
1886         int n, i;
1887         struct stat stb;
1888
1889         /* This is device numbered dk->number.  We need to create
1890          * a phys_disk entry and a more detailed disk_data entry.
1891          */
1892         fstat(fd, &stb);
1893         dd = malloc(sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
1894         dd->major = major(stb.st_rdev);
1895         dd->minor = minor(stb.st_rdev);
1896         dd->devname = devname;
1897         dd->next = ddf->dlist;
1898         dd->fd = fd;
1899         dd->spare = NULL;
1900
1901         dd->disk.magic = DDF_PHYS_DATA_MAGIC;
1902         now = time(0);
1903         tm = localtime(&now);
1904         sprintf(dd->disk.guid, "%8s%04d%02d%02d",
1905                 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
1906         *(__u32*)(dd->disk.guid + 16) = random();
1907         *(__u32*)(dd->disk.guid + 20) = random();
1908
1909         dd->disk.refnum = random(); /* and hope for the best FIXME check this is unique!!*/
1910         dd->disk.forced_ref = 1;
1911         dd->disk.forced_guid = 1;
1912         memset(dd->disk.vendor, ' ', 32);
1913         memcpy(dd->disk.vendor, "Linux", 5);
1914         memset(dd->disk.pad, 0xff, 442);
1915         for (i = 0; i < ddf->max_part ; i++)
1916                 dd->vlist[i] = NULL;
1917
1918         n = __be16_to_cpu(ddf->phys->used_pdes);
1919         pde = &ddf->phys->entries[n];
1920         dd->pdnum = n;
1921
1922         n++;
1923         ddf->phys->used_pdes = __cpu_to_be16(n);
1924
1925         memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
1926         pde->refnum = dd->disk.refnum;
1927         pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
1928         pde->state = __cpu_to_be16(DDF_Online);
1929         get_dev_size(fd, NULL, &size);
1930         /* We are required to reserve 32Meg, and record the size in sectors */
1931         pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
1932         sprintf(pde->path, "%17.17s","Information: nil") ;
1933         memset(pde->pad, 0xff, 6);
1934
1935         ddf->dlist = dd;
1936 }
1937
1938 /*
1939  * This is the write_init_super method for a ddf container.  It is
1940  * called when creating a container or adding another device to a
1941  * container.
1942  */
1943
1944 #ifndef MDASSEMBLE
1945 static int __write_init_super_ddf(struct supertype *st, int do_close)
1946 {
1947
1948         struct ddf_super *ddf = st->sb;
1949         int i;
1950         struct dl *d;
1951         int n_config;
1952         int conf_size;
1953
1954         unsigned long long size, sector;
1955
1956         for (d = ddf->dlist; d; d=d->next) {
1957                 int fd = d->fd;
1958
1959                 if (fd < 0)
1960                         continue;
1961
1962                 /* We need to fill in the primary, (secondary) and workspace
1963                  * lba's in the headers, set their checksums,
1964                  * Also checksum phys, virt....
1965                  *
1966                  * Then write everything out, finally the anchor is written.
1967                  */
1968                 get_dev_size(fd, NULL, &size);
1969                 size /= 512;
1970                 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
1971                 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
1972                 ddf->anchor.seq = __cpu_to_be32(1);
1973                 memcpy(&ddf->primary, &ddf->anchor, 512);
1974                 memcpy(&ddf->secondary, &ddf->anchor, 512);
1975
1976                 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
1977                 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
1978                 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
1979
1980                 ddf->primary.openflag = 0;
1981                 ddf->primary.type = DDF_HEADER_PRIMARY;
1982
1983                 ddf->secondary.openflag = 0;
1984                 ddf->secondary.type = DDF_HEADER_SECONDARY;
1985
1986                 ddf->primary.crc = calc_crc(&ddf->primary, 512);
1987                 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
1988
1989                 sector = size - 16*1024*2;
1990                 lseek64(fd, sector<<9, 0);
1991                 write(fd, &ddf->primary, 512);
1992
1993                 ddf->controller.crc = calc_crc(&ddf->controller, 512);
1994                 write(fd, &ddf->controller, 512);
1995
1996                 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
1997
1998                 write(fd, ddf->phys, ddf->pdsize);
1999
2000                 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2001                 write(fd, ddf->virt, ddf->vdsize);
2002
2003                 /* Now write lots of config records. */
2004                 n_config = ddf->max_part;
2005                 conf_size = ddf->conf_rec_len * 512;
2006                 for (i = 0 ; i <= n_config ; i++) {
2007                         struct vcl *c = d->vlist[i];
2008                         if (i == n_config)
2009                                 c = (struct vcl*)d->spare;
2010
2011                         if (c) {
2012                                 c->conf.crc = calc_crc(&c->conf, conf_size);
2013                                 write(fd, &c->conf, conf_size);
2014                         } else {
2015                                 __u32 sig = 0xffffffff;
2016                                 write(fd, &sig, 4);
2017                                 lseek64(fd, conf_size-4, SEEK_CUR);
2018                         }
2019                 }
2020                 d->disk.crc = calc_crc(&d->disk, 512);
2021                 write(fd, &d->disk, 512);
2022
2023                 /* Maybe do the same for secondary */
2024
2025                 lseek64(fd, (size-1)*512, SEEK_SET);
2026                 write(fd, &ddf->anchor, 512);
2027                 if (do_close) {
2028                         close(fd);
2029                         d->fd = -1;
2030                 }
2031         }
2032         return 1;
2033 }
2034
2035 static int write_init_super_ddf(struct supertype *st)
2036 {
2037         return __write_init_super_ddf(st, 1);
2038 }
2039
2040 #endif
2041
2042 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2043 {
2044         /* We must reserve the last 32Meg */
2045         if (devsize <= 32*1024*2)
2046                 return 0;
2047         return devsize - 32*1024*2;
2048 }
2049
2050 #ifndef MDASSEMBLE
2051 int validate_geometry_ddf(struct supertype *st,
2052                           int level, int layout, int raiddisks,
2053                           int chunk, unsigned long long size,
2054                           char *dev, unsigned long long *freesize)
2055 {
2056         int fd;
2057         struct mdinfo *sra;
2058         int cfd;
2059
2060         /* ddf potentially supports lots of things, but it depends on
2061          * what devices are offered (and maybe kernel version?)
2062          * If given unused devices, we will make a container.
2063          * If given devices in a container, we will make a BVD.
2064          * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2065          */
2066
2067         if (level == LEVEL_CONTAINER) {
2068                 st->ss = &super_ddf_container;
2069                 if (dev) {
2070                         int rv =st->ss->validate_geometry(st, level, layout,
2071                                                           raiddisks, chunk,
2072                                                           size,
2073                                                           NULL, freesize);
2074                         if (rv)
2075                                 return rv;
2076                 }
2077                 return st->ss->validate_geometry(st, level, layout, raiddisks,
2078                                                  chunk, size, dev, freesize);
2079         }
2080
2081         if (st->sb) {
2082                 /* creating in a given container */
2083                 st->ss = &super_ddf_bvd;
2084                 if (dev) {
2085                         int rv =st->ss->validate_geometry(st, level, layout,
2086                                                           raiddisks, chunk,
2087                                                           size,
2088                                                           NULL, freesize);
2089                         if (rv)
2090                                 return rv;
2091                 }
2092                 return st->ss->validate_geometry(st, level, layout, raiddisks,
2093                                                  chunk, size, dev, freesize);
2094         }
2095         /* FIXME should exclude MULTIPATH, or more appropriately, allow
2096          * only known levels.
2097          */
2098         if (!dev)
2099                 return 1;
2100
2101         /* This device needs to be either a device in a 'ddf' container,
2102          * or it needs to be a 'ddf-bvd' array.
2103          */
2104
2105         fd = open(dev, O_RDONLY|O_EXCL, 0);
2106         if (fd >= 0) {
2107                 sra = sysfs_read(fd, 0, GET_VERSION);
2108                 close(fd);
2109                 if (sra && sra->array.major_version == -1 &&
2110                     strcmp(sra->text_version, "ddf-bvd") == 0) {
2111                         st->ss = &super_ddf_svd;
2112                         return st->ss->validate_geometry(st, level, layout,
2113                                                          raiddisks, chunk, size,
2114                                                          dev, freesize);
2115                 }
2116
2117                 fprintf(stderr,
2118                         Name ": Cannot create this array on device %s\n",
2119                         dev);
2120                 return 0;
2121         }
2122         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2123                 fprintf(stderr, Name ": Cannot open %s: %s\n",
2124                         dev, strerror(errno));
2125                 return 0;
2126         }
2127         /* Well, it is in use by someone, maybe a 'ddf' container. */
2128         cfd = open_container(fd);
2129         if (cfd < 0) {
2130                 close(fd);
2131                 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2132                         dev);
2133                 return 0;
2134         }
2135         sra = sysfs_read(cfd, 0, GET_VERSION);
2136         close(fd);
2137         if (sra && sra->array.major_version == -1 &&
2138             strcmp(sra->text_version, "ddf") == 0) {
2139                 /* This is a member of a ddf container.  Load the container
2140                  * and try to create a bvd
2141                  */
2142                 struct ddf_super *ddf;
2143                 st->ss = &super_ddf_bvd;
2144                 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2145                         st->sb = ddf;
2146                         st->container_dev = fd2devnum(cfd);
2147                         close(cfd);
2148                         return st->ss->validate_geometry(st, level, layout,
2149                                                          raiddisks, chunk, size,
2150                                                          dev, freesize);
2151                 }
2152                 close(cfd);
2153         } else /* device may belong to a different container */
2154                 return 0;
2155
2156         return 1;
2157 }
2158
2159 int validate_geometry_ddf_container(struct supertype *st,
2160                                     int level, int layout, int raiddisks,
2161                                     int chunk, unsigned long long size,
2162                                     char *dev, unsigned long long *freesize)
2163 {
2164         int fd;
2165         unsigned long long ldsize;
2166
2167         if (level != LEVEL_CONTAINER)
2168                 return 0;
2169         if (!dev)
2170                 return 1;
2171
2172         fd = open(dev, O_RDONLY|O_EXCL, 0);
2173         if (fd < 0) {
2174                 fprintf(stderr, Name ": Cannot open %s: %s\n",
2175                         dev, strerror(errno));
2176                 return 0;
2177         }
2178         if (!get_dev_size(fd, dev, &ldsize)) {
2179                 close(fd);
2180                 return 0;
2181         }
2182         close(fd);
2183
2184         *freesize = avail_size_ddf(st, ldsize >> 9);
2185
2186         return 1;
2187 }
2188
2189 struct extent {
2190         unsigned long long start, size;
2191 };
2192 int cmp_extent(const void *av, const void *bv)
2193 {
2194         const struct extent *a = av;
2195         const struct extent *b = bv;
2196         if (a->start < b->start)
2197                 return -1;
2198         if (a->start > b->start)
2199                 return 1;
2200         return 0;
2201 }
2202
2203 struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
2204 {
2205         /* find a list of used extents on the give physical device
2206          * (dnum) of the given ddf.
2207          * Return a malloced array of 'struct extent'
2208
2209 FIXME ignore DDF_Legacy devices?
2210
2211          */
2212         struct extent *rv;
2213         int n = 0;
2214         int dnum;
2215         int i, j;
2216
2217         /* FIXME this is dl->pdnum */
2218         for (dnum = 0; dnum < ddf->phys->used_pdes; dnum++)
2219                 if (memcmp(dl->disk.guid,
2220                            ddf->phys->entries[dnum].guid,
2221                            DDF_GUID_LEN) == 0)
2222                         break;
2223
2224         if (dnum == ddf->phys->used_pdes)
2225                 return NULL;
2226
2227         rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
2228         if (!rv)
2229                 return NULL;
2230
2231         for (i = 0; i < ddf->max_part; i++) {
2232                 struct vcl *v = dl->vlist[i];
2233                 if (v == NULL)
2234                         continue;
2235                 for (j=0; j < v->conf.prim_elmnt_count; j++)
2236                         if (v->conf.phys_refnum[j] == dl->disk.refnum) {
2237                                 /* This device plays role 'j' in  'v'. */
2238                                 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
2239                                 rv[n].size = __be64_to_cpu(v->conf.blocks);
2240                                 n++;
2241                                 break;
2242                         }
2243         }
2244         qsort(rv, n, sizeof(*rv), cmp_extent);
2245
2246         rv[n].start = __be64_to_cpu(ddf->phys->entries[dnum].config_size);
2247         rv[n].size = 0;
2248         return rv;
2249 }
2250
2251 int validate_geometry_ddf_bvd(struct supertype *st,
2252                               int level, int layout, int raiddisks,
2253                               int chunk, unsigned long long size,
2254                               char *dev, unsigned long long *freesize)
2255 {
2256         struct stat stb;
2257         struct ddf_super *ddf = st->sb;
2258         struct dl *dl;
2259         unsigned long long pos = 0;
2260         unsigned long long maxsize;
2261         struct extent *e;
2262         int i;
2263         /* ddf/bvd supports lots of things, but not containers */
2264         if (level == LEVEL_CONTAINER)
2265                 return 0;
2266         /* We must have the container info already read in. */
2267         if (!ddf)
2268                 return 0;
2269
2270         if (!dev) {
2271                 /* General test:  make sure there is space for
2272                  * 'raiddisks' device extents of size 'size'.
2273                  */
2274                 unsigned long long minsize = size;
2275                 int dcnt = 0;
2276                 if (minsize == 0)
2277                         minsize = 8;
2278                 for (dl = ddf->dlist; dl ; dl = dl->next)
2279                 {
2280                         int found = 0;
2281                         pos = 0;
2282
2283                         i = 0;
2284                         e = get_extents(ddf, dl);
2285                         if (!e) continue;
2286                         do {
2287                                 unsigned long long esize;
2288                                 esize = e[i].start - pos;
2289                                 if (esize >= minsize)
2290                                         found = 1;
2291                                 pos = e[i].start + e[i].size;
2292                                 i++;
2293                         } while (e[i-1].size);
2294                         if (found)
2295                                 dcnt++;
2296                         free(e);
2297                 }
2298                 if (dcnt < raiddisks) {
2299                         fprintf(stderr, Name ": Not enough devices with space "
2300                                 "for this array (%d < %d)\n",
2301                                 dcnt, raiddisks);
2302                         return 0;
2303                 }
2304                 return 1;
2305         }
2306         /* This device must be a member of the set */
2307         if (stat(dev, &stb) < 0)
2308                 return 0;
2309         if ((S_IFMT & stb.st_mode) != S_IFBLK)
2310                 return 0;
2311         for (dl = ddf->dlist ; dl ; dl = dl->next) {
2312                 if (dl->major == major(stb.st_rdev) &&
2313                     dl->minor == minor(stb.st_rdev))
2314                         break;
2315         }
2316         if (!dl) {
2317                 fprintf(stderr, Name ": %s is not in the same DDF set\n",
2318                         dev);
2319                 return 0;
2320         }
2321         e = get_extents(ddf, dl);
2322         maxsize = 0;
2323         i = 0;
2324         if (e) do {
2325                 unsigned long long esize;
2326                 esize = e[i].start - pos;
2327                 if (esize >= maxsize)
2328                         maxsize = esize;
2329                 pos = e[i].start + e[i].size;
2330                 i++;
2331         } while (e[i-1].size);
2332         *freesize = maxsize;
2333         // FIXME here I am
2334
2335         return 1;
2336 }
2337 int validate_geometry_ddf_svd(struct supertype *st,
2338                               int level, int layout, int raiddisks,
2339                               int chunk, unsigned long long size,
2340                               char *dev, unsigned long long *freesize)
2341 {
2342         /* dd/svd only supports striped, mirrored, concat, spanned... */
2343         if (level != LEVEL_LINEAR &&
2344             level != 0 &&
2345             level != 1)
2346                 return 0;
2347         return 1;
2348 }
2349
2350
2351 static int load_super_ddf_all(struct supertype *st, int fd,
2352                               void **sbp, char *devname, int keep_fd)
2353 {
2354         struct mdinfo *sra;
2355         struct ddf_super *super;
2356         struct mdinfo *sd, *best = NULL;
2357         int bestseq = 0;
2358         int seq;
2359         char nm[20];
2360         int dfd;
2361
2362         sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2363         if (!sra)
2364                 return 1;
2365         if (sra->array.major_version != -1 ||
2366             sra->array.minor_version != -2 ||
2367             strcmp(sra->text_version, "ddf") != 0)
2368                 return 1;
2369
2370         super = malloc(sizeof(*super));
2371         if (!super)
2372                 return 1;
2373         memset(super, 0, sizeof(*super));
2374
2375         /* first, try each device, and choose the best ddf */
2376         for (sd = sra->devs ; sd ; sd = sd->next) {
2377                 int rv;
2378                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2379                 dfd = dev_open(nm, O_RDONLY);
2380                 if (dfd < 0)
2381                         return 2;
2382                 rv = load_ddf_headers(dfd, super, NULL);
2383                 close(dfd);
2384                 if (rv == 0) {
2385                         seq = __be32_to_cpu(super->active->seq);
2386                         if (super->active->openflag)
2387                                 seq--;
2388                         if (!best || seq > bestseq) {
2389                                 bestseq = seq;
2390                                 best = sd;
2391                         }
2392                 }
2393         }
2394         if (!best)
2395                 return 1;
2396         /* OK, load this ddf */
2397         sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2398         dfd = dev_open(nm, O_RDONLY);
2399         if (dfd < 0)
2400                 return 1;
2401         load_ddf_headers(dfd, super, NULL);
2402         load_ddf_global(dfd, super, NULL);
2403         close(dfd);
2404         /* Now we need the device-local bits */
2405         for (sd = sra->devs ; sd ; sd = sd->next) {
2406                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2407                 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2408                 if (dfd < 0)
2409                         return 2;
2410                 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2411                 if (!keep_fd) close(dfd);
2412         }
2413         *sbp = super;
2414         if (st->ss == NULL) {
2415                 st->ss = &super_ddf_container;
2416                 st->minor_version = 0;
2417                 st->max_devs = 512;
2418                 st->container_dev = fd2devnum(fd);
2419         }
2420         return 0;
2421 }
2422 #endif
2423
2424
2425
2426 static struct mdinfo *container_content_ddf(struct supertype *st)
2427 {
2428         /* Given a container loaded by load_super_ddf_all,
2429          * extract information about all the arrays into
2430          * an mdinfo tree.
2431          *
2432          * For each vcl in conflist: create an mdinfo, fill it in,
2433          *  then look for matching devices (phys_refnum) in dlist
2434          *  and create appropriate device mdinfo.
2435          */
2436         struct ddf_super *ddf = st->sb;
2437         struct mdinfo *rest = NULL;
2438         struct vcl *vc;
2439
2440         for (vc = ddf->conflist ; vc ; vc=vc->next)
2441         {
2442                 int i;
2443                 struct mdinfo *this;
2444                 this = malloc(sizeof(*this));
2445                 memset(this, 0, sizeof(*this));
2446                 this->next = rest;
2447                 rest = this;
2448
2449                 this->array.major_version = 1000;
2450                 this->array.minor_version = 0;
2451                 this->array.patch_version = 0;
2452                 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2453                 this->array.raid_disks =
2454                         __be16_to_cpu(vc->conf.prim_elmnt_count);
2455                 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2456                                                    this->array.raid_disks);
2457                 this->array.md_minor      = -1;
2458                 this->array.ctime         = DECADE +
2459                         __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2460                 this->array.utime         = DECADE +
2461                         __be32_to_cpu(vc->conf.timestamp);
2462                 this->array.chunk_size    = 512 << vc->conf.chunk_shift;
2463
2464                 for (i=0; i < __be16_to_cpu(ddf->virt->populated_vdes); i++)
2465                         if (memcmp(ddf->virt->entries[i].guid,
2466                                    vc->conf.guid, DDF_GUID_LEN) == 0)
2467                                 break;
2468                 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2469                     (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2470                     DDF_init_full) {
2471                         this->array.state = 0;
2472                         this->resync_start = 0;
2473                 } else {
2474                         this->array.state = 1;
2475                         this->resync_start = ~0ULL;
2476                 }
2477                 memcpy(this->name, ddf->virt->entries[i].name, 32);
2478                 this->name[33]=0;
2479
2480                 memset(this->uuid, 0, sizeof(this->uuid));
2481                 this->component_size = __be64_to_cpu(vc->conf.blocks);
2482                 this->array.size = this->component_size / 2;
2483                 this->container_member = i;
2484
2485                 sprintf(this->text_version, "/%s/%d",
2486                         devnum2devname(st->container_dev),
2487                         this->container_member);
2488
2489
2490                 for (i=0 ; i < ddf->mppe ; i++) {
2491                         struct mdinfo *dev;
2492                         struct dl *d;
2493
2494                         if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2495                                 continue;
2496
2497                         this->array.working_disks++;
2498
2499                         for (d = ddf->dlist; d ; d=d->next)
2500                                 if (d->disk.refnum == vc->conf.phys_refnum[i])
2501                                         break;
2502                         if (d == NULL)
2503                                 break;
2504
2505                         dev = malloc(sizeof(*dev));
2506                         memset(dev, 0, sizeof(*dev));
2507                         dev->next = this->devs;
2508                         this->devs = dev;
2509
2510                         dev->disk.number = __be32_to_cpu(d->disk.refnum);
2511                         dev->disk.major = d->major;
2512                         dev->disk.minor = d->minor;
2513                         dev->disk.raid_disk = i;
2514                         dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2515
2516                         dev->events = __le32_to_cpu(ddf->primary.seq);
2517                         dev->data_offset = vc->lba_offset[i];
2518                         dev->component_size = __be64_to_cpu(vc->conf.blocks);
2519                         if (d->devname)
2520                                 strcpy(dev->name, d->devname);
2521                 }
2522         }
2523         return rest;
2524 }
2525
2526 static int init_zero_ddf(struct supertype *st,
2527                          mdu_array_info_t *info,
2528                          unsigned long long size, char *name,
2529                          char *homehost, int *uuid)
2530 {
2531         st->sb = NULL;
2532         return 0;
2533 }
2534
2535 static int store_zero_ddf(struct supertype *st, int fd)
2536 {
2537         unsigned long long dsize;
2538         char buf[512];
2539         memset(buf, 0, 512);
2540
2541
2542         if (!get_dev_size(fd, NULL, &dsize))
2543                 return 1;
2544
2545         lseek64(fd, dsize-512, 0);
2546         write(fd, buf, 512);
2547         return 0;
2548 }
2549
2550 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2551 {
2552         /*
2553          * return:
2554          *  0 same, or first was empty, and second was copied
2555          *  1 second had wrong number
2556          *  2 wrong uuid
2557          *  3 wrong other info
2558          */
2559         struct ddf_super *first = st->sb;
2560         struct ddf_super *second = tst->sb;
2561
2562         if (!first) {
2563                 st->sb = tst->sb;
2564                 tst->sb = NULL;
2565                 return 0;
2566         }
2567
2568         if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2569                 return 2;
2570
2571         /* FIXME should I look at anything else? */
2572         return 0;
2573 }
2574
2575 /*
2576  * A new array 'a' has been started which claims to be instance 'inst'
2577  * within container 'c'.
2578  * We need to confirm that the array matches the metadata in 'c' so
2579  * that we don't corrupt any metadata.
2580  */
2581 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2582 {
2583         fprintf(stderr, "ddf: open_new %s\n", inst);
2584         a->info.container_member = atoi(inst);
2585         return 0;
2586 }
2587
2588 /*
2589  * The array 'a' is to be marked clean in the metadata.
2590  * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2591  * clean up to the point (in sectors).  If that cannot be recorded in the
2592  * metadata, then leave it as dirty.
2593  *
2594  * For DDF, we need to clear the DDF_state_inconsistent bit in the
2595  * !global! virtual_disk.virtual_entry structure.
2596  */
2597 static void ddf_set_array_state(struct active_array *a, int consistent)
2598 {
2599         struct ddf_super *ddf = a->container->sb;
2600         int inst = a->info.container_member;
2601         if (consistent)
2602                 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2603         else
2604                 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2605         ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2606         if (a->resync_start == ~0ULL)
2607                 ddf->virt->entries[inst].init_state |= DDF_init_full;
2608         else if (a->resync_start == 0)
2609                 ddf->virt->entries[inst].init_state |= DDF_init_not;
2610         else
2611                 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2612
2613         printf("ddf mark %s %llu\n", consistent?"clean":"dirty",
2614                a->resync_start);
2615 }
2616
2617 /*
2618  * The state of each disk is stored in the global phys_disk structure
2619  * in phys_disk.entries[n].state.
2620  * This makes various combinations awkward.
2621  * - When a device fails in any array, it must be failed in all arrays
2622  *   that include a part of this device.
2623  * - When a component is rebuilding, we cannot include it officially in the
2624  *   array unless this is the only array that uses the device.
2625  *
2626  * So: when transitioning:
2627  *   Online -> failed,  just set failed flag.  monitor will propagate
2628  *   spare -> online,   the device might need to be added to the array.
2629  *   spare -> failed,   just set failed.  Don't worry if in array or not.
2630  */
2631 static void ddf_set_disk(struct active_array *a, int n, int state)
2632 {
2633         struct ddf_super *ddf = a->container->sb;
2634         int inst = a->info.container_member;
2635         struct vd_config *vc = find_vdcr(ddf, inst);
2636         int pd = find_phys(ddf, vc->phys_refnum[n]);
2637         int i, st, working;
2638
2639         if (vc == NULL) {
2640                 fprintf(stderr, "ddf: cannot find instance %d!!\n", inst);
2641                 return;
2642         }
2643         if (pd < 0) {
2644                 /* disk doesn't currently exist. If it is now in_sync,
2645                  * insert it. */
2646                 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2647                         /* Find dev 'n' in a->info->devs, determine the
2648                          * ddf refnum, and set vc->phys_refnum and update
2649                          * phys->entries[]
2650                          */
2651                         /* FIXME */
2652                 }
2653         } else {
2654                 if (state & DS_FAULTY)
2655                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Failed);
2656                 if (state & DS_INSYNC) {
2657                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Online);
2658                         ddf->phys->entries[pd].state  &= __cpu_to_be16(~DDF_Rebuilding);
2659                 }
2660         }
2661
2662         fprintf(stderr, "ddf: set_disk %d to %x\n", n, state);
2663
2664         /* Now we need to check the state of the array and update
2665          * virtual_disk.entries[n].state.
2666          * It needs to be one of "optimal", "degraded", "failed".
2667          * I don't understand 'deleted' or 'missing'.
2668          */
2669         working = 0;
2670         for (i=0; i < a->info.array.raid_disks; i++) {
2671                 pd = find_phys(ddf, vc->phys_refnum[i]);
2672                 if (pd < 0)
2673                         continue;
2674                 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2675                 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2676                     == DDF_Online)
2677                         working++;
2678         }
2679         state = DDF_state_degraded;
2680         if (working == a->info.array.raid_disks)
2681                 state = DDF_state_optimal;
2682         else switch(vc->prl) {
2683         case DDF_RAID0:
2684         case DDF_CONCAT:
2685         case DDF_JBOD:
2686                 state = DDF_state_failed;
2687                 break;
2688         case DDF_RAID1:
2689                 if (working == 0)
2690                         state = DDF_state_failed;
2691                 break;
2692         case DDF_RAID4:
2693         case DDF_RAID5:
2694                 if (working < a->info.array.raid_disks-1)
2695                         state = DDF_state_failed;
2696                 break;
2697         case DDF_RAID6:
2698                 if (working < a->info.array.raid_disks-2)
2699                         state = DDF_state_failed;
2700                 else if (working == a->info.array.raid_disks-1)
2701                         state = DDF_state_part_optimal;
2702                 break;
2703         }
2704
2705         ddf->virt->entries[inst].state =
2706                 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2707                 | state;
2708
2709 }
2710
2711 static void ddf_sync_metadata(struct supertype *st)
2712 {
2713
2714         /*
2715          * Write all data to all devices.
2716          * Later, we might be able to track whether only local changes
2717          * have been made, or whether any global data has been changed,
2718          * but ddf is sufficiently weird that it probably always
2719          * changes global data ....
2720          */
2721         __write_init_super_ddf(st, 0);
2722         fprintf(stderr, "ddf: sync_metadata\n");
2723 }
2724
2725 static void ddf_process_update(struct supertype *st,
2726                                struct metadata_update *update)
2727 {
2728         /* Apply this update to the metadata.
2729          * The first 4 bytes are a DDF_*_MAGIC which guides
2730          * our actions.
2731          * Possible update are:
2732          *  DDF_PHYS_RECORDS_MAGIC
2733          *    Add a new physical device.  Changes to this record
2734          *    only happen implicitly.
2735          *    used_pdes is the device number.
2736          *  DDF_VIRT_RECORDS_MAGIC
2737          *    Add a new VD.  Possibly also change the 'access' bits.
2738          *    populated_vdes is the entry number.
2739          *  DDF_VD_CONF_MAGIC
2740          *    New or updated VD.  the VIRT_RECORD must already
2741          *    exist.  For an update, phys_refnum and lba_offset
2742          *    (at least) are updated, and the VD_CONF must
2743          *    be written to precisely those devices listed with
2744          *    a phys_refnum.
2745          *  DDF_SPARE_ASSIGN_MAGIC
2746          *    replacement Spare Assignment Record... but for which device?
2747          *
2748          * So, e.g.:
2749          *  - to create a new array, we send a VIRT_RECORD and
2750          *    a VD_CONF.  Then assemble and start the array.
2751          *  - to activate a spare we send a VD_CONF to add the phys_refnum
2752          *    and offset.  This will also mark the spare as active with
2753          *    a spare-assignment record.
2754          */
2755         struct ddf_super *ddf = st->sb;
2756         __u32 *magic = (__u32*)update->buf;
2757         struct phys_disk *pd;
2758         struct virtual_disk *vd;
2759         struct vd_config *vc;
2760         struct vcl *vcl;
2761         struct dl *dl;
2762         int mppe;
2763         int ent;
2764
2765         printf("Process update %x\n", *magic);
2766
2767         switch (*magic) {
2768         case DDF_PHYS_RECORDS_MAGIC:
2769
2770                 if (update->len != (sizeof(struct phys_disk) +
2771                                     sizeof(struct phys_disk_entry)))
2772                         return;
2773                 pd = (struct phys_disk*)update->buf;
2774
2775                 ent = __be16_to_cpu(pd->used_pdes);
2776                 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2777                         return;
2778                 if (!all_ff(ddf->phys->entries[ent].guid))
2779                         return;
2780                 ddf->phys->entries[ent] = pd->entries[0];
2781                 ddf->phys->used_pdes = __cpu_to_be16(1 +
2782                                            __be16_to_cpu(ddf->phys->used_pdes));
2783                 break;
2784
2785         case DDF_VIRT_RECORDS_MAGIC:
2786
2787                 if (update->len != (sizeof(struct virtual_disk) +
2788                                     sizeof(struct virtual_entry)))
2789                         return;
2790                 vd = (struct virtual_disk*)update->buf;
2791
2792                 ent = __be16_to_cpu(vd->populated_vdes);
2793                 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2794                         return;
2795                 if (!all_ff(ddf->virt->entries[ent].guid))
2796                         return;
2797                 ddf->virt->entries[ent] = vd->entries[0];
2798                 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2799                               __be16_to_cpu(ddf->virt->populated_vdes));
2800                 break;
2801
2802         case DDF_VD_CONF_MAGIC:
2803                 printf("len %d %d\n", update->len, ddf->conf_rec_len);
2804
2805                 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2806                 if (update->len != ddf->conf_rec_len)
2807                         return;
2808                 vc = (struct vd_config*)update->buf;
2809                 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2810                         if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2811                                 break;
2812                 printf("vcl = %p\n", vcl);
2813                 if (vcl) {
2814                         /* An update, just copy the phys_refnum and lba_offset
2815                          * fields
2816                          */
2817                         memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2818                                mppe * (sizeof(__u32) + sizeof(__u64)));
2819                 } else {
2820                         /* A new VD_CONF */
2821                         vcl = update->space;
2822                         update->space = NULL;
2823                         vcl->next = ddf->conflist;
2824                         vcl->conf = *vc;
2825                         vcl->lba_offset = (__u64*)
2826                                 &vcl->conf.phys_refnum[mppe];
2827                         ddf->conflist = vcl;
2828                 }
2829                 /* Now make sure vlist is correct for each dl. */
2830                 for (dl = ddf->dlist; dl; dl = dl->next) {
2831                         int dn;
2832                         int vn = 0;
2833                         for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2834                                 for (dn=0; dn < ddf->mppe ; dn++)
2835                                         if (vcl->conf.phys_refnum[dn] ==
2836                                             dl->disk.refnum) {
2837                                                 printf("dev %d has %p at %d\n",
2838                                                        dl->pdnum, vcl, vn);
2839                                                 dl->vlist[vn++] = vcl;
2840                                                 break;
2841                                         }
2842                         while (vn < ddf->max_part)
2843                                 dl->vlist[vn++] = NULL;
2844                         if (dl->vlist[0]) {
2845                                 ddf->phys->entries[dl->pdnum].type &=
2846                                         ~__cpu_to_be16(DDF_Global_Spare);
2847                                 ddf->phys->entries[dl->pdnum].type |=
2848                                         __cpu_to_be16(DDF_Active_in_VD);
2849                         }
2850                         if (dl->spare) {
2851                                 ddf->phys->entries[dl->pdnum].type &=
2852                                         ~__cpu_to_be16(DDF_Global_Spare);
2853                                 ddf->phys->entries[dl->pdnum].type |=
2854                                         __cpu_to_be16(DDF_Spare);
2855                         }
2856                         if (!dl->vlist[0] && !dl->spare) {
2857                                 ddf->phys->entries[dl->pdnum].type |=
2858                                         __cpu_to_be16(DDF_Global_Spare);
2859                                 ddf->phys->entries[dl->pdnum].type &=
2860                                         ~__cpu_to_be16(DDF_Spare |
2861                                                        DDF_Active_in_VD);
2862                         }
2863                 }
2864                 break;
2865         case DDF_SPARE_ASSIGN_MAGIC:
2866         default: break;
2867         }
2868 }
2869
2870 /*
2871  * Check if the array 'a' is degraded but not failed.
2872  * If it is, find as many spares as are available and needed and
2873  * arrange for their inclusion.
2874  * We only choose devices which are not already in the array,
2875  * and prefer those with a spare-assignment to this array.
2876  * otherwise we choose global spares - assuming always that
2877  * there is enough room.
2878  * For each spare that we assign, we return an 'mdinfo' which
2879  * describes the position for the device in the array.
2880  * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
2881  * the new phys_refnum and lba_offset values.
2882  *
2883  * Only worry about BVDs at the moment.
2884  */
2885 static struct mdinfo *ddf_activate_spare(struct active_array *a,
2886                                          struct metadata_update **updates)
2887 {
2888         int working = 0;
2889         struct mdinfo *d;
2890         struct ddf_super *ddf = a->container->sb;
2891         int global_ok = 0;
2892         struct mdinfo *rv = NULL;
2893         struct mdinfo *di;
2894         struct metadata_update *mu;
2895         struct dl *dl;
2896         int i;
2897         struct vd_config *vc;
2898         __u64 *lba;
2899
2900 /* FIXME, If there is a DS_FAULTY, we want to wait for it to be
2901  * removed.  Then only look at DS_REMOVE devices.
2902  * What about !DS_INSYNC - how can that happen?
2903  */
2904         for (d = a->info.devs ; d ; d = d->next) {
2905                 if ((d->curr_state & DS_FAULTY) &&
2906                         d->state_fd >= 0)
2907                         /* wait for Removal to happen */
2908                         return NULL;
2909                 if (d->state_fd >= 0)
2910                         working ++;
2911         }
2912
2913         printf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
2914                a->info.array.level);
2915         if (working == a->info.array.raid_disks)
2916                 return NULL; /* array not degraded */
2917         switch (a->info.array.level) {
2918         case 1:
2919                 if (working == 0)
2920                         return NULL; /* failed */
2921                 break;
2922         case 4:
2923         case 5:
2924                 if (working < a->info.array.raid_disks - 1)
2925                         return NULL; /* failed */
2926                 break;
2927         case 6:
2928                 if (working < a->info.array.raid_disks - 2)
2929                         return NULL; /* failed */
2930                 break;
2931         default: /* concat or stripe */
2932                 return NULL; /* failed */
2933         }
2934
2935         /* For each slot, if it is not working, find a spare */
2936         dl = ddf->dlist;
2937         for (i = 0; i < a->info.array.raid_disks; i++) {
2938                 for (d = a->info.devs ; d ; d = d->next)
2939                         if (d->disk.raid_disk == i)
2940                                 break;
2941                 printf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2942                 if (d && (d->state_fd >= 0))
2943                         continue;
2944
2945                 /* OK, this device needs recovery.  Find a spare */
2946         again:
2947                 for ( ; dl ; dl = dl->next) {
2948                         unsigned long long esize;
2949                         unsigned long long pos;
2950                         struct mdinfo *d2;
2951                         int is_global = 0;
2952                         int is_dedicated = 0;
2953                         struct extent *ex;
2954                         int j;
2955                         /* If in this array, skip */
2956                         for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2957                                 if (d2->disk.major == dl->major &&
2958                                     d2->disk.minor == dl->minor) {
2959                                         printf("%x:%x already in array\n", dl->major, dl->minor);
2960                                         break;
2961                                 }
2962                         if (d2)
2963                                 continue;
2964                         if (ddf->phys->entries[dl->pdnum].type &
2965                             __cpu_to_be16(DDF_Spare)) {
2966                                 /* Check spare assign record */
2967                                 if (dl->spare) {
2968                                         if (dl->spare->type & DDF_spare_dedicated) {
2969                                                 /* check spare_ents for guid */
2970                                                 for (j = 0 ;
2971                                                      j < __be16_to_cpu(dl->spare->populated);
2972                                                      j++) {
2973                                                         if (memcmp(dl->spare->spare_ents[j].guid,
2974                                                                    ddf->virt->entries[a->info.container_member].guid,
2975                                                                    DDF_GUID_LEN) == 0)
2976                                                                 is_dedicated = 1;
2977                                                 }
2978                                         } else
2979                                                 is_global = 1;
2980                                 }
2981                         } else if (ddf->phys->entries[dl->pdnum].type &
2982                                    __cpu_to_be16(DDF_Global_Spare)) {
2983                                 is_global = 1;
2984                         }
2985                         if ( ! (is_dedicated ||
2986                                 (is_global && global_ok))) {
2987                                 printf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
2988                                        is_dedicated, is_global);
2989                                 continue;
2990                         }
2991
2992                         /* We are allowed to use this device - is there space?
2993                          * We need a->info.component_size sectors */
2994                         ex = get_extents(ddf, dl);
2995                         if (!ex) {
2996                                 printf("cannot get extents\n");
2997                                 continue;
2998                         }
2999                         j = 0; pos = 0;
3000                         esize = 0;
3001
3002                         do {
3003                                 esize = ex[j].start - pos;
3004                                 if (esize >= a->info.component_size)
3005                                         break;
3006                                 pos = ex[i].start + ex[i].size;
3007                                 i++;
3008                         } while (ex[i-1].size);
3009
3010                         free(ex);
3011                         if (esize < a->info.component_size) {
3012                                 printf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3013                                        esize, a->info.component_size);
3014                                 /* No room */
3015                                 continue;
3016                         }
3017
3018                         /* Cool, we have a device with some space at pos */
3019                         di = malloc(sizeof(*di));
3020                         memset(di, 0, sizeof(*di));
3021                         di->disk.number = i;
3022                         di->disk.raid_disk = i;
3023                         di->disk.major = dl->major;
3024                         di->disk.minor = dl->minor;
3025                         di->disk.state = 0;
3026                         di->data_offset = pos;
3027                         di->component_size = a->info.component_size;
3028                         di->container_member = dl->pdnum;
3029                         di->next = rv;
3030                         rv = di;
3031                         printf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3032                                i, pos);
3033
3034                         break;
3035                 }
3036                 if (!dl && ! global_ok) {
3037                         /* not enough dedicated spares, try global */
3038                         global_ok = 1;
3039                         dl = ddf->dlist;
3040                         goto again;
3041                 }
3042         }
3043
3044         if (!rv)
3045                 /* No spares found */
3046                 return rv;
3047         /* Now 'rv' has a list of devices to return.
3048          * Create a metadata_update record to update the
3049          * phys_refnum and lba_offset values
3050          */
3051         mu = malloc(sizeof(*mu));
3052         mu->buf = malloc(ddf->conf_rec_len * 512);
3053         mu->space = malloc(sizeof(struct vcl));
3054         mu->len = ddf->conf_rec_len;
3055         mu->next = *updates;
3056         vc = find_vdcr(ddf, a->info.container_member);
3057         memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3058
3059         vc = (struct vd_config*)mu->buf;
3060         lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3061         for (di = rv ; di ; di = di->next) {
3062                 vc->phys_refnum[di->disk.raid_disk] =
3063                         ddf->phys->entries[dl->pdnum].refnum;
3064                 lba[di->disk.raid_disk] = di->data_offset;
3065         }
3066         *updates = mu;
3067         return rv;
3068 }
3069
3070 struct superswitch super_ddf = {
3071 #ifndef MDASSEMBLE
3072         .examine_super  = examine_super_ddf,
3073         .brief_examine_super = brief_examine_super_ddf,
3074         .detail_super   = detail_super_ddf,
3075         .brief_detail_super = brief_detail_super_ddf,
3076         .validate_geometry = validate_geometry_ddf,
3077 #endif
3078         .match_home     = match_home_ddf,
3079         .uuid_from_super= uuid_from_super_ddf,
3080         .getinfo_super  = getinfo_super_ddf,
3081         .update_super   = update_super_ddf,
3082
3083         .avail_size     = avail_size_ddf,
3084
3085         .compare_super  = compare_super_ddf,
3086
3087         .load_super     = load_super_ddf,
3088         .init_super     = init_zero_ddf,
3089         .store_super    = store_zero_ddf,
3090         .free_super     = free_super_ddf,
3091         .match_metadata_desc = match_metadata_desc_ddf,
3092         .getinfo_super_n  = getinfo_super_n_container,
3093
3094
3095         .major          = 1000,
3096         .swapuuid       = 0,
3097         .external       = 1,
3098
3099 /* for mdmon */
3100         .open_new       = ddf_open_new,
3101         .set_array_state= ddf_set_array_state,
3102         .set_disk       = ddf_set_disk,
3103         .sync_metadata  = ddf_sync_metadata,
3104         .process_update = ddf_process_update,
3105         .activate_spare = ddf_activate_spare,
3106
3107 };
3108
3109 /* Super_ddf_container is set by validate_geometry_ddf when given a
3110  * device that is not part of any array
3111  */
3112 struct superswitch super_ddf_container = {
3113 #ifndef MDASSEMBLE
3114         .validate_geometry = validate_geometry_ddf_container,
3115         .write_init_super = write_init_super_ddf,
3116 #endif
3117
3118         .load_super     = load_super_ddf,
3119         .init_super     = init_super_ddf,
3120         .add_to_super   = add_to_super_ddf,
3121         .getinfo_super  = getinfo_super_ddf,
3122
3123         .free_super     = free_super_ddf,
3124
3125         .container_content = container_content_ddf,
3126         .getinfo_super_n  = getinfo_super_n_container,
3127
3128         .major          = 1000,
3129         .swapuuid       = 0,
3130         .external       = 1,
3131 };
3132
3133 struct superswitch super_ddf_bvd = {
3134 #ifndef MDASSEMBLE
3135 //      .detail_super   = detail_super_ddf_bvd,
3136 //      .brief_detail_super = brief_detail_super_ddf_bvd,
3137         .validate_geometry = validate_geometry_ddf_bvd,
3138         .write_init_super = write_init_super_ddf,
3139 #endif
3140         .update_super   = update_super_ddf,
3141         .init_super     = init_super_ddf_bvd,
3142         .add_to_super   = add_to_super_ddf_bvd,
3143         .getinfo_super  = getinfo_super_ddf_bvd,
3144         .getinfo_super_n  = getinfo_super_n_bvd,
3145
3146         .load_super     = load_super_ddf,
3147         .free_super     = free_super_ddf,
3148         .match_metadata_desc = match_metadata_desc_ddf_bvd,
3149
3150
3151         .major          = 1001,
3152         .swapuuid       = 0,
3153         .external       = 2,
3154 };
3155
3156 struct superswitch super_ddf_svd = {
3157 #ifndef MDASSEMBLE
3158 //      .detail_super   = detail_super_ddf_svd,
3159 //      .brief_detail_super = brief_detail_super_ddf_svd,
3160         .validate_geometry = validate_geometry_ddf_svd,
3161 #endif
3162         .update_super   = update_super_ddf,
3163         .init_super     = init_super_ddf,
3164
3165         .load_super     = load_super_ddf,
3166         .free_super     = free_super_ddf,
3167         .match_metadata_desc = match_metadata_desc_ddf_svd,
3168
3169         .major          = 1002,
3170         .swapuuid       = 0,
3171         .external       = 2,
3172 };