]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Create: support --readonly flag.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 unsigned int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 unsigned int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static unsigned int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 pr_err("Cannot seek to anchor block on %s: %s\n",
547 devname, strerror(errno));
548 return 1;
549 }
550 if (read(fd, &super->anchor, 512) != 512) {
551 if (devname)
552 pr_err("Cannot read anchor block on %s: %s\n",
553 devname, strerror(errno));
554 return 1;
555 }
556 if (super->anchor.magic != DDF_HEADER_MAGIC) {
557 if (devname)
558 pr_err("no DDF anchor found on %s\n",
559 devname);
560 return 2;
561 }
562 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
563 if (devname)
564 pr_err("bad CRC on anchor on %s\n",
565 devname);
566 return 2;
567 }
568 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
569 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
570 if (devname)
571 pr_err("can only support super revision"
572 " %.8s and earlier, not %.8s on %s\n",
573 DDF_REVISION_2, super->anchor.revision,devname);
574 return 2;
575 }
576 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
577 dsize >> 9, 1,
578 &super->primary, &super->anchor) == 0) {
579 if (devname)
580 pr_err("Failed to load primary DDF header "
581 "on %s\n", devname);
582 return 2;
583 }
584 super->active = &super->primary;
585 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
586 dsize >> 9, 2,
587 &super->secondary, &super->anchor)) {
588 if ((__be32_to_cpu(super->primary.seq)
589 < __be32_to_cpu(super->secondary.seq) &&
590 !super->secondary.openflag)
591 || (__be32_to_cpu(super->primary.seq)
592 == __be32_to_cpu(super->secondary.seq) &&
593 super->primary.openflag && !super->secondary.openflag)
594 )
595 super->active = &super->secondary;
596 }
597 return 0;
598 }
599
600 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
601 {
602 void *ok;
603 ok = load_section(fd, super, &super->controller,
604 super->active->controller_section_offset,
605 super->active->controller_section_length,
606 0);
607 super->phys = load_section(fd, super, NULL,
608 super->active->phys_section_offset,
609 super->active->phys_section_length,
610 1);
611 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
612
613 super->virt = load_section(fd, super, NULL,
614 super->active->virt_section_offset,
615 super->active->virt_section_length,
616 1);
617 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
618 if (!ok ||
619 !super->phys ||
620 !super->virt) {
621 free(super->phys);
622 free(super->virt);
623 super->phys = NULL;
624 super->virt = NULL;
625 return 2;
626 }
627 super->conflist = NULL;
628 super->dlist = NULL;
629
630 super->max_part = __be16_to_cpu(super->active->max_partitions);
631 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
632 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
633 return 0;
634 }
635
636 static int load_ddf_local(int fd, struct ddf_super *super,
637 char *devname, int keep)
638 {
639 struct dl *dl;
640 struct stat stb;
641 char *conf;
642 unsigned int i;
643 unsigned int confsec;
644 int vnum;
645 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
646 unsigned long long dsize;
647
648 /* First the local disk info */
649 if (posix_memalign((void**)&dl, 512,
650 sizeof(*dl) +
651 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
652 pr_err("%s could not allocate disk info buffer\n",
653 __func__);
654 return 1;
655 }
656
657 load_section(fd, super, &dl->disk,
658 super->active->data_section_offset,
659 super->active->data_section_length,
660 0);
661 dl->devname = devname ? xstrdup(devname) : NULL;
662
663 fstat(fd, &stb);
664 dl->major = major(stb.st_rdev);
665 dl->minor = minor(stb.st_rdev);
666 dl->next = super->dlist;
667 dl->fd = keep ? fd : -1;
668
669 dl->size = 0;
670 if (get_dev_size(fd, devname, &dsize))
671 dl->size = dsize >> 9;
672 dl->spare = NULL;
673 for (i = 0 ; i < super->max_part ; i++)
674 dl->vlist[i] = NULL;
675 super->dlist = dl;
676 dl->pdnum = -1;
677 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
678 if (memcmp(super->phys->entries[i].guid,
679 dl->disk.guid, DDF_GUID_LEN) == 0)
680 dl->pdnum = i;
681
682 /* Now the config list. */
683 /* 'conf' is an array of config entries, some of which are
684 * probably invalid. Those which are good need to be copied into
685 * the conflist
686 */
687
688 conf = load_section(fd, super, NULL,
689 super->active->config_section_offset,
690 super->active->config_section_length,
691 0);
692
693 vnum = 0;
694 for (confsec = 0;
695 confsec < __be32_to_cpu(super->active->config_section_length);
696 confsec += super->conf_rec_len) {
697 struct vd_config *vd =
698 (struct vd_config *)((char*)conf + confsec*512);
699 struct vcl *vcl;
700
701 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
702 if (dl->spare)
703 continue;
704 if (posix_memalign((void**)&dl->spare, 512,
705 super->conf_rec_len*512) != 0) {
706 pr_err("%s could not allocate spare info buf\n",
707 __func__);
708 return 1;
709 }
710
711 memcpy(dl->spare, vd, super->conf_rec_len*512);
712 continue;
713 }
714 if (vd->magic != DDF_VD_CONF_MAGIC)
715 continue;
716 for (vcl = super->conflist; vcl; vcl = vcl->next) {
717 if (memcmp(vcl->conf.guid,
718 vd->guid, DDF_GUID_LEN) == 0)
719 break;
720 }
721
722 if (vcl) {
723 dl->vlist[vnum++] = vcl;
724 if (__be32_to_cpu(vd->seqnum) <=
725 __be32_to_cpu(vcl->conf.seqnum))
726 continue;
727 } else {
728 if (posix_memalign((void**)&vcl, 512,
729 (super->conf_rec_len*512 +
730 offsetof(struct vcl, conf))) != 0) {
731 pr_err("%s could not allocate vcl buf\n",
732 __func__);
733 return 1;
734 }
735 vcl->next = super->conflist;
736 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
737 super->conflist = vcl;
738 dl->vlist[vnum++] = vcl;
739 }
740 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
741 vcl->lba_offset = (__u64*)
742 &vcl->conf.phys_refnum[super->mppe];
743
744 for (i=0; i < max_virt_disks ; i++)
745 if (memcmp(super->virt->entries[i].guid,
746 vcl->conf.guid, DDF_GUID_LEN)==0)
747 break;
748 if (i < max_virt_disks)
749 vcl->vcnum = i;
750 }
751 free(conf);
752
753 return 0;
754 }
755
756 #ifndef MDASSEMBLE
757 static int load_super_ddf_all(struct supertype *st, int fd,
758 void **sbp, char *devname);
759 #endif
760
761 static void free_super_ddf(struct supertype *st);
762
763 static int load_super_ddf(struct supertype *st, int fd,
764 char *devname)
765 {
766 unsigned long long dsize;
767 struct ddf_super *super;
768 int rv;
769
770 if (get_dev_size(fd, devname, &dsize) == 0)
771 return 1;
772
773 if (test_partition(fd))
774 /* DDF is not allowed on partitions */
775 return 1;
776
777 /* 32M is a lower bound */
778 if (dsize <= 32*1024*1024) {
779 if (devname)
780 pr_err("%s is too small for ddf: "
781 "size is %llu sectors.\n",
782 devname, dsize>>9);
783 return 1;
784 }
785 if (dsize & 511) {
786 if (devname)
787 pr_err("%s is an odd size for ddf: "
788 "size is %llu bytes.\n",
789 devname, dsize);
790 return 1;
791 }
792
793 free_super_ddf(st);
794
795 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
796 pr_err("malloc of %zu failed.\n",
797 sizeof(*super));
798 return 1;
799 }
800 memset(super, 0, sizeof(*super));
801
802 rv = load_ddf_headers(fd, super, devname);
803 if (rv) {
804 free(super);
805 return rv;
806 }
807
808 /* Have valid headers and have chosen the best. Let's read in the rest*/
809
810 rv = load_ddf_global(fd, super, devname);
811
812 if (rv) {
813 if (devname)
814 pr_err("Failed to load all information "
815 "sections on %s\n", devname);
816 free(super);
817 return rv;
818 }
819
820 rv = load_ddf_local(fd, super, devname, 0);
821
822 if (rv) {
823 if (devname)
824 pr_err("Failed to load all information "
825 "sections on %s\n", devname);
826 free(super);
827 return rv;
828 }
829
830 /* Should possibly check the sections .... */
831
832 st->sb = super;
833 if (st->ss == NULL) {
834 st->ss = &super_ddf;
835 st->minor_version = 0;
836 st->max_devs = 512;
837 }
838 return 0;
839
840 }
841
842 static void free_super_ddf(struct supertype *st)
843 {
844 struct ddf_super *ddf = st->sb;
845 if (ddf == NULL)
846 return;
847 free(ddf->phys);
848 free(ddf->virt);
849 while (ddf->conflist) {
850 struct vcl *v = ddf->conflist;
851 ddf->conflist = v->next;
852 if (v->block_sizes)
853 free(v->block_sizes);
854 free(v);
855 }
856 while (ddf->dlist) {
857 struct dl *d = ddf->dlist;
858 ddf->dlist = d->next;
859 if (d->fd >= 0)
860 close(d->fd);
861 if (d->spare)
862 free(d->spare);
863 free(d);
864 }
865 while (ddf->add_list) {
866 struct dl *d = ddf->add_list;
867 ddf->add_list = d->next;
868 if (d->fd >= 0)
869 close(d->fd);
870 if (d->spare)
871 free(d->spare);
872 free(d);
873 }
874 free(ddf);
875 st->sb = NULL;
876 }
877
878 static struct supertype *match_metadata_desc_ddf(char *arg)
879 {
880 /* 'ddf' only support containers */
881 struct supertype *st;
882 if (strcmp(arg, "ddf") != 0 &&
883 strcmp(arg, "default") != 0
884 )
885 return NULL;
886
887 st = xcalloc(1, sizeof(*st));
888 st->container_dev = NoMdDev;
889 st->ss = &super_ddf;
890 st->max_devs = 512;
891 st->minor_version = 0;
892 st->sb = NULL;
893 return st;
894 }
895
896
897 #ifndef MDASSEMBLE
898
899 static mapping_t ddf_state[] = {
900 { "Optimal", 0},
901 { "Degraded", 1},
902 { "Deleted", 2},
903 { "Missing", 3},
904 { "Failed", 4},
905 { "Partially Optimal", 5},
906 { "-reserved-", 6},
907 { "-reserved-", 7},
908 { NULL, 0}
909 };
910
911 static mapping_t ddf_init_state[] = {
912 { "Not Initialised", 0},
913 { "QuickInit in Progress", 1},
914 { "Fully Initialised", 2},
915 { "*UNKNOWN*", 3},
916 { NULL, 0}
917 };
918 static mapping_t ddf_access[] = {
919 { "Read/Write", 0},
920 { "Reserved", 1},
921 { "Read Only", 2},
922 { "Blocked (no access)", 3},
923 { NULL ,0}
924 };
925
926 static mapping_t ddf_level[] = {
927 { "RAID0", DDF_RAID0},
928 { "RAID1", DDF_RAID1},
929 { "RAID3", DDF_RAID3},
930 { "RAID4", DDF_RAID4},
931 { "RAID5", DDF_RAID5},
932 { "RAID1E",DDF_RAID1E},
933 { "JBOD", DDF_JBOD},
934 { "CONCAT",DDF_CONCAT},
935 { "RAID5E",DDF_RAID5E},
936 { "RAID5EE",DDF_RAID5EE},
937 { "RAID6", DDF_RAID6},
938 { NULL, 0}
939 };
940 static mapping_t ddf_sec_level[] = {
941 { "Striped", DDF_2STRIPED},
942 { "Mirrored", DDF_2MIRRORED},
943 { "Concat", DDF_2CONCAT},
944 { "Spanned", DDF_2SPANNED},
945 { NULL, 0}
946 };
947 #endif
948
949 struct num_mapping {
950 int num1, num2;
951 };
952 static struct num_mapping ddf_level_num[] = {
953 { DDF_RAID0, 0 },
954 { DDF_RAID1, 1 },
955 { DDF_RAID3, LEVEL_UNSUPPORTED },
956 { DDF_RAID4, 4 },
957 { DDF_RAID5, 5 },
958 { DDF_RAID1E, LEVEL_UNSUPPORTED },
959 { DDF_JBOD, LEVEL_UNSUPPORTED },
960 { DDF_CONCAT, LEVEL_LINEAR },
961 { DDF_RAID5E, LEVEL_UNSUPPORTED },
962 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
963 { DDF_RAID6, 6},
964 { MAXINT, MAXINT }
965 };
966
967 static int map_num1(struct num_mapping *map, int num)
968 {
969 int i;
970 for (i=0 ; map[i].num1 != MAXINT; i++)
971 if (map[i].num1 == num)
972 break;
973 return map[i].num2;
974 }
975
976 static int all_ff(char *guid)
977 {
978 int i;
979 for (i = 0; i < DDF_GUID_LEN; i++)
980 if (guid[i] != (char)0xff)
981 return 0;
982 return 1;
983 }
984
985 #ifndef MDASSEMBLE
986 static void print_guid(char *guid, int tstamp)
987 {
988 /* A GUIDs are part (or all) ASCII and part binary.
989 * They tend to be space padded.
990 * We print the GUID in HEX, then in parentheses add
991 * any initial ASCII sequence, and a possible
992 * time stamp from bytes 16-19
993 */
994 int l = DDF_GUID_LEN;
995 int i;
996
997 for (i=0 ; i<DDF_GUID_LEN ; i++) {
998 if ((i&3)==0 && i != 0) printf(":");
999 printf("%02X", guid[i]&255);
1000 }
1001
1002 printf("\n (");
1003 while (l && guid[l-1] == ' ')
1004 l--;
1005 for (i=0 ; i<l ; i++) {
1006 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1007 fputc(guid[i], stdout);
1008 else
1009 break;
1010 }
1011 if (tstamp) {
1012 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1013 char tbuf[100];
1014 struct tm *tm;
1015 tm = localtime(&then);
1016 strftime(tbuf, 100, " %D %T",tm);
1017 fputs(tbuf, stdout);
1018 }
1019 printf(")");
1020 }
1021
1022 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1023 {
1024 int crl = sb->conf_rec_len;
1025 struct vcl *vcl;
1026
1027 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1028 unsigned int i;
1029 struct vd_config *vc = &vcl->conf;
1030
1031 if (calc_crc(vc, crl*512) != vc->crc)
1032 continue;
1033 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1034 continue;
1035
1036 /* Ok, we know about this VD, let's give more details */
1037 printf(" Raid Devices[%d] : %d (", n,
1038 __be16_to_cpu(vc->prim_elmnt_count));
1039 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1040 int j;
1041 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1042 for (j=0; j<cnt; j++)
1043 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1044 break;
1045 if (i) printf(" ");
1046 if (j < cnt)
1047 printf("%d", j);
1048 else
1049 printf("--");
1050 }
1051 printf(")\n");
1052 if (vc->chunk_shift != 255)
1053 printf(" Chunk Size[%d] : %d sectors\n", n,
1054 1 << vc->chunk_shift);
1055 printf(" Raid Level[%d] : %s\n", n,
1056 map_num(ddf_level, vc->prl)?:"-unknown-");
1057 if (vc->sec_elmnt_count != 1) {
1058 printf(" Secondary Position[%d] : %d of %d\n", n,
1059 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1060 printf(" Secondary Level[%d] : %s\n", n,
1061 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1062 }
1063 printf(" Device Size[%d] : %llu\n", n,
1064 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1065 printf(" Array Size[%d] : %llu\n", n,
1066 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1067 }
1068 }
1069
1070 static void examine_vds(struct ddf_super *sb)
1071 {
1072 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1073 int i;
1074 printf(" Virtual Disks : %d\n", cnt);
1075
1076 for (i=0; i<cnt; i++) {
1077 struct virtual_entry *ve = &sb->virt->entries[i];
1078 printf("\n");
1079 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1080 printf("\n");
1081 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1082 printf(" state[%d] : %s, %s%s\n", i,
1083 map_num(ddf_state, ve->state & 7),
1084 (ve->state & 8) ? "Morphing, ": "",
1085 (ve->state & 16)? "Not Consistent" : "Consistent");
1086 printf(" init state[%d] : %s\n", i,
1087 map_num(ddf_init_state, ve->init_state&3));
1088 printf(" access[%d] : %s\n", i,
1089 map_num(ddf_access, (ve->init_state>>6) & 3));
1090 printf(" Name[%d] : %.16s\n", i, ve->name);
1091 examine_vd(i, sb, ve->guid);
1092 }
1093 if (cnt) printf("\n");
1094 }
1095
1096 static void examine_pds(struct ddf_super *sb)
1097 {
1098 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1099 int i;
1100 struct dl *dl;
1101 printf(" Physical Disks : %d\n", cnt);
1102 printf(" Number RefNo Size Device Type/State\n");
1103
1104 for (i=0 ; i<cnt ; i++) {
1105 struct phys_disk_entry *pd = &sb->phys->entries[i];
1106 int type = __be16_to_cpu(pd->type);
1107 int state = __be16_to_cpu(pd->state);
1108
1109 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1110 //printf("\n");
1111 printf(" %3d %08x ", i,
1112 __be32_to_cpu(pd->refnum));
1113 printf("%8lluK ",
1114 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1115 for (dl = sb->dlist; dl ; dl = dl->next) {
1116 if (dl->disk.refnum == pd->refnum) {
1117 char *dv = map_dev(dl->major, dl->minor, 0);
1118 if (dv) {
1119 printf("%-15s", dv);
1120 break;
1121 }
1122 }
1123 }
1124 if (!dl)
1125 printf("%15s","");
1126 printf(" %s%s%s%s%s",
1127 (type&2) ? "active":"",
1128 (type&4) ? "Global-Spare":"",
1129 (type&8) ? "spare" : "",
1130 (type&16)? ", foreign" : "",
1131 (type&32)? "pass-through" : "");
1132 if (state & DDF_Failed)
1133 /* This over-rides these three */
1134 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1135 printf("/%s%s%s%s%s%s%s",
1136 (state&1)? "Online": "Offline",
1137 (state&2)? ", Failed": "",
1138 (state&4)? ", Rebuilding": "",
1139 (state&8)? ", in-transition": "",
1140 (state&16)? ", SMART-errors": "",
1141 (state&32)? ", Unrecovered-Read-Errors": "",
1142 (state&64)? ", Missing" : "");
1143 printf("\n");
1144 }
1145 }
1146
1147 static void examine_super_ddf(struct supertype *st, char *homehost)
1148 {
1149 struct ddf_super *sb = st->sb;
1150
1151 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1152 printf(" Version : %.8s\n", sb->anchor.revision);
1153 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1154 printf("\n");
1155 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1156 printf("\n");
1157 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1158 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1159 ?"yes" : "no");
1160 examine_vds(sb);
1161 examine_pds(sb);
1162 }
1163
1164 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
1165
1166 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1167
1168 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1169 {
1170 /* We just write a generic DDF ARRAY entry
1171 */
1172 struct mdinfo info;
1173 char nbuf[64];
1174 getinfo_super_ddf(st, &info, NULL);
1175 fname_from_uuid(st, &info, nbuf, ':');
1176
1177 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1178 }
1179
1180 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1181 {
1182 /* We just write a generic DDF ARRAY entry
1183 */
1184 struct ddf_super *ddf = st->sb;
1185 struct mdinfo info;
1186 unsigned int i;
1187 char nbuf[64];
1188 getinfo_super_ddf(st, &info, NULL);
1189 fname_from_uuid(st, &info, nbuf, ':');
1190
1191 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1192 struct virtual_entry *ve = &ddf->virt->entries[i];
1193 struct vcl vcl;
1194 char nbuf1[64];
1195 if (all_ff(ve->guid))
1196 continue;
1197 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1198 ddf->currentconf =&vcl;
1199 uuid_from_super_ddf(st, info.uuid);
1200 fname_from_uuid(st, &info, nbuf1, ':');
1201 printf("ARRAY container=%s member=%d UUID=%s\n",
1202 nbuf+5, i, nbuf1+5);
1203 }
1204 }
1205
1206 static void export_examine_super_ddf(struct supertype *st)
1207 {
1208 struct mdinfo info;
1209 char nbuf[64];
1210 getinfo_super_ddf(st, &info, NULL);
1211 fname_from_uuid(st, &info, nbuf, ':');
1212 printf("MD_METADATA=ddf\n");
1213 printf("MD_LEVEL=container\n");
1214 printf("MD_UUID=%s\n", nbuf+5);
1215 }
1216
1217
1218 static void detail_super_ddf(struct supertype *st, char *homehost)
1219 {
1220 /* FIXME later
1221 * Could print DDF GUID
1222 * Need to find which array
1223 * If whole, briefly list all arrays
1224 * If one, give name
1225 */
1226 }
1227
1228 static void brief_detail_super_ddf(struct supertype *st)
1229 {
1230 /* FIXME I really need to know which array we are detailing.
1231 * Can that be stored in ddf_super??
1232 */
1233 // struct ddf_super *ddf = st->sb;
1234 struct mdinfo info;
1235 char nbuf[64];
1236 getinfo_super_ddf(st, &info, NULL);
1237 fname_from_uuid(st, &info, nbuf,':');
1238 printf(" UUID=%s", nbuf + 5);
1239 }
1240 #endif
1241
1242 static int match_home_ddf(struct supertype *st, char *homehost)
1243 {
1244 /* It matches 'this' host if the controller is a
1245 * Linux-MD controller with vendor_data matching
1246 * the hostname
1247 */
1248 struct ddf_super *ddf = st->sb;
1249 unsigned int len;
1250
1251 if (!homehost)
1252 return 0;
1253 len = strlen(homehost);
1254
1255 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1256 len < sizeof(ddf->controller.vendor_data) &&
1257 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1258 ddf->controller.vendor_data[len] == 0);
1259 }
1260
1261 #ifndef MDASSEMBLE
1262 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
1263 {
1264 struct vcl *v;
1265
1266 for (v = ddf->conflist; v; v = v->next)
1267 if (inst == v->vcnum)
1268 return &v->conf;
1269 return NULL;
1270 }
1271 #endif
1272
1273 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1274 {
1275 /* Find the entry in phys_disk which has the given refnum
1276 * and return it's index
1277 */
1278 unsigned int i;
1279 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1280 if (ddf->phys->entries[i].refnum == phys_refnum)
1281 return i;
1282 return -1;
1283 }
1284
1285 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1286 {
1287 /* The uuid returned here is used for:
1288 * uuid to put into bitmap file (Create, Grow)
1289 * uuid for backup header when saving critical section (Grow)
1290 * comparing uuids when re-adding a device into an array
1291 * In these cases the uuid required is that of the data-array,
1292 * not the device-set.
1293 * uuid to recognise same set when adding a missing device back
1294 * to an array. This is a uuid for the device-set.
1295 *
1296 * For each of these we can make do with a truncated
1297 * or hashed uuid rather than the original, as long as
1298 * everyone agrees.
1299 * In the case of SVD we assume the BVD is of interest,
1300 * though that might be the case if a bitmap were made for
1301 * a mirrored SVD - worry about that later.
1302 * So we need to find the VD configuration record for the
1303 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1304 * The first 16 bytes of the sha1 of these is used.
1305 */
1306 struct ddf_super *ddf = st->sb;
1307 struct vcl *vcl = ddf->currentconf;
1308 char *guid;
1309 char buf[20];
1310 struct sha1_ctx ctx;
1311
1312 if (vcl)
1313 guid = vcl->conf.guid;
1314 else
1315 guid = ddf->anchor.guid;
1316
1317 sha1_init_ctx(&ctx);
1318 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1319 sha1_finish_ctx(&ctx, buf);
1320 memcpy(uuid, buf, 4*4);
1321 }
1322
1323 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
1324
1325 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1326 {
1327 struct ddf_super *ddf = st->sb;
1328 int map_disks = info->array.raid_disks;
1329 __u32 *cptr;
1330
1331 if (ddf->currentconf) {
1332 getinfo_super_ddf_bvd(st, info, map);
1333 return;
1334 }
1335 memset(info, 0, sizeof(*info));
1336
1337 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1338 info->array.level = LEVEL_CONTAINER;
1339 info->array.layout = 0;
1340 info->array.md_minor = -1;
1341 cptr = (__u32 *)(ddf->anchor.guid + 16);
1342 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1343
1344 info->array.utime = 0;
1345 info->array.chunk_size = 0;
1346 info->container_enough = 1;
1347
1348
1349 info->disk.major = 0;
1350 info->disk.minor = 0;
1351 if (ddf->dlist) {
1352 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1353 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1354
1355 info->data_offset = __be64_to_cpu(ddf->phys->
1356 entries[info->disk.raid_disk].
1357 config_size);
1358 info->component_size = ddf->dlist->size - info->data_offset;
1359 } else {
1360 info->disk.number = -1;
1361 info->disk.raid_disk = -1;
1362 // info->disk.raid_disk = find refnum in the table and use index;
1363 }
1364 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1365
1366
1367 info->recovery_start = MaxSector;
1368 info->reshape_active = 0;
1369 info->recovery_blocked = 0;
1370 info->name[0] = 0;
1371
1372 info->array.major_version = -1;
1373 info->array.minor_version = -2;
1374 strcpy(info->text_version, "ddf");
1375 info->safe_mode_delay = 0;
1376
1377 uuid_from_super_ddf(st, info->uuid);
1378
1379 if (map) {
1380 int i;
1381 for (i = 0 ; i < map_disks; i++) {
1382 if (i < info->array.raid_disks &&
1383 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1384 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1385 map[i] = 1;
1386 else
1387 map[i] = 0;
1388 }
1389 }
1390 }
1391
1392 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1393
1394 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
1395 {
1396 struct ddf_super *ddf = st->sb;
1397 struct vcl *vc = ddf->currentconf;
1398 int cd = ddf->currentdev;
1399 int j;
1400 struct dl *dl;
1401 int map_disks = info->array.raid_disks;
1402 __u32 *cptr;
1403
1404 memset(info, 0, sizeof(*info));
1405 /* FIXME this returns BVD info - what if we want SVD ?? */
1406
1407 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1408 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1409 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1410 info->array.raid_disks);
1411 info->array.md_minor = -1;
1412 cptr = (__u32 *)(vc->conf.guid + 16);
1413 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1414 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1415 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1416 info->custom_array_size = 0;
1417
1418 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1419 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1420 if (vc->block_sizes)
1421 info->component_size = vc->block_sizes[cd];
1422 else
1423 info->component_size = __be64_to_cpu(vc->conf.blocks);
1424 }
1425
1426 for (dl = ddf->dlist; dl ; dl = dl->next)
1427 if (dl->raiddisk == ddf->currentdev)
1428 break;
1429
1430 info->disk.major = 0;
1431 info->disk.minor = 0;
1432 info->disk.state = 0;
1433 if (dl) {
1434 info->disk.major = dl->major;
1435 info->disk.minor = dl->minor;
1436 info->disk.raid_disk = dl->raiddisk;
1437 info->disk.number = dl->pdnum;
1438 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
1439 }
1440
1441 info->container_member = ddf->currentconf->vcnum;
1442
1443 info->recovery_start = MaxSector;
1444 info->resync_start = 0;
1445 info->reshape_active = 0;
1446 info->recovery_blocked = 0;
1447 if (!(ddf->virt->entries[info->container_member].state
1448 & DDF_state_inconsistent) &&
1449 (ddf->virt->entries[info->container_member].init_state
1450 & DDF_initstate_mask)
1451 == DDF_init_full)
1452 info->resync_start = MaxSector;
1453
1454 uuid_from_super_ddf(st, info->uuid);
1455
1456 info->array.major_version = -1;
1457 info->array.minor_version = -2;
1458 sprintf(info->text_version, "/%s/%d",
1459 devnum2devname(st->container_dev),
1460 info->container_member);
1461 info->safe_mode_delay = 200;
1462
1463 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1464 info->name[16]=0;
1465 for(j=0; j<16; j++)
1466 if (info->name[j] == ' ')
1467 info->name[j] = 0;
1468
1469 if (map)
1470 for (j = 0; j < map_disks; j++) {
1471 map[j] = 0;
1472 if (j < info->array.raid_disks) {
1473 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
1474 if (i >= 0 &&
1475 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1476 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1477 map[i] = 1;
1478 }
1479 }
1480 }
1481
1482
1483 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1484 char *update,
1485 char *devname, int verbose,
1486 int uuid_set, char *homehost)
1487 {
1488 /* For 'assemble' and 'force' we need to return non-zero if any
1489 * change was made. For others, the return value is ignored.
1490 * Update options are:
1491 * force-one : This device looks a bit old but needs to be included,
1492 * update age info appropriately.
1493 * assemble: clear any 'faulty' flag to allow this device to
1494 * be assembled.
1495 * force-array: Array is degraded but being forced, mark it clean
1496 * if that will be needed to assemble it.
1497 *
1498 * newdev: not used ????
1499 * grow: Array has gained a new device - this is currently for
1500 * linear only
1501 * resync: mark as dirty so a resync will happen.
1502 * uuid: Change the uuid of the array to match what is given
1503 * homehost: update the recorded homehost
1504 * name: update the name - preserving the homehost
1505 * _reshape_progress: record new reshape_progress position.
1506 *
1507 * Following are not relevant for this version:
1508 * sparc2.2 : update from old dodgey metadata
1509 * super-minor: change the preferred_minor number
1510 * summaries: update redundant counters.
1511 */
1512 int rv = 0;
1513 // struct ddf_super *ddf = st->sb;
1514 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1515 // struct virtual_entry *ve = find_ve(ddf);
1516
1517 /* we don't need to handle "force-*" or "assemble" as
1518 * there is no need to 'trick' the kernel. We the metadata is
1519 * first updated to activate the array, all the implied modifications
1520 * will just happen.
1521 */
1522
1523 if (strcmp(update, "grow") == 0) {
1524 /* FIXME */
1525 } else if (strcmp(update, "resync") == 0) {
1526 // info->resync_checkpoint = 0;
1527 } else if (strcmp(update, "homehost") == 0) {
1528 /* homehost is stored in controller->vendor_data,
1529 * or it is when we are the vendor
1530 */
1531 // if (info->vendor_is_local)
1532 // strcpy(ddf->controller.vendor_data, homehost);
1533 rv = -1;
1534 } else if (strcmp(update, "name") == 0) {
1535 /* name is stored in virtual_entry->name */
1536 // memset(ve->name, ' ', 16);
1537 // strncpy(ve->name, info->name, 16);
1538 rv = -1;
1539 } else if (strcmp(update, "_reshape_progress") == 0) {
1540 /* We don't support reshape yet */
1541 } else if (strcmp(update, "assemble") == 0 ) {
1542 /* Do nothing, just succeed */
1543 rv = 0;
1544 } else
1545 rv = -1;
1546
1547 // update_all_csum(ddf);
1548
1549 return rv;
1550 }
1551
1552 static void make_header_guid(char *guid)
1553 {
1554 __u32 stamp;
1555 /* Create a DDF Header of Virtual Disk GUID */
1556
1557 /* 24 bytes of fiction required.
1558 * first 8 are a 'vendor-id' - "Linux-MD"
1559 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1560 * Remaining 8 random number plus timestamp
1561 */
1562 memcpy(guid, T10, sizeof(T10));
1563 stamp = __cpu_to_be32(0xdeadbeef);
1564 memcpy(guid+8, &stamp, 4);
1565 stamp = __cpu_to_be32(0);
1566 memcpy(guid+12, &stamp, 4);
1567 stamp = __cpu_to_be32(time(0) - DECADE);
1568 memcpy(guid+16, &stamp, 4);
1569 stamp = random32();
1570 memcpy(guid+20, &stamp, 4);
1571 }
1572
1573 static int init_super_ddf_bvd(struct supertype *st,
1574 mdu_array_info_t *info,
1575 unsigned long long size,
1576 char *name, char *homehost,
1577 int *uuid);
1578
1579 static int init_super_ddf(struct supertype *st,
1580 mdu_array_info_t *info,
1581 unsigned long long size, char *name, char *homehost,
1582 int *uuid)
1583 {
1584 /* This is primarily called by Create when creating a new array.
1585 * We will then get add_to_super called for each component, and then
1586 * write_init_super called to write it out to each device.
1587 * For DDF, Create can create on fresh devices or on a pre-existing
1588 * array.
1589 * To create on a pre-existing array a different method will be called.
1590 * This one is just for fresh drives.
1591 *
1592 * We need to create the entire 'ddf' structure which includes:
1593 * DDF headers - these are easy.
1594 * Controller data - a Sector describing this controller .. not that
1595 * this is a controller exactly.
1596 * Physical Disk Record - one entry per device, so
1597 * leave plenty of space.
1598 * Virtual Disk Records - again, just leave plenty of space.
1599 * This just lists VDs, doesn't give details
1600 * Config records - describes the VDs that use this disk
1601 * DiskData - describes 'this' device.
1602 * BadBlockManagement - empty
1603 * Diag Space - empty
1604 * Vendor Logs - Could we put bitmaps here?
1605 *
1606 */
1607 struct ddf_super *ddf;
1608 char hostname[17];
1609 int hostlen;
1610 int max_phys_disks, max_virt_disks;
1611 unsigned long long sector;
1612 int clen;
1613 int i;
1614 int pdsize, vdsize;
1615 struct phys_disk *pd;
1616 struct virtual_disk *vd;
1617
1618 if (st->sb)
1619 return init_super_ddf_bvd(st, info, size, name, homehost, uuid);
1620
1621 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1622 pr_err("%s could not allocate superblock\n", __func__);
1623 return 0;
1624 }
1625 memset(ddf, 0, sizeof(*ddf));
1626 ddf->dlist = NULL; /* no physical disks yet */
1627 ddf->conflist = NULL; /* No virtual disks yet */
1628 st->sb = ddf;
1629
1630 if (info == NULL) {
1631 /* zeroing superblock */
1632 return 0;
1633 }
1634
1635 /* At least 32MB *must* be reserved for the ddf. So let's just
1636 * start 32MB from the end, and put the primary header there.
1637 * Don't do secondary for now.
1638 * We don't know exactly where that will be yet as it could be
1639 * different on each device. To just set up the lengths.
1640 *
1641 */
1642
1643 ddf->anchor.magic = DDF_HEADER_MAGIC;
1644 make_header_guid(ddf->anchor.guid);
1645
1646 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1647 ddf->anchor.seq = __cpu_to_be32(1);
1648 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1649 ddf->anchor.openflag = 0xFF;
1650 ddf->anchor.foreignflag = 0;
1651 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1652 ddf->anchor.pad0 = 0xff;
1653 memset(ddf->anchor.pad1, 0xff, 12);
1654 memset(ddf->anchor.header_ext, 0xff, 32);
1655 ddf->anchor.primary_lba = ~(__u64)0;
1656 ddf->anchor.secondary_lba = ~(__u64)0;
1657 ddf->anchor.type = DDF_HEADER_ANCHOR;
1658 memset(ddf->anchor.pad2, 0xff, 3);
1659 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1660 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1661 of 32M reserved.. */
1662 max_phys_disks = 1023; /* Should be enough */
1663 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1664 max_virt_disks = 255;
1665 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1666 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1667 ddf->max_part = 64;
1668 ddf->mppe = 256;
1669 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1670 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1671 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1672 memset(ddf->anchor.pad3, 0xff, 54);
1673 /* controller sections is one sector long immediately
1674 * after the ddf header */
1675 sector = 1;
1676 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1677 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1678 sector += 1;
1679
1680 /* phys is 8 sectors after that */
1681 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1682 sizeof(struct phys_disk_entry)*max_phys_disks,
1683 512);
1684 switch(pdsize/512) {
1685 case 2: case 8: case 32: case 128: case 512: break;
1686 default: abort();
1687 }
1688 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1689 ddf->anchor.phys_section_length =
1690 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1691 sector += pdsize/512;
1692
1693 /* virt is another 32 sectors */
1694 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1695 sizeof(struct virtual_entry) * max_virt_disks,
1696 512);
1697 switch(vdsize/512) {
1698 case 2: case 8: case 32: case 128: case 512: break;
1699 default: abort();
1700 }
1701 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1702 ddf->anchor.virt_section_length =
1703 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1704 sector += vdsize/512;
1705
1706 clen = ddf->conf_rec_len * (ddf->max_part+1);
1707 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1708 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1709 sector += clen;
1710
1711 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1712 ddf->anchor.data_section_length = __cpu_to_be32(1);
1713 sector += 1;
1714
1715 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1716 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1717 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1718 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1719 ddf->anchor.vendor_length = __cpu_to_be32(0);
1720 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1721
1722 memset(ddf->anchor.pad4, 0xff, 256);
1723
1724 memcpy(&ddf->primary, &ddf->anchor, 512);
1725 memcpy(&ddf->secondary, &ddf->anchor, 512);
1726
1727 ddf->primary.openflag = 1; /* I guess.. */
1728 ddf->primary.type = DDF_HEADER_PRIMARY;
1729
1730 ddf->secondary.openflag = 1; /* I guess.. */
1731 ddf->secondary.type = DDF_HEADER_SECONDARY;
1732
1733 ddf->active = &ddf->primary;
1734
1735 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1736
1737 /* 24 more bytes of fiction required.
1738 * first 8 are a 'vendor-id' - "Linux-MD"
1739 * Remaining 16 are serial number.... maybe a hostname would do?
1740 */
1741 memcpy(ddf->controller.guid, T10, sizeof(T10));
1742 gethostname(hostname, sizeof(hostname));
1743 hostname[sizeof(hostname) - 1] = 0;
1744 hostlen = strlen(hostname);
1745 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1746 for (i = strlen(T10) ; i+hostlen < 24; i++)
1747 ddf->controller.guid[i] = ' ';
1748
1749 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1750 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1751 ddf->controller.type.sub_vendor_id = 0;
1752 ddf->controller.type.sub_device_id = 0;
1753 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1754 memset(ddf->controller.pad, 0xff, 8);
1755 memset(ddf->controller.vendor_data, 0xff, 448);
1756 if (homehost && strlen(homehost) < 440)
1757 strcpy((char*)ddf->controller.vendor_data, homehost);
1758
1759 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1760 pr_err("%s could not allocate pd\n", __func__);
1761 return 0;
1762 }
1763 ddf->phys = pd;
1764 ddf->pdsize = pdsize;
1765
1766 memset(pd, 0xff, pdsize);
1767 memset(pd, 0, sizeof(*pd));
1768 pd->magic = DDF_PHYS_RECORDS_MAGIC;
1769 pd->used_pdes = __cpu_to_be16(0);
1770 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1771 memset(pd->pad, 0xff, 52);
1772
1773 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1774 pr_err("%s could not allocate vd\n", __func__);
1775 return 0;
1776 }
1777 ddf->virt = vd;
1778 ddf->vdsize = vdsize;
1779 memset(vd, 0, vdsize);
1780 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1781 vd->populated_vdes = __cpu_to_be16(0);
1782 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1783 memset(vd->pad, 0xff, 52);
1784
1785 for (i=0; i<max_virt_disks; i++)
1786 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1787
1788 st->sb = ddf;
1789 ddf->updates_pending = 1;
1790 return 1;
1791 }
1792
1793 static int chunk_to_shift(int chunksize)
1794 {
1795 return ffs(chunksize/512)-1;
1796 }
1797
1798 static int level_to_prl(int level)
1799 {
1800 switch (level) {
1801 case LEVEL_LINEAR: return DDF_CONCAT;
1802 case 0: return DDF_RAID0;
1803 case 1: return DDF_RAID1;
1804 case 4: return DDF_RAID4;
1805 case 5: return DDF_RAID5;
1806 case 6: return DDF_RAID6;
1807 default: return -1;
1808 }
1809 }
1810 static int layout_to_rlq(int level, int layout, int raiddisks)
1811 {
1812 switch(level) {
1813 case 0:
1814 return DDF_RAID0_SIMPLE;
1815 case 1:
1816 switch(raiddisks) {
1817 case 2: return DDF_RAID1_SIMPLE;
1818 case 3: return DDF_RAID1_MULTI;
1819 default: return -1;
1820 }
1821 case 4:
1822 switch(layout) {
1823 case 0: return DDF_RAID4_N;
1824 }
1825 break;
1826 case 5:
1827 switch(layout) {
1828 case ALGORITHM_LEFT_ASYMMETRIC:
1829 return DDF_RAID5_N_RESTART;
1830 case ALGORITHM_RIGHT_ASYMMETRIC:
1831 return DDF_RAID5_0_RESTART;
1832 case ALGORITHM_LEFT_SYMMETRIC:
1833 return DDF_RAID5_N_CONTINUE;
1834 case ALGORITHM_RIGHT_SYMMETRIC:
1835 return -1; /* not mentioned in standard */
1836 }
1837 case 6:
1838 switch(layout) {
1839 case ALGORITHM_ROTATING_N_RESTART:
1840 return DDF_RAID5_N_RESTART;
1841 case ALGORITHM_ROTATING_ZERO_RESTART:
1842 return DDF_RAID6_0_RESTART;
1843 case ALGORITHM_ROTATING_N_CONTINUE:
1844 return DDF_RAID5_N_CONTINUE;
1845 }
1846 }
1847 return -1;
1848 }
1849
1850 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1851 {
1852 switch(prl) {
1853 case DDF_RAID0:
1854 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1855 case DDF_RAID1:
1856 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1857 on raiddisks*/
1858 case DDF_RAID4:
1859 switch(rlq) {
1860 case DDF_RAID4_N:
1861 return 0;
1862 default:
1863 /* not supported */
1864 return -1; /* FIXME this isn't checked */
1865 }
1866 case DDF_RAID5:
1867 switch(rlq) {
1868 case DDF_RAID5_N_RESTART:
1869 return ALGORITHM_LEFT_ASYMMETRIC;
1870 case DDF_RAID5_0_RESTART:
1871 return ALGORITHM_RIGHT_ASYMMETRIC;
1872 case DDF_RAID5_N_CONTINUE:
1873 return ALGORITHM_LEFT_SYMMETRIC;
1874 default:
1875 return -1;
1876 }
1877 case DDF_RAID6:
1878 switch(rlq) {
1879 case DDF_RAID5_N_RESTART:
1880 return ALGORITHM_ROTATING_N_RESTART;
1881 case DDF_RAID6_0_RESTART:
1882 return ALGORITHM_ROTATING_ZERO_RESTART;
1883 case DDF_RAID5_N_CONTINUE:
1884 return ALGORITHM_ROTATING_N_CONTINUE;
1885 default:
1886 return -1;
1887 }
1888 }
1889 return -1;
1890 }
1891
1892 #ifndef MDASSEMBLE
1893 struct extent {
1894 unsigned long long start, size;
1895 };
1896 static int cmp_extent(const void *av, const void *bv)
1897 {
1898 const struct extent *a = av;
1899 const struct extent *b = bv;
1900 if (a->start < b->start)
1901 return -1;
1902 if (a->start > b->start)
1903 return 1;
1904 return 0;
1905 }
1906
1907 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1908 {
1909 /* find a list of used extents on the give physical device
1910 * (dnum) of the given ddf.
1911 * Return a malloced array of 'struct extent'
1912
1913 FIXME ignore DDF_Legacy devices?
1914
1915 */
1916 struct extent *rv;
1917 int n = 0;
1918 unsigned int i, j;
1919
1920 rv = xmalloc(sizeof(struct extent) * (ddf->max_part + 2));
1921
1922 for (i = 0; i < ddf->max_part; i++) {
1923 struct vcl *v = dl->vlist[i];
1924 if (v == NULL)
1925 continue;
1926 for (j = 0; j < v->conf.prim_elmnt_count; j++)
1927 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1928 /* This device plays role 'j' in 'v'. */
1929 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1930 rv[n].size = __be64_to_cpu(v->conf.blocks);
1931 n++;
1932 break;
1933 }
1934 }
1935 qsort(rv, n, sizeof(*rv), cmp_extent);
1936
1937 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1938 rv[n].size = 0;
1939 return rv;
1940 }
1941 #endif
1942
1943 static int init_super_ddf_bvd(struct supertype *st,
1944 mdu_array_info_t *info,
1945 unsigned long long size,
1946 char *name, char *homehost,
1947 int *uuid)
1948 {
1949 /* We are creating a BVD inside a pre-existing container.
1950 * so st->sb is already set.
1951 * We need to create a new vd_config and a new virtual_entry
1952 */
1953 struct ddf_super *ddf = st->sb;
1954 unsigned int venum;
1955 struct virtual_entry *ve;
1956 struct vcl *vcl;
1957 struct vd_config *vc;
1958
1959 if (__be16_to_cpu(ddf->virt->populated_vdes)
1960 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1961 pr_err("This ddf already has the "
1962 "maximum of %d virtual devices\n",
1963 __be16_to_cpu(ddf->virt->max_vdes));
1964 return 0;
1965 }
1966
1967 if (name)
1968 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1969 if (!all_ff(ddf->virt->entries[venum].guid)) {
1970 char *n = ddf->virt->entries[venum].name;
1971
1972 if (strncmp(name, n, 16) == 0) {
1973 pr_err("This ddf already"
1974 " has an array called %s\n",
1975 name);
1976 return 0;
1977 }
1978 }
1979
1980 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1981 if (all_ff(ddf->virt->entries[venum].guid))
1982 break;
1983 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1984 pr_err("Cannot find spare slot for "
1985 "virtual disk - DDF is corrupt\n");
1986 return 0;
1987 }
1988 ve = &ddf->virt->entries[venum];
1989
1990 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1991 * timestamp, random number
1992 */
1993 make_header_guid(ve->guid);
1994 ve->unit = __cpu_to_be16(info->md_minor);
1995 ve->pad0 = 0xFFFF;
1996 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1997 ve->type = 0;
1998 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1999 if (info->state & 1) /* clean */
2000 ve->init_state = DDF_init_full;
2001 else
2002 ve->init_state = DDF_init_not;
2003
2004 memset(ve->pad1, 0xff, 14);
2005 memset(ve->name, ' ', 16);
2006 if (name)
2007 strncpy(ve->name, name, 16);
2008 ddf->virt->populated_vdes =
2009 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2010
2011 /* Now create a new vd_config */
2012 if (posix_memalign((void**)&vcl, 512,
2013 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2014 pr_err("%s could not allocate vd_config\n", __func__);
2015 return 0;
2016 }
2017 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
2018 vcl->vcnum = venum;
2019 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2020
2021 vc = &vcl->conf;
2022
2023 vc->magic = DDF_VD_CONF_MAGIC;
2024 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2025 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2026 vc->seqnum = __cpu_to_be32(1);
2027 memset(vc->pad0, 0xff, 24);
2028 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
2029 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2030 vc->prl = level_to_prl(info->level);
2031 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
2032 vc->sec_elmnt_count = 1;
2033 vc->sec_elmnt_seq = 0;
2034 vc->srl = 0;
2035 vc->blocks = __cpu_to_be64(info->size * 2);
2036 vc->array_blocks = __cpu_to_be64(
2037 calc_array_size(info->level, info->raid_disks, info->layout,
2038 info->chunk_size, info->size*2));
2039 memset(vc->pad1, 0xff, 8);
2040 vc->spare_refs[0] = 0xffffffff;
2041 vc->spare_refs[1] = 0xffffffff;
2042 vc->spare_refs[2] = 0xffffffff;
2043 vc->spare_refs[3] = 0xffffffff;
2044 vc->spare_refs[4] = 0xffffffff;
2045 vc->spare_refs[5] = 0xffffffff;
2046 vc->spare_refs[6] = 0xffffffff;
2047 vc->spare_refs[7] = 0xffffffff;
2048 memset(vc->cache_pol, 0, 8);
2049 vc->bg_rate = 0x80;
2050 memset(vc->pad2, 0xff, 3);
2051 memset(vc->pad3, 0xff, 52);
2052 memset(vc->pad4, 0xff, 192);
2053 memset(vc->v0, 0xff, 32);
2054 memset(vc->v1, 0xff, 32);
2055 memset(vc->v2, 0xff, 16);
2056 memset(vc->v3, 0xff, 16);
2057 memset(vc->vendor, 0xff, 32);
2058
2059 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2060 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2061
2062 vcl->next = ddf->conflist;
2063 ddf->conflist = vcl;
2064 ddf->currentconf = vcl;
2065 ddf->updates_pending = 1;
2066 return 1;
2067 }
2068
2069 #ifndef MDASSEMBLE
2070 static void add_to_super_ddf_bvd(struct supertype *st,
2071 mdu_disk_info_t *dk, int fd, char *devname)
2072 {
2073 /* fd and devname identify a device with-in the ddf container (st).
2074 * dk identifies a location in the new BVD.
2075 * We need to find suitable free space in that device and update
2076 * the phys_refnum and lba_offset for the newly created vd_config.
2077 * We might also want to update the type in the phys_disk
2078 * section.
2079 *
2080 * Alternately: fd == -1 and we have already chosen which device to
2081 * use and recorded in dlist->raid_disk;
2082 */
2083 struct dl *dl;
2084 struct ddf_super *ddf = st->sb;
2085 struct vd_config *vc;
2086 __u64 *lba_offset;
2087 unsigned int working;
2088 unsigned int i;
2089 unsigned long long blocks, pos, esize;
2090 struct extent *ex;
2091
2092 if (fd == -1) {
2093 for (dl = ddf->dlist; dl ; dl = dl->next)
2094 if (dl->raiddisk == dk->raid_disk)
2095 break;
2096 } else {
2097 for (dl = ddf->dlist; dl ; dl = dl->next)
2098 if (dl->major == dk->major &&
2099 dl->minor == dk->minor)
2100 break;
2101 }
2102 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2103 return;
2104
2105 vc = &ddf->currentconf->conf;
2106 lba_offset = ddf->currentconf->lba_offset;
2107
2108 ex = get_extents(ddf, dl);
2109 if (!ex)
2110 return;
2111
2112 i = 0; pos = 0;
2113 blocks = __be64_to_cpu(vc->blocks);
2114 if (ddf->currentconf->block_sizes)
2115 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2116
2117 do {
2118 esize = ex[i].start - pos;
2119 if (esize >= blocks)
2120 break;
2121 pos = ex[i].start + ex[i].size;
2122 i++;
2123 } while (ex[i-1].size);
2124
2125 free(ex);
2126 if (esize < blocks)
2127 return;
2128
2129 ddf->currentdev = dk->raid_disk;
2130 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2131 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2132
2133 for (i = 0; i < ddf->max_part ; i++)
2134 if (dl->vlist[i] == NULL)
2135 break;
2136 if (i == ddf->max_part)
2137 return;
2138 dl->vlist[i] = ddf->currentconf;
2139
2140 if (fd >= 0)
2141 dl->fd = fd;
2142 if (devname)
2143 dl->devname = devname;
2144
2145 /* Check how many working raid_disks, and if we can mark
2146 * array as optimal yet
2147 */
2148 working = 0;
2149
2150 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2151 if (vc->phys_refnum[i] != 0xffffffff)
2152 working++;
2153
2154 /* Find which virtual_entry */
2155 i = ddf->currentconf->vcnum;
2156 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2157 ddf->virt->entries[i].state =
2158 (ddf->virt->entries[i].state & ~DDF_state_mask)
2159 | DDF_state_optimal;
2160
2161 if (vc->prl == DDF_RAID6 &&
2162 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2163 ddf->virt->entries[i].state =
2164 (ddf->virt->entries[i].state & ~DDF_state_mask)
2165 | DDF_state_part_optimal;
2166
2167 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2168 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2169 ddf->updates_pending = 1;
2170 }
2171
2172 /* add a device to a container, either while creating it or while
2173 * expanding a pre-existing container
2174 */
2175 static int add_to_super_ddf(struct supertype *st,
2176 mdu_disk_info_t *dk, int fd, char *devname)
2177 {
2178 struct ddf_super *ddf = st->sb;
2179 struct dl *dd;
2180 time_t now;
2181 struct tm *tm;
2182 unsigned long long size;
2183 struct phys_disk_entry *pde;
2184 unsigned int n, i;
2185 struct stat stb;
2186 __u32 *tptr;
2187
2188 if (ddf->currentconf) {
2189 add_to_super_ddf_bvd(st, dk, fd, devname);
2190 return 0;
2191 }
2192
2193 /* This is device numbered dk->number. We need to create
2194 * a phys_disk entry and a more detailed disk_data entry.
2195 */
2196 fstat(fd, &stb);
2197 if (posix_memalign((void**)&dd, 512,
2198 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2199 pr_err("%s could allocate buffer for new disk, aborting\n",
2200 __func__);
2201 return 1;
2202 }
2203 dd->major = major(stb.st_rdev);
2204 dd->minor = minor(stb.st_rdev);
2205 dd->devname = devname;
2206 dd->fd = fd;
2207 dd->spare = NULL;
2208
2209 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2210 now = time(0);
2211 tm = localtime(&now);
2212 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2213 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2214 tptr = (__u32 *)(dd->disk.guid + 16);
2215 *tptr++ = random32();
2216 *tptr = random32();
2217
2218 do {
2219 /* Cannot be bothered finding a CRC of some irrelevant details*/
2220 dd->disk.refnum = random32();
2221 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2222 i > 0; i--)
2223 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2224 break;
2225 } while (i > 0);
2226
2227 dd->disk.forced_ref = 1;
2228 dd->disk.forced_guid = 1;
2229 memset(dd->disk.vendor, ' ', 32);
2230 memcpy(dd->disk.vendor, "Linux", 5);
2231 memset(dd->disk.pad, 0xff, 442);
2232 for (i = 0; i < ddf->max_part ; i++)
2233 dd->vlist[i] = NULL;
2234
2235 n = __be16_to_cpu(ddf->phys->used_pdes);
2236 pde = &ddf->phys->entries[n];
2237 dd->pdnum = n;
2238
2239 if (st->update_tail) {
2240 int len = (sizeof(struct phys_disk) +
2241 sizeof(struct phys_disk_entry));
2242 struct phys_disk *pd;
2243
2244 pd = xmalloc(len);
2245 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2246 pd->used_pdes = __cpu_to_be16(n);
2247 pde = &pd->entries[0];
2248 dd->mdupdate = pd;
2249 } else {
2250 n++;
2251 ddf->phys->used_pdes = __cpu_to_be16(n);
2252 }
2253
2254 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2255 pde->refnum = dd->disk.refnum;
2256 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2257 pde->state = __cpu_to_be16(DDF_Online);
2258 get_dev_size(fd, NULL, &size);
2259 /* We are required to reserve 32Meg, and record the size in sectors */
2260 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2261 sprintf(pde->path, "%17.17s","Information: nil") ;
2262 memset(pde->pad, 0xff, 6);
2263
2264 dd->size = size >> 9;
2265 if (st->update_tail) {
2266 dd->next = ddf->add_list;
2267 ddf->add_list = dd;
2268 } else {
2269 dd->next = ddf->dlist;
2270 ddf->dlist = dd;
2271 ddf->updates_pending = 1;
2272 }
2273
2274 return 0;
2275 }
2276
2277 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2278 {
2279 struct ddf_super *ddf = st->sb;
2280 struct dl *dl;
2281
2282 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2283 * disappeared from the container.
2284 * We need to arrange that it disappears from the metadata and
2285 * internal data structures too.
2286 * Most of the work is done by ddf_process_update which edits
2287 * the metadata and closes the file handle and attaches the memory
2288 * where free_updates will free it.
2289 */
2290 for (dl = ddf->dlist; dl ; dl = dl->next)
2291 if (dl->major == dk->major &&
2292 dl->minor == dk->minor)
2293 break;
2294 if (!dl)
2295 return -1;
2296
2297 if (st->update_tail) {
2298 int len = (sizeof(struct phys_disk) +
2299 sizeof(struct phys_disk_entry));
2300 struct phys_disk *pd;
2301
2302 pd = xmalloc(len);
2303 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2304 pd->used_pdes = __cpu_to_be16(dl->pdnum);
2305 pd->entries[0].state = __cpu_to_be16(DDF_Missing);
2306 append_metadata_update(st, pd, len);
2307 }
2308 return 0;
2309 }
2310
2311 /*
2312 * This is the write_init_super method for a ddf container. It is
2313 * called when creating a container or adding another device to a
2314 * container.
2315 */
2316 #define NULL_CONF_SZ 4096
2317
2318 static int __write_init_super_ddf(struct supertype *st)
2319 {
2320
2321 struct ddf_super *ddf = st->sb;
2322 int i;
2323 struct dl *d;
2324 int n_config;
2325 int conf_size;
2326 int attempts = 0;
2327 int successes = 0;
2328 unsigned long long size, sector;
2329 char *null_aligned;
2330
2331 if (posix_memalign((void**)&null_aligned, 4096, NULL_CONF_SZ) != 0) {
2332 return -ENOMEM;
2333 }
2334 memset(null_aligned, 0xff, NULL_CONF_SZ);
2335
2336 /* try to write updated metadata,
2337 * if we catch a failure move on to the next disk
2338 */
2339 for (d = ddf->dlist; d; d=d->next) {
2340 int fd = d->fd;
2341
2342 if (fd < 0)
2343 continue;
2344
2345 attempts++;
2346 /* We need to fill in the primary, (secondary) and workspace
2347 * lba's in the headers, set their checksums,
2348 * Also checksum phys, virt....
2349 *
2350 * Then write everything out, finally the anchor is written.
2351 */
2352 get_dev_size(fd, NULL, &size);
2353 size /= 512;
2354 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2355 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2356 ddf->anchor.seq = __cpu_to_be32(1);
2357 memcpy(&ddf->primary, &ddf->anchor, 512);
2358 memcpy(&ddf->secondary, &ddf->anchor, 512);
2359
2360 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2361 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2362 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2363
2364 ddf->primary.openflag = 0;
2365 ddf->primary.type = DDF_HEADER_PRIMARY;
2366
2367 ddf->secondary.openflag = 0;
2368 ddf->secondary.type = DDF_HEADER_SECONDARY;
2369
2370 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2371 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2372
2373 sector = size - 16*1024*2;
2374 lseek64(fd, sector<<9, 0);
2375 if (write(fd, &ddf->primary, 512) < 0)
2376 continue;
2377
2378 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2379 if (write(fd, &ddf->controller, 512) < 0)
2380 continue;
2381
2382 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2383
2384 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2385 continue;
2386
2387 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2388 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2389 continue;
2390
2391 /* Now write lots of config records. */
2392 n_config = ddf->max_part;
2393 conf_size = ddf->conf_rec_len * 512;
2394 for (i = 0 ; i <= n_config ; i++) {
2395 struct vcl *c = d->vlist[i];
2396 if (i == n_config)
2397 c = (struct vcl*)d->spare;
2398
2399 if (c) {
2400 c->conf.crc = calc_crc(&c->conf, conf_size);
2401 if (write(fd, &c->conf, conf_size) < 0)
2402 break;
2403 } else {
2404 unsigned int togo = conf_size;
2405 while (togo > NULL_CONF_SZ) {
2406 if (write(fd, null_aligned, NULL_CONF_SZ) < 0)
2407 break;
2408 togo -= NULL_CONF_SZ;
2409 }
2410 if (write(fd, null_aligned, togo) < 0)
2411 break;
2412 }
2413 }
2414 if (i <= n_config)
2415 continue;
2416 d->disk.crc = calc_crc(&d->disk, 512);
2417 if (write(fd, &d->disk, 512) < 0)
2418 continue;
2419
2420 /* Maybe do the same for secondary */
2421
2422 lseek64(fd, (size-1)*512, SEEK_SET);
2423 if (write(fd, &ddf->anchor, 512) < 0)
2424 continue;
2425 successes++;
2426 }
2427 free(null_aligned);
2428
2429 return attempts != successes;
2430 }
2431
2432 static int write_init_super_ddf(struct supertype *st)
2433 {
2434 struct ddf_super *ddf = st->sb;
2435 struct vcl *currentconf = ddf->currentconf;
2436
2437 /* we are done with currentconf reset it to point st at the container */
2438 ddf->currentconf = NULL;
2439
2440 if (st->update_tail) {
2441 /* queue the virtual_disk and vd_config as metadata updates */
2442 struct virtual_disk *vd;
2443 struct vd_config *vc;
2444 int len;
2445
2446 if (!currentconf) {
2447 int len = (sizeof(struct phys_disk) +
2448 sizeof(struct phys_disk_entry));
2449
2450 /* adding a disk to the container. */
2451 if (!ddf->add_list)
2452 return 0;
2453
2454 append_metadata_update(st, ddf->add_list->mdupdate, len);
2455 ddf->add_list->mdupdate = NULL;
2456 return 0;
2457 }
2458
2459 /* Newly created VD */
2460
2461 /* First the virtual disk. We have a slightly fake header */
2462 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2463 vd = xmalloc(len);
2464 *vd = *ddf->virt;
2465 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2466 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2467 append_metadata_update(st, vd, len);
2468
2469 /* Then the vd_config */
2470 len = ddf->conf_rec_len * 512;
2471 vc = xmalloc(len);
2472 memcpy(vc, &currentconf->conf, len);
2473 append_metadata_update(st, vc, len);
2474
2475 /* FIXME I need to close the fds! */
2476 return 0;
2477 } else {
2478 struct dl *d;
2479 for (d = ddf->dlist; d; d=d->next)
2480 while (Kill(d->devname, NULL, 0, 1, 1) == 0);
2481 return __write_init_super_ddf(st);
2482 }
2483 }
2484
2485 #endif
2486
2487 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2488 {
2489 /* We must reserve the last 32Meg */
2490 if (devsize <= 32*1024*2)
2491 return 0;
2492 return devsize - 32*1024*2;
2493 }
2494
2495 #ifndef MDASSEMBLE
2496
2497 static int reserve_space(struct supertype *st, int raiddisks,
2498 unsigned long long size, int chunk,
2499 unsigned long long *freesize)
2500 {
2501 /* Find 'raiddisks' spare extents at least 'size' big (but
2502 * only caring about multiples of 'chunk') and remember
2503 * them.
2504 * If the cannot be found, fail.
2505 */
2506 struct dl *dl;
2507 struct ddf_super *ddf = st->sb;
2508 int cnt = 0;
2509
2510 for (dl = ddf->dlist; dl ; dl=dl->next) {
2511 dl->raiddisk = -1;
2512 dl->esize = 0;
2513 }
2514 /* Now find largest extent on each device */
2515 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2516 struct extent *e = get_extents(ddf, dl);
2517 unsigned long long pos = 0;
2518 int i = 0;
2519 int found = 0;
2520 unsigned long long minsize = size;
2521
2522 if (size == 0)
2523 minsize = chunk;
2524
2525 if (!e)
2526 continue;
2527 do {
2528 unsigned long long esize;
2529 esize = e[i].start - pos;
2530 if (esize >= minsize) {
2531 found = 1;
2532 minsize = esize;
2533 }
2534 pos = e[i].start + e[i].size;
2535 i++;
2536 } while (e[i-1].size);
2537 if (found) {
2538 cnt++;
2539 dl->esize = minsize;
2540 }
2541 free(e);
2542 }
2543 if (cnt < raiddisks) {
2544 pr_err("not enough devices with space to create array.\n");
2545 return 0; /* No enough free spaces large enough */
2546 }
2547 if (size == 0) {
2548 /* choose the largest size of which there are at least 'raiddisk' */
2549 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2550 struct dl *dl2;
2551 if (dl->esize <= size)
2552 continue;
2553 /* This is bigger than 'size', see if there are enough */
2554 cnt = 0;
2555 for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
2556 if (dl2->esize >= dl->esize)
2557 cnt++;
2558 if (cnt >= raiddisks)
2559 size = dl->esize;
2560 }
2561 if (chunk) {
2562 size = size / chunk;
2563 size *= chunk;
2564 }
2565 *freesize = size;
2566 if (size < 32) {
2567 pr_err("not enough spare devices to create array.\n");
2568 return 0;
2569 }
2570 }
2571 /* We have a 'size' of which there are enough spaces.
2572 * We simply do a first-fit */
2573 cnt = 0;
2574 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2575 if (dl->esize < size)
2576 continue;
2577
2578 dl->raiddisk = cnt;
2579 cnt++;
2580 }
2581 return 1;
2582 }
2583
2584
2585
2586 static int
2587 validate_geometry_ddf_container(struct supertype *st,
2588 int level, int layout, int raiddisks,
2589 int chunk, unsigned long long size,
2590 char *dev, unsigned long long *freesize,
2591 int verbose);
2592
2593 static int validate_geometry_ddf_bvd(struct supertype *st,
2594 int level, int layout, int raiddisks,
2595 int *chunk, unsigned long long size,
2596 char *dev, unsigned long long *freesize,
2597 int verbose);
2598
2599 static int validate_geometry_ddf(struct supertype *st,
2600 int level, int layout, int raiddisks,
2601 int *chunk, unsigned long long size,
2602 char *dev, unsigned long long *freesize,
2603 int verbose)
2604 {
2605 int fd;
2606 struct mdinfo *sra;
2607 int cfd;
2608
2609 /* ddf potentially supports lots of things, but it depends on
2610 * what devices are offered (and maybe kernel version?)
2611 * If given unused devices, we will make a container.
2612 * If given devices in a container, we will make a BVD.
2613 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2614 */
2615
2616 if (chunk && *chunk == UnSet)
2617 *chunk = DEFAULT_CHUNK;
2618
2619
2620 if (level == LEVEL_CONTAINER) {
2621 /* Must be a fresh device to add to a container */
2622 return validate_geometry_ddf_container(st, level, layout,
2623 raiddisks, chunk?*chunk:0,
2624 size, dev, freesize,
2625 verbose);
2626 }
2627
2628 if (!dev) {
2629 /* Initial sanity check. Exclude illegal levels. */
2630 int i;
2631 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2632 if (ddf_level_num[i].num2 == level)
2633 break;
2634 if (ddf_level_num[i].num1 == MAXINT) {
2635 if (verbose)
2636 pr_err("DDF does not support level %d arrays\n",
2637 level);
2638 return 0;
2639 }
2640 /* Should check layout? etc */
2641
2642 if (st->sb && freesize) {
2643 /* --create was given a container to create in.
2644 * So we need to check that there are enough
2645 * free spaces and return the amount of space.
2646 * We may as well remember which drives were
2647 * chosen so that add_to_super/getinfo_super
2648 * can return them.
2649 */
2650 return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
2651 }
2652 return 1;
2653 }
2654
2655 if (st->sb) {
2656 /* A container has already been opened, so we are
2657 * creating in there. Maybe a BVD, maybe an SVD.
2658 * Should make a distinction one day.
2659 */
2660 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2661 chunk, size, dev, freesize,
2662 verbose);
2663 }
2664 /* This is the first device for the array.
2665 * If it is a container, we read it in and do automagic allocations,
2666 * no other devices should be given.
2667 * Otherwise it must be a member device of a container, and we
2668 * do manual allocation.
2669 * Later we should check for a BVD and make an SVD.
2670 */
2671 fd = open(dev, O_RDONLY|O_EXCL, 0);
2672 if (fd >= 0) {
2673 sra = sysfs_read(fd, 0, GET_VERSION);
2674 close(fd);
2675 if (sra && sra->array.major_version == -1 &&
2676 strcmp(sra->text_version, "ddf") == 0) {
2677
2678 /* load super */
2679 /* find space for 'n' devices. */
2680 /* remember the devices */
2681 /* Somehow return the fact that we have enough */
2682 }
2683
2684 if (verbose)
2685 pr_err("ddf: Cannot create this array "
2686 "on device %s - a container is required.\n",
2687 dev);
2688 return 0;
2689 }
2690 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2691 if (verbose)
2692 pr_err("ddf: Cannot open %s: %s\n",
2693 dev, strerror(errno));
2694 return 0;
2695 }
2696 /* Well, it is in use by someone, maybe a 'ddf' container. */
2697 cfd = open_container(fd);
2698 if (cfd < 0) {
2699 close(fd);
2700 if (verbose)
2701 pr_err("ddf: Cannot use %s: %s\n",
2702 dev, strerror(EBUSY));
2703 return 0;
2704 }
2705 sra = sysfs_read(cfd, 0, GET_VERSION);
2706 close(fd);
2707 if (sra && sra->array.major_version == -1 &&
2708 strcmp(sra->text_version, "ddf") == 0) {
2709 /* This is a member of a ddf container. Load the container
2710 * and try to create a bvd
2711 */
2712 struct ddf_super *ddf;
2713 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
2714 st->sb = ddf;
2715 st->container_dev = fd2devnum(cfd);
2716 close(cfd);
2717 return validate_geometry_ddf_bvd(st, level, layout,
2718 raiddisks, chunk, size,
2719 dev, freesize,
2720 verbose);
2721 }
2722 close(cfd);
2723 } else /* device may belong to a different container */
2724 return 0;
2725
2726 return 1;
2727 }
2728
2729 static int
2730 validate_geometry_ddf_container(struct supertype *st,
2731 int level, int layout, int raiddisks,
2732 int chunk, unsigned long long size,
2733 char *dev, unsigned long long *freesize,
2734 int verbose)
2735 {
2736 int fd;
2737 unsigned long long ldsize;
2738
2739 if (level != LEVEL_CONTAINER)
2740 return 0;
2741 if (!dev)
2742 return 1;
2743
2744 fd = open(dev, O_RDONLY|O_EXCL, 0);
2745 if (fd < 0) {
2746 if (verbose)
2747 pr_err("ddf: Cannot open %s: %s\n",
2748 dev, strerror(errno));
2749 return 0;
2750 }
2751 if (!get_dev_size(fd, dev, &ldsize)) {
2752 close(fd);
2753 return 0;
2754 }
2755 close(fd);
2756
2757 *freesize = avail_size_ddf(st, ldsize >> 9);
2758 if (*freesize == 0)
2759 return 0;
2760
2761 return 1;
2762 }
2763
2764 static int validate_geometry_ddf_bvd(struct supertype *st,
2765 int level, int layout, int raiddisks,
2766 int *chunk, unsigned long long size,
2767 char *dev, unsigned long long *freesize,
2768 int verbose)
2769 {
2770 struct stat stb;
2771 struct ddf_super *ddf = st->sb;
2772 struct dl *dl;
2773 unsigned long long pos = 0;
2774 unsigned long long maxsize;
2775 struct extent *e;
2776 int i;
2777 /* ddf/bvd supports lots of things, but not containers */
2778 if (level == LEVEL_CONTAINER) {
2779 if (verbose)
2780 pr_err("DDF cannot create a container within an container\n");
2781 return 0;
2782 }
2783 /* We must have the container info already read in. */
2784 if (!ddf)
2785 return 0;
2786
2787 if (!dev) {
2788 /* General test: make sure there is space for
2789 * 'raiddisks' device extents of size 'size'.
2790 */
2791 unsigned long long minsize = size;
2792 int dcnt = 0;
2793 if (minsize == 0)
2794 minsize = 8;
2795 for (dl = ddf->dlist; dl ; dl = dl->next)
2796 {
2797 int found = 0;
2798 pos = 0;
2799
2800 i = 0;
2801 e = get_extents(ddf, dl);
2802 if (!e) continue;
2803 do {
2804 unsigned long long esize;
2805 esize = e[i].start - pos;
2806 if (esize >= minsize)
2807 found = 1;
2808 pos = e[i].start + e[i].size;
2809 i++;
2810 } while (e[i-1].size);
2811 if (found)
2812 dcnt++;
2813 free(e);
2814 }
2815 if (dcnt < raiddisks) {
2816 if (verbose)
2817 pr_err("ddf: Not enough devices with "
2818 "space for this array (%d < %d)\n",
2819 dcnt, raiddisks);
2820 return 0;
2821 }
2822 return 1;
2823 }
2824 /* This device must be a member of the set */
2825 if (stat(dev, &stb) < 0)
2826 return 0;
2827 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2828 return 0;
2829 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2830 if (dl->major == (int)major(stb.st_rdev) &&
2831 dl->minor == (int)minor(stb.st_rdev))
2832 break;
2833 }
2834 if (!dl) {
2835 if (verbose)
2836 pr_err("ddf: %s is not in the "
2837 "same DDF set\n",
2838 dev);
2839 return 0;
2840 }
2841 e = get_extents(ddf, dl);
2842 maxsize = 0;
2843 i = 0;
2844 if (e) do {
2845 unsigned long long esize;
2846 esize = e[i].start - pos;
2847 if (esize >= maxsize)
2848 maxsize = esize;
2849 pos = e[i].start + e[i].size;
2850 i++;
2851 } while (e[i-1].size);
2852 *freesize = maxsize;
2853 // FIXME here I am
2854
2855 return 1;
2856 }
2857
2858 static int load_super_ddf_all(struct supertype *st, int fd,
2859 void **sbp, char *devname)
2860 {
2861 struct mdinfo *sra;
2862 struct ddf_super *super;
2863 struct mdinfo *sd, *best = NULL;
2864 int bestseq = 0;
2865 int seq;
2866 char nm[20];
2867 int dfd;
2868
2869 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2870 if (!sra)
2871 return 1;
2872 if (sra->array.major_version != -1 ||
2873 sra->array.minor_version != -2 ||
2874 strcmp(sra->text_version, "ddf") != 0)
2875 return 1;
2876
2877 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2878 return 1;
2879 memset(super, 0, sizeof(*super));
2880
2881 /* first, try each device, and choose the best ddf */
2882 for (sd = sra->devs ; sd ; sd = sd->next) {
2883 int rv;
2884 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2885 dfd = dev_open(nm, O_RDONLY);
2886 if (dfd < 0)
2887 return 2;
2888 rv = load_ddf_headers(dfd, super, NULL);
2889 close(dfd);
2890 if (rv == 0) {
2891 seq = __be32_to_cpu(super->active->seq);
2892 if (super->active->openflag)
2893 seq--;
2894 if (!best || seq > bestseq) {
2895 bestseq = seq;
2896 best = sd;
2897 }
2898 }
2899 }
2900 if (!best)
2901 return 1;
2902 /* OK, load this ddf */
2903 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2904 dfd = dev_open(nm, O_RDONLY);
2905 if (dfd < 0)
2906 return 1;
2907 load_ddf_headers(dfd, super, NULL);
2908 load_ddf_global(dfd, super, NULL);
2909 close(dfd);
2910 /* Now we need the device-local bits */
2911 for (sd = sra->devs ; sd ; sd = sd->next) {
2912 int rv;
2913
2914 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2915 dfd = dev_open(nm, O_RDWR);
2916 if (dfd < 0)
2917 return 2;
2918 rv = load_ddf_headers(dfd, super, NULL);
2919 if (rv == 0)
2920 rv = load_ddf_local(dfd, super, NULL, 1);
2921 if (rv)
2922 return 1;
2923 }
2924
2925 *sbp = super;
2926 if (st->ss == NULL) {
2927 st->ss = &super_ddf;
2928 st->minor_version = 0;
2929 st->max_devs = 512;
2930 }
2931 st->container_dev = fd2devnum(fd);
2932 return 0;
2933 }
2934
2935 static int load_container_ddf(struct supertype *st, int fd,
2936 char *devname)
2937 {
2938 return load_super_ddf_all(st, fd, &st->sb, devname);
2939 }
2940
2941 #endif /* MDASSEMBLE */
2942
2943 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
2944 {
2945 /* Given a container loaded by load_super_ddf_all,
2946 * extract information about all the arrays into
2947 * an mdinfo tree.
2948 *
2949 * For each vcl in conflist: create an mdinfo, fill it in,
2950 * then look for matching devices (phys_refnum) in dlist
2951 * and create appropriate device mdinfo.
2952 */
2953 struct ddf_super *ddf = st->sb;
2954 struct mdinfo *rest = NULL;
2955 struct vcl *vc;
2956
2957 for (vc = ddf->conflist ; vc ; vc=vc->next)
2958 {
2959 unsigned int i;
2960 unsigned int j;
2961 struct mdinfo *this;
2962 char *ep;
2963 __u32 *cptr;
2964
2965 if (subarray &&
2966 (strtoul(subarray, &ep, 10) != vc->vcnum ||
2967 *ep != '\0'))
2968 continue;
2969
2970 this = xcalloc(1, sizeof(*this));
2971 this->next = rest;
2972 rest = this;
2973
2974 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2975 this->array.raid_disks =
2976 __be16_to_cpu(vc->conf.prim_elmnt_count);
2977 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2978 this->array.raid_disks);
2979 this->array.md_minor = -1;
2980 this->array.major_version = -1;
2981 this->array.minor_version = -2;
2982 cptr = (__u32 *)(vc->conf.guid + 16);
2983 this->array.ctime = DECADE + __be32_to_cpu(*cptr);
2984 this->array.utime = DECADE +
2985 __be32_to_cpu(vc->conf.timestamp);
2986 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2987
2988 i = vc->vcnum;
2989 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2990 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2991 DDF_init_full) {
2992 this->array.state = 0;
2993 this->resync_start = 0;
2994 } else {
2995 this->array.state = 1;
2996 this->resync_start = MaxSector;
2997 }
2998 memcpy(this->name, ddf->virt->entries[i].name, 16);
2999 this->name[16]=0;
3000 for(j=0; j<16; j++)
3001 if (this->name[j] == ' ')
3002 this->name[j] = 0;
3003
3004 memset(this->uuid, 0, sizeof(this->uuid));
3005 this->component_size = __be64_to_cpu(vc->conf.blocks);
3006 this->array.size = this->component_size / 2;
3007 this->container_member = i;
3008
3009 ddf->currentconf = vc;
3010 uuid_from_super_ddf(st, this->uuid);
3011 ddf->currentconf = NULL;
3012
3013 sprintf(this->text_version, "/%s/%d",
3014 devnum2devname(st->container_dev),
3015 this->container_member);
3016
3017 for (i = 0 ; i < ddf->mppe ; i++) {
3018 struct mdinfo *dev;
3019 struct dl *d;
3020 int stt;
3021 int pd;
3022
3023 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
3024 continue;
3025
3026 for (pd = __be16_to_cpu(ddf->phys->used_pdes);
3027 pd--;)
3028 if (ddf->phys->entries[pd].refnum
3029 == vc->conf.phys_refnum[i])
3030 break;
3031 if (pd < 0)
3032 continue;
3033
3034 stt = __be16_to_cpu(ddf->phys->entries[pd].state);
3035 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3036 != DDF_Online)
3037 continue;
3038
3039 this->array.working_disks++;
3040
3041 for (d = ddf->dlist; d ; d=d->next)
3042 if (d->disk.refnum == vc->conf.phys_refnum[i])
3043 break;
3044 if (d == NULL)
3045 /* Haven't found that one yet, maybe there are others */
3046 continue;
3047
3048 dev = xcalloc(1, sizeof(*dev));
3049 dev->next = this->devs;
3050 this->devs = dev;
3051
3052 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3053 dev->disk.major = d->major;
3054 dev->disk.minor = d->minor;
3055 dev->disk.raid_disk = i;
3056 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3057 dev->recovery_start = MaxSector;
3058
3059 dev->events = __be32_to_cpu(ddf->primary.seq);
3060 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
3061 dev->component_size = __be64_to_cpu(vc->conf.blocks);
3062 if (d->devname)
3063 strcpy(dev->name, d->devname);
3064 }
3065 }
3066 return rest;
3067 }
3068
3069 static int store_super_ddf(struct supertype *st, int fd)
3070 {
3071 struct ddf_super *ddf = st->sb;
3072 unsigned long long dsize;
3073 void *buf;
3074 int rc;
3075
3076 if (!ddf)
3077 return 1;
3078
3079 /* ->dlist and ->conflist will be set for updates, currently not
3080 * supported
3081 */
3082 if (ddf->dlist || ddf->conflist)
3083 return 1;
3084
3085 if (!get_dev_size(fd, NULL, &dsize))
3086 return 1;
3087
3088 if (posix_memalign(&buf, 512, 512) != 0)
3089 return 1;
3090 memset(buf, 0, 512);
3091
3092 lseek64(fd, dsize-512, 0);
3093 rc = write(fd, buf, 512);
3094 free(buf);
3095 if (rc < 0)
3096 return 1;
3097 return 0;
3098 }
3099
3100 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3101 {
3102 /*
3103 * return:
3104 * 0 same, or first was empty, and second was copied
3105 * 1 second had wrong number
3106 * 2 wrong uuid
3107 * 3 wrong other info
3108 */
3109 struct ddf_super *first = st->sb;
3110 struct ddf_super *second = tst->sb;
3111
3112 if (!first) {
3113 st->sb = tst->sb;
3114 tst->sb = NULL;
3115 return 0;
3116 }
3117
3118 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3119 return 2;
3120
3121 /* FIXME should I look at anything else? */
3122 return 0;
3123 }
3124
3125 #ifndef MDASSEMBLE
3126 /*
3127 * A new array 'a' has been started which claims to be instance 'inst'
3128 * within container 'c'.
3129 * We need to confirm that the array matches the metadata in 'c' so
3130 * that we don't corrupt any metadata.
3131 */
3132 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3133 {
3134 dprintf("ddf: open_new %s\n", inst);
3135 a->info.container_member = atoi(inst);
3136 return 0;
3137 }
3138
3139 /*
3140 * The array 'a' is to be marked clean in the metadata.
3141 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3142 * clean up to the point (in sectors). If that cannot be recorded in the
3143 * metadata, then leave it as dirty.
3144 *
3145 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3146 * !global! virtual_disk.virtual_entry structure.
3147 */
3148 static int ddf_set_array_state(struct active_array *a, int consistent)
3149 {
3150 struct ddf_super *ddf = a->container->sb;
3151 int inst = a->info.container_member;
3152 int old = ddf->virt->entries[inst].state;
3153 if (consistent == 2) {
3154 /* Should check if a recovery should be started FIXME */
3155 consistent = 1;
3156 if (!is_resync_complete(&a->info))
3157 consistent = 0;
3158 }
3159 if (consistent)
3160 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3161 else
3162 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3163 if (old != ddf->virt->entries[inst].state)
3164 ddf->updates_pending = 1;
3165
3166 old = ddf->virt->entries[inst].init_state;
3167 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3168 if (is_resync_complete(&a->info))
3169 ddf->virt->entries[inst].init_state |= DDF_init_full;
3170 else if (a->info.resync_start == 0)
3171 ddf->virt->entries[inst].init_state |= DDF_init_not;
3172 else
3173 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3174 if (old != ddf->virt->entries[inst].init_state)
3175 ddf->updates_pending = 1;
3176
3177 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3178 a->info.resync_start);
3179 return consistent;
3180 }
3181
3182 #define container_of(ptr, type, member) ({ \
3183 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
3184 (type *)( (char *)__mptr - offsetof(type,member) );})
3185 /*
3186 * The state of each disk is stored in the global phys_disk structure
3187 * in phys_disk.entries[n].state.
3188 * This makes various combinations awkward.
3189 * - When a device fails in any array, it must be failed in all arrays
3190 * that include a part of this device.
3191 * - When a component is rebuilding, we cannot include it officially in the
3192 * array unless this is the only array that uses the device.
3193 *
3194 * So: when transitioning:
3195 * Online -> failed, just set failed flag. monitor will propagate
3196 * spare -> online, the device might need to be added to the array.
3197 * spare -> failed, just set failed. Don't worry if in array or not.
3198 */
3199 static void ddf_set_disk(struct active_array *a, int n, int state)
3200 {
3201 struct ddf_super *ddf = a->container->sb;
3202 unsigned int inst = a->info.container_member;
3203 struct vd_config *vc = find_vdcr(ddf, inst);
3204 int pd = find_phys(ddf, vc->phys_refnum[n]);
3205 int i, st, working;
3206 struct mdinfo *mdi;
3207 struct dl *dl;
3208
3209 if (vc == NULL) {
3210 dprintf("ddf: cannot find instance %d!!\n", inst);
3211 return;
3212 }
3213 /* Find the matching slot in 'info'. */
3214 for (mdi = a->info.devs; mdi; mdi = mdi->next)
3215 if (mdi->disk.raid_disk == n)
3216 break;
3217 if (!mdi)
3218 return;
3219
3220 /* and find the 'dl' entry corresponding to that. */
3221 for (dl = ddf->dlist; dl; dl = dl->next)
3222 if (mdi->state_fd >= 0 &&
3223 mdi->disk.major == dl->major &&
3224 mdi->disk.minor == dl->minor)
3225 break;
3226 if (!dl)
3227 return;
3228
3229 if (pd < 0 || pd != dl->pdnum) {
3230 /* disk doesn't currently exist or has changed.
3231 * If it is now in_sync, insert it. */
3232 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3233 struct vcl *vcl;
3234 pd = dl->pdnum;
3235 vc->phys_refnum[n] = dl->disk.refnum;
3236 vcl = container_of(vc, struct vcl, conf);
3237 vcl->lba_offset[n] = mdi->data_offset;
3238 ddf->phys->entries[pd].type &=
3239 ~__cpu_to_be16(DDF_Global_Spare);
3240 ddf->phys->entries[pd].type |=
3241 __cpu_to_be16(DDF_Active_in_VD);
3242 ddf->updates_pending = 1;
3243 }
3244 } else {
3245 int old = ddf->phys->entries[pd].state;
3246 if (state & DS_FAULTY)
3247 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3248 if (state & DS_INSYNC) {
3249 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3250 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3251 }
3252 if (old != ddf->phys->entries[pd].state)
3253 ddf->updates_pending = 1;
3254 }
3255
3256 dprintf("ddf: set_disk %d to %x\n", n, state);
3257
3258 /* Now we need to check the state of the array and update
3259 * virtual_disk.entries[n].state.
3260 * It needs to be one of "optimal", "degraded", "failed".
3261 * I don't understand 'deleted' or 'missing'.
3262 */
3263 working = 0;
3264 for (i=0; i < a->info.array.raid_disks; i++) {
3265 pd = find_phys(ddf, vc->phys_refnum[i]);
3266 if (pd < 0)
3267 continue;
3268 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3269 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3270 == DDF_Online)
3271 working++;
3272 }
3273 state = DDF_state_degraded;
3274 if (working == a->info.array.raid_disks)
3275 state = DDF_state_optimal;
3276 else switch(vc->prl) {
3277 case DDF_RAID0:
3278 case DDF_CONCAT:
3279 case DDF_JBOD:
3280 state = DDF_state_failed;
3281 break;
3282 case DDF_RAID1:
3283 if (working == 0)
3284 state = DDF_state_failed;
3285 else if (working == 2 && state == DDF_state_degraded)
3286 state = DDF_state_part_optimal;
3287 break;
3288 case DDF_RAID4:
3289 case DDF_RAID5:
3290 if (working < a->info.array.raid_disks-1)
3291 state = DDF_state_failed;
3292 break;
3293 case DDF_RAID6:
3294 if (working < a->info.array.raid_disks-2)
3295 state = DDF_state_failed;
3296 else if (working == a->info.array.raid_disks-1)
3297 state = DDF_state_part_optimal;
3298 break;
3299 }
3300
3301 if (ddf->virt->entries[inst].state !=
3302 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3303 | state)) {
3304
3305 ddf->virt->entries[inst].state =
3306 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3307 | state;
3308 ddf->updates_pending = 1;
3309 }
3310
3311 }
3312
3313 static void ddf_sync_metadata(struct supertype *st)
3314 {
3315
3316 /*
3317 * Write all data to all devices.
3318 * Later, we might be able to track whether only local changes
3319 * have been made, or whether any global data has been changed,
3320 * but ddf is sufficiently weird that it probably always
3321 * changes global data ....
3322 */
3323 struct ddf_super *ddf = st->sb;
3324 if (!ddf->updates_pending)
3325 return;
3326 ddf->updates_pending = 0;
3327 __write_init_super_ddf(st);
3328 dprintf("ddf: sync_metadata\n");
3329 }
3330
3331 static void ddf_process_update(struct supertype *st,
3332 struct metadata_update *update)
3333 {
3334 /* Apply this update to the metadata.
3335 * The first 4 bytes are a DDF_*_MAGIC which guides
3336 * our actions.
3337 * Possible update are:
3338 * DDF_PHYS_RECORDS_MAGIC
3339 * Add a new physical device or remove an old one.
3340 * Changes to this record only happen implicitly.
3341 * used_pdes is the device number.
3342 * DDF_VIRT_RECORDS_MAGIC
3343 * Add a new VD. Possibly also change the 'access' bits.
3344 * populated_vdes is the entry number.
3345 * DDF_VD_CONF_MAGIC
3346 * New or updated VD. the VIRT_RECORD must already
3347 * exist. For an update, phys_refnum and lba_offset
3348 * (at least) are updated, and the VD_CONF must
3349 * be written to precisely those devices listed with
3350 * a phys_refnum.
3351 * DDF_SPARE_ASSIGN_MAGIC
3352 * replacement Spare Assignment Record... but for which device?
3353 *
3354 * So, e.g.:
3355 * - to create a new array, we send a VIRT_RECORD and
3356 * a VD_CONF. Then assemble and start the array.
3357 * - to activate a spare we send a VD_CONF to add the phys_refnum
3358 * and offset. This will also mark the spare as active with
3359 * a spare-assignment record.
3360 */
3361 struct ddf_super *ddf = st->sb;
3362 __u32 *magic = (__u32*)update->buf;
3363 struct phys_disk *pd;
3364 struct virtual_disk *vd;
3365 struct vd_config *vc;
3366 struct vcl *vcl;
3367 struct dl *dl;
3368 unsigned int mppe;
3369 unsigned int ent;
3370 unsigned int pdnum, pd2;
3371
3372 dprintf("Process update %x\n", *magic);
3373
3374 switch (*magic) {
3375 case DDF_PHYS_RECORDS_MAGIC:
3376
3377 if (update->len != (sizeof(struct phys_disk) +
3378 sizeof(struct phys_disk_entry)))
3379 return;
3380 pd = (struct phys_disk*)update->buf;
3381
3382 ent = __be16_to_cpu(pd->used_pdes);
3383 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3384 return;
3385 if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
3386 struct dl **dlp;
3387 /* removing this disk. */
3388 ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
3389 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
3390 struct dl *dl = *dlp;
3391 if (dl->pdnum == (signed)ent) {
3392 close(dl->fd);
3393 dl->fd = -1;
3394 /* FIXME this doesn't free
3395 * dl->devname */
3396 update->space = dl;
3397 *dlp = dl->next;
3398 break;
3399 }
3400 }
3401 ddf->updates_pending = 1;
3402 return;
3403 }
3404 if (!all_ff(ddf->phys->entries[ent].guid))
3405 return;
3406 ddf->phys->entries[ent] = pd->entries[0];
3407 ddf->phys->used_pdes = __cpu_to_be16(1 +
3408 __be16_to_cpu(ddf->phys->used_pdes));
3409 ddf->updates_pending = 1;
3410 if (ddf->add_list) {
3411 struct active_array *a;
3412 struct dl *al = ddf->add_list;
3413 ddf->add_list = al->next;
3414
3415 al->next = ddf->dlist;
3416 ddf->dlist = al;
3417
3418 /* As a device has been added, we should check
3419 * for any degraded devices that might make
3420 * use of this spare */
3421 for (a = st->arrays ; a; a=a->next)
3422 a->check_degraded = 1;
3423 }
3424 break;
3425
3426 case DDF_VIRT_RECORDS_MAGIC:
3427
3428 if (update->len != (sizeof(struct virtual_disk) +
3429 sizeof(struct virtual_entry)))
3430 return;
3431 vd = (struct virtual_disk*)update->buf;
3432
3433 ent = __be16_to_cpu(vd->populated_vdes);
3434 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3435 return;
3436 if (!all_ff(ddf->virt->entries[ent].guid))
3437 return;
3438 ddf->virt->entries[ent] = vd->entries[0];
3439 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3440 __be16_to_cpu(ddf->virt->populated_vdes));
3441 ddf->updates_pending = 1;
3442 break;
3443
3444 case DDF_VD_CONF_MAGIC:
3445 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3446
3447 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3448 if ((unsigned)update->len != ddf->conf_rec_len * 512)
3449 return;
3450 vc = (struct vd_config*)update->buf;
3451 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3452 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3453 break;
3454 dprintf("vcl = %p\n", vcl);
3455 if (vcl) {
3456 /* An update, just copy the phys_refnum and lba_offset
3457 * fields
3458 */
3459 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3460 mppe * (sizeof(__u32) + sizeof(__u64)));
3461 } else {
3462 /* A new VD_CONF */
3463 if (!update->space)
3464 return;
3465 vcl = update->space;
3466 update->space = NULL;
3467 vcl->next = ddf->conflist;
3468 memcpy(&vcl->conf, vc, update->len);
3469 vcl->lba_offset = (__u64*)
3470 &vcl->conf.phys_refnum[mppe];
3471 for (ent = 0;
3472 ent < __be16_to_cpu(ddf->virt->populated_vdes);
3473 ent++)
3474 if (memcmp(vc->guid, ddf->virt->entries[ent].guid,
3475 DDF_GUID_LEN) == 0) {
3476 vcl->vcnum = ent;
3477 break;
3478 }
3479 ddf->conflist = vcl;
3480 }
3481 /* Set DDF_Transition on all Failed devices - to help
3482 * us detect those that are no longer in use
3483 */
3484 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3485 if (ddf->phys->entries[pdnum].state
3486 & __be16_to_cpu(DDF_Failed))
3487 ddf->phys->entries[pdnum].state
3488 |= __be16_to_cpu(DDF_Transition);
3489 /* Now make sure vlist is correct for each dl. */
3490 for (dl = ddf->dlist; dl; dl = dl->next) {
3491 unsigned int dn;
3492 unsigned int vn = 0;
3493 int in_degraded = 0;
3494 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3495 for (dn=0; dn < ddf->mppe ; dn++)
3496 if (vcl->conf.phys_refnum[dn] ==
3497 dl->disk.refnum) {
3498 int vstate;
3499 dprintf("dev %d has %p at %d\n",
3500 dl->pdnum, vcl, vn);
3501 /* Clear the Transition flag */
3502 if (ddf->phys->entries[dl->pdnum].state
3503 & __be16_to_cpu(DDF_Failed))
3504 ddf->phys->entries[dl->pdnum].state &=
3505 ~__be16_to_cpu(DDF_Transition);
3506
3507 dl->vlist[vn++] = vcl;
3508 vstate = ddf->virt->entries[vcl->vcnum].state
3509 & DDF_state_mask;
3510 if (vstate == DDF_state_degraded ||
3511 vstate == DDF_state_part_optimal)
3512 in_degraded = 1;
3513 break;
3514 }
3515 while (vn < ddf->max_part)
3516 dl->vlist[vn++] = NULL;
3517 if (dl->vlist[0]) {
3518 ddf->phys->entries[dl->pdnum].type &=
3519 ~__cpu_to_be16(DDF_Global_Spare);
3520 if (!(ddf->phys->entries[dl->pdnum].type &
3521 __cpu_to_be16(DDF_Active_in_VD))) {
3522 ddf->phys->entries[dl->pdnum].type |=
3523 __cpu_to_be16(DDF_Active_in_VD);
3524 if (in_degraded)
3525 ddf->phys->entries[dl->pdnum].state |=
3526 __cpu_to_be16(DDF_Rebuilding);
3527 }
3528 }
3529 if (dl->spare) {
3530 ddf->phys->entries[dl->pdnum].type &=
3531 ~__cpu_to_be16(DDF_Global_Spare);
3532 ddf->phys->entries[dl->pdnum].type |=
3533 __cpu_to_be16(DDF_Spare);
3534 }
3535 if (!dl->vlist[0] && !dl->spare) {
3536 ddf->phys->entries[dl->pdnum].type |=
3537 __cpu_to_be16(DDF_Global_Spare);
3538 ddf->phys->entries[dl->pdnum].type &=
3539 ~__cpu_to_be16(DDF_Spare |
3540 DDF_Active_in_VD);
3541 }
3542 }
3543
3544 /* Now remove any 'Failed' devices that are not part
3545 * of any VD. They will have the Transition flag set.
3546 * Once done, we need to update all dl->pdnum numbers.
3547 */
3548 pd2 = 0;
3549 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3550 if ((ddf->phys->entries[pdnum].state
3551 & __be16_to_cpu(DDF_Failed))
3552 && (ddf->phys->entries[pdnum].state
3553 & __be16_to_cpu(DDF_Transition)))
3554 /* skip this one */;
3555 else if (pdnum == pd2)
3556 pd2++;
3557 else {
3558 ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
3559 for (dl = ddf->dlist; dl; dl = dl->next)
3560 if (dl->pdnum == (int)pdnum)
3561 dl->pdnum = pd2;
3562 pd2++;
3563 }
3564 ddf->phys->used_pdes = __cpu_to_be16(pd2);
3565 while (pd2 < pdnum) {
3566 memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
3567 pd2++;
3568 }
3569
3570 ddf->updates_pending = 1;
3571 break;
3572 case DDF_SPARE_ASSIGN_MAGIC:
3573 default: break;
3574 }
3575 }
3576
3577 static void ddf_prepare_update(struct supertype *st,
3578 struct metadata_update *update)
3579 {
3580 /* This update arrived at managemon.
3581 * We are about to pass it to monitor.
3582 * If a malloc is needed, do it here.
3583 */
3584 struct ddf_super *ddf = st->sb;
3585 __u32 *magic = (__u32*)update->buf;
3586 if (*magic == DDF_VD_CONF_MAGIC)
3587 if (posix_memalign(&update->space, 512,
3588 offsetof(struct vcl, conf)
3589 + ddf->conf_rec_len * 512) != 0)
3590 update->space = NULL;
3591 }
3592
3593 /*
3594 * Check if the array 'a' is degraded but not failed.
3595 * If it is, find as many spares as are available and needed and
3596 * arrange for their inclusion.
3597 * We only choose devices which are not already in the array,
3598 * and prefer those with a spare-assignment to this array.
3599 * otherwise we choose global spares - assuming always that
3600 * there is enough room.
3601 * For each spare that we assign, we return an 'mdinfo' which
3602 * describes the position for the device in the array.
3603 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3604 * the new phys_refnum and lba_offset values.
3605 *
3606 * Only worry about BVDs at the moment.
3607 */
3608 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3609 struct metadata_update **updates)
3610 {
3611 int working = 0;
3612 struct mdinfo *d;
3613 struct ddf_super *ddf = a->container->sb;
3614 int global_ok = 0;
3615 struct mdinfo *rv = NULL;
3616 struct mdinfo *di;
3617 struct metadata_update *mu;
3618 struct dl *dl;
3619 int i;
3620 struct vd_config *vc;
3621 __u64 *lba;
3622
3623 for (d = a->info.devs ; d ; d = d->next) {
3624 if ((d->curr_state & DS_FAULTY) &&
3625 d->state_fd >= 0)
3626 /* wait for Removal to happen */
3627 return NULL;
3628 if (d->state_fd >= 0)
3629 working ++;
3630 }
3631
3632 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3633 a->info.array.level);
3634 if (working == a->info.array.raid_disks)
3635 return NULL; /* array not degraded */
3636 switch (a->info.array.level) {
3637 case 1:
3638 if (working == 0)
3639 return NULL; /* failed */
3640 break;
3641 case 4:
3642 case 5:
3643 if (working < a->info.array.raid_disks - 1)
3644 return NULL; /* failed */
3645 break;
3646 case 6:
3647 if (working < a->info.array.raid_disks - 2)
3648 return NULL; /* failed */
3649 break;
3650 default: /* concat or stripe */
3651 return NULL; /* failed */
3652 }
3653
3654 /* For each slot, if it is not working, find a spare */
3655 dl = ddf->dlist;
3656 for (i = 0; i < a->info.array.raid_disks; i++) {
3657 for (d = a->info.devs ; d ; d = d->next)
3658 if (d->disk.raid_disk == i)
3659 break;
3660 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3661 if (d && (d->state_fd >= 0))
3662 continue;
3663
3664 /* OK, this device needs recovery. Find a spare */
3665 again:
3666 for ( ; dl ; dl = dl->next) {
3667 unsigned long long esize;
3668 unsigned long long pos;
3669 struct mdinfo *d2;
3670 int is_global = 0;
3671 int is_dedicated = 0;
3672 struct extent *ex;
3673 unsigned int j;
3674 /* If in this array, skip */
3675 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3676 if (d2->state_fd >= 0 &&
3677 d2->disk.major == dl->major &&
3678 d2->disk.minor == dl->minor) {
3679 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3680 break;
3681 }
3682 if (d2)
3683 continue;
3684 if (ddf->phys->entries[dl->pdnum].type &
3685 __cpu_to_be16(DDF_Spare)) {
3686 /* Check spare assign record */
3687 if (dl->spare) {
3688 if (dl->spare->type & DDF_spare_dedicated) {
3689 /* check spare_ents for guid */
3690 for (j = 0 ;
3691 j < __be16_to_cpu(dl->spare->populated);
3692 j++) {
3693 if (memcmp(dl->spare->spare_ents[j].guid,
3694 ddf->virt->entries[a->info.container_member].guid,
3695 DDF_GUID_LEN) == 0)
3696 is_dedicated = 1;
3697 }
3698 } else
3699 is_global = 1;
3700 }
3701 } else if (ddf->phys->entries[dl->pdnum].type &
3702 __cpu_to_be16(DDF_Global_Spare)) {
3703 is_global = 1;
3704 }
3705 if ( ! (is_dedicated ||
3706 (is_global && global_ok))) {
3707 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3708 is_dedicated, is_global);
3709 continue;
3710 }
3711
3712 /* We are allowed to use this device - is there space?
3713 * We need a->info.component_size sectors */
3714 ex = get_extents(ddf, dl);
3715 if (!ex) {
3716 dprintf("cannot get extents\n");
3717 continue;
3718 }
3719 j = 0; pos = 0;
3720 esize = 0;
3721
3722 do {
3723 esize = ex[j].start - pos;
3724 if (esize >= a->info.component_size)
3725 break;
3726 pos = ex[j].start + ex[j].size;
3727 j++;
3728 } while (ex[j-1].size);
3729
3730 free(ex);
3731 if (esize < a->info.component_size) {
3732 dprintf("%x:%x has no room: %llu %llu\n",
3733 dl->major, dl->minor,
3734 esize, a->info.component_size);
3735 /* No room */
3736 continue;
3737 }
3738
3739 /* Cool, we have a device with some space at pos */
3740 di = xcalloc(1, sizeof(*di));
3741 di->disk.number = i;
3742 di->disk.raid_disk = i;
3743 di->disk.major = dl->major;
3744 di->disk.minor = dl->minor;
3745 di->disk.state = 0;
3746 di->recovery_start = 0;
3747 di->data_offset = pos;
3748 di->component_size = a->info.component_size;
3749 di->container_member = dl->pdnum;
3750 di->next = rv;
3751 rv = di;
3752 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3753 i, pos);
3754
3755 break;
3756 }
3757 if (!dl && ! global_ok) {
3758 /* not enough dedicated spares, try global */
3759 global_ok = 1;
3760 dl = ddf->dlist;
3761 goto again;
3762 }
3763 }
3764
3765 if (!rv)
3766 /* No spares found */
3767 return rv;
3768 /* Now 'rv' has a list of devices to return.
3769 * Create a metadata_update record to update the
3770 * phys_refnum and lba_offset values
3771 */
3772 mu = xmalloc(sizeof(*mu));
3773 if (posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3774 free(mu);
3775 mu = NULL;
3776 }
3777 mu->buf = xmalloc(ddf->conf_rec_len * 512);
3778 mu->len = ddf->conf_rec_len * 512;
3779 mu->space = NULL;
3780 mu->space_list = NULL;
3781 mu->next = *updates;
3782 vc = find_vdcr(ddf, a->info.container_member);
3783 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3784
3785 vc = (struct vd_config*)mu->buf;
3786 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3787 for (di = rv ; di ; di = di->next) {
3788 vc->phys_refnum[di->disk.raid_disk] =
3789 ddf->phys->entries[dl->pdnum].refnum;
3790 lba[di->disk.raid_disk] = di->data_offset;
3791 }
3792 *updates = mu;
3793 return rv;
3794 }
3795 #endif /* MDASSEMBLE */
3796
3797 static int ddf_level_to_layout(int level)
3798 {
3799 switch(level) {
3800 case 0:
3801 case 1:
3802 return 0;
3803 case 5:
3804 return ALGORITHM_LEFT_SYMMETRIC;
3805 case 6:
3806 return ALGORITHM_ROTATING_N_CONTINUE;
3807 case 10:
3808 return 0x102;
3809 default:
3810 return UnSet;
3811 }
3812 }
3813
3814 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
3815 {
3816 if (level && *level == UnSet)
3817 *level = LEVEL_CONTAINER;
3818
3819 if (level && layout && *layout == UnSet)
3820 *layout = ddf_level_to_layout(*level);
3821 }
3822
3823 struct superswitch super_ddf = {
3824 #ifndef MDASSEMBLE
3825 .examine_super = examine_super_ddf,
3826 .brief_examine_super = brief_examine_super_ddf,
3827 .brief_examine_subarrays = brief_examine_subarrays_ddf,
3828 .export_examine_super = export_examine_super_ddf,
3829 .detail_super = detail_super_ddf,
3830 .brief_detail_super = brief_detail_super_ddf,
3831 .validate_geometry = validate_geometry_ddf,
3832 .write_init_super = write_init_super_ddf,
3833 .add_to_super = add_to_super_ddf,
3834 .remove_from_super = remove_from_super_ddf,
3835 .load_container = load_container_ddf,
3836 #endif
3837 .match_home = match_home_ddf,
3838 .uuid_from_super= uuid_from_super_ddf,
3839 .getinfo_super = getinfo_super_ddf,
3840 .update_super = update_super_ddf,
3841
3842 .avail_size = avail_size_ddf,
3843
3844 .compare_super = compare_super_ddf,
3845
3846 .load_super = load_super_ddf,
3847 .init_super = init_super_ddf,
3848 .store_super = store_super_ddf,
3849 .free_super = free_super_ddf,
3850 .match_metadata_desc = match_metadata_desc_ddf,
3851 .container_content = container_content_ddf,
3852 .default_geometry = default_geometry_ddf,
3853
3854 .external = 1,
3855
3856 #ifndef MDASSEMBLE
3857 /* for mdmon */
3858 .open_new = ddf_open_new,
3859 .set_array_state= ddf_set_array_state,
3860 .set_disk = ddf_set_disk,
3861 .sync_metadata = ddf_sync_metadata,
3862 .process_update = ddf_process_update,
3863 .prepare_update = ddf_prepare_update,
3864 .activate_spare = ddf_activate_spare,
3865 #endif
3866 .name = "ddf",
3867 };