50fd16b4562f0ea25d2f72d3c9e142d01cd8a446
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2  * mdadm - manage Linux "md" devices aka RAID arrays.
3  *
4  * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5  *
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  *    Author: Neil Brown
22  *    Email: <neil@brown.name>
23  *
24  * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25  * (July 28 2006).  Reused by permission of SNIA.
26  */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 static inline int ROUND_UP(int a, int base)
35 {
36         return ((a+base-1)/base)*base;
37 }
38
39 /* a non-official T10 name for creation GUIDs */
40 static char T10[] = "Linux-MD";
41
42 /* DDF timestamps are 1980 based, so we need to add
43  * second-in-decade-of-seventies to convert to linux timestamps.
44  * 10 years with 2 leap years.
45  */
46 #define DECADE (3600*24*(365*10+2))
47 unsigned long crc32(
48         unsigned long crc,
49         const unsigned char *buf,
50         unsigned len);
51
52 /* The DDF metadata handling.
53  * DDF metadata lives at the end of the device.
54  * The last 512 byte block provides an 'anchor' which is used to locate
55  * the rest of the metadata which usually lives immediately behind the anchor.
56  *
57  * Note:
58  *  - all multibyte numeric fields are bigendian.
59  *  - all strings are space padded.
60  *
61  */
62
63 /* Primary Raid Level (PRL) */
64 #define DDF_RAID0       0x00
65 #define DDF_RAID1       0x01
66 #define DDF_RAID3       0x03
67 #define DDF_RAID4       0x04
68 #define DDF_RAID5       0x05
69 #define DDF_RAID1E      0x11
70 #define DDF_JBOD        0x0f
71 #define DDF_CONCAT      0x1f
72 #define DDF_RAID5E      0x15
73 #define DDF_RAID5EE     0x25
74 #define DDF_RAID6       0x06
75
76 /* Raid Level Qualifier (RLQ) */
77 #define DDF_RAID0_SIMPLE        0x00
78 #define DDF_RAID1_SIMPLE        0x00 /* just 2 devices in this plex */
79 #define DDF_RAID1_MULTI         0x01 /* exactly 3 devices in this plex */
80 #define DDF_RAID3_0             0x00 /* parity in first extent */
81 #define DDF_RAID3_N             0x01 /* parity in last extent */
82 #define DDF_RAID4_0             0x00 /* parity in first extent */
83 #define DDF_RAID4_N             0x01 /* parity in last extent */
84 /* these apply to raid5e and raid5ee as well */
85 #define DDF_RAID5_0_RESTART     0x00 /* same as 'right asymmetric' - layout 1 */
86 #define DDF_RAID6_0_RESTART     0x01 /* raid6 different from raid5 here!!! */
87 #define DDF_RAID5_N_RESTART     0x02 /* same as 'left asymmetric' - layout 0 */
88 #define DDF_RAID5_N_CONTINUE    0x03 /* same as 'left symmetric' - layout 2 */
89
90 #define DDF_RAID1E_ADJACENT     0x00 /* raid10 nearcopies==2 */
91 #define DDF_RAID1E_OFFSET       0x01 /* raid10 offsetcopies==2 */
92
93 /* Secondary RAID Level (SRL) */
94 #define DDF_2STRIPED    0x00    /* This is weirder than RAID0 !! */
95 #define DDF_2MIRRORED   0x01
96 #define DDF_2CONCAT     0x02
97 #define DDF_2SPANNED    0x03    /* This is also weird - be careful */
98
99 /* Magic numbers */
100 #define DDF_HEADER_MAGIC        __cpu_to_be32(0xDE11DE11)
101 #define DDF_CONTROLLER_MAGIC    __cpu_to_be32(0xAD111111)
102 #define DDF_PHYS_RECORDS_MAGIC  __cpu_to_be32(0x22222222)
103 #define DDF_PHYS_DATA_MAGIC     __cpu_to_be32(0x33333333)
104 #define DDF_VIRT_RECORDS_MAGIC  __cpu_to_be32(0xDDDDDDDD)
105 #define DDF_VD_CONF_MAGIC       __cpu_to_be32(0xEEEEEEEE)
106 #define DDF_SPARE_ASSIGN_MAGIC  __cpu_to_be32(0x55555555)
107 #define DDF_VU_CONF_MAGIC       __cpu_to_be32(0x88888888)
108 #define DDF_VENDOR_LOG_MAGIC    __cpu_to_be32(0x01dBEEF0)
109 #define DDF_BBM_LOG_MAGIC       __cpu_to_be32(0xABADB10C)
110
111 #define DDF_GUID_LEN    24
112 #define DDF_REVISION_0  "01.00.00"
113 #define DDF_REVISION_2  "01.02.00"
114
115 struct ddf_header {
116         __u32   magic;          /* DDF_HEADER_MAGIC */
117         __u32   crc;
118         char    guid[DDF_GUID_LEN];
119         char    revision[8];    /* 01.02.00 */
120         __u32   seq;            /* starts at '1' */
121         __u32   timestamp;
122         __u8    openflag;
123         __u8    foreignflag;
124         __u8    enforcegroups;
125         __u8    pad0;           /* 0xff */
126         __u8    pad1[12];       /* 12 * 0xff */
127         /* 64 bytes so far */
128         __u8    header_ext[32]; /* reserved: fill with 0xff */
129         __u64   primary_lba;
130         __u64   secondary_lba;
131         __u8    type;
132         __u8    pad2[3];        /* 0xff */
133         __u32   workspace_len;  /* sectors for vendor space -
134                                  * at least 32768(sectors) */
135         __u64   workspace_lba;
136         __u16   max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
137         __u16   max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
138         __u16   max_partitions; /* i.e. max num of configuration
139                                    record entries per disk */
140         __u16   config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
141                                                  *12/512) */
142         __u16   max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
143         __u8    pad3[54];       /* 0xff */
144         /* 192 bytes so far */
145         __u32   controller_section_offset;
146         __u32   controller_section_length;
147         __u32   phys_section_offset;
148         __u32   phys_section_length;
149         __u32   virt_section_offset;
150         __u32   virt_section_length;
151         __u32   config_section_offset;
152         __u32   config_section_length;
153         __u32   data_section_offset;
154         __u32   data_section_length;
155         __u32   bbm_section_offset;
156         __u32   bbm_section_length;
157         __u32   diag_space_offset;
158         __u32   diag_space_length;
159         __u32   vendor_offset;
160         __u32   vendor_length;
161         /* 256 bytes so far */
162         __u8    pad4[256];      /* 0xff */
163 };
164
165 /* type field */
166 #define DDF_HEADER_ANCHOR       0x00
167 #define DDF_HEADER_PRIMARY      0x01
168 #define DDF_HEADER_SECONDARY    0x02
169
170 /* The content of the 'controller section' - global scope */
171 struct ddf_controller_data {
172         __u32   magic;                  /* DDF_CONTROLLER_MAGIC */
173         __u32   crc;
174         char    guid[DDF_GUID_LEN];
175         struct controller_type {
176                 __u16 vendor_id;
177                 __u16 device_id;
178                 __u16 sub_vendor_id;
179                 __u16 sub_device_id;
180         } type;
181         char    product_id[16];
182         __u8    pad[8]; /* 0xff */
183         __u8    vendor_data[448];
184 };
185
186 /* The content of phys_section - global scope */
187 struct phys_disk {
188         __u32   magic;          /* DDF_PHYS_RECORDS_MAGIC */
189         __u32   crc;
190         __u16   used_pdes;
191         __u16   max_pdes;
192         __u8    pad[52];
193         struct phys_disk_entry {
194                 char    guid[DDF_GUID_LEN];
195                 __u32   refnum;
196                 __u16   type;
197                 __u16   state;
198                 __u64   config_size; /* DDF structures must be after here */
199                 char    path[18];       /* another horrible structure really */
200                 __u8    pad[6];
201         } entries[0];
202 };
203
204 /* phys_disk_entry.type is a bitmap - bigendian remember */
205 #define DDF_Forced_PD_GUID              1
206 #define DDF_Active_in_VD                2
207 #define DDF_Global_Spare                4 /* VD_CONF records are ignored */
208 #define DDF_Spare                       8 /* overrides Global_spare */
209 #define DDF_Foreign                     16
210 #define DDF_Legacy                      32 /* no DDF on this device */
211
212 #define DDF_Interface_mask              0xf00
213 #define DDF_Interface_SCSI              0x100
214 #define DDF_Interface_SAS               0x200
215 #define DDF_Interface_SATA              0x300
216 #define DDF_Interface_FC                0x400
217
218 /* phys_disk_entry.state is a bigendian bitmap */
219 #define DDF_Online                      1
220 #define DDF_Failed                      2 /* overrides  1,4,8 */
221 #define DDF_Rebuilding                  4
222 #define DDF_Transition                  8
223 #define DDF_SMART                       16
224 #define DDF_ReadErrors                  32
225 #define DDF_Missing                     64
226
227 /* The content of the virt_section global scope */
228 struct virtual_disk {
229         __u32   magic;          /* DDF_VIRT_RECORDS_MAGIC */
230         __u32   crc;
231         __u16   populated_vdes;
232         __u16   max_vdes;
233         __u8    pad[52];
234         struct virtual_entry {
235                 char    guid[DDF_GUID_LEN];
236                 __u16   unit;
237                 __u16   pad0;   /* 0xffff */
238                 __u16   guid_crc;
239                 __u16   type;
240                 __u8    state;
241                 __u8    init_state;
242                 __u8    pad1[14];
243                 char    name[16];
244         } entries[0];
245 };
246
247 /* virtual_entry.type is a bitmap - bigendian */
248 #define DDF_Shared              1
249 #define DDF_Enforce_Groups      2
250 #define DDF_Unicode             4
251 #define DDF_Owner_Valid         8
252
253 /* virtual_entry.state is a bigendian bitmap */
254 #define DDF_state_mask          0x7
255 #define DDF_state_optimal       0x0
256 #define DDF_state_degraded      0x1
257 #define DDF_state_deleted       0x2
258 #define DDF_state_missing       0x3
259 #define DDF_state_failed        0x4
260 #define DDF_state_part_optimal  0x5
261
262 #define DDF_state_morphing      0x8
263 #define DDF_state_inconsistent  0x10
264
265 /* virtual_entry.init_state is a bigendian bitmap */
266 #define DDF_initstate_mask      0x03
267 #define DDF_init_not            0x00
268 #define DDF_init_quick          0x01 /* initialisation is progress.
269                                       * i.e. 'state_inconsistent' */
270 #define DDF_init_full           0x02
271
272 #define DDF_access_mask         0xc0
273 #define DDF_access_rw           0x00
274 #define DDF_access_ro           0x80
275 #define DDF_access_blocked      0xc0
276
277 /* The content of the config_section - local scope
278  * It has multiple records each config_record_len sectors
279  * They can be vd_config or spare_assign
280  */
281
282 struct vd_config {
283         __u32   magic;          /* DDF_VD_CONF_MAGIC */
284         __u32   crc;
285         char    guid[DDF_GUID_LEN];
286         __u32   timestamp;
287         __u32   seqnum;
288         __u8    pad0[24];
289         __u16   prim_elmnt_count;
290         __u8    chunk_shift;    /* 0 == 512, 1==1024 etc */
291         __u8    prl;
292         __u8    rlq;
293         __u8    sec_elmnt_count;
294         __u8    sec_elmnt_seq;
295         __u8    srl;
296         __u64   blocks;         /* blocks per component could be different
297                                  * on different component devices...(only
298                                  * for concat I hope) */
299         __u64   array_blocks;   /* blocks in array */
300         __u8    pad1[8];
301         __u32   spare_refs[8];
302         __u8    cache_pol[8];
303         __u8    bg_rate;
304         __u8    pad2[3];
305         __u8    pad3[52];
306         __u8    pad4[192];
307         __u8    v0[32]; /* reserved- 0xff */
308         __u8    v1[32]; /* reserved- 0xff */
309         __u8    v2[16]; /* reserved- 0xff */
310         __u8    v3[16]; /* reserved- 0xff */
311         __u8    vendor[32];
312         __u32   phys_refnum[0]; /* refnum of each disk in sequence */
313       /*__u64   lba_offset[0];  LBA offset in each phys.  Note extents in a
314                                 bvd are always the same size */
315 };
316
317 /* vd_config.cache_pol[7] is a bitmap */
318 #define DDF_cache_writeback     1       /* else writethrough */
319 #define DDF_cache_wadaptive     2       /* only applies if writeback */
320 #define DDF_cache_readahead     4
321 #define DDF_cache_radaptive     8       /* only if doing read-ahead */
322 #define DDF_cache_ifnobatt      16      /* even to write cache if battery is poor */
323 #define DDF_cache_wallowed      32      /* enable write caching */
324 #define DDF_cache_rallowed      64      /* enable read caching */
325
326 struct spare_assign {
327         __u32   magic;          /* DDF_SPARE_ASSIGN_MAGIC */
328         __u32   crc;
329         __u32   timestamp;
330         __u8    reserved[7];
331         __u8    type;
332         __u16   populated;      /* SAEs used */
333         __u16   max;            /* max SAEs */
334         __u8    pad[8];
335         struct spare_assign_entry {
336                 char    guid[DDF_GUID_LEN];
337                 __u16   secondary_element;
338                 __u8    pad[6];
339         } spare_ents[0];
340 };
341 /* spare_assign.type is a bitmap */
342 #define DDF_spare_dedicated     0x1     /* else global */
343 #define DDF_spare_revertible    0x2     /* else committable */
344 #define DDF_spare_active        0x4     /* else not active */
345 #define DDF_spare_affinity      0x8     /* enclosure affinity */
346
347 /* The data_section contents - local scope */
348 struct disk_data {
349         __u32   magic;          /* DDF_PHYS_DATA_MAGIC */
350         __u32   crc;
351         char    guid[DDF_GUID_LEN];
352         __u32   refnum;         /* crc of some magic drive data ... */
353         __u8    forced_ref;     /* set when above was not result of magic */
354         __u8    forced_guid;    /* set if guid was forced rather than magic */
355         __u8    vendor[32];
356         __u8    pad[442];
357 };
358
359 /* bbm_section content */
360 struct bad_block_log {
361         __u32   magic;
362         __u32   crc;
363         __u16   entry_count;
364         __u32   spare_count;
365         __u8    pad[10];
366         __u64   first_spare;
367         struct mapped_block {
368                 __u64   defective_start;
369                 __u32   replacement_start;
370                 __u16   remap_count;
371                 __u8    pad[2];
372         } entries[0];
373 };
374
375 /* Struct for internally holding ddf structures */
376 /* The DDF structure stored on each device is potentially
377  * quite different, as some data is global and some is local.
378  * The global data is:
379  *   - ddf header
380  *   - controller_data
381  *   - Physical disk records
382  *   - Virtual disk records
383  * The local data is:
384  *   - Configuration records
385  *   - Physical Disk data section
386  *  (  and Bad block and vendor which I don't care about yet).
387  *
388  * The local data is parsed into separate lists as it is read
389  * and reconstructed for writing.  This means that we only need
390  * to make config changes once and they are automatically
391  * propagated to all devices.
392  * Note that the ddf_super has space of the conf and disk data
393  * for this disk and also for a list of all such data.
394  * The list is only used for the superblock that is being
395  * built in Create or Assemble to describe the whole array.
396  */
397 struct ddf_super {
398         struct ddf_header anchor, primary, secondary, *active;
399         struct ddf_controller_data controller;
400         struct phys_disk        *phys;
401         struct virtual_disk     *virt;
402         int pdsize, vdsize;
403         int max_part, mppe, conf_rec_len;
404         struct vcl {
405                 struct vcl      *next;
406                 __u64           *lba_offset; /* location in 'conf' of
407                                               * the lba table */
408                 int     vcnum; /* index into ->virt */
409                 __u64           *block_sizes; /* NULL if all the same */
410                 struct vd_config conf;
411         } *conflist, *newconf;
412         struct dl {
413                 struct dl       *next;
414                 struct disk_data disk;
415                 int major, minor;
416                 char *devname;
417                 int fd;
418                 int pdnum;      /* index in ->phys */
419                 struct spare_assign *spare;
420                 struct vcl *vlist[0]; /* max_part in size */
421         } *dlist;
422 };
423
424 #ifndef offsetof
425 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
426 #endif
427
428 static struct superswitch super_ddf_container, super_ddf_bvd, super_ddf_svd;
429
430 static int calc_crc(void *buf, int len)
431 {
432         /* crcs are always at the same place as in the ddf_header */
433         struct ddf_header *ddf = buf;
434         __u32 oldcrc = ddf->crc;
435         __u32 newcrc;
436         ddf->crc = 0xffffffff;
437
438         newcrc = crc32(0, buf, len);
439         ddf->crc = oldcrc;
440         return newcrc;
441 }
442
443 static int load_ddf_header(int fd, unsigned long long lba,
444                            unsigned long long size,
445                            int type,
446                            struct ddf_header *hdr, struct ddf_header *anchor)
447 {
448         /* read a ddf header (primary or secondary) from fd/lba
449          * and check that it is consistent with anchor
450          * Need to check:
451          *   magic, crc, guid, rev, and LBA's header_type, and
452          *  everything after header_type must be the same
453          */
454         if (lba >= size-1)
455                 return 0;
456
457         if (lseek64(fd, lba<<9, 0) < 0)
458                 return 0;
459
460         if (read(fd, hdr, 512) != 512)
461                 return 0;
462
463         if (hdr->magic != DDF_HEADER_MAGIC)
464                 return 0;
465         if (calc_crc(hdr, 512) != hdr->crc)
466                 return 0;
467         if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
468             memcmp(anchor->revision, hdr->revision, 8) != 0 ||
469             anchor->primary_lba != hdr->primary_lba ||
470             anchor->secondary_lba != hdr->secondary_lba ||
471             hdr->type != type ||
472             memcmp(anchor->pad2, hdr->pad2, 512 -
473                    offsetof(struct ddf_header, pad2)) != 0)
474                 return 0;
475
476         /* Looks good enough to me... */
477         return 1;
478 }
479
480 static void *load_section(int fd, struct ddf_super *super, void *buf,
481                           __u32 offset_be, __u32 len_be, int check)
482 {
483         unsigned long long offset = __be32_to_cpu(offset_be);
484         unsigned long long len = __be32_to_cpu(len_be);
485         int dofree = (buf == NULL);
486
487         if (check)
488                 if (len != 2 && len != 8 && len != 32
489                     && len != 128 && len != 512)
490                         return NULL;
491
492         if (len > 1024)
493                 return NULL;
494         if (buf) {
495                 /* All pre-allocated sections are a single block */
496                 if (len != 1)
497                         return NULL;
498         } else
499                 buf = malloc(len<<9);
500         if (!buf)
501                 return NULL;
502
503         if (super->active->type == 1)
504                 offset += __be64_to_cpu(super->active->primary_lba);
505         else
506                 offset += __be64_to_cpu(super->active->secondary_lba);
507
508         if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
509                 if (dofree)
510                         free(buf);
511                 return NULL;
512         }
513         if (read(fd, buf, len<<9) != (len<<9)) {
514                 if (dofree)
515                         free(buf);
516                 return NULL;
517         }
518         return buf;
519 }
520
521 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
522 {
523         unsigned long long dsize;
524
525         get_dev_size(fd, NULL, &dsize);
526
527         if (lseek64(fd, dsize-512, 0) < 0) {
528                 if (devname)
529                         fprintf(stderr,
530                                 Name": Cannot seek to anchor block on %s: %s\n",
531                                 devname, strerror(errno));
532                 return 1;
533         }
534         if (read(fd, &super->anchor, 512) != 512) {
535                 if (devname)
536                         fprintf(stderr,
537                                 Name ": Cannot read anchor block on %s: %s\n",
538                                 devname, strerror(errno));
539                 return 1;
540         }
541         if (super->anchor.magic != DDF_HEADER_MAGIC) {
542                 if (devname)
543                         fprintf(stderr, Name ": no DDF anchor found on %s\n",
544                                 devname);
545                 return 2;
546         }
547         if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
548                 if (devname)
549                         fprintf(stderr, Name ": bad CRC on anchor on %s\n",
550                                 devname);
551                 return 2;
552         }
553         if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
554             memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
555                 if (devname)
556                         fprintf(stderr, Name ": can only support super revision"
557                                 " %.8s and earlier, not %.8s on %s\n",
558                                 DDF_REVISION_2, super->anchor.revision,devname);
559                 return 2;
560         }
561         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
562                             dsize >> 9,  1,
563                             &super->primary, &super->anchor) == 0) {
564                 if (devname)
565                         fprintf(stderr,
566                                 Name ": Failed to load primary DDF header "
567                                 "on %s\n", devname);
568                 return 2;
569         }
570         super->active = &super->primary;
571         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
572                             dsize >> 9,  2,
573                             &super->secondary, &super->anchor)) {
574                 if ((__be32_to_cpu(super->primary.seq)
575                      < __be32_to_cpu(super->secondary.seq) &&
576                      !super->secondary.openflag)
577                     || (__be32_to_cpu(super->primary.seq)
578                         == __be32_to_cpu(super->secondary.seq) &&
579                         super->primary.openflag && !super->secondary.openflag)
580                         )
581                         super->active = &super->secondary;
582         }
583         return 0;
584 }
585
586 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
587 {
588         void *ok;
589         ok = load_section(fd, super, &super->controller,
590                           super->active->controller_section_offset,
591                           super->active->controller_section_length,
592                           0);
593         super->phys = load_section(fd, super, NULL,
594                                    super->active->phys_section_offset,
595                                    super->active->phys_section_length,
596                                    1);
597         super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
598
599         super->virt = load_section(fd, super, NULL,
600                                    super->active->virt_section_offset,
601                                    super->active->virt_section_length,
602                                    1);
603         super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
604         if (!ok ||
605             !super->phys ||
606             !super->virt) {
607                 free(super->phys);
608                 free(super->virt);
609                 super->phys = NULL;
610                 super->virt = NULL;
611                 return 2;
612         }
613         super->conflist = NULL;
614         super->dlist = NULL;
615
616         super->max_part = __be16_to_cpu(super->active->max_partitions);
617         super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
618         super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
619         return 0;
620 }
621
622 static int load_ddf_local(int fd, struct ddf_super *super,
623                           char *devname, int keep)
624 {
625         struct dl *dl;
626         struct stat stb;
627         char *conf;
628         int i;
629         int vnum;
630         int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
631
632         /* First the local disk info */
633         dl = malloc(sizeof(*dl) +
634                     (super->max_part) * sizeof(dl->vlist[0]));
635
636         load_section(fd, super, &dl->disk,
637                      super->active->data_section_offset,
638                      super->active->data_section_length,
639                      0);
640         dl->devname = devname ? strdup(devname) : NULL;
641
642         fstat(fd, &stb);
643         dl->major = major(stb.st_rdev);
644         dl->minor = minor(stb.st_rdev);
645         dl->next = super->dlist;
646         dl->fd = keep ? fd : -1;
647         dl->spare = NULL;
648         for (i=0 ; i < super->max_part ; i++)
649                 dl->vlist[i] = NULL;
650         super->dlist = dl;
651         dl->pdnum = -1;
652         for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
653                 if (memcmp(super->phys->entries[i].guid,
654                            dl->disk.guid, DDF_GUID_LEN) == 0)
655                         dl->pdnum = i;
656
657         /* Now the config list. */
658         /* 'conf' is an array of config entries, some of which are
659          * probably invalid.  Those which are good need to be copied into
660          * the conflist
661          */
662
663         conf = load_section(fd, super, NULL,
664                             super->active->config_section_offset,
665                             super->active->config_section_length,
666                             0);
667
668         vnum = 0;
669         for (i = 0;
670              i < __be32_to_cpu(super->active->config_section_length);
671              i += super->conf_rec_len) {
672                 struct vd_config *vd =
673                         (struct vd_config *)((char*)conf + i*512);
674                 struct vcl *vcl;
675
676                 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
677                         if (dl->spare)
678                                 continue;
679                         dl->spare = malloc(super->conf_rec_len*512);
680                         memcpy(dl->spare, vd, super->conf_rec_len*512);
681                         continue;
682                 }
683                 if (vd->magic != DDF_VD_CONF_MAGIC)
684                         continue;
685                 for (vcl = super->conflist; vcl; vcl = vcl->next) {
686                         if (memcmp(vcl->conf.guid,
687                                    vd->guid, DDF_GUID_LEN) == 0)
688                                 break;
689                 }
690
691                 if (vcl) {
692                         dl->vlist[vnum++] = vcl;
693                         if (__be32_to_cpu(vd->seqnum) <=
694                             __be32_to_cpu(vcl->conf.seqnum))
695                                 continue;
696                 } else {
697                         vcl = malloc(super->conf_rec_len*512 +
698                                      offsetof(struct vcl, conf));
699                         vcl->next = super->conflist;
700                         vcl->block_sizes = NULL; /* FIXME not for CONCAT */
701                         super->conflist = vcl;
702                         dl->vlist[vnum++] = vcl;
703                 }
704                 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
705                 vcl->lba_offset = (__u64*)
706                         &vcl->conf.phys_refnum[super->mppe];
707
708                 for (i=0; i < max_virt_disks ; i++)
709                         if (memcmp(super->virt->entries[i].guid,
710                                    vcl->conf.guid, DDF_GUID_LEN)==0)
711                                 break;
712                 if (i < max_virt_disks)
713                         vcl->vcnum = i;
714         }
715         free(conf);
716
717         return 0;
718 }
719
720 #ifndef MDASSEMBLE
721 static int load_super_ddf_all(struct supertype *st, int fd,
722                               void **sbp, char *devname, int keep_fd);
723 #endif
724 static int load_super_ddf(struct supertype *st, int fd,
725                           char *devname)
726 {
727         unsigned long long dsize;
728         struct ddf_super *super;
729         int rv;
730
731 #ifndef MDASSEMBLE
732         /* if 'fd' is a container, load metadata from all the devices */
733         if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
734                 return 0;
735 #endif
736         if (st->subarray[0])
737                 return 1; /* FIXME Is this correct */
738
739         if (get_dev_size(fd, devname, &dsize) == 0)
740                 return 1;
741
742         /* 32M is a lower bound */
743         if (dsize <= 32*1024*1024) {
744                 if (devname) {
745                         fprintf(stderr,
746                                 Name ": %s is too small for ddf: "
747                                 "size is %llu sectors.\n",
748                                 devname, dsize>>9);
749                         return 1;
750                 }
751         }
752         if (dsize & 511) {
753                 if (devname) {
754                         fprintf(stderr,
755                                 Name ": %s is an odd size for ddf: "
756                                 "size is %llu bytes.\n",
757                                 devname, dsize);
758                         return 1;
759                 }
760         }
761
762         super = malloc(sizeof(*super));
763         if (!super) {
764                 fprintf(stderr, Name ": malloc of %zu failed.\n",
765                         sizeof(*super));
766                 return 1;
767         }
768         memset(super, 0, sizeof(*super));
769
770         rv = load_ddf_headers(fd, super, devname);
771         if (rv) {
772                 free(super);
773                 return rv;
774         }
775
776         /* Have valid headers and have chosen the best. Let's read in the rest*/
777
778         rv = load_ddf_global(fd, super, devname);
779
780         if (rv) {
781                 if (devname)
782                         fprintf(stderr,
783                                 Name ": Failed to load all information "
784                                 "sections on %s\n", devname);
785                 free(super);
786                 return rv;
787         }
788
789         load_ddf_local(fd, super, devname, 0);
790
791         /* Should possibly check the sections .... */
792
793         st->sb = super;
794         if (st->ss == NULL) {
795                 st->ss = &super_ddf;
796                 st->minor_version = 0;
797                 st->max_devs = 512;
798         }
799         return 0;
800
801 }
802
803 static void free_super_ddf(struct supertype *st)
804 {
805         struct ddf_super *ddf = st->sb;
806         if (ddf == NULL)
807                 return;
808         free(ddf->phys);
809         free(ddf->virt);
810         while (ddf->conflist) {
811                 struct vcl *v = ddf->conflist;
812                 ddf->conflist = v->next;
813                 if (v->block_sizes)
814                         free(v->block_sizes);
815                 free(v);
816         }
817         while (ddf->dlist) {
818                 struct dl *d = ddf->dlist;
819                 ddf->dlist = d->next;
820                 if (d->fd >= 0)
821                         close(d->fd);
822                 if (d->spare)
823                         free(d->spare);
824                 free(d);
825         }
826         free(ddf);
827         st->sb = NULL;
828 }
829
830 static struct supertype *match_metadata_desc_ddf(char *arg)
831 {
832         /* 'ddf' only support containers */
833         struct supertype *st;
834         if (strcmp(arg, "ddf") != 0 &&
835             strcmp(arg, "default") != 0
836                 )
837                 return NULL;
838
839         st = malloc(sizeof(*st));
840         memset(st, 0, sizeof(*st));
841         st->ss = &super_ddf;
842         st->max_devs = 512;
843         st->minor_version = 0;
844         st->sb = NULL;
845         return st;
846 }
847
848 static struct supertype *match_metadata_desc_ddf_bvd(char *arg)
849 {
850         struct supertype *st;
851         if (strcmp(arg, "ddf/bvd") != 0 &&
852             strcmp(arg, "bvd") != 0 &&
853             strcmp(arg, "default") != 0
854                 )
855                 return NULL;
856
857         st = malloc(sizeof(*st));
858         memset(st, 0, sizeof(*st));
859         st->ss = &super_ddf_bvd;
860         st->max_devs = 512;
861         st->minor_version = 0;
862         st->sb = NULL;
863         return st;
864 }
865 static struct supertype *match_metadata_desc_ddf_svd(char *arg)
866 {
867         struct supertype *st;
868         if (strcmp(arg, "ddf/svd") != 0 &&
869             strcmp(arg, "svd") != 0 &&
870             strcmp(arg, "default") != 0
871                 )
872                 return NULL;
873
874         st = malloc(sizeof(*st));
875         memset(st, 0, sizeof(*st));
876         st->ss = &super_ddf_svd;
877         st->max_devs = 512;
878         st->minor_version = 0;
879         st->sb = NULL;
880         return st;
881 }
882
883 #ifndef MDASSEMBLE
884
885 static mapping_t ddf_state[] = {
886         { "Optimal", 0},
887         { "Degraded", 1},
888         { "Deleted", 2},
889         { "Missing", 3},
890         { "Failed", 4},
891         { "Partially Optimal", 5},
892         { "-reserved-", 6},
893         { "-reserved-", 7},
894         { NULL, 0}
895 };
896
897 static mapping_t ddf_init_state[] = {
898         { "Not Initialised", 0},
899         { "QuickInit in Progress", 1},
900         { "Fully Initialised", 2},
901         { "*UNKNOWN*", 3},
902         { NULL, 0}
903 };
904 static mapping_t ddf_access[] = {
905         { "Read/Write", 0},
906         { "Reserved", 1},
907         { "Read Only", 2},
908         { "Blocked (no access)", 3},
909         { NULL ,0}
910 };
911
912 static mapping_t ddf_level[] = {
913         { "RAID0", DDF_RAID0},
914         { "RAID1", DDF_RAID1},
915         { "RAID3", DDF_RAID3},
916         { "RAID4", DDF_RAID4},
917         { "RAID5", DDF_RAID5},
918         { "RAID1E",DDF_RAID1E},
919         { "JBOD",  DDF_JBOD},
920         { "CONCAT",DDF_CONCAT},
921         { "RAID5E",DDF_RAID5E},
922         { "RAID5EE",DDF_RAID5EE},
923         { "RAID6", DDF_RAID6},
924         { NULL, 0}
925 };
926 static mapping_t ddf_sec_level[] = {
927         { "Striped", DDF_2STRIPED},
928         { "Mirrored", DDF_2MIRRORED},
929         { "Concat", DDF_2CONCAT},
930         { "Spanned", DDF_2SPANNED},
931         { NULL, 0}
932 };
933 #endif
934
935 struct num_mapping {
936         int num1, num2;
937 };
938 static struct num_mapping ddf_level_num[] = {
939         { DDF_RAID0, 0 },
940         { DDF_RAID1, 1 },
941         { DDF_RAID3, LEVEL_UNSUPPORTED },
942         { DDF_RAID4, 4 },
943         { DDF_RAID5, 5 },
944         { DDF_RAID1E, LEVEL_UNSUPPORTED },
945         { DDF_JBOD, LEVEL_UNSUPPORTED },
946         { DDF_CONCAT, LEVEL_LINEAR },
947         { DDF_RAID5E, LEVEL_UNSUPPORTED },
948         { DDF_RAID5EE, LEVEL_UNSUPPORTED },
949         { DDF_RAID6, 6},
950         { MAXINT, MAXINT }
951 };
952
953 static int map_num1(struct num_mapping *map, int num)
954 {
955         int i;
956         for (i=0 ; map[i].num1 != MAXINT; i++)
957                 if (map[i].num1 == num)
958                         break;
959         return map[i].num2;
960 }
961
962 #ifndef MDASSEMBLE
963 static void print_guid(char *guid, int tstamp)
964 {
965         /* A GUIDs are part (or all) ASCII and part binary.
966          * They tend to be space padded.
967          * We print the GUID in HEX, then in parentheses add
968          * any initial ASCII sequence, and a possible
969          * time stamp from bytes 16-19
970          */
971         int l = DDF_GUID_LEN;
972         int i;
973
974         for (i=0 ; i<DDF_GUID_LEN ; i++) {
975                 if ((i&3)==0 && i != 0) printf(":");
976                 printf("%02X", guid[i]&255);
977         }
978
979         printf(" (");
980         while (l && guid[l-1] == ' ')
981                 l--;
982         for (i=0 ; i<l ; i++) {
983                 if (guid[i] >= 0x20 && guid[i] < 0x7f)
984                         fputc(guid[i], stdout);
985                 else
986                         break;
987         }
988         if (tstamp) {
989                 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
990                 char tbuf[100];
991                 struct tm *tm;
992                 tm = localtime(&then);
993                 strftime(tbuf, 100, " %D %T",tm);
994                 fputs(tbuf, stdout);
995         }
996         printf(")");
997 }
998
999 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1000 {
1001         int crl = sb->conf_rec_len;
1002         struct vcl *vcl;
1003
1004         for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1005                 struct vd_config *vc = &vcl->conf;
1006
1007                 if (calc_crc(vc, crl*512) != vc->crc)
1008                         continue;
1009                 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1010                         continue;
1011
1012                 /* Ok, we know about this VD, let's give more details */
1013                 printf(" Raid Devices[%d] : %d\n", n,
1014                        __be16_to_cpu(vc->prim_elmnt_count));
1015                 printf("   Chunk Size[%d] : %d sectors\n", n,
1016                        1 << vc->chunk_shift);
1017                 printf("   Raid Level[%d] : %s\n", n,
1018                        map_num(ddf_level, vc->prl)?:"-unknown-");
1019                 if (vc->sec_elmnt_count != 1) {
1020                         printf("  Secondary Position[%d] : %d of %d\n", n,
1021                                vc->sec_elmnt_seq, vc->sec_elmnt_count);
1022                         printf("  Secondary Level[%d] : %s\n", n,
1023                                map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1024                 }
1025                 printf("  Device Size[%d] : %llu\n", n,
1026                        __be64_to_cpu(vc->blocks)/2);
1027                 printf("   Array Size[%d] : %llu\n", n,
1028                        __be64_to_cpu(vc->array_blocks)/2);
1029         }
1030 }
1031
1032 static void examine_vds(struct ddf_super *sb)
1033 {
1034         int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1035         int i;
1036         printf("  Virtual Disks : %d\n", cnt);
1037
1038         for (i=0; i<cnt; i++) {
1039                 struct virtual_entry *ve = &sb->virt->entries[i];
1040                 printf("      VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1041                 printf("\n");
1042                 printf("         unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1043                 printf("        state[%d] : %s, %s%s\n", i,
1044                        map_num(ddf_state, ve->state & 7),
1045                        (ve->state & 8) ? "Morphing, ": "",
1046                        (ve->state & 16)? "Not Consistent" : "Consistent");
1047                 printf("   init state[%d] : %s\n", i,
1048                        map_num(ddf_init_state, ve->init_state&3));
1049                 printf("       access[%d] : %s\n", i,
1050                        map_num(ddf_access, (ve->init_state>>6) & 3));
1051                 printf("         Name[%d] : %.16s\n", i, ve->name);
1052                 examine_vd(i, sb, ve->guid);
1053         }
1054         if (cnt) printf("\n");
1055 }
1056
1057 static void examine_pds(struct ddf_super *sb)
1058 {
1059         int cnt = __be16_to_cpu(sb->phys->used_pdes);
1060         int i;
1061         struct dl *dl;
1062         printf(" Physical Disks : %d\n", cnt);
1063
1064         for (i=0 ; i<cnt ; i++) {
1065                 struct phys_disk_entry *pd = &sb->phys->entries[i];
1066                 int type = __be16_to_cpu(pd->type);
1067                 int state = __be16_to_cpu(pd->state);
1068
1069                 printf("      PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1070                 printf("\n");
1071                 printf("          ref[%d] : %08x\n", i,
1072                        __be32_to_cpu(pd->refnum));
1073                 printf("         mode[%d] : %s%s%s%s%s\n", i,
1074                        (type&2) ? "active":"",
1075                        (type&4) ? "Global Spare":"",
1076                        (type&8) ? "spare" : "",
1077                        (type&16)? ", foreign" : "",
1078                        (type&32)? "pass-through" : "");
1079                 printf("        state[%d] : %s%s%s%s%s%s%s\n", i,
1080                        (state&1)? "Online": "Offline",
1081                        (state&2)? ", Failed": "",
1082                        (state&4)? ", Rebuilding": "",
1083                        (state&8)? ", in-transition": "",
1084                        (state&16)? ", SMART errors": "",
1085                        (state&32)? ", Unrecovered Read Errors": "",
1086                        (state&64)? ", Missing" : "");
1087                 printf("   Avail Size[%d] : %llu K\n", i,
1088                        __be64_to_cpu(pd->config_size)>>1);
1089                 for (dl = sb->dlist; dl ; dl = dl->next) {
1090                         if (dl->disk.refnum == pd->refnum) {
1091                                 char *dv = map_dev(dl->major, dl->minor, 0);
1092                                 if (dv)
1093                                         printf("       Device[%d] : %s\n",
1094                                                i, dv);
1095                         }
1096                 }
1097                 printf("\n");
1098         }
1099 }
1100
1101 static void examine_super_ddf(struct supertype *st, char *homehost)
1102 {
1103         struct ddf_super *sb = st->sb;
1104
1105         printf("          Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1106         printf("        Version : %.8s\n", sb->anchor.revision);
1107         printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1108         printf("\n");
1109         printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1110         printf("\n");
1111         printf("            Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1112         printf("  Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1113                ?"yes" : "no");
1114         examine_vds(sb);
1115         examine_pds(sb);
1116 }
1117
1118 static void brief_examine_super_ddf(struct supertype *st)
1119 {
1120         /* We just write a generic DDF ARRAY entry
1121          * The uuid is all hex, 6 groups of 4 bytes
1122          */
1123         struct ddf_super *ddf = st->sb;
1124         int i;
1125         printf("ARRAY /dev/ddf metadata=ddf UUID=");
1126         for (i = 0; i < DDF_GUID_LEN; i++) {
1127                 if ((i&3) == 0 && i != 0)
1128                         printf(":");
1129                 printf("%02X", 255&ddf->anchor.guid[i]);
1130         }
1131         printf("\n");
1132 }
1133
1134 static void detail_super_ddf(struct supertype *st, char *homehost)
1135 {
1136         /* FIXME later
1137          * Could print DDF GUID
1138          * Need to find which array
1139          *  If whole, briefly list all arrays
1140          *  If one, give name
1141          */
1142 }
1143
1144 static void brief_detail_super_ddf(struct supertype *st)
1145 {
1146         /* FIXME I really need to know which array we are detailing.
1147          * Can that be stored in ddf_super??
1148          */
1149 //      struct ddf_super *ddf = st->sb;
1150 }
1151 #endif
1152
1153 static int match_home_ddf(struct supertype *st, char *homehost)
1154 {
1155         /* It matches 'this' host if the controller is a
1156          * Linux-MD controller with vendor_data matching
1157          * the hostname
1158          */
1159         struct ddf_super *ddf = st->sb;
1160         int len = strlen(homehost);
1161
1162         return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1163                 len < sizeof(ddf->controller.vendor_data) &&
1164                 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1165                 ddf->controller.vendor_data[len] == 0);
1166 }
1167
1168 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1169 {
1170         struct vcl *v;
1171
1172         for (v = ddf->conflist; v; v = v->next)
1173                 if (inst == v->vcnum)
1174                         return &v->conf;
1175         return NULL;
1176 }
1177
1178 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1179 {
1180         /* Find the entry in phys_disk which has the given refnum
1181          * and return it's index
1182          */
1183         int i;
1184         for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1185                 if (ddf->phys->entries[i].refnum == phys_refnum)
1186                         return i;
1187         return -1;
1188 }
1189
1190 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1191 {
1192         /* The uuid returned here is used for:
1193          *  uuid to put into bitmap file (Create, Grow)
1194          *  uuid for backup header when saving critical section (Grow)
1195          *  comparing uuids when re-adding a device into an array
1196          * For each of these we can make do with a truncated
1197          * or hashed uuid rather than the original, as long as
1198          * everyone agrees.
1199          * In each case the uuid required is that of the data-array,
1200          * not the device-set.
1201          * In the case of SVD we assume the BVD is of interest,
1202          * though that might be the case if a bitmap were made for
1203          * a mirrored SVD - worry about that later.
1204          * So we need to find the VD configuration record for the
1205          * relevant BVD and extract the GUID and Secondary_Element_Seq.
1206          * The first 16 bytes of the sha1 of these is used.
1207          */
1208         struct ddf_super *ddf = st->sb;
1209         struct vd_config *vd = &ddf->newconf->conf;
1210
1211         if (!vd)
1212                 memset(uuid, 0, sizeof (uuid));
1213         else {
1214                 char buf[20];
1215                 struct sha1_ctx ctx;
1216                 sha1_init_ctx(&ctx);
1217                 sha1_process_bytes(&vd->guid, DDF_GUID_LEN, &ctx);
1218                 if (vd->sec_elmnt_count > 1)
1219                         sha1_process_bytes(&vd->sec_elmnt_seq, 1, &ctx);
1220                 sha1_finish_ctx(&ctx, buf);
1221                 memcpy(uuid, buf, sizeof(uuid));
1222         }
1223 }
1224
1225 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1226 {
1227         struct ddf_super *ddf = st->sb;
1228
1229         info->array.raid_disks    = __be16_to_cpu(ddf->phys->used_pdes);
1230         info->array.level         = LEVEL_CONTAINER;
1231         info->array.layout        = 0;
1232         info->array.md_minor      = -1;
1233         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)
1234                                                          (ddf->anchor.guid+16));
1235         info->array.utime         = 0;
1236         info->array.chunk_size    = 0;
1237
1238 //      info->data_offset         = ???;
1239 //      info->component_size      = ???;
1240
1241         info->disk.major = 0;
1242         info->disk.minor = 0;
1243         if (ddf->dlist) {
1244                 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1245                 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1246         } else {
1247                 info->disk.number = -1;
1248 //              info->disk.raid_disk = find refnum in the table and use index;
1249         }
1250         info->disk.state = (1 << MD_DISK_SYNC);
1251
1252         info->reshape_active = 0;
1253
1254         strcpy(info->text_version, "ddf");
1255
1256 //      uuid_from_super_ddf(info->uuid, sbv);
1257
1258 //      info->name[] ?? ;
1259 }
1260
1261 static void getinfo_super_n_container(struct supertype *st, struct mdinfo *info)
1262 {
1263         /* just need offset and size */
1264         struct ddf_super *ddf = st->sb;
1265         int n = info->disk.number;
1266
1267         info->data_offset = __be64_to_cpu(ddf->phys->entries[n].config_size);
1268         info->component_size = 32*1024*1024 / 512;
1269 }
1270
1271 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1272
1273 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1274 {
1275         struct ddf_super *ddf = st->sb;
1276         struct vd_config *vd = find_vdcr(ddf, info->container_member);
1277
1278         /* FIXME this returns BVD info - what if we want SVD ?? */
1279
1280         info->array.raid_disks    = __be16_to_cpu(vd->prim_elmnt_count);
1281         info->array.level         = map_num1(ddf_level_num, vd->prl);
1282         info->array.layout        = rlq_to_layout(vd->rlq, vd->prl,
1283                                                   info->array.raid_disks);
1284         info->array.md_minor      = -1;
1285         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)(vd->guid+16));
1286         info->array.utime         = DECADE + __be32_to_cpu(vd->timestamp);
1287         info->array.chunk_size    = 512 << vd->chunk_shift;
1288
1289 //      info->data_offset         = ???;
1290 //      info->component_size      = ???;
1291
1292         info->disk.major = 0;
1293         info->disk.minor = 0;
1294 //      info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1295 //      info->disk.raid_disk = find refnum in the table and use index;
1296 //      info->disk.state = ???;
1297
1298         info->resync_start = 0;
1299         if (!(ddf->virt->entries[info->container_member].state
1300               & DDF_state_inconsistent)  &&
1301             (ddf->virt->entries[info->container_member].init_state
1302              & DDF_initstate_mask)
1303             == DDF_init_full)
1304                 info->resync_start = ~0ULL;
1305
1306         uuid_from_super_ddf(st, info->uuid);
1307
1308         sprintf(info->text_version, "/%s/%d",
1309                 devnum2devname(st->container_dev),
1310                 info->container_member);
1311
1312 //      info->name[] ?? ;
1313 }
1314
1315 static void getinfo_super_n_bvd(struct supertype *st, struct mdinfo *info)
1316 {
1317         /* Find the particular details for info->disk.raid_disk.
1318          * This includes data_offset, component_size,
1319          */
1320         struct ddf_super *ddf = st->sb;
1321         __u64 *lba_offset = ddf->newconf->lba_offset;
1322         struct vd_config *conf = &ddf->newconf->conf;
1323         info->data_offset = __be64_to_cpu(lba_offset[info->disk.raid_disk]);
1324         info->component_size = __be64_to_cpu(conf->blocks);
1325 }
1326
1327 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1328                             char *update,
1329                             char *devname, int verbose,
1330                             int uuid_set, char *homehost)
1331 {
1332         /* For 'assemble' and 'force' we need to return non-zero if any
1333          * change was made.  For others, the return value is ignored.
1334          * Update options are:
1335          *  force-one : This device looks a bit old but needs to be included,
1336          *        update age info appropriately.
1337          *  assemble: clear any 'faulty' flag to allow this device to
1338          *              be assembled.
1339          *  force-array: Array is degraded but being forced, mark it clean
1340          *         if that will be needed to assemble it.
1341          *
1342          *  newdev:  not used ????
1343          *  grow:  Array has gained a new device - this is currently for
1344          *              linear only
1345          *  resync: mark as dirty so a resync will happen.
1346          *  uuid:  Change the uuid of the array to match what is given
1347          *  homehost:  update the recorded homehost
1348          *  name:  update the name - preserving the homehost
1349          *  _reshape_progress: record new reshape_progress position.
1350          *
1351          * Following are not relevant for this version:
1352          *  sparc2.2 : update from old dodgey metadata
1353          *  super-minor: change the preferred_minor number
1354          *  summaries:  update redundant counters.
1355          */
1356         int rv = 0;
1357 //      struct ddf_super *ddf = st->sb;
1358 //      struct vd_config *vd = find_vdcr(ddf, info->container_member);
1359 //      struct virtual_entry *ve = find_ve(ddf);
1360
1361         /* we don't need to handle "force-*" or "assemble" as
1362          * there is no need to 'trick' the kernel.  We the metadata is
1363          * first updated to activate the array, all the implied modifications
1364          * will just happen.
1365          */
1366
1367         if (strcmp(update, "grow") == 0) {
1368                 /* FIXME */
1369         }
1370         if (strcmp(update, "resync") == 0) {
1371 //              info->resync_checkpoint = 0;
1372         }
1373         /* We ignore UUID updates as they make even less sense
1374          * with DDF
1375          */
1376         if (strcmp(update, "homehost") == 0) {
1377                 /* homehost is stored in controller->vendor_data,
1378                  * or it is when we are the vendor
1379                  */
1380 //              if (info->vendor_is_local)
1381 //                      strcpy(ddf->controller.vendor_data, homehost);
1382         }
1383         if (strcmp(update, "name") == 0) {
1384                 /* name is stored in virtual_entry->name */
1385 //              memset(ve->name, ' ', 16);
1386 //              strncpy(ve->name, info->name, 16);
1387         }
1388         if (strcmp(update, "_reshape_progress") == 0) {
1389                 /* We don't support reshape yet */
1390         }
1391
1392 //      update_all_csum(ddf);
1393
1394         return rv;
1395 }
1396
1397 static void make_header_guid(char *guid)
1398 {
1399         __u32 stamp;
1400         int rfd;
1401         /* Create a DDF Header of Virtual Disk GUID */
1402
1403         /* 24 bytes of fiction required.
1404          * first 8 are a 'vendor-id'  - "Linux-MD"
1405          * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1406          * Remaining 8 random number plus timestamp
1407          */
1408         memcpy(guid, T10, sizeof(T10));
1409         stamp = __cpu_to_be32(0xdeadbeef);
1410         memcpy(guid+8, &stamp, 4);
1411         stamp = __cpu_to_be32(0);
1412         memcpy(guid+12, &stamp, 4);
1413         stamp = __cpu_to_be32(time(0) - DECADE);
1414         memcpy(guid+16, &stamp, 4);
1415         rfd = open("/dev/urandom", O_RDONLY);
1416         if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1417                 stamp = random();
1418         memcpy(guid+20, &stamp, 4);
1419         if (rfd >= 0) close(rfd);
1420 }
1421
1422 static int init_super_ddf(struct supertype *st,
1423                           mdu_array_info_t *info,
1424                           unsigned long long size, char *name, char *homehost,
1425                           int *uuid)
1426 {
1427         /* This is primarily called by Create when creating a new array.
1428          * We will then get add_to_super called for each component, and then
1429          * write_init_super called to write it out to each device.
1430          * For DDF, Create can create on fresh devices or on a pre-existing
1431          * array.
1432          * To create on a pre-existing array a different method will be called.
1433          * This one is just for fresh drives.
1434          *
1435          * We need to create the entire 'ddf' structure which includes:
1436          *  DDF headers - these are easy.
1437          *  Controller data - a Sector describing this controller .. not that
1438          *                  this is a controller exactly.
1439          *  Physical Disk Record - one entry per device, so
1440          *                      leave plenty of space.
1441          *  Virtual Disk Records - again, just leave plenty of space.
1442          *                   This just lists VDs, doesn't give details
1443          *  Config records - describes the VDs that use this disk
1444          *  DiskData  - describes 'this' device.
1445          *  BadBlockManagement - empty
1446          *  Diag Space - empty
1447          *  Vendor Logs - Could we put bitmaps here?
1448          *
1449          */
1450         struct ddf_super *ddf;
1451         char hostname[17];
1452         int hostlen;
1453         int max_phys_disks, max_virt_disks;
1454         unsigned long long sector;
1455         int clen;
1456         int i;
1457         int pdsize, vdsize;
1458         struct phys_disk *pd;
1459         struct virtual_disk *vd;
1460
1461         ddf = malloc(sizeof(*ddf));
1462         memset(ddf, 0, sizeof(*ddf));
1463         ddf->dlist = NULL; /* no physical disks yet */
1464         ddf->conflist = NULL; /* No virtual disks yet */
1465
1466         /* At least 32MB *must* be reserved for the ddf.  So let's just
1467          * start 32MB from the end, and put the primary header there.
1468          * Don't do secondary for now.
1469          * We don't know exactly where that will be yet as it could be
1470          * different on each device.  To just set up the lengths.
1471          *
1472          */
1473
1474         ddf->anchor.magic = DDF_HEADER_MAGIC;
1475         make_header_guid(ddf->anchor.guid);
1476
1477         memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1478         ddf->anchor.seq = __cpu_to_be32(1);
1479         ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1480         ddf->anchor.openflag = 0xFF;
1481         ddf->anchor.foreignflag = 0;
1482         ddf->anchor.enforcegroups = 0; /* Is this best?? */
1483         ddf->anchor.pad0 = 0xff;
1484         memset(ddf->anchor.pad1, 0xff, 12);
1485         memset(ddf->anchor.header_ext, 0xff, 32);
1486         ddf->anchor.primary_lba = ~(__u64)0;
1487         ddf->anchor.secondary_lba = ~(__u64)0;
1488         ddf->anchor.type = DDF_HEADER_ANCHOR;
1489         memset(ddf->anchor.pad2, 0xff, 3);
1490         ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1491         ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1492                                                   of 32M reserved.. */
1493         max_phys_disks = 1023;   /* Should be enough */
1494         ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1495         max_virt_disks = 255;
1496         ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1497         ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1498         ddf->max_part = 64;
1499         ddf->mppe = 256;
1500         ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1501         ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1502         ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1503         memset(ddf->anchor.pad3, 0xff, 54);
1504         /* controller sections is one sector long immediately
1505          * after the ddf header */
1506         sector = 1;
1507         ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1508         ddf->anchor.controller_section_length = __cpu_to_be32(1);
1509         sector += 1;
1510
1511         /* phys is 8 sectors after that */
1512         pdsize = ROUND_UP(sizeof(struct phys_disk) +
1513                           sizeof(struct phys_disk_entry)*max_phys_disks,
1514                           512);
1515         switch(pdsize/512) {
1516         case 2: case 8: case 32: case 128: case 512: break;
1517         default: abort();
1518         }
1519         ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1520         ddf->anchor.phys_section_length =
1521                 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1522         sector += pdsize/512;
1523
1524         /* virt is another 32 sectors */
1525         vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1526                           sizeof(struct virtual_entry) * max_virt_disks,
1527                           512);
1528         switch(vdsize/512) {
1529         case 2: case 8: case 32: case 128: case 512: break;
1530         default: abort();
1531         }
1532         ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1533         ddf->anchor.virt_section_length =
1534                 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1535         sector += vdsize/512;
1536
1537         clen = ddf->conf_rec_len * (ddf->max_part+1);
1538         ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1539         ddf->anchor.config_section_length = __cpu_to_be32(clen);
1540         sector += clen;
1541
1542         ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1543         ddf->anchor.data_section_length = __cpu_to_be32(1);
1544         sector += 1;
1545
1546         ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1547         ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1548         ddf->anchor.diag_space_length = __cpu_to_be32(0);
1549         ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1550         ddf->anchor.vendor_length = __cpu_to_be32(0);
1551         ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1552
1553         memset(ddf->anchor.pad4, 0xff, 256);
1554
1555         memcpy(&ddf->primary, &ddf->anchor, 512);
1556         memcpy(&ddf->secondary, &ddf->anchor, 512);
1557
1558         ddf->primary.openflag = 1; /* I guess.. */
1559         ddf->primary.type = DDF_HEADER_PRIMARY;
1560
1561         ddf->secondary.openflag = 1; /* I guess.. */
1562         ddf->secondary.type = DDF_HEADER_SECONDARY;
1563
1564         ddf->active = &ddf->primary;
1565
1566         ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1567
1568         /* 24 more bytes of fiction required.
1569          * first 8 are a 'vendor-id'  - "Linux-MD"
1570          * Remaining 16 are serial number.... maybe a hostname would do?
1571          */
1572         memcpy(ddf->controller.guid, T10, sizeof(T10));
1573         gethostname(hostname, sizeof(hostname));
1574         hostname[sizeof(hostname) - 1] = 0;
1575         hostlen = strlen(hostname);
1576         memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1577         for (i = strlen(T10) ; i+hostlen < 24; i++)
1578                 ddf->controller.guid[i] = ' ';
1579
1580         ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1581         ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1582         ddf->controller.type.sub_vendor_id = 0;
1583         ddf->controller.type.sub_device_id = 0;
1584         memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1585         memset(ddf->controller.pad, 0xff, 8);
1586         memset(ddf->controller.vendor_data, 0xff, 448);
1587
1588         pd = ddf->phys = malloc(pdsize);
1589         ddf->pdsize = pdsize;
1590
1591         memset(pd, 0xff, pdsize);
1592         memset(pd, 0, sizeof(*pd));
1593         pd->magic = DDF_PHYS_DATA_MAGIC;
1594         pd->used_pdes = __cpu_to_be16(0);
1595         pd->max_pdes = __cpu_to_be16(max_phys_disks);
1596         memset(pd->pad, 0xff, 52);
1597
1598         vd = ddf->virt = malloc(vdsize);
1599         ddf->vdsize = vdsize;
1600         memset(vd, 0, vdsize);
1601         vd->magic = DDF_VIRT_RECORDS_MAGIC;
1602         vd->populated_vdes = __cpu_to_be16(0);
1603         vd->max_vdes = __cpu_to_be16(max_virt_disks);
1604         memset(vd->pad, 0xff, 52);
1605
1606         for (i=0; i<max_virt_disks; i++)
1607                 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1608
1609         st->sb = ddf;
1610         return 1;
1611 }
1612
1613 static int all_ff(char *guid)
1614 {
1615         int i;
1616         for (i = 0; i < DDF_GUID_LEN; i++)
1617                 if (guid[i] != (char)0xff)
1618                         return 0;
1619         return 1;
1620 }
1621 static int chunk_to_shift(int chunksize)
1622 {
1623         return ffs(chunksize/512)-1;
1624 }
1625
1626 static int level_to_prl(int level)
1627 {
1628         switch (level) {
1629         case LEVEL_LINEAR: return DDF_CONCAT;
1630         case 0: return DDF_RAID0;
1631         case 1: return DDF_RAID1;
1632         case 4: return DDF_RAID4;
1633         case 5: return DDF_RAID5;
1634         case 6: return DDF_RAID6;
1635         default: return -1;
1636         }
1637 }
1638 static int layout_to_rlq(int level, int layout, int raiddisks)
1639 {
1640         switch(level) {
1641         case 0:
1642                 return DDF_RAID0_SIMPLE;
1643         case 1:
1644                 switch(raiddisks) {
1645                 case 2: return DDF_RAID1_SIMPLE;
1646                 case 3: return DDF_RAID1_MULTI;
1647                 default: return -1;
1648                 }
1649         case 4:
1650                 switch(layout) {
1651                 case 0: return DDF_RAID4_N;
1652                 }
1653                 break;
1654         case 5:
1655         case 6:
1656                 switch(layout) {
1657                 case ALGORITHM_LEFT_ASYMMETRIC:
1658                         return DDF_RAID5_N_RESTART;
1659                 case ALGORITHM_RIGHT_ASYMMETRIC:
1660                         if (level == 5)
1661                                 return DDF_RAID5_0_RESTART;
1662                         else
1663                                 return DDF_RAID6_0_RESTART;
1664                 case ALGORITHM_LEFT_SYMMETRIC:
1665                         return DDF_RAID5_N_CONTINUE;
1666                 case ALGORITHM_RIGHT_SYMMETRIC:
1667                         return -1; /* not mentioned in standard */
1668                 }
1669         }
1670         return -1;
1671 }
1672
1673 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1674 {
1675         switch(prl) {
1676         case DDF_RAID0:
1677                 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1678         case DDF_RAID1:
1679                 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1680                              on raiddisks*/
1681         case DDF_RAID4:
1682                 switch(rlq) {
1683                 case DDF_RAID4_N:
1684                         return 0;
1685                 default:
1686                         /* not supported */
1687                         return -1; /* FIXME this isn't checked */
1688                 }
1689         case DDF_RAID5:
1690                 switch(rlq) {
1691                 case DDF_RAID5_N_RESTART:
1692                         return ALGORITHM_LEFT_ASYMMETRIC;
1693                 case DDF_RAID5_0_RESTART:
1694                         return ALGORITHM_RIGHT_ASYMMETRIC;
1695                 case DDF_RAID5_N_CONTINUE:
1696                         return ALGORITHM_LEFT_SYMMETRIC;
1697                 default:
1698                         return -1;
1699                 }
1700         case DDF_RAID6:
1701                 switch(rlq) {
1702                 case DDF_RAID5_N_RESTART:
1703                         return ALGORITHM_LEFT_ASYMMETRIC;
1704                 case DDF_RAID6_0_RESTART:
1705                         return ALGORITHM_RIGHT_ASYMMETRIC;
1706                 case DDF_RAID5_N_CONTINUE:
1707                         return ALGORITHM_LEFT_SYMMETRIC;
1708                 default:
1709                         return -1;
1710                 }
1711         }
1712         return -1;
1713 }
1714
1715 struct extent {
1716         unsigned long long start, size;
1717 };
1718 int cmp_extent(const void *av, const void *bv)
1719 {
1720         const struct extent *a = av;
1721         const struct extent *b = bv;
1722         if (a->start < b->start)
1723                 return -1;
1724         if (a->start > b->start)
1725                 return 1;
1726         return 0;
1727 }
1728
1729 struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1730 {
1731         /* find a list of used extents on the give physical device
1732          * (dnum) of the given ddf.
1733          * Return a malloced array of 'struct extent'
1734
1735 FIXME ignore DDF_Legacy devices?
1736
1737          */
1738         struct extent *rv;
1739         int n = 0;
1740         int i, j;
1741
1742         rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1743         if (!rv)
1744                 return NULL;
1745
1746         for (i = 0; i < ddf->max_part; i++) {
1747                 struct vcl *v = dl->vlist[i];
1748                 if (v == NULL)
1749                         continue;
1750                 for (j=0; j < v->conf.prim_elmnt_count; j++)
1751                         if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1752                                 /* This device plays role 'j' in  'v'. */
1753                                 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1754                                 rv[n].size = __be64_to_cpu(v->conf.blocks);
1755                                 n++;
1756                                 break;
1757                         }
1758         }
1759         qsort(rv, n, sizeof(*rv), cmp_extent);
1760
1761         rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1762         rv[n].size = 0;
1763         return rv;
1764 }
1765
1766 static int init_super_ddf_bvd(struct supertype *st,
1767                               mdu_array_info_t *info,
1768                               unsigned long long size,
1769                               char *name, char *homehost,
1770                               int *uuid)
1771 {
1772         /* We are creating a BVD inside a pre-existing container.
1773          * so st->sb is already set.
1774          * We need to create a new vd_config and a new virtual_entry
1775          */
1776         struct ddf_super *ddf = st->sb;
1777         int venum;
1778         struct virtual_entry *ve;
1779         struct vcl *vcl;
1780         struct vd_config *vc;
1781
1782         if (__be16_to_cpu(ddf->virt->populated_vdes)
1783             >= __be16_to_cpu(ddf->virt->max_vdes)) {
1784                 fprintf(stderr, Name": This ddf already has the "
1785                         "maximum of %d virtual devices\n",
1786                         __be16_to_cpu(ddf->virt->max_vdes));
1787                 return 0;
1788         }
1789
1790         for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1791                 if (all_ff(ddf->virt->entries[venum].guid))
1792                         break;
1793         if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1794                 fprintf(stderr, Name ": Cannot find spare slot for "
1795                         "virtual disk - DDF is corrupt\n");
1796                 return 0;
1797         }
1798         ve = &ddf->virt->entries[venum];
1799
1800         /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1801          * timestamp, random number
1802          */
1803         make_header_guid(ve->guid);
1804         ve->unit = __cpu_to_be16(info->md_minor);
1805         ve->pad0 = 0xFFFF;
1806         ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1807         ve->type = 0;
1808         ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1809         if (info->state & 1) /* clean */
1810                 ve->init_state = DDF_init_full;
1811         else
1812                 ve->init_state = DDF_init_not;
1813
1814         memset(ve->pad1, 0xff, 14);
1815         memset(ve->name, ' ', 16);
1816         if (name)
1817                 strncpy(ve->name, name, 16);
1818         ddf->virt->populated_vdes =
1819                 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1820
1821         /* Now create a new vd_config */
1822         vcl = malloc(offsetof(struct vcl, conf) + ddf->conf_rec_len * 512);
1823         vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1824         vcl->vcnum = venum;
1825         sprintf(st->subarray, "%d", venum);
1826         vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1827
1828         vc = &vcl->conf;
1829
1830         vc->magic = DDF_VD_CONF_MAGIC;
1831         memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1832         vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1833         vc->seqnum = __cpu_to_be32(1);
1834         memset(vc->pad0, 0xff, 24);
1835         vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1836         vc->chunk_shift = chunk_to_shift(info->chunk_size);
1837         vc->prl = level_to_prl(info->level);
1838         vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1839         vc->sec_elmnt_count = 1;
1840         vc->sec_elmnt_seq = 0;
1841         vc->srl = 0;
1842         vc->blocks = __cpu_to_be64(info->size * 2);
1843         vc->array_blocks = __cpu_to_be64(
1844                 calc_array_size(info->level, info->raid_disks, info->layout,
1845                                 info->chunk_size, info->size*2));
1846         memset(vc->pad1, 0xff, 8);
1847         vc->spare_refs[0] = 0xffffffff;
1848         vc->spare_refs[1] = 0xffffffff;
1849         vc->spare_refs[2] = 0xffffffff;
1850         vc->spare_refs[3] = 0xffffffff;
1851         vc->spare_refs[4] = 0xffffffff;
1852         vc->spare_refs[5] = 0xffffffff;
1853         vc->spare_refs[6] = 0xffffffff;
1854         vc->spare_refs[7] = 0xffffffff;
1855         memset(vc->cache_pol, 0, 8);
1856         vc->bg_rate = 0x80;
1857         memset(vc->pad2, 0xff, 3);
1858         memset(vc->pad3, 0xff, 52);
1859         memset(vc->pad4, 0xff, 192);
1860         memset(vc->v0, 0xff, 32);
1861         memset(vc->v1, 0xff, 32);
1862         memset(vc->v2, 0xff, 16);
1863         memset(vc->v3, 0xff, 16);
1864         memset(vc->vendor, 0xff, 32);
1865
1866         memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1867         memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1868
1869         vcl->next = ddf->conflist;
1870         ddf->conflist = vcl;
1871         ddf->newconf = vcl;
1872         return 1;
1873 }
1874
1875 static void add_to_super_ddf_bvd(struct supertype *st,
1876                                  mdu_disk_info_t *dk, int fd, char *devname)
1877 {
1878         /* fd and devname identify a device with-in the ddf container (st).
1879          * dk identifies a location in the new BVD.
1880          * We need to find suitable free space in that device and update
1881          * the phys_refnum and lba_offset for the newly created vd_config.
1882          * We might also want to update the type in the phys_disk
1883          * section.
1884          */
1885         struct dl *dl;
1886         struct ddf_super *ddf = st->sb;
1887         struct vd_config *vc;
1888         __u64 *lba_offset;
1889         int working;
1890         int i;
1891         unsigned long long blocks, pos, esize;
1892         struct extent *ex;
1893
1894         for (dl = ddf->dlist; dl ; dl = dl->next)
1895                 if (dl->major == dk->major &&
1896                     dl->minor == dk->minor)
1897                         break;
1898         if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1899                 return;
1900
1901         vc = &ddf->newconf->conf;
1902         lba_offset = ddf->newconf->lba_offset;
1903
1904         ex = get_extents(ddf, dl);
1905         if (!ex)
1906                 return;
1907
1908         i = 0; pos = 0;
1909         blocks = __be64_to_cpu(vc->blocks);
1910         if (ddf->newconf->block_sizes)
1911                 blocks = ddf->newconf->block_sizes[dk->raid_disk];
1912
1913         do {
1914                 esize = ex[i].start - pos;
1915                 if (esize >= blocks)
1916                         break;
1917                 pos = ex[i].start + ex[i].size;
1918                 i++;
1919         } while (ex[i-1].size);
1920
1921         free(ex);
1922         if (esize < blocks)
1923                 return;
1924
1925         vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1926         lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1927
1928         for (i=0; i < ddf->max_part ; i++)
1929                 if (dl->vlist[i] == NULL)
1930                         break;
1931         if (i == ddf->max_part)
1932                 return;
1933         dl->vlist[i] = ddf->newconf;
1934
1935         dl->fd = fd;
1936         dl->devname = devname;
1937
1938         /* Check how many working raid_disks, and if we can mark
1939          * array as optimal yet
1940          */
1941         working = 0;
1942
1943         for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1944                 if (vc->phys_refnum[i] != 0xffffffff)
1945                         working++;
1946
1947         /* Find which virtual_entry */
1948         i = ddf->newconf->vcnum;
1949         if (working == __be16_to_cpu(vc->prim_elmnt_count))
1950                 ddf->virt->entries[i].state =
1951                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1952                         | DDF_state_optimal;
1953
1954         if (vc->prl == DDF_RAID6 &&
1955             working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1956                 ddf->virt->entries[i].state =
1957                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1958                         | DDF_state_part_optimal;
1959
1960         ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1961         ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1962 }
1963
1964 /* add a device to a container, either while creating it or while
1965  * expanding a pre-existing container
1966  */
1967 static void add_to_super_ddf(struct supertype *st,
1968                              mdu_disk_info_t *dk, int fd, char *devname)
1969 {
1970         struct ddf_super *ddf = st->sb;
1971         struct dl *dd;
1972         time_t now;
1973         struct tm *tm;
1974         unsigned long long size;
1975         struct phys_disk_entry *pde;
1976         int n, i;
1977         struct stat stb;
1978
1979         /* This is device numbered dk->number.  We need to create
1980          * a phys_disk entry and a more detailed disk_data entry.
1981          */
1982         fstat(fd, &stb);
1983         dd = malloc(sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
1984         dd->major = major(stb.st_rdev);
1985         dd->minor = minor(stb.st_rdev);
1986         dd->devname = devname;
1987         dd->next = ddf->dlist;
1988         dd->fd = fd;
1989         dd->spare = NULL;
1990
1991         dd->disk.magic = DDF_PHYS_DATA_MAGIC;
1992         now = time(0);
1993         tm = localtime(&now);
1994         sprintf(dd->disk.guid, "%8s%04d%02d%02d",
1995                 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
1996         *(__u32*)(dd->disk.guid + 16) = random();
1997         *(__u32*)(dd->disk.guid + 20) = random();
1998
1999         do {
2000                 /* Cannot be bothered finding a CRC of some irrelevant details*/
2001                 dd->disk.refnum = random();
2002                 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2003                      i >= 0; i--)
2004                         if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2005                                 break;
2006         } while (i >= 0);
2007
2008         dd->disk.forced_ref = 1;
2009         dd->disk.forced_guid = 1;
2010         memset(dd->disk.vendor, ' ', 32);
2011         memcpy(dd->disk.vendor, "Linux", 5);
2012         memset(dd->disk.pad, 0xff, 442);
2013         for (i = 0; i < ddf->max_part ; i++)
2014                 dd->vlist[i] = NULL;
2015
2016         n = __be16_to_cpu(ddf->phys->used_pdes);
2017         pde = &ddf->phys->entries[n];
2018         dd->pdnum = n;
2019
2020         n++;
2021         ddf->phys->used_pdes = __cpu_to_be16(n);
2022
2023         memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2024         pde->refnum = dd->disk.refnum;
2025         pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2026         pde->state = __cpu_to_be16(DDF_Online);
2027         get_dev_size(fd, NULL, &size);
2028         /* We are required to reserve 32Meg, and record the size in sectors */
2029         pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2030         sprintf(pde->path, "%17.17s","Information: nil") ;
2031         memset(pde->pad, 0xff, 6);
2032
2033         ddf->dlist = dd;
2034 }
2035
2036 /*
2037  * This is the write_init_super method for a ddf container.  It is
2038  * called when creating a container or adding another device to a
2039  * container.
2040  */
2041
2042 #ifndef MDASSEMBLE
2043 static int __write_init_super_ddf(struct supertype *st, int do_close)
2044 {
2045
2046         struct ddf_super *ddf = st->sb;
2047         int i;
2048         struct dl *d;
2049         int n_config;
2050         int conf_size;
2051
2052         unsigned long long size, sector;
2053
2054         for (d = ddf->dlist; d; d=d->next) {
2055                 int fd = d->fd;
2056
2057                 if (fd < 0)
2058                         continue;
2059
2060                 /* We need to fill in the primary, (secondary) and workspace
2061                  * lba's in the headers, set their checksums,
2062                  * Also checksum phys, virt....
2063                  *
2064                  * Then write everything out, finally the anchor is written.
2065                  */
2066                 get_dev_size(fd, NULL, &size);
2067                 size /= 512;
2068                 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2069                 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2070                 ddf->anchor.seq = __cpu_to_be32(1);
2071                 memcpy(&ddf->primary, &ddf->anchor, 512);
2072                 memcpy(&ddf->secondary, &ddf->anchor, 512);
2073
2074                 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2075                 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2076                 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2077
2078                 ddf->primary.openflag = 0;
2079                 ddf->primary.type = DDF_HEADER_PRIMARY;
2080
2081                 ddf->secondary.openflag = 0;
2082                 ddf->secondary.type = DDF_HEADER_SECONDARY;
2083
2084                 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2085                 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2086
2087                 sector = size - 16*1024*2;
2088                 lseek64(fd, sector<<9, 0);
2089                 write(fd, &ddf->primary, 512);
2090
2091                 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2092                 write(fd, &ddf->controller, 512);
2093
2094                 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2095
2096                 write(fd, ddf->phys, ddf->pdsize);
2097
2098                 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2099                 write(fd, ddf->virt, ddf->vdsize);
2100
2101                 /* Now write lots of config records. */
2102                 n_config = ddf->max_part;
2103                 conf_size = ddf->conf_rec_len * 512;
2104                 for (i = 0 ; i <= n_config ; i++) {
2105                         struct vcl *c = d->vlist[i];
2106                         if (i == n_config)
2107                                 c = (struct vcl*)d->spare;
2108
2109                         if (c) {
2110                                 c->conf.crc = calc_crc(&c->conf, conf_size);
2111                                 write(fd, &c->conf, conf_size);
2112                         } else {
2113                                 __u32 sig = 0xffffffff;
2114                                 write(fd, &sig, 4);
2115                                 lseek64(fd, conf_size-4, SEEK_CUR);
2116                         }
2117                 }
2118                 d->disk.crc = calc_crc(&d->disk, 512);
2119                 write(fd, &d->disk, 512);
2120
2121                 /* Maybe do the same for secondary */
2122
2123                 lseek64(fd, (size-1)*512, SEEK_SET);
2124                 write(fd, &ddf->anchor, 512);
2125                 if (do_close) {
2126                         close(fd);
2127                         d->fd = -1;
2128                 }
2129         }
2130         return 1;
2131 }
2132
2133 static int write_init_super_ddf(struct supertype *st)
2134 {
2135         return __write_init_super_ddf(st, 1);
2136 }
2137
2138 #endif
2139
2140 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2141 {
2142         /* We must reserve the last 32Meg */
2143         if (devsize <= 32*1024*2)
2144                 return 0;
2145         return devsize - 32*1024*2;
2146 }
2147
2148 #ifndef MDASSEMBLE
2149 int validate_geometry_ddf(struct supertype *st,
2150                           int level, int layout, int raiddisks,
2151                           int chunk, unsigned long long size,
2152                           char *dev, unsigned long long *freesize)
2153 {
2154         int fd;
2155         struct mdinfo *sra;
2156         int cfd;
2157
2158         /* ddf potentially supports lots of things, but it depends on
2159          * what devices are offered (and maybe kernel version?)
2160          * If given unused devices, we will make a container.
2161          * If given devices in a container, we will make a BVD.
2162          * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2163          */
2164
2165         if (level == LEVEL_CONTAINER) {
2166                 st->ss = &super_ddf_container;
2167                 if (dev) {
2168                         int rv =st->ss->validate_geometry(st, level, layout,
2169                                                           raiddisks, chunk,
2170                                                           size,
2171                                                           NULL, freesize);
2172                         if (rv)
2173                                 return rv;
2174                 }
2175                 return st->ss->validate_geometry(st, level, layout, raiddisks,
2176                                                  chunk, size, dev, freesize);
2177         }
2178
2179         if (st->sb) {
2180                 /* creating in a given container */
2181                 st->ss = &super_ddf_bvd;
2182                 if (dev) {
2183                         int rv =st->ss->validate_geometry(st, level, layout,
2184                                                           raiddisks, chunk,
2185                                                           size,
2186                                                           NULL, freesize);
2187                         if (rv)
2188                                 return rv;
2189                 }
2190                 return st->ss->validate_geometry(st, level, layout, raiddisks,
2191                                                  chunk, size, dev, freesize);
2192         }
2193         /* FIXME should exclude MULTIPATH, or more appropriately, allow
2194          * only known levels.
2195          */
2196         if (!dev)
2197                 return 1;
2198
2199         /* This device needs to be either a device in a 'ddf' container,
2200          * or it needs to be a 'ddf-bvd' array.
2201          */
2202
2203         fd = open(dev, O_RDONLY|O_EXCL, 0);
2204         if (fd >= 0) {
2205                 sra = sysfs_read(fd, 0, GET_VERSION);
2206                 close(fd);
2207                 if (sra && sra->array.major_version == -1 &&
2208                     strcmp(sra->text_version, "ddf-bvd") == 0) {
2209                         st->ss = &super_ddf_svd;
2210                         return st->ss->validate_geometry(st, level, layout,
2211                                                          raiddisks, chunk, size,
2212                                                          dev, freesize);
2213                 }
2214
2215                 fprintf(stderr,
2216                         Name ": Cannot create this array on device %s\n",
2217                         dev);
2218                 return 0;
2219         }
2220         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2221                 fprintf(stderr, Name ": Cannot open %s: %s\n",
2222                         dev, strerror(errno));
2223                 return 0;
2224         }
2225         /* Well, it is in use by someone, maybe a 'ddf' container. */
2226         cfd = open_container(fd);
2227         if (cfd < 0) {
2228                 close(fd);
2229                 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2230                         dev);
2231                 return 0;
2232         }
2233         sra = sysfs_read(cfd, 0, GET_VERSION);
2234         close(fd);
2235         if (sra && sra->array.major_version == -1 &&
2236             strcmp(sra->text_version, "ddf") == 0) {
2237                 /* This is a member of a ddf container.  Load the container
2238                  * and try to create a bvd
2239                  */
2240                 struct ddf_super *ddf;
2241                 st->ss = &super_ddf_bvd;
2242                 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2243                         st->sb = ddf;
2244                         st->container_dev = fd2devnum(cfd);
2245                         close(cfd);
2246                         return st->ss->validate_geometry(st, level, layout,
2247                                                          raiddisks, chunk, size,
2248                                                          dev, freesize);
2249                 }
2250                 close(cfd);
2251         } else /* device may belong to a different container */
2252                 return 0;
2253
2254         return 1;
2255 }
2256
2257 int validate_geometry_ddf_container(struct supertype *st,
2258                                     int level, int layout, int raiddisks,
2259                                     int chunk, unsigned long long size,
2260                                     char *dev, unsigned long long *freesize)
2261 {
2262         int fd;
2263         unsigned long long ldsize;
2264
2265         if (level != LEVEL_CONTAINER)
2266                 return 0;
2267         if (!dev)
2268                 return 1;
2269
2270         fd = open(dev, O_RDONLY|O_EXCL, 0);
2271         if (fd < 0) {
2272                 fprintf(stderr, Name ": Cannot open %s: %s\n",
2273                         dev, strerror(errno));
2274                 return 0;
2275         }
2276         if (!get_dev_size(fd, dev, &ldsize)) {
2277                 close(fd);
2278                 return 0;
2279         }
2280         close(fd);
2281
2282         *freesize = avail_size_ddf(st, ldsize >> 9);
2283
2284         return 1;
2285 }
2286
2287 int validate_geometry_ddf_bvd(struct supertype *st,
2288                               int level, int layout, int raiddisks,
2289                               int chunk, unsigned long long size,
2290                               char *dev, unsigned long long *freesize)
2291 {
2292         struct stat stb;
2293         struct ddf_super *ddf = st->sb;
2294         struct dl *dl;
2295         unsigned long long pos = 0;
2296         unsigned long long maxsize;
2297         struct extent *e;
2298         int i;
2299         /* ddf/bvd supports lots of things, but not containers */
2300         if (level == LEVEL_CONTAINER)
2301                 return 0;
2302         /* We must have the container info already read in. */
2303         if (!ddf)
2304                 return 0;
2305
2306         if (!dev) {
2307                 /* General test:  make sure there is space for
2308                  * 'raiddisks' device extents of size 'size'.
2309                  */
2310                 unsigned long long minsize = size;
2311                 int dcnt = 0;
2312                 if (minsize == 0)
2313                         minsize = 8;
2314                 for (dl = ddf->dlist; dl ; dl = dl->next)
2315                 {
2316                         int found = 0;
2317                         pos = 0;
2318
2319                         i = 0;
2320                         e = get_extents(ddf, dl);
2321                         if (!e) continue;
2322                         do {
2323                                 unsigned long long esize;
2324                                 esize = e[i].start - pos;
2325                                 if (esize >= minsize)
2326                                         found = 1;
2327                                 pos = e[i].start + e[i].size;
2328                                 i++;
2329                         } while (e[i-1].size);
2330                         if (found)
2331                                 dcnt++;
2332                         free(e);
2333                 }
2334                 if (dcnt < raiddisks) {
2335                         fprintf(stderr, Name ": Not enough devices with space "
2336                                 "for this array (%d < %d)\n",
2337                                 dcnt, raiddisks);
2338                         return 0;
2339                 }
2340                 return 1;
2341         }
2342         /* This device must be a member of the set */
2343         if (stat(dev, &stb) < 0)
2344                 return 0;
2345         if ((S_IFMT & stb.st_mode) != S_IFBLK)
2346                 return 0;
2347         for (dl = ddf->dlist ; dl ; dl = dl->next) {
2348                 if (dl->major == major(stb.st_rdev) &&
2349                     dl->minor == minor(stb.st_rdev))
2350                         break;
2351         }
2352         if (!dl) {
2353                 fprintf(stderr, Name ": %s is not in the same DDF set\n",
2354                         dev);
2355                 return 0;
2356         }
2357         e = get_extents(ddf, dl);
2358         maxsize = 0;
2359         i = 0;
2360         if (e) do {
2361                 unsigned long long esize;
2362                 esize = e[i].start - pos;
2363                 if (esize >= maxsize)
2364                         maxsize = esize;
2365                 pos = e[i].start + e[i].size;
2366                 i++;
2367         } while (e[i-1].size);
2368         *freesize = maxsize;
2369         // FIXME here I am
2370
2371         return 1;
2372 }
2373
2374 int validate_geometry_ddf_svd(struct supertype *st,
2375                               int level, int layout, int raiddisks,
2376                               int chunk, unsigned long long size,
2377                               char *dev, unsigned long long *freesize)
2378 {
2379         /* dd/svd only supports striped, mirrored, concat, spanned... */
2380         if (level != LEVEL_LINEAR &&
2381             level != 0 &&
2382             level != 1)
2383                 return 0;
2384         return 1;
2385 }
2386
2387 static int load_super_ddf_all(struct supertype *st, int fd,
2388                               void **sbp, char *devname, int keep_fd)
2389 {
2390         struct mdinfo *sra;
2391         struct ddf_super *super;
2392         struct mdinfo *sd, *best = NULL;
2393         int bestseq = 0;
2394         int seq;
2395         char nm[20];
2396         int dfd;
2397
2398         sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2399         if (!sra)
2400                 return 1;
2401         if (sra->array.major_version != -1 ||
2402             sra->array.minor_version != -2 ||
2403             strcmp(sra->text_version, "ddf") != 0)
2404                 return 1;
2405
2406         super = malloc(sizeof(*super));
2407         if (!super)
2408                 return 1;
2409         memset(super, 0, sizeof(*super));
2410
2411         /* first, try each device, and choose the best ddf */
2412         for (sd = sra->devs ; sd ; sd = sd->next) {
2413                 int rv;
2414                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2415                 dfd = dev_open(nm, O_RDONLY);
2416                 if (dfd < 0)
2417                         return 2;
2418                 rv = load_ddf_headers(dfd, super, NULL);
2419                 close(dfd);
2420                 if (rv == 0) {
2421                         seq = __be32_to_cpu(super->active->seq);
2422                         if (super->active->openflag)
2423                                 seq--;
2424                         if (!best || seq > bestseq) {
2425                                 bestseq = seq;
2426                                 best = sd;
2427                         }
2428                 }
2429         }
2430         if (!best)
2431                 return 1;
2432         /* OK, load this ddf */
2433         sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2434         dfd = dev_open(nm, O_RDONLY);
2435         if (dfd < 0)
2436                 return 1;
2437         load_ddf_headers(dfd, super, NULL);
2438         load_ddf_global(dfd, super, NULL);
2439         close(dfd);
2440         /* Now we need the device-local bits */
2441         for (sd = sra->devs ; sd ; sd = sd->next) {
2442                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2443                 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2444                 if (dfd < 0)
2445                         return 2;
2446                 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2447                 if (!keep_fd) close(dfd);
2448         }
2449         if (st->subarray[0]) {
2450                 struct vcl *v;
2451
2452                 for (v = super->conflist; v; v = v->next)
2453                         if (v->vcnum == atoi(st->subarray))
2454                                 super->newconf = v;
2455                 if (!super->newconf)
2456                         return 1;
2457         }
2458         *sbp = super;
2459         if (st->ss == NULL) {
2460                 st->ss = &super_ddf_container;
2461                 st->minor_version = 0;
2462                 st->max_devs = 512;
2463                 st->container_dev = fd2devnum(fd);
2464         }
2465         return 0;
2466 }
2467 #endif
2468
2469 static struct mdinfo *container_content_ddf(struct supertype *st)
2470 {
2471         /* Given a container loaded by load_super_ddf_all,
2472          * extract information about all the arrays into
2473          * an mdinfo tree.
2474          *
2475          * For each vcl in conflist: create an mdinfo, fill it in,
2476          *  then look for matching devices (phys_refnum) in dlist
2477          *  and create appropriate device mdinfo.
2478          */
2479         struct ddf_super *ddf = st->sb;
2480         struct mdinfo *rest = NULL;
2481         struct vcl *vc;
2482
2483         for (vc = ddf->conflist ; vc ; vc=vc->next)
2484         {
2485                 int i;
2486                 struct mdinfo *this;
2487                 this = malloc(sizeof(*this));
2488                 memset(this, 0, sizeof(*this));
2489                 this->next = rest;
2490                 rest = this;
2491
2492                 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2493                 this->array.raid_disks =
2494                         __be16_to_cpu(vc->conf.prim_elmnt_count);
2495                 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2496                                                    this->array.raid_disks);
2497                 this->array.md_minor      = -1;
2498                 this->array.ctime         = DECADE +
2499                         __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2500                 this->array.utime         = DECADE +
2501                         __be32_to_cpu(vc->conf.timestamp);
2502                 this->array.chunk_size    = 512 << vc->conf.chunk_shift;
2503
2504                 i = vc->vcnum;
2505                 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2506                     (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2507                     DDF_init_full) {
2508                         this->array.state = 0;
2509                         this->resync_start = 0;
2510                 } else {
2511                         this->array.state = 1;
2512                         this->resync_start = ~0ULL;
2513                 }
2514                 memcpy(this->name, ddf->virt->entries[i].name, 32);
2515                 this->name[33]=0;
2516
2517                 memset(this->uuid, 0, sizeof(this->uuid));
2518                 this->component_size = __be64_to_cpu(vc->conf.blocks);
2519                 this->array.size = this->component_size / 2;
2520                 this->container_member = i;
2521
2522                 sprintf(this->text_version, "/%s/%d",
2523                         devnum2devname(st->container_dev),
2524                         this->container_member);
2525
2526                 for (i=0 ; i < ddf->mppe ; i++) {
2527                         struct mdinfo *dev;
2528                         struct dl *d;
2529
2530                         if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2531                                 continue;
2532
2533                         this->array.working_disks++;
2534
2535                         for (d = ddf->dlist; d ; d=d->next)
2536                                 if (d->disk.refnum == vc->conf.phys_refnum[i])
2537                                         break;
2538                         if (d == NULL)
2539                                 break;
2540
2541                         dev = malloc(sizeof(*dev));
2542                         memset(dev, 0, sizeof(*dev));
2543                         dev->next = this->devs;
2544                         this->devs = dev;
2545
2546                         dev->disk.number = __be32_to_cpu(d->disk.refnum);
2547                         dev->disk.major = d->major;
2548                         dev->disk.minor = d->minor;
2549                         dev->disk.raid_disk = i;
2550                         dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2551
2552                         dev->events = __le32_to_cpu(ddf->primary.seq);
2553                         dev->data_offset = vc->lba_offset[i];
2554                         dev->component_size = __be64_to_cpu(vc->conf.blocks);
2555                         if (d->devname)
2556                                 strcpy(dev->name, d->devname);
2557                 }
2558         }
2559         return rest;
2560 }
2561
2562 static int init_zero_ddf(struct supertype *st,
2563                          mdu_array_info_t *info,
2564                          unsigned long long size, char *name,
2565                          char *homehost, int *uuid)
2566 {
2567         st->sb = NULL;
2568         return 0;
2569 }
2570
2571 static int store_zero_ddf(struct supertype *st, int fd)
2572 {
2573         unsigned long long dsize;
2574         char buf[512];
2575         memset(buf, 0, 512);
2576
2577         if (!get_dev_size(fd, NULL, &dsize))
2578                 return 1;
2579
2580         lseek64(fd, dsize-512, 0);
2581         write(fd, buf, 512);
2582         return 0;
2583 }
2584
2585 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2586 {
2587         /*
2588          * return:
2589          *  0 same, or first was empty, and second was copied
2590          *  1 second had wrong number
2591          *  2 wrong uuid
2592          *  3 wrong other info
2593          */
2594         struct ddf_super *first = st->sb;
2595         struct ddf_super *second = tst->sb;
2596
2597         if (!first) {
2598                 st->sb = tst->sb;
2599                 tst->sb = NULL;
2600                 return 0;
2601         }
2602
2603         if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2604                 return 2;
2605
2606         /* FIXME should I look at anything else? */
2607         return 0;
2608 }
2609
2610 /*
2611  * A new array 'a' has been started which claims to be instance 'inst'
2612  * within container 'c'.
2613  * We need to confirm that the array matches the metadata in 'c' so
2614  * that we don't corrupt any metadata.
2615  */
2616 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2617 {
2618         fprintf(stderr, "ddf: open_new %s\n", inst);
2619         a->info.container_member = atoi(inst);
2620         return 0;
2621 }
2622
2623 /*
2624  * The array 'a' is to be marked clean in the metadata.
2625  * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2626  * clean up to the point (in sectors).  If that cannot be recorded in the
2627  * metadata, then leave it as dirty.
2628  *
2629  * For DDF, we need to clear the DDF_state_inconsistent bit in the
2630  * !global! virtual_disk.virtual_entry structure.
2631  */
2632 static void ddf_set_array_state(struct active_array *a, int consistent)
2633 {
2634         struct ddf_super *ddf = a->container->sb;
2635         int inst = a->info.container_member;
2636         if (consistent)
2637                 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2638         else
2639                 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2640         ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2641         if (a->resync_start == ~0ULL)
2642                 ddf->virt->entries[inst].init_state |= DDF_init_full;
2643         else if (a->resync_start == 0)
2644                 ddf->virt->entries[inst].init_state |= DDF_init_not;
2645         else
2646                 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2647
2648         printf("ddf mark %s %llu\n", consistent?"clean":"dirty",
2649                a->resync_start);
2650 }
2651
2652 /*
2653  * The state of each disk is stored in the global phys_disk structure
2654  * in phys_disk.entries[n].state.
2655  * This makes various combinations awkward.
2656  * - When a device fails in any array, it must be failed in all arrays
2657  *   that include a part of this device.
2658  * - When a component is rebuilding, we cannot include it officially in the
2659  *   array unless this is the only array that uses the device.
2660  *
2661  * So: when transitioning:
2662  *   Online -> failed,  just set failed flag.  monitor will propagate
2663  *   spare -> online,   the device might need to be added to the array.
2664  *   spare -> failed,   just set failed.  Don't worry if in array or not.
2665  */
2666 static void ddf_set_disk(struct active_array *a, int n, int state)
2667 {
2668         struct ddf_super *ddf = a->container->sb;
2669         int inst = a->info.container_member;
2670         struct vd_config *vc = find_vdcr(ddf, inst);
2671         int pd = find_phys(ddf, vc->phys_refnum[n]);
2672         int i, st, working;
2673
2674         if (vc == NULL) {
2675                 fprintf(stderr, "ddf: cannot find instance %d!!\n", inst);
2676                 return;
2677         }
2678         if (pd < 0) {
2679                 /* disk doesn't currently exist. If it is now in_sync,
2680                  * insert it. */
2681                 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2682                         /* Find dev 'n' in a->info->devs, determine the
2683                          * ddf refnum, and set vc->phys_refnum and update
2684                          * phys->entries[]
2685                          */
2686                         /* FIXME */
2687                 }
2688         } else {
2689                 if (state & DS_FAULTY)
2690                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Failed);
2691                 if (state & DS_INSYNC) {
2692                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Online);
2693                         ddf->phys->entries[pd].state  &= __cpu_to_be16(~DDF_Rebuilding);
2694                 }
2695         }
2696
2697         fprintf(stderr, "ddf: set_disk %d to %x\n", n, state);
2698
2699         /* Now we need to check the state of the array and update
2700          * virtual_disk.entries[n].state.
2701          * It needs to be one of "optimal", "degraded", "failed".
2702          * I don't understand 'deleted' or 'missing'.
2703          */
2704         working = 0;
2705         for (i=0; i < a->info.array.raid_disks; i++) {
2706                 pd = find_phys(ddf, vc->phys_refnum[i]);
2707                 if (pd < 0)
2708                         continue;
2709                 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2710                 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2711                     == DDF_Online)
2712                         working++;
2713         }
2714         state = DDF_state_degraded;
2715         if (working == a->info.array.raid_disks)
2716                 state = DDF_state_optimal;
2717         else switch(vc->prl) {
2718         case DDF_RAID0:
2719         case DDF_CONCAT:
2720         case DDF_JBOD:
2721                 state = DDF_state_failed;
2722                 break;
2723         case DDF_RAID1:
2724                 if (working == 0)
2725                         state = DDF_state_failed;
2726                 break;
2727         case DDF_RAID4:
2728         case DDF_RAID5:
2729                 if (working < a->info.array.raid_disks-1)
2730                         state = DDF_state_failed;
2731                 break;
2732         case DDF_RAID6:
2733                 if (working < a->info.array.raid_disks-2)
2734                         state = DDF_state_failed;
2735                 else if (working == a->info.array.raid_disks-1)
2736                         state = DDF_state_part_optimal;
2737                 break;
2738         }
2739
2740         ddf->virt->entries[inst].state =
2741                 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2742                 | state;
2743
2744 }
2745
2746 static void ddf_sync_metadata(struct supertype *st)
2747 {
2748
2749         /*
2750          * Write all data to all devices.
2751          * Later, we might be able to track whether only local changes
2752          * have been made, or whether any global data has been changed,
2753          * but ddf is sufficiently weird that it probably always
2754          * changes global data ....
2755          */
2756         __write_init_super_ddf(st, 0);
2757         fprintf(stderr, "ddf: sync_metadata\n");
2758 }
2759
2760 static void ddf_process_update(struct supertype *st,
2761                                struct metadata_update *update)
2762 {
2763         /* Apply this update to the metadata.
2764          * The first 4 bytes are a DDF_*_MAGIC which guides
2765          * our actions.
2766          * Possible update are:
2767          *  DDF_PHYS_RECORDS_MAGIC
2768          *    Add a new physical device.  Changes to this record
2769          *    only happen implicitly.
2770          *    used_pdes is the device number.
2771          *  DDF_VIRT_RECORDS_MAGIC
2772          *    Add a new VD.  Possibly also change the 'access' bits.
2773          *    populated_vdes is the entry number.
2774          *  DDF_VD_CONF_MAGIC
2775          *    New or updated VD.  the VIRT_RECORD must already
2776          *    exist.  For an update, phys_refnum and lba_offset
2777          *    (at least) are updated, and the VD_CONF must
2778          *    be written to precisely those devices listed with
2779          *    a phys_refnum.
2780          *  DDF_SPARE_ASSIGN_MAGIC
2781          *    replacement Spare Assignment Record... but for which device?
2782          *
2783          * So, e.g.:
2784          *  - to create a new array, we send a VIRT_RECORD and
2785          *    a VD_CONF.  Then assemble and start the array.
2786          *  - to activate a spare we send a VD_CONF to add the phys_refnum
2787          *    and offset.  This will also mark the spare as active with
2788          *    a spare-assignment record.
2789          */
2790         struct ddf_super *ddf = st->sb;
2791         __u32 *magic = (__u32*)update->buf;
2792         struct phys_disk *pd;
2793         struct virtual_disk *vd;
2794         struct vd_config *vc;
2795         struct vcl *vcl;
2796         struct dl *dl;
2797         int mppe;
2798         int ent;
2799
2800         printf("Process update %x\n", *magic);
2801
2802         switch (*magic) {
2803         case DDF_PHYS_RECORDS_MAGIC:
2804
2805                 if (update->len != (sizeof(struct phys_disk) +
2806                                     sizeof(struct phys_disk_entry)))
2807                         return;
2808                 pd = (struct phys_disk*)update->buf;
2809
2810                 ent = __be16_to_cpu(pd->used_pdes);
2811                 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2812                         return;
2813                 if (!all_ff(ddf->phys->entries[ent].guid))
2814                         return;
2815                 ddf->phys->entries[ent] = pd->entries[0];
2816                 ddf->phys->used_pdes = __cpu_to_be16(1 +
2817                                            __be16_to_cpu(ddf->phys->used_pdes));
2818                 break;
2819
2820         case DDF_VIRT_RECORDS_MAGIC:
2821
2822                 if (update->len != (sizeof(struct virtual_disk) +
2823                                     sizeof(struct virtual_entry)))
2824                         return;
2825                 vd = (struct virtual_disk*)update->buf;
2826
2827                 ent = __be16_to_cpu(vd->populated_vdes);
2828                 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2829                         return;
2830                 if (!all_ff(ddf->virt->entries[ent].guid))
2831                         return;
2832                 ddf->virt->entries[ent] = vd->entries[0];
2833                 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2834                               __be16_to_cpu(ddf->virt->populated_vdes));
2835                 break;
2836
2837         case DDF_VD_CONF_MAGIC:
2838                 printf("len %d %d\n", update->len, ddf->conf_rec_len);
2839
2840                 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2841                 if (update->len != ddf->conf_rec_len)
2842                         return;
2843                 vc = (struct vd_config*)update->buf;
2844                 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2845                         if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2846                                 break;
2847                 printf("vcl = %p\n", vcl);
2848                 if (vcl) {
2849                         /* An update, just copy the phys_refnum and lba_offset
2850                          * fields
2851                          */
2852                         memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2853                                mppe * (sizeof(__u32) + sizeof(__u64)));
2854                 } else {
2855                         /* A new VD_CONF */
2856                         vcl = update->space;
2857                         update->space = NULL;
2858                         vcl->next = ddf->conflist;
2859                         vcl->conf = *vc;
2860                         vcl->lba_offset = (__u64*)
2861                                 &vcl->conf.phys_refnum[mppe];
2862                         ddf->conflist = vcl;
2863                 }
2864                 /* Now make sure vlist is correct for each dl. */
2865                 for (dl = ddf->dlist; dl; dl = dl->next) {
2866                         int dn;
2867                         int vn = 0;
2868                         for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2869                                 for (dn=0; dn < ddf->mppe ; dn++)
2870                                         if (vcl->conf.phys_refnum[dn] ==
2871                                             dl->disk.refnum) {
2872                                                 printf("dev %d has %p at %d\n",
2873                                                        dl->pdnum, vcl, vn);
2874                                                 dl->vlist[vn++] = vcl;
2875                                                 break;
2876                                         }
2877                         while (vn < ddf->max_part)
2878                                 dl->vlist[vn++] = NULL;
2879                         if (dl->vlist[0]) {
2880                                 ddf->phys->entries[dl->pdnum].type &=
2881                                         ~__cpu_to_be16(DDF_Global_Spare);
2882                                 ddf->phys->entries[dl->pdnum].type |=
2883                                         __cpu_to_be16(DDF_Active_in_VD);
2884                         }
2885                         if (dl->spare) {
2886                                 ddf->phys->entries[dl->pdnum].type &=
2887                                         ~__cpu_to_be16(DDF_Global_Spare);
2888                                 ddf->phys->entries[dl->pdnum].type |=
2889                                         __cpu_to_be16(DDF_Spare);
2890                         }
2891                         if (!dl->vlist[0] && !dl->spare) {
2892                                 ddf->phys->entries[dl->pdnum].type |=
2893                                         __cpu_to_be16(DDF_Global_Spare);
2894                                 ddf->phys->entries[dl->pdnum].type &=
2895                                         ~__cpu_to_be16(DDF_Spare |
2896                                                        DDF_Active_in_VD);
2897                         }
2898                 }
2899                 break;
2900         case DDF_SPARE_ASSIGN_MAGIC:
2901         default: break;
2902         }
2903 }
2904
2905 /*
2906  * Check if the array 'a' is degraded but not failed.
2907  * If it is, find as many spares as are available and needed and
2908  * arrange for their inclusion.
2909  * We only choose devices which are not already in the array,
2910  * and prefer those with a spare-assignment to this array.
2911  * otherwise we choose global spares - assuming always that
2912  * there is enough room.
2913  * For each spare that we assign, we return an 'mdinfo' which
2914  * describes the position for the device in the array.
2915  * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
2916  * the new phys_refnum and lba_offset values.
2917  *
2918  * Only worry about BVDs at the moment.
2919  */
2920 static struct mdinfo *ddf_activate_spare(struct active_array *a,
2921                                          struct metadata_update **updates)
2922 {
2923         int working = 0;
2924         struct mdinfo *d;
2925         struct ddf_super *ddf = a->container->sb;
2926         int global_ok = 0;
2927         struct mdinfo *rv = NULL;
2928         struct mdinfo *di;
2929         struct metadata_update *mu;
2930         struct dl *dl;
2931         int i;
2932         struct vd_config *vc;
2933         __u64 *lba;
2934
2935         for (d = a->info.devs ; d ; d = d->next) {
2936                 if ((d->curr_state & DS_FAULTY) &&
2937                         d->state_fd >= 0)
2938                         /* wait for Removal to happen */
2939                         return NULL;
2940                 if (d->state_fd >= 0)
2941                         working ++;
2942         }
2943
2944         printf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
2945                a->info.array.level);
2946         if (working == a->info.array.raid_disks)
2947                 return NULL; /* array not degraded */
2948         switch (a->info.array.level) {
2949         case 1:
2950                 if (working == 0)
2951                         return NULL; /* failed */
2952                 break;
2953         case 4:
2954         case 5:
2955                 if (working < a->info.array.raid_disks - 1)
2956                         return NULL; /* failed */
2957                 break;
2958         case 6:
2959                 if (working < a->info.array.raid_disks - 2)
2960                         return NULL; /* failed */
2961                 break;
2962         default: /* concat or stripe */
2963                 return NULL; /* failed */
2964         }
2965
2966         /* For each slot, if it is not working, find a spare */
2967         dl = ddf->dlist;
2968         for (i = 0; i < a->info.array.raid_disks; i++) {
2969                 for (d = a->info.devs ; d ; d = d->next)
2970                         if (d->disk.raid_disk == i)
2971                                 break;
2972                 printf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2973                 if (d && (d->state_fd >= 0))
2974                         continue;
2975
2976                 /* OK, this device needs recovery.  Find a spare */
2977         again:
2978                 for ( ; dl ; dl = dl->next) {
2979                         unsigned long long esize;
2980                         unsigned long long pos;
2981                         struct mdinfo *d2;
2982                         int is_global = 0;
2983                         int is_dedicated = 0;
2984                         struct extent *ex;
2985                         int j;
2986                         /* If in this array, skip */
2987                         for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2988                                 if (d2->disk.major == dl->major &&
2989                                     d2->disk.minor == dl->minor) {
2990                                         printf("%x:%x already in array\n", dl->major, dl->minor);
2991                                         break;
2992                                 }
2993                         if (d2)
2994                                 continue;
2995                         if (ddf->phys->entries[dl->pdnum].type &
2996                             __cpu_to_be16(DDF_Spare)) {
2997                                 /* Check spare assign record */
2998                                 if (dl->spare) {
2999                                         if (dl->spare->type & DDF_spare_dedicated) {
3000                                                 /* check spare_ents for guid */
3001                                                 for (j = 0 ;
3002                                                      j < __be16_to_cpu(dl->spare->populated);
3003                                                      j++) {
3004                                                         if (memcmp(dl->spare->spare_ents[j].guid,
3005                                                                    ddf->virt->entries[a->info.container_member].guid,
3006                                                                    DDF_GUID_LEN) == 0)
3007                                                                 is_dedicated = 1;
3008                                                 }
3009                                         } else
3010                                                 is_global = 1;
3011                                 }
3012                         } else if (ddf->phys->entries[dl->pdnum].type &
3013                                    __cpu_to_be16(DDF_Global_Spare)) {
3014                                 is_global = 1;
3015                         }
3016                         if ( ! (is_dedicated ||
3017                                 (is_global && global_ok))) {
3018                                 printf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3019                                        is_dedicated, is_global);
3020                                 continue;
3021                         }
3022
3023                         /* We are allowed to use this device - is there space?
3024                          * We need a->info.component_size sectors */
3025                         ex = get_extents(ddf, dl);
3026                         if (!ex) {
3027                                 printf("cannot get extents\n");
3028                                 continue;
3029                         }
3030                         j = 0; pos = 0;
3031                         esize = 0;
3032
3033                         do {
3034                                 esize = ex[j].start - pos;
3035                                 if (esize >= a->info.component_size)
3036                                         break;
3037                                 pos = ex[i].start + ex[i].size;
3038                                 i++;
3039                         } while (ex[i-1].size);
3040
3041                         free(ex);
3042                         if (esize < a->info.component_size) {
3043                                 printf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3044                                        esize, a->info.component_size);
3045                                 /* No room */
3046                                 continue;
3047                         }
3048
3049                         /* Cool, we have a device with some space at pos */
3050                         di = malloc(sizeof(*di));
3051                         memset(di, 0, sizeof(*di));
3052                         di->disk.number = i;
3053                         di->disk.raid_disk = i;
3054                         di->disk.major = dl->major;
3055                         di->disk.minor = dl->minor;
3056                         di->disk.state = 0;
3057                         di->data_offset = pos;
3058                         di->component_size = a->info.component_size;
3059                         di->container_member = dl->pdnum;
3060                         di->next = rv;
3061                         rv = di;
3062                         printf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3063                                i, pos);
3064
3065                         break;
3066                 }
3067                 if (!dl && ! global_ok) {
3068                         /* not enough dedicated spares, try global */
3069                         global_ok = 1;
3070                         dl = ddf->dlist;
3071                         goto again;
3072                 }
3073         }
3074
3075         if (!rv)
3076                 /* No spares found */
3077                 return rv;
3078         /* Now 'rv' has a list of devices to return.
3079          * Create a metadata_update record to update the
3080          * phys_refnum and lba_offset values
3081          */
3082         mu = malloc(sizeof(*mu));
3083         mu->buf = malloc(ddf->conf_rec_len * 512);
3084         mu->space = malloc(sizeof(struct vcl));
3085         mu->len = ddf->conf_rec_len;
3086         mu->next = *updates;
3087         vc = find_vdcr(ddf, a->info.container_member);
3088         memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3089
3090         vc = (struct vd_config*)mu->buf;
3091         lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3092         for (di = rv ; di ; di = di->next) {
3093                 vc->phys_refnum[di->disk.raid_disk] =
3094                         ddf->phys->entries[dl->pdnum].refnum;
3095                 lba[di->disk.raid_disk] = di->data_offset;
3096         }
3097         *updates = mu;
3098         return rv;
3099 }
3100
3101 struct superswitch super_ddf = {
3102 #ifndef MDASSEMBLE
3103         .examine_super  = examine_super_ddf,
3104         .brief_examine_super = brief_examine_super_ddf,
3105         .detail_super   = detail_super_ddf,
3106         .brief_detail_super = brief_detail_super_ddf,
3107         .validate_geometry = validate_geometry_ddf,
3108 #endif
3109         .match_home     = match_home_ddf,
3110         .uuid_from_super= uuid_from_super_ddf,
3111         .getinfo_super  = getinfo_super_ddf,
3112         .update_super   = update_super_ddf,
3113
3114         .avail_size     = avail_size_ddf,
3115
3116         .compare_super  = compare_super_ddf,
3117
3118         .load_super     = load_super_ddf,
3119         .init_super     = init_zero_ddf,
3120         .store_super    = store_zero_ddf,
3121         .free_super     = free_super_ddf,
3122         .match_metadata_desc = match_metadata_desc_ddf,
3123         .getinfo_super_n  = getinfo_super_n_container,
3124
3125         .swapuuid       = 0,
3126         .external       = 1,
3127
3128 /* for mdmon */
3129         .open_new       = ddf_open_new,
3130         .set_array_state= ddf_set_array_state,
3131         .set_disk       = ddf_set_disk,
3132         .sync_metadata  = ddf_sync_metadata,
3133         .process_update = ddf_process_update,
3134         .activate_spare = ddf_activate_spare,
3135
3136 };
3137
3138 /* Super_ddf_container is set by validate_geometry_ddf when given a
3139  * device that is not part of any array
3140  */
3141 static struct superswitch super_ddf_container = {
3142 #ifndef MDASSEMBLE
3143         .validate_geometry = validate_geometry_ddf_container,
3144         .write_init_super = write_init_super_ddf,
3145 #endif
3146
3147         .load_super     = load_super_ddf,
3148         .init_super     = init_super_ddf,
3149         .add_to_super   = add_to_super_ddf,
3150         .getinfo_super  = getinfo_super_ddf,
3151
3152         .free_super     = free_super_ddf,
3153
3154         .container_content = container_content_ddf,
3155         .getinfo_super_n  = getinfo_super_n_container,
3156
3157         .swapuuid       = 0,
3158         .external       = 1,
3159 };
3160
3161 static struct superswitch super_ddf_bvd = {
3162 #ifndef MDASSEMBLE
3163 //      .detail_super   = detail_super_ddf_bvd,
3164 //      .brief_detail_super = brief_detail_super_ddf_bvd,
3165         .validate_geometry = validate_geometry_ddf_bvd,
3166         .write_init_super = write_init_super_ddf,
3167 #endif
3168         .update_super   = update_super_ddf,
3169         .init_super     = init_super_ddf_bvd,
3170         .add_to_super   = add_to_super_ddf_bvd,
3171         .getinfo_super  = getinfo_super_ddf_bvd,
3172         .getinfo_super_n  = getinfo_super_n_bvd,
3173
3174         .load_super     = load_super_ddf,
3175         .free_super     = free_super_ddf,
3176         .match_metadata_desc = match_metadata_desc_ddf_bvd,
3177
3178         .swapuuid       = 0,
3179         .external       = 2,
3180 };
3181
3182 static struct superswitch super_ddf_svd = {
3183 #ifndef MDASSEMBLE
3184 //      .detail_super   = detail_super_ddf_svd,
3185 //      .brief_detail_super = brief_detail_super_ddf_svd,
3186         .validate_geometry = validate_geometry_ddf_svd,
3187 #endif
3188         .update_super   = update_super_ddf,
3189         .init_super     = init_super_ddf,
3190
3191         .load_super     = load_super_ddf,
3192         .free_super     = free_super_ddf,
3193         .match_metadata_desc = match_metadata_desc_ddf_svd,
3194
3195         .swapuuid       = 0,
3196         .external       = 2,
3197 };