teach imsm and ddf what st->subarray means at load_super time
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if (read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 fprintf(stderr,
547 Name": Cannot seek to anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (read(fd, &super->anchor, 512) != 512) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Cannot read anchor block on %s: %s\n",
555 devname, strerror(errno));
556 return 1;
557 }
558 if (super->anchor.magic != DDF_HEADER_MAGIC) {
559 if (devname)
560 fprintf(stderr, Name ": no DDF anchor found on %s\n",
561 devname);
562 return 2;
563 }
564 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
565 if (devname)
566 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
567 devname);
568 return 2;
569 }
570 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
571 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
572 if (devname)
573 fprintf(stderr, Name ": can only support super revision"
574 " %.8s and earlier, not %.8s on %s\n",
575 DDF_REVISION_2, super->anchor.revision,devname);
576 return 2;
577 }
578 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
579 dsize >> 9, 1,
580 &super->primary, &super->anchor) == 0) {
581 if (devname)
582 fprintf(stderr,
583 Name ": Failed to load primary DDF header "
584 "on %s\n", devname);
585 return 2;
586 }
587 super->active = &super->primary;
588 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
589 dsize >> 9, 2,
590 &super->secondary, &super->anchor)) {
591 if ((__be32_to_cpu(super->primary.seq)
592 < __be32_to_cpu(super->secondary.seq) &&
593 !super->secondary.openflag)
594 || (__be32_to_cpu(super->primary.seq)
595 == __be32_to_cpu(super->secondary.seq) &&
596 super->primary.openflag && !super->secondary.openflag)
597 )
598 super->active = &super->secondary;
599 }
600 return 0;
601 }
602
603 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
604 {
605 void *ok;
606 ok = load_section(fd, super, &super->controller,
607 super->active->controller_section_offset,
608 super->active->controller_section_length,
609 0);
610 super->phys = load_section(fd, super, NULL,
611 super->active->phys_section_offset,
612 super->active->phys_section_length,
613 1);
614 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
615
616 super->virt = load_section(fd, super, NULL,
617 super->active->virt_section_offset,
618 super->active->virt_section_length,
619 1);
620 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
621 if (!ok ||
622 !super->phys ||
623 !super->virt) {
624 free(super->phys);
625 free(super->virt);
626 super->phys = NULL;
627 super->virt = NULL;
628 return 2;
629 }
630 super->conflist = NULL;
631 super->dlist = NULL;
632
633 super->max_part = __be16_to_cpu(super->active->max_partitions);
634 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
635 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
636 return 0;
637 }
638
639 static int load_ddf_local(int fd, struct ddf_super *super,
640 char *devname, int keep)
641 {
642 struct dl *dl;
643 struct stat stb;
644 char *conf;
645 int i;
646 int confsec;
647 int vnum;
648 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
649 unsigned long long dsize;
650
651 /* First the local disk info */
652 if (posix_memalign((void**)&dl, 512,
653 sizeof(*dl) +
654 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
655 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
656 __func__);
657 return 1;
658 }
659
660 load_section(fd, super, &dl->disk,
661 super->active->data_section_offset,
662 super->active->data_section_length,
663 0);
664 dl->devname = devname ? strdup(devname) : NULL;
665
666 fstat(fd, &stb);
667 dl->major = major(stb.st_rdev);
668 dl->minor = minor(stb.st_rdev);
669 dl->next = super->dlist;
670 dl->fd = keep ? fd : -1;
671
672 dl->size = 0;
673 if (get_dev_size(fd, devname, &dsize))
674 dl->size = dsize >> 9;
675 dl->spare = NULL;
676 for (i=0 ; i < super->max_part ; i++)
677 dl->vlist[i] = NULL;
678 super->dlist = dl;
679 dl->pdnum = -1;
680 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
681 if (memcmp(super->phys->entries[i].guid,
682 dl->disk.guid, DDF_GUID_LEN) == 0)
683 dl->pdnum = i;
684
685 /* Now the config list. */
686 /* 'conf' is an array of config entries, some of which are
687 * probably invalid. Those which are good need to be copied into
688 * the conflist
689 */
690
691 conf = load_section(fd, super, NULL,
692 super->active->config_section_offset,
693 super->active->config_section_length,
694 0);
695
696 vnum = 0;
697 for (confsec = 0;
698 confsec < __be32_to_cpu(super->active->config_section_length);
699 confsec += super->conf_rec_len) {
700 struct vd_config *vd =
701 (struct vd_config *)((char*)conf + confsec*512);
702 struct vcl *vcl;
703
704 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
705 if (dl->spare)
706 continue;
707 if (posix_memalign((void**)&dl->spare, 512,
708 super->conf_rec_len*512) != 0) {
709 fprintf(stderr, Name
710 ": %s could not allocate spare info buf\n",
711 __func__);
712 return 1;
713 }
714
715 memcpy(dl->spare, vd, super->conf_rec_len*512);
716 continue;
717 }
718 if (vd->magic != DDF_VD_CONF_MAGIC)
719 continue;
720 for (vcl = super->conflist; vcl; vcl = vcl->next) {
721 if (memcmp(vcl->conf.guid,
722 vd->guid, DDF_GUID_LEN) == 0)
723 break;
724 }
725
726 if (vcl) {
727 dl->vlist[vnum++] = vcl;
728 if (__be32_to_cpu(vd->seqnum) <=
729 __be32_to_cpu(vcl->conf.seqnum))
730 continue;
731 } else {
732 if (posix_memalign((void**)&vcl, 512,
733 (super->conf_rec_len*512 +
734 offsetof(struct vcl, conf))) != 0) {
735 fprintf(stderr, Name
736 ": %s could not allocate vcl buf\n",
737 __func__);
738 return 1;
739 }
740 vcl->next = super->conflist;
741 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
742 super->conflist = vcl;
743 dl->vlist[vnum++] = vcl;
744 }
745 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
746 vcl->lba_offset = (__u64*)
747 &vcl->conf.phys_refnum[super->mppe];
748
749 for (i=0; i < max_virt_disks ; i++)
750 if (memcmp(super->virt->entries[i].guid,
751 vcl->conf.guid, DDF_GUID_LEN)==0)
752 break;
753 if (i < max_virt_disks)
754 vcl->vcnum = i;
755 }
756 free(conf);
757
758 return 0;
759 }
760
761 #ifndef MDASSEMBLE
762 static int load_super_ddf_all(struct supertype *st, int fd,
763 void **sbp, char *devname, int keep_fd);
764 #endif
765 static int load_super_ddf(struct supertype *st, int fd,
766 char *devname)
767 {
768 unsigned long long dsize;
769 struct ddf_super *super;
770 int rv;
771
772 #ifndef MDASSEMBLE
773 /* if 'fd' is a container, load metadata from all the devices */
774 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
775 return 0;
776 #endif
777 if (st->subarray[0])
778 return 1; /* FIXME Is this correct */
779
780 if (get_dev_size(fd, devname, &dsize) == 0)
781 return 1;
782
783 /* 32M is a lower bound */
784 if (dsize <= 32*1024*1024) {
785 if (devname)
786 fprintf(stderr,
787 Name ": %s is too small for ddf: "
788 "size is %llu sectors.\n",
789 devname, dsize>>9);
790 return 1;
791 }
792 if (dsize & 511) {
793 if (devname)
794 fprintf(stderr,
795 Name ": %s is an odd size for ddf: "
796 "size is %llu bytes.\n",
797 devname, dsize);
798 return 1;
799 }
800
801 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
802 fprintf(stderr, Name ": malloc of %zu failed.\n",
803 sizeof(*super));
804 return 1;
805 }
806 memset(super, 0, sizeof(*super));
807
808 rv = load_ddf_headers(fd, super, devname);
809 if (rv) {
810 free(super);
811 return rv;
812 }
813
814 /* Have valid headers and have chosen the best. Let's read in the rest*/
815
816 rv = load_ddf_global(fd, super, devname);
817
818 if (rv) {
819 if (devname)
820 fprintf(stderr,
821 Name ": Failed to load all information "
822 "sections on %s\n", devname);
823 free(super);
824 return rv;
825 }
826
827 rv = load_ddf_local(fd, super, devname, 0);
828
829 if (rv) {
830 if (devname)
831 fprintf(stderr,
832 Name ": Failed to load all information "
833 "sections on %s\n", devname);
834 free(super);
835 return rv;
836 }
837
838 if (st->subarray[0]) {
839 struct vcl *v;
840
841 for (v = super->conflist; v; v = v->next)
842 if (v->vcnum == atoi(st->subarray))
843 super->currentconf = v;
844 if (!super->currentconf) {
845 free(super);
846 return 1;
847 }
848 }
849
850 /* Should possibly check the sections .... */
851
852 st->sb = super;
853 if (st->ss == NULL) {
854 st->ss = &super_ddf;
855 st->minor_version = 0;
856 st->max_devs = 512;
857 }
858 st->loaded_container = 0;
859 return 0;
860
861 }
862
863 static void free_super_ddf(struct supertype *st)
864 {
865 struct ddf_super *ddf = st->sb;
866 if (ddf == NULL)
867 return;
868 free(ddf->phys);
869 free(ddf->virt);
870 while (ddf->conflist) {
871 struct vcl *v = ddf->conflist;
872 ddf->conflist = v->next;
873 if (v->block_sizes)
874 free(v->block_sizes);
875 free(v);
876 }
877 while (ddf->dlist) {
878 struct dl *d = ddf->dlist;
879 ddf->dlist = d->next;
880 if (d->fd >= 0)
881 close(d->fd);
882 if (d->spare)
883 free(d->spare);
884 free(d);
885 }
886 free(ddf);
887 st->sb = NULL;
888 }
889
890 static struct supertype *match_metadata_desc_ddf(char *arg)
891 {
892 /* 'ddf' only support containers */
893 struct supertype *st;
894 if (strcmp(arg, "ddf") != 0 &&
895 strcmp(arg, "default") != 0
896 )
897 return NULL;
898
899 st = malloc(sizeof(*st));
900 memset(st, 0, sizeof(*st));
901 st->ss = &super_ddf;
902 st->max_devs = 512;
903 st->minor_version = 0;
904 st->sb = NULL;
905 return st;
906 }
907
908
909 #ifndef MDASSEMBLE
910
911 static mapping_t ddf_state[] = {
912 { "Optimal", 0},
913 { "Degraded", 1},
914 { "Deleted", 2},
915 { "Missing", 3},
916 { "Failed", 4},
917 { "Partially Optimal", 5},
918 { "-reserved-", 6},
919 { "-reserved-", 7},
920 { NULL, 0}
921 };
922
923 static mapping_t ddf_init_state[] = {
924 { "Not Initialised", 0},
925 { "QuickInit in Progress", 1},
926 { "Fully Initialised", 2},
927 { "*UNKNOWN*", 3},
928 { NULL, 0}
929 };
930 static mapping_t ddf_access[] = {
931 { "Read/Write", 0},
932 { "Reserved", 1},
933 { "Read Only", 2},
934 { "Blocked (no access)", 3},
935 { NULL ,0}
936 };
937
938 static mapping_t ddf_level[] = {
939 { "RAID0", DDF_RAID0},
940 { "RAID1", DDF_RAID1},
941 { "RAID3", DDF_RAID3},
942 { "RAID4", DDF_RAID4},
943 { "RAID5", DDF_RAID5},
944 { "RAID1E",DDF_RAID1E},
945 { "JBOD", DDF_JBOD},
946 { "CONCAT",DDF_CONCAT},
947 { "RAID5E",DDF_RAID5E},
948 { "RAID5EE",DDF_RAID5EE},
949 { "RAID6", DDF_RAID6},
950 { NULL, 0}
951 };
952 static mapping_t ddf_sec_level[] = {
953 { "Striped", DDF_2STRIPED},
954 { "Mirrored", DDF_2MIRRORED},
955 { "Concat", DDF_2CONCAT},
956 { "Spanned", DDF_2SPANNED},
957 { NULL, 0}
958 };
959 #endif
960
961 struct num_mapping {
962 int num1, num2;
963 };
964 static struct num_mapping ddf_level_num[] = {
965 { DDF_RAID0, 0 },
966 { DDF_RAID1, 1 },
967 { DDF_RAID3, LEVEL_UNSUPPORTED },
968 { DDF_RAID4, 4 },
969 { DDF_RAID5, 5 },
970 { DDF_RAID1E, LEVEL_UNSUPPORTED },
971 { DDF_JBOD, LEVEL_UNSUPPORTED },
972 { DDF_CONCAT, LEVEL_LINEAR },
973 { DDF_RAID5E, LEVEL_UNSUPPORTED },
974 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
975 { DDF_RAID6, 6},
976 { MAXINT, MAXINT }
977 };
978
979 static int map_num1(struct num_mapping *map, int num)
980 {
981 int i;
982 for (i=0 ; map[i].num1 != MAXINT; i++)
983 if (map[i].num1 == num)
984 break;
985 return map[i].num2;
986 }
987
988 static int all_ff(char *guid)
989 {
990 int i;
991 for (i = 0; i < DDF_GUID_LEN; i++)
992 if (guid[i] != (char)0xff)
993 return 0;
994 return 1;
995 }
996
997 #ifndef MDASSEMBLE
998 static void print_guid(char *guid, int tstamp)
999 {
1000 /* A GUIDs are part (or all) ASCII and part binary.
1001 * They tend to be space padded.
1002 * We print the GUID in HEX, then in parentheses add
1003 * any initial ASCII sequence, and a possible
1004 * time stamp from bytes 16-19
1005 */
1006 int l = DDF_GUID_LEN;
1007 int i;
1008
1009 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1010 if ((i&3)==0 && i != 0) printf(":");
1011 printf("%02X", guid[i]&255);
1012 }
1013
1014 printf("\n (");
1015 while (l && guid[l-1] == ' ')
1016 l--;
1017 for (i=0 ; i<l ; i++) {
1018 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1019 fputc(guid[i], stdout);
1020 else
1021 break;
1022 }
1023 if (tstamp) {
1024 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1025 char tbuf[100];
1026 struct tm *tm;
1027 tm = localtime(&then);
1028 strftime(tbuf, 100, " %D %T",tm);
1029 fputs(tbuf, stdout);
1030 }
1031 printf(")");
1032 }
1033
1034 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1035 {
1036 int crl = sb->conf_rec_len;
1037 struct vcl *vcl;
1038
1039 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1040 int i;
1041 struct vd_config *vc = &vcl->conf;
1042
1043 if (calc_crc(vc, crl*512) != vc->crc)
1044 continue;
1045 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1046 continue;
1047
1048 /* Ok, we know about this VD, let's give more details */
1049 printf(" Raid Devices[%d] : %d (", n,
1050 __be16_to_cpu(vc->prim_elmnt_count));
1051 for (i=0; i<__be16_to_cpu(vc->prim_elmnt_count); i++) {
1052 int j;
1053 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1054 for (j=0; j<cnt; j++)
1055 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1056 break;
1057 if (i) printf(" ");
1058 if (j < cnt)
1059 printf("%d", j);
1060 else
1061 printf("--");
1062 }
1063 printf(")\n");
1064 if (vc->chunk_shift != 255)
1065 printf(" Chunk Size[%d] : %d sectors\n", n,
1066 1 << vc->chunk_shift);
1067 printf(" Raid Level[%d] : %s\n", n,
1068 map_num(ddf_level, vc->prl)?:"-unknown-");
1069 if (vc->sec_elmnt_count != 1) {
1070 printf(" Secondary Position[%d] : %d of %d\n", n,
1071 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1072 printf(" Secondary Level[%d] : %s\n", n,
1073 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1074 }
1075 printf(" Device Size[%d] : %llu\n", n,
1076 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1077 printf(" Array Size[%d] : %llu\n", n,
1078 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1079 }
1080 }
1081
1082 static void examine_vds(struct ddf_super *sb)
1083 {
1084 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1085 int i;
1086 printf(" Virtual Disks : %d\n", cnt);
1087
1088 for (i=0; i<cnt; i++) {
1089 struct virtual_entry *ve = &sb->virt->entries[i];
1090 printf("\n");
1091 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1092 printf("\n");
1093 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1094 printf(" state[%d] : %s, %s%s\n", i,
1095 map_num(ddf_state, ve->state & 7),
1096 (ve->state & 8) ? "Morphing, ": "",
1097 (ve->state & 16)? "Not Consistent" : "Consistent");
1098 printf(" init state[%d] : %s\n", i,
1099 map_num(ddf_init_state, ve->init_state&3));
1100 printf(" access[%d] : %s\n", i,
1101 map_num(ddf_access, (ve->init_state>>6) & 3));
1102 printf(" Name[%d] : %.16s\n", i, ve->name);
1103 examine_vd(i, sb, ve->guid);
1104 }
1105 if (cnt) printf("\n");
1106 }
1107
1108 static void examine_pds(struct ddf_super *sb)
1109 {
1110 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1111 int i;
1112 struct dl *dl;
1113 printf(" Physical Disks : %d\n", cnt);
1114 printf(" Number RefNo Size Device Type/State\n");
1115
1116 for (i=0 ; i<cnt ; i++) {
1117 struct phys_disk_entry *pd = &sb->phys->entries[i];
1118 int type = __be16_to_cpu(pd->type);
1119 int state = __be16_to_cpu(pd->state);
1120
1121 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1122 //printf("\n");
1123 printf(" %3d %08x ", i,
1124 __be32_to_cpu(pd->refnum));
1125 printf("%8lluK ",
1126 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1127 for (dl = sb->dlist; dl ; dl = dl->next) {
1128 if (dl->disk.refnum == pd->refnum) {
1129 char *dv = map_dev(dl->major, dl->minor, 0);
1130 if (dv) {
1131 printf("%-15s", dv);
1132 break;
1133 }
1134 }
1135 }
1136 if (!dl)
1137 printf("%15s","");
1138 printf(" %s%s%s%s%s",
1139 (type&2) ? "active":"",
1140 (type&4) ? "Global-Spare":"",
1141 (type&8) ? "spare" : "",
1142 (type&16)? ", foreign" : "",
1143 (type&32)? "pass-through" : "");
1144 printf("/%s%s%s%s%s%s%s",
1145 (state&1)? "Online": "Offline",
1146 (state&2)? ", Failed": "",
1147 (state&4)? ", Rebuilding": "",
1148 (state&8)? ", in-transition": "",
1149 (state&16)? ", SMART-errors": "",
1150 (state&32)? ", Unrecovered-Read-Errors": "",
1151 (state&64)? ", Missing" : "");
1152 printf("\n");
1153 }
1154 }
1155
1156 static void examine_super_ddf(struct supertype *st, char *homehost)
1157 {
1158 struct ddf_super *sb = st->sb;
1159
1160 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1161 printf(" Version : %.8s\n", sb->anchor.revision);
1162 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1163 printf("\n");
1164 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1165 printf("\n");
1166 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1167 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1168 ?"yes" : "no");
1169 examine_vds(sb);
1170 examine_pds(sb);
1171 }
1172
1173 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info);
1174
1175 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1176
1177 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1178 {
1179 /* We just write a generic DDF ARRAY entry
1180 */
1181 struct ddf_super *ddf = st->sb;
1182 struct mdinfo info;
1183 int i;
1184 char nbuf[64];
1185 getinfo_super_ddf(st, &info);
1186 fname_from_uuid(st, &info, nbuf, ':');
1187
1188 for (i=0; i<__be16_to_cpu(ddf->virt->max_vdes); i++) {
1189 struct virtual_entry *ve = &ddf->virt->entries[i];
1190 struct vcl vcl;
1191 char nbuf1[64];
1192 if (all_ff(ve->guid))
1193 continue;
1194 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1195 ddf->currentconf =&vcl;
1196 uuid_from_super_ddf(st, info.uuid);
1197 fname_from_uuid(st, &info, nbuf1, ':');
1198 printf("ARRAY container=%s member=%d UUID=%s\n",
1199 nbuf+5, i, nbuf1+5);
1200 }
1201 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1202 }
1203
1204 static void export_examine_super_ddf(struct supertype *st)
1205 {
1206 struct mdinfo info;
1207 char nbuf[64];
1208 getinfo_super_ddf(st, &info);
1209 fname_from_uuid(st, &info, nbuf, ':');
1210 printf("MD_METADATA=ddf\n");
1211 printf("MD_LEVEL=container\n");
1212 printf("MD_UUID=%s\n", nbuf+5);
1213 }
1214
1215
1216 static void detail_super_ddf(struct supertype *st, char *homehost)
1217 {
1218 /* FIXME later
1219 * Could print DDF GUID
1220 * Need to find which array
1221 * If whole, briefly list all arrays
1222 * If one, give name
1223 */
1224 }
1225
1226 static void brief_detail_super_ddf(struct supertype *st)
1227 {
1228 /* FIXME I really need to know which array we are detailing.
1229 * Can that be stored in ddf_super??
1230 */
1231 // struct ddf_super *ddf = st->sb;
1232 struct mdinfo info;
1233 char nbuf[64];
1234 getinfo_super_ddf(st, &info);
1235 fname_from_uuid(st, &info, nbuf,':');
1236 printf(" UUID=%s", nbuf + 5);
1237 }
1238 #endif
1239
1240 static int match_home_ddf(struct supertype *st, char *homehost)
1241 {
1242 /* It matches 'this' host if the controller is a
1243 * Linux-MD controller with vendor_data matching
1244 * the hostname
1245 */
1246 struct ddf_super *ddf = st->sb;
1247 int len = strlen(homehost);
1248
1249 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1250 len < sizeof(ddf->controller.vendor_data) &&
1251 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1252 ddf->controller.vendor_data[len] == 0);
1253 }
1254
1255 #ifndef MDASSEMBLE
1256 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1257 {
1258 struct vcl *v;
1259
1260 for (v = ddf->conflist; v; v = v->next)
1261 if (inst == v->vcnum)
1262 return &v->conf;
1263 return NULL;
1264 }
1265 #endif
1266
1267 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1268 {
1269 /* Find the entry in phys_disk which has the given refnum
1270 * and return it's index
1271 */
1272 int i;
1273 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1274 if (ddf->phys->entries[i].refnum == phys_refnum)
1275 return i;
1276 return -1;
1277 }
1278
1279 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1280 {
1281 /* The uuid returned here is used for:
1282 * uuid to put into bitmap file (Create, Grow)
1283 * uuid for backup header when saving critical section (Grow)
1284 * comparing uuids when re-adding a device into an array
1285 * In these cases the uuid required is that of the data-array,
1286 * not the device-set.
1287 * uuid to recognise same set when adding a missing device back
1288 * to an array. This is a uuid for the device-set.
1289 *
1290 * For each of these we can make do with a truncated
1291 * or hashed uuid rather than the original, as long as
1292 * everyone agrees.
1293 * In the case of SVD we assume the BVD is of interest,
1294 * though that might be the case if a bitmap were made for
1295 * a mirrored SVD - worry about that later.
1296 * So we need to find the VD configuration record for the
1297 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1298 * The first 16 bytes of the sha1 of these is used.
1299 */
1300 struct ddf_super *ddf = st->sb;
1301 struct vcl *vcl = ddf->currentconf;
1302 char *guid;
1303 char buf[20];
1304 struct sha1_ctx ctx;
1305
1306 if (vcl)
1307 guid = vcl->conf.guid;
1308 else
1309 guid = ddf->anchor.guid;
1310
1311 sha1_init_ctx(&ctx);
1312 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1313 sha1_finish_ctx(&ctx, buf);
1314 memcpy(uuid, buf, 4*4);
1315 }
1316
1317 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1318
1319 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1320 {
1321 struct ddf_super *ddf = st->sb;
1322
1323 if (ddf->currentconf) {
1324 getinfo_super_ddf_bvd(st, info);
1325 return;
1326 }
1327
1328 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1329 info->array.level = LEVEL_CONTAINER;
1330 info->array.layout = 0;
1331 info->array.md_minor = -1;
1332 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1333 (ddf->anchor.guid+16));
1334 info->array.utime = 0;
1335 info->array.chunk_size = 0;
1336
1337
1338 info->disk.major = 0;
1339 info->disk.minor = 0;
1340 if (ddf->dlist) {
1341 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1342 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1343
1344 info->data_offset = __be64_to_cpu(ddf->phys->
1345 entries[info->disk.raid_disk].
1346 config_size);
1347 info->component_size = ddf->dlist->size - info->data_offset;
1348 } else {
1349 info->disk.number = -1;
1350 info->disk.raid_disk = -1;
1351 // info->disk.raid_disk = find refnum in the table and use index;
1352 }
1353 info->disk.state = (1 << MD_DISK_SYNC);
1354
1355
1356 info->reshape_active = 0;
1357 info->name[0] = 0;
1358
1359 info->array.major_version = -1;
1360 info->array.minor_version = -2;
1361 strcpy(info->text_version, "ddf");
1362 info->safe_mode_delay = 0;
1363
1364 uuid_from_super_ddf(st, info->uuid);
1365
1366 }
1367
1368 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1369
1370 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1371 {
1372 struct ddf_super *ddf = st->sb;
1373 struct vcl *vc = ddf->currentconf;
1374 int cd = ddf->currentdev;
1375 int j;
1376 struct dl *dl;
1377
1378 /* FIXME this returns BVD info - what if we want SVD ?? */
1379
1380 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1381 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1382 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1383 info->array.raid_disks);
1384 info->array.md_minor = -1;
1385 info->array.ctime = DECADE +
1386 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1387 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1388 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1389 info->custom_array_size = 0;
1390
1391 if (cd >= 0 && cd < ddf->mppe) {
1392 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1393 if (vc->block_sizes)
1394 info->component_size = vc->block_sizes[cd];
1395 else
1396 info->component_size = __be64_to_cpu(vc->conf.blocks);
1397 }
1398
1399 for (dl = ddf->dlist; dl ; dl = dl->next)
1400 if (dl->raiddisk == info->disk.raid_disk)
1401 break;
1402 info->disk.major = 0;
1403 info->disk.minor = 0;
1404 if (dl) {
1405 info->disk.major = dl->major;
1406 info->disk.minor = dl->minor;
1407 }
1408 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1409 // info->disk.raid_disk = find refnum in the table and use index;
1410 // info->disk.state = ???;
1411
1412 info->container_member = ddf->currentconf->vcnum;
1413
1414 info->resync_start = 0;
1415 if (!(ddf->virt->entries[info->container_member].state
1416 & DDF_state_inconsistent) &&
1417 (ddf->virt->entries[info->container_member].init_state
1418 & DDF_initstate_mask)
1419 == DDF_init_full)
1420 info->resync_start = ~0ULL;
1421
1422 uuid_from_super_ddf(st, info->uuid);
1423
1424 info->container_member = atoi(st->subarray);
1425 info->array.major_version = -1;
1426 info->array.minor_version = -2;
1427 sprintf(info->text_version, "/%s/%s",
1428 devnum2devname(st->container_dev),
1429 st->subarray);
1430 info->safe_mode_delay = 200;
1431
1432 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1433 info->name[16]=0;
1434 for(j=0; j<16; j++)
1435 if (info->name[j] == ' ')
1436 info->name[j] = 0;
1437 }
1438
1439
1440 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1441 char *update,
1442 char *devname, int verbose,
1443 int uuid_set, char *homehost)
1444 {
1445 /* For 'assemble' and 'force' we need to return non-zero if any
1446 * change was made. For others, the return value is ignored.
1447 * Update options are:
1448 * force-one : This device looks a bit old but needs to be included,
1449 * update age info appropriately.
1450 * assemble: clear any 'faulty' flag to allow this device to
1451 * be assembled.
1452 * force-array: Array is degraded but being forced, mark it clean
1453 * if that will be needed to assemble it.
1454 *
1455 * newdev: not used ????
1456 * grow: Array has gained a new device - this is currently for
1457 * linear only
1458 * resync: mark as dirty so a resync will happen.
1459 * uuid: Change the uuid of the array to match what is given
1460 * homehost: update the recorded homehost
1461 * name: update the name - preserving the homehost
1462 * _reshape_progress: record new reshape_progress position.
1463 *
1464 * Following are not relevant for this version:
1465 * sparc2.2 : update from old dodgey metadata
1466 * super-minor: change the preferred_minor number
1467 * summaries: update redundant counters.
1468 */
1469 int rv = 0;
1470 // struct ddf_super *ddf = st->sb;
1471 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1472 // struct virtual_entry *ve = find_ve(ddf);
1473
1474 /* we don't need to handle "force-*" or "assemble" as
1475 * there is no need to 'trick' the kernel. We the metadata is
1476 * first updated to activate the array, all the implied modifications
1477 * will just happen.
1478 */
1479
1480 if (strcmp(update, "grow") == 0) {
1481 /* FIXME */
1482 }
1483 if (strcmp(update, "resync") == 0) {
1484 // info->resync_checkpoint = 0;
1485 }
1486 /* We ignore UUID updates as they make even less sense
1487 * with DDF
1488 */
1489 if (strcmp(update, "homehost") == 0) {
1490 /* homehost is stored in controller->vendor_data,
1491 * or it is when we are the vendor
1492 */
1493 // if (info->vendor_is_local)
1494 // strcpy(ddf->controller.vendor_data, homehost);
1495 }
1496 if (strcmp(update, "name") == 0) {
1497 /* name is stored in virtual_entry->name */
1498 // memset(ve->name, ' ', 16);
1499 // strncpy(ve->name, info->name, 16);
1500 }
1501 if (strcmp(update, "_reshape_progress") == 0) {
1502 /* We don't support reshape yet */
1503 }
1504
1505 // update_all_csum(ddf);
1506
1507 return rv;
1508 }
1509
1510 __u32 random32(void)
1511 {
1512 __u32 rv;
1513 int rfd = open("/dev/urandom", O_RDONLY);
1514 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1515 rv = random();
1516 if (rfd >= 0)
1517 close(rfd);
1518 return rv;
1519 }
1520
1521 static void make_header_guid(char *guid)
1522 {
1523 __u32 stamp;
1524 /* Create a DDF Header of Virtual Disk GUID */
1525
1526 /* 24 bytes of fiction required.
1527 * first 8 are a 'vendor-id' - "Linux-MD"
1528 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1529 * Remaining 8 random number plus timestamp
1530 */
1531 memcpy(guid, T10, sizeof(T10));
1532 stamp = __cpu_to_be32(0xdeadbeef);
1533 memcpy(guid+8, &stamp, 4);
1534 stamp = __cpu_to_be32(0);
1535 memcpy(guid+12, &stamp, 4);
1536 stamp = __cpu_to_be32(time(0) - DECADE);
1537 memcpy(guid+16, &stamp, 4);
1538 stamp = random32();
1539 memcpy(guid+20, &stamp, 4);
1540 }
1541
1542 static int init_super_ddf_bvd(struct supertype *st,
1543 mdu_array_info_t *info,
1544 unsigned long long size,
1545 char *name, char *homehost,
1546 int *uuid);
1547
1548 static int init_super_ddf(struct supertype *st,
1549 mdu_array_info_t *info,
1550 unsigned long long size, char *name, char *homehost,
1551 int *uuid)
1552 {
1553 /* This is primarily called by Create when creating a new array.
1554 * We will then get add_to_super called for each component, and then
1555 * write_init_super called to write it out to each device.
1556 * For DDF, Create can create on fresh devices or on a pre-existing
1557 * array.
1558 * To create on a pre-existing array a different method will be called.
1559 * This one is just for fresh drives.
1560 *
1561 * We need to create the entire 'ddf' structure which includes:
1562 * DDF headers - these are easy.
1563 * Controller data - a Sector describing this controller .. not that
1564 * this is a controller exactly.
1565 * Physical Disk Record - one entry per device, so
1566 * leave plenty of space.
1567 * Virtual Disk Records - again, just leave plenty of space.
1568 * This just lists VDs, doesn't give details
1569 * Config records - describes the VDs that use this disk
1570 * DiskData - describes 'this' device.
1571 * BadBlockManagement - empty
1572 * Diag Space - empty
1573 * Vendor Logs - Could we put bitmaps here?
1574 *
1575 */
1576 struct ddf_super *ddf;
1577 char hostname[17];
1578 int hostlen;
1579 int max_phys_disks, max_virt_disks;
1580 unsigned long long sector;
1581 int clen;
1582 int i;
1583 int pdsize, vdsize;
1584 struct phys_disk *pd;
1585 struct virtual_disk *vd;
1586
1587 if (!info) {
1588 st->sb = NULL;
1589 return 0;
1590 }
1591 if (st->sb)
1592 return init_super_ddf_bvd(st, info, size, name, homehost,
1593 uuid);
1594
1595 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1596 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1597 return 0;
1598 }
1599 memset(ddf, 0, sizeof(*ddf));
1600 ddf->dlist = NULL; /* no physical disks yet */
1601 ddf->conflist = NULL; /* No virtual disks yet */
1602
1603 /* At least 32MB *must* be reserved for the ddf. So let's just
1604 * start 32MB from the end, and put the primary header there.
1605 * Don't do secondary for now.
1606 * We don't know exactly where that will be yet as it could be
1607 * different on each device. To just set up the lengths.
1608 *
1609 */
1610
1611 ddf->anchor.magic = DDF_HEADER_MAGIC;
1612 make_header_guid(ddf->anchor.guid);
1613
1614 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1615 ddf->anchor.seq = __cpu_to_be32(1);
1616 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1617 ddf->anchor.openflag = 0xFF;
1618 ddf->anchor.foreignflag = 0;
1619 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1620 ddf->anchor.pad0 = 0xff;
1621 memset(ddf->anchor.pad1, 0xff, 12);
1622 memset(ddf->anchor.header_ext, 0xff, 32);
1623 ddf->anchor.primary_lba = ~(__u64)0;
1624 ddf->anchor.secondary_lba = ~(__u64)0;
1625 ddf->anchor.type = DDF_HEADER_ANCHOR;
1626 memset(ddf->anchor.pad2, 0xff, 3);
1627 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1628 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1629 of 32M reserved.. */
1630 max_phys_disks = 1023; /* Should be enough */
1631 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1632 max_virt_disks = 255;
1633 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1634 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1635 ddf->max_part = 64;
1636 ddf->mppe = 256;
1637 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1638 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1639 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1640 memset(ddf->anchor.pad3, 0xff, 54);
1641 /* controller sections is one sector long immediately
1642 * after the ddf header */
1643 sector = 1;
1644 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1645 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1646 sector += 1;
1647
1648 /* phys is 8 sectors after that */
1649 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1650 sizeof(struct phys_disk_entry)*max_phys_disks,
1651 512);
1652 switch(pdsize/512) {
1653 case 2: case 8: case 32: case 128: case 512: break;
1654 default: abort();
1655 }
1656 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1657 ddf->anchor.phys_section_length =
1658 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1659 sector += pdsize/512;
1660
1661 /* virt is another 32 sectors */
1662 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1663 sizeof(struct virtual_entry) * max_virt_disks,
1664 512);
1665 switch(vdsize/512) {
1666 case 2: case 8: case 32: case 128: case 512: break;
1667 default: abort();
1668 }
1669 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1670 ddf->anchor.virt_section_length =
1671 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1672 sector += vdsize/512;
1673
1674 clen = ddf->conf_rec_len * (ddf->max_part+1);
1675 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1676 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1677 sector += clen;
1678
1679 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1680 ddf->anchor.data_section_length = __cpu_to_be32(1);
1681 sector += 1;
1682
1683 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1684 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1685 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1686 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1687 ddf->anchor.vendor_length = __cpu_to_be32(0);
1688 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1689
1690 memset(ddf->anchor.pad4, 0xff, 256);
1691
1692 memcpy(&ddf->primary, &ddf->anchor, 512);
1693 memcpy(&ddf->secondary, &ddf->anchor, 512);
1694
1695 ddf->primary.openflag = 1; /* I guess.. */
1696 ddf->primary.type = DDF_HEADER_PRIMARY;
1697
1698 ddf->secondary.openflag = 1; /* I guess.. */
1699 ddf->secondary.type = DDF_HEADER_SECONDARY;
1700
1701 ddf->active = &ddf->primary;
1702
1703 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1704
1705 /* 24 more bytes of fiction required.
1706 * first 8 are a 'vendor-id' - "Linux-MD"
1707 * Remaining 16 are serial number.... maybe a hostname would do?
1708 */
1709 memcpy(ddf->controller.guid, T10, sizeof(T10));
1710 gethostname(hostname, sizeof(hostname));
1711 hostname[sizeof(hostname) - 1] = 0;
1712 hostlen = strlen(hostname);
1713 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1714 for (i = strlen(T10) ; i+hostlen < 24; i++)
1715 ddf->controller.guid[i] = ' ';
1716
1717 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1718 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1719 ddf->controller.type.sub_vendor_id = 0;
1720 ddf->controller.type.sub_device_id = 0;
1721 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1722 memset(ddf->controller.pad, 0xff, 8);
1723 memset(ddf->controller.vendor_data, 0xff, 448);
1724 if (homehost && strlen(homehost) < 440)
1725 strcpy((char*)ddf->controller.vendor_data, homehost);
1726
1727 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1728 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1729 return 0;
1730 }
1731 ddf->phys = pd;
1732 ddf->pdsize = pdsize;
1733
1734 memset(pd, 0xff, pdsize);
1735 memset(pd, 0, sizeof(*pd));
1736 pd->magic = DDF_PHYS_DATA_MAGIC;
1737 pd->used_pdes = __cpu_to_be16(0);
1738 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1739 memset(pd->pad, 0xff, 52);
1740
1741 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1742 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1743 return 0;
1744 }
1745 ddf->virt = vd;
1746 ddf->vdsize = vdsize;
1747 memset(vd, 0, vdsize);
1748 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1749 vd->populated_vdes = __cpu_to_be16(0);
1750 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1751 memset(vd->pad, 0xff, 52);
1752
1753 for (i=0; i<max_virt_disks; i++)
1754 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1755
1756 st->sb = ddf;
1757 ddf->updates_pending = 1;
1758 return 1;
1759 }
1760
1761 static int chunk_to_shift(int chunksize)
1762 {
1763 return ffs(chunksize/512)-1;
1764 }
1765
1766 static int level_to_prl(int level)
1767 {
1768 switch (level) {
1769 case LEVEL_LINEAR: return DDF_CONCAT;
1770 case 0: return DDF_RAID0;
1771 case 1: return DDF_RAID1;
1772 case 4: return DDF_RAID4;
1773 case 5: return DDF_RAID5;
1774 case 6: return DDF_RAID6;
1775 default: return -1;
1776 }
1777 }
1778 static int layout_to_rlq(int level, int layout, int raiddisks)
1779 {
1780 switch(level) {
1781 case 0:
1782 return DDF_RAID0_SIMPLE;
1783 case 1:
1784 switch(raiddisks) {
1785 case 2: return DDF_RAID1_SIMPLE;
1786 case 3: return DDF_RAID1_MULTI;
1787 default: return -1;
1788 }
1789 case 4:
1790 switch(layout) {
1791 case 0: return DDF_RAID4_N;
1792 }
1793 break;
1794 case 5:
1795 switch(layout) {
1796 case ALGORITHM_LEFT_ASYMMETRIC:
1797 return DDF_RAID5_N_RESTART;
1798 case ALGORITHM_RIGHT_ASYMMETRIC:
1799 return DDF_RAID5_0_RESTART;
1800 case ALGORITHM_LEFT_SYMMETRIC:
1801 return DDF_RAID5_N_CONTINUE;
1802 case ALGORITHM_RIGHT_SYMMETRIC:
1803 return -1; /* not mentioned in standard */
1804 }
1805 case 6:
1806 switch(layout) {
1807 case ALGORITHM_ROTATING_N_RESTART:
1808 return DDF_RAID5_N_RESTART;
1809 case ALGORITHM_ROTATING_ZERO_RESTART:
1810 return DDF_RAID6_0_RESTART;
1811 case ALGORITHM_ROTATING_N_CONTINUE:
1812 return DDF_RAID5_N_CONTINUE;
1813 }
1814 }
1815 return -1;
1816 }
1817
1818 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1819 {
1820 switch(prl) {
1821 case DDF_RAID0:
1822 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1823 case DDF_RAID1:
1824 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1825 on raiddisks*/
1826 case DDF_RAID4:
1827 switch(rlq) {
1828 case DDF_RAID4_N:
1829 return 0;
1830 default:
1831 /* not supported */
1832 return -1; /* FIXME this isn't checked */
1833 }
1834 case DDF_RAID5:
1835 switch(rlq) {
1836 case DDF_RAID5_N_RESTART:
1837 return ALGORITHM_LEFT_ASYMMETRIC;
1838 case DDF_RAID5_0_RESTART:
1839 return ALGORITHM_RIGHT_ASYMMETRIC;
1840 case DDF_RAID5_N_CONTINUE:
1841 return ALGORITHM_LEFT_SYMMETRIC;
1842 default:
1843 return -1;
1844 }
1845 case DDF_RAID6:
1846 switch(rlq) {
1847 case DDF_RAID5_N_RESTART:
1848 return ALGORITHM_ROTATING_N_RESTART;
1849 case DDF_RAID6_0_RESTART:
1850 return ALGORITHM_ROTATING_ZERO_RESTART;
1851 case DDF_RAID5_N_CONTINUE:
1852 return ALGORITHM_ROTATING_N_CONTINUE;
1853 default:
1854 return -1;
1855 }
1856 }
1857 return -1;
1858 }
1859
1860 #ifndef MDASSEMBLE
1861 struct extent {
1862 unsigned long long start, size;
1863 };
1864 static int cmp_extent(const void *av, const void *bv)
1865 {
1866 const struct extent *a = av;
1867 const struct extent *b = bv;
1868 if (a->start < b->start)
1869 return -1;
1870 if (a->start > b->start)
1871 return 1;
1872 return 0;
1873 }
1874
1875 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1876 {
1877 /* find a list of used extents on the give physical device
1878 * (dnum) of the given ddf.
1879 * Return a malloced array of 'struct extent'
1880
1881 FIXME ignore DDF_Legacy devices?
1882
1883 */
1884 struct extent *rv;
1885 int n = 0;
1886 int i, j;
1887
1888 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1889 if (!rv)
1890 return NULL;
1891
1892 for (i = 0; i < ddf->max_part; i++) {
1893 struct vcl *v = dl->vlist[i];
1894 if (v == NULL)
1895 continue;
1896 for (j=0; j < v->conf.prim_elmnt_count; j++)
1897 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1898 /* This device plays role 'j' in 'v'. */
1899 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1900 rv[n].size = __be64_to_cpu(v->conf.blocks);
1901 n++;
1902 break;
1903 }
1904 }
1905 qsort(rv, n, sizeof(*rv), cmp_extent);
1906
1907 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1908 rv[n].size = 0;
1909 return rv;
1910 }
1911 #endif
1912
1913 static int init_super_ddf_bvd(struct supertype *st,
1914 mdu_array_info_t *info,
1915 unsigned long long size,
1916 char *name, char *homehost,
1917 int *uuid)
1918 {
1919 /* We are creating a BVD inside a pre-existing container.
1920 * so st->sb is already set.
1921 * We need to create a new vd_config and a new virtual_entry
1922 */
1923 struct ddf_super *ddf = st->sb;
1924 int venum;
1925 struct virtual_entry *ve;
1926 struct vcl *vcl;
1927 struct vd_config *vc;
1928
1929 if (__be16_to_cpu(ddf->virt->populated_vdes)
1930 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1931 fprintf(stderr, Name": This ddf already has the "
1932 "maximum of %d virtual devices\n",
1933 __be16_to_cpu(ddf->virt->max_vdes));
1934 return 0;
1935 }
1936
1937 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1938 if (all_ff(ddf->virt->entries[venum].guid))
1939 break;
1940 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1941 fprintf(stderr, Name ": Cannot find spare slot for "
1942 "virtual disk - DDF is corrupt\n");
1943 return 0;
1944 }
1945 ve = &ddf->virt->entries[venum];
1946
1947 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1948 * timestamp, random number
1949 */
1950 make_header_guid(ve->guid);
1951 ve->unit = __cpu_to_be16(info->md_minor);
1952 ve->pad0 = 0xFFFF;
1953 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1954 ve->type = 0;
1955 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1956 if (info->state & 1) /* clean */
1957 ve->init_state = DDF_init_full;
1958 else
1959 ve->init_state = DDF_init_not;
1960
1961 memset(ve->pad1, 0xff, 14);
1962 memset(ve->name, ' ', 16);
1963 if (name)
1964 strncpy(ve->name, name, 16);
1965 ddf->virt->populated_vdes =
1966 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1967
1968 /* Now create a new vd_config */
1969 if (posix_memalign((void**)&vcl, 512,
1970 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
1971 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
1972 return 0;
1973 }
1974 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1975 vcl->vcnum = venum;
1976 sprintf(st->subarray, "%d", venum);
1977 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1978
1979 vc = &vcl->conf;
1980
1981 vc->magic = DDF_VD_CONF_MAGIC;
1982 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1983 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1984 vc->seqnum = __cpu_to_be32(1);
1985 memset(vc->pad0, 0xff, 24);
1986 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1987 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1988 vc->prl = level_to_prl(info->level);
1989 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1990 vc->sec_elmnt_count = 1;
1991 vc->sec_elmnt_seq = 0;
1992 vc->srl = 0;
1993 vc->blocks = __cpu_to_be64(info->size * 2);
1994 vc->array_blocks = __cpu_to_be64(
1995 calc_array_size(info->level, info->raid_disks, info->layout,
1996 info->chunk_size, info->size*2));
1997 memset(vc->pad1, 0xff, 8);
1998 vc->spare_refs[0] = 0xffffffff;
1999 vc->spare_refs[1] = 0xffffffff;
2000 vc->spare_refs[2] = 0xffffffff;
2001 vc->spare_refs[3] = 0xffffffff;
2002 vc->spare_refs[4] = 0xffffffff;
2003 vc->spare_refs[5] = 0xffffffff;
2004 vc->spare_refs[6] = 0xffffffff;
2005 vc->spare_refs[7] = 0xffffffff;
2006 memset(vc->cache_pol, 0, 8);
2007 vc->bg_rate = 0x80;
2008 memset(vc->pad2, 0xff, 3);
2009 memset(vc->pad3, 0xff, 52);
2010 memset(vc->pad4, 0xff, 192);
2011 memset(vc->v0, 0xff, 32);
2012 memset(vc->v1, 0xff, 32);
2013 memset(vc->v2, 0xff, 16);
2014 memset(vc->v3, 0xff, 16);
2015 memset(vc->vendor, 0xff, 32);
2016
2017 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2018 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2019
2020 vcl->next = ddf->conflist;
2021 ddf->conflist = vcl;
2022 ddf->currentconf = vcl;
2023 ddf->updates_pending = 1;
2024 return 1;
2025 }
2026
2027 #ifndef MDASSEMBLE
2028 static void add_to_super_ddf_bvd(struct supertype *st,
2029 mdu_disk_info_t *dk, int fd, char *devname)
2030 {
2031 /* fd and devname identify a device with-in the ddf container (st).
2032 * dk identifies a location in the new BVD.
2033 * We need to find suitable free space in that device and update
2034 * the phys_refnum and lba_offset for the newly created vd_config.
2035 * We might also want to update the type in the phys_disk
2036 * section.
2037 *
2038 * Alternately: fd == -1 and we have already chosen which device to
2039 * use and recorded in dlist->raid_disk;
2040 */
2041 struct dl *dl;
2042 struct ddf_super *ddf = st->sb;
2043 struct vd_config *vc;
2044 __u64 *lba_offset;
2045 int working;
2046 int i;
2047 unsigned long long blocks, pos, esize;
2048 struct extent *ex;
2049
2050 if (fd == -1) {
2051 for (dl = ddf->dlist; dl ; dl = dl->next)
2052 if (dl->raiddisk == dk->raid_disk)
2053 break;
2054 } else {
2055 for (dl = ddf->dlist; dl ; dl = dl->next)
2056 if (dl->major == dk->major &&
2057 dl->minor == dk->minor)
2058 break;
2059 }
2060 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2061 return;
2062
2063 vc = &ddf->currentconf->conf;
2064 lba_offset = ddf->currentconf->lba_offset;
2065
2066 ex = get_extents(ddf, dl);
2067 if (!ex)
2068 return;
2069
2070 i = 0; pos = 0;
2071 blocks = __be64_to_cpu(vc->blocks);
2072 if (ddf->currentconf->block_sizes)
2073 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2074
2075 do {
2076 esize = ex[i].start - pos;
2077 if (esize >= blocks)
2078 break;
2079 pos = ex[i].start + ex[i].size;
2080 i++;
2081 } while (ex[i-1].size);
2082
2083 free(ex);
2084 if (esize < blocks)
2085 return;
2086
2087 ddf->currentdev = dk->raid_disk;
2088 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2089 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2090
2091 for (i=0; i < ddf->max_part ; i++)
2092 if (dl->vlist[i] == NULL)
2093 break;
2094 if (i == ddf->max_part)
2095 return;
2096 dl->vlist[i] = ddf->currentconf;
2097
2098 if (fd >= 0)
2099 dl->fd = fd;
2100 if (devname)
2101 dl->devname = devname;
2102
2103 /* Check how many working raid_disks, and if we can mark
2104 * array as optimal yet
2105 */
2106 working = 0;
2107
2108 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2109 if (vc->phys_refnum[i] != 0xffffffff)
2110 working++;
2111
2112 /* Find which virtual_entry */
2113 i = ddf->currentconf->vcnum;
2114 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2115 ddf->virt->entries[i].state =
2116 (ddf->virt->entries[i].state & ~DDF_state_mask)
2117 | DDF_state_optimal;
2118
2119 if (vc->prl == DDF_RAID6 &&
2120 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2121 ddf->virt->entries[i].state =
2122 (ddf->virt->entries[i].state & ~DDF_state_mask)
2123 | DDF_state_part_optimal;
2124
2125 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2126 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2127 ddf->updates_pending = 1;
2128 }
2129
2130 /* add a device to a container, either while creating it or while
2131 * expanding a pre-existing container
2132 */
2133 static int add_to_super_ddf(struct supertype *st,
2134 mdu_disk_info_t *dk, int fd, char *devname)
2135 {
2136 struct ddf_super *ddf = st->sb;
2137 struct dl *dd;
2138 time_t now;
2139 struct tm *tm;
2140 unsigned long long size;
2141 struct phys_disk_entry *pde;
2142 int n, i;
2143 struct stat stb;
2144
2145 if (ddf->currentconf) {
2146 add_to_super_ddf_bvd(st, dk, fd, devname);
2147 return 0;
2148 }
2149
2150 /* This is device numbered dk->number. We need to create
2151 * a phys_disk entry and a more detailed disk_data entry.
2152 */
2153 fstat(fd, &stb);
2154 if (posix_memalign((void**)&dd, 512,
2155 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2156 fprintf(stderr, Name
2157 ": %s could allocate buffer for new disk, aborting\n",
2158 __func__);
2159 return 1;
2160 }
2161 dd->major = major(stb.st_rdev);
2162 dd->minor = minor(stb.st_rdev);
2163 dd->devname = devname;
2164 dd->fd = fd;
2165 dd->spare = NULL;
2166
2167 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2168 now = time(0);
2169 tm = localtime(&now);
2170 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2171 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2172 *(__u32*)(dd->disk.guid + 16) = random32();
2173 *(__u32*)(dd->disk.guid + 20) = random32();
2174
2175 do {
2176 /* Cannot be bothered finding a CRC of some irrelevant details*/
2177 dd->disk.refnum = random32();
2178 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2179 i >= 0; i--)
2180 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2181 break;
2182 } while (i >= 0);
2183
2184 dd->disk.forced_ref = 1;
2185 dd->disk.forced_guid = 1;
2186 memset(dd->disk.vendor, ' ', 32);
2187 memcpy(dd->disk.vendor, "Linux", 5);
2188 memset(dd->disk.pad, 0xff, 442);
2189 for (i = 0; i < ddf->max_part ; i++)
2190 dd->vlist[i] = NULL;
2191
2192 n = __be16_to_cpu(ddf->phys->used_pdes);
2193 pde = &ddf->phys->entries[n];
2194 dd->pdnum = n;
2195
2196 if (st->update_tail) {
2197 int len = (sizeof(struct phys_disk) +
2198 sizeof(struct phys_disk_entry));
2199 struct phys_disk *pd;
2200
2201 pd = malloc(len);
2202 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2203 pd->used_pdes = __cpu_to_be16(n);
2204 pde = &pd->entries[0];
2205 dd->mdupdate = pd;
2206 } else {
2207 n++;
2208 ddf->phys->used_pdes = __cpu_to_be16(n);
2209 }
2210
2211 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2212 pde->refnum = dd->disk.refnum;
2213 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2214 pde->state = __cpu_to_be16(DDF_Online);
2215 get_dev_size(fd, NULL, &size);
2216 /* We are required to reserve 32Meg, and record the size in sectors */
2217 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2218 sprintf(pde->path, "%17.17s","Information: nil") ;
2219 memset(pde->pad, 0xff, 6);
2220
2221 dd->size = size >> 9;
2222 if (st->update_tail) {
2223 dd->next = ddf->add_list;
2224 ddf->add_list = dd;
2225 } else {
2226 dd->next = ddf->dlist;
2227 ddf->dlist = dd;
2228 ddf->updates_pending = 1;
2229 }
2230
2231 return 0;
2232 }
2233
2234 /*
2235 * This is the write_init_super method for a ddf container. It is
2236 * called when creating a container or adding another device to a
2237 * container.
2238 */
2239
2240 static unsigned char null_conf[4096+512];
2241
2242 static int __write_init_super_ddf(struct supertype *st, int do_close)
2243 {
2244
2245 struct ddf_super *ddf = st->sb;
2246 int i;
2247 struct dl *d;
2248 int n_config;
2249 int conf_size;
2250 int attempts = 0;
2251 int successes = 0;
2252 unsigned long long size, sector;
2253
2254 /* try to write updated metadata,
2255 * if we catch a failure move on to the next disk
2256 */
2257 for (d = ddf->dlist; d; d=d->next) {
2258 int fd = d->fd;
2259
2260 if (fd < 0)
2261 continue;
2262
2263 attempts++;
2264 /* We need to fill in the primary, (secondary) and workspace
2265 * lba's in the headers, set their checksums,
2266 * Also checksum phys, virt....
2267 *
2268 * Then write everything out, finally the anchor is written.
2269 */
2270 get_dev_size(fd, NULL, &size);
2271 size /= 512;
2272 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2273 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2274 ddf->anchor.seq = __cpu_to_be32(1);
2275 memcpy(&ddf->primary, &ddf->anchor, 512);
2276 memcpy(&ddf->secondary, &ddf->anchor, 512);
2277
2278 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2279 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2280 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2281
2282 ddf->primary.openflag = 0;
2283 ddf->primary.type = DDF_HEADER_PRIMARY;
2284
2285 ddf->secondary.openflag = 0;
2286 ddf->secondary.type = DDF_HEADER_SECONDARY;
2287
2288 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2289 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2290
2291 sector = size - 16*1024*2;
2292 lseek64(fd, sector<<9, 0);
2293 if (write(fd, &ddf->primary, 512) < 0)
2294 continue;
2295
2296 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2297 if (write(fd, &ddf->controller, 512) < 0)
2298 continue;
2299
2300 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2301
2302 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2303 continue;
2304
2305 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2306 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2307 continue;
2308
2309 /* Now write lots of config records. */
2310 n_config = ddf->max_part;
2311 conf_size = ddf->conf_rec_len * 512;
2312 for (i = 0 ; i <= n_config ; i++) {
2313 struct vcl *c = d->vlist[i];
2314 if (i == n_config)
2315 c = (struct vcl*)d->spare;
2316
2317 if (c) {
2318 c->conf.crc = calc_crc(&c->conf, conf_size);
2319 if (write(fd, &c->conf, conf_size) < 0)
2320 break;
2321 } else {
2322 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2323 if (null_conf[0] != 0xff)
2324 memset(null_conf, 0xff, sizeof(null_conf));
2325 int togo = conf_size;
2326 while (togo > sizeof(null_conf)-512) {
2327 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2328 break;
2329 togo -= sizeof(null_conf)-512;
2330 }
2331 if (write(fd, null_aligned, togo) < 0)
2332 break;
2333 }
2334 }
2335 if (i <= n_config)
2336 continue;
2337 d->disk.crc = calc_crc(&d->disk, 512);
2338 if (write(fd, &d->disk, 512) < 0)
2339 continue;
2340
2341 /* Maybe do the same for secondary */
2342
2343 lseek64(fd, (size-1)*512, SEEK_SET);
2344 if (write(fd, &ddf->anchor, 512) < 0)
2345 continue;
2346 successes++;
2347 }
2348
2349 if (do_close)
2350 for (d = ddf->dlist; d; d=d->next) {
2351 close(d->fd);
2352 d->fd = -1;
2353 }
2354
2355 return attempts != successes;
2356 }
2357
2358 static int write_init_super_ddf(struct supertype *st)
2359 {
2360
2361 if (st->update_tail) {
2362 /* queue the virtual_disk and vd_config as metadata updates */
2363 struct virtual_disk *vd;
2364 struct vd_config *vc;
2365 struct ddf_super *ddf = st->sb;
2366 int len;
2367
2368 if (!ddf->currentconf) {
2369 int len = (sizeof(struct phys_disk) +
2370 sizeof(struct phys_disk_entry));
2371
2372 /* adding a disk to the container. */
2373 if (!ddf->add_list)
2374 return 0;
2375
2376 append_metadata_update(st, ddf->add_list->mdupdate, len);
2377 ddf->add_list->mdupdate = NULL;
2378 return 0;
2379 }
2380
2381 /* Newly created VD */
2382
2383 /* First the virtual disk. We have a slightly fake header */
2384 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2385 vd = malloc(len);
2386 *vd = *ddf->virt;
2387 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2388 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2389 append_metadata_update(st, vd, len);
2390
2391 /* Then the vd_config */
2392 len = ddf->conf_rec_len * 512;
2393 vc = malloc(len);
2394 memcpy(vc, &ddf->currentconf->conf, len);
2395 append_metadata_update(st, vc, len);
2396
2397 /* FIXME I need to close the fds! */
2398 return 0;
2399 } else
2400 return __write_init_super_ddf(st, 1);
2401 }
2402
2403 #endif
2404
2405 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2406 {
2407 /* We must reserve the last 32Meg */
2408 if (devsize <= 32*1024*2)
2409 return 0;
2410 return devsize - 32*1024*2;
2411 }
2412
2413 #ifndef MDASSEMBLE
2414
2415 static int reserve_space(struct supertype *st, int raiddisks,
2416 unsigned long long size, int chunk,
2417 unsigned long long *freesize)
2418 {
2419 /* Find 'raiddisks' spare extents at least 'size' big (but
2420 * only caring about multiples of 'chunk') and remember
2421 * them.
2422 * If the cannot be found, fail.
2423 */
2424 struct dl *dl;
2425 struct ddf_super *ddf = st->sb;
2426 int cnt = 0;
2427
2428 for (dl = ddf->dlist; dl ; dl=dl->next) {
2429 dl->raiddisk = -1;
2430 dl->esize = 0;
2431 }
2432 /* Now find largest extent on each device */
2433 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2434 struct extent *e = get_extents(ddf, dl);
2435 unsigned long long pos = 0;
2436 int i = 0;
2437 int found = 0;
2438 unsigned long long minsize = size;
2439
2440 if (size == 0)
2441 minsize = chunk;
2442
2443 if (!e)
2444 continue;
2445 do {
2446 unsigned long long esize;
2447 esize = e[i].start - pos;
2448 if (esize >= minsize) {
2449 found = 1;
2450 minsize = esize;
2451 }
2452 pos = e[i].start + e[i].size;
2453 i++;
2454 } while (e[i-1].size);
2455 if (found) {
2456 cnt++;
2457 dl->esize = minsize;
2458 }
2459 free(e);
2460 }
2461 if (cnt < raiddisks) {
2462 fprintf(stderr, Name ": not enough devices with space to create array.\n");
2463 return 0; /* No enough free spaces large enough */
2464 }
2465 if (size == 0) {
2466 /* choose the largest size of which there are at least 'raiddisk' */
2467 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2468 struct dl *dl2;
2469 if (dl->esize <= size)
2470 continue;
2471 /* This is bigger than 'size', see if there are enough */
2472 cnt = 0;
2473 for (dl2 = dl; dl2 ; dl2=dl2->next)
2474 if (dl2->esize >= dl->esize)
2475 cnt++;
2476 if (cnt >= raiddisks)
2477 size = dl->esize;
2478 }
2479 if (chunk) {
2480 size = size / chunk;
2481 size *= chunk;
2482 }
2483 *freesize = size;
2484 if (size < 32) {
2485 fprintf(stderr, Name ": not enough spare devices to create array.\n");
2486 return 0;
2487 }
2488 }
2489 /* We have a 'size' of which there are enough spaces.
2490 * We simply do a first-fit */
2491 cnt = 0;
2492 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2493 if (dl->esize < size)
2494 continue;
2495
2496 dl->raiddisk = cnt;
2497 cnt++;
2498 }
2499 return 1;
2500 }
2501
2502
2503
2504 static int
2505 validate_geometry_ddf_container(struct supertype *st,
2506 int level, int layout, int raiddisks,
2507 int chunk, unsigned long long size,
2508 char *dev, unsigned long long *freesize,
2509 int verbose);
2510
2511 static int validate_geometry_ddf_bvd(struct supertype *st,
2512 int level, int layout, int raiddisks,
2513 int chunk, unsigned long long size,
2514 char *dev, unsigned long long *freesize,
2515 int verbose);
2516
2517 static int validate_geometry_ddf(struct supertype *st,
2518 int level, int layout, int raiddisks,
2519 int chunk, unsigned long long size,
2520 char *dev, unsigned long long *freesize,
2521 int verbose)
2522 {
2523 int fd;
2524 struct mdinfo *sra;
2525 int cfd;
2526
2527 /* ddf potentially supports lots of things, but it depends on
2528 * what devices are offered (and maybe kernel version?)
2529 * If given unused devices, we will make a container.
2530 * If given devices in a container, we will make a BVD.
2531 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2532 */
2533
2534 if (level == LEVEL_CONTAINER) {
2535 /* Must be a fresh device to add to a container */
2536 return validate_geometry_ddf_container(st, level, layout,
2537 raiddisks, chunk,
2538 size, dev, freesize,
2539 verbose);
2540 }
2541
2542 if (!dev) {
2543 /* Initial sanity check. Exclude illegal levels. */
2544 int i;
2545 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2546 if (ddf_level_num[i].num2 == level)
2547 break;
2548 if (ddf_level_num[i].num1 == MAXINT)
2549 return 0;
2550 /* Should check layout? etc */
2551
2552 if (st->sb && freesize) {
2553 /* --create was given a container to create in.
2554 * So we need to check that there are enough
2555 * free spaces and return the amount of space.
2556 * We may as well remember which drives were
2557 * chosen so that add_to_super/getinfo_super
2558 * can return them.
2559 */
2560 return reserve_space(st, raiddisks, size, chunk, freesize);
2561 }
2562 return 1;
2563 }
2564
2565 if (st->sb) {
2566 /* A container has already been opened, so we are
2567 * creating in there. Maybe a BVD, maybe an SVD.
2568 * Should make a distinction one day.
2569 */
2570 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2571 chunk, size, dev, freesize,
2572 verbose);
2573 }
2574 /* This is the first device for the array.
2575 * If it is a container, we read it in and do automagic allocations,
2576 * no other devices should be given.
2577 * Otherwise it must be a member device of a container, and we
2578 * do manual allocation.
2579 * Later we should check for a BVD and make an SVD.
2580 */
2581 fd = open(dev, O_RDONLY|O_EXCL, 0);
2582 if (fd >= 0) {
2583 sra = sysfs_read(fd, 0, GET_VERSION);
2584 close(fd);
2585 if (sra && sra->array.major_version == -1 &&
2586 strcmp(sra->text_version, "ddf") == 0) {
2587
2588 /* load super */
2589 /* find space for 'n' devices. */
2590 /* remember the devices */
2591 /* Somehow return the fact that we have enough */
2592 }
2593
2594 if (verbose)
2595 fprintf(stderr,
2596 Name ": ddf: Cannot create this array "
2597 "on device %s\n",
2598 dev);
2599 return 0;
2600 }
2601 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2602 if (verbose)
2603 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2604 dev, strerror(errno));
2605 return 0;
2606 }
2607 /* Well, it is in use by someone, maybe a 'ddf' container. */
2608 cfd = open_container(fd);
2609 if (cfd < 0) {
2610 close(fd);
2611 if (verbose)
2612 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2613 dev, strerror(EBUSY));
2614 return 0;
2615 }
2616 sra = sysfs_read(cfd, 0, GET_VERSION);
2617 close(fd);
2618 if (sra && sra->array.major_version == -1 &&
2619 strcmp(sra->text_version, "ddf") == 0) {
2620 /* This is a member of a ddf container. Load the container
2621 * and try to create a bvd
2622 */
2623 struct ddf_super *ddf;
2624 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2625 st->sb = ddf;
2626 st->container_dev = fd2devnum(cfd);
2627 close(cfd);
2628 return validate_geometry_ddf_bvd(st, level, layout,
2629 raiddisks, chunk, size,
2630 dev, freesize,
2631 verbose);
2632 }
2633 close(cfd);
2634 } else /* device may belong to a different container */
2635 return 0;
2636
2637 return 1;
2638 }
2639
2640 static int
2641 validate_geometry_ddf_container(struct supertype *st,
2642 int level, int layout, int raiddisks,
2643 int chunk, unsigned long long size,
2644 char *dev, unsigned long long *freesize,
2645 int verbose)
2646 {
2647 int fd;
2648 unsigned long long ldsize;
2649
2650 if (level != LEVEL_CONTAINER)
2651 return 0;
2652 if (!dev)
2653 return 1;
2654
2655 fd = open(dev, O_RDONLY|O_EXCL, 0);
2656 if (fd < 0) {
2657 if (verbose)
2658 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2659 dev, strerror(errno));
2660 return 0;
2661 }
2662 if (!get_dev_size(fd, dev, &ldsize)) {
2663 close(fd);
2664 return 0;
2665 }
2666 close(fd);
2667
2668 *freesize = avail_size_ddf(st, ldsize >> 9);
2669 if (*freesize == 0)
2670 return 0;
2671
2672 return 1;
2673 }
2674
2675 static int validate_geometry_ddf_bvd(struct supertype *st,
2676 int level, int layout, int raiddisks,
2677 int chunk, unsigned long long size,
2678 char *dev, unsigned long long *freesize,
2679 int verbose)
2680 {
2681 struct stat stb;
2682 struct ddf_super *ddf = st->sb;
2683 struct dl *dl;
2684 unsigned long long pos = 0;
2685 unsigned long long maxsize;
2686 struct extent *e;
2687 int i;
2688 /* ddf/bvd supports lots of things, but not containers */
2689 if (level == LEVEL_CONTAINER)
2690 return 0;
2691 /* We must have the container info already read in. */
2692 if (!ddf)
2693 return 0;
2694
2695 if (!dev) {
2696 /* General test: make sure there is space for
2697 * 'raiddisks' device extents of size 'size'.
2698 */
2699 unsigned long long minsize = size;
2700 int dcnt = 0;
2701 if (minsize == 0)
2702 minsize = 8;
2703 for (dl = ddf->dlist; dl ; dl = dl->next)
2704 {
2705 int found = 0;
2706 pos = 0;
2707
2708 i = 0;
2709 e = get_extents(ddf, dl);
2710 if (!e) continue;
2711 do {
2712 unsigned long long esize;
2713 esize = e[i].start - pos;
2714 if (esize >= minsize)
2715 found = 1;
2716 pos = e[i].start + e[i].size;
2717 i++;
2718 } while (e[i-1].size);
2719 if (found)
2720 dcnt++;
2721 free(e);
2722 }
2723 if (dcnt < raiddisks) {
2724 if (verbose)
2725 fprintf(stderr,
2726 Name ": ddf: Not enough devices with "
2727 "space for this array (%d < %d)\n",
2728 dcnt, raiddisks);
2729 return 0;
2730 }
2731 return 1;
2732 }
2733 /* This device must be a member of the set */
2734 if (stat(dev, &stb) < 0)
2735 return 0;
2736 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2737 return 0;
2738 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2739 if (dl->major == major(stb.st_rdev) &&
2740 dl->minor == minor(stb.st_rdev))
2741 break;
2742 }
2743 if (!dl) {
2744 if (verbose)
2745 fprintf(stderr, Name ": ddf: %s is not in the "
2746 "same DDF set\n",
2747 dev);
2748 return 0;
2749 }
2750 e = get_extents(ddf, dl);
2751 maxsize = 0;
2752 i = 0;
2753 if (e) do {
2754 unsigned long long esize;
2755 esize = e[i].start - pos;
2756 if (esize >= maxsize)
2757 maxsize = esize;
2758 pos = e[i].start + e[i].size;
2759 i++;
2760 } while (e[i-1].size);
2761 *freesize = maxsize;
2762 // FIXME here I am
2763
2764 return 1;
2765 }
2766
2767 static int load_super_ddf_all(struct supertype *st, int fd,
2768 void **sbp, char *devname, int keep_fd)
2769 {
2770 struct mdinfo *sra;
2771 struct ddf_super *super;
2772 struct mdinfo *sd, *best = NULL;
2773 int bestseq = 0;
2774 int seq;
2775 char nm[20];
2776 int dfd;
2777 int devnum = fd2devnum(fd);
2778 enum sysfs_read_flags flags;
2779
2780 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2781 if (mdmon_running(devnum))
2782 flags |= SKIP_GONE_DEVS;
2783
2784 sra = sysfs_read(fd, 0, flags);
2785 if (!sra)
2786 return 1;
2787 if (sra->array.major_version != -1 ||
2788 sra->array.minor_version != -2 ||
2789 strcmp(sra->text_version, "ddf") != 0)
2790 return 1;
2791
2792 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2793 return 1;
2794 memset(super, 0, sizeof(*super));
2795
2796 /* first, try each device, and choose the best ddf */
2797 for (sd = sra->devs ; sd ; sd = sd->next) {
2798 int rv;
2799 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2800 dfd = dev_open(nm, O_RDONLY);
2801 if (dfd < 0)
2802 return 2;
2803 rv = load_ddf_headers(dfd, super, NULL);
2804 close(dfd);
2805 if (rv == 0) {
2806 seq = __be32_to_cpu(super->active->seq);
2807 if (super->active->openflag)
2808 seq--;
2809 if (!best || seq > bestseq) {
2810 bestseq = seq;
2811 best = sd;
2812 }
2813 }
2814 }
2815 if (!best)
2816 return 1;
2817 /* OK, load this ddf */
2818 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2819 dfd = dev_open(nm, O_RDONLY);
2820 if (dfd < 0)
2821 return 1;
2822 load_ddf_headers(dfd, super, NULL);
2823 load_ddf_global(dfd, super, NULL);
2824 close(dfd);
2825 /* Now we need the device-local bits */
2826 for (sd = sra->devs ; sd ; sd = sd->next) {
2827 int rv;
2828
2829 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2830 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2831 if (dfd < 0)
2832 return 2;
2833 rv = load_ddf_headers(dfd, super, NULL);
2834 if (rv == 0)
2835 rv = load_ddf_local(dfd, super, NULL, keep_fd);
2836 if (!keep_fd) close(dfd);
2837 if (rv)
2838 return 1;
2839 }
2840 if (st->subarray[0]) {
2841 struct vcl *v;
2842
2843 for (v = super->conflist; v; v = v->next)
2844 if (v->vcnum == atoi(st->subarray))
2845 super->currentconf = v;
2846 if (!super->currentconf)
2847 return 1;
2848 }
2849 *sbp = super;
2850 if (st->ss == NULL) {
2851 st->ss = &super_ddf;
2852 st->minor_version = 0;
2853 st->max_devs = 512;
2854 st->container_dev = fd2devnum(fd);
2855 }
2856 st->loaded_container = 1;
2857 return 0;
2858 }
2859 #endif /* MDASSEMBLE */
2860
2861 static struct mdinfo *container_content_ddf(struct supertype *st)
2862 {
2863 /* Given a container loaded by load_super_ddf_all,
2864 * extract information about all the arrays into
2865 * an mdinfo tree.
2866 *
2867 * For each vcl in conflist: create an mdinfo, fill it in,
2868 * then look for matching devices (phys_refnum) in dlist
2869 * and create appropriate device mdinfo.
2870 */
2871 struct ddf_super *ddf = st->sb;
2872 struct mdinfo *rest = NULL;
2873 struct vcl *vc;
2874
2875 for (vc = ddf->conflist ; vc ; vc=vc->next)
2876 {
2877 int i;
2878 int j;
2879 struct mdinfo *this;
2880 this = malloc(sizeof(*this));
2881 memset(this, 0, sizeof(*this));
2882 this->next = rest;
2883 rest = this;
2884
2885 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2886 this->array.raid_disks =
2887 __be16_to_cpu(vc->conf.prim_elmnt_count);
2888 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2889 this->array.raid_disks);
2890 this->array.md_minor = -1;
2891 this->array.major_version = -1;
2892 this->array.minor_version = -2;
2893 this->array.ctime = DECADE +
2894 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2895 this->array.utime = DECADE +
2896 __be32_to_cpu(vc->conf.timestamp);
2897 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2898
2899 i = vc->vcnum;
2900 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2901 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2902 DDF_init_full) {
2903 this->array.state = 0;
2904 this->resync_start = 0;
2905 } else {
2906 this->array.state = 1;
2907 this->resync_start = ~0ULL;
2908 }
2909 memcpy(this->name, ddf->virt->entries[i].name, 16);
2910 this->name[16]=0;
2911 for(j=0; j<16; j++)
2912 if (this->name[j] == ' ')
2913 this->name[j] = 0;
2914
2915 memset(this->uuid, 0, sizeof(this->uuid));
2916 this->component_size = __be64_to_cpu(vc->conf.blocks);
2917 this->array.size = this->component_size / 2;
2918 this->container_member = i;
2919
2920 ddf->currentconf = vc;
2921 uuid_from_super_ddf(st, this->uuid);
2922 ddf->currentconf = NULL;
2923
2924 sprintf(this->text_version, "/%s/%d",
2925 devnum2devname(st->container_dev),
2926 this->container_member);
2927
2928 for (i=0 ; i < ddf->mppe ; i++) {
2929 struct mdinfo *dev;
2930 struct dl *d;
2931
2932 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2933 continue;
2934
2935 this->array.working_disks++;
2936
2937 for (d = ddf->dlist; d ; d=d->next)
2938 if (d->disk.refnum == vc->conf.phys_refnum[i])
2939 break;
2940 if (d == NULL)
2941 /* Haven't found that one yet, maybe there are others */
2942 continue;
2943
2944 dev = malloc(sizeof(*dev));
2945 memset(dev, 0, sizeof(*dev));
2946 dev->next = this->devs;
2947 this->devs = dev;
2948
2949 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2950 dev->disk.major = d->major;
2951 dev->disk.minor = d->minor;
2952 dev->disk.raid_disk = i;
2953 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2954
2955 dev->events = __be32_to_cpu(ddf->primary.seq);
2956 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2957 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2958 if (d->devname)
2959 strcpy(dev->name, d->devname);
2960 }
2961 }
2962 return rest;
2963 }
2964
2965 static int store_zero_ddf(struct supertype *st, int fd)
2966 {
2967 unsigned long long dsize;
2968 void *buf;
2969 int rc;
2970
2971 if (!get_dev_size(fd, NULL, &dsize))
2972 return 1;
2973
2974 if (posix_memalign(&buf, 512, 512) != 0)
2975 return 1;
2976 memset(buf, 0, 512);
2977
2978 lseek64(fd, dsize-512, 0);
2979 rc = write(fd, buf, 512);
2980 free(buf);
2981 if (rc < 0)
2982 return 1;
2983 return 0;
2984 }
2985
2986 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2987 {
2988 /*
2989 * return:
2990 * 0 same, or first was empty, and second was copied
2991 * 1 second had wrong number
2992 * 2 wrong uuid
2993 * 3 wrong other info
2994 */
2995 struct ddf_super *first = st->sb;
2996 struct ddf_super *second = tst->sb;
2997
2998 if (!first) {
2999 st->sb = tst->sb;
3000 tst->sb = NULL;
3001 return 0;
3002 }
3003
3004 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3005 return 2;
3006
3007 /* FIXME should I look at anything else? */
3008 return 0;
3009 }
3010
3011 #ifndef MDASSEMBLE
3012 /*
3013 * A new array 'a' has been started which claims to be instance 'inst'
3014 * within container 'c'.
3015 * We need to confirm that the array matches the metadata in 'c' so
3016 * that we don't corrupt any metadata.
3017 */
3018 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3019 {
3020 dprintf("ddf: open_new %s\n", inst);
3021 a->info.container_member = atoi(inst);
3022 return 0;
3023 }
3024
3025 /*
3026 * The array 'a' is to be marked clean in the metadata.
3027 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3028 * clean up to the point (in sectors). If that cannot be recorded in the
3029 * metadata, then leave it as dirty.
3030 *
3031 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3032 * !global! virtual_disk.virtual_entry structure.
3033 */
3034 static int ddf_set_array_state(struct active_array *a, int consistent)
3035 {
3036 struct ddf_super *ddf = a->container->sb;
3037 int inst = a->info.container_member;
3038 int old = ddf->virt->entries[inst].state;
3039 if (consistent == 2) {
3040 /* Should check if a recovery should be started FIXME */
3041 consistent = 1;
3042 if (!is_resync_complete(a))
3043 consistent = 0;
3044 }
3045 if (consistent)
3046 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3047 else
3048 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3049 if (old != ddf->virt->entries[inst].state)
3050 ddf->updates_pending = 1;
3051
3052 old = ddf->virt->entries[inst].init_state;
3053 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3054 if (is_resync_complete(a))
3055 ddf->virt->entries[inst].init_state |= DDF_init_full;
3056 else if (a->resync_start == 0)
3057 ddf->virt->entries[inst].init_state |= DDF_init_not;
3058 else
3059 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3060 if (old != ddf->virt->entries[inst].init_state)
3061 ddf->updates_pending = 1;
3062
3063 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3064 a->resync_start);
3065 return consistent;
3066 }
3067
3068 /*
3069 * The state of each disk is stored in the global phys_disk structure
3070 * in phys_disk.entries[n].state.
3071 * This makes various combinations awkward.
3072 * - When a device fails in any array, it must be failed in all arrays
3073 * that include a part of this device.
3074 * - When a component is rebuilding, we cannot include it officially in the
3075 * array unless this is the only array that uses the device.
3076 *
3077 * So: when transitioning:
3078 * Online -> failed, just set failed flag. monitor will propagate
3079 * spare -> online, the device might need to be added to the array.
3080 * spare -> failed, just set failed. Don't worry if in array or not.
3081 */
3082 static void ddf_set_disk(struct active_array *a, int n, int state)
3083 {
3084 struct ddf_super *ddf = a->container->sb;
3085 int inst = a->info.container_member;