Make sure resync_start is initialised properly and maintained properly
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 };
427 };
428 struct disk_data disk;
429 struct vcl *vlist[0]; /* max_part in size */
430 } *dlist;
431 };
432
433 #ifndef offsetof
434 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
435 #endif
436
437
438 static int calc_crc(void *buf, int len)
439 {
440 /* crcs are always at the same place as in the ddf_header */
441 struct ddf_header *ddf = buf;
442 __u32 oldcrc = ddf->crc;
443 __u32 newcrc;
444 ddf->crc = 0xffffffff;
445
446 newcrc = crc32(0, buf, len);
447 ddf->crc = oldcrc;
448 return newcrc;
449 }
450
451 static int load_ddf_header(int fd, unsigned long long lba,
452 unsigned long long size,
453 int type,
454 struct ddf_header *hdr, struct ddf_header *anchor)
455 {
456 /* read a ddf header (primary or secondary) from fd/lba
457 * and check that it is consistent with anchor
458 * Need to check:
459 * magic, crc, guid, rev, and LBA's header_type, and
460 * everything after header_type must be the same
461 */
462 if (lba >= size-1)
463 return 0;
464
465 if (lseek64(fd, lba<<9, 0) < 0)
466 return 0;
467
468 if (read(fd, hdr, 512) != 512)
469 return 0;
470
471 if (hdr->magic != DDF_HEADER_MAGIC)
472 return 0;
473 if (calc_crc(hdr, 512) != hdr->crc)
474 return 0;
475 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
476 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
477 anchor->primary_lba != hdr->primary_lba ||
478 anchor->secondary_lba != hdr->secondary_lba ||
479 hdr->type != type ||
480 memcmp(anchor->pad2, hdr->pad2, 512 -
481 offsetof(struct ddf_header, pad2)) != 0)
482 return 0;
483
484 /* Looks good enough to me... */
485 return 1;
486 }
487
488 static void *load_section(int fd, struct ddf_super *super, void *buf,
489 __u32 offset_be, __u32 len_be, int check)
490 {
491 unsigned long long offset = __be32_to_cpu(offset_be);
492 unsigned long long len = __be32_to_cpu(len_be);
493 int dofree = (buf == NULL);
494
495 if (check)
496 if (len != 2 && len != 8 && len != 32
497 && len != 128 && len != 512)
498 return NULL;
499
500 if (len > 1024)
501 return NULL;
502 if (buf) {
503 /* All pre-allocated sections are a single block */
504 if (len != 1)
505 return NULL;
506 } else {
507 posix_memalign(&buf, 512, len<<9);
508 }
509
510 if (!buf)
511 return NULL;
512
513 if (super->active->type == 1)
514 offset += __be64_to_cpu(super->active->primary_lba);
515 else
516 offset += __be64_to_cpu(super->active->secondary_lba);
517
518 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
519 if (dofree)
520 free(buf);
521 return NULL;
522 }
523 if (read(fd, buf, len<<9) != (len<<9)) {
524 if (dofree)
525 free(buf);
526 return NULL;
527 }
528 return buf;
529 }
530
531 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
532 {
533 unsigned long long dsize;
534
535 get_dev_size(fd, NULL, &dsize);
536
537 if (lseek64(fd, dsize-512, 0) < 0) {
538 if (devname)
539 fprintf(stderr,
540 Name": Cannot seek to anchor block on %s: %s\n",
541 devname, strerror(errno));
542 return 1;
543 }
544 if (read(fd, &super->anchor, 512) != 512) {
545 if (devname)
546 fprintf(stderr,
547 Name ": Cannot read anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (super->anchor.magic != DDF_HEADER_MAGIC) {
552 if (devname)
553 fprintf(stderr, Name ": no DDF anchor found on %s\n",
554 devname);
555 return 2;
556 }
557 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
558 if (devname)
559 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
560 devname);
561 return 2;
562 }
563 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
564 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
565 if (devname)
566 fprintf(stderr, Name ": can only support super revision"
567 " %.8s and earlier, not %.8s on %s\n",
568 DDF_REVISION_2, super->anchor.revision,devname);
569 return 2;
570 }
571 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
572 dsize >> 9, 1,
573 &super->primary, &super->anchor) == 0) {
574 if (devname)
575 fprintf(stderr,
576 Name ": Failed to load primary DDF header "
577 "on %s\n", devname);
578 return 2;
579 }
580 super->active = &super->primary;
581 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
582 dsize >> 9, 2,
583 &super->secondary, &super->anchor)) {
584 if ((__be32_to_cpu(super->primary.seq)
585 < __be32_to_cpu(super->secondary.seq) &&
586 !super->secondary.openflag)
587 || (__be32_to_cpu(super->primary.seq)
588 == __be32_to_cpu(super->secondary.seq) &&
589 super->primary.openflag && !super->secondary.openflag)
590 )
591 super->active = &super->secondary;
592 }
593 return 0;
594 }
595
596 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
597 {
598 void *ok;
599 ok = load_section(fd, super, &super->controller,
600 super->active->controller_section_offset,
601 super->active->controller_section_length,
602 0);
603 super->phys = load_section(fd, super, NULL,
604 super->active->phys_section_offset,
605 super->active->phys_section_length,
606 1);
607 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
608
609 super->virt = load_section(fd, super, NULL,
610 super->active->virt_section_offset,
611 super->active->virt_section_length,
612 1);
613 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
614 if (!ok ||
615 !super->phys ||
616 !super->virt) {
617 free(super->phys);
618 free(super->virt);
619 super->phys = NULL;
620 super->virt = NULL;
621 return 2;
622 }
623 super->conflist = NULL;
624 super->dlist = NULL;
625
626 super->max_part = __be16_to_cpu(super->active->max_partitions);
627 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
628 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
629 return 0;
630 }
631
632 static int load_ddf_local(int fd, struct ddf_super *super,
633 char *devname, int keep)
634 {
635 struct dl *dl;
636 struct stat stb;
637 char *conf;
638 int i;
639 int vnum;
640 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
641 unsigned long long dsize;
642
643 /* First the local disk info */
644 posix_memalign((void**)&dl, 512,
645 sizeof(*dl) +
646 (super->max_part) * sizeof(dl->vlist[0]));
647
648 load_section(fd, super, &dl->disk,
649 super->active->data_section_offset,
650 super->active->data_section_length,
651 0);
652 dl->devname = devname ? strdup(devname) : NULL;
653
654 fstat(fd, &stb);
655 dl->major = major(stb.st_rdev);
656 dl->minor = minor(stb.st_rdev);
657 dl->next = super->dlist;
658 dl->fd = keep ? fd : -1;
659
660 dl->size = 0;
661 if (get_dev_size(fd, devname, &dsize))
662 dl->size = dsize >> 9;
663 dl->spare = NULL;
664 for (i=0 ; i < super->max_part ; i++)
665 dl->vlist[i] = NULL;
666 super->dlist = dl;
667 dl->pdnum = -1;
668 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
669 if (memcmp(super->phys->entries[i].guid,
670 dl->disk.guid, DDF_GUID_LEN) == 0)
671 dl->pdnum = i;
672
673 /* Now the config list. */
674 /* 'conf' is an array of config entries, some of which are
675 * probably invalid. Those which are good need to be copied into
676 * the conflist
677 */
678
679 conf = load_section(fd, super, NULL,
680 super->active->config_section_offset,
681 super->active->config_section_length,
682 0);
683
684 vnum = 0;
685 for (i = 0;
686 i < __be32_to_cpu(super->active->config_section_length);
687 i += super->conf_rec_len) {
688 struct vd_config *vd =
689 (struct vd_config *)((char*)conf + i*512);
690 struct vcl *vcl;
691
692 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
693 if (dl->spare)
694 continue;
695 posix_memalign((void**)&dl->spare, 512,
696 super->conf_rec_len*512);
697 memcpy(dl->spare, vd, super->conf_rec_len*512);
698 continue;
699 }
700 if (vd->magic != DDF_VD_CONF_MAGIC)
701 continue;
702 for (vcl = super->conflist; vcl; vcl = vcl->next) {
703 if (memcmp(vcl->conf.guid,
704 vd->guid, DDF_GUID_LEN) == 0)
705 break;
706 }
707
708 if (vcl) {
709 dl->vlist[vnum++] = vcl;
710 if (__be32_to_cpu(vd->seqnum) <=
711 __be32_to_cpu(vcl->conf.seqnum))
712 continue;
713 } else {
714 posix_memalign((void**)&vcl, 512,
715 (super->conf_rec_len*512 +
716 offsetof(struct vcl, conf)));
717 vcl->next = super->conflist;
718 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
719 super->conflist = vcl;
720 dl->vlist[vnum++] = vcl;
721 }
722 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
723 vcl->lba_offset = (__u64*)
724 &vcl->conf.phys_refnum[super->mppe];
725
726 for (i=0; i < max_virt_disks ; i++)
727 if (memcmp(super->virt->entries[i].guid,
728 vcl->conf.guid, DDF_GUID_LEN)==0)
729 break;
730 if (i < max_virt_disks)
731 vcl->vcnum = i;
732 }
733 free(conf);
734
735 return 0;
736 }
737
738 #ifndef MDASSEMBLE
739 static int load_super_ddf_all(struct supertype *st, int fd,
740 void **sbp, char *devname, int keep_fd);
741 #endif
742 static int load_super_ddf(struct supertype *st, int fd,
743 char *devname)
744 {
745 unsigned long long dsize;
746 struct ddf_super *super;
747 int rv;
748
749 #ifndef MDASSEMBLE
750 /* if 'fd' is a container, load metadata from all the devices */
751 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
752 return 0;
753 #endif
754 if (st->subarray[0])
755 return 1; /* FIXME Is this correct */
756
757 if (get_dev_size(fd, devname, &dsize) == 0)
758 return 1;
759
760 /* 32M is a lower bound */
761 if (dsize <= 32*1024*1024) {
762 if (devname) {
763 fprintf(stderr,
764 Name ": %s is too small for ddf: "
765 "size is %llu sectors.\n",
766 devname, dsize>>9);
767 return 1;
768 }
769 }
770 if (dsize & 511) {
771 if (devname) {
772 fprintf(stderr,
773 Name ": %s is an odd size for ddf: "
774 "size is %llu bytes.\n",
775 devname, dsize);
776 return 1;
777 }
778 }
779
780 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
781 fprintf(stderr, Name ": malloc of %zu failed.\n",
782 sizeof(*super));
783 return 1;
784 }
785 memset(super, 0, sizeof(*super));
786
787 rv = load_ddf_headers(fd, super, devname);
788 if (rv) {
789 free(super);
790 return rv;
791 }
792
793 /* Have valid headers and have chosen the best. Let's read in the rest*/
794
795 rv = load_ddf_global(fd, super, devname);
796
797 if (rv) {
798 if (devname)
799 fprintf(stderr,
800 Name ": Failed to load all information "
801 "sections on %s\n", devname);
802 free(super);
803 return rv;
804 }
805
806 load_ddf_local(fd, super, devname, 0);
807
808 /* Should possibly check the sections .... */
809
810 st->sb = super;
811 if (st->ss == NULL) {
812 st->ss = &super_ddf;
813 st->minor_version = 0;
814 st->max_devs = 512;
815 }
816 return 0;
817
818 }
819
820 static void free_super_ddf(struct supertype *st)
821 {
822 struct ddf_super *ddf = st->sb;
823 if (ddf == NULL)
824 return;
825 free(ddf->phys);
826 free(ddf->virt);
827 while (ddf->conflist) {
828 struct vcl *v = ddf->conflist;
829 ddf->conflist = v->next;
830 if (v->block_sizes)
831 free(v->block_sizes);
832 free(v);
833 }
834 while (ddf->dlist) {
835 struct dl *d = ddf->dlist;
836 ddf->dlist = d->next;
837 if (d->fd >= 0)
838 close(d->fd);
839 if (d->spare)
840 free(d->spare);
841 free(d);
842 }
843 free(ddf);
844 st->sb = NULL;
845 }
846
847 static struct supertype *match_metadata_desc_ddf(char *arg)
848 {
849 /* 'ddf' only support containers */
850 struct supertype *st;
851 if (strcmp(arg, "ddf") != 0 &&
852 strcmp(arg, "default") != 0
853 )
854 return NULL;
855
856 st = malloc(sizeof(*st));
857 memset(st, 0, sizeof(*st));
858 st->ss = &super_ddf;
859 st->max_devs = 512;
860 st->minor_version = 0;
861 st->sb = NULL;
862 return st;
863 }
864
865
866 #ifndef MDASSEMBLE
867
868 static mapping_t ddf_state[] = {
869 { "Optimal", 0},
870 { "Degraded", 1},
871 { "Deleted", 2},
872 { "Missing", 3},
873 { "Failed", 4},
874 { "Partially Optimal", 5},
875 { "-reserved-", 6},
876 { "-reserved-", 7},
877 { NULL, 0}
878 };
879
880 static mapping_t ddf_init_state[] = {
881 { "Not Initialised", 0},
882 { "QuickInit in Progress", 1},
883 { "Fully Initialised", 2},
884 { "*UNKNOWN*", 3},
885 { NULL, 0}
886 };
887 static mapping_t ddf_access[] = {
888 { "Read/Write", 0},
889 { "Reserved", 1},
890 { "Read Only", 2},
891 { "Blocked (no access)", 3},
892 { NULL ,0}
893 };
894
895 static mapping_t ddf_level[] = {
896 { "RAID0", DDF_RAID0},
897 { "RAID1", DDF_RAID1},
898 { "RAID3", DDF_RAID3},
899 { "RAID4", DDF_RAID4},
900 { "RAID5", DDF_RAID5},
901 { "RAID1E",DDF_RAID1E},
902 { "JBOD", DDF_JBOD},
903 { "CONCAT",DDF_CONCAT},
904 { "RAID5E",DDF_RAID5E},
905 { "RAID5EE",DDF_RAID5EE},
906 { "RAID6", DDF_RAID6},
907 { NULL, 0}
908 };
909 static mapping_t ddf_sec_level[] = {
910 { "Striped", DDF_2STRIPED},
911 { "Mirrored", DDF_2MIRRORED},
912 { "Concat", DDF_2CONCAT},
913 { "Spanned", DDF_2SPANNED},
914 { NULL, 0}
915 };
916 #endif
917
918 struct num_mapping {
919 int num1, num2;
920 };
921 static struct num_mapping ddf_level_num[] = {
922 { DDF_RAID0, 0 },
923 { DDF_RAID1, 1 },
924 { DDF_RAID3, LEVEL_UNSUPPORTED },
925 { DDF_RAID4, 4 },
926 { DDF_RAID5, 5 },
927 { DDF_RAID1E, LEVEL_UNSUPPORTED },
928 { DDF_JBOD, LEVEL_UNSUPPORTED },
929 { DDF_CONCAT, LEVEL_LINEAR },
930 { DDF_RAID5E, LEVEL_UNSUPPORTED },
931 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
932 { DDF_RAID6, 6},
933 { MAXINT, MAXINT }
934 };
935
936 static int map_num1(struct num_mapping *map, int num)
937 {
938 int i;
939 for (i=0 ; map[i].num1 != MAXINT; i++)
940 if (map[i].num1 == num)
941 break;
942 return map[i].num2;
943 }
944
945 #ifndef MDASSEMBLE
946 static void print_guid(char *guid, int tstamp)
947 {
948 /* A GUIDs are part (or all) ASCII and part binary.
949 * They tend to be space padded.
950 * We print the GUID in HEX, then in parentheses add
951 * any initial ASCII sequence, and a possible
952 * time stamp from bytes 16-19
953 */
954 int l = DDF_GUID_LEN;
955 int i;
956
957 for (i=0 ; i<DDF_GUID_LEN ; i++) {
958 if ((i&3)==0 && i != 0) printf(":");
959 printf("%02X", guid[i]&255);
960 }
961
962 printf(" (");
963 while (l && guid[l-1] == ' ')
964 l--;
965 for (i=0 ; i<l ; i++) {
966 if (guid[i] >= 0x20 && guid[i] < 0x7f)
967 fputc(guid[i], stdout);
968 else
969 break;
970 }
971 if (tstamp) {
972 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
973 char tbuf[100];
974 struct tm *tm;
975 tm = localtime(&then);
976 strftime(tbuf, 100, " %D %T",tm);
977 fputs(tbuf, stdout);
978 }
979 printf(")");
980 }
981
982 static void examine_vd(int n, struct ddf_super *sb, char *guid)
983 {
984 int crl = sb->conf_rec_len;
985 struct vcl *vcl;
986
987 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
988 struct vd_config *vc = &vcl->conf;
989
990 if (calc_crc(vc, crl*512) != vc->crc)
991 continue;
992 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
993 continue;
994
995 /* Ok, we know about this VD, let's give more details */
996 printf(" Raid Devices[%d] : %d\n", n,
997 __be16_to_cpu(vc->prim_elmnt_count));
998 printf(" Chunk Size[%d] : %d sectors\n", n,
999 1 << vc->chunk_shift);
1000 printf(" Raid Level[%d] : %s\n", n,
1001 map_num(ddf_level, vc->prl)?:"-unknown-");
1002 if (vc->sec_elmnt_count != 1) {
1003 printf(" Secondary Position[%d] : %d of %d\n", n,
1004 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1005 printf(" Secondary Level[%d] : %s\n", n,
1006 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1007 }
1008 printf(" Device Size[%d] : %llu\n", n,
1009 __be64_to_cpu(vc->blocks)/2);
1010 printf(" Array Size[%d] : %llu\n", n,
1011 __be64_to_cpu(vc->array_blocks)/2);
1012 }
1013 }
1014
1015 static void examine_vds(struct ddf_super *sb)
1016 {
1017 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1018 int i;
1019 printf(" Virtual Disks : %d\n", cnt);
1020
1021 for (i=0; i<cnt; i++) {
1022 struct virtual_entry *ve = &sb->virt->entries[i];
1023 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1024 printf("\n");
1025 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1026 printf(" state[%d] : %s, %s%s\n", i,
1027 map_num(ddf_state, ve->state & 7),
1028 (ve->state & 8) ? "Morphing, ": "",
1029 (ve->state & 16)? "Not Consistent" : "Consistent");
1030 printf(" init state[%d] : %s\n", i,
1031 map_num(ddf_init_state, ve->init_state&3));
1032 printf(" access[%d] : %s\n", i,
1033 map_num(ddf_access, (ve->init_state>>6) & 3));
1034 printf(" Name[%d] : %.16s\n", i, ve->name);
1035 examine_vd(i, sb, ve->guid);
1036 }
1037 if (cnt) printf("\n");
1038 }
1039
1040 static void examine_pds(struct ddf_super *sb)
1041 {
1042 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1043 int i;
1044 struct dl *dl;
1045 printf(" Physical Disks : %d\n", cnt);
1046
1047 for (i=0 ; i<cnt ; i++) {
1048 struct phys_disk_entry *pd = &sb->phys->entries[i];
1049 int type = __be16_to_cpu(pd->type);
1050 int state = __be16_to_cpu(pd->state);
1051
1052 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1053 printf("\n");
1054 printf(" ref[%d] : %08x\n", i,
1055 __be32_to_cpu(pd->refnum));
1056 printf(" mode[%d] : %s%s%s%s%s\n", i,
1057 (type&2) ? "active":"",
1058 (type&4) ? "Global Spare":"",
1059 (type&8) ? "spare" : "",
1060 (type&16)? ", foreign" : "",
1061 (type&32)? "pass-through" : "");
1062 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1063 (state&1)? "Online": "Offline",
1064 (state&2)? ", Failed": "",
1065 (state&4)? ", Rebuilding": "",
1066 (state&8)? ", in-transition": "",
1067 (state&16)? ", SMART errors": "",
1068 (state&32)? ", Unrecovered Read Errors": "",
1069 (state&64)? ", Missing" : "");
1070 printf(" Avail Size[%d] : %llu K\n", i,
1071 __be64_to_cpu(pd->config_size)>>1);
1072 for (dl = sb->dlist; dl ; dl = dl->next) {
1073 if (dl->disk.refnum == pd->refnum) {
1074 char *dv = map_dev(dl->major, dl->minor, 0);
1075 if (dv)
1076 printf(" Device[%d] : %s\n",
1077 i, dv);
1078 }
1079 }
1080 printf("\n");
1081 }
1082 }
1083
1084 static void examine_super_ddf(struct supertype *st, char *homehost)
1085 {
1086 struct ddf_super *sb = st->sb;
1087
1088 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1089 printf(" Version : %.8s\n", sb->anchor.revision);
1090 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1091 printf("\n");
1092 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1093 printf("\n");
1094 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1095 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1096 ?"yes" : "no");
1097 examine_vds(sb);
1098 examine_pds(sb);
1099 }
1100
1101 static void brief_examine_super_ddf(struct supertype *st)
1102 {
1103 /* We just write a generic DDF ARRAY entry
1104 * The uuid is all hex, 6 groups of 4 bytes
1105 */
1106 struct ddf_super *ddf = st->sb;
1107 int i;
1108 printf("ARRAY /dev/ddf metadata=ddf UUID=");
1109 for (i = 0; i < DDF_GUID_LEN; i++) {
1110 if ((i&3) == 0 && i != 0)
1111 printf(":");
1112 printf("%02X", 255&ddf->anchor.guid[i]);
1113 }
1114 printf("\n");
1115 }
1116
1117 static void detail_super_ddf(struct supertype *st, char *homehost)
1118 {
1119 /* FIXME later
1120 * Could print DDF GUID
1121 * Need to find which array
1122 * If whole, briefly list all arrays
1123 * If one, give name
1124 */
1125 }
1126
1127 static void brief_detail_super_ddf(struct supertype *st)
1128 {
1129 /* FIXME I really need to know which array we are detailing.
1130 * Can that be stored in ddf_super??
1131 */
1132 // struct ddf_super *ddf = st->sb;
1133 }
1134 #endif
1135
1136 static int match_home_ddf(struct supertype *st, char *homehost)
1137 {
1138 /* It matches 'this' host if the controller is a
1139 * Linux-MD controller with vendor_data matching
1140 * the hostname
1141 */
1142 struct ddf_super *ddf = st->sb;
1143 int len = strlen(homehost);
1144
1145 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1146 len < sizeof(ddf->controller.vendor_data) &&
1147 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1148 ddf->controller.vendor_data[len] == 0);
1149 }
1150
1151 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1152 {
1153 struct vcl *v;
1154
1155 for (v = ddf->conflist; v; v = v->next)
1156 if (inst == v->vcnum)
1157 return &v->conf;
1158 return NULL;
1159 }
1160
1161 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1162 {
1163 /* Find the entry in phys_disk which has the given refnum
1164 * and return it's index
1165 */
1166 int i;
1167 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1168 if (ddf->phys->entries[i].refnum == phys_refnum)
1169 return i;
1170 return -1;
1171 }
1172
1173 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1174 {
1175 /* The uuid returned here is used for:
1176 * uuid to put into bitmap file (Create, Grow)
1177 * uuid for backup header when saving critical section (Grow)
1178 * comparing uuids when re-adding a device into an array
1179 * For each of these we can make do with a truncated
1180 * or hashed uuid rather than the original, as long as
1181 * everyone agrees.
1182 * In each case the uuid required is that of the data-array,
1183 * not the device-set.
1184 * In the case of SVD we assume the BVD is of interest,
1185 * though that might be the case if a bitmap were made for
1186 * a mirrored SVD - worry about that later.
1187 * So we need to find the VD configuration record for the
1188 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1189 * The first 16 bytes of the sha1 of these is used.
1190 */
1191 struct ddf_super *ddf = st->sb;
1192 struct vcl *vcl = ddf->currentconf;
1193
1194 if (!vcl)
1195 memset(uuid, 0, sizeof (uuid));
1196 else {
1197 char buf[20];
1198 struct sha1_ctx ctx;
1199 sha1_init_ctx(&ctx);
1200 sha1_process_bytes(&vcl->conf.guid, DDF_GUID_LEN, &ctx);
1201 if (vcl->conf.sec_elmnt_count > 1)
1202 sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1203 sha1_finish_ctx(&ctx, buf);
1204 memcpy(uuid, buf, sizeof(uuid));
1205 }
1206 }
1207
1208 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1209
1210 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1211 {
1212 struct ddf_super *ddf = st->sb;
1213
1214 if (ddf->currentconf) {
1215 getinfo_super_ddf_bvd(st, info);
1216 return;
1217 }
1218
1219 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1220 info->array.level = LEVEL_CONTAINER;
1221 info->array.layout = 0;
1222 info->array.md_minor = -1;
1223 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1224 (ddf->anchor.guid+16));
1225 info->array.utime = 0;
1226 info->array.chunk_size = 0;
1227
1228
1229 info->disk.major = 0;
1230 info->disk.minor = 0;
1231 if (ddf->dlist) {
1232 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1233 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1234
1235 info->data_offset = __be64_to_cpu(ddf->phys->
1236 entries[info->disk.raid_disk].
1237 config_size);
1238 info->component_size = ddf->dlist->size - info->data_offset;
1239 } else {
1240 info->disk.number = -1;
1241 // info->disk.raid_disk = find refnum in the table and use index;
1242 }
1243 info->disk.state = (1 << MD_DISK_SYNC);
1244
1245
1246 info->reshape_active = 0;
1247
1248 strcpy(info->text_version, "ddf");
1249
1250 // uuid_from_super_ddf(info->uuid, sbv);
1251
1252 // info->name[] ?? ;
1253 }
1254
1255 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1256
1257 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1258 {
1259 struct ddf_super *ddf = st->sb;
1260 struct vcl *vc = ddf->currentconf;
1261 int cd = ddf->currentdev;
1262
1263 /* FIXME this returns BVD info - what if we want SVD ?? */
1264
1265 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1266 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1267 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1268 info->array.raid_disks);
1269 info->array.md_minor = -1;
1270 info->array.ctime = DECADE +
1271 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1272 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1273 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1274
1275 if (cd >= 0 && cd < ddf->mppe) {
1276 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1277 if (vc->block_sizes)
1278 info->component_size = vc->block_sizes[cd];
1279 else
1280 info->component_size = __be64_to_cpu(vc->conf.blocks);
1281 }
1282
1283 info->disk.major = 0;
1284 info->disk.minor = 0;
1285 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1286 // info->disk.raid_disk = find refnum in the table and use index;
1287 // info->disk.state = ???;
1288
1289 info->container_member = ddf->currentconf->vcnum;
1290
1291 info->resync_start = 0;
1292 if (!(ddf->virt->entries[info->container_member].state
1293 & DDF_state_inconsistent) &&
1294 (ddf->virt->entries[info->container_member].init_state
1295 & DDF_initstate_mask)
1296 == DDF_init_full)
1297 info->resync_start = ~0ULL;
1298
1299 uuid_from_super_ddf(st, info->uuid);
1300
1301 info->container_member = atoi(st->subarray);
1302 sprintf(info->text_version, "/%s/%s",
1303 devnum2devname(st->container_dev),
1304 st->subarray);
1305
1306 // info->name[] ?? ;
1307 }
1308
1309
1310 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1311 char *update,
1312 char *devname, int verbose,
1313 int uuid_set, char *homehost)
1314 {
1315 /* For 'assemble' and 'force' we need to return non-zero if any
1316 * change was made. For others, the return value is ignored.
1317 * Update options are:
1318 * force-one : This device looks a bit old but needs to be included,
1319 * update age info appropriately.
1320 * assemble: clear any 'faulty' flag to allow this device to
1321 * be assembled.
1322 * force-array: Array is degraded but being forced, mark it clean
1323 * if that will be needed to assemble it.
1324 *
1325 * newdev: not used ????
1326 * grow: Array has gained a new device - this is currently for
1327 * linear only
1328 * resync: mark as dirty so a resync will happen.
1329 * uuid: Change the uuid of the array to match what is given
1330 * homehost: update the recorded homehost
1331 * name: update the name - preserving the homehost
1332 * _reshape_progress: record new reshape_progress position.
1333 *
1334 * Following are not relevant for this version:
1335 * sparc2.2 : update from old dodgey metadata
1336 * super-minor: change the preferred_minor number
1337 * summaries: update redundant counters.
1338 */
1339 int rv = 0;
1340 // struct ddf_super *ddf = st->sb;
1341 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1342 // struct virtual_entry *ve = find_ve(ddf);
1343
1344 /* we don't need to handle "force-*" or "assemble" as
1345 * there is no need to 'trick' the kernel. We the metadata is
1346 * first updated to activate the array, all the implied modifications
1347 * will just happen.
1348 */
1349
1350 if (strcmp(update, "grow") == 0) {
1351 /* FIXME */
1352 }
1353 if (strcmp(update, "resync") == 0) {
1354 // info->resync_checkpoint = 0;
1355 }
1356 /* We ignore UUID updates as they make even less sense
1357 * with DDF
1358 */
1359 if (strcmp(update, "homehost") == 0) {
1360 /* homehost is stored in controller->vendor_data,
1361 * or it is when we are the vendor
1362 */
1363 // if (info->vendor_is_local)
1364 // strcpy(ddf->controller.vendor_data, homehost);
1365 }
1366 if (strcmp(update, "name") == 0) {
1367 /* name is stored in virtual_entry->name */
1368 // memset(ve->name, ' ', 16);
1369 // strncpy(ve->name, info->name, 16);
1370 }
1371 if (strcmp(update, "_reshape_progress") == 0) {
1372 /* We don't support reshape yet */
1373 }
1374
1375 // update_all_csum(ddf);
1376
1377 return rv;
1378 }
1379
1380 static void make_header_guid(char *guid)
1381 {
1382 __u32 stamp;
1383 int rfd;
1384 /* Create a DDF Header of Virtual Disk GUID */
1385
1386 /* 24 bytes of fiction required.
1387 * first 8 are a 'vendor-id' - "Linux-MD"
1388 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1389 * Remaining 8 random number plus timestamp
1390 */
1391 memcpy(guid, T10, sizeof(T10));
1392 stamp = __cpu_to_be32(0xdeadbeef);
1393 memcpy(guid+8, &stamp, 4);
1394 stamp = __cpu_to_be32(0);
1395 memcpy(guid+12, &stamp, 4);
1396 stamp = __cpu_to_be32(time(0) - DECADE);
1397 memcpy(guid+16, &stamp, 4);
1398 rfd = open("/dev/urandom", O_RDONLY);
1399 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1400 stamp = random();
1401 memcpy(guid+20, &stamp, 4);
1402 if (rfd >= 0) close(rfd);
1403 }
1404
1405 static int init_super_ddf_bvd(struct supertype *st,
1406 mdu_array_info_t *info,
1407 unsigned long long size,
1408 char *name, char *homehost,
1409 int *uuid);
1410
1411 static int init_super_ddf(struct supertype *st,
1412 mdu_array_info_t *info,
1413 unsigned long long size, char *name, char *homehost,
1414 int *uuid)
1415 {
1416 /* This is primarily called by Create when creating a new array.
1417 * We will then get add_to_super called for each component, and then
1418 * write_init_super called to write it out to each device.
1419 * For DDF, Create can create on fresh devices or on a pre-existing
1420 * array.
1421 * To create on a pre-existing array a different method will be called.
1422 * This one is just for fresh drives.
1423 *
1424 * We need to create the entire 'ddf' structure which includes:
1425 * DDF headers - these are easy.
1426 * Controller data - a Sector describing this controller .. not that
1427 * this is a controller exactly.
1428 * Physical Disk Record - one entry per device, so
1429 * leave plenty of space.
1430 * Virtual Disk Records - again, just leave plenty of space.
1431 * This just lists VDs, doesn't give details
1432 * Config records - describes the VDs that use this disk
1433 * DiskData - describes 'this' device.
1434 * BadBlockManagement - empty
1435 * Diag Space - empty
1436 * Vendor Logs - Could we put bitmaps here?
1437 *
1438 */
1439 struct ddf_super *ddf;
1440 char hostname[17];
1441 int hostlen;
1442 int max_phys_disks, max_virt_disks;
1443 unsigned long long sector;
1444 int clen;
1445 int i;
1446 int pdsize, vdsize;
1447 struct phys_disk *pd;
1448 struct virtual_disk *vd;
1449
1450 if (!info) {
1451 st->sb = NULL;
1452 return 0;
1453 }
1454 if (st->sb)
1455 return init_super_ddf_bvd(st, info, size, name, homehost,
1456 uuid);
1457
1458 posix_memalign((void**)&ddf, 512, sizeof(*ddf));
1459 memset(ddf, 0, sizeof(*ddf));
1460 ddf->dlist = NULL; /* no physical disks yet */
1461 ddf->conflist = NULL; /* No virtual disks yet */
1462
1463 /* At least 32MB *must* be reserved for the ddf. So let's just
1464 * start 32MB from the end, and put the primary header there.
1465 * Don't do secondary for now.
1466 * We don't know exactly where that will be yet as it could be
1467 * different on each device. To just set up the lengths.
1468 *
1469 */
1470
1471 ddf->anchor.magic = DDF_HEADER_MAGIC;
1472 make_header_guid(ddf->anchor.guid);
1473
1474 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1475 ddf->anchor.seq = __cpu_to_be32(1);
1476 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1477 ddf->anchor.openflag = 0xFF;
1478 ddf->anchor.foreignflag = 0;
1479 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1480 ddf->anchor.pad0 = 0xff;
1481 memset(ddf->anchor.pad1, 0xff, 12);
1482 memset(ddf->anchor.header_ext, 0xff, 32);
1483 ddf->anchor.primary_lba = ~(__u64)0;
1484 ddf->anchor.secondary_lba = ~(__u64)0;
1485 ddf->anchor.type = DDF_HEADER_ANCHOR;
1486 memset(ddf->anchor.pad2, 0xff, 3);
1487 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1488 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1489 of 32M reserved.. */
1490 max_phys_disks = 1023; /* Should be enough */
1491 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1492 max_virt_disks = 255;
1493 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1494 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1495 ddf->max_part = 64;
1496 ddf->mppe = 256;
1497 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1498 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1499 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1500 memset(ddf->anchor.pad3, 0xff, 54);
1501 /* controller sections is one sector long immediately
1502 * after the ddf header */
1503 sector = 1;
1504 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1505 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1506 sector += 1;
1507
1508 /* phys is 8 sectors after that */
1509 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1510 sizeof(struct phys_disk_entry)*max_phys_disks,
1511 512);
1512 switch(pdsize/512) {
1513 case 2: case 8: case 32: case 128: case 512: break;
1514 default: abort();
1515 }
1516 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1517 ddf->anchor.phys_section_length =
1518 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1519 sector += pdsize/512;
1520
1521 /* virt is another 32 sectors */
1522 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1523 sizeof(struct virtual_entry) * max_virt_disks,
1524 512);
1525 switch(vdsize/512) {
1526 case 2: case 8: case 32: case 128: case 512: break;
1527 default: abort();
1528 }
1529 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1530 ddf->anchor.virt_section_length =
1531 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1532 sector += vdsize/512;
1533
1534 clen = ddf->conf_rec_len * (ddf->max_part+1);
1535 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1536 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1537 sector += clen;
1538
1539 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1540 ddf->anchor.data_section_length = __cpu_to_be32(1);
1541 sector += 1;
1542
1543 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1544 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1545 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1546 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1547 ddf->anchor.vendor_length = __cpu_to_be32(0);
1548 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1549
1550 memset(ddf->anchor.pad4, 0xff, 256);
1551
1552 memcpy(&ddf->primary, &ddf->anchor, 512);
1553 memcpy(&ddf->secondary, &ddf->anchor, 512);
1554
1555 ddf->primary.openflag = 1; /* I guess.. */
1556 ddf->primary.type = DDF_HEADER_PRIMARY;
1557
1558 ddf->secondary.openflag = 1; /* I guess.. */
1559 ddf->secondary.type = DDF_HEADER_SECONDARY;
1560
1561 ddf->active = &ddf->primary;
1562
1563 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1564
1565 /* 24 more bytes of fiction required.
1566 * first 8 are a 'vendor-id' - "Linux-MD"
1567 * Remaining 16 are serial number.... maybe a hostname would do?
1568 */
1569 memcpy(ddf->controller.guid, T10, sizeof(T10));
1570 gethostname(hostname, sizeof(hostname));
1571 hostname[sizeof(hostname) - 1] = 0;
1572 hostlen = strlen(hostname);
1573 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1574 for (i = strlen(T10) ; i+hostlen < 24; i++)
1575 ddf->controller.guid[i] = ' ';
1576
1577 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1578 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1579 ddf->controller.type.sub_vendor_id = 0;
1580 ddf->controller.type.sub_device_id = 0;
1581 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1582 memset(ddf->controller.pad, 0xff, 8);
1583 memset(ddf->controller.vendor_data, 0xff, 448);
1584
1585 posix_memalign((void**)&pd, 512, pdsize);
1586 ddf->phys = pd;
1587 ddf->pdsize = pdsize;
1588
1589 memset(pd, 0xff, pdsize);
1590 memset(pd, 0, sizeof(*pd));
1591 pd->magic = DDF_PHYS_DATA_MAGIC;
1592 pd->used_pdes = __cpu_to_be16(0);
1593 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1594 memset(pd->pad, 0xff, 52);
1595
1596 posix_memalign((void**)&vd, 512, vdsize);
1597 ddf->virt = vd;
1598 ddf->vdsize = vdsize;
1599 memset(vd, 0, vdsize);
1600 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1601 vd->populated_vdes = __cpu_to_be16(0);
1602 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1603 memset(vd->pad, 0xff, 52);
1604
1605 for (i=0; i<max_virt_disks; i++)
1606 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1607
1608 st->sb = ddf;
1609 ddf->updates_pending = 1;
1610 return 1;
1611 }
1612
1613 static int all_ff(char *guid)
1614 {
1615 int i;
1616 for (i = 0; i < DDF_GUID_LEN; i++)
1617 if (guid[i] != (char)0xff)
1618 return 0;
1619 return 1;
1620 }
1621 static int chunk_to_shift(int chunksize)
1622 {
1623 return ffs(chunksize/512)-1;
1624 }
1625
1626 static int level_to_prl(int level)
1627 {
1628 switch (level) {
1629 case LEVEL_LINEAR: return DDF_CONCAT;
1630 case 0: return DDF_RAID0;
1631 case 1: return DDF_RAID1;
1632 case 4: return DDF_RAID4;
1633 case 5: return DDF_RAID5;
1634 case 6: return DDF_RAID6;
1635 default: return -1;
1636 }
1637 }
1638 static int layout_to_rlq(int level, int layout, int raiddisks)
1639 {
1640 switch(level) {
1641 case 0:
1642 return DDF_RAID0_SIMPLE;
1643 case 1:
1644 switch(raiddisks) {
1645 case 2: return DDF_RAID1_SIMPLE;
1646 case 3: return DDF_RAID1_MULTI;
1647 default: return -1;
1648 }
1649 case 4:
1650 switch(layout) {
1651 case 0: return DDF_RAID4_N;
1652 }
1653 break;
1654 case 5:
1655 case 6:
1656 switch(layout) {
1657 case ALGORITHM_LEFT_ASYMMETRIC:
1658 return DDF_RAID5_N_RESTART;
1659 case ALGORITHM_RIGHT_ASYMMETRIC:
1660 if (level == 5)
1661 return DDF_RAID5_0_RESTART;
1662 else
1663 return DDF_RAID6_0_RESTART;
1664 case ALGORITHM_LEFT_SYMMETRIC:
1665 return DDF_RAID5_N_CONTINUE;
1666 case ALGORITHM_RIGHT_SYMMETRIC:
1667 return -1; /* not mentioned in standard */
1668 }
1669 }
1670 return -1;
1671 }
1672
1673 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1674 {
1675 switch(prl) {
1676 case DDF_RAID0:
1677 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1678 case DDF_RAID1:
1679 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1680 on raiddisks*/
1681 case DDF_RAID4:
1682 switch(rlq) {
1683 case DDF_RAID4_N:
1684 return 0;
1685 default:
1686 /* not supported */
1687 return -1; /* FIXME this isn't checked */
1688 }
1689 case DDF_RAID5:
1690 switch(rlq) {
1691 case DDF_RAID5_N_RESTART:
1692 return ALGORITHM_LEFT_ASYMMETRIC;
1693 case DDF_RAID5_0_RESTART:
1694 return ALGORITHM_RIGHT_ASYMMETRIC;
1695 case DDF_RAID5_N_CONTINUE:
1696 return ALGORITHM_LEFT_SYMMETRIC;
1697 default:
1698 return -1;
1699 }
1700 case DDF_RAID6:
1701 switch(rlq) {
1702 case DDF_RAID5_N_RESTART:
1703 return ALGORITHM_LEFT_ASYMMETRIC;
1704 case DDF_RAID6_0_RESTART:
1705 return ALGORITHM_RIGHT_ASYMMETRIC;
1706 case DDF_RAID5_N_CONTINUE:
1707 return ALGORITHM_LEFT_SYMMETRIC;
1708 default:
1709 return -1;
1710 }
1711 }
1712 return -1;
1713 }
1714
1715 struct extent {
1716 unsigned long long start, size;
1717 };
1718 static int cmp_extent(const void *av, const void *bv)
1719 {
1720 const struct extent *a = av;
1721 const struct extent *b = bv;
1722 if (a->start < b->start)
1723 return -1;
1724 if (a->start > b->start)
1725 return 1;
1726 return 0;
1727 }
1728
1729 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1730 {
1731 /* find a list of used extents on the give physical device
1732 * (dnum) of the given ddf.
1733 * Return a malloced array of 'struct extent'
1734
1735 FIXME ignore DDF_Legacy devices?
1736
1737 */
1738 struct extent *rv;
1739 int n = 0;
1740 int i, j;
1741
1742 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1743 if (!rv)
1744 return NULL;
1745
1746 for (i = 0; i < ddf->max_part; i++) {
1747 struct vcl *v = dl->vlist[i];
1748 if (v == NULL)
1749 continue;
1750 for (j=0; j < v->conf.prim_elmnt_count; j++)
1751 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1752 /* This device plays role 'j' in 'v'. */
1753 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1754 rv[n].size = __be64_to_cpu(v->conf.blocks);
1755 n++;
1756 break;
1757 }
1758 }
1759 qsort(rv, n, sizeof(*rv), cmp_extent);
1760
1761 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1762 rv[n].size = 0;
1763 return rv;
1764 }
1765
1766 static int init_super_ddf_bvd(struct supertype *st,
1767 mdu_array_info_t *info,
1768 unsigned long long size,
1769 char *name, char *homehost,
1770 int *uuid)
1771 {
1772 /* We are creating a BVD inside a pre-existing container.
1773 * so st->sb is already set.
1774 * We need to create a new vd_config and a new virtual_entry
1775 */
1776 struct ddf_super *ddf = st->sb;
1777 int venum;
1778 struct virtual_entry *ve;
1779 struct vcl *vcl;
1780 struct vd_config *vc;
1781
1782 if (__be16_to_cpu(ddf->virt->populated_vdes)
1783 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1784 fprintf(stderr, Name": This ddf already has the "
1785 "maximum of %d virtual devices\n",
1786 __be16_to_cpu(ddf->virt->max_vdes));
1787 return 0;
1788 }
1789
1790 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1791 if (all_ff(ddf->virt->entries[venum].guid))
1792 break;
1793 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1794 fprintf(stderr, Name ": Cannot find spare slot for "
1795 "virtual disk - DDF is corrupt\n");
1796 return 0;
1797 }
1798 ve = &ddf->virt->entries[venum];
1799
1800 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1801 * timestamp, random number
1802 */
1803 make_header_guid(ve->guid);
1804 ve->unit = __cpu_to_be16(info->md_minor);
1805 ve->pad0 = 0xFFFF;
1806 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1807 ve->type = 0;
1808 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1809 if (info->state & 1) /* clean */
1810 ve->init_state = DDF_init_full;
1811 else
1812 ve->init_state = DDF_init_not;
1813
1814 memset(ve->pad1, 0xff, 14);
1815 memset(ve->name, ' ', 16);
1816 if (name)
1817 strncpy(ve->name, name, 16);
1818 ddf->virt->populated_vdes =
1819 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1820
1821 /* Now create a new vd_config */
1822 posix_memalign((void**)&vcl, 512,
1823 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512));
1824 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1825 vcl->vcnum = venum;
1826 sprintf(st->subarray, "%d", venum);
1827 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1828
1829 vc = &vcl->conf;
1830
1831 vc->magic = DDF_VD_CONF_MAGIC;
1832 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1833 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1834 vc->seqnum = __cpu_to_be32(1);
1835 memset(vc->pad0, 0xff, 24);
1836 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1837 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1838 vc->prl = level_to_prl(info->level);
1839 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1840 vc->sec_elmnt_count = 1;
1841 vc->sec_elmnt_seq = 0;
1842 vc->srl = 0;
1843 vc->blocks = __cpu_to_be64(info->size * 2);
1844 vc->array_blocks = __cpu_to_be64(
1845 calc_array_size(info->level, info->raid_disks, info->layout,
1846 info->chunk_size, info->size*2));
1847 memset(vc->pad1, 0xff, 8);
1848 vc->spare_refs[0] = 0xffffffff;
1849 vc->spare_refs[1] = 0xffffffff;
1850 vc->spare_refs[2] = 0xffffffff;
1851 vc->spare_refs[3] = 0xffffffff;
1852 vc->spare_refs[4] = 0xffffffff;
1853 vc->spare_refs[5] = 0xffffffff;
1854 vc->spare_refs[6] = 0xffffffff;
1855 vc->spare_refs[7] = 0xffffffff;
1856 memset(vc->cache_pol, 0, 8);
1857 vc->bg_rate = 0x80;
1858 memset(vc->pad2, 0xff, 3);
1859 memset(vc->pad3, 0xff, 52);
1860 memset(vc->pad4, 0xff, 192);
1861 memset(vc->v0, 0xff, 32);
1862 memset(vc->v1, 0xff, 32);
1863 memset(vc->v2, 0xff, 16);
1864 memset(vc->v3, 0xff, 16);
1865 memset(vc->vendor, 0xff, 32);
1866
1867 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1868 memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1869
1870 vcl->next = ddf->conflist;
1871 ddf->conflist = vcl;
1872 ddf->currentconf = vcl;
1873 ddf->updates_pending = 1;
1874 return 1;
1875 }
1876
1877 static void add_to_super_ddf_bvd(struct supertype *st,
1878 mdu_disk_info_t *dk, int fd, char *devname)
1879 {
1880 /* fd and devname identify a device with-in the ddf container (st).
1881 * dk identifies a location in the new BVD.
1882 * We need to find suitable free space in that device and update
1883 * the phys_refnum and lba_offset for the newly created vd_config.
1884 * We might also want to update the type in the phys_disk
1885 * section.
1886 */
1887 struct dl *dl;
1888 struct ddf_super *ddf = st->sb;
1889 struct vd_config *vc;
1890 __u64 *lba_offset;
1891 int working;
1892 int i;
1893 unsigned long long blocks, pos, esize;
1894 struct extent *ex;
1895
1896 for (dl = ddf->dlist; dl ; dl = dl->next)
1897 if (dl->major == dk->major &&
1898 dl->minor == dk->minor)
1899 break;
1900 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1901 return;
1902
1903 vc = &ddf->currentconf->conf;
1904 lba_offset = ddf->currentconf->lba_offset;
1905
1906 ex = get_extents(ddf, dl);
1907 if (!ex)
1908 return;
1909
1910 i = 0; pos = 0;
1911 blocks = __be64_to_cpu(vc->blocks);
1912 if (ddf->currentconf->block_sizes)
1913 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1914
1915 do {
1916 esize = ex[i].start - pos;
1917 if (esize >= blocks)
1918 break;
1919 pos = ex[i].start + ex[i].size;
1920 i++;
1921 } while (ex[i-1].size);
1922
1923 free(ex);
1924 if (esize < blocks)
1925 return;
1926
1927 ddf->currentdev = dk->raid_disk;
1928 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1929 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1930
1931 for (i=0; i < ddf->max_part ; i++)
1932 if (dl->vlist[i] == NULL)
1933 break;
1934 if (i == ddf->max_part)
1935 return;
1936 dl->vlist[i] = ddf->currentconf;
1937
1938 dl->fd = fd;
1939 dl->devname = devname;
1940
1941 /* Check how many working raid_disks, and if we can mark
1942 * array as optimal yet
1943 */
1944 working = 0;
1945
1946 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1947 if (vc->phys_refnum[i] != 0xffffffff)
1948 working++;
1949
1950 /* Find which virtual_entry */
1951 i = ddf->currentconf->vcnum;
1952 if (working == __be16_to_cpu(vc->prim_elmnt_count))
1953 ddf->virt->entries[i].state =
1954 (ddf->virt->entries[i].state & ~DDF_state_mask)
1955 | DDF_state_optimal;
1956
1957 if (vc->prl == DDF_RAID6 &&
1958 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1959 ddf->virt->entries[i].state =
1960 (ddf->virt->entries[i].state & ~DDF_state_mask)
1961 | DDF_state_part_optimal;
1962
1963 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1964 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1965 ddf->updates_pending = 1;
1966 }
1967
1968 /* add a device to a container, either while creating it or while
1969 * expanding a pre-existing container
1970 */
1971 static void add_to_super_ddf(struct supertype *st,
1972 mdu_disk_info_t *dk, int fd, char *devname)
1973 {
1974 struct ddf_super *ddf = st->sb;
1975 struct dl *dd;
1976 time_t now;
1977 struct tm *tm;
1978 unsigned long long size;
1979 struct phys_disk_entry *pde;
1980 int n, i;
1981 struct stat stb;
1982
1983 if (ddf->currentconf) {
1984 add_to_super_ddf_bvd(st, dk, fd, devname);
1985 return;
1986 }
1987
1988 /* This is device numbered dk->number. We need to create
1989 * a phys_disk entry and a more detailed disk_data entry.
1990 */
1991 fstat(fd, &stb);
1992 posix_memalign((void**)&dd, 512,
1993 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
1994 dd->major = major(stb.st_rdev);
1995 dd->minor = minor(stb.st_rdev);
1996 dd->devname = devname;
1997 dd->next = ddf->dlist;
1998 dd->fd = fd;
1999 dd->spare = NULL;
2000
2001 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2002 now = time(0);
2003 tm = localtime(&now);
2004 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2005 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2006 *(__u32*)(dd->disk.guid + 16) = random();
2007 *(__u32*)(dd->disk.guid + 20) = random();
2008
2009 do {
2010 /* Cannot be bothered finding a CRC of some irrelevant details*/
2011 dd->disk.refnum = random();
2012 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2013 i >= 0; i--)
2014 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2015 break;
2016 } while (i >= 0);
2017
2018 dd->disk.forced_ref = 1;
2019 dd->disk.forced_guid = 1;
2020 memset(dd->disk.vendor, ' ', 32);
2021 memcpy(dd->disk.vendor, "Linux", 5);
2022 memset(dd->disk.pad, 0xff, 442);
2023 for (i = 0; i < ddf->max_part ; i++)
2024 dd->vlist[i] = NULL;
2025
2026 n = __be16_to_cpu(ddf->phys->used_pdes);
2027 pde = &ddf->phys->entries[n];
2028 dd->pdnum = n;
2029
2030 n++;
2031 ddf->phys->used_pdes = __cpu_to_be16(n);
2032
2033 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2034 pde->refnum = dd->disk.refnum;
2035 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2036 pde->state = __cpu_to_be16(DDF_Online);
2037 get_dev_size(fd, NULL, &size);
2038 /* We are required to reserve 32Meg, and record the size in sectors */
2039 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2040 sprintf(pde->path, "%17.17s","Information: nil") ;
2041 memset(pde->pad, 0xff, 6);
2042
2043 dd->size = size >> 9;
2044 ddf->dlist = dd;
2045 ddf->updates_pending = 1;
2046 }
2047
2048 /*
2049 * This is the write_init_super method for a ddf container. It is
2050 * called when creating a container or adding another device to a
2051 * container.
2052 */
2053
2054 #ifndef MDASSEMBLE
2055
2056 static unsigned char null_conf[4096+512];
2057
2058 static int __write_init_super_ddf(struct supertype *st, int do_close)
2059 {
2060
2061 struct ddf_super *ddf = st->sb;
2062 int i;
2063 struct dl *d;
2064 int n_config;
2065 int conf_size;
2066
2067 unsigned long long size, sector;
2068
2069 for (d = ddf->dlist; d; d=d->next) {
2070 int fd = d->fd;
2071
2072 if (fd < 0)
2073 continue;
2074
2075 /* We need to fill in the primary, (secondary) and workspace
2076 * lba's in the headers, set their checksums,
2077 * Also checksum phys, virt....
2078 *
2079 * Then write everything out, finally the anchor is written.
2080 */
2081 get_dev_size(fd, NULL, &size);
2082 size /= 512;
2083 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2084 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2085 ddf->anchor.seq = __cpu_to_be32(1);
2086 memcpy(&ddf->primary, &ddf->anchor, 512);
2087 memcpy(&ddf->secondary, &ddf->anchor, 512);
2088
2089 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2090 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2091 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2092
2093 ddf->primary.openflag = 0;
2094 ddf->primary.type = DDF_HEADER_PRIMARY;
2095
2096 ddf->secondary.openflag = 0;
2097 ddf->secondary.type = DDF_HEADER_SECONDARY;
2098
2099 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2100 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2101
2102 sector = size - 16*1024*2;
2103 lseek64(fd, sector<<9, 0);
2104 write(fd, &ddf->primary, 512);
2105
2106 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2107 write(fd, &ddf->controller, 512);
2108
2109 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2110
2111 write(fd, ddf->phys, ddf->pdsize);
2112
2113 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2114 write(fd, ddf->virt, ddf->vdsize);
2115
2116 /* Now write lots of config records. */
2117 n_config = ddf->max_part;
2118 conf_size = ddf->conf_rec_len * 512;
2119 for (i = 0 ; i <= n_config ; i++) {
2120 struct vcl *c = d->vlist[i];
2121 if (i == n_config)
2122 c = (struct vcl*)d->spare;
2123
2124 if (c) {
2125 c->conf.crc = calc_crc(&c->conf, conf_size);
2126 write(fd, &c->conf, conf_size);
2127 } else {
2128 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2129 if (null_conf[0] != 0xff)
2130 memset(null_conf, 0xff, sizeof(null_conf));
2131 int togo = conf_size;
2132 while (togo > sizeof(null_conf)-512) {
2133 write(fd, null_aligned, sizeof(null_conf)-512);
2134 togo -= sizeof(null_conf)-512;
2135 }
2136 write(fd, null_aligned, togo);
2137 }
2138 }
2139 d->disk.crc = calc_crc(&d->disk, 512);
2140 write(fd, &d->disk, 512);
2141
2142 /* Maybe do the same for secondary */
2143
2144 lseek64(fd, (size-1)*512, SEEK_SET);
2145 write(fd, &ddf->anchor, 512);
2146 if (do_close) {
2147 close(fd);
2148 d->fd = -1;
2149 }
2150 }
2151 return 1;
2152 }
2153
2154 static int write_init_super_ddf(struct supertype *st)
2155 {
2156
2157 if (st->update_tail) {
2158 /* queue the virtual_disk and vd_config as metadata updates */
2159 struct virtual_disk *vd;
2160 struct vd_config *vc;
2161 struct ddf_super *ddf = st->sb;
2162 int len;
2163
2164 /* First the virtual disk. We have a slightly fake header */
2165 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2166 vd = malloc(len);
2167 *vd = *ddf->virt;
2168 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2169 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2170 append_metadata_update(st, vd, len);
2171
2172 /* Then the vd_config */
2173 len = ddf->conf_rec_len * 512;
2174 vc = malloc(len);
2175 memcpy(vc, &ddf->currentconf->conf, len);
2176 append_metadata_update(st, vc, len);
2177
2178 /* FIXME I need to close the fds! */
2179 return 0;
2180 } else
2181 return __write_init_super_ddf(st, 1);
2182 }
2183
2184 #endif
2185
2186 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2187 {
2188 /* We must reserve the last 32Meg */
2189 if (devsize <= 32*1024*2)
2190 return 0;
2191 return devsize - 32*1024*2;
2192 }
2193
2194 #ifndef MDASSEMBLE
2195 static int
2196 validate_geometry_ddf_container(struct supertype *st,
2197 int level, int layout, int raiddisks,
2198 int chunk, unsigned long long size,
2199 char *dev, unsigned long long *freesize,
2200 int verbose);
2201
2202 static int validate_geometry_ddf_bvd(struct supertype *st,
2203 int level, int layout, int raiddisks,
2204 int chunk, unsigned long long size,
2205 char *dev, unsigned long long *freesize,
2206 int verbose);
2207
2208 static int validate_geometry_ddf(struct supertype *st,
2209 int level, int layout, int raiddisks,
2210 int chunk, unsigned long long size,
2211 char *dev, unsigned long long *freesize,
2212 int verbose)
2213 {
2214 int fd;
2215 struct mdinfo *sra;
2216 int cfd;
2217
2218 /* ddf potentially supports lots of things, but it depends on
2219 * what devices are offered (and maybe kernel version?)
2220 * If given unused devices, we will make a container.
2221 * If given devices in a container, we will make a BVD.
2222 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2223 */
2224
2225 if (level == LEVEL_CONTAINER) {
2226 /* Must be a fresh device to add to a container */
2227 return validate_geometry_ddf_container(st, level, layout,
2228 raiddisks, chunk,
2229 size, dev, freesize,
2230 verbose);
2231 }
2232
2233 if (st->sb) {
2234 /* A container has already been opened, so we are
2235 * creating in there. Maybe a BVD, maybe an SVD.
2236 * Should make a distinction one day.
2237 */
2238 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2239 chunk, size, dev, freesize,
2240 verbose);
2241 }
2242 if (!dev) {
2243 /* Initial sanity check. Exclude illegal levels. */
2244 int i;
2245 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2246 if (ddf_level_num[i].num2 == level)
2247 break;
2248 if (ddf_level_num[i].num1 == MAXINT)
2249 return 0;
2250 /* Should check layout? etc */
2251 return 1;
2252 }
2253
2254 /* This is the first device for the array.
2255 * If it is a container, we read it in and do automagic allocations,
2256 * no other devices should be given.
2257 * Otherwise it must be a member device of a container, and we
2258 * do manual allocation.
2259 * Later we should check for a BVD and make an SVD.
2260 */
2261 fd = open(dev, O_RDONLY|O_EXCL, 0);
2262 if (fd >= 0) {
2263 sra = sysfs_read(fd, 0, GET_VERSION);
2264 close(fd);
2265 if (sra && sra->array.major_version == -1 &&
2266 strcmp(sra->text_version, "ddf") == 0) {
2267
2268 /* load super */
2269 /* find space for 'n' devices. */
2270 /* remember the devices */
2271 /* Somehow return the fact that we have enough */
2272 }
2273
2274 if (verbose)
2275 fprintf(stderr,
2276 Name ": ddf: Cannot create this array "
2277 "on device %s\n",
2278 dev);
2279 return 0;
2280 }
2281 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2282 if (verbose)
2283 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2284 dev, strerror(errno));
2285 return 0;
2286 }
2287 /* Well, it is in use by someone, maybe a 'ddf' container. */
2288 cfd = open_container(fd);
2289 if (cfd < 0) {
2290 close(fd);
2291 if (verbose)
2292 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2293 dev, strerror(EBUSY));
2294 return 0;
2295 }
2296 sra = sysfs_read(cfd, 0, GET_VERSION);
2297 close(fd);
2298 if (sra && sra->array.major_version == -1 &&
2299 strcmp(sra->text_version, "ddf") == 0) {
2300 /* This is a member of a ddf container. Load the container
2301 * and try to create a bvd
2302 */
2303 struct ddf_super *ddf;
2304 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2305 st->sb = ddf;
2306 st->container_dev = fd2devnum(cfd);
2307 close(cfd);
2308 return validate_geometry_ddf_bvd(st, level, layout,
2309 raiddisks, chunk, size,
2310 dev, freesize,
2311 verbose);
2312 }
2313 close(cfd);
2314 } else /* device may belong to a different container */
2315 return 0;
2316
2317 return 1;
2318 }
2319
2320 static int
2321 validate_geometry_ddf_container(struct supertype *st,
2322 int level, int layout, int raiddisks,
2323 int chunk, unsigned long long size,
2324 char *dev, unsigned long long *freesize,
2325 int verbose)
2326 {
2327 int fd;
2328 unsigned long long ldsize;
2329
2330 if (level != LEVEL_CONTAINER)
2331 return 0;
2332 if (!dev)
2333 return 1;
2334
2335 fd = open(dev, O_RDONLY|O_EXCL, 0);
2336 if (fd < 0) {
2337 if (verbose)
2338 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2339 dev, strerror(errno));
2340 return 0;
2341 }
2342 if (!get_dev_size(fd, dev, &ldsize)) {
2343 close(fd);
2344 return 0;
2345 }
2346 close(fd);
2347
2348 *freesize = avail_size_ddf(st, ldsize >> 9);
2349
2350 return 1;
2351 }
2352
2353 static int validate_geometry_ddf_bvd(struct supertype *st,
2354 int level, int layout, int raiddisks,
2355 int chunk, unsigned long long size,
2356 char *dev, unsigned long long *freesize,
2357 int verbose)
2358 {
2359 struct stat stb;
2360 struct ddf_super *ddf = st->sb;
2361 struct dl *dl;
2362 unsigned long long pos = 0;
2363 unsigned long long maxsize;
2364 struct extent *e;
2365 int i;
2366 /* ddf/bvd supports lots of things, but not containers */
2367 if (level == LEVEL_CONTAINER)
2368 return 0;
2369 /* We must have the container info already read in. */
2370 if (!ddf)
2371 return 0;
2372
2373 if (!dev) {
2374 /* General test: make sure there is space for
2375 * 'raiddisks' device extents of size 'size'.
2376 */
2377 unsigned long long minsize = size;
2378 int dcnt = 0;
2379 if (minsize == 0)
2380 minsize = 8;
2381 for (dl = ddf->dlist; dl ; dl = dl->next)
2382 {
2383 int found = 0;
2384 pos = 0;
2385
2386 i = 0;
2387 e = get_extents(ddf, dl);
2388 if (!e) continue;
2389 do {
2390 unsigned long long esize;
2391 esize = e[i].start - pos;
2392 if (esize >= minsize)
2393 found = 1;
2394 pos = e[i].start + e[i].size;
2395 i++;
2396 } while (e[i-1].size);
2397 if (found)
2398 dcnt++;
2399 free(e);
2400 }
2401 if (dcnt < raiddisks) {
2402 if (verbose)
2403 fprintf(stderr,
2404 Name ": ddf: Not enough devices with "
2405 "space for this array (%d < %d)\n",
2406 dcnt, raiddisks);
2407 return 0;
2408 }
2409 return 1;
2410 }
2411 /* This device must be a member of the set */
2412 if (stat(dev, &stb) < 0)
2413 return 0;
2414 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2415 return 0;
2416 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2417 if (dl->major == major(stb.st_rdev) &&
2418 dl->minor == minor(stb.st_rdev))
2419 break;
2420 }
2421 if (!dl) {
2422 if (verbose)
2423 fprintf(stderr, Name ": ddf: %s is not in the "
2424 "same DDF set\n",
2425 dev);
2426 return 0;
2427 }
2428 e = get_extents(ddf, dl);
2429 maxsize = 0;
2430 i = 0;
2431 if (e) do {
2432 unsigned long long esize;
2433 esize = e[i].start - pos;
2434 if (esize >= maxsize)
2435 maxsize = esize;
2436 pos = e[i].start + e[i].size;
2437 i++;
2438 } while (e[i-1].size);
2439 *freesize = maxsize;
2440 // FIXME here I am
2441
2442 return 1;
2443 }
2444
2445 static int load_super_ddf_all(struct supertype *st, int fd,
2446 void **sbp, char *devname, int keep_fd)
2447 {
2448 struct mdinfo *sra;
2449 struct ddf_super *super;
2450 struct mdinfo *sd, *best = NULL;
2451 int bestseq = 0;
2452 int seq;
2453 char nm[20];
2454 int dfd;
2455
2456 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2457 if (!sra)
2458 return 1;
2459 if (sra->array.major_version != -1 ||
2460 sra->array.minor_version != -2 ||
2461 strcmp(sra->text_version, "ddf") != 0)
2462 return 1;
2463
2464 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2465 return 1;
2466 memset(super, 0, sizeof(*super));
2467
2468 /* first, try each device, and choose the best ddf */
2469 for (sd = sra->devs ; sd ; sd = sd->next) {
2470 int rv;
2471 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2472 dfd = dev_open(nm, O_RDONLY);
2473 if (dfd < 0)
2474 return 2;
2475 rv = load_ddf_headers(dfd, super, NULL);
2476 close(dfd);
2477 if (rv == 0) {
2478 seq = __be32_to_cpu(super->active->seq);
2479 if (super->active->openflag)
2480 seq--;
2481 if (!best || seq > bestseq) {
2482 bestseq = seq;
2483 best = sd;
2484 }
2485 }
2486 }
2487 if (!best)
2488 return 1;
2489 /* OK, load this ddf */
2490 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2491 dfd = dev_open(nm, O_RDONLY);
2492 if (dfd < 0)
2493 return 1;
2494 load_ddf_headers(dfd, super, NULL);
2495 load_ddf_global(dfd, super, NULL);
2496 close(dfd);
2497 /* Now we need the device-local bits */
2498 for (sd = sra->devs ; sd ; sd = sd->next) {
2499 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2500 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2501 if (dfd < 0)
2502 return 2;
2503 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2504 if (!keep_fd) close(dfd);
2505 }
2506 if (st->subarray[0]) {
2507 struct vcl *v;
2508
2509 for (v = super->conflist; v; v = v->next)
2510 if (v->vcnum == atoi(st->subarray))
2511 super->currentconf = v;
2512 if (!super->currentconf)
2513 return 1;
2514 }
2515 *sbp = super;
2516 if (st->ss == NULL) {
2517 st->ss = &super_ddf;
2518 st->minor_version = 0;
2519 st->max_devs = 512;
2520 st->container_dev = fd2devnum(fd);
2521 }
2522 return 0;
2523 }
2524 #endif
2525
2526 static struct mdinfo *container_content_ddf(struct supertype *st)
2527 {
2528 /* Given a container loaded by load_super_ddf_all,
2529 * extract information about all the arrays into
2530 * an mdinfo tree.
2531 *
2532 * For each vcl in conflist: create an mdinfo, fill it in,
2533 * then look for matching devices (phys_refnum) in dlist
2534 * and create appropriate device mdinfo.
2535 */
2536 struct ddf_super *ddf = st->sb;
2537 struct mdinfo *rest = NULL;
2538 struct vcl *vc;
2539
2540 for (vc = ddf->conflist ; vc ; vc=vc->next)
2541 {
2542 int i;
2543 struct mdinfo *this;
2544 this = malloc(sizeof(*this));
2545 memset(this, 0, sizeof(*this));
2546 this->next = rest;
2547 rest = this;
2548
2549 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2550 this->array.raid_disks =
2551 __be16_to_cpu(vc->conf.prim_elmnt_count);
2552 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2553 this->array.raid_disks);
2554 this->array.md_minor = -1;
2555 this->array.ctime = DECADE +
2556 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2557 this->array.utime = DECADE +
2558 __be32_to_cpu(vc->conf.timestamp);
2559 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2560
2561 i = vc->vcnum;
2562 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2563 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2564 DDF_init_full) {
2565 this->array.state = 0;
2566 this->resync_start = 0;
2567 } else {
2568 this->array.state = 1;
2569 this->resync_start = ~0ULL;
2570 }
2571 memcpy(this->name, ddf->virt->entries[i].name, 32);
2572 this->name[33]=0;
2573
2574 memset(this->uuid, 0, sizeof(this->uuid));
2575 this->component_size = __be64_to_cpu(vc->conf.blocks);
2576 this->array.size = this->component_size / 2;
2577 this->container_member = i;
2578
2579 sprintf(this->text_version, "/%s/%d",
2580 devnum2devname(st->container_dev),
2581 this->container_member);
2582
2583 for (i=0 ; i < ddf->mppe ; i++) {
2584 struct mdinfo *dev;
2585 struct dl *d;
2586
2587 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2588 continue;
2589
2590 this->array.working_disks++;
2591
2592 for (d = ddf->dlist; d ; d=d->next)
2593 if (d->disk.refnum == vc->conf.phys_refnum[i])
2594 break;
2595 if (d == NULL)
2596 break;
2597
2598 dev = malloc(sizeof(*dev));
2599 memset(dev, 0, sizeof(*dev));
2600 dev->next = this->devs;
2601 this->devs = dev;
2602
2603 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2604 dev->disk.major = d->major;
2605 dev->disk.minor = d->minor;
2606 dev->disk.raid_disk = i;
2607 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2608
2609 dev->events = __be32_to_cpu(ddf->primary.seq);
2610 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2611 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2612 if (d->devname)
2613 strcpy(dev->name, d->devname);
2614 }
2615 }
2616 return rest;
2617 }
2618
2619 static int store_zero_ddf(struct supertype *st, int fd)
2620 {
2621 unsigned long long dsize;
2622 void *buf;
2623
2624 if (!get_dev_size(fd, NULL, &dsize))
2625 return 1;
2626
2627 posix_memalign(&buf, 512, 512);
2628 memset(buf, 0, 512);
2629
2630 lseek64(fd, dsize-512, 0);
2631 write(fd, buf, 512);
2632 free(buf);
2633 return 0;
2634 }
2635
2636 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2637 {
2638 /*
2639 * return:
2640 * 0 same, or first was empty, and second was copied
2641 * 1 second had wrong number
2642 * 2 wrong uuid
2643 * 3 wrong other info
2644 */
2645 struct ddf_super *first = st->sb;
2646 struct ddf_super *second = tst->sb;
2647
2648 if (!first) {
2649 st->sb = tst->sb;
2650 tst->sb = NULL;
2651 return 0;
2652 }
2653
2654 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2655 return 2;
2656
2657 /* FIXME should I look at anything else? */
2658 return 0;
2659 }
2660
2661 /*
2662 * A new array 'a' has been started which claims to be instance 'inst'
2663 * within container 'c'.
2664 * We need to confirm that the array matches the metadata in 'c' so
2665 * that we don't corrupt any metadata.
2666 */
2667 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2668 {
2669 dprintf("ddf: open_new %s\n", inst);
2670 a->info.container_member = atoi(inst);
2671 return 0;
2672 }
2673
2674 /*
2675 * The array 'a' is to be marked clean in the metadata.
2676 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2677 * clean up to the point (in sectors). If that cannot be recorded in the
2678 * metadata, then leave it as dirty.
2679 *
2680 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2681 * !global! virtual_disk.virtual_entry structure.
2682 */
2683 static void ddf_set_array_state(struct active_array *a, int consistent)
2684 {
2685 struct ddf_super *ddf = a->container->sb;
2686 int inst = a->info.container_member;
2687 int old = ddf->virt->entries[inst].state;
2688 if (consistent)
2689 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2690 else
2691 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2692 if (old != ddf->virt->entries[inst].state)
2693 ddf->updates_pending = 1;
2694
2695 old = ddf->virt->entries[inst].init_state;
2696 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2697 if (a->resync_start == ~0ULL)
2698 ddf->virt->entries[inst].init_state |= DDF_init_full;
2699 else if (a->resync_start == 0)
2700 ddf->virt->entries[inst].init_state |= DDF_init_not;
2701 else
2702 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2703 if (old != ddf->virt->entries[inst].init_state)
2704 ddf->updates_pending = 1;
2705
2706 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
2707 a->resync_start);
2708 }
2709
2710 /*
2711 * The state of each disk is stored in the global phys_disk structure
2712 * in phys_disk.entries[n].state.
2713 * This makes various combinations awkward.
2714 * - When a device fails in any array, it must be failed in all arrays
2715 * that include a part of this device.
2716 * - When a component is rebuilding, we cannot include it officially in the
2717 * array unless this is the only array that uses the device.
2718 *
2719 * So: when transitioning:
2720 * Online -> failed, just set failed flag. monitor will propagate
2721 * spare -> online, the device might need to be added to the array.
2722 * spare -> failed, just set failed. Don't worry if in array or not.
2723 */
2724 static void ddf_set_disk(struct active_array *a, int n, int state)
2725 {
2726 struct ddf_super *ddf = a->container->sb;
2727 int inst = a->info.container_member;
2728 struct vd_config *vc = find_vdcr(ddf, inst);
2729 int pd = find_phys(ddf, vc->phys_refnum[n]);
2730 int i, st, working;
2731
2732 if (vc == NULL) {
2733 dprintf("ddf: cannot find instance %d!!\n", inst);
2734 return;
2735 }
2736 if (pd < 0) {
2737 /* disk doesn't currently exist. If it is now in_sync,
2738 * insert it. */
2739 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2740 /* Find dev 'n' in a->info->devs, determine the
2741 * ddf refnum, and set vc->phys_refnum and update
2742 * phys->entries[]
2743 */
2744 /* FIXME */
2745 }
2746 } else {
2747 int old = ddf->phys->entries[pd].state;
2748 if (state & DS_FAULTY)
2749 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
2750 if (state & DS_INSYNC) {
2751 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
2752 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
2753 }
2754 if (old != ddf->phys->entries[pd].state)
2755 ddf->updates_pending = 1;
2756 }
2757
2758 dprintf("ddf: set_disk %d to %x\n", n, state);
2759
2760 /* Now we need to check the state of the array and update
2761 * virtual_disk.entries[n].state.
2762 * It needs to be one of "optimal", "degraded", "failed".
2763 * I don't understand 'deleted' or 'missing'.
2764 */
2765 working = 0;
2766 for (i=0; i < a->info.array.raid_disks; i++) {
2767 pd = find_phys(ddf, vc->phys_refnum[i]);
2768 if (pd < 0)
2769 continue;
2770 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2771 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2772 == DDF_Online)
2773 working++;
2774 }
2775 state = DDF_state_degraded;
2776 if (working == a->info.array.raid_disks)
2777 state = DDF_state_optimal;
2778 else switch(vc->prl) {
2779 case DDF_RAID0:
2780 case DDF_CONCAT:
2781 case DDF_JBOD:
2782 state = DDF_state_failed;
2783 break;
2784 case DDF_RAID1:
2785 if (working == 0)
2786 state = DDF_state_failed;
2787 break;
2788 case DDF_RAID4:
2789 case DDF_RAID5:
2790 if (working < a->info.array.raid_disks-1)
2791 state = DDF_state_failed;
2792 break;
2793 case DDF_RAID6:
2794 if (working < a->info.array.raid_disks-2)
2795 state = DDF_state_failed;
2796 else if (working == a->info.array.raid_disks-1)
2797 state = DDF_state_part_optimal;
2798 break;
2799 }
2800
2801 if (ddf->virt->entries[inst].state !=
2802 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
2803 | state)) {
2804
2805 ddf->virt->entries[inst].state =
2806 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2807 | state;
2808 ddf->updates_pending = 1;
2809 }
2810
2811 }
2812
2813 static void ddf_sync_metadata(struct supertype *st)
2814 {
2815
2816 /*
2817 * Write all data to all devices.
2818 * Later, we might be able to track whether only local changes
2819 * have been made, or whether any global data has been changed,
2820 * but ddf is sufficiently weird that it probably always
2821 * changes global data ....
2822 */
2823 struct ddf_super *ddf = st->sb;
2824 if (!ddf->updates_pending)
2825 return;
2826 ddf->updates_pending = 0;
2827 __write_init_super_ddf(st, 0);
2828 dprintf("ddf: sync_metadata\n");
2829 }
2830
2831 static void ddf_process_update(struct supertype *st,
2832 struct metadata_update *update)
2833 {
2834 /* Apply this update to the metadata.
2835 * The first 4 bytes are a DDF_*_MAGIC which guides
2836 * our actions.
2837 * Possible update are:
2838 * DDF_PHYS_RECORDS_MAGIC
2839 * Add a new physical device. Changes to this record
2840 * only happen implicitly.
2841 * used_pdes is the device number.
2842 * DDF_VIRT_RECORDS_MAGIC
2843 * Add a new VD. Possibly also change the 'access' bits.
2844 * populated_vdes is the entry number.
2845 * DDF_VD_CONF_MAGIC
2846 * New or updated VD. the VIRT_RECORD must already
2847 * exist. For an update, phys_refnum and lba_offset
2848 * (at least) are updated, and the VD_CONF must
2849 * be written to precisely those devices listed with
2850 * a phys_refnum.
2851 * DDF_SPARE_ASSIGN_MAGIC
2852 * replacement Spare Assignment Record... but for which device?
2853 *
2854 * So, e.g.:
2855 * - to create a new array, we send a VIRT_RECORD and
2856 * a VD_CONF. Then assemble and start the array.
2857 * - to activate a spare we send a VD_CONF to add the phys_refnum
2858 * and offset. This will also mark the spare as active with
2859 * a spare-assignment record.
2860 */
2861 struct ddf_super *ddf = st->sb;
2862 __u32 *magic = (__u32*)update->buf;
2863 struct phys_disk *pd;
2864 struct virtual_disk *vd;
2865 struct vd_config *vc;
2866 struct vcl *vcl;
2867 struct dl *dl;
2868 int mppe;
2869 int ent;
2870
2871 dprintf("Process update %x\n", *magic);
2872
2873 switch (*magic) {
2874 case DDF_PHYS_RECORDS_MAGIC:
2875
2876 if (update->len != (sizeof(struct phys_disk) +
2877 sizeof(struct phys_disk_entry)))
2878 return;
2879 pd = (struct phys_disk*)update->buf;
2880
2881 ent = __be16_to_cpu(pd->used_pdes);
2882 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2883 return;
2884 if (!all_ff(ddf->phys->entries[ent].guid))
2885 return;
2886 ddf->phys->entries[ent] = pd->entries[0];
2887 ddf->phys->used_pdes = __cpu_to_be16(1 +
2888 __be16_to_cpu(ddf->phys->used_pdes));
2889 ddf->updates_pending = 1;
2890 break;
2891
2892 case DDF_VIRT_RECORDS_MAGIC:
2893
2894 if (update->len != (sizeof(struct virtual_disk) +
2895 sizeof(struct virtual_entry)))
2896 return;
2897 vd = (struct virtual_disk*)update->buf;
2898
2899 ent = __be16_to_cpu(vd->populated_vdes);
2900 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2901 return;
2902 if (!all_ff(ddf->virt->entries[ent].guid))
2903 return;
2904 ddf->virt->entries[ent] = vd->entries[0];
2905 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2906 __be16_to_cpu(ddf->virt->populated_vdes));
2907 ddf->updates_pending = 1;
2908 break;
2909
2910 case DDF_VD_CONF_MAGIC:
2911 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
2912
2913 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2914 if (update->len != ddf->conf_rec_len * 512)
2915 return;
2916 vc = (struct vd_config*)update->buf;
2917 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2918 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2919 break;
2920 dprintf("vcl = %p\n", vcl);
2921 if (vcl) {
2922 /* An update, just copy the phys_refnum and lba_offset
2923 * fields
2924 */
2925 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2926 mppe * (sizeof(__u32) + sizeof(__u64)));
2927 } else {
2928 /* A new VD_CONF */
2929 vcl = update->space;
2930 update->space = NULL;
2931 vcl->next = ddf->conflist;
2932 memcpy(&vcl->conf, vc, update->len);
2933 vcl->lba_offset = (__u64*)
2934 &vcl->conf.phys_refnum[mppe];
2935 ddf->conflist = vcl;
2936 }
2937 /* Now make sure vlist is correct for each dl. */
2938 for (dl = ddf->dlist; dl; dl = dl->next) {
2939 int dn;
2940 int vn = 0;
2941 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2942 for (dn=0; dn < ddf->mppe ; dn++)
2943 if (vcl->conf.phys_refnum[dn] ==
2944 dl->disk.refnum) {
2945 dprintf("dev %d has %p at %d\n",
2946 dl->pdnum, vcl, vn);
2947 dl->vlist[vn++] = vcl;
2948 break;
2949 }
2950 while (vn < ddf->max_part)
2951 dl->vlist[vn++] = NULL;
2952 if (dl->vlist[0]) {
2953 ddf->phys->entries[dl->pdnum].type &=
2954 ~__cpu_to_be16(DDF_Global_Spare);
2955 ddf->phys->entries[dl->pdnum].type |=
2956 __cpu_to_be16(DDF_Active_in_VD);
2957 }
2958 if (dl->spare) {
2959 ddf->phys->entries[dl->pdnum].type &=
2960 ~__cpu_to_be16(DDF_Global_Spare);
2961 ddf->phys->entries[dl->pdnum].type |=
2962 __cpu_to_be16(DDF_Spare);
2963 }
2964 if (!dl->vlist[0] && !dl->spare) {
2965 ddf->phys->entries[dl->pdnum].type |=
2966 __cpu_to_be16(DDF_Global_Spare);
2967 ddf->phys->entries[dl->pdnum].type &=
2968 ~__cpu_to_be16(DDF_Spare |
2969 DDF_Active_in_VD);
2970 }
2971 }
2972 ddf->updates_pending = 1;
2973 break;
2974 case DDF_SPARE_ASSIGN_MAGIC:
2975 default: break;
2976 }
2977 }
2978
2979 static void ddf_prepare_update(struct supertype *st,
2980 struct metadata_update *update)
2981 {
2982 /* This update arrived at managemon.
2983 * We are about to pass it to monitor.
2984 * If a malloc is needed, do it here.
2985 */
2986 struct ddf_super *ddf = st->sb;
2987 __u32 *magic = (__u32*)update->buf;
2988 if (*magic == DDF_VD_CONF_MAGIC)
2989 posix_memalign(&update->space, 512,
2990 offsetof(struct vcl, conf)
2991 + ddf->conf_rec_len * 512);
2992 }
2993
2994 /*
2995 * Check if the array 'a' is degraded but not failed.
2996 * If it is, find as many spares as are available and needed and
2997 * arrange for their inclusion.
2998 * We only choose devices which are not already in the array,
2999 * and prefer those with a spare-assignment to this array.
3000 * otherwise we choose global spares - assuming always that
3001 * there is enough room.
3002 * For each spare that we assign, we return an 'mdinfo' which
3003 * describes the position for the device in the array.
3004 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3005 * the new phys_refnum and lba_offset values.
3006 *
3007 * Only worry about BVDs at the moment.
3008 */
3009 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3010 struct metadata_update **updates)
3011 {
3012 int working = 0;
3013 struct mdinfo *d;
3014 struct ddf_super *ddf = a->container->sb;
3015 int global_ok = 0;
3016 struct mdinfo *rv = NULL;
3017 struct mdinfo *di;
3018 struct metadata_update *mu;
3019 struct dl *dl;
3020 int i;
3021 struct vd_config *vc;
3022 __u64 *lba;
3023
3024 for (d = a->info.devs ; d ; d = d->next) {
3025 if ((d->curr_state & DS_FAULTY) &&
3026 d->state_fd >= 0)
3027 /* wait for Removal to happen */
3028 return NULL;
3029 if (d->state_fd >= 0)
3030 working ++;
3031 }
3032
3033 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3034 a->info.array.level);
3035 if (working == a->info.array.raid_disks)
3036 return NULL; /* array not degraded */
3037 switch (a->info.array.level) {
3038 case 1:
3039 if (working == 0)
3040 return NULL; /* failed */
3041 break;
3042 case 4:
3043 case 5:
3044 if (working < a->info.array.raid_disks - 1)
3045 return NULL; /* failed */
3046 break;
3047 case 6:
3048 if (working < a->info.array.raid_disks - 2)
3049 return NULL; /* failed */
3050 break;
3051 default: /* concat or stripe */
3052 return NULL; /* failed */
3053 }
3054
3055 /* For each slot, if it is not working, find a spare */
3056 dl = ddf->dlist;
3057 for (i = 0; i < a->info.array.raid_disks; i++) {
3058 for (d = a->info.devs ; d ; d = d->next)
3059 if (d->disk.raid_disk == i)
3060 break;
3061 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3062 if (d && (d->state_fd >= 0))
3063 continue;
3064
3065 /* OK, this device needs recovery. Find a spare */
3066 again:
3067 for ( ; dl ; dl = dl->next) {
3068 unsigned long long esize;
3069 unsigned long long pos;
3070 struct mdinfo *d2;
3071 int is_global = 0;
3072 int is_dedicated = 0;
3073 struct extent *ex;
3074 int j;
3075 /* If in this array, skip */
3076 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3077 if (d2->disk.major == dl->major &&
3078 d2->disk.minor == dl->minor) {
3079 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3080 break;
3081 }
3082 if (d2)
3083 continue;
3084 if (ddf->phys->entries[dl->pdnum].type &