5d38750489193302e6a4bcd0e56809ccdc29957b
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2  * mdadm - manage Linux "md" devices aka RAID arrays.
3  *
4  * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5  *
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  *    Author: Neil Brown
22  *    Email: <neil@brown.name>
23  *
24  * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25  * (July 28 2006).  Reused by permission of SNIA.
26  */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38  * second-in-decade-of-seventies to convert to linux timestamps.
39  * 10 years with 2 leap years.
40  */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43         unsigned long crc,
44         const unsigned char *buf,
45         unsigned len);
46
47 /* The DDF metadata handling.
48  * DDF metadata lives at the end of the device.
49  * The last 512 byte block provides an 'anchor' which is used to locate
50  * the rest of the metadata which usually lives immediately behind the anchor.
51  *
52  * Note:
53  *  - all multibyte numeric fields are bigendian.
54  *  - all strings are space padded.
55  *
56  */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0       0x00
60 #define DDF_RAID1       0x01
61 #define DDF_RAID3       0x03
62 #define DDF_RAID4       0x04
63 #define DDF_RAID5       0x05
64 #define DDF_RAID1E      0x11
65 #define DDF_JBOD        0x0f
66 #define DDF_CONCAT      0x1f
67 #define DDF_RAID5E      0x15
68 #define DDF_RAID5EE     0x25
69 #define DDF_RAID6       0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE        0x00
73 #define DDF_RAID1_SIMPLE        0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI         0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0             0x00 /* parity in first extent */
76 #define DDF_RAID3_N             0x01 /* parity in last extent */
77 #define DDF_RAID4_0             0x00 /* parity in first extent */
78 #define DDF_RAID4_N             0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART     0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART     0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART     0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE    0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT     0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET       0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED    0x00    /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED   0x01
91 #define DDF_2CONCAT     0x02
92 #define DDF_2SPANNED    0x03    /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC        __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC    __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC  __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC     __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC  __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC       __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC  __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC       __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC    __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC       __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN    24
107 #define DDF_REVISION_0  "01.00.00"
108 #define DDF_REVISION_2  "01.02.00"
109
110 struct ddf_header {
111         __u32   magic;          /* DDF_HEADER_MAGIC */
112         __u32   crc;
113         char    guid[DDF_GUID_LEN];
114         char    revision[8];    /* 01.02.00 */
115         __u32   seq;            /* starts at '1' */
116         __u32   timestamp;
117         __u8    openflag;
118         __u8    foreignflag;
119         __u8    enforcegroups;
120         __u8    pad0;           /* 0xff */
121         __u8    pad1[12];       /* 12 * 0xff */
122         /* 64 bytes so far */
123         __u8    header_ext[32]; /* reserved: fill with 0xff */
124         __u64   primary_lba;
125         __u64   secondary_lba;
126         __u8    type;
127         __u8    pad2[3];        /* 0xff */
128         __u32   workspace_len;  /* sectors for vendor space -
129                                  * at least 32768(sectors) */
130         __u64   workspace_lba;
131         __u16   max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132         __u16   max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133         __u16   max_partitions; /* i.e. max num of configuration
134                                    record entries per disk */
135         __u16   config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136                                                  *12/512) */
137         __u16   max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138         __u8    pad3[54];       /* 0xff */
139         /* 192 bytes so far */
140         __u32   controller_section_offset;
141         __u32   controller_section_length;
142         __u32   phys_section_offset;
143         __u32   phys_section_length;
144         __u32   virt_section_offset;
145         __u32   virt_section_length;
146         __u32   config_section_offset;
147         __u32   config_section_length;
148         __u32   data_section_offset;
149         __u32   data_section_length;
150         __u32   bbm_section_offset;
151         __u32   bbm_section_length;
152         __u32   diag_space_offset;
153         __u32   diag_space_length;
154         __u32   vendor_offset;
155         __u32   vendor_length;
156         /* 256 bytes so far */
157         __u8    pad4[256];      /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR       0x00
162 #define DDF_HEADER_PRIMARY      0x01
163 #define DDF_HEADER_SECONDARY    0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167         __u32   magic;                  /* DDF_CONTROLLER_MAGIC */
168         __u32   crc;
169         char    guid[DDF_GUID_LEN];
170         struct controller_type {
171                 __u16 vendor_id;
172                 __u16 device_id;
173                 __u16 sub_vendor_id;
174                 __u16 sub_device_id;
175         } type;
176         char    product_id[16];
177         __u8    pad[8]; /* 0xff */
178         __u8    vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183         __u32   magic;          /* DDF_PHYS_RECORDS_MAGIC */
184         __u32   crc;
185         __u16   used_pdes;
186         __u16   max_pdes;
187         __u8    pad[52];
188         struct phys_disk_entry {
189                 char    guid[DDF_GUID_LEN];
190                 __u32   refnum;
191                 __u16   type;
192                 __u16   state;
193                 __u64   config_size; /* DDF structures must be after here */
194                 char    path[18];       /* another horrible structure really */
195                 __u8    pad[6];
196         } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID              1
201 #define DDF_Active_in_VD                2
202 #define DDF_Global_Spare                4 /* VD_CONF records are ignored */
203 #define DDF_Spare                       8 /* overrides Global_spare */
204 #define DDF_Foreign                     16
205 #define DDF_Legacy                      32 /* no DDF on this device */
206
207 #define DDF_Interface_mask              0xf00
208 #define DDF_Interface_SCSI              0x100
209 #define DDF_Interface_SAS               0x200
210 #define DDF_Interface_SATA              0x300
211 #define DDF_Interface_FC                0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online                      1
215 #define DDF_Failed                      2 /* overrides  1,4,8 */
216 #define DDF_Rebuilding                  4
217 #define DDF_Transition                  8
218 #define DDF_SMART                       16
219 #define DDF_ReadErrors                  32
220 #define DDF_Missing                     64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224         __u32   magic;          /* DDF_VIRT_RECORDS_MAGIC */
225         __u32   crc;
226         __u16   populated_vdes;
227         __u16   max_vdes;
228         __u8    pad[52];
229         struct virtual_entry {
230                 char    guid[DDF_GUID_LEN];
231                 __u16   unit;
232                 __u16   pad0;   /* 0xffff */
233                 __u16   guid_crc;
234                 __u16   type;
235                 __u8    state;
236                 __u8    init_state;
237                 __u8    pad1[14];
238                 char    name[16];
239         } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared              1
244 #define DDF_Enforce_Groups      2
245 #define DDF_Unicode             4
246 #define DDF_Owner_Valid         8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask          0x7
250 #define DDF_state_optimal       0x0
251 #define DDF_state_degraded      0x1
252 #define DDF_state_deleted       0x2
253 #define DDF_state_missing       0x3
254 #define DDF_state_failed        0x4
255 #define DDF_state_part_optimal  0x5
256
257 #define DDF_state_morphing      0x8
258 #define DDF_state_inconsistent  0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask      0x03
262 #define DDF_init_not            0x00
263 #define DDF_init_quick          0x01 /* initialisation is progress.
264                                       * i.e. 'state_inconsistent' */
265 #define DDF_init_full           0x02
266
267 #define DDF_access_mask         0xc0
268 #define DDF_access_rw           0x00
269 #define DDF_access_ro           0x80
270 #define DDF_access_blocked      0xc0
271
272 /* The content of the config_section - local scope
273  * It has multiple records each config_record_len sectors
274  * They can be vd_config or spare_assign
275  */
276
277 struct vd_config {
278         __u32   magic;          /* DDF_VD_CONF_MAGIC */
279         __u32   crc;
280         char    guid[DDF_GUID_LEN];
281         __u32   timestamp;
282         __u32   seqnum;
283         __u8    pad0[24];
284         __u16   prim_elmnt_count;
285         __u8    chunk_shift;    /* 0 == 512, 1==1024 etc */
286         __u8    prl;
287         __u8    rlq;
288         __u8    sec_elmnt_count;
289         __u8    sec_elmnt_seq;
290         __u8    srl;
291         __u64   blocks;         /* blocks per component could be different
292                                  * on different component devices...(only
293                                  * for concat I hope) */
294         __u64   array_blocks;   /* blocks in array */
295         __u8    pad1[8];
296         __u32   spare_refs[8];
297         __u8    cache_pol[8];
298         __u8    bg_rate;
299         __u8    pad2[3];
300         __u8    pad3[52];
301         __u8    pad4[192];
302         __u8    v0[32]; /* reserved- 0xff */
303         __u8    v1[32]; /* reserved- 0xff */
304         __u8    v2[16]; /* reserved- 0xff */
305         __u8    v3[16]; /* reserved- 0xff */
306         __u8    vendor[32];
307         __u32   phys_refnum[0]; /* refnum of each disk in sequence */
308       /*__u64   lba_offset[0];  LBA offset in each phys.  Note extents in a
309                                 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback     1       /* else writethrough */
314 #define DDF_cache_wadaptive     2       /* only applies if writeback */
315 #define DDF_cache_readahead     4
316 #define DDF_cache_radaptive     8       /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt      16      /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed      32      /* enable write caching */
319 #define DDF_cache_rallowed      64      /* enable read caching */
320
321 struct spare_assign {
322         __u32   magic;          /* DDF_SPARE_ASSIGN_MAGIC */
323         __u32   crc;
324         __u32   timestamp;
325         __u8    reserved[7];
326         __u8    type;
327         __u16   populated;      /* SAEs used */
328         __u16   max;            /* max SAEs */
329         __u8    pad[8];
330         struct spare_assign_entry {
331                 char    guid[DDF_GUID_LEN];
332                 __u16   secondary_element;
333                 __u8    pad[6];
334         } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated     0x1     /* else global */
338 #define DDF_spare_revertible    0x2     /* else committable */
339 #define DDF_spare_active        0x4     /* else not active */
340 #define DDF_spare_affinity      0x8     /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344         __u32   magic;          /* DDF_PHYS_DATA_MAGIC */
345         __u32   crc;
346         char    guid[DDF_GUID_LEN];
347         __u32   refnum;         /* crc of some magic drive data ... */
348         __u8    forced_ref;     /* set when above was not result of magic */
349         __u8    forced_guid;    /* set if guid was forced rather than magic */
350         __u8    vendor[32];
351         __u8    pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356         __u32   magic;
357         __u32   crc;
358         __u16   entry_count;
359         __u32   spare_count;
360         __u8    pad[10];
361         __u64   first_spare;
362         struct mapped_block {
363                 __u64   defective_start;
364                 __u32   replacement_start;
365                 __u16   remap_count;
366                 __u8    pad[2];
367         } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372  * quite different, as some data is global and some is local.
373  * The global data is:
374  *   - ddf header
375  *   - controller_data
376  *   - Physical disk records
377  *   - Virtual disk records
378  * The local data is:
379  *   - Configuration records
380  *   - Physical Disk data section
381  *  (  and Bad block and vendor which I don't care about yet).
382  *
383  * The local data is parsed into separate lists as it is read
384  * and reconstructed for writing.  This means that we only need
385  * to make config changes once and they are automatically
386  * propagated to all devices.
387  * Note that the ddf_super has space of the conf and disk data
388  * for this disk and also for a list of all such data.
389  * The list is only used for the superblock that is being
390  * built in Create or Assemble to describe the whole array.
391  */
392 struct ddf_super {
393         struct ddf_header anchor, primary, secondary;
394         struct ddf_controller_data controller;
395         struct ddf_header *active;
396         struct phys_disk        *phys;
397         struct virtual_disk     *virt;
398         int pdsize, vdsize;
399         int max_part, mppe, conf_rec_len;
400         int currentdev;
401         int updates_pending;
402         struct vcl {
403                 union {
404                         char space[512];
405                         struct {
406                                 struct vcl      *next;
407                                 __u64           *lba_offset; /* location in 'conf' of
408                                                               * the lba table */
409                                 int     vcnum; /* index into ->virt */
410                                 __u64           *block_sizes; /* NULL if all the same */
411                         };
412                 };
413                 struct vd_config conf;
414         } *conflist, *currentconf;
415         struct dl {
416                 union {
417                         char space[512];
418                         struct {
419                                 struct dl       *next;
420                                 int major, minor;
421                                 char *devname;
422                                 int fd;
423                                 unsigned long long size; /* sectors */
424                                 int pdnum;      /* index in ->phys */
425                                 struct spare_assign *spare;
426                         };
427                 };
428                 struct disk_data disk;
429                 struct vcl *vlist[0]; /* max_part in size */
430         } *dlist;
431 };
432
433 #ifndef offsetof
434 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
435 #endif
436
437
438 static int calc_crc(void *buf, int len)
439 {
440         /* crcs are always at the same place as in the ddf_header */
441         struct ddf_header *ddf = buf;
442         __u32 oldcrc = ddf->crc;
443         __u32 newcrc;
444         ddf->crc = 0xffffffff;
445
446         newcrc = crc32(0, buf, len);
447         ddf->crc = oldcrc;
448         return newcrc;
449 }
450
451 static int load_ddf_header(int fd, unsigned long long lba,
452                            unsigned long long size,
453                            int type,
454                            struct ddf_header *hdr, struct ddf_header *anchor)
455 {
456         /* read a ddf header (primary or secondary) from fd/lba
457          * and check that it is consistent with anchor
458          * Need to check:
459          *   magic, crc, guid, rev, and LBA's header_type, and
460          *  everything after header_type must be the same
461          */
462         if (lba >= size-1)
463                 return 0;
464
465         if (lseek64(fd, lba<<9, 0) < 0)
466                 return 0;
467
468         if (read(fd, hdr, 512) != 512)
469                 return 0;
470
471         if (hdr->magic != DDF_HEADER_MAGIC)
472                 return 0;
473         if (calc_crc(hdr, 512) != hdr->crc)
474                 return 0;
475         if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
476             memcmp(anchor->revision, hdr->revision, 8) != 0 ||
477             anchor->primary_lba != hdr->primary_lba ||
478             anchor->secondary_lba != hdr->secondary_lba ||
479             hdr->type != type ||
480             memcmp(anchor->pad2, hdr->pad2, 512 -
481                    offsetof(struct ddf_header, pad2)) != 0)
482                 return 0;
483
484         /* Looks good enough to me... */
485         return 1;
486 }
487
488 static void *load_section(int fd, struct ddf_super *super, void *buf,
489                           __u32 offset_be, __u32 len_be, int check)
490 {
491         unsigned long long offset = __be32_to_cpu(offset_be);
492         unsigned long long len = __be32_to_cpu(len_be);
493         int dofree = (buf == NULL);
494
495         if (check)
496                 if (len != 2 && len != 8 && len != 32
497                     && len != 128 && len != 512)
498                         return NULL;
499
500         if (len > 1024)
501                 return NULL;
502         if (buf) {
503                 /* All pre-allocated sections are a single block */
504                 if (len != 1)
505                         return NULL;
506         } else {
507                 posix_memalign(&buf, 512, len<<9);
508         }
509
510         if (!buf)
511                 return NULL;
512
513         if (super->active->type == 1)
514                 offset += __be64_to_cpu(super->active->primary_lba);
515         else
516                 offset += __be64_to_cpu(super->active->secondary_lba);
517
518         if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
519                 if (dofree)
520                         free(buf);
521                 return NULL;
522         }
523         if (read(fd, buf, len<<9) != (len<<9)) {
524                 if (dofree)
525                         free(buf);
526                 return NULL;
527         }
528         return buf;
529 }
530
531 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
532 {
533         unsigned long long dsize;
534
535         get_dev_size(fd, NULL, &dsize);
536
537         if (lseek64(fd, dsize-512, 0) < 0) {
538                 if (devname)
539                         fprintf(stderr,
540                                 Name": Cannot seek to anchor block on %s: %s\n",
541                                 devname, strerror(errno));
542                 return 1;
543         }
544         if (read(fd, &super->anchor, 512) != 512) {
545                 if (devname)
546                         fprintf(stderr,
547                                 Name ": Cannot read anchor block on %s: %s\n",
548                                 devname, strerror(errno));
549                 return 1;
550         }
551         if (super->anchor.magic != DDF_HEADER_MAGIC) {
552                 if (devname)
553                         fprintf(stderr, Name ": no DDF anchor found on %s\n",
554                                 devname);
555                 return 2;
556         }
557         if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
558                 if (devname)
559                         fprintf(stderr, Name ": bad CRC on anchor on %s\n",
560                                 devname);
561                 return 2;
562         }
563         if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
564             memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
565                 if (devname)
566                         fprintf(stderr, Name ": can only support super revision"
567                                 " %.8s and earlier, not %.8s on %s\n",
568                                 DDF_REVISION_2, super->anchor.revision,devname);
569                 return 2;
570         }
571         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
572                             dsize >> 9,  1,
573                             &super->primary, &super->anchor) == 0) {
574                 if (devname)
575                         fprintf(stderr,
576                                 Name ": Failed to load primary DDF header "
577                                 "on %s\n", devname);
578                 return 2;
579         }
580         super->active = &super->primary;
581         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
582                             dsize >> 9,  2,
583                             &super->secondary, &super->anchor)) {
584                 if ((__be32_to_cpu(super->primary.seq)
585                      < __be32_to_cpu(super->secondary.seq) &&
586                      !super->secondary.openflag)
587                     || (__be32_to_cpu(super->primary.seq)
588                         == __be32_to_cpu(super->secondary.seq) &&
589                         super->primary.openflag && !super->secondary.openflag)
590                         )
591                         super->active = &super->secondary;
592         }
593         return 0;
594 }
595
596 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
597 {
598         void *ok;
599         ok = load_section(fd, super, &super->controller,
600                           super->active->controller_section_offset,
601                           super->active->controller_section_length,
602                           0);
603         super->phys = load_section(fd, super, NULL,
604                                    super->active->phys_section_offset,
605                                    super->active->phys_section_length,
606                                    1);
607         super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
608
609         super->virt = load_section(fd, super, NULL,
610                                    super->active->virt_section_offset,
611                                    super->active->virt_section_length,
612                                    1);
613         super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
614         if (!ok ||
615             !super->phys ||
616             !super->virt) {
617                 free(super->phys);
618                 free(super->virt);
619                 super->phys = NULL;
620                 super->virt = NULL;
621                 return 2;
622         }
623         super->conflist = NULL;
624         super->dlist = NULL;
625
626         super->max_part = __be16_to_cpu(super->active->max_partitions);
627         super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
628         super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
629         return 0;
630 }
631
632 static int load_ddf_local(int fd, struct ddf_super *super,
633                           char *devname, int keep)
634 {
635         struct dl *dl;
636         struct stat stb;
637         char *conf;
638         int i;
639         int vnum;
640         int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
641         unsigned long long dsize;
642
643         /* First the local disk info */
644         posix_memalign((void**)&dl, 512,
645                        sizeof(*dl) +
646                        (super->max_part) * sizeof(dl->vlist[0]));
647
648         load_section(fd, super, &dl->disk,
649                      super->active->data_section_offset,
650                      super->active->data_section_length,
651                      0);
652         dl->devname = devname ? strdup(devname) : NULL;
653
654         fstat(fd, &stb);
655         dl->major = major(stb.st_rdev);
656         dl->minor = minor(stb.st_rdev);
657         dl->next = super->dlist;
658         dl->fd = keep ? fd : -1;
659
660         dl->size = 0;
661         if (get_dev_size(fd, devname, &dsize))
662                 dl->size = dsize >> 9;
663         dl->spare = NULL;
664         for (i=0 ; i < super->max_part ; i++)
665                 dl->vlist[i] = NULL;
666         super->dlist = dl;
667         dl->pdnum = -1;
668         for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
669                 if (memcmp(super->phys->entries[i].guid,
670                            dl->disk.guid, DDF_GUID_LEN) == 0)
671                         dl->pdnum = i;
672
673         /* Now the config list. */
674         /* 'conf' is an array of config entries, some of which are
675          * probably invalid.  Those which are good need to be copied into
676          * the conflist
677          */
678
679         conf = load_section(fd, super, NULL,
680                             super->active->config_section_offset,
681                             super->active->config_section_length,
682                             0);
683
684         vnum = 0;
685         for (i = 0;
686              i < __be32_to_cpu(super->active->config_section_length);
687              i += super->conf_rec_len) {
688                 struct vd_config *vd =
689                         (struct vd_config *)((char*)conf + i*512);
690                 struct vcl *vcl;
691
692                 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
693                         if (dl->spare)
694                                 continue;
695                         posix_memalign((void**)&dl->spare, 512,
696                                        super->conf_rec_len*512);
697                         memcpy(dl->spare, vd, super->conf_rec_len*512);
698                         continue;
699                 }
700                 if (vd->magic != DDF_VD_CONF_MAGIC)
701                         continue;
702                 for (vcl = super->conflist; vcl; vcl = vcl->next) {
703                         if (memcmp(vcl->conf.guid,
704                                    vd->guid, DDF_GUID_LEN) == 0)
705                                 break;
706                 }
707
708                 if (vcl) {
709                         dl->vlist[vnum++] = vcl;
710                         if (__be32_to_cpu(vd->seqnum) <=
711                             __be32_to_cpu(vcl->conf.seqnum))
712                                 continue;
713                 } else {
714                         posix_memalign((void**)&vcl, 512,
715                                        (super->conf_rec_len*512 +
716                                         offsetof(struct vcl, conf)));
717                         vcl->next = super->conflist;
718                         vcl->block_sizes = NULL; /* FIXME not for CONCAT */
719                         super->conflist = vcl;
720                         dl->vlist[vnum++] = vcl;
721                 }
722                 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
723                 vcl->lba_offset = (__u64*)
724                         &vcl->conf.phys_refnum[super->mppe];
725
726                 for (i=0; i < max_virt_disks ; i++)
727                         if (memcmp(super->virt->entries[i].guid,
728                                    vcl->conf.guid, DDF_GUID_LEN)==0)
729                                 break;
730                 if (i < max_virt_disks)
731                         vcl->vcnum = i;
732         }
733         free(conf);
734
735         return 0;
736 }
737
738 #ifndef MDASSEMBLE
739 static int load_super_ddf_all(struct supertype *st, int fd,
740                               void **sbp, char *devname, int keep_fd);
741 #endif
742 static int load_super_ddf(struct supertype *st, int fd,
743                           char *devname)
744 {
745         unsigned long long dsize;
746         struct ddf_super *super;
747         int rv;
748
749 #ifndef MDASSEMBLE
750         /* if 'fd' is a container, load metadata from all the devices */
751         if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
752                 return 0;
753 #endif
754         if (st->subarray[0])
755                 return 1; /* FIXME Is this correct */
756
757         if (get_dev_size(fd, devname, &dsize) == 0)
758                 return 1;
759
760         /* 32M is a lower bound */
761         if (dsize <= 32*1024*1024) {
762                 if (devname) {
763                         fprintf(stderr,
764                                 Name ": %s is too small for ddf: "
765                                 "size is %llu sectors.\n",
766                                 devname, dsize>>9);
767                         return 1;
768                 }
769         }
770         if (dsize & 511) {
771                 if (devname) {
772                         fprintf(stderr,
773                                 Name ": %s is an odd size for ddf: "
774                                 "size is %llu bytes.\n",
775                                 devname, dsize);
776                         return 1;
777                 }
778         }
779
780         if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
781                 fprintf(stderr, Name ": malloc of %zu failed.\n",
782                         sizeof(*super));
783                 return 1;
784         }
785         memset(super, 0, sizeof(*super));
786
787         rv = load_ddf_headers(fd, super, devname);
788         if (rv) {
789                 free(super);
790                 return rv;
791         }
792
793         /* Have valid headers and have chosen the best. Let's read in the rest*/
794
795         rv = load_ddf_global(fd, super, devname);
796
797         if (rv) {
798                 if (devname)
799                         fprintf(stderr,
800                                 Name ": Failed to load all information "
801                                 "sections on %s\n", devname);
802                 free(super);
803                 return rv;
804         }
805
806         load_ddf_local(fd, super, devname, 0);
807
808         /* Should possibly check the sections .... */
809
810         st->sb = super;
811         if (st->ss == NULL) {
812                 st->ss = &super_ddf;
813                 st->minor_version = 0;
814                 st->max_devs = 512;
815         }
816         return 0;
817
818 }
819
820 static void free_super_ddf(struct supertype *st)
821 {
822         struct ddf_super *ddf = st->sb;
823         if (ddf == NULL)
824                 return;
825         free(ddf->phys);
826         free(ddf->virt);
827         while (ddf->conflist) {
828                 struct vcl *v = ddf->conflist;
829                 ddf->conflist = v->next;
830                 if (v->block_sizes)
831                         free(v->block_sizes);
832                 free(v);
833         }
834         while (ddf->dlist) {
835                 struct dl *d = ddf->dlist;
836                 ddf->dlist = d->next;
837                 if (d->fd >= 0)
838                         close(d->fd);
839                 if (d->spare)
840                         free(d->spare);
841                 free(d);
842         }
843         free(ddf);
844         st->sb = NULL;
845 }
846
847 static struct supertype *match_metadata_desc_ddf(char *arg)
848 {
849         /* 'ddf' only support containers */
850         struct supertype *st;
851         if (strcmp(arg, "ddf") != 0 &&
852             strcmp(arg, "default") != 0
853                 )
854                 return NULL;
855
856         st = malloc(sizeof(*st));
857         memset(st, 0, sizeof(*st));
858         st->ss = &super_ddf;
859         st->max_devs = 512;
860         st->minor_version = 0;
861         st->sb = NULL;
862         return st;
863 }
864
865
866 #ifndef MDASSEMBLE
867
868 static mapping_t ddf_state[] = {
869         { "Optimal", 0},
870         { "Degraded", 1},
871         { "Deleted", 2},
872         { "Missing", 3},
873         { "Failed", 4},
874         { "Partially Optimal", 5},
875         { "-reserved-", 6},
876         { "-reserved-", 7},
877         { NULL, 0}
878 };
879
880 static mapping_t ddf_init_state[] = {
881         { "Not Initialised", 0},
882         { "QuickInit in Progress", 1},
883         { "Fully Initialised", 2},
884         { "*UNKNOWN*", 3},
885         { NULL, 0}
886 };
887 static mapping_t ddf_access[] = {
888         { "Read/Write", 0},
889         { "Reserved", 1},
890         { "Read Only", 2},
891         { "Blocked (no access)", 3},
892         { NULL ,0}
893 };
894
895 static mapping_t ddf_level[] = {
896         { "RAID0", DDF_RAID0},
897         { "RAID1", DDF_RAID1},
898         { "RAID3", DDF_RAID3},
899         { "RAID4", DDF_RAID4},
900         { "RAID5", DDF_RAID5},
901         { "RAID1E",DDF_RAID1E},
902         { "JBOD",  DDF_JBOD},
903         { "CONCAT",DDF_CONCAT},
904         { "RAID5E",DDF_RAID5E},
905         { "RAID5EE",DDF_RAID5EE},
906         { "RAID6", DDF_RAID6},
907         { NULL, 0}
908 };
909 static mapping_t ddf_sec_level[] = {
910         { "Striped", DDF_2STRIPED},
911         { "Mirrored", DDF_2MIRRORED},
912         { "Concat", DDF_2CONCAT},
913         { "Spanned", DDF_2SPANNED},
914         { NULL, 0}
915 };
916 #endif
917
918 struct num_mapping {
919         int num1, num2;
920 };
921 static struct num_mapping ddf_level_num[] = {
922         { DDF_RAID0, 0 },
923         { DDF_RAID1, 1 },
924         { DDF_RAID3, LEVEL_UNSUPPORTED },
925         { DDF_RAID4, 4 },
926         { DDF_RAID5, 5 },
927         { DDF_RAID1E, LEVEL_UNSUPPORTED },
928         { DDF_JBOD, LEVEL_UNSUPPORTED },
929         { DDF_CONCAT, LEVEL_LINEAR },
930         { DDF_RAID5E, LEVEL_UNSUPPORTED },
931         { DDF_RAID5EE, LEVEL_UNSUPPORTED },
932         { DDF_RAID6, 6},
933         { MAXINT, MAXINT }
934 };
935
936 static int map_num1(struct num_mapping *map, int num)
937 {
938         int i;
939         for (i=0 ; map[i].num1 != MAXINT; i++)
940                 if (map[i].num1 == num)
941                         break;
942         return map[i].num2;
943 }
944
945 #ifndef MDASSEMBLE
946 static void print_guid(char *guid, int tstamp)
947 {
948         /* A GUIDs are part (or all) ASCII and part binary.
949          * They tend to be space padded.
950          * We print the GUID in HEX, then in parentheses add
951          * any initial ASCII sequence, and a possible
952          * time stamp from bytes 16-19
953          */
954         int l = DDF_GUID_LEN;
955         int i;
956
957         for (i=0 ; i<DDF_GUID_LEN ; i++) {
958                 if ((i&3)==0 && i != 0) printf(":");
959                 printf("%02X", guid[i]&255);
960         }
961
962         printf(" (");
963         while (l && guid[l-1] == ' ')
964                 l--;
965         for (i=0 ; i<l ; i++) {
966                 if (guid[i] >= 0x20 && guid[i] < 0x7f)
967                         fputc(guid[i], stdout);
968                 else
969                         break;
970         }
971         if (tstamp) {
972                 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
973                 char tbuf[100];
974                 struct tm *tm;
975                 tm = localtime(&then);
976                 strftime(tbuf, 100, " %D %T",tm);
977                 fputs(tbuf, stdout);
978         }
979         printf(")");
980 }
981
982 static void examine_vd(int n, struct ddf_super *sb, char *guid)
983 {
984         int crl = sb->conf_rec_len;
985         struct vcl *vcl;
986
987         for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
988                 struct vd_config *vc = &vcl->conf;
989
990                 if (calc_crc(vc, crl*512) != vc->crc)
991                         continue;
992                 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
993                         continue;
994
995                 /* Ok, we know about this VD, let's give more details */
996                 printf(" Raid Devices[%d] : %d\n", n,
997                        __be16_to_cpu(vc->prim_elmnt_count));
998                 printf("   Chunk Size[%d] : %d sectors\n", n,
999                        1 << vc->chunk_shift);
1000                 printf("   Raid Level[%d] : %s\n", n,
1001                        map_num(ddf_level, vc->prl)?:"-unknown-");
1002                 if (vc->sec_elmnt_count != 1) {
1003                         printf("  Secondary Position[%d] : %d of %d\n", n,
1004                                vc->sec_elmnt_seq, vc->sec_elmnt_count);
1005                         printf("  Secondary Level[%d] : %s\n", n,
1006                                map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1007                 }
1008                 printf("  Device Size[%d] : %llu\n", n,
1009                        __be64_to_cpu(vc->blocks)/2);
1010                 printf("   Array Size[%d] : %llu\n", n,
1011                        __be64_to_cpu(vc->array_blocks)/2);
1012         }
1013 }
1014
1015 static void examine_vds(struct ddf_super *sb)
1016 {
1017         int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1018         int i;
1019         printf("  Virtual Disks : %d\n", cnt);
1020
1021         for (i=0; i<cnt; i++) {
1022                 struct virtual_entry *ve = &sb->virt->entries[i];
1023                 printf("      VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1024                 printf("\n");
1025                 printf("         unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1026                 printf("        state[%d] : %s, %s%s\n", i,
1027                        map_num(ddf_state, ve->state & 7),
1028                        (ve->state & 8) ? "Morphing, ": "",
1029                        (ve->state & 16)? "Not Consistent" : "Consistent");
1030                 printf("   init state[%d] : %s\n", i,
1031                        map_num(ddf_init_state, ve->init_state&3));
1032                 printf("       access[%d] : %s\n", i,
1033                        map_num(ddf_access, (ve->init_state>>6) & 3));
1034                 printf("         Name[%d] : %.16s\n", i, ve->name);
1035                 examine_vd(i, sb, ve->guid);
1036         }
1037         if (cnt) printf("\n");
1038 }
1039
1040 static void examine_pds(struct ddf_super *sb)
1041 {
1042         int cnt = __be16_to_cpu(sb->phys->used_pdes);
1043         int i;
1044         struct dl *dl;
1045         printf(" Physical Disks : %d\n", cnt);
1046
1047         for (i=0 ; i<cnt ; i++) {
1048                 struct phys_disk_entry *pd = &sb->phys->entries[i];
1049                 int type = __be16_to_cpu(pd->type);
1050                 int state = __be16_to_cpu(pd->state);
1051
1052                 printf("      PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1053                 printf("\n");
1054                 printf("          ref[%d] : %08x\n", i,
1055                        __be32_to_cpu(pd->refnum));
1056                 printf("         mode[%d] : %s%s%s%s%s\n", i,
1057                        (type&2) ? "active":"",
1058                        (type&4) ? "Global Spare":"",
1059                        (type&8) ? "spare" : "",
1060                        (type&16)? ", foreign" : "",
1061                        (type&32)? "pass-through" : "");
1062                 printf("        state[%d] : %s%s%s%s%s%s%s\n", i,
1063                        (state&1)? "Online": "Offline",
1064                        (state&2)? ", Failed": "",
1065                        (state&4)? ", Rebuilding": "",
1066                        (state&8)? ", in-transition": "",
1067                        (state&16)? ", SMART errors": "",
1068                        (state&32)? ", Unrecovered Read Errors": "",
1069                        (state&64)? ", Missing" : "");
1070                 printf("   Avail Size[%d] : %llu K\n", i,
1071                        __be64_to_cpu(pd->config_size)>>1);
1072                 for (dl = sb->dlist; dl ; dl = dl->next) {
1073                         if (dl->disk.refnum == pd->refnum) {
1074                                 char *dv = map_dev(dl->major, dl->minor, 0);
1075                                 if (dv)
1076                                         printf("       Device[%d] : %s\n",
1077                                                i, dv);
1078                         }
1079                 }
1080                 printf("\n");
1081         }
1082 }
1083
1084 static void examine_super_ddf(struct supertype *st, char *homehost)
1085 {
1086         struct ddf_super *sb = st->sb;
1087
1088         printf("          Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1089         printf("        Version : %.8s\n", sb->anchor.revision);
1090         printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1091         printf("\n");
1092         printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1093         printf("\n");
1094         printf("            Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1095         printf("  Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1096                ?"yes" : "no");
1097         examine_vds(sb);
1098         examine_pds(sb);
1099 }
1100
1101 static void brief_examine_super_ddf(struct supertype *st)
1102 {
1103         /* We just write a generic DDF ARRAY entry
1104          * The uuid is all hex, 6 groups of 4 bytes
1105          */
1106         struct ddf_super *ddf = st->sb;
1107         int i;
1108         printf("ARRAY /dev/ddf metadata=ddf UUID=");
1109         for (i = 0; i < DDF_GUID_LEN; i++) {
1110                 if ((i&3) == 0 && i != 0)
1111                         printf(":");
1112                 printf("%02X", 255&ddf->anchor.guid[i]);
1113         }
1114         printf("\n");
1115 }
1116
1117 static void detail_super_ddf(struct supertype *st, char *homehost)
1118 {
1119         /* FIXME later
1120          * Could print DDF GUID
1121          * Need to find which array
1122          *  If whole, briefly list all arrays
1123          *  If one, give name
1124          */
1125 }
1126
1127 static void brief_detail_super_ddf(struct supertype *st)
1128 {
1129         /* FIXME I really need to know which array we are detailing.
1130          * Can that be stored in ddf_super??
1131          */
1132 //      struct ddf_super *ddf = st->sb;
1133 }
1134 #endif
1135
1136 static int match_home_ddf(struct supertype *st, char *homehost)
1137 {
1138         /* It matches 'this' host if the controller is a
1139          * Linux-MD controller with vendor_data matching
1140          * the hostname
1141          */
1142         struct ddf_super *ddf = st->sb;
1143         int len = strlen(homehost);
1144
1145         return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1146                 len < sizeof(ddf->controller.vendor_data) &&
1147                 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1148                 ddf->controller.vendor_data[len] == 0);
1149 }
1150
1151 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1152 {
1153         struct vcl *v;
1154
1155         for (v = ddf->conflist; v; v = v->next)
1156                 if (inst == v->vcnum)
1157                         return &v->conf;
1158         return NULL;
1159 }
1160
1161 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1162 {
1163         /* Find the entry in phys_disk which has the given refnum
1164          * and return it's index
1165          */
1166         int i;
1167         for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1168                 if (ddf->phys->entries[i].refnum == phys_refnum)
1169                         return i;
1170         return -1;
1171 }
1172
1173 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1174 {
1175         /* The uuid returned here is used for:
1176          *  uuid to put into bitmap file (Create, Grow)
1177          *  uuid for backup header when saving critical section (Grow)
1178          *  comparing uuids when re-adding a device into an array
1179          * For each of these we can make do with a truncated
1180          * or hashed uuid rather than the original, as long as
1181          * everyone agrees.
1182          * In each case the uuid required is that of the data-array,
1183          * not the device-set.
1184          * In the case of SVD we assume the BVD is of interest,
1185          * though that might be the case if a bitmap were made for
1186          * a mirrored SVD - worry about that later.
1187          * So we need to find the VD configuration record for the
1188          * relevant BVD and extract the GUID and Secondary_Element_Seq.
1189          * The first 16 bytes of the sha1 of these is used.
1190          */
1191         struct ddf_super *ddf = st->sb;
1192         struct vcl *vcl = ddf->currentconf;
1193
1194         if (!vcl)
1195                 memset(uuid, 0, sizeof (uuid));
1196         else {
1197                 char buf[20];
1198                 struct sha1_ctx ctx;
1199                 sha1_init_ctx(&ctx);
1200                 sha1_process_bytes(&vcl->conf.guid, DDF_GUID_LEN, &ctx);
1201                 if (vcl->conf.sec_elmnt_count > 1)
1202                         sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1203                 sha1_finish_ctx(&ctx, buf);
1204                 memcpy(uuid, buf, sizeof(uuid));
1205         }
1206 }
1207
1208 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1209
1210 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1211 {
1212         struct ddf_super *ddf = st->sb;
1213
1214         if (ddf->currentconf) {
1215                 getinfo_super_ddf_bvd(st, info);
1216                 return;
1217         }
1218
1219         info->array.raid_disks    = __be16_to_cpu(ddf->phys->used_pdes);
1220         info->array.level         = LEVEL_CONTAINER;
1221         info->array.layout        = 0;
1222         info->array.md_minor      = -1;
1223         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)
1224                                                          (ddf->anchor.guid+16));
1225         info->array.utime         = 0;
1226         info->array.chunk_size    = 0;
1227
1228
1229         info->disk.major = 0;
1230         info->disk.minor = 0;
1231         if (ddf->dlist) {
1232                 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1233                 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1234
1235                 info->data_offset = __be64_to_cpu(ddf->phys->
1236                                           entries[info->disk.raid_disk].
1237                                           config_size);
1238                 info->component_size = ddf->dlist->size - info->data_offset;
1239         } else {
1240                 info->disk.number = -1;
1241 //              info->disk.raid_disk = find refnum in the table and use index;
1242         }
1243         info->disk.state = (1 << MD_DISK_SYNC);
1244
1245
1246         info->reshape_active = 0;
1247
1248         strcpy(info->text_version, "ddf");
1249
1250 //      uuid_from_super_ddf(info->uuid, sbv);
1251
1252 //      info->name[] ?? ;
1253 }
1254
1255 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1256
1257 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1258 {
1259         struct ddf_super *ddf = st->sb;
1260         struct vcl *vc = ddf->currentconf;
1261         int cd = ddf->currentdev;
1262
1263         /* FIXME this returns BVD info - what if we want SVD ?? */
1264
1265         info->array.raid_disks    = __be16_to_cpu(vc->conf.prim_elmnt_count);
1266         info->array.level         = map_num1(ddf_level_num, vc->conf.prl);
1267         info->array.layout        = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1268                                                   info->array.raid_disks);
1269         info->array.md_minor      = -1;
1270         info->array.ctime         = DECADE +
1271                 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1272         info->array.utime         = DECADE + __be32_to_cpu(vc->conf.timestamp);
1273         info->array.chunk_size    = 512 << vc->conf.chunk_shift;
1274
1275         if (cd >= 0 && cd < ddf->mppe) {
1276                 info->data_offset         = __be64_to_cpu(vc->lba_offset[cd]);
1277                 if (vc->block_sizes)
1278                         info->component_size = vc->block_sizes[cd];
1279                 else
1280                         info->component_size = __be64_to_cpu(vc->conf.blocks);
1281         }
1282
1283         info->disk.major = 0;
1284         info->disk.minor = 0;
1285 //      info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1286 //      info->disk.raid_disk = find refnum in the table and use index;
1287 //      info->disk.state = ???;
1288
1289         info->container_member = ddf->currentconf->vcnum;
1290
1291         info->resync_start = 0;
1292         if (!(ddf->virt->entries[info->container_member].state
1293               & DDF_state_inconsistent)  &&
1294             (ddf->virt->entries[info->container_member].init_state
1295              & DDF_initstate_mask)
1296             == DDF_init_full)
1297                 info->resync_start = ~0ULL;
1298
1299         uuid_from_super_ddf(st, info->uuid);
1300
1301         info->container_member = atoi(st->subarray);
1302         sprintf(info->text_version, "/%s/%s",
1303                 devnum2devname(st->container_dev),
1304                 st->subarray);
1305
1306 //      info->name[] ?? ;
1307 }
1308
1309
1310 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1311                             char *update,
1312                             char *devname, int verbose,
1313                             int uuid_set, char *homehost)
1314 {
1315         /* For 'assemble' and 'force' we need to return non-zero if any
1316          * change was made.  For others, the return value is ignored.
1317          * Update options are:
1318          *  force-one : This device looks a bit old but needs to be included,
1319          *        update age info appropriately.
1320          *  assemble: clear any 'faulty' flag to allow this device to
1321          *              be assembled.
1322          *  force-array: Array is degraded but being forced, mark it clean
1323          *         if that will be needed to assemble it.
1324          *
1325          *  newdev:  not used ????
1326          *  grow:  Array has gained a new device - this is currently for
1327          *              linear only
1328          *  resync: mark as dirty so a resync will happen.
1329          *  uuid:  Change the uuid of the array to match what is given
1330          *  homehost:  update the recorded homehost
1331          *  name:  update the name - preserving the homehost
1332          *  _reshape_progress: record new reshape_progress position.
1333          *
1334          * Following are not relevant for this version:
1335          *  sparc2.2 : update from old dodgey metadata
1336          *  super-minor: change the preferred_minor number
1337          *  summaries:  update redundant counters.
1338          */
1339         int rv = 0;
1340 //      struct ddf_super *ddf = st->sb;
1341 //      struct vd_config *vd = find_vdcr(ddf, info->container_member);
1342 //      struct virtual_entry *ve = find_ve(ddf);
1343
1344         /* we don't need to handle "force-*" or "assemble" as
1345          * there is no need to 'trick' the kernel.  We the metadata is
1346          * first updated to activate the array, all the implied modifications
1347          * will just happen.
1348          */
1349
1350         if (strcmp(update, "grow") == 0) {
1351                 /* FIXME */
1352         }
1353         if (strcmp(update, "resync") == 0) {
1354 //              info->resync_checkpoint = 0;
1355         }
1356         /* We ignore UUID updates as they make even less sense
1357          * with DDF
1358          */
1359         if (strcmp(update, "homehost") == 0) {
1360                 /* homehost is stored in controller->vendor_data,
1361                  * or it is when we are the vendor
1362                  */
1363 //              if (info->vendor_is_local)
1364 //                      strcpy(ddf->controller.vendor_data, homehost);
1365         }
1366         if (strcmp(update, "name") == 0) {
1367                 /* name is stored in virtual_entry->name */
1368 //              memset(ve->name, ' ', 16);
1369 //              strncpy(ve->name, info->name, 16);
1370         }
1371         if (strcmp(update, "_reshape_progress") == 0) {
1372                 /* We don't support reshape yet */
1373         }
1374
1375 //      update_all_csum(ddf);
1376
1377         return rv;
1378 }
1379
1380 static void make_header_guid(char *guid)
1381 {
1382         __u32 stamp;
1383         int rfd;
1384         /* Create a DDF Header of Virtual Disk GUID */
1385
1386         /* 24 bytes of fiction required.
1387          * first 8 are a 'vendor-id'  - "Linux-MD"
1388          * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1389          * Remaining 8 random number plus timestamp
1390          */
1391         memcpy(guid, T10, sizeof(T10));
1392         stamp = __cpu_to_be32(0xdeadbeef);
1393         memcpy(guid+8, &stamp, 4);
1394         stamp = __cpu_to_be32(0);
1395         memcpy(guid+12, &stamp, 4);
1396         stamp = __cpu_to_be32(time(0) - DECADE);
1397         memcpy(guid+16, &stamp, 4);
1398         rfd = open("/dev/urandom", O_RDONLY);
1399         if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1400                 stamp = random();
1401         memcpy(guid+20, &stamp, 4);
1402         if (rfd >= 0) close(rfd);
1403 }
1404
1405 static int init_super_ddf_bvd(struct supertype *st,
1406                               mdu_array_info_t *info,
1407                               unsigned long long size,
1408                               char *name, char *homehost,
1409                               int *uuid);
1410
1411 static int init_super_ddf(struct supertype *st,
1412                           mdu_array_info_t *info,
1413                           unsigned long long size, char *name, char *homehost,
1414                           int *uuid)
1415 {
1416         /* This is primarily called by Create when creating a new array.
1417          * We will then get add_to_super called for each component, and then
1418          * write_init_super called to write it out to each device.
1419          * For DDF, Create can create on fresh devices or on a pre-existing
1420          * array.
1421          * To create on a pre-existing array a different method will be called.
1422          * This one is just for fresh drives.
1423          *
1424          * We need to create the entire 'ddf' structure which includes:
1425          *  DDF headers - these are easy.
1426          *  Controller data - a Sector describing this controller .. not that
1427          *                  this is a controller exactly.
1428          *  Physical Disk Record - one entry per device, so
1429          *                      leave plenty of space.
1430          *  Virtual Disk Records - again, just leave plenty of space.
1431          *                   This just lists VDs, doesn't give details
1432          *  Config records - describes the VDs that use this disk
1433          *  DiskData  - describes 'this' device.
1434          *  BadBlockManagement - empty
1435          *  Diag Space - empty
1436          *  Vendor Logs - Could we put bitmaps here?
1437          *
1438          */
1439         struct ddf_super *ddf;
1440         char hostname[17];
1441         int hostlen;
1442         int max_phys_disks, max_virt_disks;
1443         unsigned long long sector;
1444         int clen;
1445         int i;
1446         int pdsize, vdsize;
1447         struct phys_disk *pd;
1448         struct virtual_disk *vd;
1449
1450         if (!info) {
1451                 st->sb = NULL;
1452                 return 0;
1453         }
1454         if (st->sb)
1455                 return init_super_ddf_bvd(st, info, size, name, homehost,
1456                                           uuid);
1457
1458         posix_memalign((void**)&ddf, 512, sizeof(*ddf));
1459         memset(ddf, 0, sizeof(*ddf));
1460         ddf->dlist = NULL; /* no physical disks yet */
1461         ddf->conflist = NULL; /* No virtual disks yet */
1462
1463         /* At least 32MB *must* be reserved for the ddf.  So let's just
1464          * start 32MB from the end, and put the primary header there.
1465          * Don't do secondary for now.
1466          * We don't know exactly where that will be yet as it could be
1467          * different on each device.  To just set up the lengths.
1468          *
1469          */
1470
1471         ddf->anchor.magic = DDF_HEADER_MAGIC;
1472         make_header_guid(ddf->anchor.guid);
1473
1474         memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1475         ddf->anchor.seq = __cpu_to_be32(1);
1476         ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1477         ddf->anchor.openflag = 0xFF;
1478         ddf->anchor.foreignflag = 0;
1479         ddf->anchor.enforcegroups = 0; /* Is this best?? */
1480         ddf->anchor.pad0 = 0xff;
1481         memset(ddf->anchor.pad1, 0xff, 12);
1482         memset(ddf->anchor.header_ext, 0xff, 32);
1483         ddf->anchor.primary_lba = ~(__u64)0;
1484         ddf->anchor.secondary_lba = ~(__u64)0;
1485         ddf->anchor.type = DDF_HEADER_ANCHOR;
1486         memset(ddf->anchor.pad2, 0xff, 3);
1487         ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1488         ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1489                                                   of 32M reserved.. */
1490         max_phys_disks = 1023;   /* Should be enough */
1491         ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1492         max_virt_disks = 255;
1493         ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1494         ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1495         ddf->max_part = 64;
1496         ddf->mppe = 256;
1497         ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1498         ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1499         ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1500         memset(ddf->anchor.pad3, 0xff, 54);
1501         /* controller sections is one sector long immediately
1502          * after the ddf header */
1503         sector = 1;
1504         ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1505         ddf->anchor.controller_section_length = __cpu_to_be32(1);
1506         sector += 1;
1507
1508         /* phys is 8 sectors after that */
1509         pdsize = ROUND_UP(sizeof(struct phys_disk) +
1510                           sizeof(struct phys_disk_entry)*max_phys_disks,
1511                           512);
1512         switch(pdsize/512) {
1513         case 2: case 8: case 32: case 128: case 512: break;
1514         default: abort();
1515         }
1516         ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1517         ddf->anchor.phys_section_length =
1518                 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1519         sector += pdsize/512;
1520
1521         /* virt is another 32 sectors */
1522         vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1523                           sizeof(struct virtual_entry) * max_virt_disks,
1524                           512);
1525         switch(vdsize/512) {
1526         case 2: case 8: case 32: case 128: case 512: break;
1527         default: abort();
1528         }
1529         ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1530         ddf->anchor.virt_section_length =
1531                 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1532         sector += vdsize/512;
1533
1534         clen = ddf->conf_rec_len * (ddf->max_part+1);
1535         ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1536         ddf->anchor.config_section_length = __cpu_to_be32(clen);
1537         sector += clen;
1538
1539         ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1540         ddf->anchor.data_section_length = __cpu_to_be32(1);
1541         sector += 1;
1542
1543         ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1544         ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1545         ddf->anchor.diag_space_length = __cpu_to_be32(0);
1546         ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1547         ddf->anchor.vendor_length = __cpu_to_be32(0);
1548         ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1549
1550         memset(ddf->anchor.pad4, 0xff, 256);
1551
1552         memcpy(&ddf->primary, &ddf->anchor, 512);
1553         memcpy(&ddf->secondary, &ddf->anchor, 512);
1554
1555         ddf->primary.openflag = 1; /* I guess.. */
1556         ddf->primary.type = DDF_HEADER_PRIMARY;
1557
1558         ddf->secondary.openflag = 1; /* I guess.. */
1559         ddf->secondary.type = DDF_HEADER_SECONDARY;
1560
1561         ddf->active = &ddf->primary;
1562
1563         ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1564
1565         /* 24 more bytes of fiction required.
1566          * first 8 are a 'vendor-id'  - "Linux-MD"
1567          * Remaining 16 are serial number.... maybe a hostname would do?
1568          */
1569         memcpy(ddf->controller.guid, T10, sizeof(T10));
1570         gethostname(hostname, sizeof(hostname));
1571         hostname[sizeof(hostname) - 1] = 0;
1572         hostlen = strlen(hostname);
1573         memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1574         for (i = strlen(T10) ; i+hostlen < 24; i++)
1575                 ddf->controller.guid[i] = ' ';
1576
1577         ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1578         ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1579         ddf->controller.type.sub_vendor_id = 0;
1580         ddf->controller.type.sub_device_id = 0;
1581         memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1582         memset(ddf->controller.pad, 0xff, 8);
1583         memset(ddf->controller.vendor_data, 0xff, 448);
1584
1585         posix_memalign((void**)&pd, 512, pdsize);
1586         ddf->phys = pd;
1587         ddf->pdsize = pdsize;
1588
1589         memset(pd, 0xff, pdsize);
1590         memset(pd, 0, sizeof(*pd));
1591         pd->magic = DDF_PHYS_DATA_MAGIC;
1592         pd->used_pdes = __cpu_to_be16(0);
1593         pd->max_pdes = __cpu_to_be16(max_phys_disks);
1594         memset(pd->pad, 0xff, 52);
1595
1596         posix_memalign((void**)&vd, 512, vdsize);
1597         ddf->virt = vd;
1598         ddf->vdsize = vdsize;
1599         memset(vd, 0, vdsize);
1600         vd->magic = DDF_VIRT_RECORDS_MAGIC;
1601         vd->populated_vdes = __cpu_to_be16(0);
1602         vd->max_vdes = __cpu_to_be16(max_virt_disks);
1603         memset(vd->pad, 0xff, 52);
1604
1605         for (i=0; i<max_virt_disks; i++)
1606                 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1607
1608         st->sb = ddf;
1609         ddf->updates_pending = 1;
1610         return 1;
1611 }
1612
1613 static int all_ff(char *guid)
1614 {
1615         int i;
1616         for (i = 0; i < DDF_GUID_LEN; i++)
1617                 if (guid[i] != (char)0xff)
1618                         return 0;
1619         return 1;
1620 }
1621 static int chunk_to_shift(int chunksize)
1622 {
1623         return ffs(chunksize/512)-1;
1624 }
1625
1626 static int level_to_prl(int level)
1627 {
1628         switch (level) {
1629         case LEVEL_LINEAR: return DDF_CONCAT;
1630         case 0: return DDF_RAID0;
1631         case 1: return DDF_RAID1;
1632         case 4: return DDF_RAID4;
1633         case 5: return DDF_RAID5;
1634         case 6: return DDF_RAID6;
1635         default: return -1;
1636         }
1637 }
1638 static int layout_to_rlq(int level, int layout, int raiddisks)
1639 {
1640         switch(level) {
1641         case 0:
1642                 return DDF_RAID0_SIMPLE;
1643         case 1:
1644                 switch(raiddisks) {
1645                 case 2: return DDF_RAID1_SIMPLE;
1646                 case 3: return DDF_RAID1_MULTI;
1647                 default: return -1;
1648                 }
1649         case 4:
1650                 switch(layout) {
1651                 case 0: return DDF_RAID4_N;
1652                 }
1653                 break;
1654         case 5:
1655         case 6:
1656                 switch(layout) {
1657                 case ALGORITHM_LEFT_ASYMMETRIC:
1658                         return DDF_RAID5_N_RESTART;
1659                 case ALGORITHM_RIGHT_ASYMMETRIC:
1660                         if (level == 5)
1661                                 return DDF_RAID5_0_RESTART;
1662                         else
1663                                 return DDF_RAID6_0_RESTART;
1664                 case ALGORITHM_LEFT_SYMMETRIC:
1665                         return DDF_RAID5_N_CONTINUE;
1666                 case ALGORITHM_RIGHT_SYMMETRIC:
1667                         return -1; /* not mentioned in standard */
1668                 }
1669         }
1670         return -1;
1671 }
1672
1673 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1674 {
1675         switch(prl) {
1676         case DDF_RAID0:
1677                 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1678         case DDF_RAID1:
1679                 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1680                              on raiddisks*/
1681         case DDF_RAID4:
1682                 switch(rlq) {
1683                 case DDF_RAID4_N:
1684                         return 0;
1685                 default:
1686                         /* not supported */
1687                         return -1; /* FIXME this isn't checked */
1688                 }
1689         case DDF_RAID5:
1690                 switch(rlq) {
1691                 case DDF_RAID5_N_RESTART:
1692                         return ALGORITHM_LEFT_ASYMMETRIC;
1693                 case DDF_RAID5_0_RESTART:
1694                         return ALGORITHM_RIGHT_ASYMMETRIC;
1695                 case DDF_RAID5_N_CONTINUE:
1696                         return ALGORITHM_LEFT_SYMMETRIC;
1697                 default:
1698                         return -1;
1699                 }
1700         case DDF_RAID6:
1701                 switch(rlq) {
1702                 case DDF_RAID5_N_RESTART:
1703                         return ALGORITHM_LEFT_ASYMMETRIC;
1704                 case DDF_RAID6_0_RESTART:
1705                         return ALGORITHM_RIGHT_ASYMMETRIC;
1706                 case DDF_RAID5_N_CONTINUE:
1707                         return ALGORITHM_LEFT_SYMMETRIC;
1708                 default:
1709                         return -1;
1710                 }
1711         }
1712         return -1;
1713 }
1714
1715 struct extent {
1716         unsigned long long start, size;
1717 };
1718 static int cmp_extent(const void *av, const void *bv)
1719 {
1720         const struct extent *a = av;
1721         const struct extent *b = bv;
1722         if (a->start < b->start)
1723                 return -1;
1724         if (a->start > b->start)
1725                 return 1;
1726         return 0;
1727 }
1728
1729 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1730 {
1731         /* find a list of used extents on the give physical device
1732          * (dnum) of the given ddf.
1733          * Return a malloced array of 'struct extent'
1734
1735 FIXME ignore DDF_Legacy devices?
1736
1737          */
1738         struct extent *rv;
1739         int n = 0;
1740         int i, j;
1741
1742         rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1743         if (!rv)
1744                 return NULL;
1745
1746         for (i = 0; i < ddf->max_part; i++) {
1747                 struct vcl *v = dl->vlist[i];
1748                 if (v == NULL)
1749                         continue;
1750                 for (j=0; j < v->conf.prim_elmnt_count; j++)
1751                         if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1752                                 /* This device plays role 'j' in  'v'. */
1753                                 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1754                                 rv[n].size = __be64_to_cpu(v->conf.blocks);
1755                                 n++;
1756                                 break;
1757                         }
1758         }
1759         qsort(rv, n, sizeof(*rv), cmp_extent);
1760
1761         rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1762         rv[n].size = 0;
1763         return rv;
1764 }
1765
1766 static int init_super_ddf_bvd(struct supertype *st,
1767                               mdu_array_info_t *info,
1768                               unsigned long long size,
1769                               char *name, char *homehost,
1770                               int *uuid)
1771 {
1772         /* We are creating a BVD inside a pre-existing container.
1773          * so st->sb is already set.
1774          * We need to create a new vd_config and a new virtual_entry
1775          */
1776         struct ddf_super *ddf = st->sb;
1777         int venum;
1778         struct virtual_entry *ve;
1779         struct vcl *vcl;
1780         struct vd_config *vc;
1781
1782         if (__be16_to_cpu(ddf->virt->populated_vdes)
1783             >= __be16_to_cpu(ddf->virt->max_vdes)) {
1784                 fprintf(stderr, Name": This ddf already has the "
1785                         "maximum of %d virtual devices\n",
1786                         __be16_to_cpu(ddf->virt->max_vdes));
1787                 return 0;
1788         }
1789
1790         for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1791                 if (all_ff(ddf->virt->entries[venum].guid))
1792                         break;
1793         if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1794                 fprintf(stderr, Name ": Cannot find spare slot for "
1795                         "virtual disk - DDF is corrupt\n");
1796                 return 0;
1797         }
1798         ve = &ddf->virt->entries[venum];
1799
1800         /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1801          * timestamp, random number
1802          */
1803         make_header_guid(ve->guid);
1804         ve->unit = __cpu_to_be16(info->md_minor);
1805         ve->pad0 = 0xFFFF;
1806         ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1807         ve->type = 0;
1808         ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1809         if (info->state & 1) /* clean */
1810                 ve->init_state = DDF_init_full;
1811         else
1812                 ve->init_state = DDF_init_not;
1813
1814         memset(ve->pad1, 0xff, 14);
1815         memset(ve->name, ' ', 16);
1816         if (name)
1817                 strncpy(ve->name, name, 16);
1818         ddf->virt->populated_vdes =
1819                 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1820
1821         /* Now create a new vd_config */
1822         posix_memalign((void**)&vcl, 512,
1823                        (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512));
1824         vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1825         vcl->vcnum = venum;
1826         sprintf(st->subarray, "%d", venum);
1827         vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1828
1829         vc = &vcl->conf;
1830
1831         vc->magic = DDF_VD_CONF_MAGIC;
1832         memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1833         vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1834         vc->seqnum = __cpu_to_be32(1);
1835         memset(vc->pad0, 0xff, 24);
1836         vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1837         vc->chunk_shift = chunk_to_shift(info->chunk_size);
1838         vc->prl = level_to_prl(info->level);
1839         vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1840         vc->sec_elmnt_count = 1;
1841         vc->sec_elmnt_seq = 0;
1842         vc->srl = 0;
1843         vc->blocks = __cpu_to_be64(info->size * 2);
1844         vc->array_blocks = __cpu_to_be64(
1845                 calc_array_size(info->level, info->raid_disks, info->layout,
1846                                 info->chunk_size, info->size*2));
1847         memset(vc->pad1, 0xff, 8);
1848         vc->spare_refs[0] = 0xffffffff;
1849         vc->spare_refs[1] = 0xffffffff;
1850         vc->spare_refs[2] = 0xffffffff;
1851         vc->spare_refs[3] = 0xffffffff;
1852         vc->spare_refs[4] = 0xffffffff;
1853         vc->spare_refs[5] = 0xffffffff;
1854         vc->spare_refs[6] = 0xffffffff;
1855         vc->spare_refs[7] = 0xffffffff;
1856         memset(vc->cache_pol, 0, 8);
1857         vc->bg_rate = 0x80;
1858         memset(vc->pad2, 0xff, 3);
1859         memset(vc->pad3, 0xff, 52);
1860         memset(vc->pad4, 0xff, 192);
1861         memset(vc->v0, 0xff, 32);
1862         memset(vc->v1, 0xff, 32);
1863         memset(vc->v2, 0xff, 16);
1864         memset(vc->v3, 0xff, 16);
1865         memset(vc->vendor, 0xff, 32);
1866
1867         memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1868         memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1869
1870         vcl->next = ddf->conflist;
1871         ddf->conflist = vcl;
1872         ddf->currentconf = vcl;
1873         ddf->updates_pending = 1;
1874         return 1;
1875 }
1876
1877 static void add_to_super_ddf_bvd(struct supertype *st,
1878                                  mdu_disk_info_t *dk, int fd, char *devname)
1879 {
1880         /* fd and devname identify a device with-in the ddf container (st).
1881          * dk identifies a location in the new BVD.
1882          * We need to find suitable free space in that device and update
1883          * the phys_refnum and lba_offset for the newly created vd_config.
1884          * We might also want to update the type in the phys_disk
1885          * section.
1886          */
1887         struct dl *dl;
1888         struct ddf_super *ddf = st->sb;
1889         struct vd_config *vc;
1890         __u64 *lba_offset;
1891         int working;
1892         int i;
1893         unsigned long long blocks, pos, esize;
1894         struct extent *ex;
1895
1896         for (dl = ddf->dlist; dl ; dl = dl->next)
1897                 if (dl->major == dk->major &&
1898                     dl->minor == dk->minor)
1899                         break;
1900         if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1901                 return;
1902
1903         vc = &ddf->currentconf->conf;
1904         lba_offset = ddf->currentconf->lba_offset;
1905
1906         ex = get_extents(ddf, dl);
1907         if (!ex)
1908                 return;
1909
1910         i = 0; pos = 0;
1911         blocks = __be64_to_cpu(vc->blocks);
1912         if (ddf->currentconf->block_sizes)
1913                 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1914
1915         do {
1916                 esize = ex[i].start - pos;
1917                 if (esize >= blocks)
1918                         break;
1919                 pos = ex[i].start + ex[i].size;
1920                 i++;
1921         } while (ex[i-1].size);
1922
1923         free(ex);
1924         if (esize < blocks)
1925                 return;
1926
1927         ddf->currentdev = dk->raid_disk;
1928         vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1929         lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1930
1931         for (i=0; i < ddf->max_part ; i++)
1932                 if (dl->vlist[i] == NULL)
1933                         break;
1934         if (i == ddf->max_part)
1935                 return;
1936         dl->vlist[i] = ddf->currentconf;
1937
1938         dl->fd = fd;
1939         dl->devname = devname;
1940
1941         /* Check how many working raid_disks, and if we can mark
1942          * array as optimal yet
1943          */
1944         working = 0;
1945
1946         for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1947                 if (vc->phys_refnum[i] != 0xffffffff)
1948                         working++;
1949
1950         /* Find which virtual_entry */
1951         i = ddf->currentconf->vcnum;
1952         if (working == __be16_to_cpu(vc->prim_elmnt_count))
1953                 ddf->virt->entries[i].state =
1954                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1955                         | DDF_state_optimal;
1956
1957         if (vc->prl == DDF_RAID6 &&
1958             working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1959                 ddf->virt->entries[i].state =
1960                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1961                         | DDF_state_part_optimal;
1962
1963         ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1964         ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1965         ddf->updates_pending = 1;
1966 }
1967
1968 /* add a device to a container, either while creating it or while
1969  * expanding a pre-existing container
1970  */
1971 static void add_to_super_ddf(struct supertype *st,
1972                              mdu_disk_info_t *dk, int fd, char *devname)
1973 {
1974         struct ddf_super *ddf = st->sb;
1975         struct dl *dd;
1976         time_t now;
1977         struct tm *tm;
1978         unsigned long long size;
1979         struct phys_disk_entry *pde;
1980         int n, i;
1981         struct stat stb;
1982
1983         if (ddf->currentconf) {
1984                 add_to_super_ddf_bvd(st, dk, fd, devname);
1985                 return;
1986         }
1987
1988         /* This is device numbered dk->number.  We need to create
1989          * a phys_disk entry and a more detailed disk_data entry.
1990          */
1991         fstat(fd, &stb);
1992         posix_memalign((void**)&dd, 512,
1993                        sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
1994         dd->major = major(stb.st_rdev);
1995         dd->minor = minor(stb.st_rdev);
1996         dd->devname = devname;
1997         dd->next = ddf->dlist;
1998         dd->fd = fd;
1999         dd->spare = NULL;
2000
2001         dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2002         now = time(0);
2003         tm = localtime(&now);
2004         sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2005                 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2006         *(__u32*)(dd->disk.guid + 16) = random();
2007         *(__u32*)(dd->disk.guid + 20) = random();
2008
2009         do {
2010                 /* Cannot be bothered finding a CRC of some irrelevant details*/
2011                 dd->disk.refnum = random();
2012                 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2013                      i >= 0; i--)
2014                         if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2015                                 break;
2016         } while (i >= 0);
2017
2018         dd->disk.forced_ref = 1;
2019         dd->disk.forced_guid = 1;
2020         memset(dd->disk.vendor, ' ', 32);
2021         memcpy(dd->disk.vendor, "Linux", 5);
2022         memset(dd->disk.pad, 0xff, 442);
2023         for (i = 0; i < ddf->max_part ; i++)
2024                 dd->vlist[i] = NULL;
2025
2026         n = __be16_to_cpu(ddf->phys->used_pdes);
2027         pde = &ddf->phys->entries[n];
2028         dd->pdnum = n;
2029
2030         n++;
2031         ddf->phys->used_pdes = __cpu_to_be16(n);
2032
2033         memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2034         pde->refnum = dd->disk.refnum;
2035         pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2036         pde->state = __cpu_to_be16(DDF_Online);
2037         get_dev_size(fd, NULL, &size);
2038         /* We are required to reserve 32Meg, and record the size in sectors */
2039         pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2040         sprintf(pde->path, "%17.17s","Information: nil") ;
2041         memset(pde->pad, 0xff, 6);
2042
2043         dd->size = size >> 9;
2044         ddf->dlist = dd;
2045         ddf->updates_pending = 1;
2046 }
2047
2048 /*
2049  * This is the write_init_super method for a ddf container.  It is
2050  * called when creating a container or adding another device to a
2051  * container.
2052  */
2053
2054 #ifndef MDASSEMBLE
2055
2056 static unsigned char null_conf[4096+512];
2057
2058 static int __write_init_super_ddf(struct supertype *st, int do_close)
2059 {
2060
2061         struct ddf_super *ddf = st->sb;
2062         int i;
2063         struct dl *d;
2064         int n_config;
2065         int conf_size;
2066
2067         unsigned long long size, sector;
2068
2069         for (d = ddf->dlist; d; d=d->next) {
2070                 int fd = d->fd;
2071
2072                 if (fd < 0)
2073                         continue;
2074
2075                 /* We need to fill in the primary, (secondary) and workspace
2076                  * lba's in the headers, set their checksums,
2077                  * Also checksum phys, virt....
2078                  *
2079                  * Then write everything out, finally the anchor is written.
2080                  */
2081                 get_dev_size(fd, NULL, &size);
2082                 size /= 512;
2083                 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2084                 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2085                 ddf->anchor.seq = __cpu_to_be32(1);
2086                 memcpy(&ddf->primary, &ddf->anchor, 512);
2087                 memcpy(&ddf->secondary, &ddf->anchor, 512);
2088
2089                 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2090                 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2091                 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2092
2093                 ddf->primary.openflag = 0;
2094                 ddf->primary.type = DDF_HEADER_PRIMARY;
2095
2096                 ddf->secondary.openflag = 0;
2097                 ddf->secondary.type = DDF_HEADER_SECONDARY;
2098
2099                 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2100                 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2101
2102                 sector = size - 16*1024*2;
2103                 lseek64(fd, sector<<9, 0);
2104                 write(fd, &ddf->primary, 512);
2105
2106                 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2107                 write(fd, &ddf->controller, 512);
2108
2109                 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2110
2111                 write(fd, ddf->phys, ddf->pdsize);
2112
2113                 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2114                 write(fd, ddf->virt, ddf->vdsize);
2115
2116                 /* Now write lots of config records. */
2117                 n_config = ddf->max_part;
2118                 conf_size = ddf->conf_rec_len * 512;
2119                 for (i = 0 ; i <= n_config ; i++) {
2120                         struct vcl *c = d->vlist[i];
2121                         if (i == n_config)
2122                                 c = (struct vcl*)d->spare;
2123
2124                         if (c) {
2125                                 c->conf.crc = calc_crc(&c->conf, conf_size);
2126                                 write(fd, &c->conf, conf_size);
2127                         } else {
2128                                 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2129                                 if (null_conf[0] != 0xff)
2130                                         memset(null_conf, 0xff, sizeof(null_conf));
2131                                 int togo = conf_size;
2132                                 while (togo > sizeof(null_conf)-512) {
2133                                         write(fd, null_aligned, sizeof(null_conf)-512);
2134                                         togo -= sizeof(null_conf)-512;
2135                                 }
2136                                 write(fd, null_aligned, togo);
2137                         }
2138                 }
2139                 d->disk.crc = calc_crc(&d->disk, 512);
2140                 write(fd, &d->disk, 512);
2141
2142                 /* Maybe do the same for secondary */
2143
2144                 lseek64(fd, (size-1)*512, SEEK_SET);
2145                 write(fd, &ddf->anchor, 512);
2146                 if (do_close) {
2147                         close(fd);
2148                         d->fd = -1;
2149                 }
2150         }
2151         return 1;
2152 }
2153
2154 static int write_init_super_ddf(struct supertype *st)
2155 {
2156
2157         if (st->update_tail) {
2158                 /* queue the virtual_disk and vd_config as metadata updates */
2159                 struct virtual_disk *vd;
2160                 struct vd_config *vc;
2161                 struct ddf_super *ddf = st->sb;
2162                 int len;
2163
2164                 /* First the virtual disk.  We have a slightly fake header */
2165                 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2166                 vd = malloc(len);
2167                 *vd = *ddf->virt;
2168                 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2169                 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2170                 append_metadata_update(st, vd, len);
2171
2172                 /* Then the vd_config */
2173                 len = ddf->conf_rec_len * 512;
2174                 vc = malloc(len);
2175                 memcpy(vc, &ddf->currentconf->conf, len);
2176                 append_metadata_update(st, vc, len);
2177
2178                 /* FIXME I need to close the fds! */
2179                 return 0;
2180         } else 
2181                 return __write_init_super_ddf(st, 1);
2182 }
2183
2184 #endif
2185
2186 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2187 {
2188         /* We must reserve the last 32Meg */
2189         if (devsize <= 32*1024*2)
2190                 return 0;
2191         return devsize - 32*1024*2;
2192 }
2193
2194 #ifndef MDASSEMBLE
2195 static int
2196 validate_geometry_ddf_container(struct supertype *st,
2197                                 int level, int layout, int raiddisks,
2198                                 int chunk, unsigned long long size,
2199                                 char *dev, unsigned long long *freesize,
2200                                 int verbose);
2201
2202 static int validate_geometry_ddf_bvd(struct supertype *st,
2203                                      int level, int layout, int raiddisks,
2204                                      int chunk, unsigned long long size,
2205                                      char *dev, unsigned long long *freesize,
2206                                      int verbose);
2207
2208 static int validate_geometry_ddf(struct supertype *st,
2209                                  int level, int layout, int raiddisks,
2210                                  int chunk, unsigned long long size,
2211                                  char *dev, unsigned long long *freesize,
2212                                  int verbose)
2213 {
2214         int fd;
2215         struct mdinfo *sra;
2216         int cfd;
2217
2218         /* ddf potentially supports lots of things, but it depends on
2219          * what devices are offered (and maybe kernel version?)
2220          * If given unused devices, we will make a container.
2221          * If given devices in a container, we will make a BVD.
2222          * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2223          */
2224
2225         if (level == LEVEL_CONTAINER) {
2226                 /* Must be a fresh device to add to a container */
2227                 return validate_geometry_ddf_container(st, level, layout,
2228                                                        raiddisks, chunk,
2229                                                        size, dev, freesize,
2230                                                        verbose);
2231         }
2232
2233         if (st->sb) {
2234                 /* A container has already been opened, so we are
2235                  * creating in there.  Maybe a BVD, maybe an SVD.
2236                  * Should make a distinction one day.
2237                  */
2238                 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2239                                                  chunk, size, dev, freesize,
2240                                                  verbose);
2241         }
2242         if (!dev) {
2243                 /* Initial sanity check.  Exclude illegal levels. */
2244                 int i;
2245                 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2246                         if (ddf_level_num[i].num2 == level)
2247                                 break;
2248                 if (ddf_level_num[i].num1 == MAXINT)
2249                         return 0;
2250                 /* Should check layout? etc */
2251                 return 1;
2252         }
2253
2254         /* This is the first device for the array.
2255          * If it is a container, we read it in and do automagic allocations,
2256          * no other devices should be given.
2257          * Otherwise it must be a member device of a container, and we
2258          * do manual allocation.
2259          * Later we should check for a BVD and make an SVD.
2260          */
2261         fd = open(dev, O_RDONLY|O_EXCL, 0);
2262         if (fd >= 0) {
2263                 sra = sysfs_read(fd, 0, GET_VERSION);
2264                 close(fd);
2265                 if (sra && sra->array.major_version == -1 &&
2266                     strcmp(sra->text_version, "ddf") == 0) {
2267
2268                         /* load super */
2269                         /* find space for 'n' devices. */
2270                         /* remember the devices */
2271                         /* Somehow return the fact that we have enough */
2272                 }
2273
2274                 if (verbose)
2275                         fprintf(stderr,
2276                                 Name ": ddf: Cannot create this array "
2277                                 "on device %s\n",
2278                                 dev);
2279                 return 0;
2280         }
2281         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2282                 if (verbose)
2283                         fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2284                                 dev, strerror(errno));
2285                 return 0;
2286         }
2287         /* Well, it is in use by someone, maybe a 'ddf' container. */
2288         cfd = open_container(fd);
2289         if (cfd < 0) {
2290                 close(fd);
2291                 if (verbose)
2292                         fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2293                                 dev, strerror(EBUSY));
2294                 return 0;
2295         }
2296         sra = sysfs_read(cfd, 0, GET_VERSION);
2297         close(fd);
2298         if (sra && sra->array.major_version == -1 &&
2299             strcmp(sra->text_version, "ddf") == 0) {
2300                 /* This is a member of a ddf container.  Load the container
2301                  * and try to create a bvd
2302                  */
2303                 struct ddf_super *ddf;
2304                 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2305                         st->sb = ddf;
2306                         st->container_dev = fd2devnum(cfd);
2307                         close(cfd);
2308                         return validate_geometry_ddf_bvd(st, level, layout,
2309                                                          raiddisks, chunk, size,
2310                                                          dev, freesize,
2311                                                          verbose);
2312                 }
2313                 close(cfd);
2314         } else /* device may belong to a different container */
2315                 return 0;
2316
2317         return 1;
2318 }
2319
2320 static int
2321 validate_geometry_ddf_container(struct supertype *st,
2322                                 int level, int layout, int raiddisks,
2323                                 int chunk, unsigned long long size,
2324                                 char *dev, unsigned long long *freesize,
2325                                 int verbose)
2326 {
2327         int fd;
2328         unsigned long long ldsize;
2329
2330         if (level != LEVEL_CONTAINER)
2331                 return 0;
2332         if (!dev)
2333                 return 1;
2334
2335         fd = open(dev, O_RDONLY|O_EXCL, 0);
2336         if (fd < 0) {
2337                 if (verbose)
2338                         fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2339                                 dev, strerror(errno));
2340                 return 0;
2341         }
2342         if (!get_dev_size(fd, dev, &ldsize)) {
2343                 close(fd);
2344                 return 0;
2345         }
2346         close(fd);
2347
2348         *freesize = avail_size_ddf(st, ldsize >> 9);
2349
2350         return 1;
2351 }
2352
2353 static int validate_geometry_ddf_bvd(struct supertype *st,
2354                                      int level, int layout, int raiddisks,
2355                                      int chunk, unsigned long long size,
2356                                      char *dev, unsigned long long *freesize,
2357                                      int verbose)
2358 {
2359         struct stat stb;
2360         struct ddf_super *ddf = st->sb;
2361         struct dl *dl;
2362         unsigned long long pos = 0;
2363         unsigned long long maxsize;
2364         struct extent *e;
2365         int i;
2366         /* ddf/bvd supports lots of things, but not containers */
2367         if (level == LEVEL_CONTAINER)
2368                 return 0;
2369         /* We must have the container info already read in. */
2370         if (!ddf)
2371                 return 0;
2372
2373         if (!dev) {
2374                 /* General test:  make sure there is space for
2375                  * 'raiddisks' device extents of size 'size'.
2376                  */
2377                 unsigned long long minsize = size;
2378                 int dcnt = 0;
2379                 if (minsize == 0)
2380                         minsize = 8;
2381                 for (dl = ddf->dlist; dl ; dl = dl->next)
2382                 {
2383                         int found = 0;
2384                         pos = 0;
2385
2386                         i = 0;
2387                         e = get_extents(ddf, dl);
2388                         if (!e) continue;
2389                         do {
2390                                 unsigned long long esize;
2391                                 esize = e[i].start - pos;
2392                                 if (esize >= minsize)
2393                                         found = 1;
2394                                 pos = e[i].start + e[i].size;
2395                                 i++;
2396                         } while (e[i-1].size);
2397                         if (found)
2398                                 dcnt++;
2399                         free(e);
2400                 }
2401                 if (dcnt < raiddisks) {
2402                         if (verbose)
2403                                 fprintf(stderr,
2404                                         Name ": ddf: Not enough devices with "
2405                                         "space for this array (%d < %d)\n",
2406                                         dcnt, raiddisks);
2407                         return 0;
2408                 }
2409                 return 1;
2410         }
2411         /* This device must be a member of the set */
2412         if (stat(dev, &stb) < 0)
2413                 return 0;
2414         if ((S_IFMT & stb.st_mode) != S_IFBLK)
2415                 return 0;
2416         for (dl = ddf->dlist ; dl ; dl = dl->next) {
2417                 if (dl->major == major(stb.st_rdev) &&
2418                     dl->minor == minor(stb.st_rdev))
2419                         break;
2420         }
2421         if (!dl) {
2422                 if (verbose)
2423                         fprintf(stderr, Name ": ddf: %s is not in the "
2424                                 "same DDF set\n",
2425                                 dev);
2426                 return 0;
2427         }
2428         e = get_extents(ddf, dl);
2429         maxsize = 0;
2430         i = 0;
2431         if (e) do {
2432                 unsigned long long esize;
2433                 esize = e[i].start - pos;
2434                 if (esize >= maxsize)
2435                         maxsize = esize;
2436                 pos = e[i].start + e[i].size;
2437                 i++;
2438         } while (e[i-1].size);
2439         *freesize = maxsize;
2440         // FIXME here I am
2441
2442         return 1;
2443 }
2444
2445 static int load_super_ddf_all(struct supertype *st, int fd,
2446                               void **sbp, char *devname, int keep_fd)
2447 {
2448         struct mdinfo *sra;
2449         struct ddf_super *super;
2450         struct mdinfo *sd, *best = NULL;
2451         int bestseq = 0;
2452         int seq;
2453         char nm[20];
2454         int dfd;
2455
2456         sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2457         if (!sra)
2458                 return 1;
2459         if (sra->array.major_version != -1 ||
2460             sra->array.minor_version != -2 ||
2461             strcmp(sra->text_version, "ddf") != 0)
2462                 return 1;
2463
2464         if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2465                 return 1;
2466         memset(super, 0, sizeof(*super));
2467
2468         /* first, try each device, and choose the best ddf */
2469         for (sd = sra->devs ; sd ; sd = sd->next) {
2470                 int rv;
2471                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2472                 dfd = dev_open(nm, O_RDONLY);
2473                 if (dfd < 0)
2474                         return 2;
2475                 rv = load_ddf_headers(dfd, super, NULL);
2476                 close(dfd);
2477                 if (rv == 0) {
2478                         seq = __be32_to_cpu(super->active->seq);
2479                         if (super->active->openflag)
2480                                 seq--;
2481                         if (!best || seq > bestseq) {
2482                                 bestseq = seq;
2483                                 best = sd;
2484                         }
2485                 }
2486         }
2487         if (!best)
2488                 return 1;
2489         /* OK, load this ddf */
2490         sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2491         dfd = dev_open(nm, O_RDONLY);
2492         if (dfd < 0)
2493                 return 1;
2494         load_ddf_headers(dfd, super, NULL);
2495         load_ddf_global(dfd, super, NULL);
2496         close(dfd);
2497         /* Now we need the device-local bits */
2498         for (sd = sra->devs ; sd ; sd = sd->next) {
2499                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2500                 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2501                 if (dfd < 0)
2502                         return 2;
2503                 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2504                 if (!keep_fd) close(dfd);
2505         }
2506         if (st->subarray[0]) {
2507                 struct vcl *v;
2508
2509                 for (v = super->conflist; v; v = v->next)
2510                         if (v->vcnum == atoi(st->subarray))
2511                                 super->currentconf = v;
2512                 if (!super->currentconf)
2513                         return 1;
2514         }
2515         *sbp = super;
2516         if (st->ss == NULL) {
2517                 st->ss = &super_ddf;
2518                 st->minor_version = 0;
2519                 st->max_devs = 512;
2520                 st->container_dev = fd2devnum(fd);
2521         }
2522         return 0;
2523 }
2524 #endif
2525
2526 static struct mdinfo *container_content_ddf(struct supertype *st)
2527 {
2528         /* Given a container loaded by load_super_ddf_all,
2529          * extract information about all the arrays into
2530          * an mdinfo tree.
2531          *
2532          * For each vcl in conflist: create an mdinfo, fill it in,
2533          *  then look for matching devices (phys_refnum) in dlist
2534          *  and create appropriate device mdinfo.
2535          */
2536         struct ddf_super *ddf = st->sb;
2537         struct mdinfo *rest = NULL;
2538         struct vcl *vc;
2539
2540         for (vc = ddf->conflist ; vc ; vc=vc->next)
2541         {
2542                 int i;
2543                 struct mdinfo *this;
2544                 this = malloc(sizeof(*this));
2545                 memset(this, 0, sizeof(*this));
2546                 this->next = rest;
2547                 rest = this;
2548
2549                 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2550                 this->array.raid_disks =
2551                         __be16_to_cpu(vc->conf.prim_elmnt_count);
2552                 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2553                                                    this->array.raid_disks);
2554                 this->array.md_minor      = -1;
2555                 this->array.ctime         = DECADE +
2556                         __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2557                 this->array.utime         = DECADE +
2558                         __be32_to_cpu(vc->conf.timestamp);
2559                 this->array.chunk_size    = 512 << vc->conf.chunk_shift;
2560
2561                 i = vc->vcnum;
2562                 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2563                     (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2564                     DDF_init_full) {
2565                         this->array.state = 0;
2566                         this->resync_start = 0;
2567                 } else {
2568                         this->array.state = 1;
2569                         this->resync_start = ~0ULL;
2570                 }
2571                 memcpy(this->name, ddf->virt->entries[i].name, 32);
2572                 this->name[33]=0;
2573
2574                 memset(this->uuid, 0, sizeof(this->uuid));
2575                 this->component_size = __be64_to_cpu(vc->conf.blocks);
2576                 this->array.size = this->component_size / 2;
2577                 this->container_member = i;
2578
2579                 sprintf(this->text_version, "/%s/%d",
2580                         devnum2devname(st->container_dev),
2581                         this->container_member);
2582
2583                 for (i=0 ; i < ddf->mppe ; i++) {
2584                         struct mdinfo *dev;
2585                         struct dl *d;
2586
2587                         if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2588                                 continue;
2589
2590                         this->array.working_disks++;
2591
2592                         for (d = ddf->dlist; d ; d=d->next)
2593                                 if (d->disk.refnum == vc->conf.phys_refnum[i])
2594                                         break;
2595                         if (d == NULL)
2596                                 break;
2597
2598                         dev = malloc(sizeof(*dev));
2599                         memset(dev, 0, sizeof(*dev));
2600                         dev->next = this->devs;
2601                         this->devs = dev;
2602
2603                         dev->disk.number = __be32_to_cpu(d->disk.refnum);
2604                         dev->disk.major = d->major;
2605                         dev->disk.minor = d->minor;
2606                         dev->disk.raid_disk = i;
2607                         dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2608
2609                         dev->events = __be32_to_cpu(ddf->primary.seq);
2610                         dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2611                         dev->component_size = __be64_to_cpu(vc->conf.blocks);
2612                         if (d->devname)
2613                                 strcpy(dev->name, d->devname);
2614                 }
2615         }
2616         return rest;
2617 }
2618
2619 static int store_zero_ddf(struct supertype *st, int fd)
2620 {
2621         unsigned long long dsize;
2622         void *buf;
2623
2624         if (!get_dev_size(fd, NULL, &dsize))
2625                 return 1;
2626
2627         posix_memalign(&buf, 512, 512);
2628         memset(buf, 0, 512);
2629
2630         lseek64(fd, dsize-512, 0);
2631         write(fd, buf, 512);
2632         free(buf);
2633         return 0;
2634 }
2635
2636 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2637 {
2638         /*
2639          * return:
2640          *  0 same, or first was empty, and second was copied
2641          *  1 second had wrong number
2642          *  2 wrong uuid
2643          *  3 wrong other info
2644          */
2645         struct ddf_super *first = st->sb;
2646         struct ddf_super *second = tst->sb;
2647
2648         if (!first) {
2649                 st->sb = tst->sb;
2650                 tst->sb = NULL;
2651                 return 0;
2652         }
2653
2654         if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2655                 return 2;
2656
2657         /* FIXME should I look at anything else? */
2658         return 0;
2659 }
2660
2661 /*
2662  * A new array 'a' has been started which claims to be instance 'inst'
2663  * within container 'c'.
2664  * We need to confirm that the array matches the metadata in 'c' so
2665  * that we don't corrupt any metadata.
2666  */
2667 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2668 {
2669         dprintf("ddf: open_new %s\n", inst);
2670         a->info.container_member = atoi(inst);
2671         return 0;
2672 }
2673
2674 /*
2675  * The array 'a' is to be marked clean in the metadata.
2676  * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2677  * clean up to the point (in sectors).  If that cannot be recorded in the
2678  * metadata, then leave it as dirty.
2679  *
2680  * For DDF, we need to clear the DDF_state_inconsistent bit in the
2681  * !global! virtual_disk.virtual_entry structure.
2682  */
2683 static void ddf_set_array_state(struct active_array *a, int consistent)
2684 {
2685         struct ddf_super *ddf = a->container->sb;
2686         int inst = a->info.container_member;
2687         int old = ddf->virt->entries[inst].state;
2688         if (consistent)
2689                 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2690         else
2691                 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2692         if (old != ddf->virt->entries[inst].state)
2693                 ddf->updates_pending = 1;
2694
2695         old = ddf->virt->entries[inst].init_state;
2696         ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2697         if (a->resync_start == ~0ULL)
2698                 ddf->virt->entries[inst].init_state |= DDF_init_full;
2699         else if (a->resync_start == 0)
2700                 ddf->virt->entries[inst].init_state |= DDF_init_not;
2701         else
2702                 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2703         if (old != ddf->virt->entries[inst].init_state)
2704                 ddf->updates_pending = 1;
2705
2706         dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
2707                 a->resync_start);
2708 }
2709
2710 /*
2711  * The state of each disk is stored in the global phys_disk structure
2712  * in phys_disk.entries[n].state.
2713  * This makes various combinations awkward.
2714  * - When a device fails in any array, it must be failed in all arrays
2715  *   that include a part of this device.
2716  * - When a component is rebuilding, we cannot include it officially in the
2717  *   array unless this is the only array that uses the device.
2718  *
2719  * So: when transitioning:
2720  *   Online -> failed,  just set failed flag.  monitor will propagate
2721  *   spare -> online,   the device might need to be added to the array.
2722  *   spare -> failed,   just set failed.  Don't worry if in array or not.
2723  */
2724 static void ddf_set_disk(struct active_array *a, int n, int state)
2725 {
2726         struct ddf_super *ddf = a->container->sb;
2727         int inst = a->info.container_member;
2728         struct vd_config *vc = find_vdcr(ddf, inst);
2729         int pd = find_phys(ddf, vc->phys_refnum[n]);
2730         int i, st, working;
2731
2732         if (vc == NULL) {
2733                 dprintf("ddf: cannot find instance %d!!\n", inst);
2734                 return;
2735         }
2736         if (pd < 0) {
2737                 /* disk doesn't currently exist. If it is now in_sync,
2738                  * insert it. */
2739                 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2740                         /* Find dev 'n' in a->info->devs, determine the
2741                          * ddf refnum, and set vc->phys_refnum and update
2742                          * phys->entries[]
2743                          */
2744                         /* FIXME */
2745                 }
2746         } else {
2747                 int old = ddf->phys->entries[pd].state;
2748                 if (state & DS_FAULTY)
2749                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Failed);
2750                 if (state & DS_INSYNC) {
2751                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Online);
2752                         ddf->phys->entries[pd].state  &= __cpu_to_be16(~DDF_Rebuilding);
2753                 }
2754                 if (old != ddf->phys->entries[pd].state)
2755                         ddf->updates_pending = 1;
2756         }
2757
2758         dprintf("ddf: set_disk %d to %x\n", n, state);
2759
2760         /* Now we need to check the state of the array and update
2761          * virtual_disk.entries[n].state.
2762          * It needs to be one of "optimal", "degraded", "failed".
2763          * I don't understand 'deleted' or 'missing'.
2764          */
2765         working = 0;
2766         for (i=0; i < a->info.array.raid_disks; i++) {
2767                 pd = find_phys(ddf, vc->phys_refnum[i]);
2768                 if (pd < 0)
2769                         continue;
2770                 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2771                 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2772                     == DDF_Online)
2773                         working++;
2774         }
2775         state = DDF_state_degraded;
2776         if (working == a->info.array.raid_disks)
2777                 state = DDF_state_optimal;
2778         else switch(vc->prl) {
2779         case DDF_RAID0:
2780         case DDF_CONCAT:
2781         case DDF_JBOD:
2782                 state = DDF_state_failed;
2783                 break;
2784         case DDF_RAID1:
2785                 if (working == 0)
2786                         state = DDF_state_failed;
2787                 break;
2788         case DDF_RAID4:
2789         case DDF_RAID5:
2790                 if (working < a->info.array.raid_disks-1)
2791                         state = DDF_state_failed;
2792                 break;
2793         case DDF_RAID6:
2794                 if (working < a->info.array.raid_disks-2)
2795                         state = DDF_state_failed;
2796                 else if (working == a->info.array.raid_disks-1)
2797                         state = DDF_state_part_optimal;
2798                 break;
2799         }
2800
2801         if (ddf->virt->entries[inst].state !=
2802             ((ddf->virt->entries[inst].state & ~DDF_state_mask)
2803              | state)) {
2804
2805                 ddf->virt->entries[inst].state =
2806                         (ddf->virt->entries[inst].state & ~DDF_state_mask)
2807                         | state;
2808                 ddf->updates_pending = 1;
2809         }
2810
2811 }
2812
2813 static void ddf_sync_metadata(struct supertype *st)
2814 {
2815
2816         /*
2817          * Write all data to all devices.
2818          * Later, we might be able to track whether only local changes
2819          * have been made, or whether any global data has been changed,
2820          * but ddf is sufficiently weird that it probably always
2821          * changes global data ....
2822          */
2823         struct ddf_super *ddf = st->sb;
2824         if (!ddf->updates_pending)
2825                 return;
2826         ddf->updates_pending = 0;
2827         __write_init_super_ddf(st, 0);
2828         dprintf("ddf: sync_metadata\n");
2829 }
2830
2831 static void ddf_process_update(struct supertype *st,
2832                                struct metadata_update *update)
2833 {
2834         /* Apply this update to the metadata.
2835          * The first 4 bytes are a DDF_*_MAGIC which guides
2836          * our actions.
2837          * Possible update are:
2838          *  DDF_PHYS_RECORDS_MAGIC
2839          *    Add a new physical device.  Changes to this record
2840          *    only happen implicitly.
2841          *    used_pdes is the device number.
2842          *  DDF_VIRT_RECORDS_MAGIC
2843          *    Add a new VD.  Possibly also change the 'access' bits.
2844          *    populated_vdes is the entry number.
2845          *  DDF_VD_CONF_MAGIC
2846          *    New or updated VD.  the VIRT_RECORD must already
2847          *    exist.  For an update, phys_refnum and lba_offset
2848          *    (at least) are updated, and the VD_CONF must
2849          *    be written to precisely those devices listed with
2850          *    a phys_refnum.
2851          *  DDF_SPARE_ASSIGN_MAGIC
2852          *    replacement Spare Assignment Record... but for which device?
2853          *
2854          * So, e.g.:
2855          *  - to create a new array, we send a VIRT_RECORD and
2856          *    a VD_CONF.  Then assemble and start the array.
2857          *  - to activate a spare we send a VD_CONF to add the phys_refnum
2858          *    and offset.  This will also mark the spare as active with
2859          *    a spare-assignment record.
2860          */
2861         struct ddf_super *ddf = st->sb;
2862         __u32 *magic = (__u32*)update->buf;
2863         struct phys_disk *pd;
2864         struct virtual_disk *vd;
2865         struct vd_config *vc;
2866         struct vcl *vcl;
2867         struct dl *dl;
2868         int mppe;
2869         int ent;
2870
2871         dprintf("Process update %x\n", *magic);
2872
2873         switch (*magic) {
2874         case DDF_PHYS_RECORDS_MAGIC:
2875
2876                 if (update->len != (sizeof(struct phys_disk) +
2877                                     sizeof(struct phys_disk_entry)))
2878                         return;
2879                 pd = (struct phys_disk*)update->buf;
2880
2881                 ent = __be16_to_cpu(pd->used_pdes);
2882                 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2883                         return;
2884                 if (!all_ff(ddf->phys->entries[ent].guid))
2885                         return;
2886                 ddf->phys->entries[ent] = pd->entries[0];
2887                 ddf->phys->used_pdes = __cpu_to_be16(1 +
2888                                            __be16_to_cpu(ddf->phys->used_pdes));
2889                 ddf->updates_pending = 1;
2890                 break;
2891
2892         case DDF_VIRT_RECORDS_MAGIC:
2893
2894                 if (update->len != (sizeof(struct virtual_disk) +
2895                                     sizeof(struct virtual_entry)))
2896                         return;
2897                 vd = (struct virtual_disk*)update->buf;
2898
2899                 ent = __be16_to_cpu(vd->populated_vdes);
2900                 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2901                         return;
2902                 if (!all_ff(ddf->virt->entries[ent].guid))
2903                         return;
2904                 ddf->virt->entries[ent] = vd->entries[0];
2905                 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2906                               __be16_to_cpu(ddf->virt->populated_vdes));
2907                 ddf->updates_pending = 1;
2908                 break;
2909
2910         case DDF_VD_CONF_MAGIC:
2911                 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
2912
2913                 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2914                 if (update->len != ddf->conf_rec_len * 512)
2915                         return;
2916                 vc = (struct vd_config*)update->buf;
2917                 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2918                         if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2919                                 break;
2920                 dprintf("vcl = %p\n", vcl);
2921                 if (vcl) {
2922                         /* An update, just copy the phys_refnum and lba_offset
2923                          * fields
2924                          */
2925                         memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2926                                mppe * (sizeof(__u32) + sizeof(__u64)));
2927                 } else {
2928                         /* A new VD_CONF */
2929                         vcl = update->space;
2930                         update->space = NULL;
2931                         vcl->next = ddf->conflist;
2932                         memcpy(&vcl->conf, vc, update->len);
2933                         vcl->lba_offset = (__u64*)
2934                                 &vcl->conf.phys_refnum[mppe];
2935                         ddf->conflist = vcl;
2936                 }
2937                 /* Now make sure vlist is correct for each dl. */
2938                 for (dl = ddf->dlist; dl; dl = dl->next) {
2939                         int dn;
2940                         int vn = 0;
2941                         for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2942                                 for (dn=0; dn < ddf->mppe ; dn++)
2943                                         if (vcl->conf.phys_refnum[dn] ==
2944                                             dl->disk.refnum) {
2945                                                 dprintf("dev %d has %p at %d\n",
2946                                                         dl->pdnum, vcl, vn);
2947                                                 dl->vlist[vn++] = vcl;
2948                                                 break;
2949                                         }
2950                         while (vn < ddf->max_part)
2951                                 dl->vlist[vn++] = NULL;
2952                         if (dl->vlist[0]) {
2953                                 ddf->phys->entries[dl->pdnum].type &=
2954                                         ~__cpu_to_be16(DDF_Global_Spare);
2955                                 ddf->phys->entries[dl->pdnum].type |=
2956                                         __cpu_to_be16(DDF_Active_in_VD);
2957                         }
2958                         if (dl->spare) {
2959                                 ddf->phys->entries[dl->pdnum].type &=
2960                                         ~__cpu_to_be16(DDF_Global_Spare);
2961                                 ddf->phys->entries[dl->pdnum].type |=
2962                                         __cpu_to_be16(DDF_Spare);
2963                         }
2964                         if (!dl->vlist[0] && !dl->spare) {
2965                                 ddf->phys->entries[dl->pdnum].type |=
2966                                         __cpu_to_be16(DDF_Global_Spare);
2967                                 ddf->phys->entries[dl->pdnum].type &=
2968                                         ~__cpu_to_be16(DDF_Spare |
2969                                                        DDF_Active_in_VD);
2970                         }
2971                 }
2972                 ddf->updates_pending = 1;
2973                 break;
2974         case DDF_SPARE_ASSIGN_MAGIC:
2975         default: break;
2976         }
2977 }
2978
2979 static void ddf_prepare_update(struct supertype *st,
2980                                struct metadata_update *update)
2981 {
2982         /* This update arrived at managemon.
2983          * We are about to pass it to monitor.
2984          * If a malloc is needed, do it here.
2985          */
2986         struct ddf_super *ddf = st->sb;
2987         __u32 *magic = (__u32*)update->buf;
2988         if (*magic == DDF_VD_CONF_MAGIC)
2989                 posix_memalign(&update->space, 512,
2990                                offsetof(struct vcl, conf)
2991                                + ddf->conf_rec_len * 512);
2992 }
2993
2994 /*
2995  * Check if the array 'a' is degraded but not failed.
2996  * If it is, find as many spares as are available and needed and
2997  * arrange for their inclusion.
2998  * We only choose devices which are not already in the array,
2999  * and prefer those with a spare-assignment to this array.
3000  * otherwise we choose global spares - assuming always that
3001  * there is enough room.
3002  * For each spare that we assign, we return an 'mdinfo' which
3003  * describes the position for the device in the array.
3004  * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3005  * the new phys_refnum and lba_offset values.
3006  *
3007  * Only worry about BVDs at the moment.
3008  */
3009 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3010                                          struct metadata_update **updates)
3011 {
3012         int working = 0;
3013         struct mdinfo *d;
3014         struct ddf_super *ddf = a->container->sb;
3015         int global_ok = 0;
3016         struct mdinfo *rv = NULL;
3017         struct mdinfo *di;
3018         struct metadata_update *mu;
3019         struct dl *dl;
3020         int i;
3021         struct vd_config *vc;
3022         __u64 *lba;
3023
3024         for (d = a->info.devs ; d ; d = d->next) {
3025                 if ((d->curr_state & DS_FAULTY) &&
3026                         d->state_fd >= 0)
3027                         /* wait for Removal to happen */
3028                         return NULL;
3029                 if (d->state_fd >= 0)
3030                         working ++;
3031         }
3032
3033         dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3034                 a->info.array.level);
3035         if (working == a->info.array.raid_disks)
3036                 return NULL; /* array not degraded */
3037         switch (a->info.array.level) {
3038         case 1:
3039                 if (working == 0)
3040                         return NULL; /* failed */
3041                 break;
3042         case 4:
3043         case 5:
3044                 if (working < a->info.array.raid_disks - 1)
3045                         return NULL; /* failed */
3046                 break;
3047         case 6:
3048                 if (working < a->info.array.raid_disks - 2)
3049                         return NULL; /* failed */
3050                 break;
3051         default: /* concat or stripe */
3052                 return NULL; /* failed */
3053         }
3054
3055         /* For each slot, if it is not working, find a spare */
3056         dl = ddf->dlist;
3057         for (i = 0; i < a->info.array.raid_disks; i++) {
3058                 for (d = a->info.devs ; d ; d = d->next)
3059                         if (d->disk.raid_disk == i)
3060                                 break;
3061                 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3062                 if (d && (d->state_fd >= 0))
3063                         continue;
3064
3065                 /* OK, this device needs recovery.  Find a spare */
3066         again:
3067                 for ( ; dl ; dl = dl->next) {
3068                         unsigned long long esize;
3069                         unsigned long long pos;
3070                         struct mdinfo *d2;
3071                         int is_global = 0;
3072                         int is_dedicated = 0;
3073                         struct extent *ex;
3074                         int j;
3075                         /* If in this array, skip */
3076                         for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3077                                 if (d2->disk.major == dl->major &&
3078                                     d2->disk.minor == dl->minor) {
3079                                         dprintf("%x:%x already in array\n", dl->major, dl->minor);
3080                                         break;
3081                                 }
3082                         if (d2)
3083                                 continue;
3084                         if (ddf->phys->entries[dl->pdnum].type &
3085                             __cpu_to_be16(DDF_Spare)) {
3086                                 /* Check spare assign record */
3087                                 if (dl->spare) {
3088                                         if (dl->spare->type & DDF_spare_dedicated) {
3089                                                 /* check spare_ents for guid */
3090                                                 for (j = 0 ;
3091                                                      j < __be16_to_cpu(dl->spare->populated);
3092                                                      j++) {
3093                                                         if (memcmp(dl->spare->spare_ents[j].guid,
3094                                                                    ddf->virt->entries[a->info.container_member].guid,
3095                                                                    DDF_GUID_LEN) == 0)
3096                                                                 is_dedicated = 1;
3097                                                 }
3098                                         } else
3099                                                 is_global = 1;
3100                                 }
3101                         } else if (ddf->phys->entries[dl->pdnum].type &
3102                                    __cpu_to_be16(DDF_Global_Spare)) {
3103                                 is_global = 1;
3104                         }
3105                         if ( ! (is_dedicated ||
3106                                 (is_global && global_ok))) {
3107                                 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3108                                        is_dedicated, is_global);
3109                                 continue;
3110                         }
3111
3112                         /* We are allowed to use this device - is there space?
3113                          * We need a->info.component_size sectors */
3114                         ex = get_extents(ddf, dl);
3115                         if (!ex) {
3116                                 dprintf("cannot get extents\n");
3117                                 continue;
3118                         }
3119                         j = 0; pos = 0;
3120                         esize = 0;
3121
3122                         do {
3123                                 esize = ex[j].start - pos;
3124                                 if (esize >= a->info.component_size)
3125                                         break;
3126                                 pos = ex[i].start + ex[i].size;
3127                                 i++;
3128                         } while (ex[i-1].size);
3129
3130                         free(ex);
3131                         if (esize < a->info.component_size) {
3132                                 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3133                                         esize, a->info.component_size);
3134                                 /* No room */
3135                                 continue;
3136                         }
3137
3138                         /* Cool, we have a device with some space at pos */
3139                         di = malloc(sizeof(*di));
3140                         memset(di, 0, sizeof(*di));
3141                         di->disk.number = i;
3142                         di->disk.raid_disk = i;
3143                         di->disk.major = dl->major;
3144                         di->disk.minor = dl->minor;
3145                         di->disk.state = 0;
3146                         di->data_offset = pos;
3147                         di->component_size = a->info.component_size;
3148                         di->container_member = dl->pdnum;
3149                         di->next = rv;
3150                         rv = di;
3151                         dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3152                                 i, pos);
3153
3154                         break;
3155                 }
3156                 if (!dl && ! global_ok) {
3157                         /* not enough dedicated spares, try global */
3158                         global_ok = 1;
3159                         dl = ddf->dlist;
3160                         goto again;
3161                 }
3162         }
3163
3164         if (!rv)
3165                 /* No spares found */
3166                 return rv;
3167         /* Now 'rv' has a list of devices to return.
3168          * Create a metadata_update record to update the
3169          * phys_refnum and lba_offset values
3170          */
3171         mu = malloc(sizeof(*mu));
3172         mu->buf = malloc(ddf->conf_rec_len * 512);
3173         posix_memalign(&mu->space, 512, sizeof(struct vcl));
3174         mu->len = ddf->conf_rec_len;
3175         mu->next = *updates;
3176         vc = find_vdcr(ddf, a->info.container_member);
3177         memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3178
3179         vc = (struct vd_config*)mu->buf;
3180         lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3181         for (di = rv ; di ; di = di->next) {
3182                 vc->phys_refnum[di->disk.raid_disk] =
3183                         ddf->phys->entries[dl->pdnum].refnum;
3184                 lba[di->disk.raid_disk] = di->data_offset;
3185         }
3186         *updates = mu;
3187         return rv;
3188 }
3189
3190 struct superswitch super_ddf = {
3191 #ifndef MDASSEMBLE
3192         .examine_super  = examine_super_ddf,
3193         .brief_examine_super = brief_examine_super_ddf,
3194         .detail_super   = detail_super_ddf,
3195         .brief_detail_super = brief_detail_super_ddf,
3196         .validate_geometry = validate_geometry_ddf,
3197         .write_init_super = write_init_super_ddf,
3198 #endif
3199         .match_home     = match_home_ddf,
3200         .uuid_from_super= uuid_from_super_ddf,
3201         .getinfo_super  = getinfo_super_ddf,
3202         .update_super   = update_super_ddf,
3203
3204         .avail_size     = avail_size_ddf,
3205
3206         .compare_super  = compare_super_ddf,
3207
3208         .load_super     = load_super_ddf,
3209         .init_super     = init_super_ddf,
3210         .store_super    = store_zero_ddf,
3211         .free_super     = free_super_ddf,
3212         .match_metadata_desc = match_metadata_desc_ddf,
3213         .add_to_super   = add_to_super_ddf,
3214         .container_content = container_content_ddf,
3215
3216         .external       = 1,
3217
3218 /* for mdmon */
3219         .open_new       = ddf_open_new,
3220         .set_array_state= ddf_set_array_state,
3221         .set_disk       = ddf_set_disk,
3222         .sync_metadata  = ddf_sync_metadata,
3223         .process_update = ddf_process_update,
3224         .prepare_update = ddf_prepare_update,
3225         .activate_spare = ddf_activate_spare,
3226
3227 };