]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
70889dc388ee2be5973b2b5c8bb78b6ba7e76c01
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 };
427 };
428 struct disk_data disk;
429 void *mdupdate; /* hold metadata update */
430 struct vcl *vlist[0]; /* max_part in size */
431 } *dlist, *add_list;
432 };
433
434 #ifndef offsetof
435 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
436 #endif
437
438
439 static int calc_crc(void *buf, int len)
440 {
441 /* crcs are always at the same place as in the ddf_header */
442 struct ddf_header *ddf = buf;
443 __u32 oldcrc = ddf->crc;
444 __u32 newcrc;
445 ddf->crc = 0xffffffff;
446
447 newcrc = crc32(0, buf, len);
448 ddf->crc = oldcrc;
449 return newcrc;
450 }
451
452 static int load_ddf_header(int fd, unsigned long long lba,
453 unsigned long long size,
454 int type,
455 struct ddf_header *hdr, struct ddf_header *anchor)
456 {
457 /* read a ddf header (primary or secondary) from fd/lba
458 * and check that it is consistent with anchor
459 * Need to check:
460 * magic, crc, guid, rev, and LBA's header_type, and
461 * everything after header_type must be the same
462 */
463 if (lba >= size-1)
464 return 0;
465
466 if (lseek64(fd, lba<<9, 0) < 0)
467 return 0;
468
469 if (read(fd, hdr, 512) != 512)
470 return 0;
471
472 if (hdr->magic != DDF_HEADER_MAGIC)
473 return 0;
474 if (calc_crc(hdr, 512) != hdr->crc)
475 return 0;
476 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
477 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
478 anchor->primary_lba != hdr->primary_lba ||
479 anchor->secondary_lba != hdr->secondary_lba ||
480 hdr->type != type ||
481 memcmp(anchor->pad2, hdr->pad2, 512 -
482 offsetof(struct ddf_header, pad2)) != 0)
483 return 0;
484
485 /* Looks good enough to me... */
486 return 1;
487 }
488
489 static void *load_section(int fd, struct ddf_super *super, void *buf,
490 __u32 offset_be, __u32 len_be, int check)
491 {
492 unsigned long long offset = __be32_to_cpu(offset_be);
493 unsigned long long len = __be32_to_cpu(len_be);
494 int dofree = (buf == NULL);
495
496 if (check)
497 if (len != 2 && len != 8 && len != 32
498 && len != 128 && len != 512)
499 return NULL;
500
501 if (len > 1024)
502 return NULL;
503 if (buf) {
504 /* All pre-allocated sections are a single block */
505 if (len != 1)
506 return NULL;
507 } else {
508 posix_memalign(&buf, 512, len<<9);
509 }
510
511 if (!buf)
512 return NULL;
513
514 if (super->active->type == 1)
515 offset += __be64_to_cpu(super->active->primary_lba);
516 else
517 offset += __be64_to_cpu(super->active->secondary_lba);
518
519 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
520 if (dofree)
521 free(buf);
522 return NULL;
523 }
524 if (read(fd, buf, len<<9) != (len<<9)) {
525 if (dofree)
526 free(buf);
527 return NULL;
528 }
529 return buf;
530 }
531
532 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
533 {
534 unsigned long long dsize;
535
536 get_dev_size(fd, NULL, &dsize);
537
538 if (lseek64(fd, dsize-512, 0) < 0) {
539 if (devname)
540 fprintf(stderr,
541 Name": Cannot seek to anchor block on %s: %s\n",
542 devname, strerror(errno));
543 return 1;
544 }
545 if (read(fd, &super->anchor, 512) != 512) {
546 if (devname)
547 fprintf(stderr,
548 Name ": Cannot read anchor block on %s: %s\n",
549 devname, strerror(errno));
550 return 1;
551 }
552 if (super->anchor.magic != DDF_HEADER_MAGIC) {
553 if (devname)
554 fprintf(stderr, Name ": no DDF anchor found on %s\n",
555 devname);
556 return 2;
557 }
558 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
559 if (devname)
560 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
561 devname);
562 return 2;
563 }
564 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
565 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
566 if (devname)
567 fprintf(stderr, Name ": can only support super revision"
568 " %.8s and earlier, not %.8s on %s\n",
569 DDF_REVISION_2, super->anchor.revision,devname);
570 return 2;
571 }
572 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
573 dsize >> 9, 1,
574 &super->primary, &super->anchor) == 0) {
575 if (devname)
576 fprintf(stderr,
577 Name ": Failed to load primary DDF header "
578 "on %s\n", devname);
579 return 2;
580 }
581 super->active = &super->primary;
582 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
583 dsize >> 9, 2,
584 &super->secondary, &super->anchor)) {
585 if ((__be32_to_cpu(super->primary.seq)
586 < __be32_to_cpu(super->secondary.seq) &&
587 !super->secondary.openflag)
588 || (__be32_to_cpu(super->primary.seq)
589 == __be32_to_cpu(super->secondary.seq) &&
590 super->primary.openflag && !super->secondary.openflag)
591 )
592 super->active = &super->secondary;
593 }
594 return 0;
595 }
596
597 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
598 {
599 void *ok;
600 ok = load_section(fd, super, &super->controller,
601 super->active->controller_section_offset,
602 super->active->controller_section_length,
603 0);
604 super->phys = load_section(fd, super, NULL,
605 super->active->phys_section_offset,
606 super->active->phys_section_length,
607 1);
608 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
609
610 super->virt = load_section(fd, super, NULL,
611 super->active->virt_section_offset,
612 super->active->virt_section_length,
613 1);
614 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
615 if (!ok ||
616 !super->phys ||
617 !super->virt) {
618 free(super->phys);
619 free(super->virt);
620 super->phys = NULL;
621 super->virt = NULL;
622 return 2;
623 }
624 super->conflist = NULL;
625 super->dlist = NULL;
626
627 super->max_part = __be16_to_cpu(super->active->max_partitions);
628 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
629 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
630 return 0;
631 }
632
633 static int load_ddf_local(int fd, struct ddf_super *super,
634 char *devname, int keep)
635 {
636 struct dl *dl;
637 struct stat stb;
638 char *conf;
639 int i;
640 int vnum;
641 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
642 unsigned long long dsize;
643
644 /* First the local disk info */
645 posix_memalign((void**)&dl, 512,
646 sizeof(*dl) +
647 (super->max_part) * sizeof(dl->vlist[0]));
648
649 load_section(fd, super, &dl->disk,
650 super->active->data_section_offset,
651 super->active->data_section_length,
652 0);
653 dl->devname = devname ? strdup(devname) : NULL;
654
655 fstat(fd, &stb);
656 dl->major = major(stb.st_rdev);
657 dl->minor = minor(stb.st_rdev);
658 dl->next = super->dlist;
659 dl->fd = keep ? fd : -1;
660
661 dl->size = 0;
662 if (get_dev_size(fd, devname, &dsize))
663 dl->size = dsize >> 9;
664 dl->spare = NULL;
665 for (i=0 ; i < super->max_part ; i++)
666 dl->vlist[i] = NULL;
667 super->dlist = dl;
668 dl->pdnum = -1;
669 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
670 if (memcmp(super->phys->entries[i].guid,
671 dl->disk.guid, DDF_GUID_LEN) == 0)
672 dl->pdnum = i;
673
674 /* Now the config list. */
675 /* 'conf' is an array of config entries, some of which are
676 * probably invalid. Those which are good need to be copied into
677 * the conflist
678 */
679
680 conf = load_section(fd, super, NULL,
681 super->active->config_section_offset,
682 super->active->config_section_length,
683 0);
684
685 vnum = 0;
686 for (i = 0;
687 i < __be32_to_cpu(super->active->config_section_length);
688 i += super->conf_rec_len) {
689 struct vd_config *vd =
690 (struct vd_config *)((char*)conf + i*512);
691 struct vcl *vcl;
692
693 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
694 if (dl->spare)
695 continue;
696 posix_memalign((void**)&dl->spare, 512,
697 super->conf_rec_len*512);
698 memcpy(dl->spare, vd, super->conf_rec_len*512);
699 continue;
700 }
701 if (vd->magic != DDF_VD_CONF_MAGIC)
702 continue;
703 for (vcl = super->conflist; vcl; vcl = vcl->next) {
704 if (memcmp(vcl->conf.guid,
705 vd->guid, DDF_GUID_LEN) == 0)
706 break;
707 }
708
709 if (vcl) {
710 dl->vlist[vnum++] = vcl;
711 if (__be32_to_cpu(vd->seqnum) <=
712 __be32_to_cpu(vcl->conf.seqnum))
713 continue;
714 } else {
715 posix_memalign((void**)&vcl, 512,
716 (super->conf_rec_len*512 +
717 offsetof(struct vcl, conf)));
718 vcl->next = super->conflist;
719 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
720 super->conflist = vcl;
721 dl->vlist[vnum++] = vcl;
722 }
723 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
724 vcl->lba_offset = (__u64*)
725 &vcl->conf.phys_refnum[super->mppe];
726
727 for (i=0; i < max_virt_disks ; i++)
728 if (memcmp(super->virt->entries[i].guid,
729 vcl->conf.guid, DDF_GUID_LEN)==0)
730 break;
731 if (i < max_virt_disks)
732 vcl->vcnum = i;
733 }
734 free(conf);
735
736 return 0;
737 }
738
739 #ifndef MDASSEMBLE
740 static int load_super_ddf_all(struct supertype *st, int fd,
741 void **sbp, char *devname, int keep_fd);
742 #endif
743 static int load_super_ddf(struct supertype *st, int fd,
744 char *devname)
745 {
746 unsigned long long dsize;
747 struct ddf_super *super;
748 int rv;
749
750 #ifndef MDASSEMBLE
751 /* if 'fd' is a container, load metadata from all the devices */
752 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
753 return 0;
754 #endif
755 if (st->subarray[0])
756 return 1; /* FIXME Is this correct */
757
758 if (get_dev_size(fd, devname, &dsize) == 0)
759 return 1;
760
761 /* 32M is a lower bound */
762 if (dsize <= 32*1024*1024) {
763 if (devname) {
764 fprintf(stderr,
765 Name ": %s is too small for ddf: "
766 "size is %llu sectors.\n",
767 devname, dsize>>9);
768 return 1;
769 }
770 }
771 if (dsize & 511) {
772 if (devname) {
773 fprintf(stderr,
774 Name ": %s is an odd size for ddf: "
775 "size is %llu bytes.\n",
776 devname, dsize);
777 return 1;
778 }
779 }
780
781 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
782 fprintf(stderr, Name ": malloc of %zu failed.\n",
783 sizeof(*super));
784 return 1;
785 }
786 memset(super, 0, sizeof(*super));
787
788 rv = load_ddf_headers(fd, super, devname);
789 if (rv) {
790 free(super);
791 return rv;
792 }
793
794 /* Have valid headers and have chosen the best. Let's read in the rest*/
795
796 rv = load_ddf_global(fd, super, devname);
797
798 if (rv) {
799 if (devname)
800 fprintf(stderr,
801 Name ": Failed to load all information "
802 "sections on %s\n", devname);
803 free(super);
804 return rv;
805 }
806
807 load_ddf_local(fd, super, devname, 0);
808
809 /* Should possibly check the sections .... */
810
811 st->sb = super;
812 if (st->ss == NULL) {
813 st->ss = &super_ddf;
814 st->minor_version = 0;
815 st->max_devs = 512;
816 }
817 return 0;
818
819 }
820
821 static void free_super_ddf(struct supertype *st)
822 {
823 struct ddf_super *ddf = st->sb;
824 if (ddf == NULL)
825 return;
826 free(ddf->phys);
827 free(ddf->virt);
828 while (ddf->conflist) {
829 struct vcl *v = ddf->conflist;
830 ddf->conflist = v->next;
831 if (v->block_sizes)
832 free(v->block_sizes);
833 free(v);
834 }
835 while (ddf->dlist) {
836 struct dl *d = ddf->dlist;
837 ddf->dlist = d->next;
838 if (d->fd >= 0)
839 close(d->fd);
840 if (d->spare)
841 free(d->spare);
842 free(d);
843 }
844 free(ddf);
845 st->sb = NULL;
846 }
847
848 static struct supertype *match_metadata_desc_ddf(char *arg)
849 {
850 /* 'ddf' only support containers */
851 struct supertype *st;
852 if (strcmp(arg, "ddf") != 0 &&
853 strcmp(arg, "default") != 0
854 )
855 return NULL;
856
857 st = malloc(sizeof(*st));
858 memset(st, 0, sizeof(*st));
859 st->ss = &super_ddf;
860 st->max_devs = 512;
861 st->minor_version = 0;
862 st->sb = NULL;
863 return st;
864 }
865
866
867 #ifndef MDASSEMBLE
868
869 static mapping_t ddf_state[] = {
870 { "Optimal", 0},
871 { "Degraded", 1},
872 { "Deleted", 2},
873 { "Missing", 3},
874 { "Failed", 4},
875 { "Partially Optimal", 5},
876 { "-reserved-", 6},
877 { "-reserved-", 7},
878 { NULL, 0}
879 };
880
881 static mapping_t ddf_init_state[] = {
882 { "Not Initialised", 0},
883 { "QuickInit in Progress", 1},
884 { "Fully Initialised", 2},
885 { "*UNKNOWN*", 3},
886 { NULL, 0}
887 };
888 static mapping_t ddf_access[] = {
889 { "Read/Write", 0},
890 { "Reserved", 1},
891 { "Read Only", 2},
892 { "Blocked (no access)", 3},
893 { NULL ,0}
894 };
895
896 static mapping_t ddf_level[] = {
897 { "RAID0", DDF_RAID0},
898 { "RAID1", DDF_RAID1},
899 { "RAID3", DDF_RAID3},
900 { "RAID4", DDF_RAID4},
901 { "RAID5", DDF_RAID5},
902 { "RAID1E",DDF_RAID1E},
903 { "JBOD", DDF_JBOD},
904 { "CONCAT",DDF_CONCAT},
905 { "RAID5E",DDF_RAID5E},
906 { "RAID5EE",DDF_RAID5EE},
907 { "RAID6", DDF_RAID6},
908 { NULL, 0}
909 };
910 static mapping_t ddf_sec_level[] = {
911 { "Striped", DDF_2STRIPED},
912 { "Mirrored", DDF_2MIRRORED},
913 { "Concat", DDF_2CONCAT},
914 { "Spanned", DDF_2SPANNED},
915 { NULL, 0}
916 };
917 #endif
918
919 struct num_mapping {
920 int num1, num2;
921 };
922 static struct num_mapping ddf_level_num[] = {
923 { DDF_RAID0, 0 },
924 { DDF_RAID1, 1 },
925 { DDF_RAID3, LEVEL_UNSUPPORTED },
926 { DDF_RAID4, 4 },
927 { DDF_RAID5, 5 },
928 { DDF_RAID1E, LEVEL_UNSUPPORTED },
929 { DDF_JBOD, LEVEL_UNSUPPORTED },
930 { DDF_CONCAT, LEVEL_LINEAR },
931 { DDF_RAID5E, LEVEL_UNSUPPORTED },
932 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
933 { DDF_RAID6, 6},
934 { MAXINT, MAXINT }
935 };
936
937 static int map_num1(struct num_mapping *map, int num)
938 {
939 int i;
940 for (i=0 ; map[i].num1 != MAXINT; i++)
941 if (map[i].num1 == num)
942 break;
943 return map[i].num2;
944 }
945
946 #ifndef MDASSEMBLE
947 static void print_guid(char *guid, int tstamp)
948 {
949 /* A GUIDs are part (or all) ASCII and part binary.
950 * They tend to be space padded.
951 * We print the GUID in HEX, then in parentheses add
952 * any initial ASCII sequence, and a possible
953 * time stamp from bytes 16-19
954 */
955 int l = DDF_GUID_LEN;
956 int i;
957
958 for (i=0 ; i<DDF_GUID_LEN ; i++) {
959 if ((i&3)==0 && i != 0) printf(":");
960 printf("%02X", guid[i]&255);
961 }
962
963 printf(" (");
964 while (l && guid[l-1] == ' ')
965 l--;
966 for (i=0 ; i<l ; i++) {
967 if (guid[i] >= 0x20 && guid[i] < 0x7f)
968 fputc(guid[i], stdout);
969 else
970 break;
971 }
972 if (tstamp) {
973 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
974 char tbuf[100];
975 struct tm *tm;
976 tm = localtime(&then);
977 strftime(tbuf, 100, " %D %T",tm);
978 fputs(tbuf, stdout);
979 }
980 printf(")");
981 }
982
983 static void examine_vd(int n, struct ddf_super *sb, char *guid)
984 {
985 int crl = sb->conf_rec_len;
986 struct vcl *vcl;
987
988 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
989 struct vd_config *vc = &vcl->conf;
990
991 if (calc_crc(vc, crl*512) != vc->crc)
992 continue;
993 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
994 continue;
995
996 /* Ok, we know about this VD, let's give more details */
997 printf(" Raid Devices[%d] : %d\n", n,
998 __be16_to_cpu(vc->prim_elmnt_count));
999 printf(" Chunk Size[%d] : %d sectors\n", n,
1000 1 << vc->chunk_shift);
1001 printf(" Raid Level[%d] : %s\n", n,
1002 map_num(ddf_level, vc->prl)?:"-unknown-");
1003 if (vc->sec_elmnt_count != 1) {
1004 printf(" Secondary Position[%d] : %d of %d\n", n,
1005 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1006 printf(" Secondary Level[%d] : %s\n", n,
1007 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1008 }
1009 printf(" Device Size[%d] : %llu\n", n,
1010 __be64_to_cpu(vc->blocks)/2);
1011 printf(" Array Size[%d] : %llu\n", n,
1012 __be64_to_cpu(vc->array_blocks)/2);
1013 }
1014 }
1015
1016 static void examine_vds(struct ddf_super *sb)
1017 {
1018 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1019 int i;
1020 printf(" Virtual Disks : %d\n", cnt);
1021
1022 for (i=0; i<cnt; i++) {
1023 struct virtual_entry *ve = &sb->virt->entries[i];
1024 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1025 printf("\n");
1026 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1027 printf(" state[%d] : %s, %s%s\n", i,
1028 map_num(ddf_state, ve->state & 7),
1029 (ve->state & 8) ? "Morphing, ": "",
1030 (ve->state & 16)? "Not Consistent" : "Consistent");
1031 printf(" init state[%d] : %s\n", i,
1032 map_num(ddf_init_state, ve->init_state&3));
1033 printf(" access[%d] : %s\n", i,
1034 map_num(ddf_access, (ve->init_state>>6) & 3));
1035 printf(" Name[%d] : %.16s\n", i, ve->name);
1036 examine_vd(i, sb, ve->guid);
1037 }
1038 if (cnt) printf("\n");
1039 }
1040
1041 static void examine_pds(struct ddf_super *sb)
1042 {
1043 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1044 int i;
1045 struct dl *dl;
1046 printf(" Physical Disks : %d\n", cnt);
1047
1048 for (i=0 ; i<cnt ; i++) {
1049 struct phys_disk_entry *pd = &sb->phys->entries[i];
1050 int type = __be16_to_cpu(pd->type);
1051 int state = __be16_to_cpu(pd->state);
1052
1053 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1054 printf("\n");
1055 printf(" ref[%d] : %08x\n", i,
1056 __be32_to_cpu(pd->refnum));
1057 printf(" mode[%d] : %s%s%s%s%s\n", i,
1058 (type&2) ? "active":"",
1059 (type&4) ? "Global Spare":"",
1060 (type&8) ? "spare" : "",
1061 (type&16)? ", foreign" : "",
1062 (type&32)? "pass-through" : "");
1063 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1064 (state&1)? "Online": "Offline",
1065 (state&2)? ", Failed": "",
1066 (state&4)? ", Rebuilding": "",
1067 (state&8)? ", in-transition": "",
1068 (state&16)? ", SMART errors": "",
1069 (state&32)? ", Unrecovered Read Errors": "",
1070 (state&64)? ", Missing" : "");
1071 printf(" Avail Size[%d] : %llu K\n", i,
1072 __be64_to_cpu(pd->config_size)>>1);
1073 for (dl = sb->dlist; dl ; dl = dl->next) {
1074 if (dl->disk.refnum == pd->refnum) {
1075 char *dv = map_dev(dl->major, dl->minor, 0);
1076 if (dv)
1077 printf(" Device[%d] : %s\n",
1078 i, dv);
1079 }
1080 }
1081 printf("\n");
1082 }
1083 }
1084
1085 static void examine_super_ddf(struct supertype *st, char *homehost)
1086 {
1087 struct ddf_super *sb = st->sb;
1088
1089 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1090 printf(" Version : %.8s\n", sb->anchor.revision);
1091 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1092 printf("\n");
1093 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1094 printf("\n");
1095 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1096 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1097 ?"yes" : "no");
1098 examine_vds(sb);
1099 examine_pds(sb);
1100 }
1101
1102 static void brief_examine_super_ddf(struct supertype *st)
1103 {
1104 /* We just write a generic DDF ARRAY entry
1105 * The uuid is all hex, 6 groups of 4 bytes
1106 */
1107 struct ddf_super *ddf = st->sb;
1108 int i;
1109 printf("ARRAY /dev/ddf metadata=ddf UUID=");
1110 for (i = 0; i < DDF_GUID_LEN; i++) {
1111 if ((i&3) == 0 && i != 0)
1112 printf(":");
1113 printf("%02X", 255&ddf->anchor.guid[i]);
1114 }
1115 printf("\n");
1116 }
1117
1118 static void detail_super_ddf(struct supertype *st, char *homehost)
1119 {
1120 /* FIXME later
1121 * Could print DDF GUID
1122 * Need to find which array
1123 * If whole, briefly list all arrays
1124 * If one, give name
1125 */
1126 }
1127
1128 static void brief_detail_super_ddf(struct supertype *st)
1129 {
1130 /* FIXME I really need to know which array we are detailing.
1131 * Can that be stored in ddf_super??
1132 */
1133 // struct ddf_super *ddf = st->sb;
1134 }
1135 #endif
1136
1137 static int match_home_ddf(struct supertype *st, char *homehost)
1138 {
1139 /* It matches 'this' host if the controller is a
1140 * Linux-MD controller with vendor_data matching
1141 * the hostname
1142 */
1143 struct ddf_super *ddf = st->sb;
1144 int len = strlen(homehost);
1145
1146 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1147 len < sizeof(ddf->controller.vendor_data) &&
1148 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1149 ddf->controller.vendor_data[len] == 0);
1150 }
1151
1152 #ifndef MDASSEMBLE
1153 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1154 {
1155 struct vcl *v;
1156
1157 for (v = ddf->conflist; v; v = v->next)
1158 if (inst == v->vcnum)
1159 return &v->conf;
1160 return NULL;
1161 }
1162 #endif
1163
1164 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1165 {
1166 /* Find the entry in phys_disk which has the given refnum
1167 * and return it's index
1168 */
1169 int i;
1170 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1171 if (ddf->phys->entries[i].refnum == phys_refnum)
1172 return i;
1173 return -1;
1174 }
1175
1176 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1177 {
1178 /* The uuid returned here is used for:
1179 * uuid to put into bitmap file (Create, Grow)
1180 * uuid for backup header when saving critical section (Grow)
1181 * comparing uuids when re-adding a device into an array
1182 * For each of these we can make do with a truncated
1183 * or hashed uuid rather than the original, as long as
1184 * everyone agrees.
1185 * In each case the uuid required is that of the data-array,
1186 * not the device-set.
1187 * In the case of SVD we assume the BVD is of interest,
1188 * though that might be the case if a bitmap were made for
1189 * a mirrored SVD - worry about that later.
1190 * So we need to find the VD configuration record for the
1191 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1192 * The first 16 bytes of the sha1 of these is used.
1193 */
1194 struct ddf_super *ddf = st->sb;
1195 struct vcl *vcl = ddf->currentconf;
1196
1197 if (!vcl)
1198 memset(uuid, 0, sizeof (uuid));
1199 else {
1200 char buf[20];
1201 struct sha1_ctx ctx;
1202 sha1_init_ctx(&ctx);
1203 sha1_process_bytes(&vcl->conf.guid, DDF_GUID_LEN, &ctx);
1204 if (vcl->conf.sec_elmnt_count > 1)
1205 sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1206 sha1_finish_ctx(&ctx, buf);
1207 memcpy(uuid, buf, sizeof(uuid));
1208 }
1209 }
1210
1211 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1212
1213 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1214 {
1215 struct ddf_super *ddf = st->sb;
1216
1217 if (ddf->currentconf) {
1218 getinfo_super_ddf_bvd(st, info);
1219 return;
1220 }
1221
1222 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1223 info->array.level = LEVEL_CONTAINER;
1224 info->array.layout = 0;
1225 info->array.md_minor = -1;
1226 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1227 (ddf->anchor.guid+16));
1228 info->array.utime = 0;
1229 info->array.chunk_size = 0;
1230
1231
1232 info->disk.major = 0;
1233 info->disk.minor = 0;
1234 if (ddf->dlist) {
1235 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1236 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1237
1238 info->data_offset = __be64_to_cpu(ddf->phys->
1239 entries[info->disk.raid_disk].
1240 config_size);
1241 info->component_size = ddf->dlist->size - info->data_offset;
1242 } else {
1243 info->disk.number = -1;
1244 // info->disk.raid_disk = find refnum in the table and use index;
1245 }
1246 info->disk.state = (1 << MD_DISK_SYNC);
1247
1248
1249 info->reshape_active = 0;
1250
1251 info->array.major_version = -1;
1252 info->array.minor_version = -2;
1253 strcpy(info->text_version, "ddf");
1254 info->safe_mode_delay = 0;
1255
1256 // uuid_from_super_ddf(info->uuid, sbv);
1257
1258 // info->name[] ?? ;
1259 }
1260
1261 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1262
1263 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1264 {
1265 struct ddf_super *ddf = st->sb;
1266 struct vcl *vc = ddf->currentconf;
1267 int cd = ddf->currentdev;
1268
1269 /* FIXME this returns BVD info - what if we want SVD ?? */
1270
1271 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1272 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1273 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1274 info->array.raid_disks);
1275 info->array.md_minor = -1;
1276 info->array.ctime = DECADE +
1277 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1278 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1279 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1280
1281 if (cd >= 0 && cd < ddf->mppe) {
1282 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1283 if (vc->block_sizes)
1284 info->component_size = vc->block_sizes[cd];
1285 else
1286 info->component_size = __be64_to_cpu(vc->conf.blocks);
1287 }
1288
1289 info->disk.major = 0;
1290 info->disk.minor = 0;
1291 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1292 // info->disk.raid_disk = find refnum in the table and use index;
1293 // info->disk.state = ???;
1294
1295 info->container_member = ddf->currentconf->vcnum;
1296
1297 info->resync_start = 0;
1298 if (!(ddf->virt->entries[info->container_member].state
1299 & DDF_state_inconsistent) &&
1300 (ddf->virt->entries[info->container_member].init_state
1301 & DDF_initstate_mask)
1302 == DDF_init_full)
1303 info->resync_start = ~0ULL;
1304
1305 uuid_from_super_ddf(st, info->uuid);
1306
1307 info->container_member = atoi(st->subarray);
1308 info->array.major_version = -1;
1309 info->array.minor_version = -2;
1310 sprintf(info->text_version, "/%s/%s",
1311 devnum2devname(st->container_dev),
1312 st->subarray);
1313 info->safe_mode_delay = 200;
1314
1315 // info->name[] ?? ;
1316 }
1317
1318
1319 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1320 char *update,
1321 char *devname, int verbose,
1322 int uuid_set, char *homehost)
1323 {
1324 /* For 'assemble' and 'force' we need to return non-zero if any
1325 * change was made. For others, the return value is ignored.
1326 * Update options are:
1327 * force-one : This device looks a bit old but needs to be included,
1328 * update age info appropriately.
1329 * assemble: clear any 'faulty' flag to allow this device to
1330 * be assembled.
1331 * force-array: Array is degraded but being forced, mark it clean
1332 * if that will be needed to assemble it.
1333 *
1334 * newdev: not used ????
1335 * grow: Array has gained a new device - this is currently for
1336 * linear only
1337 * resync: mark as dirty so a resync will happen.
1338 * uuid: Change the uuid of the array to match what is given
1339 * homehost: update the recorded homehost
1340 * name: update the name - preserving the homehost
1341 * _reshape_progress: record new reshape_progress position.
1342 *
1343 * Following are not relevant for this version:
1344 * sparc2.2 : update from old dodgey metadata
1345 * super-minor: change the preferred_minor number
1346 * summaries: update redundant counters.
1347 */
1348 int rv = 0;
1349 // struct ddf_super *ddf = st->sb;
1350 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1351 // struct virtual_entry *ve = find_ve(ddf);
1352
1353 /* we don't need to handle "force-*" or "assemble" as
1354 * there is no need to 'trick' the kernel. We the metadata is
1355 * first updated to activate the array, all the implied modifications
1356 * will just happen.
1357 */
1358
1359 if (strcmp(update, "grow") == 0) {
1360 /* FIXME */
1361 }
1362 if (strcmp(update, "resync") == 0) {
1363 // info->resync_checkpoint = 0;
1364 }
1365 /* We ignore UUID updates as they make even less sense
1366 * with DDF
1367 */
1368 if (strcmp(update, "homehost") == 0) {
1369 /* homehost is stored in controller->vendor_data,
1370 * or it is when we are the vendor
1371 */
1372 // if (info->vendor_is_local)
1373 // strcpy(ddf->controller.vendor_data, homehost);
1374 }
1375 if (strcmp(update, "name") == 0) {
1376 /* name is stored in virtual_entry->name */
1377 // memset(ve->name, ' ', 16);
1378 // strncpy(ve->name, info->name, 16);
1379 }
1380 if (strcmp(update, "_reshape_progress") == 0) {
1381 /* We don't support reshape yet */
1382 }
1383
1384 // update_all_csum(ddf);
1385
1386 return rv;
1387 }
1388
1389 static void make_header_guid(char *guid)
1390 {
1391 __u32 stamp;
1392 int rfd;
1393 /* Create a DDF Header of Virtual Disk GUID */
1394
1395 /* 24 bytes of fiction required.
1396 * first 8 are a 'vendor-id' - "Linux-MD"
1397 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1398 * Remaining 8 random number plus timestamp
1399 */
1400 memcpy(guid, T10, sizeof(T10));
1401 stamp = __cpu_to_be32(0xdeadbeef);
1402 memcpy(guid+8, &stamp, 4);
1403 stamp = __cpu_to_be32(0);
1404 memcpy(guid+12, &stamp, 4);
1405 stamp = __cpu_to_be32(time(0) - DECADE);
1406 memcpy(guid+16, &stamp, 4);
1407 rfd = open("/dev/urandom", O_RDONLY);
1408 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1409 stamp = random();
1410 memcpy(guid+20, &stamp, 4);
1411 if (rfd >= 0) close(rfd);
1412 }
1413
1414 static int init_super_ddf_bvd(struct supertype *st,
1415 mdu_array_info_t *info,
1416 unsigned long long size,
1417 char *name, char *homehost,
1418 int *uuid);
1419
1420 static int init_super_ddf(struct supertype *st,
1421 mdu_array_info_t *info,
1422 unsigned long long size, char *name, char *homehost,
1423 int *uuid)
1424 {
1425 /* This is primarily called by Create when creating a new array.
1426 * We will then get add_to_super called for each component, and then
1427 * write_init_super called to write it out to each device.
1428 * For DDF, Create can create on fresh devices or on a pre-existing
1429 * array.
1430 * To create on a pre-existing array a different method will be called.
1431 * This one is just for fresh drives.
1432 *
1433 * We need to create the entire 'ddf' structure which includes:
1434 * DDF headers - these are easy.
1435 * Controller data - a Sector describing this controller .. not that
1436 * this is a controller exactly.
1437 * Physical Disk Record - one entry per device, so
1438 * leave plenty of space.
1439 * Virtual Disk Records - again, just leave plenty of space.
1440 * This just lists VDs, doesn't give details
1441 * Config records - describes the VDs that use this disk
1442 * DiskData - describes 'this' device.
1443 * BadBlockManagement - empty
1444 * Diag Space - empty
1445 * Vendor Logs - Could we put bitmaps here?
1446 *
1447 */
1448 struct ddf_super *ddf;
1449 char hostname[17];
1450 int hostlen;
1451 int max_phys_disks, max_virt_disks;
1452 unsigned long long sector;
1453 int clen;
1454 int i;
1455 int pdsize, vdsize;
1456 struct phys_disk *pd;
1457 struct virtual_disk *vd;
1458
1459 if (!info) {
1460 st->sb = NULL;
1461 return 0;
1462 }
1463 if (st->sb)
1464 return init_super_ddf_bvd(st, info, size, name, homehost,
1465 uuid);
1466
1467 posix_memalign((void**)&ddf, 512, sizeof(*ddf));
1468 memset(ddf, 0, sizeof(*ddf));
1469 ddf->dlist = NULL; /* no physical disks yet */
1470 ddf->conflist = NULL; /* No virtual disks yet */
1471
1472 /* At least 32MB *must* be reserved for the ddf. So let's just
1473 * start 32MB from the end, and put the primary header there.
1474 * Don't do secondary for now.
1475 * We don't know exactly where that will be yet as it could be
1476 * different on each device. To just set up the lengths.
1477 *
1478 */
1479
1480 ddf->anchor.magic = DDF_HEADER_MAGIC;
1481 make_header_guid(ddf->anchor.guid);
1482
1483 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1484 ddf->anchor.seq = __cpu_to_be32(1);
1485 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1486 ddf->anchor.openflag = 0xFF;
1487 ddf->anchor.foreignflag = 0;
1488 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1489 ddf->anchor.pad0 = 0xff;
1490 memset(ddf->anchor.pad1, 0xff, 12);
1491 memset(ddf->anchor.header_ext, 0xff, 32);
1492 ddf->anchor.primary_lba = ~(__u64)0;
1493 ddf->anchor.secondary_lba = ~(__u64)0;
1494 ddf->anchor.type = DDF_HEADER_ANCHOR;
1495 memset(ddf->anchor.pad2, 0xff, 3);
1496 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1497 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1498 of 32M reserved.. */
1499 max_phys_disks = 1023; /* Should be enough */
1500 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1501 max_virt_disks = 255;
1502 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1503 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1504 ddf->max_part = 64;
1505 ddf->mppe = 256;
1506 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1507 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1508 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1509 memset(ddf->anchor.pad3, 0xff, 54);
1510 /* controller sections is one sector long immediately
1511 * after the ddf header */
1512 sector = 1;
1513 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1514 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1515 sector += 1;
1516
1517 /* phys is 8 sectors after that */
1518 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1519 sizeof(struct phys_disk_entry)*max_phys_disks,
1520 512);
1521 switch(pdsize/512) {
1522 case 2: case 8: case 32: case 128: case 512: break;
1523 default: abort();
1524 }
1525 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1526 ddf->anchor.phys_section_length =
1527 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1528 sector += pdsize/512;
1529
1530 /* virt is another 32 sectors */
1531 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1532 sizeof(struct virtual_entry) * max_virt_disks,
1533 512);
1534 switch(vdsize/512) {
1535 case 2: case 8: case 32: case 128: case 512: break;
1536 default: abort();
1537 }
1538 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1539 ddf->anchor.virt_section_length =
1540 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1541 sector += vdsize/512;
1542
1543 clen = ddf->conf_rec_len * (ddf->max_part+1);
1544 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1545 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1546 sector += clen;
1547
1548 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1549 ddf->anchor.data_section_length = __cpu_to_be32(1);
1550 sector += 1;
1551
1552 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1553 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1554 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1555 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1556 ddf->anchor.vendor_length = __cpu_to_be32(0);
1557 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1558
1559 memset(ddf->anchor.pad4, 0xff, 256);
1560
1561 memcpy(&ddf->primary, &ddf->anchor, 512);
1562 memcpy(&ddf->secondary, &ddf->anchor, 512);
1563
1564 ddf->primary.openflag = 1; /* I guess.. */
1565 ddf->primary.type = DDF_HEADER_PRIMARY;
1566
1567 ddf->secondary.openflag = 1; /* I guess.. */
1568 ddf->secondary.type = DDF_HEADER_SECONDARY;
1569
1570 ddf->active = &ddf->primary;
1571
1572 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1573
1574 /* 24 more bytes of fiction required.
1575 * first 8 are a 'vendor-id' - "Linux-MD"
1576 * Remaining 16 are serial number.... maybe a hostname would do?
1577 */
1578 memcpy(ddf->controller.guid, T10, sizeof(T10));
1579 gethostname(hostname, sizeof(hostname));
1580 hostname[sizeof(hostname) - 1] = 0;
1581 hostlen = strlen(hostname);
1582 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1583 for (i = strlen(T10) ; i+hostlen < 24; i++)
1584 ddf->controller.guid[i] = ' ';
1585
1586 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1587 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1588 ddf->controller.type.sub_vendor_id = 0;
1589 ddf->controller.type.sub_device_id = 0;
1590 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1591 memset(ddf->controller.pad, 0xff, 8);
1592 memset(ddf->controller.vendor_data, 0xff, 448);
1593
1594 posix_memalign((void**)&pd, 512, pdsize);
1595 ddf->phys = pd;
1596 ddf->pdsize = pdsize;
1597
1598 memset(pd, 0xff, pdsize);
1599 memset(pd, 0, sizeof(*pd));
1600 pd->magic = DDF_PHYS_DATA_MAGIC;
1601 pd->used_pdes = __cpu_to_be16(0);
1602 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1603 memset(pd->pad, 0xff, 52);
1604
1605 posix_memalign((void**)&vd, 512, vdsize);
1606 ddf->virt = vd;
1607 ddf->vdsize = vdsize;
1608 memset(vd, 0, vdsize);
1609 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1610 vd->populated_vdes = __cpu_to_be16(0);
1611 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1612 memset(vd->pad, 0xff, 52);
1613
1614 for (i=0; i<max_virt_disks; i++)
1615 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1616
1617 st->sb = ddf;
1618 ddf->updates_pending = 1;
1619 return 1;
1620 }
1621
1622 static int all_ff(char *guid)
1623 {
1624 int i;
1625 for (i = 0; i < DDF_GUID_LEN; i++)
1626 if (guid[i] != (char)0xff)
1627 return 0;
1628 return 1;
1629 }
1630 static int chunk_to_shift(int chunksize)
1631 {
1632 return ffs(chunksize/512)-1;
1633 }
1634
1635 static int level_to_prl(int level)
1636 {
1637 switch (level) {
1638 case LEVEL_LINEAR: return DDF_CONCAT;
1639 case 0: return DDF_RAID0;
1640 case 1: return DDF_RAID1;
1641 case 4: return DDF_RAID4;
1642 case 5: return DDF_RAID5;
1643 case 6: return DDF_RAID6;
1644 default: return -1;
1645 }
1646 }
1647 static int layout_to_rlq(int level, int layout, int raiddisks)
1648 {
1649 switch(level) {
1650 case 0:
1651 return DDF_RAID0_SIMPLE;
1652 case 1:
1653 switch(raiddisks) {
1654 case 2: return DDF_RAID1_SIMPLE;
1655 case 3: return DDF_RAID1_MULTI;
1656 default: return -1;
1657 }
1658 case 4:
1659 switch(layout) {
1660 case 0: return DDF_RAID4_N;
1661 }
1662 break;
1663 case 5:
1664 case 6:
1665 switch(layout) {
1666 case ALGORITHM_LEFT_ASYMMETRIC:
1667 return DDF_RAID5_N_RESTART;
1668 case ALGORITHM_RIGHT_ASYMMETRIC:
1669 if (level == 5)
1670 return DDF_RAID5_0_RESTART;
1671 else
1672 return DDF_RAID6_0_RESTART;
1673 case ALGORITHM_LEFT_SYMMETRIC:
1674 return DDF_RAID5_N_CONTINUE;
1675 case ALGORITHM_RIGHT_SYMMETRIC:
1676 return -1; /* not mentioned in standard */
1677 }
1678 }
1679 return -1;
1680 }
1681
1682 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1683 {
1684 switch(prl) {
1685 case DDF_RAID0:
1686 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1687 case DDF_RAID1:
1688 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1689 on raiddisks*/
1690 case DDF_RAID4:
1691 switch(rlq) {
1692 case DDF_RAID4_N:
1693 return 0;
1694 default:
1695 /* not supported */
1696 return -1; /* FIXME this isn't checked */
1697 }
1698 case DDF_RAID5:
1699 switch(rlq) {
1700 case DDF_RAID5_N_RESTART:
1701 return ALGORITHM_LEFT_ASYMMETRIC;
1702 case DDF_RAID5_0_RESTART:
1703 return ALGORITHM_RIGHT_ASYMMETRIC;
1704 case DDF_RAID5_N_CONTINUE:
1705 return ALGORITHM_LEFT_SYMMETRIC;
1706 default:
1707 return -1;
1708 }
1709 case DDF_RAID6:
1710 switch(rlq) {
1711 case DDF_RAID5_N_RESTART:
1712 return ALGORITHM_LEFT_ASYMMETRIC;
1713 case DDF_RAID6_0_RESTART:
1714 return ALGORITHM_RIGHT_ASYMMETRIC;
1715 case DDF_RAID5_N_CONTINUE:
1716 return ALGORITHM_LEFT_SYMMETRIC;
1717 default:
1718 return -1;
1719 }
1720 }
1721 return -1;
1722 }
1723
1724 #ifndef MDASSEMBLE
1725 struct extent {
1726 unsigned long long start, size;
1727 };
1728 static int cmp_extent(const void *av, const void *bv)
1729 {
1730 const struct extent *a = av;
1731 const struct extent *b = bv;
1732 if (a->start < b->start)
1733 return -1;
1734 if (a->start > b->start)
1735 return 1;
1736 return 0;
1737 }
1738
1739 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1740 {
1741 /* find a list of used extents on the give physical device
1742 * (dnum) of the given ddf.
1743 * Return a malloced array of 'struct extent'
1744
1745 FIXME ignore DDF_Legacy devices?
1746
1747 */
1748 struct extent *rv;
1749 int n = 0;
1750 int i, j;
1751
1752 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1753 if (!rv)
1754 return NULL;
1755
1756 for (i = 0; i < ddf->max_part; i++) {
1757 struct vcl *v = dl->vlist[i];
1758 if (v == NULL)
1759 continue;
1760 for (j=0; j < v->conf.prim_elmnt_count; j++)
1761 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1762 /* This device plays role 'j' in 'v'. */
1763 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1764 rv[n].size = __be64_to_cpu(v->conf.blocks);
1765 n++;
1766 break;
1767 }
1768 }
1769 qsort(rv, n, sizeof(*rv), cmp_extent);
1770
1771 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1772 rv[n].size = 0;
1773 return rv;
1774 }
1775 #endif
1776
1777 static int init_super_ddf_bvd(struct supertype *st,
1778 mdu_array_info_t *info,
1779 unsigned long long size,
1780 char *name, char *homehost,
1781 int *uuid)
1782 {
1783 /* We are creating a BVD inside a pre-existing container.
1784 * so st->sb is already set.
1785 * We need to create a new vd_config and a new virtual_entry
1786 */
1787 struct ddf_super *ddf = st->sb;
1788 int venum;
1789 struct virtual_entry *ve;
1790 struct vcl *vcl;
1791 struct vd_config *vc;
1792
1793 if (__be16_to_cpu(ddf->virt->populated_vdes)
1794 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1795 fprintf(stderr, Name": This ddf already has the "
1796 "maximum of %d virtual devices\n",
1797 __be16_to_cpu(ddf->virt->max_vdes));
1798 return 0;
1799 }
1800
1801 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1802 if (all_ff(ddf->virt->entries[venum].guid))
1803 break;
1804 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1805 fprintf(stderr, Name ": Cannot find spare slot for "
1806 "virtual disk - DDF is corrupt\n");
1807 return 0;
1808 }
1809 ve = &ddf->virt->entries[venum];
1810
1811 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1812 * timestamp, random number
1813 */
1814 make_header_guid(ve->guid);
1815 ve->unit = __cpu_to_be16(info->md_minor);
1816 ve->pad0 = 0xFFFF;
1817 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1818 ve->type = 0;
1819 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1820 if (info->state & 1) /* clean */
1821 ve->init_state = DDF_init_full;
1822 else
1823 ve->init_state = DDF_init_not;
1824
1825 memset(ve->pad1, 0xff, 14);
1826 memset(ve->name, ' ', 16);
1827 if (name)
1828 strncpy(ve->name, name, 16);
1829 ddf->virt->populated_vdes =
1830 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1831
1832 /* Now create a new vd_config */
1833 posix_memalign((void**)&vcl, 512,
1834 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512));
1835 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1836 vcl->vcnum = venum;
1837 sprintf(st->subarray, "%d", venum);
1838 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1839
1840 vc = &vcl->conf;
1841
1842 vc->magic = DDF_VD_CONF_MAGIC;
1843 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1844 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1845 vc->seqnum = __cpu_to_be32(1);
1846 memset(vc->pad0, 0xff, 24);
1847 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1848 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1849 vc->prl = level_to_prl(info->level);
1850 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1851 vc->sec_elmnt_count = 1;
1852 vc->sec_elmnt_seq = 0;
1853 vc->srl = 0;
1854 vc->blocks = __cpu_to_be64(info->size * 2);
1855 vc->array_blocks = __cpu_to_be64(
1856 calc_array_size(info->level, info->raid_disks, info->layout,
1857 info->chunk_size, info->size*2));
1858 memset(vc->pad1, 0xff, 8);
1859 vc->spare_refs[0] = 0xffffffff;
1860 vc->spare_refs[1] = 0xffffffff;
1861 vc->spare_refs[2] = 0xffffffff;
1862 vc->spare_refs[3] = 0xffffffff;
1863 vc->spare_refs[4] = 0xffffffff;
1864 vc->spare_refs[5] = 0xffffffff;
1865 vc->spare_refs[6] = 0xffffffff;
1866 vc->spare_refs[7] = 0xffffffff;
1867 memset(vc->cache_pol, 0, 8);
1868 vc->bg_rate = 0x80;
1869 memset(vc->pad2, 0xff, 3);
1870 memset(vc->pad3, 0xff, 52);
1871 memset(vc->pad4, 0xff, 192);
1872 memset(vc->v0, 0xff, 32);
1873 memset(vc->v1, 0xff, 32);
1874 memset(vc->v2, 0xff, 16);
1875 memset(vc->v3, 0xff, 16);
1876 memset(vc->vendor, 0xff, 32);
1877
1878 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1879 memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1880
1881 vcl->next = ddf->conflist;
1882 ddf->conflist = vcl;
1883 ddf->currentconf = vcl;
1884 ddf->updates_pending = 1;
1885 return 1;
1886 }
1887
1888 #ifndef MDASSEMBLE
1889 static void add_to_super_ddf_bvd(struct supertype *st,
1890 mdu_disk_info_t *dk, int fd, char *devname)
1891 {
1892 /* fd and devname identify a device with-in the ddf container (st).
1893 * dk identifies a location in the new BVD.
1894 * We need to find suitable free space in that device and update
1895 * the phys_refnum and lba_offset for the newly created vd_config.
1896 * We might also want to update the type in the phys_disk
1897 * section.
1898 */
1899 struct dl *dl;
1900 struct ddf_super *ddf = st->sb;
1901 struct vd_config *vc;
1902 __u64 *lba_offset;
1903 int working;
1904 int i;
1905 unsigned long long blocks, pos, esize;
1906 struct extent *ex;
1907
1908 for (dl = ddf->dlist; dl ; dl = dl->next)
1909 if (dl->major == dk->major &&
1910 dl->minor == dk->minor)
1911 break;
1912 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1913 return;
1914
1915 vc = &ddf->currentconf->conf;
1916 lba_offset = ddf->currentconf->lba_offset;
1917
1918 ex = get_extents(ddf, dl);
1919 if (!ex)
1920 return;
1921
1922 i = 0; pos = 0;
1923 blocks = __be64_to_cpu(vc->blocks);
1924 if (ddf->currentconf->block_sizes)
1925 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1926
1927 do {
1928 esize = ex[i].start - pos;
1929 if (esize >= blocks)
1930 break;
1931 pos = ex[i].start + ex[i].size;
1932 i++;
1933 } while (ex[i-1].size);
1934
1935 free(ex);
1936 if (esize < blocks)
1937 return;
1938
1939 ddf->currentdev = dk->raid_disk;
1940 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1941 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1942
1943 for (i=0; i < ddf->max_part ; i++)
1944 if (dl->vlist[i] == NULL)
1945 break;
1946 if (i == ddf->max_part)
1947 return;
1948 dl->vlist[i] = ddf->currentconf;
1949
1950 dl->fd = fd;
1951 dl->devname = devname;
1952
1953 /* Check how many working raid_disks, and if we can mark
1954 * array as optimal yet
1955 */
1956 working = 0;
1957
1958 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1959 if (vc->phys_refnum[i] != 0xffffffff)
1960 working++;
1961
1962 /* Find which virtual_entry */
1963 i = ddf->currentconf->vcnum;
1964 if (working == __be16_to_cpu(vc->prim_elmnt_count))
1965 ddf->virt->entries[i].state =
1966 (ddf->virt->entries[i].state & ~DDF_state_mask)
1967 | DDF_state_optimal;
1968
1969 if (vc->prl == DDF_RAID6 &&
1970 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1971 ddf->virt->entries[i].state =
1972 (ddf->virt->entries[i].state & ~DDF_state_mask)
1973 | DDF_state_part_optimal;
1974
1975 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1976 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1977 ddf->updates_pending = 1;
1978 }
1979
1980 /* add a device to a container, either while creating it or while
1981 * expanding a pre-existing container
1982 */
1983 static void add_to_super_ddf(struct supertype *st,
1984 mdu_disk_info_t *dk, int fd, char *devname)
1985 {
1986 struct ddf_super *ddf = st->sb;
1987 struct dl *dd;
1988 time_t now;
1989 struct tm *tm;
1990 unsigned long long size;
1991 struct phys_disk_entry *pde;
1992 int n, i;
1993 struct stat stb;
1994
1995 if (ddf->currentconf) {
1996 add_to_super_ddf_bvd(st, dk, fd, devname);
1997 return;
1998 }
1999
2000 /* This is device numbered dk->number. We need to create
2001 * a phys_disk entry and a more detailed disk_data entry.
2002 */
2003 fstat(fd, &stb);
2004 posix_memalign((void**)&dd, 512,
2005 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
2006 dd->major = major(stb.st_rdev);
2007 dd->minor = minor(stb.st_rdev);
2008 dd->devname = devname;
2009 dd->fd = fd;
2010 dd->spare = NULL;
2011
2012 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2013 now = time(0);
2014 tm = localtime(&now);
2015 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2016 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2017 *(__u32*)(dd->disk.guid + 16) = random();
2018 *(__u32*)(dd->disk.guid + 20) = random();
2019
2020 do {
2021 /* Cannot be bothered finding a CRC of some irrelevant details*/
2022 dd->disk.refnum = random();
2023 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2024 i >= 0; i--)
2025 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2026 break;
2027 } while (i >= 0);
2028
2029 dd->disk.forced_ref = 1;
2030 dd->disk.forced_guid = 1;
2031 memset(dd->disk.vendor, ' ', 32);
2032 memcpy(dd->disk.vendor, "Linux", 5);
2033 memset(dd->disk.pad, 0xff, 442);
2034 for (i = 0; i < ddf->max_part ; i++)
2035 dd->vlist[i] = NULL;
2036
2037 n = __be16_to_cpu(ddf->phys->used_pdes);
2038 pde = &ddf->phys->entries[n];
2039 dd->pdnum = n;
2040
2041 if (st->update_tail) {
2042 int len = (sizeof(struct phys_disk) +
2043 sizeof(struct phys_disk_entry));
2044 struct phys_disk *pd;
2045
2046 pd = malloc(len);
2047 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2048 pd->used_pdes = __cpu_to_be16(n);
2049 pde = &pd->entries[0];
2050 dd->mdupdate = pd;
2051 } else {
2052 n++;
2053 ddf->phys->used_pdes = __cpu_to_be16(n);
2054 }
2055
2056 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2057 pde->refnum = dd->disk.refnum;
2058 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2059 pde->state = __cpu_to_be16(DDF_Online);
2060 get_dev_size(fd, NULL, &size);
2061 /* We are required to reserve 32Meg, and record the size in sectors */
2062 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2063 sprintf(pde->path, "%17.17s","Information: nil") ;
2064 memset(pde->pad, 0xff, 6);
2065
2066 dd->size = size >> 9;
2067 if (st->update_tail) {
2068 dd->next = ddf->add_list;
2069 ddf->add_list = dd;
2070 } else {
2071 dd->next = ddf->dlist;
2072 ddf->dlist = dd;
2073 ddf->updates_pending = 1;
2074 }
2075 }
2076
2077 /*
2078 * This is the write_init_super method for a ddf container. It is
2079 * called when creating a container or adding another device to a
2080 * container.
2081 */
2082
2083 static unsigned char null_conf[4096+512];
2084
2085 static int __write_init_super_ddf(struct supertype *st, int do_close)
2086 {
2087
2088 struct ddf_super *ddf = st->sb;
2089 int i;
2090 struct dl *d;
2091 int n_config;
2092 int conf_size;
2093
2094 unsigned long long size, sector;
2095
2096 for (d = ddf->dlist; d; d=d->next) {
2097 int fd = d->fd;
2098
2099 if (fd < 0)
2100 continue;
2101
2102 /* We need to fill in the primary, (secondary) and workspace
2103 * lba's in the headers, set their checksums,
2104 * Also checksum phys, virt....
2105 *
2106 * Then write everything out, finally the anchor is written.
2107 */
2108 get_dev_size(fd, NULL, &size);
2109 size /= 512;
2110 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2111 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2112 ddf->anchor.seq = __cpu_to_be32(1);
2113 memcpy(&ddf->primary, &ddf->anchor, 512);
2114 memcpy(&ddf->secondary, &ddf->anchor, 512);
2115
2116 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2117 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2118 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2119
2120 ddf->primary.openflag = 0;
2121 ddf->primary.type = DDF_HEADER_PRIMARY;
2122
2123 ddf->secondary.openflag = 0;
2124 ddf->secondary.type = DDF_HEADER_SECONDARY;
2125
2126 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2127 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2128
2129 sector = size - 16*1024*2;
2130 lseek64(fd, sector<<9, 0);
2131 write(fd, &ddf->primary, 512);
2132
2133 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2134 write(fd, &ddf->controller, 512);
2135
2136 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2137
2138 write(fd, ddf->phys, ddf->pdsize);
2139
2140 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2141 write(fd, ddf->virt, ddf->vdsize);
2142
2143 /* Now write lots of config records. */
2144 n_config = ddf->max_part;
2145 conf_size = ddf->conf_rec_len * 512;
2146 for (i = 0 ; i <= n_config ; i++) {
2147 struct vcl *c = d->vlist[i];
2148 if (i == n_config)
2149 c = (struct vcl*)d->spare;
2150
2151 if (c) {
2152 c->conf.crc = calc_crc(&c->conf, conf_size);
2153 write(fd, &c->conf, conf_size);
2154 } else {
2155 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2156 if (null_conf[0] != 0xff)
2157 memset(null_conf, 0xff, sizeof(null_conf));
2158 int togo = conf_size;
2159 while (togo > sizeof(null_conf)-512) {
2160 write(fd, null_aligned, sizeof(null_conf)-512);
2161 togo -= sizeof(null_conf)-512;
2162 }
2163 write(fd, null_aligned, togo);
2164 }
2165 }
2166 d->disk.crc = calc_crc(&d->disk, 512);
2167 write(fd, &d->disk, 512);
2168
2169 /* Maybe do the same for secondary */
2170
2171 lseek64(fd, (size-1)*512, SEEK_SET);
2172 write(fd, &ddf->anchor, 512);
2173 if (do_close) {
2174 close(fd);
2175 d->fd = -1;
2176 }
2177 }
2178 return 1;
2179 }
2180
2181 static int write_init_super_ddf(struct supertype *st)
2182 {
2183
2184 if (st->update_tail) {
2185 /* queue the virtual_disk and vd_config as metadata updates */
2186 struct virtual_disk *vd;
2187 struct vd_config *vc;
2188 struct ddf_super *ddf = st->sb;
2189 int len;
2190
2191 if (!ddf->currentconf) {
2192 int len = (sizeof(struct phys_disk) +
2193 sizeof(struct phys_disk_entry));
2194
2195 /* adding a disk to the container. */
2196 if (!ddf->add_list)
2197 return 0;
2198
2199 append_metadata_update(st, ddf->add_list->mdupdate, len);
2200 ddf->add_list->mdupdate = NULL;
2201 return 0;
2202 }
2203
2204 /* Newly created VD */
2205
2206 /* First the virtual disk. We have a slightly fake header */
2207 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2208 vd = malloc(len);
2209 *vd = *ddf->virt;
2210 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2211 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2212 append_metadata_update(st, vd, len);
2213
2214 /* Then the vd_config */
2215 len = ddf->conf_rec_len * 512;
2216 vc = malloc(len);
2217 memcpy(vc, &ddf->currentconf->conf, len);
2218 append_metadata_update(st, vc, len);
2219
2220 /* FIXME I need to close the fds! */
2221 return 0;
2222 } else
2223 return __write_init_super_ddf(st, 1);
2224 }
2225
2226 #endif
2227
2228 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2229 {
2230 /* We must reserve the last 32Meg */
2231 if (devsize <= 32*1024*2)
2232 return 0;
2233 return devsize - 32*1024*2;
2234 }
2235
2236 #ifndef MDASSEMBLE
2237 static int
2238 validate_geometry_ddf_container(struct supertype *st,
2239 int level, int layout, int raiddisks,
2240 int chunk, unsigned long long size,
2241 char *dev, unsigned long long *freesize,
2242 int verbose);
2243
2244 static int validate_geometry_ddf_bvd(struct supertype *st,
2245 int level, int layout, int raiddisks,
2246 int chunk, unsigned long long size,
2247 char *dev, unsigned long long *freesize,
2248 int verbose);
2249
2250 static int validate_geometry_ddf(struct supertype *st,
2251 int level, int layout, int raiddisks,
2252 int chunk, unsigned long long size,
2253 char *dev, unsigned long long *freesize,
2254 int verbose)
2255 {
2256 int fd;
2257 struct mdinfo *sra;
2258 int cfd;
2259
2260 /* ddf potentially supports lots of things, but it depends on
2261 * what devices are offered (and maybe kernel version?)
2262 * If given unused devices, we will make a container.
2263 * If given devices in a container, we will make a BVD.
2264 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2265 */
2266
2267 if (level == LEVEL_CONTAINER) {
2268 /* Must be a fresh device to add to a container */
2269 return validate_geometry_ddf_container(st, level, layout,
2270 raiddisks, chunk,
2271 size, dev, freesize,
2272 verbose);
2273 }
2274
2275 if (st->sb) {
2276 /* A container has already been opened, so we are
2277 * creating in there. Maybe a BVD, maybe an SVD.
2278 * Should make a distinction one day.
2279 */
2280 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2281 chunk, size, dev, freesize,
2282 verbose);
2283 }
2284 if (!dev) {
2285 /* Initial sanity check. Exclude illegal levels. */
2286 int i;
2287 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2288 if (ddf_level_num[i].num2 == level)
2289 break;
2290 if (ddf_level_num[i].num1 == MAXINT)
2291 return 0;
2292 /* Should check layout? etc */
2293 return 1;
2294 }
2295
2296 /* This is the first device for the array.
2297 * If it is a container, we read it in and do automagic allocations,
2298 * no other devices should be given.
2299 * Otherwise it must be a member device of a container, and we
2300 * do manual allocation.
2301 * Later we should check for a BVD and make an SVD.
2302 */
2303 fd = open(dev, O_RDONLY|O_EXCL, 0);
2304 if (fd >= 0) {
2305 sra = sysfs_read(fd, 0, GET_VERSION);
2306 close(fd);
2307 if (sra && sra->array.major_version == -1 &&
2308 strcmp(sra->text_version, "ddf") == 0) {
2309
2310 /* load super */
2311 /* find space for 'n' devices. */
2312 /* remember the devices */
2313 /* Somehow return the fact that we have enough */
2314 }
2315
2316 if (verbose)
2317 fprintf(stderr,
2318 Name ": ddf: Cannot create this array "
2319 "on device %s\n",
2320 dev);
2321 return 0;
2322 }
2323 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2324 if (verbose)
2325 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2326 dev, strerror(errno));
2327 return 0;
2328 }
2329 /* Well, it is in use by someone, maybe a 'ddf' container. */
2330 cfd = open_container(fd);
2331 if (cfd < 0) {
2332 close(fd);
2333 if (verbose)
2334 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2335 dev, strerror(EBUSY));
2336 return 0;
2337 }
2338 sra = sysfs_read(cfd, 0, GET_VERSION);
2339 close(fd);
2340 if (sra && sra->array.major_version == -1 &&
2341 strcmp(sra->text_version, "ddf") == 0) {
2342 /* This is a member of a ddf container. Load the container
2343 * and try to create a bvd
2344 */
2345 struct ddf_super *ddf;
2346 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2347 st->sb = ddf;
2348 st->container_dev = fd2devnum(cfd);
2349 close(cfd);
2350 return validate_geometry_ddf_bvd(st, level, layout,
2351 raiddisks, chunk, size,
2352 dev, freesize,
2353 verbose);
2354 }
2355 close(cfd);
2356 } else /* device may belong to a different container */
2357 return 0;
2358
2359 return 1;
2360 }
2361
2362 static int
2363 validate_geometry_ddf_container(struct supertype *st,
2364 int level, int layout, int raiddisks,
2365 int chunk, unsigned long long size,
2366 char *dev, unsigned long long *freesize,
2367 int verbose)
2368 {
2369 int fd;
2370 unsigned long long ldsize;
2371
2372 if (level != LEVEL_CONTAINER)
2373 return 0;
2374 if (!dev)
2375 return 1;
2376
2377 fd = open(dev, O_RDONLY|O_EXCL, 0);
2378 if (fd < 0) {
2379 if (verbose)
2380 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2381 dev, strerror(errno));
2382 return 0;
2383 }
2384 if (!get_dev_size(fd, dev, &ldsize)) {
2385 close(fd);
2386 return 0;
2387 }
2388 close(fd);
2389
2390 *freesize = avail_size_ddf(st, ldsize >> 9);
2391
2392 return 1;
2393 }
2394
2395 static int validate_geometry_ddf_bvd(struct supertype *st,
2396 int level, int layout, int raiddisks,
2397 int chunk, unsigned long long size,
2398 char *dev, unsigned long long *freesize,
2399 int verbose)
2400 {
2401 struct stat stb;
2402 struct ddf_super *ddf = st->sb;
2403 struct dl *dl;
2404 unsigned long long pos = 0;
2405 unsigned long long maxsize;
2406 struct extent *e;
2407 int i;
2408 /* ddf/bvd supports lots of things, but not containers */
2409 if (level == LEVEL_CONTAINER)
2410 return 0;
2411 /* We must have the container info already read in. */
2412 if (!ddf)
2413 return 0;
2414
2415 if (!dev) {
2416 /* General test: make sure there is space for
2417 * 'raiddisks' device extents of size 'size'.
2418 */
2419 unsigned long long minsize = size;
2420 int dcnt = 0;
2421 if (minsize == 0)
2422 minsize = 8;
2423 for (dl = ddf->dlist; dl ; dl = dl->next)
2424 {
2425 int found = 0;
2426 pos = 0;
2427
2428 i = 0;
2429 e = get_extents(ddf, dl);
2430 if (!e) continue;
2431 do {
2432 unsigned long long esize;
2433 esize = e[i].start - pos;
2434 if (esize >= minsize)
2435 found = 1;
2436 pos = e[i].start + e[i].size;
2437 i++;
2438 } while (e[i-1].size);
2439 if (found)
2440 dcnt++;
2441 free(e);
2442 }
2443 if (dcnt < raiddisks) {
2444 if (verbose)
2445 fprintf(stderr,
2446 Name ": ddf: Not enough devices with "
2447 "space for this array (%d < %d)\n",
2448 dcnt, raiddisks);
2449 return 0;
2450 }
2451 return 1;
2452 }
2453 /* This device must be a member of the set */
2454 if (stat(dev, &stb) < 0)
2455 return 0;
2456 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2457 return 0;
2458 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2459 if (dl->major == major(stb.st_rdev) &&
2460 dl->minor == minor(stb.st_rdev))
2461 break;
2462 }
2463 if (!dl) {
2464 if (verbose)
2465 fprintf(stderr, Name ": ddf: %s is not in the "
2466 "same DDF set\n",
2467 dev);
2468 return 0;
2469 }
2470 e = get_extents(ddf, dl);
2471 maxsize = 0;
2472 i = 0;
2473 if (e) do {
2474 unsigned long long esize;
2475 esize = e[i].start - pos;
2476 if (esize >= maxsize)
2477 maxsize = esize;
2478 pos = e[i].start + e[i].size;
2479 i++;
2480 } while (e[i-1].size);
2481 *freesize = maxsize;
2482 // FIXME here I am
2483
2484 return 1;
2485 }
2486
2487 static int load_super_ddf_all(struct supertype *st, int fd,
2488 void **sbp, char *devname, int keep_fd)
2489 {
2490 struct mdinfo *sra;
2491 struct ddf_super *super;
2492 struct mdinfo *sd, *best = NULL;
2493 int bestseq = 0;
2494 int seq;
2495 char nm[20];
2496 int dfd;
2497
2498 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2499 if (!sra)
2500 return 1;
2501 if (sra->array.major_version != -1 ||
2502 sra->array.minor_version != -2 ||
2503 strcmp(sra->text_version, "ddf") != 0)
2504 return 1;
2505
2506 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2507 return 1;
2508 memset(super, 0, sizeof(*super));
2509
2510 /* first, try each device, and choose the best ddf */
2511 for (sd = sra->devs ; sd ; sd = sd->next) {
2512 int rv;
2513 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2514 dfd = dev_open(nm, O_RDONLY);
2515 if (dfd < 0)
2516 return 2;
2517 rv = load_ddf_headers(dfd, super, NULL);
2518 close(dfd);
2519 if (rv == 0) {
2520 seq = __be32_to_cpu(super->active->seq);
2521 if (super->active->openflag)
2522 seq--;
2523 if (!best || seq > bestseq) {
2524 bestseq = seq;
2525 best = sd;
2526 }
2527 }
2528 }
2529 if (!best)
2530 return 1;
2531 /* OK, load this ddf */
2532 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2533 dfd = dev_open(nm, O_RDONLY);
2534 if (dfd < 0)
2535 return 1;
2536 load_ddf_headers(dfd, super, NULL);
2537 load_ddf_global(dfd, super, NULL);
2538 close(dfd);
2539 /* Now we need the device-local bits */
2540 for (sd = sra->devs ; sd ; sd = sd->next) {
2541 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2542 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2543 if (dfd < 0)
2544 return 2;
2545 load_ddf_headers(dfd, super, NULL);
2546 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2547 if (!keep_fd) close(dfd);
2548 }
2549 if (st->subarray[0]) {
2550 struct vcl *v;
2551
2552 for (v = super->conflist; v; v = v->next)
2553 if (v->vcnum == atoi(st->subarray))
2554 super->currentconf = v;
2555 if (!super->currentconf)
2556 return 1;
2557 }
2558 *sbp = super;
2559 if (st->ss == NULL) {
2560 st->ss = &super_ddf;
2561 st->minor_version = 0;
2562 st->max_devs = 512;
2563 st->container_dev = fd2devnum(fd);
2564 }
2565 return 0;
2566 }
2567 #endif /* MDASSEMBLE */
2568
2569 static struct mdinfo *container_content_ddf(struct supertype *st)
2570 {
2571 /* Given a container loaded by load_super_ddf_all,
2572 * extract information about all the arrays into
2573 * an mdinfo tree.
2574 *
2575 * For each vcl in conflist: create an mdinfo, fill it in,
2576 * then look for matching devices (phys_refnum) in dlist
2577 * and create appropriate device mdinfo.
2578 */
2579 struct ddf_super *ddf = st->sb;
2580 struct mdinfo *rest = NULL;
2581 struct vcl *vc;
2582
2583 for (vc = ddf->conflist ; vc ; vc=vc->next)
2584 {
2585 int i;
2586 struct mdinfo *this;
2587 this = malloc(sizeof(*this));
2588 memset(this, 0, sizeof(*this));
2589 this->next = rest;
2590 rest = this;
2591
2592 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2593 this->array.raid_disks =
2594 __be16_to_cpu(vc->conf.prim_elmnt_count);
2595 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2596 this->array.raid_disks);
2597 this->array.md_minor = -1;
2598 this->array.major_version = -1;
2599 this->array.minor_version = -2;
2600 this->array.ctime = DECADE +
2601 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2602 this->array.utime = DECADE +
2603 __be32_to_cpu(vc->conf.timestamp);
2604 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2605
2606 i = vc->vcnum;
2607 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2608 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2609 DDF_init_full) {
2610 this->array.state = 0;
2611 this->resync_start = 0;
2612 } else {
2613 this->array.state = 1;
2614 this->resync_start = ~0ULL;
2615 }
2616 memcpy(this->name, ddf->virt->entries[i].name, 32);
2617 this->name[32]=0;
2618
2619 memset(this->uuid, 0, sizeof(this->uuid));
2620 this->component_size = __be64_to_cpu(vc->conf.blocks);
2621 this->array.size = this->component_size / 2;
2622 this->container_member = i;
2623
2624 sprintf(this->text_version, "/%s/%d",
2625 devnum2devname(st->container_dev),
2626 this->container_member);
2627
2628 for (i=0 ; i < ddf->mppe ; i++) {
2629 struct mdinfo *dev;
2630 struct dl *d;
2631
2632 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2633 continue;
2634
2635 this->array.working_disks++;
2636
2637 for (d = ddf->dlist; d ; d=d->next)
2638 if (d->disk.refnum == vc->conf.phys_refnum[i])
2639 break;
2640 if (d == NULL)
2641 break;
2642
2643 dev = malloc(sizeof(*dev));
2644 memset(dev, 0, sizeof(*dev));
2645 dev->next = this->devs;
2646 this->devs = dev;
2647
2648 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2649 dev->disk.major = d->major;
2650 dev->disk.minor = d->minor;
2651 dev->disk.raid_disk = i;
2652 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2653
2654 dev->events = __be32_to_cpu(ddf->primary.seq);
2655 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2656 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2657 if (d->devname)
2658 strcpy(dev->name, d->devname);
2659 }
2660 }
2661 return rest;
2662 }
2663
2664 static int store_zero_ddf(struct supertype *st, int fd)
2665 {
2666 unsigned long long dsize;
2667 void *buf;
2668
2669 if (!get_dev_size(fd, NULL, &dsize))
2670 return 1;
2671
2672 posix_memalign(&buf, 512, 512);
2673 memset(buf, 0, 512);
2674
2675 lseek64(fd, dsize-512, 0);
2676 write(fd, buf, 512);
2677 free(buf);
2678 return 0;
2679 }
2680
2681 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2682 {
2683 /*
2684 * return:
2685 * 0 same, or first was empty, and second was copied
2686 * 1 second had wrong number
2687 * 2 wrong uuid
2688 * 3 wrong other info
2689 */
2690 struct ddf_super *first = st->sb;
2691 struct ddf_super *second = tst->sb;
2692
2693 if (!first) {
2694 st->sb = tst->sb;
2695 tst->sb = NULL;
2696 return 0;
2697 }
2698
2699 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2700 return 2;
2701
2702 /* FIXME should I look at anything else? */
2703 return 0;
2704 }
2705
2706 #ifndef MDASSEMBLE
2707 /*
2708 * A new array 'a' has been started which claims to be instance 'inst'
2709 * within container 'c'.
2710 * We need to confirm that the array matches the metadata in 'c' so
2711 * that we don't corrupt any metadata.
2712 */
2713 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2714 {
2715 dprintf("ddf: open_new %s\n", inst);
2716 a->info.container_member = atoi(inst);
2717 return 0;
2718 }
2719
2720 /*
2721 * The array 'a' is to be marked clean in the metadata.
2722 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2723 * clean up to the point (in sectors). If that cannot be recorded in the
2724 * metadata, then leave it as dirty.
2725 *
2726 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2727 * !global! virtual_disk.virtual_entry structure.
2728 */
2729 static int ddf_set_array_state(struct active_array *a, int consistent)
2730 {
2731 struct ddf_super *ddf = a->container->sb;
2732 int inst = a->info.container_member;
2733 int old = ddf->virt->entries[inst].state;
2734 if (consistent == 2) {
2735 /* Should check if a recovery should be started FIXME */
2736 consistent = 1;
2737 if (a->resync_start != ~0ULL)
2738 consistent = 0;
2739 }
2740 if (consistent)
2741 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2742 else
2743 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2744 if (old != ddf->virt->entries[inst].state)
2745 ddf->updates_pending = 1;
2746
2747 old = ddf->virt->entries[inst].init_state;
2748 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2749 if (a->resync_start == ~0ULL)
2750 ddf->virt->entries[inst].init_state |= DDF_init_full;
2751 else if (a->resync_start == 0)
2752 ddf->virt->entries[inst].init_state |= DDF_init_not;
2753 else
2754 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2755 if (old != ddf->virt->entries[inst].init_state)
2756 ddf->updates_pending = 1;
2757
2758 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
2759 a->resync_start);
2760 return consistent;
2761 }
2762
2763 /*
2764 * The state of each disk is stored in the global phys_disk structure
2765 * in phys_disk.entries[n].state.
2766 * This makes various combinations awkward.
2767 * - When a device fails in any array, it must be failed in all arrays
2768 * that include a part of this device.
2769 * - When a component is rebuilding, we cannot include it officially in the
2770 * array unless this is the only array that uses the device.
2771 *
2772 * So: when transitioning:
2773 * Online -> failed, just set failed flag. monitor will propagate
2774 * spare -> online, the device might need to be added to the array.
2775 * spare -> failed, just set failed. Don't worry if in array or not.
2776 */
2777 static void ddf_set_disk(struct active_array *a, int n, int state)
2778 {
2779 struct ddf_super *ddf = a->container->sb;
2780 int inst = a->info.container_member;
2781 struct vd_config *vc = find_vdcr(ddf, inst);
2782 int pd = find_phys(ddf, vc->phys_refnum[n]);
2783 int i, st, working;
2784
2785 if (vc == NULL) {
2786 dprintf("ddf: cannot find instance %d!!\n", inst);
2787 return;
2788 }
2789 if (pd < 0) {
2790 /* disk doesn't currently exist. If it is now in_sync,
2791 * insert it. */
2792 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2793 /* Find dev 'n' in a->info->devs, determine the
2794 * ddf refnum, and set vc->phys_refnum and update
2795 * phys->entries[]
2796 */
2797 /* FIXME */
2798 }
2799 } else {
2800 int old = ddf->phys->entries[pd].state;
2801 if (state & DS_FAULTY)
2802 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
2803 if (state & DS_INSYNC) {
2804 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
2805 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
2806 }
2807 if (old != ddf->phys->entries[pd].state)
2808 ddf->updates_pending = 1;
2809 }
2810
2811 dprintf("ddf: set_disk %d to %x\n", n, state);
2812
2813 /* Now we need to check the state of the array and update
2814 * virtual_disk.entries[n].state.
2815 * It needs to be one of "optimal", "degraded", "failed".
2816 * I don't understand 'deleted' or 'missing'.
2817 */
2818 working = 0;
2819 for (i=0; i < a->info.array.raid_disks; i++) {
2820 pd = find_phys(ddf, vc->phys_refnum[i]);
2821 if (pd < 0)
2822 continue;
2823 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2824 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2825 == DDF_Online)
2826 working++;
2827 }
2828 state = DDF_state_degraded;
2829 if (working == a->info.array.raid_disks)
2830 state = DDF_state_optimal;
2831 else switch(vc->prl) {
2832 case DDF_RAID0:
2833 case DDF_CONCAT:
2834 case DDF_JBOD:
2835 state = DDF_state_failed;
2836 break;
2837 case DDF_RAID1:
2838 if (working == 0)
2839 state = DDF_state_failed;
2840 break;
2841 case DDF_RAID4:
2842 case DDF_RAID5:
2843 if (working < a->info.array.raid_disks-1)
2844 state = DDF_state_failed;
2845 break;
2846 case DDF_RAID6:
2847 if (working < a->info.array.raid_disks-2)
2848 state = DDF_state_failed;
2849 else if (working == a->info.array.raid_disks-1)
2850 state = DDF_state_part_optimal;
2851 break;
2852 }
2853
2854 if (ddf->virt->entries[inst].state !=
2855 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
2856 | state)) {
2857
2858 ddf->virt->entries[inst].state =
2859 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2860 | state;
2861 ddf->updates_pending = 1;
2862 }
2863
2864 }
2865
2866 static void ddf_sync_metadata(struct supertype *st)
2867 {
2868
2869 /*
2870 * Write all data to all devices.
2871 * Later, we might be able to track whether only local changes
2872 * have been made, or whether any global data has been changed,
2873 * but ddf is sufficiently weird that it probably always
2874 * changes global data ....
2875 */
2876 struct ddf_super *ddf = st->sb;
2877 if (!ddf->updates_pending)
2878 return;
2879 ddf->updates_pending = 0;
2880 __write_init_super_ddf(st, 0);
2881 dprintf("ddf: sync_metadata\n");
2882 }
2883
2884 static void ddf_process_update(struct supertype *st,
2885 struct metadata_update *update)
2886 {
2887 /* Apply this update to the metadata.
2888 * The first 4 bytes are a DDF_*_MAGIC which guides
2889 * our actions.
2890 * Possible update are:
2891 * DDF_PHYS_RECORDS_MAGIC
2892 * Add a new physical device. Changes to this record
2893 * only happen implicitly.
2894 * used_pdes is the device number.
2895 * DDF_VIRT_RECORDS_MAGIC
2896 * Add a new VD. Possibly also change the 'access' bits.
2897 * populated_vdes is the entry number.
2898 * DDF_VD_CONF_MAGIC
2899 * New or updated VD. the VIRT_RECORD must already
2900 * exist. For an update, phys_refnum and lba_offset
2901 * (at least) are updated, and the VD_CONF must
2902 * be written to precisely those devices listed with
2903 * a phys_refnum.
2904 * DDF_SPARE_ASSIGN_MAGIC
2905 * replacement Spare Assignment Record... but for which device?
2906 *
2907 * So, e.g.:
2908 * - to create a new array, we send a VIRT_RECORD and
2909 * a VD_CONF. Then assemble and start the array.
2910 * - to activate a spare we send a VD_CONF to add the phys_refnum
2911 * and offset. This will also mark the spare as active with
2912 * a spare-assignment record.
2913 */
2914 struct ddf_super *ddf = st->sb;
2915 __u32 *magic = (__u32*)update->buf;
2916 struct phys_disk *pd;
2917 struct virtual_disk *vd;
2918 struct vd_config *vc;
2919 struct vcl *vcl;
2920 struct dl *dl;
2921 int mppe;
2922 int ent;
2923
2924 dprintf("Process update %x\n", *magic);
2925
2926 switch (*magic) {
2927 case DDF_PHYS_RECORDS_MAGIC:
2928
2929 if (update->len != (sizeof(struct phys_disk) +
2930 sizeof(struct phys_disk_entry)))
2931 return;
2932 pd = (struct phys_disk*)update->buf;
2933
2934 ent = __be16_to_cpu(pd->used_pdes);
2935 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2936 return;
2937 if (!all_ff(ddf->phys->entries[ent].guid))
2938 return;
2939 ddf->phys->entries[ent] = pd->entries[0];
2940 ddf->phys->used_pdes = __cpu_to_be16(1 +
2941 __be16_to_cpu(ddf->phys->used_pdes));
2942 ddf->updates_pending = 1;
2943 if (ddf->add_list) {
2944 struct active_array *a;
2945 struct dl *al = ddf->add_list;
2946 ddf->add_list = al->next;
2947
2948 al->next = ddf->dlist;
2949 ddf->dlist = al;
2950
2951 /* As a device has been added, we should check
2952 * for any degraded devices that might make
2953 * use of this spare */
2954 for (a = st->arrays ; a; a=a->next)
2955 a->check_degraded = 1;
2956 }
2957 break;
2958
2959 case DDF_VIRT_RECORDS_MAGIC:
2960
2961 if (update->len != (sizeof(struct virtual_disk) +
2962 sizeof(struct virtual_entry)))
2963 return;
2964 vd = (struct virtual_disk*)update->buf;
2965
2966 ent = __be16_to_cpu(vd->populated_vdes);
2967 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2968 return;
2969 if (!all_ff(ddf->virt->entries[ent].guid))
2970 return;
2971 ddf->virt->entries[ent] = vd->entries[0];
2972 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2973 __be16_to_cpu(ddf->virt->populated_vdes));
2974 ddf->updates_pending = 1;
2975 break;
2976
2977 case DDF_VD_CONF_MAGIC:
2978 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
2979
2980 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2981 if (update->len != ddf->conf_rec_len * 512)
2982 return;
2983 vc = (struct vd_config*)update->buf;
2984 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2985 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2986 break;
2987 dprintf("vcl = %p\n", vcl);
2988 if (vcl) {
2989 /* An update, just copy the phys_refnum and lba_offset
2990 * fields
2991 */
2992 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2993 mppe * (sizeof(__u32) + sizeof(__u64)));
2994 } else {
2995 /* A new VD_CONF */
2996 vcl = update->space;
2997 update->space = NULL;
2998 vcl->next = ddf->conflist;
2999 memcpy(&vcl->conf, vc, update->len);
3000 vcl->lba_offset = (__u64*)
3001 &vcl->conf.phys_refnum[mppe];
3002 ddf->conflist = vcl;
3003 }
3004 /* Now make sure vlist is correct for each dl. */
3005 for (dl = ddf->dlist; dl; dl = dl->next) {
3006 int dn;
3007 int vn = 0;
3008 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3009 for (dn=0; dn < ddf->mppe ; dn++)
3010 if (vcl->conf.phys_refnum[dn] ==
3011 dl->disk.refnum) {
3012 dprintf("dev %d has %p at %d\n",
3013 dl->pdnum, vcl, vn);
3014 dl->vlist[vn++] = vcl;
3015 break;
3016 }
3017 while (vn < ddf->max_part)
3018 dl->vlist[vn++] = NULL;
3019 if (dl->vlist[0]) {
3020 ddf->phys->entries[dl->pdnum].type &=
3021 ~__cpu_to_be16(DDF_Global_Spare);
3022 ddf->phys->entries[dl->pdnum].type |=
3023 __cpu_to_be16(DDF_Active_in_VD);
3024 }
3025 if (dl->spare) {
3026 ddf->phys->entries[dl->pdnum].type &=
3027 ~__cpu_to_be16(DDF_Global_Spare);
3028 ddf->phys->entries[dl->pdnum].type |=
3029 __cpu_to_be16(DDF_Spare);
3030 }
3031 if (!dl->vlist[0] && !dl->spare) {
3032 ddf->phys->entries[dl->pdnum].type |=
3033 __cpu_to_be16(DDF_Global_Spare);
3034 ddf->phys->entries[dl->pdnum].type &=
3035 ~__cpu_to_be16(DDF_Spare |
3036 DDF_Active_in_VD);
3037 }
3038 }
3039 ddf->updates_pending = 1;
3040 break;
3041 case DDF_SPARE_ASSIGN_MAGIC:
3042 default: break;
3043 }
3044 }
3045
3046 static void ddf_prepare_update(struct supertype *st,
3047 struct metadata_update *update)
3048 {
3049 /* This update arrived at managemon.
3050 * We are about to pass it to monitor.
3051 * If a malloc is needed, do it here.
3052 */
3053 struct ddf_super *ddf = st->sb;
3054 __u32 *magic = (__u32*)update->buf;
3055 if (*magic == DDF_VD_CONF_MAGIC)
3056 posix_memalign(&update->space, 512,
3057 offsetof(struct vcl, conf)
3058 + ddf->conf_rec_len * 512);
3059 }
3060
3061 /*
3062 * Check if the array 'a' is degraded but not failed.
3063 * If it is, find as many spares as are available and needed and
3064 * arrange for their inclusion.
3065 * We only choose devices which are not already in the array,
3066 * and prefer those with a spare-assignment to this array.
3067 * otherwise we choose global spares - assuming always that
3068 * there is enough room.
3069 * For each spare that we assign, we return an 'mdinfo' which
3070 * describes the position for the device in the array.
3071 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3072 * the new phys_refnum and lba_offset values.
3073 *
3074 * Only worry about BVDs at the moment.
3075 */
3076 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3077 struct metadata_update **updates)
3078 {
3079 int working = 0;
3080 struct mdinfo *d;
3081 struct ddf_super *ddf = a->container->sb;
3082 int global_ok = 0;
3083 struct mdinfo *rv = NULL;
3084 struct mdinfo *di;
3085 struct metadata_update *mu;
3086 struct dl *dl;
3087 int i;
3088 struct vd_config *vc;
3089 __u64 *lba;
3090
3091 for (d = a->info.devs ; d ; d = d->next) {
3092 if ((d->curr_state & DS_FAULTY) &&
3093 d->state_fd >= 0)
3094 /* wait for Removal to happen */
3095 return NULL;
3096 if (d->state_fd >= 0)
3097 working ++;
3098 }
3099
3100 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3101 a->info.array.level);
3102 if (working == a->info.array.raid_disks)
3103 return NULL; /* array not degraded */
3104 switch (a->info.array.level) {
3105 case 1:
3106 if (working == 0)
3107 return NULL; /* failed */
3108 break;
3109 case 4:
3110 case 5:
3111 if (working < a->info.array.raid_disks - 1)
3112 return NULL; /* failed */
3113 break;
3114 case 6:
3115 if (working < a->info.array.raid_disks - 2)
3116 return NULL; /* failed */
3117 break;
3118 default: /* concat or stripe */
3119 return NULL; /* failed */
3120 }
3121
3122 /* For each slot, if it is not working, find a spare */
3123 dl = ddf->dlist;
3124 for (i = 0; i < a->info.array.raid_disks; i++) {
3125 for (d = a->info.devs ; d ; d = d->next)
3126 if (d->disk.raid_disk == i)
3127 break;
3128 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3129 if (d && (d->state_fd >= 0))
3130 continue;
3131
3132 /* OK, this device needs recovery. Find a spare */
3133 again:
3134 for ( ; dl ; dl = dl->next) {
3135 unsigned long long esize;
3136 unsigned long long pos;
3137 struct mdinfo *d2;
3138 int is_global = 0;
3139 int is_dedicated = 0;
3140 struct extent *ex;
3141 int j;
3142 /* If in this array, skip */
3143 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3144 if (d2->disk.major == dl->major &&
3145 d2->disk.minor == dl->minor) {
3146 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3147 break;
3148 }
3149 if (d2)
3150 continue;
3151 if (ddf->phys->entries[dl->pdnum].type &
3152 __cpu_to_be16(DDF_Spare)) {
3153 /* Check spare assign record */
3154 if (dl->spare) {
3155 if (dl->spare->type & DDF_spare_dedicated) {
3156 /* check spare_ents for guid */
3157 for (j = 0 ;
3158 j < __be16_to_cpu(dl->spare->populated);
3159 j++) {
3160 if (memcmp(dl->spare->spare_ents[j].guid,
3161 ddf->virt->entries[a->info.container_member].guid,
3162 DDF_GUID_LEN) == 0)
3163 is_dedicated = 1;
3164 }
3165 } else
3166 is_global = 1;
3167 }
3168 } else if (ddf->phys->entries[dl->pdnum].type &
3169 __cpu_to_be16(DDF_Global_Spare)) {
3170 is_global = 1;
3171 }
3172 if ( ! (is_dedicated ||
3173 (is_global && global_ok))) {
3174 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3175 is_dedicated, is_global);
3176 continue;
3177 }
3178
3179 /* We are allowed to use this device - is there space?
3180 * We need a->info.component_size sectors */
3181 ex = get_extents(ddf, dl);
3182 if (!ex) {
3183 dprintf("cannot get extents\n");
3184 continue;
3185 }
3186 j = 0; pos = 0;
3187 esize = 0;
3188
3189 do {
3190 esize = ex[j].start - pos;
3191 if (esize >= a->info.component_size)
3192 break;
3193 pos = ex[i].start + ex[i].size;
3194 i++;
3195 } while (ex[i-1].size);
3196
3197 free(ex);
3198 if (esize < a->info.component_size) {
3199 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3200 esize, a->info.component_size);
3201 /* No room */
3202 continue;
3203 }
3204
3205 /* Cool, we have a device with some space at pos */
3206 di = malloc(sizeof(*di));
3207 memset(di, 0, sizeof(*di));
3208 di->disk.number = i;
3209 di->disk.raid_disk = i;
3210 di->disk.major = dl->major;
3211 di->disk.minor = dl->minor;
3212 di->disk.state = 0;
3213 di->data_offset = pos;
3214 di->component_size = a->info.component_size;
3215 di->container_member = dl->pdnum;
3216 di->next = rv;
3217 rv = di;
3218 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3219 i, pos);
3220
3221 break;
3222 }
3223 if (!dl && ! global_ok) {
3224 /* not enough dedicated spares, try global */
3225 global_ok = 1;
3226 dl = ddf->dlist;
3227 goto again;
3228 }
3229 }
3230
3231 if (!rv)
3232 /* No spares found */
3233 return rv;
3234 /* Now 'rv' has a list of devices to return.
3235 * Create a metadata_update record to update the
3236 * phys_refnum and lba_offset values
3237 */
3238 mu = malloc(sizeof(*mu));
3239 mu->buf = malloc(ddf->conf_rec_len * 512);
3240 posix_memalign(&mu->space, 512, sizeof(struct vcl));
3241 mu->len = ddf->conf_rec_len;
3242 mu->next = *updates;
3243 vc = find_vdcr(ddf, a->info.container_member);
3244 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3245
3246 vc = (struct vd_config*)mu->buf;
3247 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3248 for (di = rv ; di ; di = di->next) {
3249 vc->phys_refnum[di->disk.raid_disk] =
3250 ddf->phys->entries[dl->pdnum].refnum;
3251 lba[di->disk.raid_disk] = di->data_offset;
3252 }
3253 *updates = mu;
3254 return rv;
3255 }
3256 #endif /* MDASSEMBLE */
3257
3258 struct superswitch super_ddf = {
3259 #ifndef MDASSEMBLE
3260 .examine_super = examine_super_ddf,
3261 .brief_examine_super = brief_examine_super_ddf,
3262 .detail_super = detail_super_ddf,
3263 .brief_detail_super = brief_detail_super_ddf,
3264 .validate_geometry = validate_geometry_ddf,
3265 .write_init_super = write_init_super_ddf,
3266 .add_to_super = add_to_super_ddf,
3267 #endif
3268 .match_home = match_home_ddf,
3269 .uuid_from_super= uuid_from_super_ddf,
3270 .getinfo_super = getinfo_super_ddf,
3271 .update_super = update_super_ddf,
3272
3273 .avail_size = avail_size_ddf,
3274
3275 .compare_super = compare_super_ddf,
3276
3277 .load_super = load_super_ddf,
3278 .init_super = init_super_ddf,
3279 .store_super = store_zero_ddf,
3280 .free_super = free_super_ddf,
3281 .match_metadata_desc = match_metadata_desc_ddf,
3282 .container_content = container_content_ddf,
3283
3284 .external = 1,
3285
3286 #ifndef MDASSEMBLE
3287 /* for mdmon */
3288 .open_new = ddf_open_new,
3289 .set_array_state= ddf_set_array_state,
3290 .set_disk = ddf_set_disk,
3291 .sync_metadata = ddf_sync_metadata,
3292 .process_update = ddf_process_update,
3293 .prepare_update = ddf_prepare_update,
3294 .activate_spare = ddf_activate_spare,
3295 #endif
3296 };