]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
9d421c581dd18631aed6e1d25e7d1292c98fd34e
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "sha1.h"
31 #include <values.h>
32
33 static inline int ROUND_UP(int a, int base)
34 {
35 return ((a+base-1)/base)*base;
36 }
37
38 /* a non-official T10 name for creation GUIDs */
39 static char T10[] = "Linux-MD";
40
41 /* DDF timestamps are 1980 based, so we need to add
42 * second-in-decade-of-seventies to convert to linux timestamps.
43 * 10 years with 2 leap years.
44 */
45 #define DECADE (3600*24*(365*10+2))
46 unsigned long crc32(
47 unsigned long crc,
48 const unsigned char *buf,
49 unsigned len);
50
51 /* The DDF metadata handling.
52 * DDF metadata lives at the end of the device.
53 * The last 512 byte block provides an 'anchor' which is used to locate
54 * the rest of the metadata which usually lives immediately behind the anchor.
55 *
56 * Note:
57 * - all multibyte numeric fields are bigendian.
58 * - all strings are space padded.
59 *
60 */
61
62 /* Primary Raid Level (PRL) */
63 #define DDF_RAID0 0x00
64 #define DDF_RAID1 0x01
65 #define DDF_RAID3 0x03
66 #define DDF_RAID4 0x04
67 #define DDF_RAID5 0x05
68 #define DDF_RAID1E 0x11
69 #define DDF_JBOD 0x0f
70 #define DDF_CONCAT 0x1f
71 #define DDF_RAID5E 0x15
72 #define DDF_RAID5EE 0x25
73 #define DDF_RAID6 0x16 /* Vendor unique layout */
74
75 /* Raid Level Qualifier (RLQ) */
76 #define DDF_RAID0_SIMPLE 0x00
77 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
78 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
79 #define DDF_RAID3_0 0x00 /* parity in first extent */
80 #define DDF_RAID3_N 0x01 /* parity in last extent */
81 #define DDF_RAID4_0 0x00 /* parity in first extent */
82 #define DDF_RAID4_N 0x01 /* parity in last extent */
83 /* these apply to raid5e and raid5ee as well */
84 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
85 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
86 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
87
88 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
89 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
90
91 /* Secondary RAID Level (SRL) */
92 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
93 #define DDF_2MIRRORED 0x01
94 #define DDF_2CONCAT 0x02
95 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
96
97 /* Magic numbers */
98 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
99 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
100 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
101 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
102 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
103 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
104 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
105 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
106 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
107 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
108
109 #define DDF_GUID_LEN 24
110 #define DDF_REVISION "01.00.00"
111
112 struct ddf_header {
113 __u32 magic;
114 __u32 crc;
115 char guid[DDF_GUID_LEN];
116 char revision[8]; /* 01.00.00 */
117 __u32 seq; /* starts at '1' */
118 __u32 timestamp;
119 __u8 openflag;
120 __u8 foreignflag;
121 __u8 enforcegroups;
122 __u8 pad0; /* 0xff */
123 __u8 pad1[12]; /* 12 * 0xff */
124 /* 64 bytes so far */
125 __u8 header_ext[32]; /* reserved: fill with 0xff */
126 __u64 primary_lba;
127 __u64 secondary_lba;
128 __u8 type;
129 __u8 pad2[3]; /* 0xff */
130 __u32 workspace_len; /* sectors for vendor space -
131 * at least 32768(sectors) */
132 __u64 workspace_lba;
133 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
134 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
135 __u16 max_partitions; /* i.e. max num of configuration
136 record entries per disk */
137 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
138 *12/512) */
139 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
140 __u8 pad3[54]; /* 0xff */
141 /* 192 bytes so far */
142 __u32 controller_section_offset;
143 __u32 controller_section_length;
144 __u32 phys_section_offset;
145 __u32 phys_section_length;
146 __u32 virt_section_offset;
147 __u32 virt_section_length;
148 __u32 config_section_offset;
149 __u32 config_section_length;
150 __u32 data_section_offset;
151 __u32 data_section_length;
152 __u32 bbm_section_offset;
153 __u32 bbm_section_length;
154 __u32 diag_space_offset;
155 __u32 diag_space_length;
156 __u32 vendor_offset;
157 __u32 vendor_length;
158 /* 256 bytes so far */
159 __u8 pad4[256]; /* 0xff */
160 };
161
162 /* type field */
163 #define DDF_HEADER_ANCHOR 0x00
164 #define DDF_HEADER_PRIMARY 0x01
165 #define DDF_HEADER_SECONDARY 0x02
166
167 /* The content of the 'controller section' - global scope */
168 struct ddf_controller_data {
169 __u32 magic;
170 __u32 crc;
171 char guid[DDF_GUID_LEN];
172 struct controller_type {
173 __u16 vendor_id;
174 __u16 device_id;
175 __u16 sub_vendor_id;
176 __u16 sub_device_id;
177 } type;
178 char product_id[16];
179 __u8 pad[8]; /* 0xff */
180 __u8 vendor_data[448];
181 };
182
183 /* The content of phys_section - global scope */
184 struct phys_disk {
185 __u32 magic;
186 __u32 crc;
187 __u16 used_pdes;
188 __u16 max_pdes;
189 __u8 pad[52];
190 struct phys_disk_entry {
191 char guid[DDF_GUID_LEN];
192 __u32 refnum;
193 __u16 type;
194 __u16 state;
195 __u64 config_size; /* DDF structures must be after here */
196 char path[18]; /* another horrible structure really */
197 __u8 pad[6];
198 } entries[0];
199 };
200
201 /* phys_disk_entry.type is a bitmap - bigendian remember */
202 #define DDF_Forced_PD_GUID 1
203 #define DDF_Active_in_VD 2
204 #define DDF_Global_Spare 4
205 #define DDF_Spare 8 /* overrides Global_spare */
206 #define DDF_Foreign 16
207 #define DDF_Legacy 32 /* no DDF on this device */
208
209 #define DDF_Interface_mask 0xf00
210 #define DDF_Interface_SCSI 0x100
211 #define DDF_Interface_SAS 0x200
212 #define DDF_Interface_SATA 0x300
213 #define DDF_Interface_FC 0x400
214
215 /* phys_disk_entry.state is a bigendian bitmap */
216 #define DDF_Online 1
217 #define DDF_Failed 2 /* overrides 1,4,8 */
218 #define DDF_Rebuilding 4
219 #define DDF_Transition 8
220 #define DDF_SMART 16
221 #define DDF_ReadErrors 32
222 #define DDF_Missing 64
223
224 /* The content of the virt_section global scope */
225 struct virtual_disk {
226 __u32 magic;
227 __u32 crc;
228 __u16 populated_vdes;
229 __u16 max_vdes;
230 __u8 pad[52];
231 struct virtual_entry {
232 char guid[DDF_GUID_LEN];
233 __u16 unit;
234 __u16 pad0; /* 0xffff */
235 __u16 guid_crc;
236 __u16 type;
237 __u8 state;
238 __u8 init_state;
239 __u8 pad1[14];
240 char name[16];
241 } entries[0];
242 };
243
244 /* virtual_entry.type is a bitmap - bigendian */
245 #define DDF_Shared 1
246 #define DDF_Enforce_Groups 2
247 #define DDF_Unicode 4
248 #define DDF_Owner_Valid 8
249
250 /* virtual_entry.state is a bigendian bitmap */
251 #define DDF_state_mask 0x7
252 #define DDF_state_optimal 0x0
253 #define DDF_state_degraded 0x1
254 #define DDF_state_deleted 0x2
255 #define DDF_state_missing 0x3
256 #define DDF_state_failed 0x4
257
258 #define DDF_state_morphing 0x8
259 #define DDF_state_inconsistent 0x10
260
261 /* virtual_entry.init_state is a bigendian bitmap */
262 #define DDF_initstate_mask 0x03
263 #define DDF_init_not 0x00
264 #define DDF_init_quick 0x01
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic;
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks;
292 __u64 array_blocks;
293 __u8 pad1[8];
294 __u32 spare_refs[8];
295 __u8 cache_pol[8];
296 __u8 bg_rate;
297 __u8 pad2[3];
298 __u8 pad3[52];
299 __u8 pad4[192];
300 __u8 v0[32]; /* reserved- 0xff */
301 __u8 v1[32]; /* reserved- 0xff */
302 __u8 v2[16]; /* reserved- 0xff */
303 __u8 v3[16]; /* reserved- 0xff */
304 __u8 vendor[32];
305 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
306 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
307 bvd are always the same size */
308 };
309
310 /* vd_config.cache_pol[7] is a bitmap */
311 #define DDF_cache_writeback 1 /* else writethrough */
312 #define DDF_cache_wadaptive 2 /* only applies if writeback */
313 #define DDF_cache_readahead 4
314 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
315 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
316 #define DDF_cache_wallowed 32 /* enable write caching */
317 #define DDF_cache_rallowed 64 /* enable read caching */
318
319 struct spare_assign {
320 __u32 magic;
321 __u32 crc;
322 __u32 timestamp;
323 __u8 reserved[7];
324 __u8 type;
325 __u16 populated; /* SAEs used */
326 __u16 max; /* max SAEs */
327 __u8 pad[8];
328 struct spare_assign_entry {
329 char guid[DDF_GUID_LEN];
330 __u16 secondary_element;
331 __u8 pad[6];
332 } spare_ents[0];
333 };
334 /* spare_assign.type is a bitmap */
335 #define DDF_spare_dedicated 0x1 /* else global */
336 #define DDF_spare_revertible 0x2 /* else committable */
337 #define DDF_spare_active 0x4 /* else not active */
338 #define DDF_spare_affinity 0x8 /* enclosure affinity */
339
340 /* The data_section contents - local scope */
341 struct disk_data {
342 __u32 magic;
343 __u32 crc;
344 char guid[DDF_GUID_LEN];
345 __u32 refnum; /* crc of some magic drive data ... */
346 __u8 forced_ref; /* set when above was not result of magic */
347 __u8 forced_guid; /* set if guid was forced rather than magic */
348 __u8 vendor[32];
349 __u8 pad[442];
350 };
351
352 /* bbm_section content */
353 struct bad_block_log {
354 __u32 magic;
355 __u32 crc;
356 __u16 entry_count;
357 __u32 spare_count;
358 __u8 pad[10];
359 __u64 first_spare;
360 struct mapped_block {
361 __u64 defective_start;
362 __u32 replacement_start;
363 __u16 remap_count;
364 __u8 pad[2];
365 } entries[0];
366 };
367
368 /* Struct for internally holding ddf structures */
369 /* The DDF structure stored on each device is potentially
370 * quite different, as some data is global and some is local.
371 * The global data is:
372 * - ddf header
373 * - controller_data
374 * - Physical disk records
375 * - Virtual disk records
376 * The local data is:
377 * - Configuration records
378 * - Physical Disk data section
379 * ( and Bad block and vendor which I don't care about yet).
380 *
381 * The local data is parsed into separate lists as it is read
382 * and reconstructed for writing. This means that we only need
383 * to make config changes once and they are automatically
384 * propagated to all devices.
385 * Note that the ddf_super has space of the conf and disk data
386 * for this disk and also for a list of all such data.
387 * The list is only used for the superblock that is being
388 * built in Create or Assemble to describe the whole array.
389 */
390 struct ddf_super {
391 struct ddf_header anchor, primary, secondary, *active;
392 struct ddf_controller_data controller;
393 struct phys_disk *phys;
394 struct virtual_disk *virt;
395 int pdsize, vdsize;
396 int max_part;
397 struct vcl {
398 struct vcl *next;
399 __u64 *lba_offset; /* location in 'conf' of
400 * the lba table */
401 struct vd_config conf;
402 } *conflist, *newconf;
403 struct dl {
404 struct dl *next;
405 struct disk_data disk;
406 int major, minor;
407 char *devname;
408 int fd;
409 struct vcl *vlist[0]; /* max_part+1 in size */
410 } *dlist;
411 };
412
413 #ifndef offsetof
414 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
415 #endif
416
417 struct superswitch super_ddf_container, super_ddf_bvd;
418
419 static int calc_crc(void *buf, int len)
420 {
421 /* crcs are always at the same place as in the ddf_header */
422 struct ddf_header *ddf = buf;
423 __u32 oldcrc = ddf->crc;
424 __u32 newcrc;
425 ddf->crc = 0xffffffff;
426
427 newcrc = crc32(0, buf, len);
428 ddf->crc = oldcrc;
429 return newcrc;
430 }
431
432 static int load_ddf_header(int fd, unsigned long long lba,
433 unsigned long long size,
434 int type,
435 struct ddf_header *hdr, struct ddf_header *anchor)
436 {
437 /* read a ddf header (primary or secondary) from fd/lba
438 * and check that it is consistent with anchor
439 * Need to check:
440 * magic, crc, guid, rev, and LBA's header_type, and
441 * everything after header_type must be the same
442 */
443 if (lba >= size-1)
444 return 0;
445
446 if (lseek64(fd, lba<<9, 0) < 0)
447 return 0;
448
449 if (read(fd, hdr, 512) != 512)
450 return 0;
451
452 if (hdr->magic != DDF_HEADER_MAGIC)
453 return 0;
454 if (calc_crc(hdr, 512) != hdr->crc)
455 return 0;
456 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
457 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
458 anchor->primary_lba != hdr->primary_lba ||
459 anchor->secondary_lba != hdr->secondary_lba ||
460 hdr->type != type ||
461 memcmp(anchor->pad2, hdr->pad2, 512 -
462 offsetof(struct ddf_header, pad2)) != 0)
463 return 0;
464
465 /* Looks good enough to me... */
466 return 1;
467 }
468
469 static void *load_section(int fd, struct ddf_super *super, void *buf,
470 __u32 offset_be, __u32 len_be, int check)
471 {
472 unsigned long long offset = __be32_to_cpu(offset_be);
473 unsigned long long len = __be32_to_cpu(len_be);
474 int dofree = (buf == NULL);
475
476 if (check)
477 if (len != 2 && len != 8 && len != 32
478 && len != 128 && len != 512)
479 return NULL;
480
481 if (len > 1024)
482 return NULL;
483 if (buf) {
484 /* All pre-allocated sections are a single block */
485 if (len != 1)
486 return NULL;
487 } else
488 buf = malloc(len<<9);
489 if (!buf)
490 return NULL;
491
492 if (super->active->type == 1)
493 offset += __be64_to_cpu(super->active->primary_lba);
494 else
495 offset += __be64_to_cpu(super->active->secondary_lba);
496
497 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
498 if (dofree)
499 free(buf);
500 return NULL;
501 }
502 if (read(fd, buf, len<<9) != (len<<9)) {
503 if (dofree)
504 free(buf);
505 return NULL;
506 }
507 return buf;
508 }
509
510 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
511 {
512 unsigned long long dsize;
513
514 get_dev_size(fd, NULL, &dsize);
515
516 if (lseek64(fd, dsize-512, 0) < 0) {
517 if (devname)
518 fprintf(stderr,
519 Name": Cannot seek to anchor block on %s: %s\n",
520 devname, strerror(errno));
521 return 1;
522 }
523 if (read(fd, &super->anchor, 512) != 512) {
524 if (devname)
525 fprintf(stderr,
526 Name ": Cannot read anchor block on %s: %s\n",
527 devname, strerror(errno));
528 return 1;
529 }
530 if (super->anchor.magic != DDF_HEADER_MAGIC) {
531 if (devname)
532 fprintf(stderr, Name ": no DDF anchor found on %s\n",
533 devname);
534 return 2;
535 }
536 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
537 if (devname)
538 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
539 devname);
540 return 2;
541 }
542 if (memcmp(super->anchor.revision, DDF_REVISION, 8) != 0) {
543 if (devname)
544 fprintf(stderr, Name ": can only support super revision"
545 " %.8s, not %.8s on %s\n",
546 DDF_REVISION, super->anchor.revision, devname);
547 return 2;
548 }
549 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
550 dsize >> 9, 1,
551 &super->primary, &super->anchor) == 0) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Failed to load primary DDF header "
555 "on %s\n", devname);
556 return 2;
557 }
558 super->active = &super->primary;
559 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
560 dsize >> 9, 2,
561 &super->secondary, &super->anchor)) {
562 if ((__be32_to_cpu(super->primary.seq)
563 < __be32_to_cpu(super->secondary.seq) &&
564 !super->secondary.openflag)
565 || (__be32_to_cpu(super->primary.seq)
566 == __be32_to_cpu(super->secondary.seq) &&
567 super->primary.openflag && !super->secondary.openflag)
568 )
569 super->active = &super->secondary;
570 }
571 return 0;
572 }
573
574 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
575 {
576 void *ok;
577 ok = load_section(fd, super, &super->controller,
578 super->active->controller_section_offset,
579 super->active->controller_section_length,
580 0);
581 super->phys = load_section(fd, super, NULL,
582 super->active->phys_section_offset,
583 super->active->phys_section_length,
584 1);
585 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
586
587 super->virt = load_section(fd, super, NULL,
588 super->active->virt_section_offset,
589 super->active->virt_section_length,
590 1);
591 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
592 if (!ok ||
593 !super->phys ||
594 !super->virt) {
595 free(super->phys);
596 free(super->virt);
597 return 2;
598 }
599 super->conflist = NULL;
600 super->dlist = NULL;
601 return 0;
602 }
603
604 static int load_ddf_local(int fd, struct ddf_super *super,
605 char *devname, int keep)
606 {
607 struct dl *dl;
608 struct stat stb;
609 char *conf;
610 int i;
611 int conflen;
612
613 /* First the local disk info */
614 super->max_part = __be16_to_cpu(super->active->max_partitions);
615 dl = malloc(sizeof(*dl) +
616 (super->max_part+1) * sizeof(dl->vlist[0]));
617
618 load_section(fd, super, &dl->disk,
619 super->active->data_section_offset,
620 super->active->data_section_length,
621 0);
622 dl->devname = devname ? strdup(devname) : NULL;
623 fstat(fd, &stb);
624 dl->major = major(stb.st_rdev);
625 dl->minor = minor(stb.st_rdev);
626 dl->next = super->dlist;
627 dl->fd = keep ? fd : -1;
628 for (i=0 ; i < super->max_part + 1 ; i++)
629 dl->vlist[i] = NULL;
630 super->dlist = dl;
631
632 /* Now the config list. */
633 /* 'conf' is an array of config entries, some of which are
634 * probably invalid. Those which are good need to be copied into
635 * the conflist
636 */
637 conflen = __be16_to_cpu(super->active->config_record_len);
638
639 conf = load_section(fd, super, NULL,
640 super->active->config_section_offset,
641 super->active->config_section_length,
642 0);
643
644 for (i = 0;
645 i < __be32_to_cpu(super->active->config_section_length);
646 i += conflen) {
647 struct vd_config *vd =
648 (struct vd_config *)((char*)conf + i*512);
649 struct vcl *vcl;
650
651 if (vd->magic != DDF_VD_CONF_MAGIC)
652 continue;
653 for (vcl = super->conflist; vcl; vcl = vcl->next) {
654 if (memcmp(vcl->conf.guid,
655 vd->guid, DDF_GUID_LEN) == 0)
656 break;
657 }
658
659 if (vcl) {
660 dl->vlist[i/conflen] = vcl;
661 if (__be32_to_cpu(vd->seqnum) <=
662 __be32_to_cpu(vcl->conf.seqnum))
663 continue;
664 } else {
665 vcl = malloc(conflen*512 + offsetof(struct vcl, conf));
666 vcl->next = super->conflist;
667 super->conflist = vcl;
668 }
669 memcpy(&vcl->conf, vd, conflen*512);
670 vcl->lba_offset = (__u64*)
671 &vcl->conf.phys_refnum[super->max_part+1];
672 dl->vlist[i/conflen] = vcl;
673 }
674 free(conf);
675
676 return 0;
677 }
678
679 #ifndef MDASSEMBLE
680 static int load_super_ddf_all(struct supertype *st, int fd,
681 void **sbp, char *devname, int keep_fd);
682 #endif
683 static int load_super_ddf(struct supertype *st, int fd,
684 char *devname)
685 {
686 unsigned long long dsize;
687 struct ddf_super *super;
688 int rv;
689
690 #ifndef MDASSEMBLE
691 if (load_super_ddf_all(st, fd, &st->sb, devname, 0) == 0)
692 return 0;
693 #endif
694
695 if (get_dev_size(fd, devname, &dsize) == 0)
696 return 1;
697
698 /* 32M is a lower bound */
699 if (dsize <= 32*1024*1024) {
700 if (devname) {
701 fprintf(stderr,
702 Name ": %s is too small for ddf: "
703 "size is %llu sectors.\n",
704 devname, dsize>>9);
705 return 1;
706 }
707 }
708 if (dsize & 511) {
709 if (devname) {
710 fprintf(stderr,
711 Name ": %s is an odd size for ddf: "
712 "size is %llu bytes.\n",
713 devname, dsize);
714 return 1;
715 }
716 }
717
718 super = malloc(sizeof(*super));
719 if (!super) {
720 fprintf(stderr, Name ": malloc of %zu failed.\n",
721 sizeof(*super));
722 return 1;
723 }
724
725 rv = load_ddf_headers(fd, super, devname);
726 if (rv) {
727 free(super);
728 return rv;
729 }
730
731 /* Have valid headers and have chosen the best. Let's read in the rest*/
732
733 rv = load_ddf_global(fd, super, devname);
734
735 if (rv) {
736 if (devname)
737 fprintf(stderr,
738 Name ": Failed to load all information "
739 "sections on %s\n", devname);
740 free(super);
741 return rv;
742 }
743
744 load_ddf_local(fd, super, devname, 0);
745
746 /* Should possibly check the sections .... */
747
748 st->sb = super;
749 if (st->ss == NULL) {
750 st->ss = &super_ddf;
751 st->minor_version = 0;
752 st->max_devs = 512;
753 }
754 return 0;
755
756 }
757
758 static void free_super_ddf(struct supertype *st)
759 {
760 struct ddf_super *ddf = st->sb;
761 if (ddf == NULL)
762 return;
763 free(ddf->phys);
764 free(ddf->virt);
765 while (ddf->conflist) {
766 struct vcl *v = ddf->conflist;
767 ddf->conflist = v->next;
768 free(v);
769 }
770 while (ddf->dlist) {
771 struct dl *d = ddf->dlist;
772 ddf->dlist = d->next;
773 if (d->fd >= 0)
774 close(d->fd);
775 free(d);
776 }
777 free(ddf);
778 st->sb = NULL;
779 }
780
781 static struct supertype *match_metadata_desc_ddf(char *arg)
782 {
783 /* 'ddf' only support containers */
784 struct supertype *st;
785 if (strcmp(arg, "ddf") != 0 &&
786 strcmp(arg, "default") != 0
787 )
788 return NULL;
789
790 st = malloc(sizeof(*st));
791 st->ss = &super_ddf;
792 st->max_devs = 512;
793 st->minor_version = 0;
794 st->sb = NULL;
795 return st;
796 }
797
798 static struct supertype *match_metadata_desc_ddf_bvd(char *arg)
799 {
800 struct supertype *st;
801 if (strcmp(arg, "ddf/bvd") != 0 &&
802 strcmp(arg, "bvd") != 0 &&
803 strcmp(arg, "default") != 0
804 )
805 return NULL;
806
807 st = malloc(sizeof(*st));
808 st->ss = &super_ddf_bvd;
809 st->max_devs = 512;
810 st->minor_version = 0;
811 st->sb = NULL;
812 return st;
813 }
814 static struct supertype *match_metadata_desc_ddf_svd(char *arg)
815 {
816 struct supertype *st;
817 if (strcmp(arg, "ddf/svd") != 0 &&
818 strcmp(arg, "svd") != 0 &&
819 strcmp(arg, "default") != 0
820 )
821 return NULL;
822
823 st = malloc(sizeof(*st));
824 st->ss = &super_ddf_svd;
825 st->max_devs = 512;
826 st->minor_version = 0;
827 st->sb = NULL;
828 return st;
829 }
830
831 #ifndef MDASSEMBLE
832
833 static mapping_t ddf_state[] = {
834 { "Optimal", 0},
835 { "Degraded", 1},
836 { "Deleted", 2},
837 { "Missing", 3},
838 { "Failed", 4},
839 { "Partially Optimal", 5},
840 { "-reserved-", 6},
841 { "-reserved-", 7},
842 { NULL, 0}
843 };
844
845 static mapping_t ddf_init_state[] = {
846 { "Not Initialised", 0},
847 { "QuickInit in Progress", 1},
848 { "Fully Initialised", 2},
849 { "*UNKNOWN*", 3},
850 { NULL, 0}
851 };
852 static mapping_t ddf_access[] = {
853 { "Read/Write", 0},
854 { "Reserved", 1},
855 { "Read Only", 2},
856 { "Blocked (no access)", 3},
857 { NULL ,0}
858 };
859
860 static mapping_t ddf_level[] = {
861 { "RAID0", DDF_RAID0},
862 { "RAID1", DDF_RAID1},
863 { "RAID3", DDF_RAID3},
864 { "RAID4", DDF_RAID4},
865 { "RAID5", DDF_RAID5},
866 { "RAID1E",DDF_RAID1E},
867 { "JBOD", DDF_JBOD},
868 { "CONCAT",DDF_CONCAT},
869 { "RAID5E",DDF_RAID5E},
870 { "RAID5EE",DDF_RAID5EE},
871 { "RAID6", DDF_RAID6},
872 { NULL, 0}
873 };
874 static mapping_t ddf_sec_level[] = {
875 { "Striped", DDF_2STRIPED},
876 { "Mirrored", DDF_2MIRRORED},
877 { "Concat", DDF_2CONCAT},
878 { "Spanned", DDF_2SPANNED},
879 { NULL, 0}
880 };
881 #endif
882
883 struct num_mapping {
884 int num1, num2;
885 };
886 static struct num_mapping ddf_level_num[] = {
887 { DDF_RAID0, 0 },
888 { DDF_RAID1, 1 },
889 { DDF_RAID3, LEVEL_UNSUPPORTED },
890 { DDF_RAID5, 4 },
891 { DDF_RAID1E, LEVEL_UNSUPPORTED },
892 { DDF_JBOD, LEVEL_UNSUPPORTED },
893 { DDF_CONCAT, LEVEL_LINEAR },
894 { DDF_RAID5E, LEVEL_UNSUPPORTED },
895 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
896 { DDF_RAID6, 6},
897 { MAXINT, MAXINT }
898 };
899
900 static int map_num1(struct num_mapping *map, int num)
901 {
902 int i;
903 for (i=0 ; map[i].num1 != MAXINT; i++)
904 if (map[i].num1 == num)
905 break;
906 return map[i].num2;
907 }
908
909 #ifndef MDASSEMBLE
910 static void print_guid(char *guid, int tstamp)
911 {
912 /* A GUIDs are part (or all) ASCII and part binary.
913 * They tend to be space padded.
914 * We ignore trailing spaces and print numbers
915 * <0x20 and >=0x7f as \xXX
916 * Some GUIDs have a time stamp in bytes 16-19.
917 * We print that if appropriate
918 */
919 int l = DDF_GUID_LEN;
920 int i;
921 while (l && guid[l-1] == ' ')
922 l--;
923 for (i=0 ; i<l ; i++) {
924 if (guid[i] >= 0x20 && guid[i] < 0x7f)
925 fputc(guid[i], stdout);
926 else
927 fprintf(stdout, "\\x%02x", guid[i]&255);
928 }
929 if (tstamp) {
930 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
931 char tbuf[100];
932 struct tm *tm;
933 tm = localtime(&then);
934 strftime(tbuf, 100, " (%D %T)",tm);
935 fputs(tbuf, stdout);
936 }
937 }
938
939 static void examine_vd(int n, struct ddf_super *sb, char *guid)
940 {
941 int crl = __be16_to_cpu(sb->anchor.config_record_len);
942 struct vcl *vcl;
943
944 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
945 struct vd_config *vc = &vcl->conf;
946
947 if (calc_crc(vc, crl*512) != vc->crc)
948 continue;
949 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
950 continue;
951
952 /* Ok, we know about this VD, let's give more details */
953 printf(" Raid Devices[%d] : %d\n", n,
954 __be16_to_cpu(vc->prim_elmnt_count));
955 printf(" Chunk Size[%d] : %d sectors\n", n,
956 1 << vc->chunk_shift);
957 printf(" Raid Level[%d] : %s\n", n,
958 map_num(ddf_level, vc->prl)?:"-unknown-");
959 if (vc->sec_elmnt_count != 1) {
960 printf(" Secondary Position[%d] : %d of %d\n", n,
961 vc->sec_elmnt_seq, vc->sec_elmnt_count);
962 printf(" Secondary Level[%d] : %s\n", n,
963 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
964 }
965 printf(" Device Size[%d] : %llu\n", n,
966 __be64_to_cpu(vc->blocks)/2);
967 printf(" Array Size[%d] : %llu\n", n,
968 __be64_to_cpu(vc->array_blocks)/2);
969 }
970 }
971
972 static void examine_vds(struct ddf_super *sb)
973 {
974 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
975 int i;
976 printf(" Virtual Disks : %d\n", cnt);
977
978 for (i=0; i<cnt; i++) {
979 struct virtual_entry *ve = &sb->virt->entries[i];
980 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
981 printf("\n");
982 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
983 printf(" state[%d] : %s, %s%s\n", i,
984 map_num(ddf_state, ve->state & 7),
985 (ve->state & 8) ? "Morphing, ": "",
986 (ve->state & 16)? "Not Consistent" : "Consistent");
987 printf(" init state[%d] : %s\n", i,
988 map_num(ddf_init_state, ve->init_state&3));
989 printf(" access[%d] : %s\n", i,
990 map_num(ddf_access, (ve->init_state>>6) & 3));
991 printf(" Name[%d] : %.16s\n", i, ve->name);
992 examine_vd(i, sb, ve->guid);
993 }
994 if (cnt) printf("\n");
995 }
996
997 static void examine_pds(struct ddf_super *sb)
998 {
999 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1000 int i;
1001 struct dl *dl;
1002 printf(" Physical Disks : %d\n", cnt);
1003
1004 for (i=0 ; i<cnt ; i++) {
1005 struct phys_disk_entry *pd = &sb->phys->entries[i];
1006 int type = __be16_to_cpu(pd->type);
1007 int state = __be16_to_cpu(pd->state);
1008
1009 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1010 printf("\n");
1011 printf(" ref[%d] : %08x\n", i,
1012 __be32_to_cpu(pd->refnum));
1013 printf(" mode[%d] : %s%s%s%s%s\n", i,
1014 (type&2) ? "active":"",
1015 (type&4) ? "Global Spare":"",
1016 (type&8) ? "spare" : "",
1017 (type&16)? ", foreign" : "",
1018 (type&32)? "pass-through" : "");
1019 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1020 (state&1)? "Online": "Offline",
1021 (state&2)? ", Failed": "",
1022 (state&4)? ", Rebuilding": "",
1023 (state&8)? ", in-transition": "",
1024 (state&16)? ", SMART errors": "",
1025 (state&32)? ", Unrecovered Read Errors": "",
1026 (state&64)? ", Missing" : "");
1027 printf(" Avail Size[%d] : %llu K\n", i,
1028 __be64_to_cpu(pd->config_size)>>1);
1029 for (dl = sb->dlist; dl ; dl = dl->next) {
1030 if (dl->disk.refnum == pd->refnum) {
1031 char *dv = map_dev(dl->major, dl->minor, 0);
1032 if (dv)
1033 printf(" Device[%d] : %s\n",
1034 i, dv);
1035 }
1036 }
1037 printf("\n");
1038 }
1039 }
1040
1041 static void examine_super_ddf(struct supertype *st, char *homehost)
1042 {
1043 struct ddf_super *sb = st->sb;
1044
1045 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1046 printf(" Version : %.8s\n", sb->anchor.revision);
1047 printf("Controller GUID : "); print_guid(sb->anchor.guid, 1);
1048 printf("\n");
1049 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1050 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1051 ?"yes" : "no");
1052 examine_vds(sb);
1053 examine_pds(sb);
1054 }
1055
1056 static void brief_examine_super_ddf(struct supertype *st)
1057 {
1058 /* We just write a generic DDF ARRAY entry
1059 * The uuid is all hex, 6 groups of 4 bytes
1060 */
1061 struct ddf_super *ddf = st->sb;
1062 int i;
1063 printf("ARRAY /dev/ddf UUID=");
1064 for (i = 0; i < DDF_GUID_LEN; i++) {
1065 printf("%02x", ddf->anchor.guid[i]);
1066 if ((i&3) == 0 && i != 0)
1067 printf(":");
1068 }
1069 printf("\n");
1070 }
1071
1072 static void detail_super_ddf(struct supertype *st, char *homehost)
1073 {
1074 /* FIXME later
1075 * Could print DDF GUID
1076 * Need to find which array
1077 * If whole, briefly list all arrays
1078 * If one, give name
1079 */
1080 }
1081
1082 static void brief_detail_super_ddf(struct supertype *st)
1083 {
1084 /* FIXME I really need to know which array we are detailing.
1085 * Can that be stored in ddf_super??
1086 */
1087 // struct ddf_super *ddf = st->sb;
1088 }
1089
1090
1091 #endif
1092
1093 static int match_home_ddf(struct supertype *st, char *homehost)
1094 {
1095 /* It matches 'this' host if the controller is a
1096 * Linux-MD controller with vendor_data matching
1097 * the hostname
1098 */
1099 struct ddf_super *ddf = st->sb;
1100 int len = strlen(homehost);
1101
1102 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1103 len < sizeof(ddf->controller.vendor_data) &&
1104 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1105 ddf->controller.vendor_data[len] == 0);
1106 }
1107
1108 static struct vd_config *find_vdcr(struct ddf_super *ddf)
1109 {
1110 /* FIXME this just picks off the first one */
1111 return &ddf->conflist->conf;
1112 }
1113
1114 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1115 {
1116 /* The uuid returned here is used for:
1117 * uuid to put into bitmap file (Create, Grow)
1118 * uuid for backup header when saving critical section (Grow)
1119 * comparing uuids when re-adding a device into an array
1120 * For each of these we can make do with a truncated
1121 * or hashed uuid rather than the original, as long as
1122 * everyone agrees.
1123 * In each case the uuid required is that of the data-array,
1124 * not the device-set.
1125 * In the case of SVD we assume the BVD is of interest,
1126 * though that might be the case if a bitmap were made for
1127 * a mirrored SVD - worry about that later.
1128 * So we need to find the VD configuration record for the
1129 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1130 * The first 16 bytes of the sha1 of these is used.
1131 */
1132 struct ddf_super *ddf = st->sb;
1133 struct vd_config *vd = find_vdcr(ddf);
1134
1135 if (!vd)
1136 memset(uuid, 0, sizeof (uuid));
1137 else {
1138 char buf[20];
1139 struct sha1_ctx ctx;
1140 sha1_init_ctx(&ctx);
1141 sha1_process_bytes(&vd->guid, DDF_GUID_LEN, &ctx);
1142 if (vd->sec_elmnt_count > 1)
1143 sha1_process_bytes(&vd->sec_elmnt_seq, 1, &ctx);
1144 sha1_finish_ctx(&ctx, buf);
1145 memcpy(uuid, buf, sizeof(uuid));
1146 }
1147 }
1148
1149 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1150 {
1151 struct ddf_super *ddf = st->sb;
1152
1153 info->array.major_version = 1000;
1154 info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1155 info->array.patch_version = 0;
1156 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1157 info->array.level = LEVEL_CONTAINER;
1158 info->array.layout = 0;
1159 info->array.md_minor = -1;
1160 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1161 (ddf->anchor.guid+16));
1162 info->array.utime = 0;
1163 info->array.chunk_size = 0;
1164
1165 // info->data_offset = ???;
1166 // info->component_size = ???;
1167
1168 info->disk.major = 0;
1169 info->disk.minor = 0;
1170 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1171 // info->disk.raid_disk = find refnum in the table and use index;
1172 // info->disk.state = ???;
1173
1174 // uuid_from_super_ddf(info->uuid, sbv);
1175
1176 // info->name[] ?? ;
1177 }
1178
1179 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1180 {
1181 struct ddf_super *ddf = st->sb;
1182 struct vd_config *vd = find_vdcr(ddf);
1183
1184 /* FIXME this returns BVD info - what if we want SVD ?? */
1185
1186 info->array.major_version = 1000;
1187 info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1188 info->array.patch_version = 0;
1189 info->array.raid_disks = __be16_to_cpu(vd->prim_elmnt_count);
1190 info->array.level = map_num1(ddf_level_num, vd->prl);
1191 info->array.layout = vd->rlq; /* FIXME should this be mapped */
1192 info->array.md_minor = -1;
1193 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)(vd->guid+16));
1194 info->array.utime = DECADE + __be32_to_cpu(vd->timestamp);
1195 info->array.chunk_size = 512 << vd->chunk_shift;
1196
1197 // info->data_offset = ???;
1198 // info->component_size = ???;
1199
1200 info->disk.major = 0;
1201 info->disk.minor = 0;
1202 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1203 // info->disk.raid_disk = find refnum in the table and use index;
1204 // info->disk.state = ???;
1205
1206 uuid_from_super_ddf(st, info->uuid);
1207
1208 // info->name[] ?? ;
1209 }
1210
1211 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1212 char *update,
1213 char *devname, int verbose,
1214 int uuid_set, char *homehost)
1215 {
1216 /* For 'assemble' and 'force' we need to return non-zero if any
1217 * change was made. For others, the return value is ignored.
1218 * Update options are:
1219 * force-one : This device looks a bit old but needs to be included,
1220 * update age info appropriately.
1221 * assemble: clear any 'faulty' flag to allow this device to
1222 * be assembled.
1223 * force-array: Array is degraded but being forced, mark it clean
1224 * if that will be needed to assemble it.
1225 *
1226 * newdev: not used ????
1227 * grow: Array has gained a new device - this is currently for
1228 * linear only
1229 * resync: mark as dirty so a resync will happen.
1230 * uuid: Change the uuid of the array to match watch is given
1231 * homehost: update the recorded homehost
1232 * name: update the name - preserving the homehost
1233 * _reshape_progress: record new reshape_progress position.
1234 *
1235 * Following are not relevant for this version:
1236 * sparc2.2 : update from old dodgey metadata
1237 * super-minor: change the preferred_minor number
1238 * summaries: update redundant counters.
1239 */
1240 int rv = 0;
1241 // struct ddf_super *ddf = st->sb;
1242 // struct vd_config *vd = find_vdcr(ddf);
1243 // struct virtual_entry *ve = find_ve(ddf);
1244
1245
1246 /* we don't need to handle "force-*" or "assemble" as
1247 * there is no need to 'trick' the kernel. We the metadata is
1248 * first updated to activate the array, all the implied modifications
1249 * will just happen.
1250 */
1251
1252 if (strcmp(update, "grow") == 0) {
1253 /* FIXME */
1254 }
1255 if (strcmp(update, "resync") == 0) {
1256 // info->resync_checkpoint = 0;
1257 }
1258 /* We ignore UUID updates as they make even less sense
1259 * with DDF
1260 */
1261 if (strcmp(update, "homehost") == 0) {
1262 /* homehost is stored in controller->vendor_data,
1263 * or it is when we are the vendor
1264 */
1265 // if (info->vendor_is_local)
1266 // strcpy(ddf->controller.vendor_data, homehost);
1267 }
1268 if (strcmp(update, "name") == 0) {
1269 /* name is stored in virtual_entry->name */
1270 // memset(ve->name, ' ', 16);
1271 // strncpy(ve->name, info->name, 16);
1272 }
1273 if (strcmp(update, "_reshape_progress") == 0) {
1274 /* We don't support reshape yet */
1275 }
1276
1277 // update_all_csum(ddf);
1278
1279 return rv;
1280 }
1281
1282 static int init_super_ddf(struct supertype *st,
1283 mdu_array_info_t *info,
1284 unsigned long long size, char *name, char *homehost,
1285 int *uuid)
1286 {
1287 /* This is primarily called by Create when creating a new array.
1288 * We will then get add_to_super called for each component, and then
1289 * write_init_super called to write it out to each device.
1290 * For DDF, Create can create on fresh devices or on a pre-existing
1291 * array.
1292 * To create on a pre-existing array a different method will be called.
1293 * This one is just for fresh drives.
1294 *
1295 * We need to create the entire 'ddf' structure which includes:
1296 * DDF headers - these are easy.
1297 * Controller data - a Sector describing this controller .. not that
1298 * this is a controller exactly.
1299 * Physical Disk Record - one entry per device, so
1300 * leave plenty of space.
1301 * Virtual Disk Records - again, just leave plenty of space.
1302 * This just lists VDs, doesn't give details
1303 * Config records - describes the VDs that use this disk
1304 * DiskData - describes 'this' device.
1305 * BadBlockManagement - empty
1306 * Diag Space - empty
1307 * Vendor Logs - Could we put bitmaps here?
1308 *
1309 */
1310 struct ddf_super *ddf;
1311 char hostname[17];
1312 int hostlen;
1313 __u32 stamp;
1314 int rfd;
1315 int max_phys_disks, max_virt_disks;
1316 unsigned long long sector;
1317 int clen;
1318 int i;
1319 int pdsize, vdsize;
1320 struct phys_disk *pd;
1321 struct virtual_disk *vd;
1322
1323 ddf = malloc(sizeof(*ddf));
1324 ddf->dlist = NULL; /* no physical disks yet */
1325 ddf->conflist = NULL; /* No virtual disks yet */
1326
1327 /* At least 32MB *must* be reserved for the ddf. So let's just
1328 * start 32MB from the end, and put the primary header there.
1329 * Don't do secondary for now.
1330 * We don't know exactly where that will be yet as it could be
1331 * different on each device. To just set up the lengths.
1332 *
1333 */
1334
1335 ddf->anchor.magic = DDF_HEADER_MAGIC;
1336 /* 24 bytes of fiction required.
1337 * first 8 are a 'vendor-id' - "Linux-MD"
1338 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1339 * Remaining 16 are serial number.... maybe a hostname would do?
1340 */
1341 memcpy(ddf->anchor.guid, T10, sizeof(T10));
1342 stamp = __cpu_to_be32(0xdeadbeef);
1343 memcpy(ddf->anchor.guid+8, &stamp, 4);
1344 stamp = __cpu_to_be32(0);
1345 memcpy(ddf->anchor.guid+12, &stamp, 4);
1346 stamp = __cpu_to_be32(time(0) - DECADE);
1347 memcpy(ddf->anchor.guid+16, &stamp, 4);
1348 rfd = open("/dev/urandom", O_RDONLY);
1349 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1350 stamp = random();
1351 memcpy(ddf->anchor.guid+20, &stamp, 4);
1352 if (rfd >= 0) close(rfd);
1353
1354 memcpy(ddf->anchor.revision, DDF_REVISION, 8);
1355 ddf->anchor.seq = __cpu_to_be32(1);
1356 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1357 ddf->anchor.openflag = 0xFF;
1358 ddf->anchor.foreignflag = 0;
1359 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1360 ddf->anchor.pad0 = 0xff;
1361 memset(ddf->anchor.pad1, 0xff, 12);
1362 memset(ddf->anchor.header_ext, 0xff, 32);
1363 ddf->anchor.primary_lba = ~(__u64)0;
1364 ddf->anchor.secondary_lba = ~(__u64)0;
1365 ddf->anchor.type = DDF_HEADER_ANCHOR;
1366 memset(ddf->anchor.pad2, 0xff, 3);
1367 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1368 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1369 of 32M reserved.. */
1370 max_phys_disks = 1023; /* Should be enough */
1371 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1372 max_virt_disks = 255;
1373 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1374 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1375 ddf->max_part = 64;
1376 ddf->anchor.config_record_len = __cpu_to_be16(1 + 256*12/512);
1377 ddf->anchor.max_primary_element_entries = __cpu_to_be16(256);
1378 memset(ddf->anchor.pad3, 0xff, 54);
1379
1380 /* controller sections is one sector long immediately
1381 * after the ddf header */
1382 sector = 1;
1383 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1384 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1385 sector += 1;
1386
1387 /* phys is 8 sectors after that */
1388 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1389 sizeof(struct phys_disk_entry)*max_phys_disks,
1390 512);
1391 switch(pdsize/512) {
1392 case 2: case 8: case 32: case 128: case 512: break;
1393 default: abort();
1394 }
1395 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1396 ddf->anchor.phys_section_length =
1397 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1398 sector += pdsize/512;
1399
1400 /* virt is another 32 sectors */
1401 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1402 sizeof(struct virtual_entry) * max_virt_disks,
1403 512);
1404 switch(vdsize/512) {
1405 case 2: case 8: case 32: case 128: case 512: break;
1406 default: abort();
1407 }
1408 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1409 ddf->anchor.virt_section_length =
1410 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1411 sector += vdsize/512;
1412
1413 clen = (1 + 256*12/512) * (64+1);
1414 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1415 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1416 sector += clen;
1417
1418 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1419 ddf->anchor.data_section_length = __cpu_to_be32(1);
1420 sector += 1;
1421
1422 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1423 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1424 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1425 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1426 ddf->anchor.vendor_length = __cpu_to_be32(0);
1427 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1428
1429 memset(ddf->anchor.pad4, 0xff, 256);
1430
1431 memcpy(&ddf->primary, &ddf->anchor, 512);
1432 memcpy(&ddf->secondary, &ddf->anchor, 512);
1433
1434 ddf->primary.openflag = 1; /* I guess.. */
1435 ddf->primary.type = DDF_HEADER_PRIMARY;
1436
1437 ddf->secondary.openflag = 1; /* I guess.. */
1438 ddf->secondary.type = DDF_HEADER_SECONDARY;
1439
1440 ddf->active = &ddf->primary;
1441
1442 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1443
1444 /* 24 more bytes of fiction required.
1445 * first 8 are a 'vendor-id' - "Linux-MD"
1446 * Remaining 16 are serial number.... maybe a hostname would do?
1447 */
1448 memcpy(ddf->controller.guid, T10, sizeof(T10));
1449 gethostname(hostname, 17);
1450 hostname[17] = 0;
1451 hostlen = strlen(hostname);
1452 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1453 for (i = strlen(T10) ; i+hostlen < 24; i++)
1454 ddf->controller.guid[i] = ' ';
1455
1456 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1457 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1458 ddf->controller.type.sub_vendor_id = 0;
1459 ddf->controller.type.sub_device_id = 0;
1460 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1461 memset(ddf->controller.pad, 0xff, 8);
1462 memset(ddf->controller.vendor_data, 0xff, 448);
1463
1464 pd = ddf->phys = malloc(pdsize);
1465 ddf->pdsize = pdsize;
1466
1467 memset(pd, 0xff, pdsize);
1468 memset(pd, 0, sizeof(*pd));
1469 pd->magic = DDF_PHYS_DATA_MAGIC;
1470 pd->used_pdes = __cpu_to_be16(0);
1471 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1472 memset(pd->pad, 0xff, 52);
1473
1474 vd = ddf->virt = malloc(vdsize);
1475 ddf->vdsize = vdsize;
1476 memset(vd, 0, vdsize);
1477 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1478 vd->populated_vdes = __cpu_to_be16(0);
1479 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1480 memset(vd->pad, 0xff, 52);
1481
1482 st->sb = ddf;
1483 return 1;
1484 }
1485
1486 /* add a device to a container, either while creating it or while
1487 * expanding a pre-existing container
1488 */
1489 static void add_to_super_ddf(struct supertype *st,
1490 mdu_disk_info_t *dk, int fd, char *devname)
1491 {
1492 struct ddf_super *ddf = st->sb;
1493 struct dl *dd;
1494 time_t now;
1495 struct tm *tm;
1496 unsigned long long size;
1497 struct phys_disk_entry *pde;
1498 int n, i;
1499 struct stat stb;
1500
1501 /* This is device numbered dk->number. We need to create
1502 * a phys_disk entry and a more detailed disk_data entry.
1503 */
1504 fstat(fd, &stb);
1505 dd = malloc(sizeof(*dd) + sizeof(dd->vlist[0]) * (ddf->max_part+1));
1506 dd->major = major(stb.st_rdev);
1507 dd->minor = minor(stb.st_rdev);
1508 dd->devname = devname;
1509 dd->next = ddf->dlist;
1510 dd->fd = fd;
1511
1512 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
1513 now = time(0);
1514 tm = localtime(&now);
1515 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
1516 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
1517 *(__u32*)(dd->disk.guid + 16) = random();
1518 *(__u32*)(dd->disk.guid + 20) = random();
1519
1520 dd->disk.refnum = random(); /* and hope for the best */
1521 dd->disk.forced_ref = 1;
1522 dd->disk.forced_guid = 1;
1523 memset(dd->disk.vendor, ' ', 32);
1524 memcpy(dd->disk.vendor, "Linux", 5);
1525 memset(dd->disk.pad, 0xff, 442);
1526 for (i = 0; i < ddf->max_part+1 ; i++)
1527 dd->vlist[i] = NULL;
1528
1529 n = __be16_to_cpu(ddf->phys->used_pdes);
1530 pde = &ddf->phys->entries[n];
1531 n++;
1532 ddf->phys->used_pdes = __cpu_to_be16(n);
1533
1534 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
1535 pde->refnum = dd->disk.refnum;
1536 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID |DDF_Global_Spare);
1537 pde->state = __cpu_to_be16(DDF_Online);
1538 get_dev_size(fd, NULL, &size);
1539 /* We are required to reserve 32Meg, and record the size in sectors */
1540 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
1541 sprintf(pde->path, "%17.17s","Information: nil") ;
1542 memset(pde->pad, 0xff, 6);
1543
1544 ddf->dlist = dd;
1545 }
1546
1547 /*
1548 * This is the write_init_super method for a ddf container. It is
1549 * called when creating a container or adding another device to a
1550 * container.
1551 */
1552
1553 #ifndef MDASSEMBLE
1554 static int write_init_super_ddf(struct supertype *st)
1555 {
1556
1557 struct ddf_super *ddf = st->sb;
1558 int i;
1559 struct dl *d;
1560 int n_config;
1561 int conf_size;
1562
1563 unsigned long long size, sector;
1564
1565 for (d = ddf->dlist; d; d=d->next) {
1566 int fd = d->fd;
1567
1568 if (fd < 0)
1569 continue;
1570
1571 /* We need to fill in the primary, (secondary) and workspace
1572 * lba's in the headers, set their checksums,
1573 * Also checksum phys, virt....
1574 *
1575 * Then write everything out, finally the anchor is written.
1576 */
1577 get_dev_size(fd, NULL, &size);
1578 size /= 512;
1579 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
1580 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
1581 ddf->anchor.seq = __cpu_to_be32(1);
1582 memcpy(&ddf->primary, &ddf->anchor, 512);
1583 memcpy(&ddf->secondary, &ddf->anchor, 512);
1584
1585 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
1586 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
1587 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
1588
1589 ddf->primary.openflag = 0;
1590 ddf->primary.type = DDF_HEADER_PRIMARY;
1591
1592 ddf->secondary.openflag = 0;
1593 ddf->secondary.type = DDF_HEADER_SECONDARY;
1594
1595 ddf->primary.crc = calc_crc(&ddf->primary, 512);
1596 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
1597
1598 sector = size - 16*1024*2;
1599 lseek64(fd, sector<<9, 0);
1600 write(fd, &ddf->primary, 512);
1601
1602 ddf->controller.crc = calc_crc(&ddf->controller, 512);
1603 write(fd, &ddf->controller, 512);
1604
1605 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
1606
1607 write(fd, ddf->phys, ddf->pdsize);
1608
1609 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
1610 write(fd, ddf->virt, ddf->vdsize);
1611
1612 /* Now write lots of config records. */
1613 n_config = __be16_to_cpu(ddf->active->max_partitions);
1614 conf_size = __be16_to_cpu(ddf->active->config_record_len) * 512;
1615 for (i = 0 ; i <= n_config ; i++) {
1616 struct vcl *c = d->vlist[i];
1617
1618 if (c) {
1619 c->conf.crc = calc_crc(&c->conf, conf_size);
1620 write(fd, &c->conf, conf_size);
1621 } else {
1622 __u32 sig = 0xffffffff;
1623 write(fd, &sig, 4);
1624 lseek64(fd, conf_size-4, SEEK_CUR);
1625 }
1626 }
1627 d->disk.crc = calc_crc(&d->disk, 512);
1628 write(fd, &d->disk, 512);
1629
1630 /* Maybe do the same for secondary */
1631
1632 lseek64(fd, (size-1)*512, SEEK_SET);
1633 write(fd, &ddf->anchor, 512);
1634 close(fd);
1635 }
1636 return 1;
1637 }
1638 #endif
1639
1640 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
1641 {
1642 /* We must reserve the last 32Meg */
1643 if (devsize <= 32*1024*2)
1644 return 0;
1645 return devsize - 32*1024*2;
1646 }
1647
1648 #ifndef MDASSEMBLE
1649 int validate_geometry_ddf(struct supertype *st,
1650 int level, int layout, int raiddisks,
1651 int chunk, unsigned long long size,
1652 char *dev, unsigned long long *freesize)
1653 {
1654 int fd;
1655 struct mdinfo *sra;
1656 int cfd;
1657
1658 /* ddf potentially supports lots of things, but it depends on
1659 * what devices are offered (and maybe kernel version?)
1660 * If given unused devices, we will make a container.
1661 * If given devices in a container, we will make a BVD.
1662 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
1663 */
1664
1665 if (level == LEVEL_CONTAINER) {
1666 st->ss = &super_ddf_container;
1667 return st->ss->validate_geometry(st, level, layout, raiddisks,
1668 chunk, size, dev, freesize);
1669 }
1670 if (!dev)
1671 return 1;
1672
1673 /* This device needs to be either a device in a 'ddf' container,
1674 * or it needs to be a 'ddf-bvd' array. Test the first first.
1675 */
1676
1677 fd = open(dev, O_RDONLY|O_EXCL, 0);
1678 if (fd >= 0) {
1679 sra = sysfs_read(fd, 0, GET_VERSION);
1680 close(fd);
1681 if (sra && sra->array.major_version == -1 &&
1682 strcmp(sra->text_version, "ddf-bvd") == 0) {
1683 st->ss = &super_ddf_svd;
1684 return st->ss->validate_geometry(st, level, layout,
1685 raiddisks, chunk, size,
1686 dev, freesize);
1687 }
1688
1689 fprintf(stderr,
1690 Name ": Cannot create this array on device %s\n",
1691 dev);
1692 return 0;
1693 }
1694 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1695 fprintf(stderr, Name ": Cannot open %s: %s\n",
1696 dev, strerror(errno));
1697 return 0;
1698 }
1699 /* Well, it is in use by someone, maybe a 'ddf' container. */
1700 cfd = open_container(fd);
1701 if (cfd < 0) {
1702 close(fd);
1703 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1704 dev);
1705 return 0;
1706 }
1707 sra = sysfs_read(cfd, 0, GET_VERSION);
1708 close(fd);
1709 if (sra && sra->array.major_version == -1 &&
1710 strcmp(sra->text_version, "ddf") == 0) {
1711 /* This is a member of a ddf container. Load the container
1712 * and try to create a bvd
1713 */
1714 struct ddf_super *ddf;
1715 st->ss = &super_ddf_bvd;
1716 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
1717 st->info = ddf;
1718 close(cfd);
1719 return st->ss->validate_geometry(st, level, layout,
1720 raiddisks, chunk, size,
1721 dev, freesize);
1722 }
1723 close(cfd);
1724 }
1725 fprintf(stderr, Name ": Cannot use %s: Already in use\n",
1726 dev);
1727 return 1;
1728 }
1729
1730 int validate_geometry_ddf_container(struct supertype *st,
1731 int level, int layout, int raiddisks,
1732 int chunk, unsigned long long size,
1733 char *dev, unsigned long long *freesize)
1734 {
1735 int fd;
1736 unsigned long long ldsize;
1737
1738 if (level != LEVEL_CONTAINER)
1739 return 0;
1740 if (!dev)
1741 return 1;
1742
1743 fd = open(dev, O_RDONLY|O_EXCL, 0);
1744 if (fd < 0) {
1745 fprintf(stderr, Name ": Cannot open %s: %s\n",
1746 dev, strerror(errno));
1747 return 0;
1748 }
1749 if (!get_dev_size(fd, dev, &ldsize)) {
1750 close(fd);
1751 return 0;
1752 }
1753 close(fd);
1754
1755 *freesize = avail_size_ddf(st, ldsize);
1756
1757 return 1;
1758 }
1759
1760 int validate_geometry_ddf_bvd(struct supertype *st,
1761 int level, int layout, int raiddisks,
1762 int chunk, unsigned long long size,
1763 char *dev, unsigned long long *freesize)
1764 {
1765 struct stat stb;
1766 struct ddf_super *ddf = st->sb;
1767 struct dl *dl;
1768 /* ddf/bvd supports lots of things, but not containers */
1769 if (level == LEVEL_CONTAINER)
1770 return 0;
1771 /* We must have the container info already read in. */
1772 if (!ddf)
1773 return 0;
1774
1775 /* This device must be a member of the set */
1776 if (stat(dev, &stb) < 0)
1777 return 0;
1778 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1779 return 0;
1780 for (dl = ddf->dlist ; dl ; dl = dl->next) {
1781 if (dl->major == major(stb.st_rdev) &&
1782 dl->minor == minor(stb.st_rdev))
1783 break;
1784 }
1785 // FIXME here I am
1786
1787 return 1;
1788 }
1789 int validate_geometry_ddf_svd(struct supertype *st,
1790 int level, int layout, int raiddisks,
1791 int chunk, unsigned long long size,
1792 char *dev, unsigned long long *freesize)
1793 {
1794 /* dd/svd only supports striped, mirrored, concat, spanned... */
1795 if (level != LEVEL_LINEAR &&
1796 level != 0 &&
1797 level != 1)
1798 return 0;
1799 return 1;
1800 }
1801
1802
1803 static int load_super_ddf_all(struct supertype *st, int fd,
1804 void **sbp, char *devname, int keep_fd)
1805 {
1806 struct mdinfo *sra;
1807 struct ddf_super *super;
1808 struct mdinfo *sd, *best = NULL;
1809 int bestseq = 0;
1810 int seq;
1811 char nm[20];
1812 int dfd;
1813
1814 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1815 if (!sra)
1816 return 1;
1817 if (sra->array.major_version != -1 ||
1818 sra->array.minor_version != -2 ||
1819 strcmp(sra->text_version, "ddf") != 0)
1820 return 1;
1821
1822 super = malloc(sizeof(*super));
1823 if (!super)
1824 return 1;
1825
1826 /* first, try each device, and choose the best ddf */
1827 for (sd = sra->devs ; sd ; sd = sd->next) {
1828 int rv;
1829 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1830 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1831 if (!dfd)
1832 return 2;
1833 rv = load_ddf_headers(dfd, super, NULL);
1834 if (!keep_fd) close(dfd);
1835 if (rv == 0) {
1836 seq = __be32_to_cpu(super->active->seq);
1837 if (super->active->openflag)
1838 seq--;
1839 if (!best || seq > bestseq) {
1840 bestseq = seq;
1841 best = sd;
1842 }
1843 }
1844 }
1845 if (!best)
1846 return 1;
1847 /* OK, load this ddf */
1848 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1849 dfd = dev_open(nm, O_RDONLY);
1850 if (!dfd)
1851 return 1;
1852 load_ddf_headers(dfd, super, NULL);
1853 load_ddf_global(dfd, super, NULL);
1854 close(dfd);
1855 /* Now we need the device-local bits */
1856 for (sd = sra->devs ; sd ; sd = sd->next) {
1857 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1858 dfd = dev_open(nm, O_RDONLY);
1859 if (!dfd)
1860 return 2;
1861 seq = load_ddf_local(dfd, super, NULL, keep_fd);
1862 close(dfd);
1863 }
1864 *sbp = super;
1865 if (st->ss == NULL) {
1866 st->ss = &super_ddf;
1867 st->minor_version = 0;
1868 st->max_devs = 512;
1869 }
1870 return 0;
1871 }
1872 #endif
1873
1874
1875
1876 static int init_zero_ddf(struct supertype *st,
1877 mdu_array_info_t *info,
1878 unsigned long long size, char *name,
1879 char *homehost, int *uuid)
1880 {
1881 st->sb = NULL;
1882 return 0;
1883 }
1884
1885 static int store_zero_ddf(struct supertype *st, int fd)
1886 {
1887 unsigned long long dsize;
1888 char buf[512];
1889 memset(buf, 0, 512);
1890
1891
1892 if (!get_dev_size(fd, NULL, &dsize))
1893 return 1;
1894
1895 lseek64(fd, dsize-512, 0);
1896 write(fd, buf, 512);
1897 return 0;
1898 }
1899
1900 struct superswitch super_ddf = {
1901 #ifndef MDASSEMBLE
1902 .examine_super = examine_super_ddf,
1903 .brief_examine_super = brief_examine_super_ddf,
1904 .detail_super = detail_super_ddf,
1905 .brief_detail_super = brief_detail_super_ddf,
1906 .validate_geometry = validate_geometry_ddf,
1907 #endif
1908 .match_home = match_home_ddf,
1909 .uuid_from_super= uuid_from_super_ddf,
1910 .getinfo_super = getinfo_super_ddf,
1911 .update_super = update_super_ddf,
1912
1913 .avail_size = avail_size_ddf,
1914
1915 .load_super = load_super_ddf,
1916 .init_super = init_zero_ddf,
1917 .store_super = store_zero_ddf,
1918 .free_super = free_super_ddf,
1919 .match_metadata_desc = match_metadata_desc_ddf,
1920
1921
1922 .major = 1000,
1923 .swapuuid = 0,
1924 .external = 1,
1925 .text_version = "ddf",
1926 };
1927
1928 /* Super_ddf_container is set by validate_geometry_ddf when given a
1929 * device that is not part of any array
1930 */
1931 struct superswitch super_ddf_container = {
1932 #ifndef MDASSEMBLE
1933 .validate_geometry = validate_geometry_ddf_container,
1934 .write_init_super = write_init_super_ddf,
1935 #endif
1936
1937 .init_super = init_super_ddf,
1938 .add_to_super = add_to_super_ddf,
1939
1940 .free_super = free_super_ddf,
1941
1942 .major = 1000,
1943 .swapuuid = 0,
1944 .external = 1,
1945 .text_version = "ddf",
1946 };
1947
1948 struct superswitch super_ddf_bvd = {
1949 #ifndef MDASSEMBLE
1950 // .detail_super = detail_super_ddf_bvd,
1951 // .brief_detail_super = brief_detail_super_ddf_bvd,
1952 .validate_geometry = validate_geometry_ddf_bvd,
1953 #endif
1954 .update_super = update_super_ddf,
1955 .init_super = init_super_ddf,
1956 .getinfo_super = getinfo_super_ddf_bvd,
1957
1958 .load_super = load_super_ddf,
1959 .free_super = free_super_ddf,
1960 .match_metadata_desc = match_metadata_desc_ddf_bvd,
1961
1962
1963 .major = 1001,
1964 .swapuuid = 0,
1965 .external = 1,
1966 .text_version = "ddf",
1967 };
1968
1969 struct superswitch super_ddf_svd = {
1970 #ifndef MDASSEMBLE
1971 // .detail_super = detail_super_ddf_svd,
1972 // .brief_detail_super = brief_detail_super_ddf_svd,
1973 .validate_geometry = validate_geometry_ddf_bvd,
1974 #endif
1975 .update_super = update_super_ddf,
1976 .init_super = init_super_ddf,
1977
1978 .load_super = load_super_ddf,
1979 .free_super = free_super_ddf,
1980 .match_metadata_desc = match_metadata_desc_ddf_svd,
1981
1982
1983 .major = 1002,
1984 .swapuuid = 0,
1985 .external = 1,
1986 .text_version = "ddf",
1987 };