Initial DDF support code.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2  * mdadm - manage Linux "md" devices aka RAID arrays.
3  *
4  * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5  *
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  *    Author: Neil Brown
22  *    Email: <neil@brown.name>
23  *
24  * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25  * (July 28 2006).  Reused by permission of SNIA.
26  */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "sha1.h"
31 #include <values.h>
32
33 static inline int ROUND_UP(int a, int base)
34 {
35         return ((a+base-1)/base)*base;
36 }
37
38 /* a non-official T10 name for creation GUIDs */
39 static char T10[] = "Linux-MD";
40
41 /* DDF timestamps are 1980 based, so we need to add
42  * second-in-decade-of-seventies to convert to linux timestamps.
43  * 10 years with 2 leap years.
44  */
45 #define DECADE (3600*24*(365*10+2))
46 unsigned long crc32(
47         unsigned long crc,
48         const unsigned char *buf,
49         unsigned len);
50
51 /* The DDF metadata handling.
52  * DDF metadata lives at the end of the device.
53  * The last 512 byte block provides an 'anchor' which is used to locate
54  * the rest of the metadata which usually lives immediately behind the anchor.
55  *
56  * Note:
57  *  - all multibyte numeric fields are bigendian.
58  *  - all strings are space padded.
59  *
60  */
61
62 /* Primary Raid Level (PRL) */
63 #define DDF_RAID0       0x00
64 #define DDF_RAID1       0x01
65 #define DDF_RAID3       0x03
66 #define DDF_RAID4       0x04
67 #define DDF_RAID5       0x05
68 #define DDF_RAID1E      0x11
69 #define DDF_JBOD        0x0f
70 #define DDF_CONCAT      0x1f
71 #define DDF_RAID5E      0x15
72 #define DDF_RAID5EE     0x25
73 #define DDF_RAID6       0x16    /* Vendor unique layout */
74
75 /* Raid Level Qualifier (RLQ) */
76 #define DDF_RAID0_SIMPLE        0x00
77 #define DDF_RAID1_SIMPLE        0x00 /* just 2 devices in this plex */
78 #define DDF_RAID1_MULTI         0x01 /* exactly 3 devices in this plex */
79 #define DDF_RAID3_0             0x00 /* parity in first extent */
80 #define DDF_RAID3_N             0x01 /* parity in last extent */
81 #define DDF_RAID4_0             0x00 /* parity in first extent */
82 #define DDF_RAID4_N             0x01 /* parity in last extent */
83 /* these apply to raid5e and raid5ee as well */
84 #define DDF_RAID5_0_RESTART     0x00 /* same as 'right asymmetric' - layout 1 */
85 #define DDF_RAID5_N_RESTART     0x02 /* same as 'left asymmetric' - layout 0 */
86 #define DDF_RAID5_N_CONTINUE    0x03 /* same as 'left symmetric' - layout 2 */
87
88 #define DDF_RAID1E_ADJACENT     0x00 /* raid10 nearcopies==2 */
89 #define DDF_RAID1E_OFFSET       0x01 /* raid10 offsetcopies==2 */
90
91 /* Secondary RAID Level (SRL) */
92 #define DDF_2STRIPED    0x00    /* This is weirder than RAID0 !! */
93 #define DDF_2MIRRORED   0x01
94 #define DDF_2CONCAT     0x02
95 #define DDF_2SPANNED    0x03    /* This is also weird - be careful */
96
97 /* Magic numbers */
98 #define DDF_HEADER_MAGIC        __cpu_to_be32(0xDE11DE11)
99 #define DDF_CONTROLLER_MAGIC    __cpu_to_be32(0xAD111111)
100 #define DDF_PHYS_RECORDS_MAGIC  __cpu_to_be32(0x22222222)
101 #define DDF_PHYS_DATA_MAGIC     __cpu_to_be32(0x33333333)
102 #define DDF_VIRT_RECORDS_MAGIC  __cpu_to_be32(0xDDDDDDDD)
103 #define DDF_VD_CONF_MAGIC       __cpu_to_be32(0xEEEEEEEE)
104 #define DDF_SPARE_ASSIGN_MAGIC  __cpu_to_be32(0x55555555)
105 #define DDF_VU_CONF_MAGIC       __cpu_to_be32(0x88888888)
106 #define DDF_VENDOR_LOG_MAGIC    __cpu_to_be32(0x01dBEEF0)
107 #define DDF_BBM_LOG_MAGIC       __cpu_to_be32(0xABADB10C)
108
109 #define DDF_GUID_LEN    24
110 #define DDF_REVISION    "01.00.00"
111
112 struct ddf_header {
113         __u32   magic;
114         __u32   crc;
115         char    guid[DDF_GUID_LEN];
116         char    revision[8];    /* 01.00.00 */
117         __u32   seq;            /* starts at '1' */
118         __u32   timestamp;
119         __u8    openflag;
120         __u8    foreignflag;
121         __u8    enforcegroups;
122         __u8    pad0;           /* 0xff */
123         __u8    pad1[12];       /* 12 * 0xff */
124         /* 64 bytes so far */
125         __u8    header_ext[32]; /* reserved: fill with 0xff */
126         __u64   primary_lba;
127         __u64   secondary_lba;
128         __u8    type;
129         __u8    pad2[3];        /* 0xff */
130         __u32   workspace_len;  /* sectors for vendor space -
131                                  * at least 32768(sectors) */
132         __u64   workspace_lba;
133         __u16   max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
134         __u16   max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
135         __u16   max_partitions; /* i.e. max num of configuration
136                                    record entries per disk */
137         __u16   config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
138                                                  *12/512) */
139         __u16   max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
140         __u8    pad3[54];       /* 0xff */
141         /* 192 bytes so far */
142         __u32   controller_section_offset;
143         __u32   controller_section_length;
144         __u32   phys_section_offset;
145         __u32   phys_section_length;
146         __u32   virt_section_offset;
147         __u32   virt_section_length;
148         __u32   config_section_offset;
149         __u32   config_section_length;
150         __u32   data_section_offset;
151         __u32   data_section_length;
152         __u32   bbm_section_offset;
153         __u32   bbm_section_length;
154         __u32   diag_space_offset;
155         __u32   diag_space_length;
156         __u32   vendor_offset;
157         __u32   vendor_length;
158         /* 256 bytes so far */
159         __u8    pad4[256];      /* 0xff */
160 };
161
162 /* type field */
163 #define DDF_HEADER_ANCHOR       0x00
164 #define DDF_HEADER_PRIMARY      0x01
165 #define DDF_HEADER_SECONDARY    0x02
166
167 /* The content of the 'controller section' - global scope */
168 struct ddf_controller_data {
169         __u32   magic;
170         __u32   crc;
171         char    guid[DDF_GUID_LEN];
172         struct controller_type {
173                 __u16 vendor_id;
174                 __u16 device_id;
175                 __u16 sub_vendor_id;
176                 __u16 sub_device_id;
177         } type;
178         char    product_id[16];
179         __u8    pad[8]; /* 0xff */
180         __u8    vendor_data[448];
181 };
182
183 /* The content of phys_section - global scope */
184 struct phys_disk {
185         __u32   magic;
186         __u32   crc;
187         __u16   used_pdes;
188         __u16   max_pdes;
189         __u8    pad[52];
190         struct phys_disk_entry {
191                 char    guid[DDF_GUID_LEN];
192                 __u32   refnum;
193                 __u16   type;
194                 __u16   state;
195                 __u64   config_size; /* DDF structures must be after here */
196                 char    path[18];       /* another horrible structure really */
197                 __u8    pad[6];
198         } entries[0];
199 };
200
201 /* phys_disk_entry.type is a bitmap - bigendian remember */
202 #define DDF_Forced_PD_GUID              1
203 #define DDF_Active_in_VD                2
204 #define DDF_Global_Spare                4
205 #define DDF_Spare                       8 /* overrides Global_spare */
206 #define DDF_Foreign                     16
207 #define DDF_Legacy                      32 /* no DDF on this device */
208
209 #define DDF_Interface_mask              0xf00
210 #define DDF_Interface_SCSI              0x100
211 #define DDF_Interface_SAS               0x200
212 #define DDF_Interface_SATA              0x300
213 #define DDF_Interface_FC                0x400
214
215 /* phys_disk_entry.state is a bigendian bitmap */
216 #define DDF_Online                      1
217 #define DDF_Failed                      2 /* overrides  1,4,8 */
218 #define DDF_Rebuilding                  4
219 #define DDF_Transition                  8
220 #define DDF_SMART                       16
221 #define DDF_ReadErrors                  32
222 #define DDF_Missing                     64
223
224 /* The content of the virt_section global scope */
225 struct virtual_disk {
226         __u32   magic;
227         __u32   crc;
228         __u16   populated_vdes;
229         __u16   max_vdes;
230         __u8    pad[52];
231         struct virtual_entry {
232                 char    guid[DDF_GUID_LEN];
233                 __u16   unit;
234                 __u16   pad0;   /* 0xffff */
235                 __u16   guid_crc;
236                 __u16   type;
237                 __u8    state;
238                 __u8    init_state;
239                 __u8    pad1[14];
240                 char    name[16];
241         } entries[0];
242 };
243
244 /* virtual_entry.type is a bitmap - bigendian */
245 #define DDF_Shared              1
246 #define DDF_Enforce_Groups      2
247 #define DDF_Unicode             4
248 #define DDF_Owner_Valid         8
249
250 /* virtual_entry.state is a bigendian bitmap */
251 #define DDF_state_mask          0x7
252 #define DDF_state_optimal       0x0
253 #define DDF_state_degraded      0x1
254 #define DDF_state_deleted       0x2
255 #define DDF_state_missing       0x3
256 #define DDF_state_failed        0x4
257
258 #define DDF_state_morphing      0x8
259 #define DDF_state_inconsistent  0x10
260
261 /* virtual_entry.init_state is a bigendian bitmap */
262 #define DDF_initstate_mask      0x03
263 #define DDF_init_not            0x00
264 #define DDF_init_quick          0x01
265 #define DDF_init_full           0x02
266
267 #define DDF_access_mask         0xc0
268 #define DDF_access_rw           0x00
269 #define DDF_access_ro           0x80
270 #define DDF_access_blocked      0xc0
271
272 /* The content of the config_section - local scope
273  * It has multiple records each config_record_len sectors
274  * They can be vd_config or spare_assign
275  */
276
277 struct vd_config {
278         __u32   magic;
279         __u32   crc;
280         char    guid[DDF_GUID_LEN];
281         __u32   timestamp;
282         __u32   seqnum;
283         __u8    pad0[24];
284         __u16   prim_elmnt_count;
285         __u8    chunk_shift;    /* 0 == 512, 1==1024 etc */
286         __u8    prl;
287         __u8    rlq;
288         __u8    sec_elmnt_count;
289         __u8    sec_elmnt_seq;
290         __u8    srl;
291         __u64   blocks;
292         __u64   array_blocks;
293         __u8    pad1[8];
294         __u32   spare_refs[8];
295         __u8    cache_pol[8];
296         __u8    bg_rate;
297         __u8    pad2[3];
298         __u8    pad3[52];
299         __u8    pad4[192];
300         __u8    v0[32]; /* reserved- 0xff */
301         __u8    v1[32]; /* reserved- 0xff */
302         __u8    v2[16]; /* reserved- 0xff */
303         __u8    v3[16]; /* reserved- 0xff */
304         __u8    vendor[32];
305         __u32   phys_refnum[0]; /* refnum of each disk in sequence */
306       /*__u64   lba_offset[0];  LBA offset in each phys.  Note extents in a
307                                 bvd are always the same size */
308 };
309
310 /* vd_config.cache_pol[7] is a bitmap */
311 #define DDF_cache_writeback     1       /* else writethrough */
312 #define DDF_cache_wadaptive     2       /* only applies if writeback */
313 #define DDF_cache_readahead     4
314 #define DDF_cache_radaptive     8       /* only if doing read-ahead */
315 #define DDF_cache_ifnobatt      16      /* even to write cache if battery is poor */
316 #define DDF_cache_wallowed      32      /* enable write caching */
317 #define DDF_cache_rallowed      64      /* enable read caching */
318
319 struct spare_assign {
320         __u32   magic;
321         __u32   crc;
322         __u32   timestamp;
323         __u8    reserved[7];
324         __u8    type;
325         __u16   populated;      /* SAEs used */
326         __u16   max;            /* max SAEs */
327         __u8    pad[8];
328         struct spare_assign_entry {
329                 char    guid[DDF_GUID_LEN];
330                 __u16   secondary_element;
331                 __u8    pad[6];
332         } spare_ents[0];
333 };
334 /* spare_assign.type is a bitmap */
335 #define DDF_spare_dedicated     0x1     /* else global */
336 #define DDF_spare_revertible    0x2     /* else committable */
337 #define DDF_spare_active        0x4     /* else not active */
338 #define DDF_spare_affinity      0x8     /* enclosure affinity */
339
340 /* The data_section contents - local scope */
341 struct disk_data {
342         __u32   magic;
343         __u32   crc;
344         char    guid[DDF_GUID_LEN];
345         __u32   refnum;         /* crc of some magic drive data ... */
346         __u8    forced_ref;     /* set when above was not result of magic */
347         __u8    forced_guid;    /* set if guid was forced rather than magic */
348         __u8    vendor[32];
349         __u8    pad[442];
350 };
351
352 /* bbm_section content */
353 struct bad_block_log {
354         __u32   magic;
355         __u32   crc;
356         __u16   entry_count;
357         __u32   spare_count;
358         __u8    pad[10];
359         __u64   first_spare;
360         struct mapped_block {
361                 __u64   defective_start;
362                 __u32   replacement_start;
363                 __u16   remap_count;
364                 __u8    pad[2];
365         } entries[0];
366 };
367
368 /* Struct for internally holding ddf structures */
369 /* The DDF structure stored on each device is potentially
370  * quite different, as some data is global and some is local.
371  * The global data is:
372  *   - ddf header
373  *   - controller_data
374  *   - Physical disk records
375  *   - Virtual disk records
376  * The local data is:
377  *   - Configuration records
378  *   - Physical Disk data section
379  *  (  and Bad block and vendor which I don't care about yet).
380  *
381  * The local data is parsed into separate lists as it is read
382  * and reconstructed for writing.  This means that we only need
383  * to make config changes once and they are automatically
384  * propagated to all devices.
385  * Note that the ddf_super has space of the conf and disk data
386  * for this disk and also for a list of all such data.
387  * The list is only used for the superblock that is being
388  * built in Create or Assemble to describe the whole array.
389  */
390 struct ddf_super {
391         struct ddf_header anchor, primary, secondary, *active;
392         struct ddf_controller_data controller;
393         struct phys_disk        *phys;
394         struct virtual_disk     *virt;
395         int pdsize, vdsize;
396         int max_part;
397         struct vcl {
398                 struct vcl      *next;
399                 __u64           *lba_offset; /* location in 'conf' of
400                                               * the lba table */
401                 struct vd_config conf;
402         } *conflist, *newconf;
403         struct dl {
404                 struct dl       *next;
405                 struct disk_data disk;
406                 int major, minor;
407                 char *devname;
408                 int fd;
409                 struct vcl *vlist[0]; /* max_part+1 in size */
410         } *dlist;
411 };
412
413 #ifndef offsetof
414 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
415 #endif
416
417 struct superswitch super_ddf_container, super_ddf_bvd;
418
419 static int calc_crc(void *buf, int len)
420 {
421         /* crcs are always at the same place as in the ddf_header */
422         struct ddf_header *ddf = buf;
423         __u32 oldcrc = ddf->crc;
424         __u32 newcrc;
425         ddf->crc = 0xffffffff;
426
427         newcrc = crc32(0, buf, len);
428         ddf->crc = oldcrc;
429         return newcrc;
430 }
431
432 static int load_ddf_header(int fd, unsigned long long lba,
433                            unsigned long long size,
434                            int type,
435                            struct ddf_header *hdr, struct ddf_header *anchor)
436 {
437         /* read a ddf header (primary or secondary) from fd/lba
438          * and check that it is consistent with anchor
439          * Need to check:
440          *   magic, crc, guid, rev, and LBA's header_type, and
441          *  everything after header_type must be the same
442          */
443         if (lba >= size-1)
444                 return 0;
445
446         if (lseek64(fd, lba<<9, 0) < 0)
447                 return 0;
448
449         if (read(fd, hdr, 512) != 512)
450                 return 0;
451
452         if (hdr->magic != DDF_HEADER_MAGIC)
453                 return 0;
454         if (calc_crc(hdr, 512) != hdr->crc)
455                 return 0;
456         if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
457             memcmp(anchor->revision, hdr->revision, 8) != 0 ||
458             anchor->primary_lba != hdr->primary_lba ||
459             anchor->secondary_lba != hdr->secondary_lba ||
460             hdr->type != type ||
461             memcmp(anchor->pad2, hdr->pad2, 512 -
462                    offsetof(struct ddf_header, pad2)) != 0)
463                 return 0;
464
465         /* Looks good enough to me... */
466         return 1;
467 }
468
469 static void *load_section(int fd, struct ddf_super *super, void *buf,
470                           __u32 offset_be, __u32 len_be, int check)
471 {
472         unsigned long long offset = __be32_to_cpu(offset_be);
473         unsigned long long len = __be32_to_cpu(len_be);
474         int dofree = (buf == NULL);
475
476         if (check)
477                 if (len != 2 && len != 8 && len != 32
478                     && len != 128 && len != 512)
479                         return NULL;
480
481         if (len > 1024)
482                 return NULL;
483         if (buf) {
484                 /* All pre-allocated sections are a single block */
485                 if (len != 1)
486                         return NULL;
487         } else
488                 buf = malloc(len<<9);
489         if (!buf)
490                 return NULL;
491
492         if (super->active->type == 1)
493                 offset += __be64_to_cpu(super->active->primary_lba);
494         else
495                 offset += __be64_to_cpu(super->active->secondary_lba);
496
497         if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
498                 if (dofree)
499                         free(buf);
500                 return NULL;
501         }
502         if (read(fd, buf, len<<9) != (len<<9)) {
503                 if (dofree)
504                         free(buf);
505                 return NULL;
506         }
507         return buf;
508 }
509
510 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
511 {
512         unsigned long long dsize;
513
514         get_dev_size(fd, NULL, &dsize);
515
516         if (lseek64(fd, dsize-512, 0) < 0) {
517                 if (devname)
518                         fprintf(stderr,
519                                 Name": Cannot seek to anchor block on %s: %s\n",
520                                 devname, strerror(errno));
521                 return 1;
522         }
523         if (read(fd, &super->anchor, 512) != 512) {
524                 if (devname)
525                         fprintf(stderr,
526                                 Name ": Cannot read anchor block on %s: %s\n",
527                                 devname, strerror(errno));
528                 return 1;
529         }
530         if (super->anchor.magic != DDF_HEADER_MAGIC) {
531                 if (devname)
532                         fprintf(stderr, Name ": no DDF anchor found on %s\n",
533                                 devname);
534                 return 2;
535         }
536         if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
537                 if (devname)
538                         fprintf(stderr, Name ": bad CRC on anchor on %s\n",
539                                 devname);
540                 return 2;
541         }
542         if (memcmp(super->anchor.revision, DDF_REVISION, 8) != 0) {
543                 if (devname)
544                         fprintf(stderr, Name ": can only support super revision"
545                                 " %.8s, not %.8s on %s\n",
546                                 DDF_REVISION, super->anchor.revision, devname);
547                 return 2;
548         }
549         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
550                             dsize >> 9,  1,
551                             &super->primary, &super->anchor) == 0) {
552                 if (devname)
553                         fprintf(stderr,
554                                 Name ": Failed to load primary DDF header "
555                                 "on %s\n", devname);
556                 return 2;
557         }
558         super->active = &super->primary;
559         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
560                             dsize >> 9,  2,
561                             &super->secondary, &super->anchor)) {
562                 if ((__be32_to_cpu(super->primary.seq)
563                      < __be32_to_cpu(super->secondary.seq) &&
564                      !super->secondary.openflag)
565                     || (__be32_to_cpu(super->primary.seq)
566                         == __be32_to_cpu(super->secondary.seq) &&
567                         super->primary.openflag && !super->secondary.openflag)
568                         )
569                         super->active = &super->secondary;
570         }
571         return 0;
572 }
573
574 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
575 {
576         void *ok;
577         ok = load_section(fd, super, &super->controller,
578                           super->active->controller_section_offset,
579                           super->active->controller_section_length,
580                           0);
581         super->phys = load_section(fd, super, NULL,
582                                    super->active->phys_section_offset,
583                                    super->active->phys_section_length,
584                                    1);
585         super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
586
587         super->virt = load_section(fd, super, NULL,
588                                    super->active->virt_section_offset,
589                                    super->active->virt_section_length,
590                                    1);
591         super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
592         if (!ok ||
593             !super->phys ||
594             !super->virt) {
595                 free(super->phys);
596                 free(super->virt);
597                 return 2;
598         }
599         super->conflist = NULL;
600         super->dlist = NULL;
601         return 0;
602 }
603
604 static int load_ddf_local(int fd, struct ddf_super *super,
605                           char *devname, int keep)
606 {
607         struct dl *dl;
608         struct stat stb;
609         char *conf;
610         int i;
611         int conflen;
612
613         /* First the local disk info */
614         super->max_part = __be16_to_cpu(super->active->max_partitions);
615         dl = malloc(sizeof(*dl) +
616                     (super->max_part+1) * sizeof(dl->vlist[0]));
617
618         load_section(fd, super, &dl->disk,
619                      super->active->data_section_offset,
620                      super->active->data_section_length,
621                      0);
622         dl->devname = devname ? strdup(devname) : NULL;
623         fstat(fd, &stb);
624         dl->major = major(stb.st_rdev);
625         dl->minor = minor(stb.st_rdev);
626         dl->next = super->dlist;
627         dl->fd = keep ? fd : -1;
628         for (i=0 ; i < super->max_part + 1 ; i++)
629                 dl->vlist[i] = NULL;
630         super->dlist = dl;
631
632         /* Now the config list. */
633         /* 'conf' is an array of config entries, some of which are
634          * probably invalid.  Those which are good need to be copied into
635          * the conflist
636          */
637         conflen =  __be16_to_cpu(super->active->config_record_len);
638
639         conf = load_section(fd, super, NULL,
640                             super->active->config_section_offset,
641                             super->active->config_section_length,
642                             0);
643
644         for (i = 0;
645              i < __be32_to_cpu(super->active->config_section_length);
646              i += conflen) {
647                 struct vd_config *vd =
648                         (struct vd_config *)((char*)conf + i*512);
649                 struct vcl *vcl;
650
651                 if (vd->magic != DDF_VD_CONF_MAGIC)
652                         continue;
653                 for (vcl = super->conflist; vcl; vcl = vcl->next) {
654                         if (memcmp(vcl->conf.guid,
655                                    vd->guid, DDF_GUID_LEN) == 0)
656                                 break;
657                 }
658
659                 if (vcl) {
660                         dl->vlist[i/conflen] = vcl;
661                         if (__be32_to_cpu(vd->seqnum) <=
662                             __be32_to_cpu(vcl->conf.seqnum))
663                                 continue;
664                 } else {
665                         vcl = malloc(conflen*512 + offsetof(struct vcl, conf));
666                         vcl->next = super->conflist;
667                         super->conflist = vcl;
668                 }
669                 memcpy(&vcl->conf, vd, conflen*512);
670                 vcl->lba_offset = (__u64*)
671                         &vcl->conf.phys_refnum[super->max_part+1];
672                 dl->vlist[i/conflen] = vcl;
673         }
674         free(conf);
675
676         return 0;
677 }
678
679 #ifndef MDASSEMBLE
680 static int load_super_ddf_all(struct supertype *st, int fd,
681                               void **sbp, char *devname, int keep_fd);
682 #endif
683 static int load_super_ddf(struct supertype *st, int fd,
684                           char *devname)
685 {
686         unsigned long long dsize;
687         struct ddf_super *super;
688         int rv;
689
690 #ifndef MDASSEMBLE
691         if (load_super_ddf_all(st, fd, &st->sb, devname, 0) == 0)
692                 return 0;
693 #endif
694
695         if (get_dev_size(fd, devname, &dsize) == 0)
696                 return 1;
697
698         /* 32M is a lower bound */
699         if (dsize <= 32*1024*1024) {
700                 if (devname) {
701                         fprintf(stderr,
702                                 Name ": %s is too small for ddf: "
703                                 "size is %llu sectors.\n",
704                                 devname, dsize>>9);
705                         return 1;
706                 }
707         }
708         if (dsize & 511) {
709                 if (devname) {
710                         fprintf(stderr,
711                                 Name ": %s is an odd size for ddf: "
712                                 "size is %llu bytes.\n",
713                                 devname, dsize);
714                         return 1;
715                 }
716         }
717
718         super = malloc(sizeof(*super));
719         if (!super) {
720                 fprintf(stderr, Name ": malloc of %zu failed.\n",
721                         sizeof(*super));
722                 return 1;
723         }
724
725         rv = load_ddf_headers(fd, super, devname);
726         if (rv) {
727                 free(super);
728                 return rv;
729         }
730
731         /* Have valid headers and have chosen the best. Let's read in the rest*/
732
733         rv = load_ddf_global(fd, super, devname);
734
735         if (rv) {
736                 if (devname)
737                         fprintf(stderr,
738                                 Name ": Failed to load all information "
739                                 "sections on %s\n", devname);
740                 free(super);
741                 return rv;
742         }
743
744         load_ddf_local(fd, super, devname, 0);
745
746         /* Should possibly check the sections .... */
747
748         st->sb = super;
749         if (st->ss == NULL) {
750                 st->ss = &super_ddf;
751                 st->minor_version = 0;
752                 st->max_devs = 512;
753         }
754         return 0;
755
756 }
757
758 static void free_super_ddf(struct supertype *st)
759 {
760         struct ddf_super *ddf = st->sb;
761         if (ddf == NULL)
762                 return;
763         free(ddf->phys);
764         free(ddf->virt);
765         while (ddf->conflist) {
766                 struct vcl *v = ddf->conflist;
767                 ddf->conflist = v->next;
768                 free(v);
769         }
770         while (ddf->dlist) {
771                 struct dl *d = ddf->dlist;
772                 ddf->dlist = d->next;
773                 if (d->fd >= 0)
774                         close(d->fd);
775                 free(d);
776         }
777         free(ddf);
778         st->sb = NULL;
779 }
780
781 static struct supertype *match_metadata_desc_ddf(char *arg)
782 {
783         /* 'ddf' only support containers */
784         struct supertype *st;
785         if (strcmp(arg, "ddf") != 0 &&
786             strcmp(arg, "default") != 0
787                 )
788                 return NULL;
789
790         st = malloc(sizeof(*st));
791         st->ss = &super_ddf;
792         st->max_devs = 512;
793         st->minor_version = 0;
794         st->sb = NULL;
795         return st;
796 }
797
798 static struct supertype *match_metadata_desc_ddf_bvd(char *arg)
799 {
800         struct supertype *st;
801         if (strcmp(arg, "ddf/bvd") != 0 &&
802             strcmp(arg, "bvd") != 0 &&
803             strcmp(arg, "default") != 0
804                 )
805                 return NULL;
806
807         st = malloc(sizeof(*st));
808         st->ss = &super_ddf_bvd;
809         st->max_devs = 512;
810         st->minor_version = 0;
811         st->sb = NULL;
812         return st;
813 }
814 static struct supertype *match_metadata_desc_ddf_svd(char *arg)
815 {
816         struct supertype *st;
817         if (strcmp(arg, "ddf/svd") != 0 &&
818             strcmp(arg, "svd") != 0 &&
819             strcmp(arg, "default") != 0
820                 )
821                 return NULL;
822
823         st = malloc(sizeof(*st));
824         st->ss = &super_ddf_svd;
825         st->max_devs = 512;
826         st->minor_version = 0;
827         st->sb = NULL;
828         return st;
829 }
830
831 #ifndef MDASSEMBLE
832
833 static mapping_t ddf_state[] = {
834         { "Optimal", 0},
835         { "Degraded", 1},
836         { "Deleted", 2},
837         { "Missing", 3},
838         { "Failed", 4},
839         { "Partially Optimal", 5},
840         { "-reserved-", 6},
841         { "-reserved-", 7},
842         { NULL, 0}
843 };
844
845 static mapping_t ddf_init_state[] = {
846         { "Not Initialised", 0},
847         { "QuickInit in Progress", 1},
848         { "Fully Initialised", 2},
849         { "*UNKNOWN*", 3},
850         { NULL, 0}
851 };
852 static mapping_t ddf_access[] = {
853         { "Read/Write", 0},
854         { "Reserved", 1},
855         { "Read Only", 2},
856         { "Blocked (no access)", 3},
857         { NULL ,0}
858 };
859
860 static mapping_t ddf_level[] = {
861         { "RAID0", DDF_RAID0},
862         { "RAID1", DDF_RAID1},
863         { "RAID3", DDF_RAID3},
864         { "RAID4", DDF_RAID4},
865         { "RAID5", DDF_RAID5},
866         { "RAID1E",DDF_RAID1E},
867         { "JBOD",  DDF_JBOD},
868         { "CONCAT",DDF_CONCAT},
869         { "RAID5E",DDF_RAID5E},
870         { "RAID5EE",DDF_RAID5EE},
871         { "RAID6", DDF_RAID6},
872         { NULL, 0}
873 };
874 static mapping_t ddf_sec_level[] = {
875         { "Striped", DDF_2STRIPED},
876         { "Mirrored", DDF_2MIRRORED},
877         { "Concat", DDF_2CONCAT},
878         { "Spanned", DDF_2SPANNED},
879         { NULL, 0}
880 };
881 #endif
882
883 struct num_mapping {
884         int num1, num2;
885 };
886 static struct num_mapping ddf_level_num[] = {
887         { DDF_RAID0, 0 },
888         { DDF_RAID1, 1 },
889         { DDF_RAID3, LEVEL_UNSUPPORTED },
890         { DDF_RAID5, 4 },
891         { DDF_RAID1E, LEVEL_UNSUPPORTED },
892         { DDF_JBOD, LEVEL_UNSUPPORTED },
893         { DDF_CONCAT, LEVEL_LINEAR },
894         { DDF_RAID5E, LEVEL_UNSUPPORTED },
895         { DDF_RAID5EE, LEVEL_UNSUPPORTED },
896         { DDF_RAID6, 6},
897         { MAXINT, MAXINT }
898 };
899
900 static int map_num1(struct num_mapping *map, int num)
901 {
902         int i;
903         for (i=0 ; map[i].num1 != MAXINT; i++)
904                 if (map[i].num1 == num)
905                         break;
906         return map[i].num2;
907 }
908
909 #ifndef MDASSEMBLE
910 static void print_guid(char *guid, int tstamp)
911 {
912         /* A GUIDs are part (or all) ASCII and part binary.
913          * They tend to be space padded.
914          * We ignore trailing spaces and print numbers
915          * <0x20 and >=0x7f as \xXX
916          * Some GUIDs have a time stamp in bytes 16-19.
917          * We print that if appropriate
918          */
919         int l = DDF_GUID_LEN;
920         int i;
921         while (l && guid[l-1] == ' ')
922                 l--;
923         for (i=0 ; i<l ; i++) {
924                 if (guid[i] >= 0x20 && guid[i] < 0x7f)
925                         fputc(guid[i], stdout);
926                 else
927                         fprintf(stdout, "\\x%02x", guid[i]&255);
928         }
929         if (tstamp) {
930                 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
931                 char tbuf[100];
932                 struct tm *tm;
933                 tm = localtime(&then);
934                 strftime(tbuf, 100, " (%D %T)",tm);
935                 fputs(tbuf, stdout);
936         }
937 }
938
939 static void examine_vd(int n, struct ddf_super *sb, char *guid)
940 {
941         int crl = __be16_to_cpu(sb->anchor.config_record_len);
942         struct vcl *vcl;
943
944         for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
945                 struct vd_config *vc = &vcl->conf;
946
947                 if (calc_crc(vc, crl*512) != vc->crc)
948                         continue;
949                 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
950                         continue;
951
952                 /* Ok, we know about this VD, let's give more details */
953                 printf(" Raid Devices[%d] : %d\n", n,
954                        __be16_to_cpu(vc->prim_elmnt_count));
955                 printf("   Chunk Size[%d] : %d sectors\n", n,
956                        1 << vc->chunk_shift);
957                 printf("   Raid Level[%d] : %s\n", n,
958                        map_num(ddf_level, vc->prl)?:"-unknown-");
959                 if (vc->sec_elmnt_count != 1) {
960                         printf("  Secondary Position[%d] : %d of %d\n", n,
961                                vc->sec_elmnt_seq, vc->sec_elmnt_count);
962                         printf("  Secondary Level[%d] : %s\n", n,
963                                map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
964                 }
965                 printf("  Device Size[%d] : %llu\n", n,
966                        __be64_to_cpu(vc->blocks)/2);
967                 printf("   Array Size[%d] : %llu\n", n,
968                        __be64_to_cpu(vc->array_blocks)/2);
969         }
970 }
971
972 static void examine_vds(struct ddf_super *sb)
973 {
974         int cnt = __be16_to_cpu(sb->virt->populated_vdes);
975         int i;
976         printf("  Virtual Disks : %d\n", cnt);
977
978         for (i=0; i<cnt; i++) {
979                 struct virtual_entry *ve = &sb->virt->entries[i];
980                 printf("      VD GUID[%d] : ", i); print_guid(ve->guid, 1);
981                 printf("\n");
982                 printf("         unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
983                 printf("        state[%d] : %s, %s%s\n", i,
984                        map_num(ddf_state, ve->state & 7),
985                        (ve->state & 8) ? "Morphing, ": "",
986                        (ve->state & 16)? "Not Consistent" : "Consistent");
987                 printf("   init state[%d] : %s\n", i,
988                        map_num(ddf_init_state, ve->init_state&3));
989                 printf("       access[%d] : %s\n", i,
990                        map_num(ddf_access, (ve->init_state>>6) & 3));
991                 printf("         Name[%d] : %.16s\n", i, ve->name);
992                 examine_vd(i, sb, ve->guid);
993         }
994         if (cnt) printf("\n");
995 }
996
997 static void examine_pds(struct ddf_super *sb)
998 {
999         int cnt = __be16_to_cpu(sb->phys->used_pdes);
1000         int i;
1001         struct dl *dl;
1002         printf(" Physical Disks : %d\n", cnt);
1003
1004         for (i=0 ; i<cnt ; i++) {
1005                 struct phys_disk_entry *pd = &sb->phys->entries[i];
1006                 int type = __be16_to_cpu(pd->type);
1007                 int state = __be16_to_cpu(pd->state);
1008
1009                 printf("      PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1010                 printf("\n");
1011                 printf("          ref[%d] : %08x\n", i,
1012                        __be32_to_cpu(pd->refnum));
1013                 printf("         mode[%d] : %s%s%s%s%s\n", i,
1014                        (type&2) ? "active":"",
1015                        (type&4) ? "Global Spare":"",
1016                        (type&8) ? "spare" : "",
1017                        (type&16)? ", foreign" : "",
1018                        (type&32)? "pass-through" : "");
1019                 printf("        state[%d] : %s%s%s%s%s%s%s\n", i,
1020                        (state&1)? "Online": "Offline",
1021                        (state&2)? ", Failed": "",
1022                        (state&4)? ", Rebuilding": "",
1023                        (state&8)? ", in-transition": "",
1024                        (state&16)? ", SMART errors": "",
1025                        (state&32)? ", Unrecovered Read Errors": "",
1026                        (state&64)? ", Missing" : "");
1027                 printf("   Avail Size[%d] : %llu K\n", i,
1028                        __be64_to_cpu(pd->config_size)>>1);
1029                 for (dl = sb->dlist; dl ; dl = dl->next) {
1030                         if (dl->disk.refnum == pd->refnum) {
1031                                 char *dv = map_dev(dl->major, dl->minor, 0);
1032                                 if (dv)
1033                                         printf("       Device[%d] : %s\n",
1034                                                i, dv);
1035                         }
1036                 }
1037                 printf("\n");
1038         }
1039 }
1040
1041 static void examine_super_ddf(struct supertype *st, char *homehost)
1042 {
1043         struct ddf_super *sb = st->sb;
1044
1045         printf("          Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1046         printf("        Version : %.8s\n", sb->anchor.revision);
1047         printf("Controller GUID : "); print_guid(sb->anchor.guid, 1);
1048         printf("\n");
1049         printf("            Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1050         printf("  Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1051                ?"yes" : "no");
1052         examine_vds(sb);
1053         examine_pds(sb);
1054 }
1055
1056 static void brief_examine_super_ddf(struct supertype *st)
1057 {
1058         /* We just write a generic DDF ARRAY entry
1059          * The uuid is all hex, 6 groups of 4 bytes
1060          */
1061         struct ddf_super *ddf = st->sb;
1062         int i;
1063         printf("ARRAY /dev/ddf UUID=");
1064         for (i = 0; i < DDF_GUID_LEN; i++) {
1065                 printf("%02x", ddf->anchor.guid[i]);
1066                 if ((i&3) == 0 && i != 0)
1067                         printf(":");
1068         }
1069         printf("\n");
1070 }
1071
1072 static void detail_super_ddf(struct supertype *st, char *homehost)
1073 {
1074         /* FIXME later
1075          * Could print DDF GUID
1076          * Need to find which array
1077          *  If whole, briefly list all arrays
1078          *  If one, give name
1079          */
1080 }
1081
1082 static void brief_detail_super_ddf(struct supertype *st)
1083 {
1084         /* FIXME I really need to know which array we are detailing.
1085          * Can that be stored in ddf_super??
1086          */
1087 //      struct ddf_super *ddf = st->sb;
1088 }
1089
1090
1091 #endif
1092
1093 static int match_home_ddf(struct supertype *st, char *homehost)
1094 {
1095         /* It matches 'this' host if the controller is a
1096          * Linux-MD controller with vendor_data matching
1097          * the hostname
1098          */
1099         struct ddf_super *ddf = st->sb;
1100         int len = strlen(homehost);
1101
1102         return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1103                 len < sizeof(ddf->controller.vendor_data) &&
1104                 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1105                 ddf->controller.vendor_data[len] == 0);
1106 }
1107
1108 static struct vd_config *find_vdcr(struct ddf_super *ddf)
1109 {
1110         /* FIXME this just picks off the first one */
1111         return &ddf->conflist->conf;
1112 }
1113
1114 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1115 {
1116         /* The uuid returned here is used for:
1117          *  uuid to put into bitmap file (Create, Grow)
1118          *  uuid for backup header when saving critical section (Grow)
1119          *  comparing uuids when re-adding a device into an array
1120          * For each of these we can make do with a truncated
1121          * or hashed uuid rather than the original, as long as
1122          * everyone agrees.
1123          * In each case the uuid required is that of the data-array,
1124          * not the device-set.
1125          * In the case of SVD we assume the BVD is of interest,
1126          * though that might be the case if a bitmap were made for
1127          * a mirrored SVD - worry about that later.
1128          * So we need to find the VD configuration record for the
1129          * relevant BVD and extract the GUID and Secondary_Element_Seq.
1130          * The first 16 bytes of the sha1 of these is used.
1131          */
1132         struct ddf_super *ddf = st->sb;
1133         struct vd_config *vd = find_vdcr(ddf);
1134
1135         if (!vd)
1136                 memset(uuid, 0, sizeof (uuid));
1137         else {
1138                 char buf[20];
1139                 struct sha1_ctx ctx;
1140                 sha1_init_ctx(&ctx);
1141                 sha1_process_bytes(&vd->guid, DDF_GUID_LEN, &ctx);
1142                 if (vd->sec_elmnt_count > 1)
1143                         sha1_process_bytes(&vd->sec_elmnt_seq, 1, &ctx);
1144                 sha1_finish_ctx(&ctx, buf);
1145                 memcpy(uuid, buf, sizeof(uuid));
1146         }
1147 }
1148
1149 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1150 {
1151         struct ddf_super *ddf = st->sb;
1152
1153         info->array.major_version = 1000;
1154         info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1155         info->array.patch_version = 0;
1156         info->array.raid_disks    = __be16_to_cpu(ddf->phys->used_pdes);
1157         info->array.level         = LEVEL_CONTAINER;
1158         info->array.layout        = 0;
1159         info->array.md_minor      = -1;
1160         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)
1161                                                          (ddf->anchor.guid+16));
1162         info->array.utime         = 0;
1163         info->array.chunk_size    = 0;
1164
1165 //      info->data_offset         = ???;
1166 //      info->component_size      = ???;
1167
1168         info->disk.major = 0;
1169         info->disk.minor = 0;
1170 //      info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1171 //      info->disk.raid_disk = find refnum in the table and use index;
1172 //      info->disk.state = ???;
1173
1174 //      uuid_from_super_ddf(info->uuid, sbv);
1175
1176 //      info->name[] ?? ;
1177 }
1178
1179 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1180 {
1181         struct ddf_super *ddf = st->sb;
1182         struct vd_config *vd = find_vdcr(ddf);
1183
1184         /* FIXME this returns BVD info - what if we want SVD ?? */
1185
1186         info->array.major_version = 1000;
1187         info->array.minor_version = 0; /* FIXME use ddf->revision somehow */
1188         info->array.patch_version = 0;
1189         info->array.raid_disks    = __be16_to_cpu(vd->prim_elmnt_count);
1190         info->array.level         = map_num1(ddf_level_num, vd->prl);
1191         info->array.layout        = vd->rlq; /* FIXME should this be mapped */
1192         info->array.md_minor      = -1;
1193         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)(vd->guid+16));
1194         info->array.utime         = DECADE + __be32_to_cpu(vd->timestamp);
1195         info->array.chunk_size    = 512 << vd->chunk_shift;
1196
1197 //      info->data_offset         = ???;
1198 //      info->component_size      = ???;
1199
1200         info->disk.major = 0;
1201         info->disk.minor = 0;
1202 //      info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1203 //      info->disk.raid_disk = find refnum in the table and use index;
1204 //      info->disk.state = ???;
1205
1206         uuid_from_super_ddf(st, info->uuid);
1207
1208 //      info->name[] ?? ;
1209 }
1210
1211 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1212                             char *update,
1213                             char *devname, int verbose,
1214                             int uuid_set, char *homehost)
1215 {
1216         /* For 'assemble' and 'force' we need to return non-zero if any
1217          * change was made.  For others, the return value is ignored.
1218          * Update options are:
1219          *  force-one : This device looks a bit old but needs to be included,
1220          *        update age info appropriately.
1221          *  assemble: clear any 'faulty' flag to allow this device to
1222          *              be assembled.
1223          *  force-array: Array is degraded but being forced, mark it clean
1224          *         if that will be needed to assemble it.
1225          *
1226          *  newdev:  not used ????
1227          *  grow:  Array has gained a new device - this is currently for
1228          *              linear only
1229          *  resync: mark as dirty so a resync will happen.
1230          *  uuid:  Change the uuid of the array to match watch is given
1231          *  homehost:  update the recorded homehost
1232          *  name:  update the name - preserving the homehost
1233          *  _reshape_progress: record new reshape_progress position.
1234          *
1235          * Following are not relevant for this version:
1236          *  sparc2.2 : update from old dodgey metadata
1237          *  super-minor: change the preferred_minor number
1238          *  summaries:  update redundant counters.
1239          */
1240         int rv = 0;
1241 //      struct ddf_super *ddf = st->sb;
1242 //      struct vd_config *vd = find_vdcr(ddf);
1243 //      struct virtual_entry *ve = find_ve(ddf);
1244
1245
1246         /* we don't need to handle "force-*" or "assemble" as
1247          * there is no need to 'trick' the kernel.  We the metadata is
1248          * first updated to activate the array, all the implied modifications
1249          * will just happen.
1250          */
1251
1252         if (strcmp(update, "grow") == 0) {
1253                 /* FIXME */
1254         }
1255         if (strcmp(update, "resync") == 0) {
1256 //              info->resync_checkpoint = 0;
1257         }
1258         /* We ignore UUID updates as they make even less sense
1259          * with DDF
1260          */
1261         if (strcmp(update, "homehost") == 0) {
1262                 /* homehost is stored in controller->vendor_data,
1263                  * or it is when we are the vendor
1264                  */
1265 //              if (info->vendor_is_local)
1266 //                      strcpy(ddf->controller.vendor_data, homehost);
1267         }
1268         if (strcmp(update, "name") == 0) {
1269                 /* name is stored in virtual_entry->name */
1270 //              memset(ve->name, ' ', 16);
1271 //              strncpy(ve->name, info->name, 16);
1272         }
1273         if (strcmp(update, "_reshape_progress") == 0) {
1274                 /* We don't support reshape yet */
1275         }
1276
1277 //      update_all_csum(ddf);
1278
1279         return rv;
1280 }
1281
1282 static int init_super_ddf(struct supertype *st,
1283                           mdu_array_info_t *info,
1284                           unsigned long long size, char *name, char *homehost,
1285                           int *uuid)
1286 {
1287         /* This is primarily called by Create when creating a new array.
1288          * We will then get add_to_super called for each component, and then
1289          * write_init_super called to write it out to each device.
1290          * For DDF, Create can create on fresh devices or on a pre-existing
1291          * array.
1292          * To create on a pre-existing array a different method will be called.
1293          * This one is just for fresh drives.
1294          *
1295          * We need to create the entire 'ddf' structure which includes:
1296          *  DDF headers - these are easy.
1297          *  Controller data - a Sector describing this controller .. not that
1298          *                  this is a controller exactly.
1299          *  Physical Disk Record - one entry per device, so
1300          *                      leave plenty of space.
1301          *  Virtual Disk Records - again, just leave plenty of space.
1302          *                   This just lists VDs, doesn't give details
1303          *  Config records - describes the VDs that use this disk
1304          *  DiskData  - describes 'this' device.
1305          *  BadBlockManagement - empty
1306          *  Diag Space - empty
1307          *  Vendor Logs - Could we put bitmaps here?
1308          *
1309          */
1310         struct ddf_super *ddf;
1311         char hostname[17];
1312         int hostlen;
1313         __u32 stamp;
1314         int rfd;
1315         int max_phys_disks, max_virt_disks;
1316         unsigned long long sector;
1317         int clen;
1318         int i;
1319         int pdsize, vdsize;
1320         struct phys_disk *pd;
1321         struct virtual_disk *vd;
1322
1323         ddf = malloc(sizeof(*ddf));
1324         ddf->dlist = NULL; /* no physical disks yet */
1325         ddf->conflist = NULL; /* No virtual disks yet */
1326
1327         /* At least 32MB *must* be reserved for the ddf.  So let's just
1328          * start 32MB from the end, and put the primary header there.
1329          * Don't do secondary for now.
1330          * We don't know exactly where that will be yet as it could be
1331          * different on each device.  To just set up the lengths.
1332          *
1333          */
1334
1335         ddf->anchor.magic = DDF_HEADER_MAGIC;
1336         /* 24 bytes of fiction required.
1337          * first 8 are a 'vendor-id'  - "Linux-MD"
1338          * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1339          * Remaining 16 are serial number.... maybe a hostname would do?
1340          */
1341         memcpy(ddf->anchor.guid, T10, sizeof(T10));
1342         stamp = __cpu_to_be32(0xdeadbeef);
1343         memcpy(ddf->anchor.guid+8, &stamp, 4);
1344         stamp = __cpu_to_be32(0);
1345         memcpy(ddf->anchor.guid+12, &stamp, 4);
1346         stamp = __cpu_to_be32(time(0) - DECADE);
1347         memcpy(ddf->anchor.guid+16, &stamp, 4);
1348         rfd = open("/dev/urandom", O_RDONLY);
1349         if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1350                 stamp = random();
1351         memcpy(ddf->anchor.guid+20, &stamp, 4);
1352         if (rfd >= 0) close(rfd);
1353
1354         memcpy(ddf->anchor.revision, DDF_REVISION, 8);
1355         ddf->anchor.seq = __cpu_to_be32(1);
1356         ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1357         ddf->anchor.openflag = 0xFF;
1358         ddf->anchor.foreignflag = 0;
1359         ddf->anchor.enforcegroups = 0; /* Is this best?? */
1360         ddf->anchor.pad0 = 0xff;
1361         memset(ddf->anchor.pad1, 0xff, 12);
1362         memset(ddf->anchor.header_ext, 0xff, 32);
1363         ddf->anchor.primary_lba = ~(__u64)0;
1364         ddf->anchor.secondary_lba = ~(__u64)0;
1365         ddf->anchor.type = DDF_HEADER_ANCHOR;
1366         memset(ddf->anchor.pad2, 0xff, 3);
1367         ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1368         ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1369                                                   of 32M reserved.. */
1370         max_phys_disks = 1023;   /* Should be enough */
1371         ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1372         max_virt_disks = 255;
1373         ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1374         ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1375         ddf->max_part = 64;
1376         ddf->anchor.config_record_len = __cpu_to_be16(1 + 256*12/512);
1377         ddf->anchor.max_primary_element_entries = __cpu_to_be16(256);
1378         memset(ddf->anchor.pad3, 0xff, 54);
1379
1380         /* controller sections is one sector long immediately
1381          * after the ddf header */
1382         sector = 1;
1383         ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1384         ddf->anchor.controller_section_length = __cpu_to_be32(1);
1385         sector += 1;
1386
1387         /* phys is 8 sectors after that */
1388         pdsize = ROUND_UP(sizeof(struct phys_disk) +
1389                           sizeof(struct phys_disk_entry)*max_phys_disks,
1390                           512);
1391         switch(pdsize/512) {
1392         case 2: case 8: case 32: case 128: case 512: break;
1393         default: abort();
1394         }
1395         ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1396         ddf->anchor.phys_section_length =
1397                 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1398         sector += pdsize/512;
1399
1400         /* virt is another 32 sectors */
1401         vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1402                           sizeof(struct virtual_entry) * max_virt_disks,
1403                           512);
1404         switch(vdsize/512) {
1405         case 2: case 8: case 32: case 128: case 512: break;
1406         default: abort();
1407         }
1408         ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1409         ddf->anchor.virt_section_length =
1410                 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1411         sector += vdsize/512;
1412
1413         clen = (1 + 256*12/512) * (64+1);
1414         ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1415         ddf->anchor.config_section_length = __cpu_to_be32(clen);
1416         sector += clen;
1417
1418         ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1419         ddf->anchor.data_section_length = __cpu_to_be32(1);
1420         sector += 1;
1421
1422         ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1423         ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1424         ddf->anchor.diag_space_length = __cpu_to_be32(0);
1425         ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1426         ddf->anchor.vendor_length = __cpu_to_be32(0);
1427         ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1428
1429         memset(ddf->anchor.pad4, 0xff, 256);
1430
1431         memcpy(&ddf->primary, &ddf->anchor, 512);
1432         memcpy(&ddf->secondary, &ddf->anchor, 512);
1433
1434         ddf->primary.openflag = 1; /* I guess.. */
1435         ddf->primary.type = DDF_HEADER_PRIMARY;
1436
1437         ddf->secondary.openflag = 1; /* I guess.. */
1438         ddf->secondary.type = DDF_HEADER_SECONDARY;
1439
1440         ddf->active = &ddf->primary;
1441
1442         ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1443
1444         /* 24 more bytes of fiction required.
1445          * first 8 are a 'vendor-id'  - "Linux-MD"
1446          * Remaining 16 are serial number.... maybe a hostname would do?
1447          */
1448         memcpy(ddf->controller.guid, T10, sizeof(T10));
1449         gethostname(hostname, 17);
1450         hostname[17] = 0;
1451         hostlen = strlen(hostname);
1452         memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1453         for (i = strlen(T10) ; i+hostlen < 24; i++)
1454                 ddf->controller.guid[i] = ' ';
1455
1456         ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1457         ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1458         ddf->controller.type.sub_vendor_id = 0;
1459         ddf->controller.type.sub_device_id = 0;
1460         memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1461         memset(ddf->controller.pad, 0xff, 8);
1462         memset(ddf->controller.vendor_data, 0xff, 448);
1463
1464         pd = ddf->phys = malloc(pdsize);
1465         ddf->pdsize = pdsize;
1466
1467         memset(pd, 0xff, pdsize);
1468         memset(pd, 0, sizeof(*pd));
1469         pd->magic = DDF_PHYS_DATA_MAGIC;
1470         pd->used_pdes = __cpu_to_be16(0);
1471         pd->max_pdes = __cpu_to_be16(max_phys_disks);
1472         memset(pd->pad, 0xff, 52);
1473
1474         vd = ddf->virt = malloc(vdsize);
1475         ddf->vdsize = vdsize;
1476         memset(vd, 0, vdsize);
1477         vd->magic = DDF_VIRT_RECORDS_MAGIC;
1478         vd->populated_vdes = __cpu_to_be16(0);
1479         vd->max_vdes = __cpu_to_be16(max_virt_disks);
1480         memset(vd->pad, 0xff, 52);
1481
1482         st->sb = ddf;
1483         return 1;
1484 }
1485
1486 /* add a device to a container, either while creating it or while
1487  * expanding a pre-existing container
1488  */
1489 static void add_to_super_ddf(struct supertype *st,
1490                              mdu_disk_info_t *dk, int fd, char *devname)
1491 {
1492         struct ddf_super *ddf = st->sb;
1493         struct dl *dd;
1494         time_t now;
1495         struct tm *tm;
1496         unsigned long long size;
1497         struct phys_disk_entry *pde;
1498         int n, i;
1499         struct stat stb;
1500
1501         /* This is device numbered dk->number.  We need to create
1502          * a phys_disk entry and a more detailed disk_data entry.
1503          */
1504         fstat(fd, &stb);
1505         dd = malloc(sizeof(*dd) + sizeof(dd->vlist[0]) * (ddf->max_part+1));
1506         dd->major = major(stb.st_rdev);
1507         dd->minor = minor(stb.st_rdev);
1508         dd->devname = devname;
1509         dd->next = ddf->dlist;
1510         dd->fd = fd;
1511
1512         dd->disk.magic = DDF_PHYS_DATA_MAGIC;
1513         now = time(0);
1514         tm = localtime(&now);
1515         sprintf(dd->disk.guid, "%8s%04d%02d%02d",
1516                 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
1517         *(__u32*)(dd->disk.guid + 16) = random();
1518         *(__u32*)(dd->disk.guid + 20) = random();
1519
1520         dd->disk.refnum = random(); /* and hope for the best */
1521         dd->disk.forced_ref = 1;
1522         dd->disk.forced_guid = 1;
1523         memset(dd->disk.vendor, ' ', 32);
1524         memcpy(dd->disk.vendor, "Linux", 5);
1525         memset(dd->disk.pad, 0xff, 442);
1526         for (i = 0; i < ddf->max_part+1 ; i++)
1527                 dd->vlist[i] = NULL;
1528
1529         n = __be16_to_cpu(ddf->phys->used_pdes);
1530         pde = &ddf->phys->entries[n];
1531         n++;
1532         ddf->phys->used_pdes = __cpu_to_be16(n);
1533
1534         memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
1535         pde->refnum = dd->disk.refnum;
1536         pde->type = __cpu_to_be16(DDF_Forced_PD_GUID |DDF_Global_Spare);
1537         pde->state = __cpu_to_be16(DDF_Online);
1538         get_dev_size(fd, NULL, &size);
1539         /* We are required to reserve 32Meg, and record the size in sectors */
1540         pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
1541         sprintf(pde->path, "%17.17s","Information: nil") ;
1542         memset(pde->pad, 0xff, 6);
1543
1544         ddf->dlist = dd;
1545 }
1546
1547 /*
1548  * This is the write_init_super method for a ddf container.  It is
1549  * called when creating a container or adding another device to a
1550  * container.
1551  */
1552
1553 #ifndef MDASSEMBLE
1554 static int write_init_super_ddf(struct supertype *st)
1555 {
1556
1557         struct ddf_super *ddf = st->sb;
1558         int i;
1559         struct dl *d;
1560         int n_config;
1561         int conf_size;
1562
1563         unsigned long long size, sector;
1564
1565         for (d = ddf->dlist; d; d=d->next) {
1566                 int fd = d->fd;
1567
1568                 if (fd < 0)
1569                         continue;
1570
1571                 /* We need to fill in the primary, (secondary) and workspace
1572                  * lba's in the headers, set their checksums,
1573                  * Also checksum phys, virt....
1574                  *
1575                  * Then write everything out, finally the anchor is written.
1576                  */
1577                 get_dev_size(fd, NULL, &size);
1578                 size /= 512;
1579                 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
1580                 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
1581                 ddf->anchor.seq = __cpu_to_be32(1);
1582                 memcpy(&ddf->primary, &ddf->anchor, 512);
1583                 memcpy(&ddf->secondary, &ddf->anchor, 512);
1584
1585                 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
1586                 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
1587                 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
1588
1589                 ddf->primary.openflag = 0;
1590                 ddf->primary.type = DDF_HEADER_PRIMARY;
1591
1592                 ddf->secondary.openflag = 0;
1593                 ddf->secondary.type = DDF_HEADER_SECONDARY;
1594
1595                 ddf->primary.crc = calc_crc(&ddf->primary, 512);
1596                 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
1597
1598                 sector = size - 16*1024*2;
1599                 lseek64(fd, sector<<9, 0);
1600                 write(fd, &ddf->primary, 512);
1601
1602                 ddf->controller.crc = calc_crc(&ddf->controller, 512);
1603                 write(fd, &ddf->controller, 512);
1604
1605                 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
1606
1607                 write(fd, ddf->phys, ddf->pdsize);
1608
1609                 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
1610                 write(fd, ddf->virt, ddf->vdsize);
1611
1612                 /* Now write lots of config records. */
1613                 n_config = __be16_to_cpu(ddf->active->max_partitions);
1614                 conf_size = __be16_to_cpu(ddf->active->config_record_len) * 512;
1615                 for (i = 0 ; i <= n_config ; i++) {
1616                         struct vcl *c = d->vlist[i];
1617
1618                         if (c) {
1619                                 c->conf.crc = calc_crc(&c->conf, conf_size);
1620                                 write(fd, &c->conf, conf_size);
1621                         } else {
1622                                 __u32 sig = 0xffffffff;
1623                                 write(fd, &sig, 4);
1624                                 lseek64(fd, conf_size-4, SEEK_CUR);
1625                         }
1626                 }
1627                 d->disk.crc = calc_crc(&d->disk, 512);
1628                 write(fd, &d->disk, 512);
1629
1630                 /* Maybe do the same for secondary */
1631
1632                 lseek64(fd, (size-1)*512, SEEK_SET);
1633                 write(fd, &ddf->anchor, 512);
1634                 close(fd);
1635         }
1636         return 1;
1637 }
1638 #endif
1639
1640 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
1641 {
1642         /* We must reserve the last 32Meg */
1643         if (devsize <= 32*1024*2)
1644                 return 0;
1645         return devsize - 32*1024*2;
1646 }
1647
1648 #ifndef MDASSEMBLE
1649 int validate_geometry_ddf(struct supertype *st,
1650                           int level, int layout, int raiddisks,
1651                           int chunk, unsigned long long size,
1652                           char *dev, unsigned long long *freesize)
1653 {
1654         int fd;
1655         struct mdinfo *sra;
1656         int cfd;
1657
1658         /* ddf potentially supports lots of things, but it depends on
1659          * what devices are offered (and maybe kernel version?)
1660          * If given unused devices, we will make a container.
1661          * If given devices in a container, we will make a BVD.
1662          * If given BVDs, we make an SVD, changing all the GUIDs in the process.
1663          */
1664
1665         if (level == LEVEL_CONTAINER) {
1666                 st->ss = &super_ddf_container;
1667                 return st->ss->validate_geometry(st, level, layout, raiddisks,
1668                                                  chunk, size, dev, freesize);
1669         }
1670         if (!dev)
1671                 return 1;
1672
1673         /* This device needs to be either a device in a 'ddf' container,
1674          * or it needs to be a 'ddf-bvd' array.  Test the first first.
1675          */
1676
1677         fd = open(dev, O_RDONLY|O_EXCL, 0);
1678         if (fd >= 0) {
1679                 sra = sysfs_read(fd, 0, GET_VERSION);
1680                 close(fd);
1681                 if (sra && sra->array.major_version == -1 &&
1682                     strcmp(sra->text_version, "ddf-bvd") == 0) {
1683                         st->ss = &super_ddf_svd;
1684                         return st->ss->validate_geometry(st, level, layout,
1685                                                          raiddisks, chunk, size,
1686                                                          dev, freesize);
1687                 }
1688
1689                 fprintf(stderr,
1690                         Name ": Cannot create this array on device %s\n",
1691                         dev);
1692                 return 0;
1693         }
1694         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1695                 fprintf(stderr, Name ": Cannot open %s: %s\n",
1696                         dev, strerror(errno));
1697                 return 0;
1698         }
1699         /* Well, it is in use by someone, maybe a 'ddf' container. */
1700         cfd = open_container(fd);
1701         if (cfd < 0) {
1702                 close(fd);
1703                 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1704                         dev);
1705                 return 0;
1706         }
1707         sra = sysfs_read(cfd, 0, GET_VERSION);
1708         close(fd);
1709         if (sra && sra->array.major_version == -1 &&
1710             strcmp(sra->text_version, "ddf") == 0) {
1711                 /* This is a member of a ddf container.  Load the container
1712                  * and try to create a bvd
1713                  */
1714                 struct ddf_super *ddf;
1715                 st->ss = &super_ddf_bvd;
1716                 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
1717                         st->info = ddf;
1718                         close(cfd);
1719                         return st->ss->validate_geometry(st, level, layout,
1720                                                          raiddisks, chunk, size,
1721                                                          dev, freesize);
1722                 }
1723                 close(cfd);
1724         }
1725         fprintf(stderr, Name ": Cannot use %s: Already in use\n",
1726                 dev);
1727         return 1;
1728 }
1729
1730 int validate_geometry_ddf_container(struct supertype *st,
1731                                     int level, int layout, int raiddisks,
1732                                     int chunk, unsigned long long size,
1733                                     char *dev, unsigned long long *freesize)
1734 {
1735         int fd;
1736         unsigned long long ldsize;
1737
1738         if (level != LEVEL_CONTAINER)
1739                 return 0;
1740         if (!dev)
1741                 return 1;
1742
1743         fd = open(dev, O_RDONLY|O_EXCL, 0);
1744         if (fd < 0) {
1745                 fprintf(stderr, Name ": Cannot open %s: %s\n",
1746                         dev, strerror(errno));
1747                 return 0;
1748         }
1749         if (!get_dev_size(fd, dev, &ldsize)) {
1750                 close(fd);
1751                 return 0;
1752         }
1753         close(fd);
1754
1755         *freesize = avail_size_ddf(st, ldsize);
1756
1757         return 1;
1758 }
1759
1760 int validate_geometry_ddf_bvd(struct supertype *st,
1761                               int level, int layout, int raiddisks,
1762                               int chunk, unsigned long long size,
1763                               char *dev, unsigned long long *freesize)
1764 {
1765         struct stat stb;
1766         struct ddf_super *ddf = st->sb;
1767         struct dl *dl;
1768         /* ddf/bvd supports lots of things, but not containers */
1769         if (level == LEVEL_CONTAINER)
1770                 return 0;
1771         /* We must have the container info already read in. */
1772         if (!ddf)
1773                 return 0;
1774
1775         /* This device must be a member of the set */
1776         if (stat(dev, &stb) < 0)
1777                 return 0;
1778         if ((S_IFMT & stb.st_mode) != S_IFBLK)
1779                 return 0;
1780         for (dl = ddf->dlist ; dl ; dl = dl->next) {
1781                 if (dl->major == major(stb.st_rdev) &&
1782                     dl->minor == minor(stb.st_rdev))
1783                         break;
1784         }
1785         // FIXME here I am
1786
1787         return 1;
1788 }
1789 int validate_geometry_ddf_svd(struct supertype *st,
1790                               int level, int layout, int raiddisks,
1791                               int chunk, unsigned long long size,
1792                               char *dev, unsigned long long *freesize)
1793 {
1794         /* dd/svd only supports striped, mirrored, concat, spanned... */
1795         if (level != LEVEL_LINEAR &&
1796             level != 0 &&
1797             level != 1)
1798                 return 0;
1799         return 1;
1800 }
1801
1802
1803 static int load_super_ddf_all(struct supertype *st, int fd,
1804                               void **sbp, char *devname, int keep_fd)
1805 {
1806         struct mdinfo *sra;
1807         struct ddf_super *super;
1808         struct mdinfo *sd, *best = NULL;
1809         int bestseq = 0;
1810         int seq;
1811         char nm[20];
1812         int dfd;
1813
1814         sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1815         if (!sra)
1816                 return 1;
1817         if (sra->array.major_version != -1 ||
1818             sra->array.minor_version != -2 ||
1819             strcmp(sra->text_version, "ddf") != 0)
1820                 return 1;
1821
1822         super = malloc(sizeof(*super));
1823         if (!super)
1824                 return 1;
1825
1826         /* first, try each device, and choose the best ddf */
1827         for (sd = sra->devs ; sd ; sd = sd->next) {
1828                 int rv;
1829                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1830                 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1831                 if (!dfd)
1832                         return 2;
1833                 rv = load_ddf_headers(dfd, super, NULL);
1834                 if (!keep_fd) close(dfd);
1835                 if (rv == 0) {
1836                         seq = __be32_to_cpu(super->active->seq);
1837                         if (super->active->openflag)
1838                                 seq--;
1839                         if (!best || seq > bestseq) {
1840                                 bestseq = seq;
1841                                 best = sd;
1842                         }
1843                 }
1844         }
1845         if (!best)
1846                 return 1;
1847         /* OK, load this ddf */
1848         sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1849         dfd = dev_open(nm, O_RDONLY);
1850         if (!dfd)
1851                 return 1;
1852         load_ddf_headers(dfd, super, NULL);
1853         load_ddf_global(dfd, super, NULL);
1854         close(dfd);
1855         /* Now we need the device-local bits */
1856         for (sd = sra->devs ; sd ; sd = sd->next) {
1857                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1858                 dfd = dev_open(nm, O_RDONLY);
1859                 if (!dfd)
1860                         return 2;
1861                 seq = load_ddf_local(dfd, super, NULL, keep_fd);
1862                 close(dfd);
1863         }
1864         *sbp = super;
1865         if (st->ss == NULL) {
1866                 st->ss = &super_ddf;
1867                 st->minor_version = 0;
1868                 st->max_devs = 512;
1869         }
1870         return 0;
1871 }
1872 #endif
1873
1874
1875
1876 static int init_zero_ddf(struct supertype *st,
1877                          mdu_array_info_t *info,
1878                          unsigned long long size, char *name,
1879                          char *homehost, int *uuid)
1880 {
1881         st->sb = NULL;
1882         return 0;
1883 }
1884
1885 static int store_zero_ddf(struct supertype *st, int fd)
1886 {
1887         unsigned long long dsize;
1888         char buf[512];
1889         memset(buf, 0, 512);
1890
1891
1892         if (!get_dev_size(fd, NULL, &dsize))
1893                 return 1;
1894
1895         lseek64(fd, dsize-512, 0);
1896         write(fd, buf, 512);
1897         return 0;
1898 }
1899
1900 struct superswitch super_ddf = {
1901 #ifndef MDASSEMBLE
1902         .examine_super  = examine_super_ddf,
1903         .brief_examine_super = brief_examine_super_ddf,
1904         .detail_super   = detail_super_ddf,
1905         .brief_detail_super = brief_detail_super_ddf,
1906         .validate_geometry = validate_geometry_ddf,
1907 #endif
1908         .match_home     = match_home_ddf,
1909         .uuid_from_super= uuid_from_super_ddf,
1910         .getinfo_super  = getinfo_super_ddf,
1911         .update_super   = update_super_ddf,
1912
1913         .avail_size     = avail_size_ddf,
1914
1915         .load_super     = load_super_ddf,
1916         .init_super     = init_zero_ddf,
1917         .store_super    = store_zero_ddf,
1918         .free_super     = free_super_ddf,
1919         .match_metadata_desc = match_metadata_desc_ddf,
1920
1921
1922         .major          = 1000,
1923         .swapuuid       = 0,
1924         .external       = 1,
1925         .text_version   = "ddf",
1926 };
1927
1928 /* Super_ddf_container is set by validate_geometry_ddf when given a
1929  * device that is not part of any array
1930  */
1931 struct superswitch super_ddf_container = {
1932 #ifndef MDASSEMBLE
1933         .validate_geometry = validate_geometry_ddf_container,
1934         .write_init_super = write_init_super_ddf,
1935 #endif
1936
1937         .init_super     = init_super_ddf,
1938         .add_to_super   = add_to_super_ddf,
1939
1940         .free_super     = free_super_ddf,
1941
1942         .major          = 1000,
1943         .swapuuid       = 0,
1944         .external       = 1,
1945         .text_version   = "ddf",
1946 };
1947
1948 struct superswitch super_ddf_bvd = {
1949 #ifndef MDASSEMBLE
1950 //      .detail_super   = detail_super_ddf_bvd,
1951 //      .brief_detail_super = brief_detail_super_ddf_bvd,
1952         .validate_geometry = validate_geometry_ddf_bvd,
1953 #endif
1954         .update_super   = update_super_ddf,
1955         .init_super     = init_super_ddf,
1956         .getinfo_super  = getinfo_super_ddf_bvd,
1957
1958         .load_super     = load_super_ddf,
1959         .free_super     = free_super_ddf,
1960         .match_metadata_desc = match_metadata_desc_ddf_bvd,
1961
1962
1963         .major          = 1001,
1964         .swapuuid       = 0,
1965         .external       = 1,
1966         .text_version   = "ddf",
1967 };
1968
1969 struct superswitch super_ddf_svd = {
1970 #ifndef MDASSEMBLE
1971 //      .detail_super   = detail_super_ddf_svd,
1972 //      .brief_detail_super = brief_detail_super_ddf_svd,
1973         .validate_geometry = validate_geometry_ddf_bvd,
1974 #endif
1975         .update_super   = update_super_ddf,
1976         .init_super     = init_super_ddf,
1977
1978         .load_super     = load_super_ddf,
1979         .free_super     = free_super_ddf,
1980         .match_metadata_desc = match_metadata_desc_ddf_svd,
1981
1982
1983         .major          = 1002,
1984         .swapuuid       = 0,
1985         .external       = 1,
1986         .text_version   = "ddf",
1987 };